WO2011132419A1 - 銀変色防止剤、銀変色防止樹脂組成物、銀変色防止方法、及びこれを使用した発光ダイオード - Google Patents

銀変色防止剤、銀変色防止樹脂組成物、銀変色防止方法、及びこれを使用した発光ダイオード Download PDF

Info

Publication number
WO2011132419A1
WO2011132419A1 PCT/JP2011/002322 JP2011002322W WO2011132419A1 WO 2011132419 A1 WO2011132419 A1 WO 2011132419A1 JP 2011002322 W JP2011002322 W JP 2011002322W WO 2011132419 A1 WO2011132419 A1 WO 2011132419A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
zinc
silver discoloration
resin
zinc salt
Prior art date
Application number
PCT/JP2011/002322
Other languages
English (en)
French (fr)
Inventor
義浩 川田
智江 佐々木
正人 鎗田
静 青木
政隆 中西
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to SG2012077384A priority Critical patent/SG184923A1/en
Priority to KR1020147011901A priority patent/KR20140061556A/ko
Priority to KR1020127027634A priority patent/KR101452173B1/ko
Priority to EP11771760.3A priority patent/EP2562293A4/en
Priority to JP2012511555A priority patent/JP5948240B2/ja
Priority to US13/641,703 priority patent/US20130032853A1/en
Priority to CN201180019856.8A priority patent/CN102906309B/zh
Publication of WO2011132419A1 publication Critical patent/WO2011132419A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/167Phosphorus-containing compounds
    • C23F11/1673Esters of phosphoric or thiophosphoric acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/12Oxygen-containing compounds
    • C23F11/124Carboxylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to a discoloration preventive agent for silver or a silver-plated portion, and particularly to a discoloration preventive agent for silver or a silver-plated portion used in a light emitting diode, a discoloration preventing resin composition, a discoloration preventing method, and a light emitting diode using the same.
  • organic zinc compound compounds called metal soaps such as fatty acid zinc compounds (for example, zinc stearate) are used as synthetic resins, lubricants and mold release agents for tableting, taking advantage of their slip properties. Is known for its use.
  • fatty acid zinc compounds for example, zinc stearate
  • aromatic zinc carboxylate compound for example, zinc benzoate is known to be used as an antibacterial agent (Patent Document 1), which is a characteristic of the compound itself.
  • Applications common to fatty acid zinc compounds and aromatic zinc carboxylates include stabilizers for vinyl chloride resin films (Patent Document 2), condensation catalysts such as condensation-type silicone resins, and condensation accelerators (Patent Document 3). Are known.
  • Patent Document 4 a rubber modification application that bleeds out on top of an addition reaction type silicone rubber to reduce the stickiness of the surface of the silicone rubber having low hardness.
  • organozinc compounds themselves have a silver discoloration preventing effect, in particular a silver plate used in light emitting diodes.
  • a lead frame In a light emitting diode, a lead frame is often disposed in the vicinity of or just below the chip in order to supply current to the diode chip. For this reason, in order to effectively use the light emitted from the chip, it is required that the lead frame itself be made of a highly reflective metal or plated.
  • silver is often used as a plating material for a light emitting diode lead frame because of its high visible light reflectivity.
  • silver is generally a material that easily changes in quality, and is particularly highly reactive with elemental sulfur and is known to change to black as silver sulfide. Therefore, in order to protect the lead frame from a sulfur-based gas that changes the color of silver, it is generally used by sealing with an epoxy resin or the like. The light-emitting diodes actually sealed with epoxy resin can suppress the deterioration of silver and have not been a problem in the market.
  • An object of the present invention is to provide a silver discoloration inhibitor, a discoloration prevention resin composition capable of exhibiting and maintaining a discoloration prevention effect due to sulfur-based gas in a silver surface such as silver plating, particularly a silver plating portion used in a light emitting diode, and the like.
  • the object is to provide a method for preventing discoloration.
  • the present inventors have found that zinc compounds, particularly zinc salts or zinc complexes, are effective in preventing discoloration of silver, and have completed the present invention. It was. That is, the present invention relates to the following (1) to (25).
  • the silver discoloration inhibitor containing, as an active ingredient, at least one selected from the group consisting of a carboxylic acid compound zinc salt having 3 to 20 carbon atoms, a zinc phosphate salt, a phosphate ester zinc salt, and a carbonyl compound zinc complex.
  • a carboxylic acid compound zinc salt having 3 to 20 carbon atoms
  • a zinc phosphate salt a phosphate ester zinc salt
  • a carbonyl compound zinc complex Use as described in (1) or (2) which is an inhibitor.
  • the silver discoloration inhibitor is a silver discoloration inhibitor containing an aliphatic carboxylic acid zinc salt having 3 to 20 carbon atoms as an active ingredient.
  • the aliphatic carboxylic acid zinc salt is a saturated or unsaturated fatty acid zinc salt.
  • the aliphatic carboxylic acid zinc salt is selected from the group consisting of zinc 2-ethylhexylate, zinc neodecanoate, zinc laurate, zinc ricinoleate, zinc stearate, zinc undecylenate, and zinc naphthenate.
  • the use according to (5) which is at least one kind.
  • the use according to (4) or (5), wherein the aliphatic carboxylic acid zinc salt is a zinc salt of an alicyclic carboxylic acid having at least one of a cyclopentane skeleton and a cyclohexane skeleton.
  • the silver discoloration prevention resin composition for light emitting diodes (12) The silver discoloration prevention resin composition according to (11), wherein the hardness of the cured product of the resin composition measured by durometer type A of JIS K 7215 exceeds 70. (13) The silver discoloration prevention resin composition according to (11) or (12), wherein the refractive index of the cured product of the resin composition exceeds 1.45. (14) The silver discoloration prevention resin composition according to any one of (11) to (13), wherein the sealing resin is a sealing resin containing a silicone skeleton.
  • a method for preventing silver discoloration wherein the silver discoloration preventing agent according to any one of (1) to (10) is applied to a silver surface.
  • the silver discoloration preventing agent according to (1) further contains a solvent, and the solvent contains 0.005 to 1% by weight of zinc salt or zinc complex as an active ingredient.
  • a light-emitting diode having a dry film or a cured film of a silver discoloration inhibitor containing at least one of a zinc salt or a zinc complex on a silver surface.
  • the sealing resin is a silicone resin that cures by an addition reaction and forms a cured product having a hardness measured with a durometer type A of JIS K 7215 exceeding 70 after curing (19) or (20 ).
  • a silver discoloration inhibitor comprising at least one of a zinc salt or a zinc complex as an active ingredient, and containing 0.001 to 1 part by weight of the active ingredient with respect to 100 parts by weight of a diluent.
  • the silver discoloration inhibitor according to (23), wherein the diluent is an organic solvent.
  • the silver discoloration inhibitor according to (23), wherein the diluent is a silicone resin.
  • the silver portion of a product using silver is coated with the silver discoloration inhibitor according to the present invention
  • discoloration of the silver portion with hydrogen sulfide or the like can be prevented over a long period of time.
  • the silver discoloration preventing agent according to the present invention specifically, the light emitting diode coated with a dry film or a resin cured product of the silver discoloration preventing agent In a severe test in the presence of hydrogen sulfide, no discoloration of the silver portion is observed over a long period of time, and a decrease in illuminance of the light emitting diode can be prevented.
  • the light emitting diode sealed with the silver discoloration prevention resin composition of this invention can also achieve the same effect. Therefore, according to the present invention, it is possible to obtain a light-emitting diode that is excellent in durability with no decrease in illuminance even when a silicone resin that allows gas such as hydrogen sulfide to pass through is used as a sealing resin. Have.
  • a zinc salt and / or a zinc complex is used as an active ingredient of a silver discoloration inhibitor.
  • the present invention is useful for preventing discoloration of a silver part of a product using silver, and particularly useful for preventing discoloration of a silver plating part for reflection in a light emitting diode.
