WO2011135677A1 - 車載装置及び車載通信装置及び車載情報処理装置 - Google Patents

車載装置及び車載通信装置及び車載情報処理装置 Download PDF

Info

Publication number
WO2011135677A1
WO2011135677A1 PCT/JP2010/057479 JP2010057479W WO2011135677A1 WO 2011135677 A1 WO2011135677 A1 WO 2011135677A1 JP 2010057479 W JP2010057479 W JP 2010057479W WO 2011135677 A1 WO2011135677 A1 WO 2011135677A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
information
coordinate
display
screen
Prior art date
Application number
PCT/JP2010/057479
Other languages
English (en)
French (fr)
Inventor
青野 浩之
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to JP2012512578A priority Critical patent/JP5418669B2/ja
Priority to DE112010005524T priority patent/DE112010005524T5/de
Priority to PCT/JP2010/057479 priority patent/WO2011135677A1/ja
Priority to US13/642,930 priority patent/US20130041578A1/en
Priority to CN201080066276XA priority patent/CN102933935A/zh
Publication of WO2011135677A1 publication Critical patent/WO2011135677A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network

Definitions

  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an in-vehicle device capable of reducing the data amount of position information of other vehicles acquired by a communication device, and an in-vehicle device constituting the in-vehicle device.
  • the object is to provide a communication device and an in-vehicle information processing device.
  • the position information of the object acquired by the in-vehicle communication device corresponds to the screen resolution of the display device by the conversion coefficient calculated according to the screen resolution of the display device and the scale of the map information. Converted to coordinate information. Accordingly, the in-vehicle communication device can appropriately correspond the coordinate information of the object of the display device to the screen resolution of the display device, and can also appropriately correspond to the scale of the map information that changes variously. become.
  • the communication load can be reduced by increasing the number of coordinate information of other vehicles that can be transferred, thereby increasing the number of vehicles that can be grasped by the in-vehicle information processing device and making driving support more sophisticated. Make it possible to do.
  • the in-vehicle communication device further includes a function of calculating a movement amount for each communication destination vehicle identified by the identification information, and for the coordinate information converted by the coordinate conversion unit, the calculated movement amount for each vehicle. Corresponding information may be transferred to the in-vehicle information processing apparatus.
  • coordinate information based on the amount of movement of the object is transferred from the in-vehicle communication device to the in-vehicle information processing device, so that the data amount can be reduced as compared with the case where the position information is transferred. .
  • the movement amount if the cycle for calculating the movement amount is shortened, the movement amount of the object is reduced, so that the data amount can be further reduced.
  • the in-vehicle communication device and the in-vehicle information processing device may be connected via an in-vehicle network, and the converted coordinate information may be exchanged through the in-vehicle network.
  • the position information of the object acquired by the in-vehicle communication device and converted into coordinate information by the coordinate conversion unit may include at least one of a latitude value and a longitude value.
  • the position information corresponding to the map information that specifies the position based on a wide-range coordinate system such as a geodetic system is the position information of the object outside the vehicle acquired by the in-vehicle communication device.
  • the amount of data can be reduced by conversion into coordinate information of a coordinate system set to a finite resolution. As a result, the amount of data transferred from the in-vehicle communication device to the in-vehicle information processing device is reduced, and the communication load for data transfer is reduced.
  • the in-vehicle communication device since the coordinate system set to a finite resolution is a coordinate system according to the screen resolution of the display device, the in-vehicle communication device is suitable for displaying the position information of the object on the display device. It can be converted into coordinate information which is a coordinate system. As a result, the amount of data transferred from the in-vehicle communication device to the in-vehicle information processing device is reduced, and the object can be easily displayed on the display device together with the map.
  • the in-vehicle information processing apparatus processes the positional information of an object acquired by the in-vehicle communication apparatus as necessary to obtain a positional relationship with the object based on map information.
  • a vehicle information processing apparatus for recognizing a conversion coefficient for converting position information of an object acquired by the vehicle communication apparatus into coordinate information of a coordinate system set to a finite resolution with respect to the map information.
  • the gist is to provide a conversion coefficient calculation unit for calculating, and to transfer the calculated conversion coefficient to the in-vehicle communication device.
  • the position information corresponding to the map information that specifies the position based on a wide-range coordinate system such as a geodetic system is the position information of the object outside the vehicle acquired by the in-vehicle communication device.
  • the amount of data can be reduced by converting into coordinate information of a coordinate system set to a finite resolution used for the vehicle-mounted information processing apparatus to recognize the position of the object.
  • the amount of data transferred from the in-vehicle communication device to the in-vehicle information processing device is reduced, and the communication load for data transfer is reduced.
  • the conversion coefficient to the coordinate system set to a finite resolution is calculated as the conversion coefficient to the coordinate system according to the scale of the map information each time and the screen resolution of the display device,
  • the in-vehicle communication device can convert the position information of the object into coordinate information in a coordinate system suitable for display on the display device. As a result, the amount of data transferred from the in-vehicle communication device to the in-vehicle information processing device is reduced, and the object can be easily displayed on the display device together with the map.
  • the block diagram which shows typically the outline
  • the schematic diagram which shows the image displayed on a screen based on the positional information processed with the apparatus of the embodiment.
  • the top view which shows an example of the driving environment which processes a positional information with the apparatus of the embodiment. It is a figure which shows the information handled in the embodiment typically, Comprising: (a) is a conceptual diagram which shows the data structure of the positional information which consists of latitude and longitude, (b) is the data structure of the positional information which carried out coordinate conversion.
  • FIG. The flowchart which shows the process sequence of the coordinate transformation process performed with the apparatus of the embodiment.
  • the block diagram which shows typically the outline
  • the schematic diagram which shows the image displayed on a screen based on the positional information processed with the apparatus of the embodiment.
  • the top view which shows an example of the driving environment which processes a positional information with the apparatus of the embodiment. It is a figure which shows the information handled in the embodiment typically, Comprising: (a) is a conceptual diagram which shows the relationship between vehicle ID and position information, (b) is the relationship between vehicle ID and local ID of the apparatus. The conceptual diagram to show, (c) is a conceptual diagram which shows the relationship between local ID and a display relative value.
  • the in-vehicle network N enables information transmission between a plurality of devices connected to the in-vehicle network N.
  • the in-vehicle network N has a maximum communication capacity of 500 kilobits / second (time). It is configured by a local CAN (Controller Area Network).
  • the information processing apparatus 20 provides information that can support the driving operation to the driver who drives the vehicle 10 through an image display.
  • the communication device 30 acquires position information of other vehicles other than the vehicle 10, position information of ground facilities (such as a stop line), and the like by wireless communication with a communication device of another vehicle or a communication device provided on the road. Is.
  • the information processing apparatus 20 is provided with a screen 21, a global positioning system (GPS) 22, and an arithmetic device 23 that performs various arithmetic processes.
  • GPS global positioning system
  • the screen 21 displays an image to be visually recognized by the driver, and has, for example, 800 dots in the horizontal direction (X direction) and 600 dots in the vertical direction (Y direction) as the resolution. It consists of a liquid crystal display panel. Therefore, a display coordinate system (display coordinate system) divided into 800 in the X direction and 600 in the Y direction is defined on the screen 21. Based on this display coordinate system, the lower left position P0 of the screen 21 is represented by display coordinates (0, 0) in the X direction “0” and the Y direction “0”.
  • the GPS 22 detects the position of the vehicle 10 based on the latitude and longitude based on the reception of the GPS satellite signal, and outputs the detected position of the vehicle 10 to the arithmetic unit 23. .
  • the GPS 22 detects an absolute position (Lx1, Ly1) having a latitude Lx1 and a longitude Ly1 as the position of the vehicle 10 traveling on the traveling path R1. Thereby, the absolute position (Lx1, Ly1) of the vehicle 10 is grasped in the information processing apparatus 20.
  • the calculation device 23 is provided with a display control unit 24 and a conversion coefficient calculation unit 25.
  • the display control unit 24 controls the image displayed on the screen 21, displays map image data on the screen 21, and displays a predetermined image at the indicated display coordinates. More specifically, the display control unit 24 acquires the absolute position of the vehicle 10 output from the GPS 22, and obtains map information centered on the absolute position (Lx1, Ly1) of the vehicle 10 from a map information database (not shown). get. Then, by generating and outputting image data corresponding to the scale set by the driver or the like from the acquired map information, on the screen 21, for example, as shown in FIG. 2, from the traveling path R1 and the intersection R2 To display a map. The map display on the screen 21 is updated every time the position of the vehicle 10 is updated.
  • the display control unit 24 acquires the display relative value PS1 calculated as a relative coordinate with respect to the display coordinate P4 of the vehicle 10 from the outside, and the display coordinate P4 is acquired from the acquired display relative value PS1. By adding the values, the display coordinates P5 of the other vehicle 41 as described above can be calculated.
  • the conversion coefficient calculation unit 25 corresponds to a vehicle absolute position CL composed of latitude and longitude indicating the position of the vehicle 10 set as the center coordinate of the screen 21 and one dot of the screen 21 determined by the scale of the map displayed on the screen 21.
  • a conversion coefficient CF based on the length (meter) to be calculated is calculated. For example, when the scale of the map displayed on the screen 21 is 1/2500, the conversion coefficient CF has a length corresponding to 1 dot because 1 mm (4 dots) on the screen 21 corresponds to 2.5 m of the actual object. Is calculated as 0.625 m / dot.
  • the communication device 30 mutually communicates vehicle information RD composed of various information such as vehicle position information and travel information by wireless communication performed with another vehicle located around the vehicle 10 via the antenna 31 for wireless communication. It is a device that performs so-called inter-vehicle communication that is transmitted to the vehicle.
  • the vehicle information RD is exchanged periodically, for example, every 100 ms, with each of a plurality of vehicles, for example, a maximum of 400 vehicles within the communication range of the communication device 30 by this inter-vehicle communication.
  • the vehicle information RD includes the vehicle ID uniquely assigned to each vehicle, the absolute position of the vehicle detected by the GPS of the vehicle, the vehicle speed, information on the traveling direction of the vehicle, and the like.
  • the communication device 30 can acquire the vehicle information RD including the absolute position (Lx2, Ly2) of the other vehicle 41 by inter-vehicle communication with the other vehicle 41.
  • the vehicle information RD transmitted and received by inter-vehicle communication defines the communication content. From this, each vehicle can exchange the vehicle information of the defined communication contents with each other so that the received vehicle information of other vehicles can be used as significant.
  • the absolute position included in the vehicle information RD is a 28-bit data structure that represents the latitude up to 1/100 second, and the longitude is 100. It is a 28-bit data structure representing up to 1 second. Therefore, the absolute position is configured as a 56-bit data structure.
  • the absolute position (Lx2, Ly2) included in the vehicle information RD of the other vehicle 41 is configured as a 56-bit data structure including a latitude Lx2 and a longitude Ly2.
  • the communication device 30 is provided with an arithmetic device 32.
  • the arithmetic unit 32 is a microcomputer that includes a CPU that executes various arithmetic processes, a ROM that stores various control programs, a RAM that is used as a work area for data storage and program execution, an input / output interface, a memory, and the like. It is configured.
  • the computing device 32 executes a process for obtaining an absolute position from the vehicle information RD obtained by the inter-vehicle communication, or executes a process for exchanging data with the information processing apparatus 20. Therefore, the arithmetic device 32 stores in advance various programs such as a program for obtaining an absolute position from the vehicle information RD, various parameters used when the programs are executed, and the like.
  • the various parameters include, for example, data structure information for analyzing communication contents of vehicle information RD communicated by inter-vehicle communication.
  • the calculation device 32 is provided with a coordinate conversion unit 33 for coordinate conversion processing for converting the value of the absolute position acquired from the vehicle information RD into the value of the display coordinate system of the screen 21 of the information processing device 20.
  • the coordinate conversion unit 33 acquires the absolute position from the vehicle information RD, and acquires the vehicle absolute position CL and the conversion coefficient CF from the information processing apparatus 20. Then, by converting the absolute position acquired from the vehicle information RD based on the conversion coefficient CF, the display relative value PS1 including the value of the display coordinate system is calculated and output to the information processing apparatus 20.
  • FIG. 5 is a flowchart illustrating a processing procedure according to the coordinate conversion processing.
  • this coordinate conversion process is started each time the absolute position of the other vehicle 41 is acquired.
  • the calculation device 32 performs coordinate conversion of the absolute position of the other vehicle 41 by the coordinate conversion unit 33 (step S10 in FIG. 5).
  • the vehicle absolute position CL and the conversion coefficient CF may be once acquired and held in a predetermined memory, and may be acquired again from the information processing apparatus 20 when they are updated.
  • the coordinate conversion unit 33 calculates a relative absolute position of the other vehicle 41 with respect to the absolute position of the vehicle 10, that is, a difference between the absolute position of the other vehicle 41 with respect to the absolute position of the vehicle 10. That is, the latitude difference (Lx2-Lx1) and the latitude difference (Ly2-Ly1) are calculated from the absolute position (Lx2, Ly2) of the other vehicle 41 and the vehicle absolute position CL (Lx1, Ly1).
  • the latitude difference (Lx2-Lx1) and the longitude difference (Ly2-Ly1) are converted into lengths. If the length (meter) per second of latitude is La and the length (meter) of longitude per second is Lb, the difference in latitude is (Lx2-Lx1) x La, the difference in longitude Is calculated by (Ly2 ⁇ Ly1) ⁇ Lb. In the case of a Japanese region, the length La per second of latitude is about 31 m, and the length Lb per second of longitude is about 25 m.
  • the length of the latitude difference and the length of the longitude difference are converted into the number of dots on the screen 21 based on the conversion coefficient CF. That is, in the present embodiment, the X direction of the screen 21 corresponds to longitude and the Y direction of the screen 21 corresponds to latitude, respectively, so that the length of the latitude difference is divided by the conversion coefficient CF to thereby create dots in the Y direction of the screen 21.
  • the number of dots in the X direction on the screen 21 is obtained by obtaining the number and dividing the length in the longitude direction by the conversion coefficient CF.
  • the coordinate conversion unit 33 calculates the display relative value PS1 ( ⁇ Dx2, ⁇ Dy2) of the other vehicle 41.
  • the range of the number of dots ⁇ Dx2 in the X direction calculated as the display relative value PS1 of the other vehicle 41 is “ ⁇ 400 to 400”, and the range of the number of dots ⁇ Dy2 in the Y direction is “ ⁇ 300 to 300”. It is. That is, the number of dots in the X direction and the number of dots in the Y direction, including the code, can each be represented by 10-bit data. Therefore, as shown in FIG. 4B, the display relative value PS1 is obtained from 10-bit X coordinate information (number of dots in the X direction ⁇ Dx2) and 10-bit Y coordinate information (number of dots in the Y direction ⁇ Dx2). Can be configured as a 20-bit data structure.
  • the arithmetic device 32 transmits the display relative value PS1 to the information processing device 20 via the in-vehicle network N by the coordinate conversion unit 33 (step in FIG. 5). S11), the coordinate conversion process is terminated.
  • the occupation of the communication band of the local CAN becomes relatively small, and there is a low possibility that the communication band for other communications will be compressed.
  • the local CAN maintains high communication efficiency when the amount of data to be communicated is about 20% or less of the communication band, it is possible to maintain high communication efficiency.
  • the display relative value PS1 of the other vehicle 41 is transferred from the communication device 30 to the information processing device 20.
  • the display relative value PS1 is acquired based on the display relative value PS1 acquired by the display control unit 24 and the display relative value PS1 being a relative value with respect to the display coordinate P4 of the vehicle 10. Is added with the display coordinate P4 of the vehicle 10 to calculate the display coordinate P5 of the screen 21 based on the display relative value PS1.
  • the display coordinates P4 (400, 300) of the vehicle 10 For example, by adding the display coordinates P4 (400, 300) of the vehicle 10 to the display relative value PS1 ( ⁇ Dx2, ⁇ Dy2), the display coordinates P5 (XDx2 is ( ⁇ Dx2 + 400) and Y coordinates Dy2 are ( ⁇ Dy2 + 300)). Dx2, Dy2) are calculated. As a result, the image 41M corresponding to the other vehicle 41 is displayed at the display coordinates P5 of the screen 21.
  • the absolute position (Lx1, Ly1) of the vehicle 10 is assigned to the display coordinates P4 (400, 300) that are the center coordinates of the screen 21.
  • the conversion coefficient calculation unit 25 converts the absolute position (Lx1, Ly1) of the vehicle 10 to the vehicle absolute position CL, and converts 0.625 m / dot calculated from the size of the screen 21 and the map scale ratio of 1/2500.
  • the coefficient is CF.
  • the length of these differences is converted into a value in the display coordinate system of the screen 21 based on the conversion coefficient CF to obtain a display relative value PS1 ( ⁇ Dx2, ⁇ Dy2).
  • the amount of data is reduced by converting the corresponding position information into coordinate information (display relative value PS1) of a display coordinate system set to a finite resolution defined on the screen 21.
  • display relative value PS1 coordinate information of a display coordinate system set to a finite resolution defined on the screen 21.
  • the communication device 30 Since the coordinate system set to a finite resolution is a display coordinate system corresponding to the screen resolution of the screen 21, the communication device 30 is a display suitable for displaying the position information of the other vehicle 41 on the screen 21. It can be converted into coordinate information (display relative value PS1) of the coordinate system. Accordingly, the amount of data transferred from the communication device 30 to the information processing device 20 is reduced, and it is easy to display the other vehicle 41 on the screen 21 together with the map.
  • the position information of the other vehicle 41 acquired by the communication device 30 is coordinate information corresponding to the screen resolution of the screen 21 by the conversion coefficient CF calculated according to the screen resolution of the screen 21 and the scale of the map information ( The display relative value PS1) is converted. Accordingly, the communication device 30 can appropriately correspond the coordinate information (display relative value PS1) of the other vehicle 41 of the screen 21 to the screen resolution of the screen 21, and also appropriately adapt to the scale of the map information that changes variously. It becomes possible to make it correspond.