  • the mechanism for preventing the discoloration of the silver is not clear, but the zinc salt or zinc complex reacts with a compound that discolors silver, such as hydrogen sulfide, or is physically adsorbed, so that the sulfur gas is generated. It is thought that the discoloration of silver is prevented by inhibiting the arrival at the silver part.
  • any of a zinc salt and / or a zinc complex (hereinafter sometimes referred to as the zinc compound) may be used.
  • a zinc salt and / or a zinc complex a zinc ion or a zinc atom as a central element, a salt with an organic acid or a phosphoric acid compound and / or a complex with an organic compound, as a counter ion or a ligand,
  • a compound having at least one selected from the group consisting of a carboxylic acid compound, a phosphate ester, phosphoric acid, and a carbonyl compound or an ion of the compound is preferable.
  • Examples of the carboxylic acid compound include carboxylic acid compounds having 3 to 20 carbon atoms.
  • Examples of the carboxylic acid compound having 3 to 20 carbon atoms include aliphatic carboxylic acids. More specifically, an aliphatic carboxylic acid having 3 to 20 carbon atoms such as a saturated fatty acid having 3 to 20 carbon atoms, an unsaturated fatty acid having 3 to 20 carbon atoms, and an alicyclic carboxylic acid having 5 to 9 carbon atoms. Mention may be made of acids. Among them, in consideration of compatibility with the resin, a carboxylic acid compound having 6 to 20 carbon atoms, more preferably 6 to 18 carbon atoms is preferable. In some cases, 7 to 17 carboxylic acid compounds are also preferred.
  • an aliphatic carboxylic acid is usually preferred.
  • the aliphatic carboxylic acid having 3 to 20 carbon atoms may be linear or cyclic.
  • An aliphatic carboxylic acid having 6 to 20 carbon atoms, more preferably 6 to 18 carbon atoms is more preferable.
  • the carbon chain in the chain aliphatic carboxylic acid may be linear or branched.
  • a saturated aliphatic carboxylic acid is usually preferred.
  • Preferred zinc salts of carboxylic acid compounds include the zinc salts of the above carboxylic acid compounds.
  • a zinc salt of an aliphatic carboxylic acid having 3 to 20 carbon atoms is preferable, a zinc salt of an aliphatic aliphatic carboxylic acid having 6 to 20 carbon atoms is more preferable, and a fatty acid having 6 to 18 carbon atoms is more preferable. More preferred are zinc salts of group carboxylic acids.
  • zinc salt of saturated aliphatic carboxylic acid having 6 to 20 carbon atoms include zinc 2-ethylhexylate (zinc octylate), zinc neodecanoate, zinc laurate, zinc ricinoleate, and zinc stearate. , Zinc undecylenate, zinc naphthenic acid (carboxylic acid of cyclopentane and cyclohexane as main components), and the like, which are preferable from the viewpoint of compatibility with the resin.
  • zinc 2-ethylhexylate zinc octylate
  • zinc undecylate zinc naphthenate or zinc stearate
  • zinc 2-ethylhexylate zinc stearate
  • zinc 2-ethylhexylate zinc stearate
  • zinc xylate is zinc 2-ethylhexylate.
  • the alicyclic carboxylic acid zinc salt include alicyclic carboxylic acid zinc salts having 5 to 9 carbon atoms, such as cyclopentane carboxylic acid or cyclopentane such as cyclohexane carboxylic acid and / or alicyclic carboxylic acid having a cyclohexane skeleton.
  • zinc salts of cyclic carboxylic acids and specific examples include zinc naphthenate.
  • One of the most preferred zinc salts in the present invention is zinc 2-ethylhexylate.
  • Examples of the phosphoric acid ester include monoalkyl esters, dialkyl esters, and trialkyl esters.
  • examples of the alkyl group include methyl group, isopropyl group, butyl group, 2-ethylhexyl group, octyl group, isodecyl group, isostearyl group, Examples thereof include C1-C20 alkyl groups such as decanyl group and cetyl group, and C6-C20 alkyl groups are preferred.
  • the 2-ethylhexyl group type is liquid and is more preferable in view of workability.
  • the carbonyl compound in the present invention is a carbonyl group-containing compound that forms a complex with zinc other than the aliphatic carboxylic acid compound that forms the zinc salt, and examples thereof include acetylacetone.
  • the complex is preferably zinc acetylacetonate using 2,4 pentadione as a ligand.
  • These zinc compounds can be used from liquid to solid, and even when one or more of them are mixed, the effect of changing color to silver can be exhibited.
  • Preferred zinc salts and / or zinc complexes include zinc salts of aliphatic carboxylic acids having 6 to 20 carbon atoms, zinc salts of C6 to C20 alkyl esters of phosphoric acid, and carbonyl compounds. Zinc acetylacetonate is preferred as the zinc complex with the carbonyl compound.
  • the silver discoloration inhibitor of the present invention contains a zinc salt and / or a zinc complex as an active ingredient
  • the active ingredient alone or a mixture of the active ingredient and a diluent (for example, a solvent or a resin). It may be.
  • a diluent for example, a solvent or a resin
  • the effective ingredient concentration is not particularly limited. Usually, for the convenience of use, a concentration that can be used as it is is preferable.
  • the concentration that can be used as it is is preferably 0.005 parts by weight or more, usually about 0.005 to 10 parts by weight, preferably about 0.005 to 1 parts by weight with respect to 100 parts by weight of the diluent. It is.
  • any organic solvent or resin that can cover the surface of silver can be used.
  • the resin is preferably a curable resin when used for a light emitting diode or the like.
  • the curable resin any resin can be used as long as it is cured after the surface of silver is coated. Usually, a resin (sealing resin) that can be used for sealing a light emitting diode is preferable.
  • the silver discoloration preventing agent of the present invention can exhibit its effect more effectively by allowing a zinc salt and / or a zinc complex to be present on the surface of silver.
  • Silver that can be prevented from being discolored by the silver discoloration preventing agent of the present invention may be pure silver, silver-plated or in the form of a silver alloy, as long as it undergoes alteration by sulfur element.
  • the zinc salt and / or zinc complex is preferably present on the entire surface of silver. Usually, the zinc salt and / or zinc complex is preferably present in a film form so as to cover the silver surface.
  • the active ingredient compound of the present invention is dissolved in a solvent and used, only the active ingredient is present after drying.
  • the active ingredient is necessarily in the form of a film. In such a case, such a case is included in the form of a film for convenience.
  • the surface of silver can be covered with a sealing resin containing the zinc salt and / or zinc complex to seal the surface of silver with the zinc salt and / or zinc complex.
  • a sealing resin containing the zinc salt and / or zinc complex to seal the surface of silver with the zinc salt and / or zinc complex.
  • the silver discoloration preventing agent of the present invention as an active ingredient, either or both of a zinc salt and a zinc complex and a diluent are contained, and the active ingredient is added in an amount of 0.005 to 100 parts by weight of the diluent.
  • the diluent is an organic solvent that dissolves the active ingredient
  • the silver discoloration inhibitor is a room temperature liquid composition
  • the diluent is a resin (necessary)
  • the silver discoloration inhibitor is a resin composition, preferably a resin composition that is liquid at room temperature. I can do it.
  • the treatment with the silver discoloration inhibitor of the present invention can be performed as follows. That is, the zinc salt and / or zinc complex as an active ingredient or the silver discoloration inhibitor of the present invention is diluted (preferably dissolved) with a diluent such as an appropriate solvent, if necessary, and subjected to an appropriate treatment. After the concentration of the solution, the active ingredient or silver discoloration inhibitor can be applied to the target silver surface so as to cover the silver surface. Examples of the target silver surface include the surface of silver-plated portions, chips, or portions where silver of various molded products is used. As a method to be applied, any method can be used as long as the target silver surface can be coated.
  • a method such as spraying, applying or dripping using a spray or a dispenser or the like, a method of immersing an object for preventing discoloration in a treatment liquid containing the silver discoloration inhibitor, or a zinc salt and / or Or the method of sealing the surface of silver with the resin composition containing a zinc complex etc. can be mentioned.
  • the silver discoloration preventing agent of the present invention can be applied to any silver, whether pure silver or an alloy containing silver.
  • Examples of the solvent for dissolving the zinc salt and / or zinc complex as the active ingredient, or the solvent used as a diluent for the silver discoloration inhibitor of the present invention include organic solvents and water. Soluble organic solvents are preferred. Examples of organic solvents include alcohols such as methanol, ethanol and isopropanol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone, hydrocarbon solvents such as toluene, xylene, hexane, cyclohexane and cyclopentane, chloromethane Halogenated hydrocarbon solvents such as dichloroethane, chloroform and carbon tetrachloride, esters such as methyl acetate and ethyl acetate, ethers such as diethyl ether and tetrahydrofuran, amides such as N, N-dimethylformamide, etc.
  • the organic solvent to be obtained is mentioned, and two or more of these solvents may be used in combination.
  • a ketone solvent is preferable from the viewpoint of solubility, ease of treatment, environmental problems, and the like.
  • cured by a liquid addition reaction as a diluent is also preferable.
  • the use concentration of the zinc salt and / or zinc complex in the solvent can be set as appropriate.
  • the concentration with respect to the total amount of the solvent is 0.005 wt% or more, preferably 0.005 wt% to 1 wt%, more preferably 0.005 to 0.5 wt%, most preferably 0.01 wt% to It may be 0.5% by weight.
  • concentration with respect to the total amount of the solvent is 0.005 wt% or more, preferably 0.005 wt% to 1 wt%, more preferably 0.005 to 0.5 wt%, most preferably 0.01 wt% to It may be 0.5% by weight.
  • the processing temperature can be determined as appropriate.
  • the silver surface after applying to the silver surface at normal temperature, it can be dried or the resin can be cured as required.
  • an organic solvent used as a diluent
  • it is usually room temperature to 200 ° C., preferably 50 ° C. to 150 ° C.
  • it may be appropriately dried at 50 to 120 ° C. If the drying temperature is too low, the organic solvent may remain, which may cause inconveniences in later steps.
  • the silver discoloration inhibitor (resin composition) of the present invention containing a solvent and a resin as a diluent
  • the drying temperature is too high, various components may be colored and oxidized, thereby deteriorating the performance of the light emitting diode from the initial stage.
  • a silver product is left in the air during the manufacturing process, the surface will become darkened, so if it is interrupted during the manufacturing process, it will be necessary to put it in a storage such as a desiccator.
  • the product can be stored for a long period of time in the middle of the manufacturing process, which streamlines the manufacturing process. It can also contribute.
  • a light-emitting diode having a silver surface coated with the silver discoloration preventing agent of the present invention does not cause silver discoloration even during the manufacturing process before sealing or without being placed in a desiccator.
  • a sealing resin is dropped, injected and / or applied to physically protect the light emitting diode, and then generally used by curing the sealing resin. It can be provided as a light emitting diode that can be used.
  • the sealing resin that can be used is not particularly limited as long as it is a resin that can be used for the sealing portion of the light emitting diode.
  • a thermoplastic resin, a thermosetting resin, etc. can be mentioned. Specifically, the following resins can be exemplified.
  • silicone resin epoxy resin, polyethylene, polypropylene, polybutylene, and copolymers thereof, polyolefin resin such as cyclopolyolefin, alkyd resin, guanamine resin, phenol resin, tetrafluoroethylene (PTFE), Fluoroplastic resins such as fluorinated ethylene polypropylene copolymer (FEP), polyacrylonitrile resins, polystyrene resins, polyacetal resins, nylon 6, 11, 12, 46, 66, 610, 612, and copolymers thereof Polyamide resins, polymethyl acrylate, polymethyl methacrylate, (meth) acrylic ester resins such as ethylene-ethyl acrylate copolymers, polyimides such as thermoplastic polyimide and polyetherimide Polyester resin such as fat, polyether ether ketone resin, polyethylene oxide resin, polyethylene terephthalate (PET), polybutylene terephthalate (PBT) and copolymers thereof, poly
  • silicone resins epoxy resins, cyclopolyolefin resins, polyacrylonitrile resins, polystyrene resins, polyamide resins, (meth) acrylate resins, polyetheretherketone resins, polyester resins, polycarbonate resins Resins and their copolymers are preferred and may be resins modified to impart specific properties. These resins can be used alone or in combination of two or more. In particular, in order to impart solder reflow durability to the light emitting diode, it is preferable to use at least a thermosetting resin as the sealing resin.
  • thermosetting resin those containing an epoxy resin and / or a silicone resin component are preferable.
  • an epoxy resin is preferably a cyclohexyl type epoxy resin having excellent light resistance.
  • Silicone resins can be selected from those showing rubber elasticity after curing and hard resin types. Further, among silicone resins, it can be selected from an addition polymerization type by an addition reaction between a hydrosilyl group (Si—H) and an unsaturated double bond and a condensation polymerization type by a condensation reaction such as a silanol group or an alkoxyl group. In particular, an addition polymerization type silicone resin that does not generate gas during the reaction is preferable.
  • the main skeleton can be selected from a dimethyl silicone resin mainly composed of methyl groups and a phenylmethyl silicone resin mainly composed of phenyl groups.
  • silicone resins disclosed in JP-A Nos. 2004-186168 and 2007-63538 are preferable.
  • Particularly preferred is an addition polymerization type phenylmethyl silicone resin.
  • the addition polymerization type silicone resin is a silicone resin containing an organopolysiloxane having an alkenyl group (preferably a C2 or C3 alkenyl group, more preferably a vinyl group).
  • an organopolysiloxane having at least two alkenyl groups (preferably a C2 or C3 alkenyl group, more specifically a vinyl group or an allyl group) bonded to a silicon atom, and an addition to the alkenyl group
  • a silicone resin containing an organohydrogenpolysiloxane (component B) having at least two hydrogen atoms bonded to silicon atoms to be polymerized The silicone resin usually further contains an addition reaction catalyst, and may further contain an optional additive.
  • organo group other than the alkenyl group in the component A or component B examples include aromatic groups such as a phenyl group or a naphthyl group, C1-C6 saturated aliphatic groups, and the like.
  • C1-C6 saturated aliphatic group examples include C1-C4 alkyl groups such as methyl group, ethyl group, propyl group and butyl group, and cyclic aliphatic groups such as cyclohexyl group.
  • the organo group has both (1) a C1-C4 alkyl group (more preferably a methyl group) and (2) at least one group selected from the group consisting of phenyl, naphthyl group and cyclohexyl group.
  • a silicone resin containing an organopolysiloxane is preferred, and a silicone resin containing an organopolysiloxane having a phenyl group and a methyl group is more preferred.
  • organopolysiloxane containing functional groups for example, a glycidyl group, an epoxy cyclohexyl group, etc.
  • the alkenyl group may be contained only in the A component, or may be contained in both the A component and the B component. In the present invention, it is preferred that both contain an alkenyl group.
  • the component A has, as an organo group, (1) an alkenyl group, (2) at least one of a phenyl group, a naphthyl group, or a cyclohexyl group, more preferably a phenyl group, and (3) a C1-C4 alkyl group.
  • an organopolysiloxane having a methyl group wherein the B component is an organo group, (1) at least one of a phenyl group, a naphthyl group or a cyclohexyl group, more preferably a phenyl group, and (2) a C1-C4 alkyl.
  • An organohydrogenpolysiloxane having a group (preferably a methyl group), more preferably (1) an alkenyl group, (2) at least one of a phenyl group, a naphthyl group or a cyclohexyl group, more preferably a phenyl group, and (3) C1 Has a C4 alkyl group (preferably a methyl group) More preferably (1) an alkenyl group, (2) a phenyl group, and (3) a silicone resin which is an organohydrogenpolysiloxane having a C1-C4 alkyl group (preferably a methyl group). . More preferred is a phenylmethyl silicone resin in which the alkenyl group is a vinyl group and the C1-C4 alkyl group is a methyl group.