  • the coordinate conversion unit 33 converts the position information of the other vehicle 41 into the coordinate information (display relative value PS1) from the screen center position (display coordinates P4), the position information of the other vehicle 41 is the screen center position (display It becomes a numerical value of the difference centered on the coordinate P4), and the data amount is reduced.
  • the position information of the other vehicle 41 in the coordinate system composed of the longitude and latitude is converted into the coordinate information (display relative value PS1) based on the screen center position (display coordinates P4). Is a relatively small value (for example, 0 to 800 (dots)) according to the screen resolution, and the data amount of the coordinate information can be reduced.
  • the communication load of the in-vehicle network N is reduced.
  • the reduction of the communication load of the in-vehicle network N reduces the influence on other communications using the in-vehicle network N, and the communication efficiency of the vehicle 10 can be maintained well.
  • the amount of data required for longitude or a value indicating longitude for example, 26 bits (when displaying up to 1/100 second) is converted into coordinate information (display relative value PS1) having a smaller data amount. It becomes like this. Accordingly, the amount of data transmitted to the information processing device 20 can be reduced as compared with the case where the latitude value or the longitude value is transmitted as it is, and data communication between the communication device 30 and the information processing device 20 is possible. This reduces the communication load on the network.
  • FIG. 6 is a block diagram showing a system structure of an in-vehicle device that embodies this embodiment.
  • FIG. 7 is a schematic diagram showing an image displayed on the screen based on the position information.
  • FIG. 8 is a plan view showing an example of a traveling environment in which position information is processed. Note that this embodiment is different from the first embodiment in part of the configuration of the information processing device 20 and the communication device 30, and the other configurations are the same. Therefore, the present embodiment is mainly different from the first embodiment.
  • the same reference numerals are given to the same members as those in the first embodiment, and the description thereof will be omitted for convenience of explanation.
  • the image is displayed so that the traveling direction of the vehicle 10 is “north” and the traveling direction of the vehicle 10 is on the upper side, as in the first embodiment. It is assumed that the upper side of the screen 21 is “north”. Furthermore, since the scale of the map displayed on the screen 21 is 1/2500, 1 mm (4 dots) on the screen 21 corresponds to the actual 2.5 m, and the length corresponding to 1 dot is 0.625 m. It shall be. That is, the conversion coefficient CF is 0.625 m / dot.
  • the calculation device 23 includes a display control unit 24, a conversion coefficient calculation unit 25, a coordinate calculation unit 26, and a coordinate storage unit 27.
  • the coordinate storage unit 27 manages and stores data, and the coordinate calculation unit 26 can write and read data.
  • the coordinate storage unit 27 stores a local ID unique within the vehicle 10 and a display relative value PS3 associated with the local ID so as to be associated with each other.
  • the display relative value PS3 is a value calculated as a relative coordinate with respect to the display coordinate P4 of the vehicle 10 (see FIG. 7), similarly to the display relative value PS1.
  • the coordinate storage unit 27 deletes the local ID that is not read / written and the display relative value PS3 associated therewith from the coordinate calculation unit 26 for a predetermined period. As a result, unnecessary data is erased, and the storage capacity can be reduced and the local ID search speed can be prevented from being lowered.
  • the coordinate calculation unit 26 is for calculating the display relative value PS3 from the display difference value PS2 as the value of the display coordinates calculated based on the absolute position of the other vehicle 41.
  • the coordinate calculation unit 26 acquires the local ID and the display difference value PS2 from the communication device 30, the current display relative value is based on the display difference value PS2 and the previous display relative value PS3 corresponding to the local ID. PS3 is calculated.
  • the previous display relative value PS3 is acquired from the coordinate storage unit 27 based on the local ID. Then, the current display relative value PS3 is output to the display control unit 24. Further, the previous display relative value PS3 corresponding to the local ID stored in the coordinate storage unit 27 is updated to the current display relative value PS3.
  • the display control unit 24 When the other vehicle 41 is detected by the communication device 30 for the first time, the local ID and the display relative value PS1 corresponding to the other vehicle 41 are acquired from the communication device 30. At this time, the display control unit 24 outputs the acquired display relative value PS1 to the display control unit 24 and causes the coordinate storage unit 27 to store the local ID and the display relative value PS1.
  • the computing device 32 is provided with a coordinate conversion unit 34, a difference value calculation unit 35, an ID correspondence table storage unit 36, and a position information storage unit 37.
  • the ID correspondence table storage unit 36 manages and stores data, and the difference value calculation unit 35 can write data and read data.
  • the ID correspondence table storage unit 36 stores a vehicle ID (16 bits) and a local ID (9 bits) assigned to the vehicle ID in association with each other. . Since the local ID is an ID that can individually identify 400 devices that can be communicated by the communication device 30 at a time, the local ID is 9 bits that can represent “0 to 511”.
  • the ID correspondence table storage unit 36 When the ID correspondence table storage unit 36 requests a local ID of a vehicle ID that is not stored, the ID correspondence table storage unit 36 selects one unused local ID that is not assigned to any vehicle ID at that time, and While assigning to the ID, the selected local ID is returned. Further, the ID correspondence table storage unit 36 deletes the vehicle ID that is not read / written and the local ID corresponding thereto from the difference value calculation unit 35 for a predetermined period. As a result, the range of the local ID is satisfied with 9 bits ("0 to 511").
  • the position information storage unit 37 manages and stores data, and the difference value calculation unit 35 can write data and read data. As shown in FIG. 9A, the position information storage unit 37 stores a vehicle ID (16 bits) and an absolute position (56 bits) associated with the vehicle ID in association with each other.
  • the vehicle ID is an identification number (ID) uniquely assigned to each vehicle, and the vehicle can be specified by the identification number. For example, the same vehicle can be tracked from the absolute position acquired at different times by the vehicle ID.
  • the position information storage unit 37 deletes the vehicle ID that is not read / written and the absolute position associated therewith from the difference value calculation unit 35 for a predetermined period. As a result, unnecessary data is erased, and the storage capacity can be reduced and the reduction in the vehicle ID acquisition speed can be suppressed.
  • the difference value calculation unit 35 calculates the difference between the previous absolute position and the current absolute position for the same vehicle ID. For example, as shown in FIG. 8, the difference value calculation unit 35 calculates a difference in latitude from the previous absolute position 41 a (Lx2, Ly2) and the current absolute position 41 b (Lx21, Ly21) as shown in FIG. Lx21 ⁇ Lx2) and (Ly21 ⁇ Ly2) are calculated as longitude differences. Therefore, the difference value calculation unit 35 acquires the previous absolute position 41a of the same vehicle ID from the position information storage unit 37 based on the current vehicle ID. After the difference between the previous absolute position 41a and the current absolute position 41b is calculated, the previous absolute position 41a stored in the position information storage unit 37 is updated to the current absolute position 41b.
  • the difference value calculation unit 35 acquires a local ID corresponding to the vehicle ID from the ID correspondence table storage unit 36. Then, the difference value calculation unit 35 outputs the latitude difference and the longitude difference to the coordinate conversion unit 34 together with the local ID. The data amount is reduced by using the local ID (9 bits) instead of the vehicle ID (16 bits).
  • the moving distance of the vehicle 10 per cycle (100 ms) of inter-vehicle communication is, for example, 5 m if the vehicle is traveling at a speed of 180 km / h. Since the latitude is 31 m per second, 5 m is equivalent to 0.16 seconds, and since the longitude is 25 m per second, 5 m is equivalent to 0.20 seconds. At least 5 bits (0 to 31) are required.
  • the data structure output from the difference value calculation unit 35 to the coordinate conversion unit 34 is, as shown in FIG. 10A, a 19-bit data structure including a local ID, a difference in latitude, and a difference in longitude. Become.
  • the difference value calculation unit 35 cannot acquire the previous absolute position of the vehicle ID from the position information storage unit 37, so the previous absolute position and the current absolute position The difference cannot be calculated. However, even in this case, the current vehicle ID and the current absolute position associated with the vehicle ID are stored in the position information storage unit 37. Thereby, after the next time, the difference between the previous absolute position and the current absolute position can be calculated. Further, the difference value calculation unit 35 tries to obtain a local ID corresponding to the vehicle ID from the ID correspondence table storage unit 36, but since there is no corresponding local ID in the ID correspondence table storage unit 36, a new local ID is obtained. To be acquired. As a result, in the case of the vehicle ID acquired for the first time, the difference value calculation unit 35 outputs the current absolute position to the coordinate conversion unit 34 together with the new local ID.
  • the coordinate conversion unit 34 performs a coordinate conversion process for converting a value based on the absolute position into a value based on the display coordinate system of the screen 21.
  • the coordinate conversion unit 34 acquires the absolute position of the other vehicle 41 or the difference between the previous absolute position of the other vehicle 41 and the current absolute position together with the local ID from the difference value calculation unit 35. Further, the coordinate conversion unit 34 acquires the vehicle absolute position CL and the conversion coefficient CF from the information processing apparatus 20. And in the case of the other vehicle 41 detected for the first time, the coordinate conversion part 34 is displayed with the value of the display coordinate system based on the absolute position (41a) of the other vehicle 41, the vehicle absolute position CL, and the conversion coefficient CF.
  • the relative value PS1 is calculated and output to the information processing apparatus 20.
  • FIG. 11 is a flowchart illustrating a processing procedure according to the coordinate conversion processing.
  • this coordinate conversion process is started each time the absolute position of the other vehicle 41 is acquired.
  • the calculation device 32 calculates a difference between the previous absolute position and the current absolute position by the difference value calculation unit 35. (Step S24 in FIG. 11).
  • the difference value calculation unit 35 includes, for example, the absolute difference of (Lx21 ⁇ Lx2) as the difference in latitude and (Ly21 ⁇ Ly2) as the difference in longitude from the current absolute position 41b and the previous absolute position 41a of the other vehicle 41. The position difference is calculated.
  • the length of these differences is converted into a value in the display coordinate system of the screen 21 based on the conversion coefficient CF.
  • this is output with respect to the information processing apparatus 20 via the vehicle-mounted network N with local ID as display difference value PS2 (4, 0).
  • the coordinate calculation unit 26 of the information processing device 20 calculates a new display relative value PS3 from the display difference value PS2, the previous display relative value PS3, and the movement amount PS4 of the vehicle 10.
  • the movement amount PS4 of the vehicle 10 is calculated based on the difference between the previous absolute position 40a and the current absolute position 40b.
  • the coordinate calculation unit 26 adds the display difference value PS2 (4, 0) to the previous display relative value PS3 (40, 50) and subtracts the movement amount PS4 (0, 5) to obtain a new display relative value.
  • the display control unit 24 of the information processing device 20 adds the display coordinates P4 (400, 300) of the vehicle 10 to the display relative value PS3 (44, 45) calculated by the coordinate calculation unit 26, and displays the display coordinates P5b of the screen 21.
  • Calculate (Dx21, Dy21) (444,345).
  • the image 41M corresponding to the other vehicle 41 is displayed at the display coordinates P5b (444, 345) on the screen 21 based on the display difference value PS2 with a small data amount.
  • the image 41M of the other vehicle 41 is represented in FIG. 7, for example, in the X direction, the position on the right side of the image 41M of the other vehicle 41 and in the Y direction from the image 41M of the other vehicle 41 to the image of the vehicle 10 is shown. The position is close to 10M.
  • the effects equivalent to or equivalent to the effects (1) to (6) of the first embodiment can be obtained, and the effects listed below can be obtained. Be able to.
  • the amount of data is more than when the positional information including longitude and latitude is transferred. Can be reduced.
  • the movement amount when the period for calculating the movement amount is as short as 100 ms, the movement amount of the other vehicle 41 is reduced, so that the data amount can be further reduced.
  • each said embodiment can also be implemented in the following aspects, for example.
  • the display relative value PS1 converted into the value of the display coordinate system by the communication device 30 is output to the information processing device 20 .
  • the present invention is not limited to this, and the communication device does not output the display relative value to the information processing device when the display relative value converted into the value of the display coordinate system is not included in the display area of the screen of the information processing device. You may do it. As a result, the display relative value that cannot be displayed on the screen can be removed from the communication data, and the communication load can be reduced.
  • the information processing apparatus 20 has exemplified the case where information that can support the driving operation is provided to the driver who drives the vehicle 10 by image display.
  • the present invention is not limited to this, and the information processing apparatus may provide information by sound, voice, light, vibration, or the like, or may provide vehicle deceleration control or stop control such as brake assist or fuel cut.
  • the range of support to be provided can be expanded, and the possibility of adoption as an in-vehicle device is expanded.
  • this in-vehicle device can be employed in a driving support device using car navigation, a driving support device including deceleration control or stop control, and the like.
  • the traveling direction of the vehicle 10 is “north”
  • the traveling direction of the vehicle is not limited to “north” such as “south”, “east”, and “west”. Good.
  • the screen on which the image is displayed so that the traveling direction of the vehicle is on the upper side is inclined between the coordinate system and the latitude / longitude coordinate system.
  • the longitude may be converted to the screen coordinate system.
  • the traveling direction of the vehicle 10 is transmitted from the information processing device 20 to the communication device 30, and the latitude and longitude are taken into consideration in consideration of the inclination between the coordinate system of the screen and the latitude / longitude coordinate system.
  • the position can be converted to the display coordinate system of the screen.
  • the maximum communication capacity of the in-vehicle local CAN is 500 kbps.
  • the present invention is not limited to this, and the maximum communication capacity may be larger or smaller than 500 kbps. Good.
  • the communication load can be reduced by reducing the amount of data related to position information.
  • the in-vehicle network N is an in-vehicle local CAN
  • the present invention is not limited to this, and the in-vehicle network may be another network such as Ethernet (registered trademark) or FlexRay. Regardless of which network is used, the communication load can be reduced by reducing the amount of data related to position information.
  • the case of calculating the difference between the previous absolute position and the current absolute position is illustrated, but the present invention is not limited to this, and the difference between the previous dot number and the current dot number may be obtained. . In this case, if the previous dot number is held, the difference can be obtained by converting the current absolute position into the dot number.
  • the communication device 30 is illustrated as a communication device that performs vehicle-to-vehicle communication.
  • the present invention is not limited to this, and the communication device may be a communication device that communicates with an optical beacon device or the like provided on the road by an optical signal such as an infrared signal, that is, a so-called infrastructure communication device.
  • the present invention is not limited thereto, and a plurality of target objects may be used. Even if there are a plurality of objects, the number of coordinate information of other vehicles that can be transferred can be increased by reducing the communication load. As a result, the number of vehicles grasped by the in-vehicle information processing apparatus can be increased, and driving assistance can be made more sophisticated.
  • the vehicle absolute position CL is set to the absolute position corresponding to the center coordinates of the screen 21 is exemplified.
  • latitude and longitude information may be an absolute position with respect to predetermined coordinates on the screen.
  • the conversion coefficient CF is calculated so that the unit is m / dot.
  • the present invention is not limited to this, and the conversion coefficient CF may be calculated so that the unit is dot / m.
  • the case where the conversion coefficient CF is calculated based on the scale of the map is illustrated. Not limited to this, the conversion coefficient may be a relationship between dots and longitudes and a relationship between dots and latitudes.
  • the conversion coefficient CF is one and the unit is m / dot has been described.
  • the present invention is not limited to this, and two conversion coefficients may be used: a conversion coefficient indicating the relationship between dots and latitude, and a conversion coefficient indicating the relationship between dots and longitude.
  • the absolute position of each of the coordinates of three predetermined points forming a triangle on the screen is output to the communication device as three conversion coefficients, and the communication device shows the relationship between the dot and latitude, and the dot and longitude. The relationship may be calculated. In this case, the vehicle absolute position CL can be omitted.
  • the screen 21 is configured from a liquid crystal display panel.
  • the present invention is not limited to this, and the screen may be another display device such as a cathode ray tube, a plasma display, or an organic EL display.
  • the position at which the object is displayed on the screen can be set from the relationship between the size of the display screen and the corresponding bit. Thereby, the freedom degree of selection of a display screen increases and a design freedom degree also increases as an in-vehicle device.
  • the present invention is not limited to this, and the screen resolution may be higher or lower than (800 ⁇ 600).
  • the position for displaying the object can be set on the screen from the relationship between the size of the display screen and the corresponding bit. Thereby, the freedom degree of selection of the resolution of a display screen increases, and a freedom degree of design as an in-vehicle device is also raised.
  • the present invention is not limited to this, and the horizontal length of the screen may be longer or shorter than 200 mm. Further, the length of the screen in the vertical direction may be longer or shorter than 150 mm. That is, regardless of the size of the display device, the position for displaying the object can be set on the screen based on the relationship between the size of the screen and the corresponding bit. As a result, the degree of freedom in selecting the screen size is increased, and the degree of freedom in design of the in-vehicle device is also increased.
  • the target object is the other vehicle 41 .
  • the target object includes various vehicles (including two-wheeled vehicles and bicycles) and humans, traffic lights, intersections, It may be a facility such as a stop line, a traffic jam section, traffic jam information such as a traffic jam degree, road traffic information indicating a position of a traffic stop, or the like.
  • the communication apparatus and the information processing apparatus are compared with the case where the position information is transferred. The communication load of the communication concerning transfer can be reduced by reducing the data communication between them.
  • the present invention is not limited to this, and the absolute coordinate system may be expressed by anything other than a coordinate system of various maps or a latitude and longitude such as various geodetic systems as long as the travel position of the vehicle can be specified. . Even in that case, since the display coordinate system of the screen is usually smaller, the data amount is reduced.
  • the present invention is not limited thereto, and the coordinate system to be converted may be a coordinate system virtually set in the information processing apparatus or the like as long as the data amount can be reduced as compared with the absolute coordinate system. Thereby, the adoption possibility of such an in-vehicle device comes to be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