  • the proportion of the above-mentioned organo group can be freely selected.
  • An example of a preferred range of approximate ratios is as follows.
  • the molar ratio of the components (1) to (3) in the organopolysiloxane of component A is, for example, when the alkenyl group of (1) is 1 mol, the phenyl group of (2) is 0.1 to 60 mol, preferably 0.2 to 50 mol, more preferably 0.2 to 40 mol, and the C1-C4 alkyl group in (3) is 0.1 to 60 mol, preferably 0.5 to 50 mol, more preferably Is in the range of 1 to 40 mol.
  • the alkenyl group is 0 to 5 moles, preferably 0 to 3 moles, more preferably 0, when the number of moles of hydrogen atoms bonded to silicon atoms is 1 mole.
  • the phenyl group or the like of (1) is 0.5 to 30 moles, preferably 0.5 to 20 moles, more preferably 1 to 20 moles.
  • it is 1 to 10 moles
  • the C1 to C4 alkyl group in (2) is 0.5 to 30 moles, preferably 0.5 to 20 moles, more preferably 1 to 20 moles, still more preferably 1 to 10 moles. is there.
  • Said addition reaction type silicone resin is described in the said publication
  • the ratio of the organopolysiloxane having an alkenyl group (component A) to the organohydrogenpolysiloxane (component B) is usually 1 mole of alkenyl group bonded to the silicon atom of the component A (if the component B also contains an alkenyl group) , 1 mole of alkenyl groups bonded to silicon atoms of component A and component B), the number of moles of hydrogen atoms bonded to silicon atoms of component B is 0.5 to 5 moles, preferably 0.5 to 4 moles The ratio is more preferably 0.5 to 3 mol.
  • a platinum group catalyst is usually used, and a platinum catalyst is more preferable.
  • platinum black for example, platinum black, secondary platinum chloride, chloroplatinic acid, reaction product of chloroplatinic acid and monohydric alcohol, complex of chloroplatinic acid and olefins, platinum catalyst such as platinum bisacetoacetate, palladium catalyst, rhodium catalyst Platinum group metal catalyst such as
  • the addition amount of the addition reaction catalyst may be a catalytic amount, and it is usually preferable to add about 1 to 500 ppm, particularly about 2 to 100 ppm, based on the total weight of the A and B components as the platinum group metal.
  • the hardness after curing is such that the durometer type A hardness exceeds 70, and the durometer type D hardness is about 20 to 70, more preferably about 30 to 70.
  • the durometer the hardness of a relatively soft object is measured in Type A
  • the hardness of a relatively hard object is measured in Type D.
  • the hardness measured with Type A is 90 or more, it is common to use Type D.
  • the sealing resin whose hardness after curing is too low is used, it becomes difficult to handle as a light emitting diode due to stickiness of the surface of the sealing resin after sealing.
  • the hardness after curing is too high, cracks are likely to occur after sealing or during use, resulting in poor reliability.
  • the sealing resin it is preferable to use a resin having a high refractive index as the sealing resin. If the sealing resin has a high refractive index, the light extraction efficiency from the light-emitting diode is increased. A high light emitting diode can be obtained.
  • the refractive index of the preferable sealing resin is 1.45 or more, more preferably 1.49 or more.
  • the upper limit is usually about 1.6 or less.
  • the silver discoloration preventing agent of the present invention an embodiment may be mentioned in which a sealing resin is used as the diluent and the silver discoloration preventing resin composition is used.
  • the silver discoloration preventing resin composition will be described below.
  • a diluent for the purpose of protecting the silver part from external physical impact or the like, by using a resin used for coating or sealing the silver part (hereinafter simply referred to as sealing resin), It can also be used as a silver discoloration prevention resin composition.
  • the sealing resin examples include the resins described in the section of the sealing resin.
  • the sealing resins described above those containing an epoxy resin and / or a silicone resin component (silicone resin) are preferable.
  • a silicone resin is more preferable from the viewpoint that the effects of the present invention can be particularly exhibited.
  • the silicone resin the silicone resins mentioned as preferable in the section of the sealing resin are preferable. Most preferred is a phenylmethylsilylone resin that cures by addition reaction.
  • the amount added to the sealing resin is 0.05 to 10% of the zinc salt and / or zinc complex of the present invention based on 100 parts by weight (total amount) of the sealing resin, as described in the section of the diluent.
  • the sealing resin may be colored, and the emitted light may be absorbed to reduce the emission intensity (light quantity).
  • the method is not particularly particular.
  • various additives can be blended as necessary within a range not impairing the effects of the present invention.
  • inorganic fillers as reinforcing agents and / or scattering agents, phosphors, antioxidants, light stabilizers, crosslinking aids, mold release agents, UV absorbers, processing aids, colorants and other additives can do.
  • inorganic fillers examples include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like.
  • the present invention is not limited to these. These may be used alone or in combination of two or more.
  • an amount occupying 0.5 wt% to 95 wt% in the resin composition is used.
  • an inorganic filler When an inorganic filler is used for the purpose of scattering, it is preferable to use a material having a particle size of 200 nm or more, and the content is preferably 0.5% by weight to 50% by weight. When light scattering is not intended, it is preferable to use a material having a particle size of 200 nm or less and a content of 0.5 to 30% by weight.
  • the phosphor has a function of forming white light by absorbing a part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light.
  • the optical semiconductor is sealed.
  • fluorescent substance A conventionally well-known fluorescent substance can be used, For example, rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated.
  • phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (SrEu) O.Al 2 O 3 and the like are exemplified.
  • the particle size of the phosphor those having a particle size known in this field are used, and the average particle size is preferably 1 to 250 ⁇ m, particularly preferably 2 to 50 ⁇ m. When these phosphors are used, the addition amount thereof is 1 to 80 parts by weight, preferably 5 to 60 parts by weight with respect to 100 parts by weight of the resin component.
  • antioxidants examples include phenol-based, sulfur-based, and phosphorus-based antioxidants. Antioxidants can be used alone or in combination of two or more. The amount of the antioxidant used is usually 0.008 to 1 part by weight, preferably 0.01 to 0.5 part by weight, based on 100 parts by weight of the resin in the resin composition of the present invention. Examples of the antioxidant include a phenol-based antioxidant, a sulfur-based antioxidant, and a phosphorus-based antioxidant.
  • phenolic antioxidants include 2,6-di-t-butyl-p-cresol, Butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl- ⁇ - (3,5-di-t-butyl-4-hydroxyphenyl) propionate, isooctyl-3- (3,5 -Di-t-butyl-4-hydroxyphenyl) propionate, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5- Monophenols such as triazine, 2,4-bis [(octylthio) methyl] -o-cresol; 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′-methylenebis (4 -Ethyl-6-tert-butylphenol), 4,4'-thiobis (3-methyl-6-tert-
  • sulfur-based antioxidants include dilauryl-3,3′-thiodipropionate, Examples include dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, and the like.
  • phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, diisodecylpentaerythritol phosphite, tris (2,4-di-t- Butylphenyl) phosphite, cyclic neopentanetetrayl bis (octadecyl) phosphite, cyclic neopentanetetrayl bis (2,4-di-t-butylphenyl) phosphite, cyclic neopentanetetrayl bis (2 , 4-di-tert-butyl-4-methylphenyl) phosphite, bis [2-tert-butyl-6-methyl-4- ⁇ 2- (octa
  • HALS hindered amine-based light stabilizer
  • HALS is not particularly limited, but typical examples include dibutylamine, 1,3,5-triazine, N, N′-bis (2,2,6,6-tetramethyl-4- Polycondensate of piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine, dimethyl-1- (2-hydroxyethyl) -4-hydroxy succinate -2,2,6,6-tetramethylpiperidine polycondensate, poly [ ⁇ 6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ ], bis (1,2,2, 6,6-penta
  • the resin composition of this invention is obtained by mixing each component uniformly.