通信装置により取得される他車両の位置情報のデータ量を軽減可能な車載装置、及び該車載装置に用いられる車載通信装置及び車載情報処理装置を提供する。車載装置は、通信装置(30)により取得される対象物の位置情報を情報処理装置(20)で所要に処理して地図情報をもとにした対象物との位置関係を認識する。通信装置(30)は、取得される対象物の位置情報を地図情報に対して有限の解像度に設定された座標系の座標情報に変換する座標変換部(33)を備え、該変換した座標情報を情報処理装置(20)に転送する。

Description

車載装置及び車載通信装置及び車載情報処理装置
 本発明は、車両にて受信された他車両の位置情報を認識する車載装置、及び該車載装置を構成する車載通信装置及び車載情報処理装置に関する。
 車両には、無線通信を利用して他車両の現在位置に関する位置情報を取得するとともに、当該位置情報に基づいて把握される他車両の位置を運転者に提供する車載装置が設けられることも多い。そして、このような車載装置にあっては、無線通信を利用して車両間で授受される位置情報を経度及び緯度を用いて表すことも一般に行われるようになってきている。こうした経度及び緯度により表される位置情報であれば、位置情報が不特定の他車両との間で授受される場合であれ、当該位置情報を取得した車両は、その取得した位置情報を正しく認識・処理することができるようになる。
 ここで従来、このような経度及び緯度により表された位置情報を用いる車載装置としては、例えば特許文献1に記載の装置が知られている。この特許文献1に記載の車載装置では、他車両からの位置情報を受信すると、その位置情報から経度及び緯度により表された他車両の地図上の車両位置情報を生成する。これにより、経度及び緯度からなる他車両の車両位置情報が、車載装置や当該装置に接続される各種装置にて認識・処理できるようになる。すなわちこの車載装置によれば、経度及び緯度からなる地図上の位置情報に基づいて把握した他車両の位置を運転者に提供することができるようになる。
特開2005-328283号公報
 ところで、特許文献1に記載の装置では、経度及び緯度で表された位置情報を用いるとはいえ、経度及び緯度を100分の1秒(角度)まで表そうとすると、それぞれ28ビットを要することになる。すなわち、経度及び緯度で表された位置情報はデータ量が比較的多く、例えば56ビットを要するデータとして授受されることになる。
 特に近年、車両では、車載された複数の装置間での情報伝達をそれら複数の装置により共用する車載ネットワークを介して行うようにしていることから、車載ネットワークの通信負荷の低減が新たな課題になりつつある。すなわち、車載ネットワークの通信負荷を軽減する観点からしても、こうした位置情報のデータ量が無視できないものともなりつつある。例えば、0.1秒(時間)当たり400台分の位置情報を扱うことのできる車車間通信の場合、1秒当たりの位置情報のデータ量は224キロビットになる。一方、車載ネットワークの一つであるローカルCANは、その最大通信容量が1秒(時間)当たり500キロビットである。このため、前記車車間通信により扱われる位置情報をそのままローカルCANを介してナットワーク内の他の装置へ伝達しようとすると、ローカルCANの通信帯域の約半分が位置情報で占有されることによってその他の通信のための通信帯域が圧迫されることとなる。また、大量の通信データは、他の通信データとの衝突機会を増加させるなど通信遅延の原因にもなりローカルCANの通信効率を低下させることにもなりかねない。
 本発明は、このような実情に鑑みてなされたものであり、その目的は、通信装置により取得される他車両の位置情報のデータ量を軽減可能な車載装置、及び該車載装置を構成する車載通信装置及び車載情報処理装置を提供することにある。
 以下、上記課題を解決するための手段及びその作用効果について記載する。
 上記課題を解決するため、本発明の車載装置は、車載通信装置により取得される対象物の位置情報を車載情報処理装置で所要に処理して地図情報をもとにした前記対象物との位置関係を認識する車載装置であって、前記車載通信装置は、前記取得される対象物の位置情報を前記地図情報に対して有限の解像度に設定された座標系の座標情報に変換する座標変換部を備え、該変換した座標情報を前記車載情報処理装置に転送することを要旨とする。
 このような構成によれば、車載通信装置により取得された車両外の対象物の位置情報であって、測地系などの広域な座標系に基づいて位置を特定する地図情報に対応した位置情報が、有限の解像度に設定された座標系の座標情報に変換されることでそのデータ量の削減が図られる。これにより、車載通信装置から車載情報処理装置へ転送されるデータ量が少なくなりデータ転送にかかる通信負荷も軽減されるようになる。
 前記車載情報処理装置は、前記車載通信装置から転送される位置情報を地図情報と共に画面に可視表示する表示装置を備えており、前記座標変換部は、該表示装置の画面解像度に応じた座標系を前記有限の解像度に設定された座標系として、前記取得される対象物の位置情報をこの表示装置の画面解像度に応じた座標系の座標情報に変換するものであってもよい。
 このような構成によれば、有限の解像度に設定された座標系が表示装置の画面解像度に応じた座標系なので、車載通信装置は、対象物の位置情報を表示装置に表示されることに適した座標系である座標情報に変換することができる。これにより、車載通信装置から車載情報処理装置へ転送されるデータ量が少なくなるとともに、対象物を地図とともに表示装置に表示することも容易になる。
 前記車載情報処理装置は、前記地図情報のその都度の縮尺と前記表示装置の画面解像度とから前記座標変換部による座標変換の変換係数を算出してこの算出した変換係数を前記座標変換部に転送する変換係数演算部を備え、前記座標変換部は、該変換係数演算部から転送される変換係数に基づいて、前記取得される対象物の位置情報を前記表示装置の画面解像度に応じた座標系の座標情報に変換してもよい。
 このような構成によれば、車載通信装置により取得された対象物の位置情報が、表示装置の画面解像度と地図情報の縮尺とに応じて算出される変換係数によって表示装置の画面解像度に応じた座標情報に変換される。これにより、車載通信装置は表示装置の対象物の座標情報を、表示装置の画面解像度に適切に対応させることができるとともに、さまざまに変化する地図情報の縮尺にも適時に対応させることができるようになる。
 前記変換係数演算部から前記座標変換部に転送される変換係数には前記地図情報に対応した前記表示装置の画面中心位置を示す情報が含まれ、前記座標変換部は、該画面中心位置からの座標情報として前記取得される対象物の位置情報を変換してもよい。
 このような構成によれば、座標変換部は対象物の位置情報を画面中心位置からの座標情報に変換するので、対象物の位置情報が画面中心位置を中心とした差の数値となりデータ量が削減される。これにより、対象物の位置情報の座標系を画面中心位置を基準とした座標情報に変換するようになるので、座標情報の値としては画面解像度に準じた比較的小さな値となり、座標情報のデータ量を少ないものにすることができる。
 前記車載通信装置は、車車間通信により、前記対象物の位置情報として通信先車両毎の位置情報をそれら車両毎の識別情報と共に取得するものであり、前記座標変換部は、前記識別情報により識別される通信先車両毎の位置情報を前記座標系の座標情報に変換し、該変換した通信先車両毎の座標情報を前記車載情報処理装置に転送するようにしてもよい。
 このような構成によれば、車載通信装置を通じて取得した他車両の位置情報が、座標情報に変換されることでデータ量が削減される。これにより、座標情報を転送することにより、位置情報を転送する場合に比べて車載通信装置と車載情報処理装置との間のデータ通信が減少して転送にかかる通信の通信負荷を軽減させることができる。
 また通信負荷の軽減は、転送できる他車両の座標情報の数を増やすことができるようにもすることから、車載情報処理装置が把握できる車両数を増加させて運転支援などをより高度なものにすることを可能にする。
 前記車載通信装置は、前記識別情報により識別される通信先車両毎の移動量を算出する機能を更に備え、前記座標変換部により変換される座標情報について、同算出される車両毎の移動量に相当する情報を前記車載情報処理装置に転送してもよい。
 このような構成によれば、車載通信装置から車載情報処理装置へ、対象物の移動量に基づく座標情報が転送されるようになるので、位置情報を転送するよりデータ量を少なくすることができる。移動量の場合、移動量を算出する周期を短くすれば対象物の移動量が少なくなるのでデータ量をより減少させることができるようになる。
 前記車載通信装置と前記車載情報処理装置とはそれぞれ車載ネットワークを介して接続されており、前記変換された座標情報が前記車載ネットワークを介して授受されるようにしてもよい。
 このような構成によれば、対象物の位置情報よりもデータ量が少なくされた座標情報が車載ネットワークにて伝達されるので、車載ネットワークの通信負荷が軽減されるようになる。車載ネットワークの通信負荷の軽減は、当該車載ネットワークを利用する他の通信に対する影響を小さくするとともに、車両の通信システムとしてもその通信効率が良好に維持されるようにもなる。
 前記車載通信装置により取得されて、前記座標変換部により座標情報に変換される前記対象物の位置情報には緯度の値及び経度の値の少なくとも一方が含まれるようにしてもよい。
 このような構成によれば、経度または経度を示す値に要する、例えば26ビット(100分の1秒(角度)まで示す場合)のデータ量が、それよりも少ないデータ量になる座標情報に変換されるようになる。これにより、車載情報処理装置へ伝達されるデータ量を緯度の値または経度の値をそのまま伝達する場合に比べて少なくすることができるとともに、車載通信装置と車載情報処理装置との間のデータ通信にかかる通信負荷を軽減させるようになる。
 上記課題を解決するために、本発明の車載通信装置は、車載情報処理装置で所要に処理されることで地図情報をもとにした位置関係が認識される対象物の位置情報を取得する車載通信装置であって、前記取得される対象物の位置情報を前記地図情報に対して有限の解像度に設定された座標系の座標情報に変換する座標変換部を備え、該変換した座標情報を前記車載情報処理装置に転送することを要旨とする。
 このような構成によれば、車載通信装置により取得された車両外の対象物の位置情報であって、測地系などの広域な座標系に基づいて位置を特定する地図情報に対応した位置情報が、有限の解像度に設定された座標系の座標情報に変換されることでデータ量の削減が図られる。これにより、車載通信装置から車載情報処理装置へ転送されるデータ量が少なくなりデータ転送にかかる通信負荷が軽減されるようになる。
 前記車載情報処理装置は、前記位置情報を地図情報と共に画面に可視表示する表示装置を備えており、前記座標変換部は、該表示装置の画面解像度に応じた座標系を前記有限の解像度に設定された座標系として、前記取得される対象物の位置情報をこの表示装置の画面解像度に応じた座標系の座標情報に変換してもよい。
 このような構成によれば、有限の解像度に設定された座標系が表示装置の画面解像度に応じた座標系なので、車載通信装置は、対象物の位置情報を表示装置に表示されることに適した座標系である座標情報に変換することができる。これにより、車載通信装置から車載情報処理装置へ転送されるデータ量が少なくなるとともに、対象物を地図とともに表示装置に表示することも容易になる。
 上記課題を解決するために、本発明の車載情報処理装置は、車載通信装置により取得される対象物の位置情報を所要に処理して地図情報をもとにした前記対象物との位置関係を認識する車載情報処理装置であって、前記車載通信装置により取得される対象物の位置情報を前記地図情報に対して有限の解像度に設定された座標系の座標情報に変換するための変換係数を算出する変換係数算出部を備え、該算出された変換係数を前記車載通信装置に転送することを要旨とする。
 このような構成によれば、車載通信装置により取得された車両外の対象物の位置情報であって、測地系などの広域な座標系に基づいて位置を特定する地図情報に対応した位置情報が、車載情報処理装置が対象物の位置を認識するために用いる有限の解像度に設定された座標系の座標情報に変換されるようにすることでデータ量の削減が図られる。これにより、車載通信装置から車載情報処理装置へ転送されるデータ量が少なくなりデータ転送にかかる通信負荷が軽減されるようにしている。
 前記車載通信装置から転送される位置情報を地図情報と共に画面に可視表示する表示装置を備え、前記変換係数算出部は、前記変換係数を前記地図情報のその都度の縮尺と前記表示装置の画面解像度とから算出してもよい。
 このような構成によれば、有限の解像度に設定された座標系への変換係数が地図情報のその都度の縮尺と表示装置の画面解像度に応じた座標系への変換係数として算出されるため、車載通信装置は、対象物の位置情報を表示装置への表示に適した座標系の座標情報に変換することができる。これにより、車載通信装置から車載情報処理装置へ転送されるデータ量が少なくなるとともに、対象物を地図とともに表示装置に表示することも容易になる。
本発明にかかる車載装置を具体化した第1の実施形態についてその概要を模式的に示すブロック図。 同実施形態の装置にて処理された位置情報に基づいて画面に表示される画像を示す模式図。 同実施形態の装置にて位置情報を処理する走行環境の一例を示す平面図。 同実施形態にて扱う情報を模式的に示す図であって、(a)は緯度及び経度からなる位置情報のデータ構造を示す概念図、(b)は座標変換された位置情報のデータ構造を示す概念図。 同実施形態の装置にて行われる座標変換処理の処理手順を示すフローチャート。 本発明にかかる車載装置を具体化した第2の実施形態についてその概要を模式的に示すブロック図。 同実施形態の装置にて処理された位置情報に基づいて画面に表示される画像を示す模式図。 同実施形態の装置にて位置情報を処理する走行環境の一例を示す平面図。 同実施形態にて扱う情報を模式的に示す図であって、(a)は車両IDと位置情報との関連を示す概念図、(b)は車両IDと同装置のローカルIDとの関連を示す概念図、(c)はローカルIDと表示相対値との関係を示す概念図。 同実施形態にて扱う位置情報を模式的に示す図であって、(a)はローカルIDと緯度の差及び経度の差からなるデータ構造を示す概念図、(b)はローカルIDと座標変換された差分情報のデータ構造を示す概念図。 同実施形態の装置にて行われる座標変換処理の処理手順を示すフローチャート。
 (第1の実施形態)
 以下、本発明にかかる車載装置を具体化した第1の実施形態について、図に従って説明する。図1は、本実施形態の車載装置のシステム構造を示すブロック図である。図2は、位置情報に基づいて画面に表示される画像を示す模式図である。図3は、位置情報を処理する走行環境の一例を示す平面図である。
 図1に示すように、車両10には、車載ネットワークNと、車載ネットワークNにそれぞれ通信可能に接続された車載情報処理装置としての情報処理装置20と車載通信装置としての通信装置30とがそれぞれ設けられている。
 車載ネットワークNは、当該車載ネットワークNに接続された複数の装置間での情報伝達を可能にするものであって、本実施形態では、最大通信容量が500キロビット/秒(時間)の車載用のローカルCAN(Controller Area Network)により構成されている。情報処理装置20は、車両10を運転する運転者に対してその運転操作を支援することのできる情報を画像表示を通じて提供するものである。通信装置30は、他車両の通信装置や路上に設けられた通信装置との間の無線通信により当該車両10以外の他車両の位置情報や地上設備(停止線など)の位置情報等を取得するものである。
 情報処理装置20には、画面21と、全地球測位システム(GPS:Global Positioning System)22と、各種の演算処理を行う演算装置23とが設けられている。