  • the resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method.
  • a platinum catalyst as an addition reaction catalyst
  • the zinc compound is blended together, or the zinc compound is added to one or both of the A component and the B component.
  • component A containing organopolysiloxane and condensation accelerator (for example, organic acid and / or organic metal) and component B containing organopolysiloxane having silanol group and / or alkoxyl group are mixed together, or the zinc compound is blended in advance in either one or both of the A component and the B component, so that the A component and the B component are homogeneously mixed.
  • the obtained mixture can be applied to the target silver surface and heat-cured to be sealed.
  • the concentration of the zinc compound means the concentration relative to the resin component (the total amount of the A component and the B component).
  • the A component, the B component, and the zinc compound are in a set without being mixed until the time of use.
  • the zinc compound is blended in an embodiment in which the encapsulating resin composition of the present invention is mixed, or either one of the component A or the component B, or both, and the component A and
  • An example of forming the sealing resin composition of the present invention is a set in which the B component is not mixed and is mixed at the time of use.
  • the silicone resin used in the sealing resin composition of the present invention can be purchased from Toray Dow Corning Silicone Co., Ltd., Shin-Etsu Chemical Co., Ltd., Momentive Performance Materials, Gelest Co., etc.
  • an epoxy resin an agent A containing an epoxy resin containing an epoxy group, an acid anhydride compound and / or an amine compound and / or a phenol compound, and an agent B containing a curing accelerator if necessary
  • the zinc compound is blended together, or the zinc compound is blended in advance in either one or both of the A component and the B component, and the A component and the B component are uniformly mixed. After mixing, the obtained mixture can be applied to the target silver surface and heat-cured to be sealed.
  • the epoxy resin used in the sealing resin composition of the present invention can be obtained from Japan Epoxy Resin Co., Ltd., Nippon Kayaku Co., Ltd., Daicel Chemical Industries, Ltd., Shin Nippon Chemical Co., Ltd., Shikoku Kasei Kogyo Co., Ltd., etc. is there.
  • a curing method it can be hardened at a high temperature at a stretch, but it is preferable to raise the temperature stepwise to advance the curing reaction. Specifically, initial curing is performed at 80 to 150 ° C., and post-curing is performed at 100 to 200 ° C. As the curing stage, the temperature is preferably increased in 2 to 8 stages, more preferably 2 to 4 stages. *
  • a silver discoloration inhibitor containing at least one of a zinc salt or a zinc complex as an active ingredient is listed below.
  • the zinc salt is an aliphatic carboxylic acid zinc salt having 6 to 20 carbon atoms or a zinc phosphate C6 to C20 alkyl ester, and the zinc complex is a zinc complex with a carbonyl compound.
  • Silver discoloration inhibitor is a silver discoloration inhibitor.
  • III The silver discoloration inhibitor as described in (II) above, wherein the zinc complex with the carbonyl compound is zinc acetylacetonate.
  • a zinc salt of an aliphatic carboxylic acid having 6 to 20 carbon atoms is zinc 2-ethylhexylate, zinc neodecanoate, zinc laurate, zinc ricinoleate, zinc stearate, zinc undecylenate, and zinc naphthenate
  • thermosetting resin The silver discoloration inhibitor according to the above (VI) or (VII), wherein the diluent is a thermosetting resin.
  • XIII The silver discoloration inhibitor as described in (XII) above, containing 0.1 to 2 parts by weight of zinc salt or zinc complex with respect to 100 parts by weight of thermosetting resin.
  • XIV The silver discoloration prevention agent according to the above (XII) or (XIII), which is a thermosetting resin that becomes a cured product having a hardness exceeding 70 in the hardness measured by durometer type A of JIS K 7215 after curing.
  • thermosetting resin that becomes a cured product having a hardness measured by durometer type D of JIS K 7215 after curing.
  • Silver discoloration prevention agent of description (XVI) The silver discoloration inhibitor according to any one of (XII) to (XV) above, wherein the thermosetting resin is an addition reaction type silicone resin.
  • the silicone resin is a thermosetting silicone resin containing an organopolysiloxane having a C2 or C3 alkenyl group (component A) and an organohydrogenpolysiloxane (component B) Agent.
  • An organo group other than an alkenyl group in the organopolysiloxane of component A and the organohydrogenpolysiloxane of component B is at least one group selected from the group consisting of a phenyl group, a naphthyl group, and a cyclohexyl group;
  • (XXI) The silver discoloration preventing agent according to any one of (XVII) to (XX) above, wherein the alkenyl group is a vinyl group.
  • (XXII) The silver discoloration preventing agent according to any one of (I) to (XXI), which is for a light emitting diode.
  • (XXIII) Use of a zinc salt or a zinc complex for producing the silver discoloration preventing agent according to any one of (I) to (XXI) above.
  • (XXIV) Use of the zinc salt or zinc complex according to (XXIII) above, which is a silver discoloration inhibitor for light emitting diodes.
  • (XXV) Silver that applies the silver discoloration inhibitor according to any one of (I) to (XXII) above to a silver surface to form a coating film containing a zinc salt or a zinc complex, and is dried or hardened. Discoloration prevention method.
  • (XXVI) A light-emitting diode having either a dry film or a cured film of the silver discoloration inhibitor described in (XXII) above on a silver surface.
  • (XXVII) The light-emitting diode according to the above (XXVI), which has a dry film or a cured film of the silver discoloration inhibitor on the surface of silver and is further sealed with a sealing resin.
  • (XXVIII) A light-emitting diode in which the silver portion of the light-emitting diode is directly sealed with the silver discoloration preventing agent according to any one of (XII) to (XXI).
  • (XXIX) The silver discoloration prevention agent according to any one of the above (XII) to (XXII), wherein the refractive index of the cured product after curing of the thermosetting resin is 1.45 to 1.6.
  • 0.015 g (0.0000015 g as the amount of active ingredient) of the solution was added dropwise, and the resulting light emitting diode package was left in a dryer at 80 ° C. for 1 hour to apply a dry film of the silver discoloration inhibitor of the present invention on the silver plating surface.
  • An SMD type light emitting diode having the above was produced.
  • phenylmethylsilicone resin resin (durometer type D hardness 40 after curing) is poured into the SMD light emitting diode, and then the resin is heated and cured at 150 ° C. for 1 hour to dry the silver discoloration inhibitor.
  • a light emitting diode having a sealing resin sealed on top was prepared.
  • light emitting diodes were similarly prepared using the solutions of Example 2 and Example 3.
  • the phenylmethylsilicone resin used for sealing was obtained by mixing the following liquid A and liquid B at a weight ratio of 1: 4.
  • Liquid A Organopolysiloxane B containing platinum catalyst in a catalytic amount (0.1% or less), and having phenyl group: methyl group: vinyl group in molar conversion 10: 12: 1 as an organo group:
  • Liquid B Organo group , Phenyl group, methyl group, vinyl group-containing organohydrogenpolysiloxane, in terms of mole, the hydrogen atom content ratio in the phenyl group: methyl group: vinyl group: hydrosilyl group is 5.4: 5.3: 1: Organohydrogenpolysiloxane 1.2
  • Airtight container 2 L of glass airtight container test sulfide solution: 25 ml of 25% ammonium sulfide aqueous solution (A glass bottle with an opening ⁇ 2 cm was used for the test)
  • Appearance observation Initial (pre-exposure) 1 hour, 6 hours, and 10 hours standing, the 40-fold actual microscope was used to observe the discoloration of the silver plating part under the sealant.
  • Illuminance test (light quantity check): At the time of the appearance observation, a current of 20 mA was applied, the light quantity was converted into current with a Si photodiode photodetector, and the change in the light quantity was observed with the current intensity. The illuminance retention rate indicates a change in light quantity with respect to the initial stage.
  • Example 4 to 12 Comparative Examples 1 and 2
  • silver discoloration inhibitor solutions of Examples 4 to 12 having the compositions shown in Table 2 were prepared, and the silver discoloration inhibitor solution of the silver discoloration inhibitor was used in the same manner as in Example 1.
  • a light emitting diode with the top sealed with a sealing resin was prepared.
  • the result of the sulfuration test is shown in Table 2 together with the composition of the silver discoloration inhibitor used.
  • the test results for Comparative Examples 1 and 2 that do not use the silver discoloration inhibitor of the present invention are also shown in Table 2.
  • the addition reaction type phenylmethyl silicone resin (hardness of durometer type D after curing 60) used for sealing in Examples 7 to 12 is a mixture of the following liquid A and liquid B at a weight ratio of 1:20. I got it.
  • Liquid A Organopolysiloxane B, which contains a platinum catalyst in a catalytic amount (0.1% or less), and has phenyl groups: methyl groups: vinyl groups in a molar conversion of 0.4: 1: 1 as organo groups: Organo An organohydrogenpolysiloxane having a phenyl group, a methyl group, or a vinyl group as a group, and the content ratio of hydrogen atoms in the phenyl group: methyl group: vinyl group: hydrosilyl group (H—Si) in a molar conversion is 2: 2.
  • the encapsulated light-emitting diode having a dry film of the silver discoloration inhibitor (Examples 1 to 12) of the present invention is silver, compared with Comparative Examples 1 and 2, which do not have a dry film of the silver discoloration inhibitor. It has been confirmed that the discoloration of the plating lead frame can be remarkably suppressed, and further, a decrease in illuminance (light quantity) important as a light emitting diode is not observed.
  • Examples 13 and 14 Next, as Examples 13 and 14, a silver discoloration prevention resin composition (one embodiment of the silver discoloration prevention agent of the present invention) containing a zinc compound (zinc salt and / or zinc complex) and a sealing resin was prepared. Then, the light emitting diode was sealed using this, and the silver discoloration prevention effect was examined.
  • Preparation of silver discoloration prevention resin composition As shown in Table 3, a concentration of 18% octope zinc was added in advance to 100 g of an addition reaction type phenylmethylsilicone resin having a durometer type D hardness of 40 after curing as used in Example 1, and mixed. Thus, a silver discoloration prevention resin composition was prepared as a sealing material. The addition concentration is an addition ratio with respect to the silicone resin.
  • SMD surface Mounted Devices
  • 0.015 g of 13 silver discoloration prevention resin composition was dropped and left in a dryer at 150 ° C. for 1 hour to prepare a light-emitting diode in which phenylmethylsilicone resin was thermally cured and covered with a silver-plated portion.
  • Example 14 a light emitting diode in which a silver plating portion was covered with a cured product of the silver discoloration prevention resin composition obtained in Example 14 was prepared.
  • a sulfidation test was conducted in the same manner as in Example 1, and the results are shown in Table 4 together with the composition of the silver discoloration inhibitor used. Indicated. Examples 13 to 14 and Comparative Examples 3 and 4 are shown together in Table 4.
  • Examples 15 to 20, Comparative Examples 3 and 4 In the same manner as in Example 13, the silver discoloration prevention resin compositions of Examples 15 to 20 were prepared according to the formulation shown in Table 4. Using each of these silver discoloration prevention resin compositions, a light emitting diode having a silver part coated with a cured product of each silver discoloration prevention resin composition was prepared in the same manner as in Example 13. In order to confirm the durability against discoloration of the silver-plated portion of the light-emitting diode obtained above, a sulfidation test was conducted in the same manner as in Example 1, and the results are shown in Table 4 together with the composition of the silver discoloration inhibitor used. Indicated. Table 4 also shows the results of Comparative Examples 3 and 4 using the same resin composition as that of the example of the present invention except that the silver discoloration inhibitor of the present invention is not included.
  • the silver discoloration prevention resin compositions of the present invention (Examples 13 to 20) were found to be Comparative Example 3, Compared to 4, it was confirmed that the discoloration of the silver-plated lead frame was suppressed, and no decrease in illuminance (light quantity) important as a light-emitting diode was observed.
  • Octope RTM 18% zinc zinc 2-ethylhexylate (active ingredient 100%) (manufactured by Hope Pharmaceutical Co., Ltd.).
  • Zinc phosphoric acid 2-ethylhexane ester compound propylene glycol solution containing zinc salt and / or zinc salt of 2-ethylhexane ester of phosphoric acid as zinc complex (phosphoric acid: monoester body: diester body: triester body 3.5 : 68.2: 26.5: 1.8
  • Addition-type heat-curing type phenylmethylsilicone resin having a durometer type D hardness of 40 The same silicone resin as used in Example 1 having a hardness of 40 after curing by heat-curing was used.
  • Additive heat-curing type phenylmethylsilicone resin with durometer type D hardness of 60 the same silicone resin having a post-curing hardness of 60 by heat curing as used in Example 7 was used.
  • Type D hardness Measured with a durometer type D conforming to JIS K 7215 “Plastic Durometer Hardness Test Method”.
  • Refractive index prism coupler type refractive index measuring device, wavelength used: 633 nm (made by Metricon, model 2010 type).
  • Example 13 an addition reaction type phenylmethylsilicone resin was added reaction type phenylmethylsilicone resin (abbreviated as adPMSi resin) having a hardness measured by durometer type D after curing of 30 (hardness 78 measured by durometer type A).
  • the silver discoloration prevention resin composition of the present invention was prepared at the concentrations shown in Table 5 (concentration of zinc 2-ethylhexylate relative to the silicone resin) in the same manner as in Example 13 except that Thus, the silver discoloration prevention resin compositions of Examples 21 and 22 were obtained.
  • Example 21 the light emitting diode which coat
  • a sulfurization test was conducted in the same manner as in Example 1. The results are shown in Table 5 together with the results of Comparative Example 5 using the same resin composition as Example 21 except that the composition of the silver discoloration inhibitor used and the zinc 2-ethylhexylate were not blended.
  • the phenylmethylsilicone resin used for sealing was obtained by mixing the following liquid A and liquid B at a weight ratio of 1: 3.
  • Liquid A Organopolysiloxane B containing platinum catalyst in a catalytic amount (0.1% or less), and having phenyl groups: methyl groups: vinyl groups in molar conversion 28: 31: 1 as organo groups:
  • Liquid B Organo groups , Phenyl group, methyl group, vinyl group-containing organohydrogenpolysiloxane, in terms of mole, the hydrogen atom content ratio in the phenyl group: methyl group: vinyl group: hydrosilyl group is 5.2: 5.2: 1: Organohydrogenpolysiloxane 1.2
  • Example 23 In Example 21, except that zinc 2-ethylhexylate (octo 18% zinc) was changed to zinc stearate, the concentration of zinc stearate was 0.5% with respect to the silicone resin.
  • the silver discoloration prevention resin composition of the present invention was prepared, and in the same manner as in Example 13, a light emitting diode having a silver plated portion covered with a cured product of the silver discoloration prevention resin composition was prepared. .
  • a sulfurization test was conducted in the same manner as in Example 1. The results are shown in Table 6 together with the results of Comparative Example 6 using the same resin composition as Example 23 except that the composition of the silver discoloration inhibitor used and the zinc 2-ethylhexylate were not blended.
  • LED Lighting Test For Examples 1 to 12, light emitting diodes manufactured in the same manner as in Examples 1 to 12 were used for LED lighting tests.
  • LED packages for LED lighting tests using the silver discoloration preventing resin compositions of Examples 13 to 20 were prepared as follows.
  • the silver discoloration prevention resin composition obtained in Examples 13 to 20 was filled into a syringe and cast into a surface mount LED package having an outer diameter of 5 mm square mounted with a chip having a central emission wave of 465 nm using a precision discharge device. .
  • the cast was put into a heating furnace and cured at 150 ° C. for 1 hour to produce an LED package.
  • the silver discoloration prevention resin composition of the present invention is changed to the epoxy resin, and curing is performed at 120 ° C. for 1 hour and further at 150 ° C. for 3 hours.