 画面21は、図2に示すように、運転者に視認させる画像を表示するものであって、解像度として、例えば横方向(X方向)に800ドット、縦方向(Y方向)に600ドットを有する液晶表示パネルから構成されている。このことから、画面21にはX方向に800、Y方向に600に区分された表示用の座標系(表示座標系)が規定される。この表示座標系に基づいて、画面21の左下の位置P0がX方向「0」、Y方向「0」である表示座標(0,0)で表される。また、右下の位置P1が表示座標(800,0)で表され、左上の位置P2が表示座標(0,600)で表され、右上の位置P3が表示座標(800,600)で表されるようになる。このことから画面21には、各位置P0,P1,P2,P3により囲まれる表示領域内の任意の位置(表示座標)を指定して、当該指定位置に所定の画像を表示させることができる。なお本実施形態では、説明の便宜上、画面21は、横方向(X方向)の長さが200ミリメートル(mm)であるとともに、縦方向(Y方向)の長さが150mmであるものとする。これにより、画面21の横方向(X方向)にあっては長さ1mmに対して4ドット(座標の値として4)が対応するとともに、画面21の縦方向にあっても長さ1mmに対して4ドット(座標の値として4)が対応するようになっている。また、本実施形態では、車両10の進行方向を「北」とするとともに、車両10の進行方向を上側にするように画像が表示される画面21は、画面21の上側が「北」となるものとする。
 GPS22は、GPS衛星信号を受信することに基づいて車両10の位置を緯度及び経度により100分の1秒の大きさで検出するとともに、検出した車両10の位置を演算装置23に対して出力する。例えば、GPS22は、図3に示されるように、進行路R1を進行する車両10の位置として緯度Lx1及び経度Ly1とする絶対位置(Lx1、Ly1)を検出する。これにより、情報処理装置20において車両10の絶対位置(Lx1、Ly1)が把握される。
 演算装置23は、各種演算処理を実行するCPU、各種制御プログラムを格納するROM、データ格納やプログラム実行のためのワークエリアとして利用されるRAM、入出力インターフェース、メモリ等を備えたマイクロコンピュータを中心に構成されている。演算装置23は、画面表示や通信にかかる各種制御を実行する。そのため、演算装置23には、画面表示や通信を実行するための各種プログラムや、それらプログラムの実行に用いられる各種パラメータなどが予め記憶されている。各種パラメータには、画面21のサイズや解像度などが含まれる。
 演算装置23には、表示制御部24、及び変換係数演算部25が設けられている。
 表示制御部24は、画面21に表示される画像を制御するものであり、画面21に地図の画像データを表示させるとともに、指示された表示座標に所定の画像を表示させる。詳述すると、表示制御部24は、GPS22から出力された車両10の絶対位置を取得して、車両10の絶対位置(Lx1、Ly1)を中心とする地図情報を地図情報データベース(図示略)から取得する。そして、取得した地図情報から運転者等により設定された縮尺に対応した画像データを生成して出力することで画面21に、例えば、図2に示すように、進行路R1と交差路R2とからなる地図を表示させる。なお、画面21の地図表示は、車両10の位置が更新されるたびに更新される。また表示制御部24は、画面21の中心座標(400、300)を表示座標P4(Dx1,Dy1)とするとともに、車両10に対応する画像10Mを表示座標P4に表示させる。これにより、画面21に表示された地図上に車両10の位置が画像10Mとして表示される。なお、車両10の位置表示は、地図の表示が更新される度に更新される。また、表示制御部24は、他車両41に対応する画像41Mを表示座標P5(Dx2,Dy2)に表示させる。これにより、画面21に表示された地図上に、車両10とともに他車両41も表示される。なお、他車両41の位置表示は、地図の表示や他車両41の位置が更新される度に更新される。
 なお本実施形態では、表示制御部24は、車両10の表示座標P4に対する相対座標として算出された表示相対値PS1を外部等から取得するとともに、当該取得された表示相対値PS1に表示座標P4を加算するようにすることで、上述したような他車両41の表示座標P5を算出することができるようにもなっている。
 変換係数演算部25は、画面21の中心座標に設定された車両10の位置を示す緯度及び経度からなる車両絶対位置CL、及び画面21に表示する地図の縮尺により定まる画面21の1ドットに対応する長さ(メートル)に基づく変換係数CFを算出する。例えば、変換係数CFは、画面21に表示される地図の縮尺が2500分の1のとき、画面21の1mm(4ドット)が実物の2.5mに相当することから1ドットに対応する長さは0.625mとなることによって、0.625m/ドットとして算出される。
 通信装置30は、車両10の周辺に位置する他車両との間で無線通信用のアンテナ31を介して行う無線通信により、車両の位置情報や走行情報などの各種情報からなる車両情報RDを相互に伝達する、いわゆる車車間通信を行う装置である。本実施形態では、この車車間通信により、通信装置30による通信可能な範囲にある複数の車両、例えば最大400台のそれぞれとの間で定期的、例えば100ms毎に車両情報RDを授受する。車両情報RDには、車両毎に一意に付与された車両ID、車両のGPSにより検出された車両の絶対位置、車両の速度、車両の進行方向の情報等が含まれている。これにより、図3に示すように、通信装置30は、他車両41との間の車車間通信により当該他車両41の絶対位置(Lx2、Ly2)を含む車両情報RDを取得することができる。
 なお、本実施形態において車車間通信にて授受される車両情報RDは、その通信内容が規定されている。このことから、各車両が規定された通信内容の車両情報を相互に授受することによって、受信した他車両の車両情報を有意なものとして利用できるようになっている。本実施形態の車車間通信では、図4(a)に示すように、車両情報RDに含まれる絶対位置は、緯度を100分の1秒まで表した28ビットのデータ構造とされ、経度を100分の1秒まで表した28ビットのデータ構造とされている。このことから絶対位置としては56ビットのデータ構造として構成されている。データ構造について詳述すると、緯度にあっては、度(+90~-90)を9ビット、分(0~60)を6ビット、秒(0~60)を6ビット、100分の1秒(整数値として扱い0~99)を7ビットでそれぞれ表すことにより、全体として28ビットにて表現される。また、経度にあっては、度(+180~-180)を9ビット、分(0~60)を6ビット、秒(0~60)を6ビット、100分の1秒(整数値として扱い0~99)を7ビットでそれぞれ表すことにより、全体として28ビットで表現される。このようなことから、例えば、他車両41の車両情報RDに含まれる絶対位置(Lx2、Ly2)は、緯度Lx2及び経度Ly2からなる56ビットのデータ構造として構成されている。
 また、通信装置30には、演算装置32が設けられている。
 演算装置32は、各種演算処理を実行するCPU、各種制御プログラムを格納するROM、データ格納やプログラム実行のためのワークエリアとして利用されるRAM、入出力インターフェース、メモリ等を備えたマイクロコンピュータを中心に構成されている。また演算装置32は、車車間通信にて取得された車両情報RDから絶対位置を取得する処理を実行したり、情報処理装置20との間でデータを授受するための処理を実行したりする。そのため、演算装置32には、車両情報RDから絶対位置を取得するプログラムなどの各種プログラムや、それらプログラムの実行の際に用いられる各種パラメータなどが予め記憶されている。各種パラメータには、例えば車車間通信にて通信される車両情報RDの通信内容を解析するためのデータ構造の情報なども含まれる。
 演算装置32には、車両情報RDから取得された絶対位置の値を情報処理装置20の画面21の表示座標系の値に変換する座標変換処理のための座標変換部33が設けられている。座標変換部33は、車両情報RDから絶対位置を取得するとともに、情報処理装置20から車両絶対位置CL及び変換係数CFを取得する。そして、車両情報RDから取得された絶対位置を変換係数CFに基づいて変換することで表示座標系の値からなる表示相対値PS1を算出して情報処理装置20に対して出力する。
 ここで本実施形態の座標変換処理について、図5に従って説明する。図5は、座標変換処理にかかる処理手順を示すフローチャートである。演算装置32では、他車両41の絶対位置が取得される都度、この座標変換処理が開始される。
 座標変換処理が開始されると、演算装置32は、座標変換部33により他車両41の絶対位置の座標変換を行う(図5のステップS10)。座標変換では、座標変換部33は、例えば、他車両41の絶対位置(Lx2,Ly2)を取得するとともに、情報処理装置20から車両絶対位置CL(=(Lx1,Ly1))及び変換係数CFを取得する。なお、車両絶対位置CL及び変換係数CFは、一旦取得した後は所定のメモリに保持しておき、それらが更新された際に情報処理装置20から再取得するようにしてもよい。
 それから座標変換部33は、車両10の絶対位置に対する他車両41の相対的な絶対位置、すなわち車両10の絶対位置に対する他車両41の絶対位置の差を求める。すなわち、他車両41の絶対位置(Lx2,Ly2)と車両絶対位置CL(Lx1,Ly1)とから、緯度の差(Lx2-Lx1)及び緯度の差(Ly2-Ly1)をそれぞれ算出する。
 次に、緯度の差(Lx2-Lx1)及び経度の差(Ly2-Ly1)を長さに変換する。緯度1秒当りの長さ(メートル)を長さLa、経度1秒当りの長さ(メートル)を長さLbとすると、緯度の差の長さは(Lx2-Lx1)×La、経度の差の長さは(Ly2-Ly1)×Lbにより算出される。なお、日本の地域であれば、緯度1秒当りの長さLaは約31m、経度1秒当りの長さLbは約25mである。
 それから、緯度の差の長さ、及び経度の差の長さを変換係数CFに基づいて画面21のドット数に変換する。すなわち、本実施形態では画面21のX方向が経度、画面21のY方向が緯度にそれぞれ対応することから、緯度の差の長さを変換係数CFで除することにより画面21のY方向のドット数を求め、経度方向の長さを変換係数CFで除することにより画面21のX方向のドット数を求める。具体的には、X方向のドット数ΔDx2(=(Lx2-Lx1)×La/CF)と、Y方向のドット数ΔDy2(=(Ly2-Ly1)×Lb/CF)とを求める。このようにして座標変換部33では、他車両41の表示相対値PS1(ΔDx2,ΔDy2)が算出される。
 なお、他車両41の表示相対値PS1として算出されるX方向のドット数ΔDx2の範囲は、「-400~400」であるとともに、Y方向のドット数ΔDy2の範囲は、「-300~300」である。すなわち、符号を含めてX方向のドット数、及びY方向のドット数はそれぞれ、10ビットのデータで表すことができる。このことから、表示相対値PS1は、図4(b)に示すように、10ビットのX座標情報(X方向のドット数ΔDx2)及び10ビットのY座標情報(Y方向のドット数ΔDx2)からなる20ビットのデータ構造として構成することができる。
 そして、他車両41の表示相対値PS1が算出されると、演算装置32は、座標変換部33により表示相対値PS1を車載ネットワークNを介して情報処理装置20に送信して(図5のステップS11)、座標変換処理を終了する。本実施形態の車車間通信では、100ミリ秒(ms)の周期で最大400台の車両と通信できる。このことから、表示相対値PS1は、1秒当たり80キロビット(=20×400×10)のデータ量になる。このデータ量は、最大通信容量が500キロビット/秒のローカルCANの通信帯域の16%を占有する。すなわち、このデータ量(80キロビット/秒)を転送する場合、ローカルCANの通信帯域の占有が比較的少なくなり、他の通信のための通信帯域を圧迫するおそれが低い。また、ローカルCANは通信されるデータ量が通信帯域の約20%以下である場合に高い通信効率が維持されることから、高い通信効率を維持させることも可能となる。
 その一方、車両情報RDから取得される絶対位置は、そのままでは、1秒当たり224キロビット(=(28+28)×400×10)のデータ量になる。このデータ量(224キロビット/秒)を、最大通信容量が500キロビット/秒のローカルCANにて転送しようとすると、ローカルCANの通信帯域の半分を占有してしまうこととなる。この場合、他の通信のための通信帯域が圧迫されるとともに、他の通信との衝突が多くなり通信速度が低下するなどして通信効率が低下するようになる。すなわちこの場合、車載ネットワークNの通信負荷が高い。その一方、本実施形態の通信装置30によれば、車載ネットワークNの通信負荷が低く維持されるようになる。
 このようにして、通信装置30から情報処理装置20に他車両41の表示相対値PS1が転送される。これにより情報処理装置20では、表示制御部24により表示相対値PS1を取得して、当該表示相対値PS1が車両10の表示座標P4に対する相対値となっていることに基づいて、表示相対値PS1に車両10の表示座標P4を加算することによって、表示相対値PS1に基づく画面21の表示座標P5を算出する。例えば、表示相対値PS1(ΔDx2,ΔDy2)に車両10の表示座標P4(400,300)を加算することで、X座標Dx2が(ΔDx2+400)、Y座標Dy2が(ΔDy2+300)である表示座標P5(Dx2,Dy2)が算出される。これにより画面21の表示座標P5に他車両41に対応する画像41Mが表示されるようになる。
 ここで、このように本実施形態の車載装置にて行われる他車両41の絶対位置を画面21の表示座標系に変換する手順について、演算内容を中心に説明する。なお、車両10の絶対位置(Lx1,Ly1)は、GPS22により(北緯45度30分30.00秒,東経135度30分30.00秒)として検出され、他車両41の絶対位置(Lx2,Ly2)は、通信装置30の車車間通信により(北緯45度30分31.00秒,東経135度30分31.00秒)として取得されたものとする。
 まず、情報処理装置20の表示制御部24では、車両10の絶対位置(Lx1,Ly1)が画面21の中央座標である表示座標P4(400,300)に割り当てられる。変換係数演算部25は、車両10の絶対位置(Lx1,Ly1)を車両絶対位置CLにするとともに、画面21のサイズ及び地図の縮尺率2500分の1から算出される0.625m/ドットを変換係数CFとする。
 通信装置30では、他車両41の絶対位置(Lx2,Ly2)と車両10の絶対位置(Lx1,Ly1)との差を求める。すなわち車両10に対して他車両41が、緯度方向に、1秒(=北緯45度30分31.00秒-北緯45度30分30.00秒)の差があること、及び、経度方向に、1秒(=東経135度30分31.00秒-東経135度30分30.00秒)の差があることを求める。そしてそれら緯度の差及び経度の差から、緯度の差の長さ及び経度の差の長さを求める。すなわち緯度1秒当りの長さLaは約31mであることから、緯度の差の長さは31m(=1秒×31m/秒)として算出され、経度1秒当りの長さLbは約25mであるから、経度の差の長さは25m(=1秒×25m/秒)として算出される。
 そして、これら差の長さを変換係数CFに基づいて画面21の表示座標系の値に変換して表示相対値PS1(ΔDx2,ΔDy2)を求める。画面21においては、緯度方向がY方向、経度方向がX方向に対応するので、X方向の長さのドット数ΔDx2は40ドット(=25m/(0.625m/ドット))と算出されるとともに、Y方向の長さのドット数ΔDy2は50ドット(=31m/(0.5m/ドット))と算出される。すなわち表示相対値PS1(40,50)が算出される。
 情報処理装置20では、表示相対値PS1(40,50)に車両10の表示座標P4(400,300)を加算して画面21の表示座標P5(Dx2,Dy2)を求める。すなわち表示座標P5(Dx2,Dy2)が、X座標Dx2を450ドット(=40+400)、Y座標Dy2を350ドット(50+300)として算出される。これにより、車載ネットワークNにて転送するデータ量を少なくすることのできる表示相対値PS1に基づいて、画面21の表示座標P5(450,350)に他車両41に対応する画像が表示されるようになる。
 以上説明したように、本実施形態の車載装置によれば、以下に列記するような効果が得られるようになる。
 (1)通信装置30により取得された車両外の対象物である他車両41の位置情報であって、緯度及び経度により位置を示す測地系からなる座標系に基づいて位置を特定する地図情報に対応した位置情報を、画面21に規定される有限の解像度に設定された表示座標系の座標情報(表示相対値PS1)に変換することでデータ量を少なくする。これにより、通信装置30から情報処理装置20へ転送されるデータ量が少なくなりデータ転送にかかる通信負荷も軽減されるようになる。
 (2)有限の解像度に設定された座標系として、画面21の画面解像度に応じた表示座標系なので、通信装置30は、他車両41の位置情報を画面21に表示されることに適した表示座標系の座標情報(表示相対値PS1)に変換することができる。これにより、通信装置30から情報処理装置20へ転送されるデータ量が少なくなるとともに、他車両41を地図とともに画面21に表示することも容易になる。
 (3)通信装置30により取得された他車両41の位置情報が、画面21の画面解像度と地図情報の縮尺とに応じて算出される変換係数CFによって画面21の画面解像度に応じた座標情報(表示相対値PS1)に変換される。これにより、通信装置30は画面21の他車両41の座標情報(表示相対値PS1)を、画面21の画面解像度に適切に対応させることができるとともに、さまざまに変化する地図情報の縮尺にも適時に対応させることができるようになる。
 (4)座標変換部33は他車両41の位置情報を画面中心位置(表示座標P4)からの座標情報(表示相対値PS1)に変換するので、他車両41の位置情報が画面中心位置(表示座標P4)を中心とした差の数値となりデータ量が削減される。これにより、他車両41の経度緯度からなる座標系による位置情報を、画面中心位置(表示座標P4)を基準とした座標情報(表示相対値PS1)に変換するようになるので、座標情報の値としては画面解像度に準じた比較的小さな値(例えば0~800(ドット))となり、座標情報のデータ量を少ないものにすることができる。
 (5)他車両41の位置情報よりもデータ量が少なくされた座標情報(表示相対値PS1)が車載ネットワークNにて伝達されるので、車載ネットワークNの通信負荷が軽減されるようになる。車載ネットワークNの通信負荷の軽減は、当該車載ネットワークNを利用する他の通信に対する影響を小さくするとともに、車両10の通信システムとしてもその通信効率が良好に維持されるようにもなる。
 (6)経度または経度を示す値に要する、例えば26ビット(100分の1秒まで示す場合)のデータ量が、それよりも少ないデータ量になる座標情報(表示相対値PS1)に変換されるようになる。これにより、情報処理装置20へ伝達されるデータ量を緯度の値または経度の値をそのまま伝達する場合に比べて少なくすることができるとともに、通信装置30と情報処理装置20との間のデータ通信にかかる通信負荷を軽減させるようになる。
 (第2の実施形態)
 本発明にかかる車載装置の第2の実施形態について図に従って説明する。本実施形態は、車車間通信の周期の都度に更新される車両の絶対位置を少ないデータ量で取り扱うことを可能とするものである。そして、説明の便宜上、「車車間通信の周期において今回の周期」にあたる場合を「今回」と表現する、もしくは「今回」の表現を省略するとともに、「車車間通信の周期において前回の周期」にあたる場合、すなわち「今回」よりも100ms前を「前回」と表現する。
 図6は、本実施形態を具体化した車載装置のシステム構造を示すブロック図である。図7は、位置情報に基づいて画面に表示される画像を示す模式図である。図8は、位置情報を処理する走行環境の一例を示す平面図である。なお、本実施形態は、情報処理装置20及び通信装置30の構成の一部が上記第1の実施形態と相違し、その他の構成については同様であるので、主に上記第1の実施形態との相違点について説明し、説明の便宜上、第1の実施形態と同様の部材には同一の番号を付してその説明を割愛する。
 また、本実施形態でも、先の第1の実施形態と同様に、車両10の進行方向が「北」であるものとするとともに、車両10の進行方向が上側となるように画像が表示される画面21は、画面21の上側が「北」となるものとする。さらに、画面21に表示される地図の縮尺が2500分の1であることから画面21の1mm(4ドット)が実際の2.5mに相当して、1ドットに対応する長さは0.625mとなっているものとする。すなわち変換係数CFは、0.625m/ドットであるとする。
 図6に示すように、演算装置23には、表示制御部24、変換係数演算部25、座標計算部26及び座標記憶部27が設けられている。
 座標記憶部27は、データを管理・記憶するものであり、座標計算部26によるデータの書き込み及びデータの読み出しが可能になっている。座標記憶部27には、図9(c)に示すように、車両10内においてユニークなローカルIDと、当該ローカルIDに付随する表示相対値PS3が、相互に関連付けられるようにして格納されている。なお、表示相対値PS3は、表示相対値PS1と同様に、車両10の表示座標P4(図7参照)に対する相対座標として算出された値である。また、座標記憶部27は、座標計算部26から所定の期間、読み書きされないローカルIDとそれに付随する表示相対値PS3を削除するようにしている。これにより、不要となったデータが消去されて、記憶容量の縮小化、ローカルIDの検索速度の低下の抑制などが図られるようになっている。
 座標計算部26は、他車両41の絶対位置に基づき算出された表示座標の値としての表示差分値PS2から表示相対値PS3を算出するためのものである。座標計算部26は、通信装置30からローカルIDと表示差分値PS2を取得すると、当該表示差分値PS2と、当該ローカルIDに対応する前回の表示相対値PS3とに基づいて、今回の表示相対値PS3を算出する。なお、前回の表示相対値PS3は、座標記憶部27からローカルIDに基づいて取得する。そして今回の表示相対値PS3を表示制御部24に出力する。また、座標記憶部27に記憶されているローカルIDに対応する前回の表示相対値PS3を、今回の表示相対値PS3に更新する。なお、通信装置30により他車両41が初めて検出されたとき、通信装置30から他車両41に対応するローカルIDと表示相対値PS1とが取得される。このとき、表示制御部24は、当該取得した表示相対値PS1を表示制御部24に出力するとともに、座標記憶部27にそのローカルID及び表示相対値PS1を記憶させる。
 演算装置32には、座標変換部34、差分値算出部35、ID対応表記憶部36、及び位置情報記憶部37が設けられている。
 ID対応表記憶部36は、データを管理・記憶するものであり、差分値算出部35によるデータの書き込み及びデータの読み出しが可能になっている。ID対応表記憶部36には、図9(b)に示すように、車両ID(16ビット)と、当該車両IDに割り当てられたローカルID(9ビット)が相互に関連付けられて格納されている。ローカルIDは、通信装置30が一度に通信可能な400台を各別に識別可能なIDであることから、「0~511」まで表現可能な9ビットとされている。なお、ID対応表記憶部36は、記憶されていない車両IDのローカルIDを要求されたとき、その時点でどの車両IDにも割り付けられていない未使用のローカルIDを一つ選択して当該車両IDに割り付けるとともに、当該選択したローカルIDを返信する。また、ID対応表記憶部36は、差分値算出部35から所定の期間、読み書きされない車両IDとそれに対応するローカルIDを削除するようにしている。これにより、ローカルIDの範囲が9ビット(「0~511」)で充足されるようにしている。
 位置情報記憶部37は、データを管理・記憶するものであり、差分値算出部35によるデータの書き込み及びデータの読み出しが可能になっている。位置情報記憶部37には、図9(a)に示すように、車両ID(16ビット)と、当該車両IDに付随する絶対位置(56ビット)が、相互に関連付けられて格納されている。車両IDは、車両毎にユニークに付与された識別番号(ID)であり、当該識別番号により、車両を特定することができる。例えば車両IDにより、異なる時間に取得された絶対位置から同一の車両をトラッキングすることができる。なお位置情報記憶部37は、差分値算出部35から所定の期間、読み書きされない車両IDとそれに付随する絶対位置を削除するようにしている。これにより、不要となったデータが消去されて、記憶容量の縮小化、車両IDの取得速度の低下の抑制などが図られるようになっている。
 差分値算出部35は、同一の車両IDについて、前回の絶対位置と、今回の絶対位置との差分を算出する。例えば、差分値算出部35は他車両41について、図8に示すように、前回の絶対位置41a(Lx2,Ly2)と、今回の絶対位置41b(Lx21,Ly21)とから、緯度の差分として(Lx21-Lx2)、経度の差分として(Ly21-Ly2)をそれぞれ算出する。そのために、差分値算出部35は、今回の車両IDに基づいて同じ車両IDの前回の絶対位置41aを位置情報記憶部37から取得する。そして、前回の絶対位置41aと今回の絶対位置41bとの差分算出された後、位置情報記憶部37に記憶されている前回の絶対位置41aを今回の絶対位置41bに更新する。これにより、次回以降も前回の絶対位置と今回の絶対位置の差を算出することができる。また、差分値算出部35は、ID対応表記憶部36から車両IDに対応するローカルIDを取得する。そして、差分値算出部35は、ローカルIDとともに、緯度の差分及び経度の差分を座標変換部34に対して出力する。車両ID(16ビット)に代えてローカルID(9ビット)を用いることでデータ量が減少される。
 なお、車車間通信の1周期(100ms)当りの車両10の移動距離は、例えば時速180kmで走行している車両であれば5mである。緯度1秒当り31mであるから5mは0.16秒に相当し、経度1秒当り25mであるから5mは0.20秒に相当し、100分の1秒を整数値で表現しようとすると、少なくとも5ビット(0~31)を要する。これにより、差分値算出部35から座標変換部34に出力されるデータ構造は、図10(a)に示すように、ローカルID、緯度の差分、及び経度の差分からなる19ビットのデータ構造となる。
 ところで、初めて取得された車両IDの場合、差分値算出部35は、位置情報記憶部37から当該車両IDの前回の絶対位置を取得することができないので、前回の絶対位置と今回の絶対位置との差分を算出できない。しかしこの場合であれ、今回の車両ID及び当該車両IDに付随する今回の絶対位置を位置情報記憶部37に記憶させる。これにより、次回以降、前回の絶対位置と今回の絶対位置との差分を算出できる。また、差分値算出部35は、ID対応表記憶部36から車両IDに対応するローカルIDを取得しようとするが、ID対応表記憶部36には対応するローカルIDがないため新たなローカルIDが取得される。これらのことにより、初めて取得された車両IDの場合、差分値算出部35は、新たなローカルIDとともに、今回の絶対位置を座標変換部34に対して出力する。
 座標変換部34は、絶対位置に基づく値を画面21の表示座標系に基づく値に変換する座標変換処理を行う。座標変換部34は、差分値算出部35からローカルIDとともに、他車両41の絶対位置、もしくは他車両41の前回の絶対位置と今回の絶対位置との差分を取得する。また座標変換部34は、情報処理装置20から車両絶対位置CL及び変換係数CFを取得する。そして、初めて検出された他車両41の場合、座標変換部34は、他車両41の絶対位置(41a)、車両絶対位置CL、及び変換係数CFに基づいて表示座標系の値で表された表示相対値PS1を算出して情報処理装置20に対して出力する。一方、検出済みの他車両41である場合、座標変換部34は、前回の絶対位置(41a)と今回の絶対位置(41b)との差分、及び変換係数CFに基づいて表示差分値PS2を算出して情報処理装置20に対して出力する。なお、車車間通信の1周期(100ms)当りの車両10の移動距離は、例えば時速180kmで走行している車両であれば5mである。5mは8ドット(=5m/0.625m/ドット)に相当するから、表示座標系の値としても「8」である。これにより表示座標系の値により示される表示差分値PS2のX方向の差分値(差分X座標情報)、Y方向の差分値(差分Y座標情報)のそれぞれが4ビット(0~15)にて表現可能となる。このことから通信装置30から情報処理装置20に出力される表示差分値情報のデータ構造は、図10(b)に示すように、ローカルID、及び表示差分値PS2からなる17ビットのデータ構造となる。
 次に、本実施形態の座標変換処理について、図11に従って説明する。図11は、座標変換処理にかかる処理手順を示すフローチャートである。演算装置32では、他車両41の絶対位置が取得される都度、この座標変換処理が開始される。
 座標変換処理が開始されると、演算装置32は、差分値算出部35により認識済みの車両か否かを判断する(図11のステップS20)。取得された車両IDが位置情報記憶部37に記憶されている場合、認識済みの車両であると判断される一方、そうでない場合、認識済みの車両ではないと判断される。認識済みの車両ではないと判断された場合(図11のステップS20でNO)、演算装置32は、ID対応表記憶部36により当該車両IDにローカルIDを割り付けるとともに、割り付けられたローカルIDと他車両41の絶対位置41a(Lx2,Ly2)を座標変換部34に伝達させる(図11のステップS21)。そして演算装置32は、座標変換部34により他車両41の絶対位置41a(Lx2,Ly2)と車両絶対位置CLとから算出された差を算出するとともに、算出された差を変換係数CFにより画面21の表示座標系の値である表示相対値PS1に変換する(図11のステップS22)。他車両41の表示相対値PS1が算出されると、座標変換部34は、ローカルIDと表示相対値PS1を情報処理装置20に対して出力して(図11のステップS23)、座標変換処理を終了する。これにより演算装置32は、車載ネットワークNを介して情報処理装置20に対して表示相対値PS1を出力する。
 一方、認識済みの車両であると判断された場合(図11のステップS20でYES)、演算装置32は、差分値算出部35により前回の絶対位置と、今回の絶対位置との差分を算出する(図11のステップS24)。差分値算出部35は、例えば、他車両41の今回の絶対位置41bと前回の絶対位置41aとから、緯度の差分として(Lx21-Lx2)、及び経度の差分として(Ly21-Ly2)からなる絶対位置の差分を算出する。
 それから演算装置32は、差分値算出部35により算出された絶対位置の差分を座標変換部34にて画面21の表示座標系の値である表示差分値PS2に変換する(図11のステップS25)。座標変換部34は、例えば、他車両41の絶対位置の差分(Lx21-Lx2,Ly21-Ly2)を変換係数CFに基づいて変換することで8ビットのデータとして構成される表示差分値PS2((Lx21-Lx2)/CF,(Ly21-Ly2)/CF)に変換する。そして、他車両41の表示差分値PS2が算出されると、座標変換部34は、ローカルID(9ビット)及び表示差分値PS2(8ビット)からなる表示相対値情報を出力して(図11のステップS26)、座標変換処理を終了する。すなわち演算装置32は、表示相対値情報(17ビット)を車載ネットワークNを介して情報処理装置20に対して出力する。
 本実施形態の車車間通信では、100ミリ秒(ms)の周期で最大400台の車両と通信できる。このことから、表示差分値情報は、1秒当たり68キロビット(=17×400×10)のデータ量になる。このデータ量は、最大通信容量が500キロビット/秒のローカルCANの通信帯域の13.6%を占有する量である。すなわち、ローカルCANによってこのデータ量(68キロビット/秒)を転送する場合、通信帯域の占有が比較的少なくなり、他の通信の通信帯域を圧迫するおそれが低い。また、ローカルCANは通信されるデータ量が通信帯域の約20%以下である場合に高い通信効率が維持されることから、高い通信効率を維持させることも可能となる。
 このようにして、通信装置30から情報処理装置20に他車両41の表示差分値情報が転送される。