  • the epoxy resin contains 100 parts of ERL-4221 manufactured by Dow Corning, 110 parts of MH-700G manufactured by Shin Nippon Rika Co., Ltd. as a curing agent, and 0.1 part of trimethylcetylammonium hydroxide as a curing accelerator.
  • the epoxy resin composition obtained in this way was used.
  • the LED was turned on and the illuminance retention after 200 hours was measured.
  • the LED lighting conditions were as follows.
  • LED lighting conditions LED chip Center emission wavelength, 465nm LED lighting conditions: Lighted at constant current mode, 60 mA.
  • the evaluation criteria are as follows when the illuminance retention is 80% or more: ⁇ , 70-80%: ⁇ , 70% or less: x. In addition, it was set as x also when the LED chip surface was colored. Examples 1 to 20: ⁇ (both illuminance retention rate of 95% or more) Reference Example 1: X (illuminance retention: 58%, further brown coloration was observed on the LED chip) As described above, the epoxy resin mentioned as a reference example has a silver discoloration prevention function, but its durability as an LED is poor.
  • silver plating can be protected even in a harsh environment where sulfur-based gas is directly exposed, and the durability of the light-emitting diode can be significantly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 本発明は亜鉛塩及び/又は亜鉛錯体、好ましくは炭素数が3~20のカルボン酸亜鉛塩、燐酸亜鉛塩、燐酸エステル亜鉛塩、及びカルボニル化合物亜鉛錯体からなる群から選択される少なくとも一種を有効成分とする銀変色防止剤、該銀変色防止剤を銀部に適用し銀部の変色を防止する銀変色防止方法等に関する。本発明によれば銀メッキ部等の銀部の硫黄系ガスによる変色を防止することができる。本発明は特に発光ダイオード用銀変色防止剤として有用であり、発光ダイオードの銀メッキ部等の銀部に本発明の銀変色防止剤を適用して、銀部を被覆することにより発光ダイオードの銀部の変色を防止し、照度の低下を防ぐことができる。

Description

銀変色防止剤、銀変色防止樹脂組成物、銀変色防止方法、及びこれを使用した発光ダイオード
 本発明は銀もしくは銀メッキ部の変色防止剤、特に、発光ダイオードで使用される銀もしくは銀メッキ部の変色防止剤、変色防止樹脂組成物、変色防止方法、及びこれを使用した発光ダイオードに関する。
 有機亜鉛化合物の中で代表的な物として、脂肪酸亜鉛化合物(例えばステアリン酸亜鉛)などの金属石鹸と呼ばれる化合物は、その滑性特性を活かして合成樹脂、錠剤成型時の滑剤や離型剤としての用途が知られている。また、芳香族カルボン酸亜鉛化合物として、例えば安息香酸亜鉛は、化合物自体の特性である抗菌剤としての用途(特許文献1)が知られている。脂肪酸亜鉛化合物及び芳香族カルボン酸亜鉛化合物に共通した用途として、塩化ビニル樹脂フィルムなどへの安定剤(特許文献2)や縮合型シリコーン樹脂などの縮合触媒、縮合促進剤(特許文献3)などが知られている。また近年では、付加反応型シリコーンゴム上部にブリードアウトさせ硬度の低いシリコーンゴム表面のベタツキを軽減させるゴム改質用途(特許文献4)なども知られている。しかし、これら有機亜鉛化合物自体が、銀の変色防止効果、特に発光ダイオードで使用される銀メッキ部の変色防止効果を有することはまだ知られていない。
 発光ダイオードでは、ダイオードチップへ電流を供給するためにリードフレームがチップ近傍または真下に配置される場合が多い。このためチップから発した光を有効に利用するためにリードフレーム自体にも反射率の高い金属を用いるか又はメッキすることが要求される。中でも銀は可視光線の反射率が高いことから、発光ダイオード用リードフレームのメッキ素材として使用される例が多い。
 しかし、銀は一般的に変質しやすい素材であり、特に硫黄元素とは反応性が高く、硫化銀となって黒色へ変質することが知られている。そのため、銀を変色させる硫黄系ガスなどからリードフレームを保護する目的で、エポキシ樹脂などで封止して使用されるのが一般的であった。実際にエポキシ樹脂で封止された発光ダイオードは銀の変質を抑えることが可能であり、市場で問題になることはなかった。 
 近年発光ダイオードも460nm近傍の短波長の光を発光する製品が開発され、さらに高輝度化が進んだために発光時に熱も多く発生するようになった。従来のエポキシ樹脂を使用した封止材では短波長の光と熱の影響で封止樹脂自体が着色し使用出来ないことが判明してきた。そのため、最近では、耐光と耐熱に強いシリコーン樹脂(軟らかいゴムタイプや硬質のレジンタイプがある)を封止材として採用することが多くなってきている。しかし、シリコーン樹脂は、エポキシ樹脂に比べガス透過性が非常に高く、前記した銀を変色させる硫黄系ガスを簡単に透過させる。該透過ガスは、封止内部の銀メッキ部などを変色させるため、銀メッキ部の反射率が低下する。その結果として、照度が低下する。そのため、銀メッキフレームへのシリコーン樹脂封止の問題点として、この点での耐久性低下が指摘されている。市場では銀の変色を避け、信頼性を確保するために化学的に安定した金メッキへと移行せざるを得ない状況にある。しかし金の価格は銀のそれに比べ高く高価であり経済性という面では不利であり、さらに何よりも金メッキに変更することで光の反射率が大きく低下(最大数十%とも言われている)するという重要な課題を抱えている。封止材としてシリコーン樹脂を用いた際にも、銀の変色を防止し、その反射率の耐久性を確保できる技術が望まれている。
特許第2772445号 特許第3385578号 特開2008-274272 特開2010-43136
 本発明の目的は、銀メッキ等の銀の表面、特に、発光ダイオードで使用されている銀メッキ部の硫黄系ガスによる変色防止効果を発揮し維持できる銀変色防止剤、変色防止樹脂組成物及び変色防止方法を提供することにある。
 本発明者らは前記したような実状に鑑み、鋭意検討した結果、亜鉛化合物、特に亜鉛塩又は亜鉛錯体が銀の変色を防止するのに有効であることを見いだし、本発明を完成させるに至った。
すなわち本発明は、次の(1)~(25)に関する。
(1)
 亜鉛塩又は亜鉛錯体の少なくとも何れか一方を有効成分として含む銀変色防止剤を製造するための亜鉛塩又は亜鉛錯体の使用。
(2) 銀変色防止剤が発光ダイオード用銀変色防止剤である(1)に記載の使用。