 情報処理装置20では、座標計算部26により表示差分値情報を取得して、表示差分値情報に含まれるローカルIDに対応する表示相対値PS3を座標記憶部27から取得する。そして、座標記憶部27から取得された前回の表示相対値PS3と、今回の表示差分値PS2と、車両10の前回から今回までの移動量PS4とに基づいて、新たな表示相対値PS3を算出する。すなわち、画面21の車両10の表示座標P4は移動しないことから車両10の移動量PS4を他車両41側に反映させて新たな表示相対値PS3を算出するようにしている。詳述すると、前回の表示相対値PS3に今回の表示差分値PS2を加算するとともに、車両10の移動距離に相当する表示座標系の値である移動量PS4を減算する。移動量PS4は、車両10の前回の絶対位置40a(Lx1,Ly1)と今回の絶対位置40b(Lx11,Ly11)とから算出される移動距離を変換係数CFである0.625m/ドットで割ることで、画面21の表示座標系の値(ドット数)として算出される。そして座標計算部26から表示相対値PS3が表示制御部24に対して出力される。
 表示制御部24は、表示相対値PS3を取得した場合、表示相対値PS3が車両10の表示座標P4に対する相対値であることに基づき表示相対値PS3に車両10の表示座標P4を加算することによって、画面21の表示座標P5bを算出する。例えば、表示相対値PS3(ΔDx21,ΔDy21)に車両10の表示座標P4(400,300)を加算してX座標Dx21が(ΔDx21+400)、Y座標Dy21が(ΔDy21+300)である表示座標P5b(Dx21,Dy21)を算出する。これにより画面21には、表示座標P5bの位置に他車両41に対応する画像41Mが表示される。
 一方、表示制御部24は、初めて検出された他車両41の場合には、表示相対値PS1を取得する。そして、表示相対値PS1が車両10の表示座標P4に対する相対値であることに基づき表示相対値PS1に車両10の表示座標P4を加算することによって、画面21の表示座標P5を算出する。例えば、表示相対値PS1(ΔDx2,ΔDy2)に車両10の表示座標P4(400,300)を加算してX座標Dx2が(ΔDx2+400)、Y座標Dy2が(ΔDy2+300)である表示座標P5(Dx2,Dy2)を算出する。これにより画面21には、表示座標P5の位置に他車両41に対応する画像41Mが表示される。
 ここで、このように本実施形態の車載装置にて行われる他車両41の絶対位置を画面21の表示座標系に変換する手順について、演算内容を中心に説明する。
 なお、車両10は、北方向に進行しているとともに、他車両41は、図7とは異なる、東方向に進行しているものとする。このことにより、GPS22により検出される、車両10の前回の絶対位置40a(Lx1,Ly1)は(東経135度30分30.00秒,北緯45度30分30.00秒)であるとするとともに、今回の絶対位置40b(Lx11,Ly11)は(東経135度30分30.00秒,北緯45度30分30.10秒)であるとする。また、通信装置30の車車間通信により取得される、他車両41の前回の絶対位置41a(Lx2,Ly2)は(東経135度30分31.00秒,北緯45度30分31.00秒)であるとするとともに、今回の絶対位置41b(Lx21,Ly21)は(東経135度30分31.10秒,北緯45度30分31.00秒)であるとする。
 まず、情報処理装置20の表示制御部24では、車両10の絶対位置40b(Lx11,Ly11)が画面21の中央座標である表示座標P4(400,300)に割り当てられる。変換係数演算部25は、車両10の絶対位置40b(Lx11,Ly11)を車両絶対位置CLとするとともに、画面21のサイズ及び地図の縮尺率2500分の1から算出される0.625m/ドットを変換係数CFとして、それぞれ通信装置30に対して出力する。
 通信装置30では、他車両41の車両IDから前回の絶対位置41a(Lx2,Ly2)を取得するとともに、今回の絶対位置41b(Lx21,Ly21)との差分を算出する。すなわち、緯度の差分を「0秒」(=Ly21-Ly2=北緯45度30分31.00秒-北緯45度30分31.00秒)と算出するとともに、経度の差分を「0.1秒」(=Lx2-Lx21=東経135度30分31.10秒-東経135度30分31.00秒)と算出する。そしてこれら緯度の差分及び経度の差分から、緯度の差分の長さ及び経度の差分の長さを算出する。すなわち緯度1秒当りの長さLaは約31mであることから、緯度(Y方向)の差分の長さは「0m」(=0秒×31m/秒)として算出される。また、経度1秒当りの長さLbは約25mであるから、経度(X方向)の差分の長さは「2.5m」(=0.1秒×25m/秒)として算出される。
 そして、これら差分の長さを変換係数CFに基づいて画面21の表示座標系の値に変換する。画面21においては、緯度方向がY方向、経度方向がX方向に対応するので、Y方向の長さは「0ドット」(=0m/(0.625m/ドット))と算出されるとともに、X方向の長さは「4ドット」(=2.5m/(0.625m/ドット))と算出される。そしてこれが表示差分値PS2(4,0)としてローカルIDとともに、車載ネットワークNを介して情報処理装置20に対して出力される。
 情報処理装置20の座標計算部26では、表示差分値PS2と、前回の表示相対値PS3と、車両10の移動量PS4とから新たな表示相対値PS3を算出する。
 なお、前回の表示相対値PS3は、他車両41の前回の絶対位置41aと車両10の前回の絶対位置40aとの差に基づいて算出されている。例えば、X方向の値は「40」(=(Lx2-Lx1)×La/CF=(東経135度30分31.00秒-東経135度30分30.00秒)×25/(0.625m/ドット))として算出されている。また、Y方向の値は「50」(=(Ly2-Ly1)×Lb/CF=(北緯45度30分31.00秒-北緯45度30分30.00秒)×31/(0.625m/ドット))として算出されている。すなわち前回の表示相対値PS3は(40,50)である。
 さらに、車両10の移動量PS4は、前回の絶対位置40aと今回の絶対位置40bとの差に基づいて算出される。例えば、X方向の値は「0」(=(Lx11-Lx1)×La/CF=(東経135度30分30.00秒-東経135度30分30.00秒)×25/(0.625m/ドット))として算出されている。また、Y方向の値は「5」(=(Ly11-Ly1)×Lb/CF=(北緯45度30分31.10秒-北緯45度30分30.00秒)×31/(0.625m/ドット))として算出されている。すなわち車両10の移動量PS4は(0,5)である。
 そして座標計算部26では、前回の表示相対値PS3(40,50)に表示差分値PS2(4,0)を加算するとともに、移動量PS4(0,5)を減算して新たな表示相対値PS3を算出する。すなわち、X方向の相対値「44」(=40+4-0)、Y方向の相対値「45」(=50+0-5)が算出される。すなわち新たな表示相対値PS3は(44,45)である。
 情報処理装置20の表示制御部24では、座標計算部26で算出された表示相対値PS3(44,45)に車両10の表示座標P4(400,300)を加算して画面21の表示座標P5b(Dx21,Dy21)=(444,345)を算出する。これにより、データ量の少ない表示差分値PS2に基づいて、他車両41に対応する画像41Mが画面21の表示座標P5b(444,345)に表示されるようになる。ところでこのとき、他車両41の画像41Mを、例えば図7に表すと、X方向には他車両41の画像41Mよりも右側の位置、Y方向には他車両41の画像41Mから車両10の画像10Mに近づいた位置となる。
 以上説明したように、本実施形態によっても先の第1の実施形態の前記(1)~(6)の効果と同等もしくはそれに準じた効果が得られるとともに、以下に列記するような効果が得られるようになる。
 (7)通信装置30から情報処理装置20へ、他車両41の移動量に基づく座標情報(表示差分値PS2)が転送されるようになるので、経度緯度からなる位置情報を転送するよりデータ量を少なくすることができる。移動量の場合、移動量を算出する周期が100msのように短い場合、他車両41の移動量が少なくなるのでデータ量をより減少させることができるようになる。
 なお、上記各実施形態は、例えば以下のような態様にて実施することもできる。
 ・上記各実施形態では、通信装置30にて表示座標系の値に変換した表示相対値PS1を情報処理装置20に対して出力する場合について例示した。しかしこれに限らず、通信装置は、表示座標系の値に変換された表示相対値が情報処理装置の画面の表示領域に含まれない場合、その表示相対値を情報処理装置に対して出力しないようにしてもよい。これにより、画面に表示することができない表示相対値を通信データから除くことができて通信負荷の軽減が図られるようになる。
 ・上記実施形態では、情報処理装置20は、車両10を運転する運転者に対してその運転操作を支援することのできる情報を画像表示にて提供する場合について例示した。しかし、これに限らず、情報処理装置は、音、音声、光、振動等による情報提供を行ってもよいし、ブレーキアシストやフューエルカットなどの車両の減速制御や停止制御を提供してもよい。これにより、提供する支援の幅が拡げられるようになり、車載装置としての採用の可能性が広がる。例えば、この車載装置を、カーナビゲーションによる運転支援装置や、減速制御や停止制御を含む運転支援装置などに採用することができる。
 ・上記各実施形態では、車両10の進行方向が「北」である場合について例示したが、これに限らず、車両の進行方向は、「南」「東」「西」など「北」以外でもよい。この場合、車両の進行方向が上側となるように画像が表示される画面は、その座標系と緯度経度の座標系との間に傾きが生じることとなるが、当該傾きを考慮して緯度及び経度を画面の座標系に変換させればよい。上記各実施形態においても、車両10の進行方向を情報処理装置20から通信装置30に伝達させることで画面の座標系と緯度経度の座標系との間の傾きを考慮して緯度及び経度からなる位置を画面の表示座標系に変換させることが可能である。
 ・上記各実施形態では、車載用のローカルCANの最大通信容量が500キロビット/秒である場合について例示したが、これに限らず、最大通信容量は500キロビット/秒よりも大きくても小さくてもよい。いずれにせよ、位置情報に関するデータ量が減少されることにより通信負荷の軽減が図られるようになる。
 ・上記各実施形態では、車載ネットワークNが車載用のローカルCANである場合について例示した。しかしこれに限らず、車載ネットワークは、イーサーネット(登録商標)やフレックスレイ(FlexRay)などその他のネットワークであってもよい。いずれのネットワークを用いた場合であれ、位置情報に関するデータ量が減少されることにより通信負荷の軽減が図られるようになる。
 ・上記第2の実施形態では、前回の絶対位置と今回の絶対位置の差分を算出する場合について例示したが、これに限らず、前回のドット数と今回のドット数の差分を求めてもよい。この場合、前回のドット数を保持しておけば今回の絶対位置をドット数に変換することでその差分を求めることができるようになる。
 ・上記各実施形態では、通信装置30は車車間通信をする通信装置である場合について例示した。しかし、これに限らず、通信装置は、赤外線信号などの光信号により道路に設けられる光ビーコン装置などと通信を行う通信装置、いわゆるインフラ通信装置であってもよい。
 ・上記各実施形態では、対象物が他車両41の一台である場合について例示したが、これに限らず、対象物は複数でもよい。対象物が複数であれ、通信負荷の軽減により、転送できる他車両の座標情報の数が増えるようにもなる。これにより車載情報処理装置により把握される車両数を増加させて運転支援などをより高度なものにすることができるようにもなる。
 ・上記各実施形態では、車両絶対位置CLを画面21の中央座標に対応する絶対位置とする場合について例示した。しかしこれに限らず、緯度経度情報を画面の所定の座標に対する絶対位置としてもよい。
 ・上記各実施形態では、変換係数CFを単位がm/ドットとなるように算出したが、これに限らず、単位がドット/mとなるように算出してもよい。
 ・上記各実施形態では、変換係数CFが地図の縮尺に基づいて算出される場合について例示した。これに限らず、変換係数を、ドットと経度の関係、及びドットと緯度の関係としてもよい。
 ・上記各実施形態では、変換係数CFが一つであるとともに単位がm/ドットである場合について説明した。しかしこれに限らず、ドットと緯度の関係を示す変換係数、及びドットと経度の関係を示す変換係数の2つの変換係数を用いるようにしてもよい。
 ・また、画面上に三角形を形成する所定の3点の座標に対するそれぞれの絶対位置を3つの変換係数として通信装置に対して出力して、通信装置でドットと緯度の関係、及びドットと経度の関係を算出ができるようにしてもよい。この場合、車両絶対位置CLを省略することもできる。
 ・上記各実施形態では、画面21が液晶表示パネルから構成されている場合について例示した。しかしこれに限らず、画面は、ブラウン管やプラズマディスプレイ、有機ELディスプレイなど他の表示装置であってもよい。いずれの表示装置であれ、表示画面の大きさと、対応するビットの関係から対象物を画面に表示する位置を設定することができる。これにより、表示画面の選択自由度が高まり、車載装置としても設計自由度が高められる。
 ・上記各実施形態では、画面21の解像度が横方向に800ドット、縦方向に600ドット(800×600)である場合について例示した。しかしこれに限らず、画面の解像度は(800×600)よりも高くても、低くてもよい。いずれの解像度であれ、表示画面の大きさと、対応するビットの関係から対象物を表示する位置を画面に設定することができる。これにより、表示画面の解像度の選択自由度が高まり、車載装置としても設計自由度が高められる。
 ・上記各実施形態では、画面21の横方向(X方向)の長さが200mm、縦方向(Y方向)の長さが150mmである場合について例示した。しかしこれに限らず、画面の横方向の長さが200mmより長くてもまたは短くてもよい。また、画面の縦方向の長さが150mmより長くてもまたは短くてもよい。すなわち、表示装置のサイズにかかわらず、その画面のサイズと、対応するビットの関係から対象物を表示する位置を画面に設定することができる。これにより、画面の大きさの選択自由度が高まり、車載装置としても設計自由度が高められる。
 ・上記各実施形態では、対象物が他車両41である場合について例示したが、これに限らず、対象物は、各種車両(二輪車、自転車を含む)や人などの移動体、信号機、交差点、停止線などの施設、渋滞区間、渋滞度等の渋滞情報、通行止め等の位置を示す道路交通情報などでもよい。これによっても、通信装置を通じて取得した対象物の位置情報を、座標情報に変換させることでデータ量を減少させることができることから、位置情報を転送する場合に比べて通信装置と情報処理装置との間のデータ通信が減少して転送にかかる通信の通信負荷を軽減させることができる。
 ・上記各実施形態では、緯度経度からなる絶対座標系を用いる場合について例示した。しかしこれに限らず、絶対座標系は、車両の走行位置を特定できるのであれば、各種地図の座標系や、各種の測地系など緯度経度からなるもの以外で表現されるものであってもよい。その場合であれ、通常、画面の表示座標系の方が小さいため、データ量が減少されるようになる。
 ・上記実施形態では、絶対座標系を画面21の表示座標系に変換する場合について例示した。しかしこれに限らず、絶対座標系で表すよりもデータ量を減少させることができるのであれば、変換する座標系は、情報処理装置などに仮想的に設定される座標系などでもよい。これにより、このような車載装置の採用可能性が高められるようになる。
 10…車両、10M…画像、20…情報処理装置、21…表示装置としての画面、22…全地球測位システム(GPS)、23…演算装置、24…表示制御部、25…変換係数算出部としての変換係数演算部、26…座標計算部、27…座標記憶部、30…通信装置、31…アンテナ、32…演算装置、33…座標変換部、34…座標変換部、35…差分値算出部、36…ID対応表記憶部、37…位置情報記憶部、41…他車両、41M…画像、N…車載ネットワーク、R1…進行路、R2…交差路。

Claims (12)

  1.  車載通信装置により取得される対象物の位置情報を車載情報処理装置で所要に処理して地図情報をもとにした前記対象物との位置関係を認識する車載装置であって、
     前記車載通信装置は、前記取得される対象物の位置情報を前記地図情報に対して有限の解像度に設定された座標系の座標情報に変換する座標変換部を備え、該変換した座標情報を前記車載情報処理装置に転送する
     ことを特徴とする車載装置。
  2.  前記車載情報処理装置は、前記車載通信装置から転送される位置情報を地図情報と共に画面に可視表示する表示装置を備えており、前記座標変換部は、該表示装置の画面解像度に応じた座標系を前記有限の解像度に設定された座標系として、前記取得される対象物の位置情報をこの表示装置の画面解像度に応じた座標系の座標情報に変換するものである
     請求項1に記載の車載装置。
  3.  前記車載情報処理装置は、前記地図情報のその都度の縮尺と前記表示装置の画面解像度とから前記座標変換部による座標変換の変換係数を算出してこの算出した変換係数を前記座標変換部に転送する変換係数演算部を備え、前記座標変換部は、該変換係数演算部から転送される変換係数に基づいて、前記取得される対象物の位置情報を前記表示装置の画面解像度に応じた座標系の座標情報に変換する
     請求項2に記載の車載装置。
  4.  前記変換係数演算部から前記座標変換部に転送される変換係数には前記地図情報に対応した前記表示装置の画面中心位置を示す情報が含まれ、前記座標変換部は、該画面中心位置からの座標情報として前記取得される対象物の位置情報を変換する
     請求項3に記載の車載装置。
  5.  前記車載通信装置は、車車間通信により、前記対象物の位置情報として通信先車両毎の位置情報をそれら車両毎の識別情報と共に取得するものであり、前記座標変換部は、前記識別情報により識別される通信先車両毎の位置情報を前記座標系の座標情報に変換し、該変換した通信先車両毎の座標情報を前記車載情報処理装置に転送する
     請求項1~4のいずれか一項に記載の車載装置。
  6.  前記車載通信装置は、前記識別情報により識別される通信先車両毎の移動量を算出する機能を更に備え、前記座標変換部により変換される座標情報について、同算出される車両毎の移動量に相当する情報を前記車載情報処理装置に転送する
     請求項5に記載の車載装置。
  7.  前記車載通信装置と前記車載情報処理装置とはそれぞれ車載ネットワークを介して接続されており、前記変換された座標情報が前記車載ネットワークを介して授受される
     請求項1~6のいずれか一項に記載の車載装置。
  8.  前記車載通信装置により取得されて、前記座標変換部により座標情報に変換される前記対象物の位置情報には緯度の値及び経度の値の少なくとも一方が含まれる
     請求項1~7のいずれか一項に記載の車載装置。
  9.  車載情報処理装置で所要に処理されることで地図情報をもとにした位置関係が認識される対象物の位置情報を取得する車載通信装置であって、
     前記取得される対象物の位置情報を前記地図情報に対して有限の解像度に設定された座標系の座標情報に変換する座標変換部を備え、該変換した座標情報を前記車載情報処理装置に転送する
     ことを特徴とする車載通信装置。
  10.  前記車載情報処理装置は、前記位置情報を地図情報と共に画面に可視表示する表示装置を備えており、前記座標変換部は、該表示装置の画面解像度に応じた座標系を前記有限の解像度に設定された座標系として、前記取得される対象物の位置情報をこの表示装置の画面解像度に応じた座標系の座標情報に変換するものである
     請求項9に記載の車載通信装置。
  11.  車載通信装置により取得される対象物の位置情報を所要に処理して地図情報をもとにした前記対象物との位置関係を認識する車載情報処理装置であって、
     前記車載通信装置により取得される対象物の位置情報を前記地図情報に対して有限の解像度に設定された座標系の座標情報に変換するための変換係数を算出する変換係数算出部を備え、該算出された変換係数を前記車載通信装置に転送する
     ことを特徴とする車載情報処理装置。
  12.  前記車載通信装置から転送される位置情報を地図情報と共に画面に可視表示する表示装置を備え、前記変換係数算出部は、前記変換係数を前記地図情報のその都度の縮尺と前記表示装置の画面解像度とから算出する
     請求項11に記載の車載情報処理装置。
PCT/JP2010/057479 2010-04-27 2010-04-27 車載装置及び車載通信装置及び車載情報処理装置 WO2011135677A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012512578A JP5418669B2 (ja) 2010-04-27 2010-04-27 車載装置及び車載情報処理装置
DE112010005524T DE112010005524T5 (de) 2010-04-27 2010-04-27 In einem Fahrzeug montierte Vorrichtung, in einem Fahrzeug montierte Kommunikationsvorrichtung und in einem Fahrzeug montierter Informationsprozessor
PCT/JP2010/057479 WO2011135677A1 (ja) 2010-04-27 2010-04-27 車載装置及び車載通信装置及び車載情報処理装置
US13/642,930 US20130041578A1 (en) 2010-04-27 2010-04-27 Vehicle-mounted device, vehicle-mounted communication device, and vehicle-mounted information processor
CN201080066276XA CN102933935A (zh) 2010-04-27 2010-04-27 车载装置、车载通信装置以及车载信息处理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/057479 WO2011135677A1 (ja) 2010-04-27 2010-04-27 車載装置及び車載通信装置及び車載情報処理装置

Publications (1)

Publication Number Publication Date
WO2011135677A1 true WO2011135677A1 (ja) 2011-11-03

Family

ID=44861022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057479 WO2011135677A1 (ja) 2010-04-27 2010-04-27 車載装置及び車載通信装置及び車載情報処理装置

Country Status (5)

Country Link
US (1) US20130041578A1 (ja)
JP (1) JP5418669B2 (ja)
CN (1) CN102933935A (ja)
DE (1) DE112010005524T5 (ja)
WO (1) WO2011135677A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106205113B (zh) * 2016-07-19 2019-03-05 天津所托瑞安汽车科技有限公司 车辆防跟丢***及控制方法
US10749674B2 (en) * 2017-09-29 2020-08-18 Micro Focus Llc Format preserving encryption utilizing a key version

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309071A (ja) * 2000-04-18 2001-11-02 Mazda Motor Corp 情報通信方法及び情報通信装置及びコンピュータ読み取り可能な記憶媒体
JP2003222529A (ja) * 2002-01-31 2003-08-08 Toyota Motor Corp 地図描画装置及びこれを使用するナビゲーション装置、並びに地図描画用プログラム及び地図描画用記録媒体
JP2005222307A (ja) * 2004-02-05 2005-08-18 Sumitomo Electric Ind Ltd 画像表示システム及び画像表示方法
JP2005328283A (ja) * 2004-05-13 2005-11-24 Toyota Motor Corp 車車間通信システム及び車両用無線通信装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3898264B2 (ja) * 1997-02-21 2007-03-28 本田技研工業株式会社 車両用ネットワークシステム
JP2003075167A (ja) * 2001-09-04 2003-03-12 Sony Corp ナビゲーション装置、地図の表示方法および画像表示装置
JP4168866B2 (ja) * 2003-07-25 2008-10-22 トヨタ自動車株式会社 車両情報通信方法、車両情報通信システムおよびセンター
KR100634010B1 (ko) * 2004-01-20 2006-10-13 엘지전자 주식회사 디지털 지도의 좌표 값 변환방법
US7499648B2 (en) * 2004-09-27 2009-03-03 Mindspeed Technologies, Inc. Multistage amplifier for rapid acquisition and random received signal power applications
JP4627476B2 (ja) * 2005-10-05 2011-02-09 本田技研工業株式会社 サーバ及び車載ナビゲーション装置、車両、気象情報配信システム
US7499675B2 (en) * 2005-11-07 2009-03-03 Denso Corporation Vehicle-to-vehicle communication system
US8199970B2 (en) * 2006-06-06 2012-06-12 Nec Corporation Moving amount calculation system and obstacle detection system
JP4352156B1 (ja) * 2008-08-25 2009-10-28 兵庫県 地図情報処理装置、ナビゲーションシステム、およびプログラム
JP5458764B2 (ja) * 2008-09-29 2014-04-02 日産自動車株式会社 情報提示装置
US8229663B2 (en) * 2009-02-03 2012-07-24 GM Global Technology Operations LLC Combined vehicle-to-vehicle communication and object detection sensing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309071A (ja) * 2000-04-18 2001-11-02 Mazda Motor Corp 情報通信方法及び情報通信装置及びコンピュータ読み取り可能な記憶媒体
JP2003222529A (ja) * 2002-01-31 2003-08-08 Toyota Motor Corp 地図描画装置及びこれを使用するナビゲーション装置、並びに地図描画用プログラム及び地図描画用記録媒体
JP2005222307A (ja) * 2004-02-05 2005-08-18 Sumitomo Electric Ind Ltd 画像表示システム及び画像表示方法
JP2005328283A (ja) * 2004-05-13 2005-11-24 Toyota Motor Corp 車車間通信システム及び車両用無線通信装置

Also Published As

Publication number Publication date
CN102933935A (zh) 2013-02-13
DE112010005524T5 (de) 2013-04-04
US20130041578A1 (en) 2013-02-14
JPWO2011135677A1 (ja) 2013-07-18
JP5418669B2 (ja) 2014-02-19

Similar Documents

Publication Publication Date Title
KR102554621B1 (ko) 차량-도로 협업 정보 처리 방법, 장치, 기기, 자율 주행 차량 및 컴퓨터 프로그램
US10514697B2 (en) Vehicle remote assistance mode
JP4569652B2 (ja) 認識システム
US10017111B2 (en) Driver assistance system and method for avoiding collisions
WO2018131090A1 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
WO2014021421A1 (ja) カメラパラメータ演算装置、ナビゲーションシステムおよびカメラパラメータ演算方法
CN105973244A (zh) 获取地图信息的方法、导航方法及设备
JP6086767B2 (ja) ナビゲーション装置、ナビゲーションシステム、交差点案内プログラムおよび交差点案内方法
JP2012085202A (ja) 車両の位置情報を送受信可能な無線通信装置
JP6891753B2 (ja) 情報処理装置、移動装置、および方法、並びにプログラム
CN102027323A (zh) 用于准备地图数据的方法及设备
US20220207208A1 (en) Variable system for simulating operation of autonomous vehicles
US20230041487A1 (en) System for dynamic autonomous vehicle service pricing
US10160461B2 (en) Drive assist system and non-transitory computer-readable medium
CN113728310A (zh) 用于分布式***仿真的架构
JP5418669B2 (ja) 車載装置及び車載情報処理装置
JP2019079453A (ja) 情報生成システム、情報生成装置、情報生成方法およびコンピュータプログラム
JP6849571B2 (ja) 路側機、通信システム、及び路側機の送信方法
EP3972227B1 (en) Method for driving control, device and system
JP2020123264A (ja) 車両制御装置および車両制御システム
JP4074813B2 (ja) 移動体の位置検出装置
JP7218557B2 (ja) サーバ、車載装置、プログラム、情報提供システム、情報提供方法、及び車両
JP6327478B2 (ja) インシデント情報管理装置、インシデント情報管理方法、及びインシデント情報管理用プログラム
JP7287342B2 (ja) 電子制御装置
JP2002328027A (ja) デジタル地図の位置情報伝達方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066276.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850696

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512578

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13642930

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100055246

Country of ref document: DE

Ref document number: 112010005524

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850696

Country of ref document: EP

Kind code of ref document: A1