(3) 銀変色防止剤が炭素数が3~20のカルボン酸化合物亜鉛塩、燐酸亜鉛塩、燐酸エステル亜鉛塩及びカルボニル化合物亜鉛錯体からなる群から選択される少なくとも一種を有効成分として含む銀変色防止剤である(1)または(2)に記載の使用。
(4) 銀変色防止剤が炭素数が3~20の脂肪族カルボン酸亜鉛塩を有効成分として含む銀変色防止剤である(1)~(3)の何れか一項に記載の使用。
(5) 該脂肪族カルボン酸亜鉛塩が飽和又は不飽和脂肪酸亜鉛塩である(4)に記載の使用。
(6) 該脂肪族カルボン酸亜鉛塩が、2-エチルへキシル酸亜鉛、ネオデカン酸亜鉛、ラウリン酸亜鉛、リシノール酸亜鉛、ステアリン酸亜鉛、ウンデシレン酸亜鉛、及びナフテン酸亜鉛からなる群から選択される少なくとも一種である(5)に記載の使用。
(7) 該脂肪族カルボン酸亜鉛塩が、少なくともシクロペンタン骨格又はシクロヘキサン骨格の何れか一方を有する脂環カルボン酸の亜鉛塩である(4)または(5)に記載の使用。
(8) 有効成分として、燐酸エステル及び/又は燐酸の亜鉛塩を含む銀変色防止剤である(1)~(7)の何れか一項に記載の使用。
(9) 有効成分として、亜鉛アセチルアセトナート錯体を含む銀変色防止剤である(1)~(8)の何れか一項に記載の使用。
(10) 銀変色防止剤が、更に溶媒を含み、かつ、該溶媒中に0.005~1重量%の亜鉛塩又は亜鉛錯体の少なくとも何れか一方を有効成分として含む銀変色防止剤である(1)~(9)の何れか一項に記載の使用。
(11) 亜鉛塩又は亜鉛錯体の少なくとも何れか一方及び封止樹脂を含有し、該樹脂100重量部に対して該亜鉛塩又は亜鉛錯体の少なくとも何れか一方を0.05~10重量部含有する発光ダイオード用銀変色防止樹脂組成物。
(12) 樹脂組成物の硬化物の硬度としてJIS K 7215 のデュロメータ タイプAで測定した硬さが70を越える(11)に記載の銀変色防止樹脂組成物。
(13) 樹脂組成物の硬化物の屈折率が1.45を越える(11)または(12)に記載の銀変色防止樹脂組成物。
(14) 封止樹脂がシリコーン骨格を含む封止樹脂である(11)~(13)の何れか一項に記載の銀変色防止樹脂組成物。
(15) 銀の表面に、(1)~(10)のいずれか一項に記載の銀変色防止剤を適用する銀変色防止方法。
(16) 銀の表面が発光ダイオードの銀の表面である(15)に記載の銀変色防止方法。
(17) 上記(1)に記載の銀変色防止剤が、更に溶媒を含み、かつ、該溶媒中に0.005~1重量%の亜鉛塩又は亜鉛錯体の少なくとも何れか一方を有効成分として含む銀変色防止剤である(15)または(16)に記載の銀変色防止方法。
(18) (11)~(14)の何れか一項に記載の銀変色防止樹脂組成物を、発光ダイオードの銀の表面に適用する銀変色防止方法。
(19) 銀の表面に、亜鉛塩又は亜鉛錯体の少なくとも何れか一方を含む銀変色防止剤の乾燥皮膜又は硬化物被膜を有する発光ダイオード。
(20) 銀変色防止剤の乾燥皮膜又は硬化物被膜上を封止樹脂で封止した上記(19)に記載の発光ダイオード。
(21) (11)~(14)の何れか一項に記載の銀変色防止樹脂組成物で、銀の表面を封止した発光ダイオード。
(22)  封止樹脂が、付加反応により硬化し、かつ、硬化後、JIS K 7215 のデュロメータ タイプAで測定した硬度が、70を越える硬化物を形成するシリコーン樹脂である(19)または(20)に記載の発光ダイオード。
(23)  亜鉛塩又は亜鉛錯体の少なくとも何れか一方を有効成分として含み、該有効成分を希釈剤100重量部に対して、0.005~1重量部の割合で含む銀変色防止剤。
(24)  希釈剤が有機溶媒である(23)に記載の銀変色防止剤。
(25) 希釈剤がシリコーン樹脂である(23)に記載の銀変色防止剤。
 本発明による銀変色防止剤で、銀を使用した製品の銀部を被覆した場合、銀部の硫化水素等での変色を長期にわたり防止することができる。例えば、銀メッキ部を有する発光ダイオード等の銀部の表面を本発明による銀変色防止剤で被覆した場合、具体的には該銀変色防止剤の乾燥被膜又は樹脂硬化物で被覆した該発光ダイオードは硫化水素の存在下での過酷試験においても長期に銀部の変色はみられず、発光ダイオードの照度低下を防止することができる。また、本発明の銀変色防止樹脂組成物で封止した発光ダイオードも同様な効果を達成することができる。従って、本発明によれば、硫化水素等の銀を変色させるガスを透過させるシリコーン樹脂を封止樹脂として使用しても、照度低下がなく耐久性に優れる発光ダイオードを得ることができるという利点を有する。
 本発明においては、銀の変色防止剤の有効成分として、亜鉛塩及び/又は亜鉛錯体を用いることを特徴とする。本発明は銀を使用した製品の銀部の変色防止に有用であり、特に、発光ダイオードにおける反射用の銀メッキ部の変色防止に有用である。本発明において、該銀の変色を防止するメカニズムは明らかでないが、亜鉛塩又は亜鉛錯体が、銀を変色させる化合物、例えば硫化水素などと反応し、又は物理的に吸着する等して硫化ガスが銀部に到着するのを阻害することにより、銀の変色を防止するものと考えられる。
 本発明における銀変色防止剤の有効成分としては、亜鉛塩及び/又は亜鉛錯体(以下場合により、該亜鉛化合物とも言う)を何れも使用しうる。亜鉛塩及び/又は亜鉛錯体としては、亜鉛イオン又は亜鉛原子を中心元素とした、有機酸又はリン酸化合物との塩及び/又は有機化合物との錯体であって、カウンターイオンまたは配位子として、カルボン酸化合物、燐酸エステル、燐酸、およびカルボニル化合物からなる群から選択される少なくとも一種または該化合物のイオンを有する化合物が好ましい。
 上記のカルボン酸化合物としては、例えば、炭素数が3~20のカルボン酸化合物を挙げることができる。該炭素数が3~20のカルボン酸化合物としては、脂肪族カルボン酸を挙げることができる。より具体的には、炭素数が3~20の飽和脂肪酸、炭素数が3~20の不飽和脂肪酸、および炭素数5~9の脂環カルボン酸等の炭素数が3~20の脂肪族カルボン酸を挙げることができる。なかでも樹脂への相溶性を考慮すると、好ましくは炭素数が6~20、より好ましくは6~18のカルボン酸化合物である。また場合により7~17のカルボン酸化合物も好ましい。該カルボン酸化合物としては、通常脂肪族カルボン酸が好ましい。上記の炭素数3~20の脂肪族カルボン酸としては鎖状又は環状何れでも良い。炭素数が6~20、より好ましくは6~18の脂肪族カルボン酸がより好ましい。該鎖状脂肪族カルボン酸における炭素鎖は直鎖であっても分岐していてもよい。また、通常飽和脂肪族カルボン酸が好ましい。
 好ましい、カルボン酸化合物の亜鉛塩としては、上記のカルボン酸化合物の亜鉛塩を挙げることができる。より具体的には、炭素数が3~20の脂肪族カルボン酸の亜鉛塩が好ましく、炭素数が6~20の脂脂肪族カルボン酸の亜鉛塩がより好ましく、炭素数が6~18の肪族カルボン酸の亜鉛塩が更に好ましい。
 炭素数が6~20の飽和脂肪族カルボン酸の亜鉛塩としては、具体的に、2-エチルへキシル酸亜鉛(オクチル酸亜鉛)、ネオデカン酸亜鉛、ラウリン酸亜鉛、リシノール酸亜鉛、ステアリン酸亜鉛、ウンデシレン酸亜鉛、ナフテン酸(主成分シクロペンタン及びシクロヘキサンのカルボン酸)亜鉛などを挙げることができ、これらは樹脂への相溶性の観点から好ましい。より好ましくは、2-エチルへキシル酸亜鉛(オクチル酸亜鉛)、ウンデシレン酸亜鉛、ナフテン酸亜鉛またはステアリン酸亜鉛であり、2-エチルへキシル酸亜鉛またはステアリン酸亜鉛は更に好ましく、2-エチルへキシル酸亜鉛が最も好ましい。
 脂環カルボン酸亜鉛塩としては、炭素数5~9の脂環カルボン酸亜鉛塩を挙げることができ、例えばシクロペンタンカルボン酸、又は、シクロヘキサンカルボン酸などのシクロペンタン及び/又はシクロヘキサン骨格を有する脂環カルボン酸の亜鉛塩が挙げられ、具体的にはナフテン酸亜鉛を挙げることが出来る。
 本発明において最も好ましい亜鉛塩の一つは、2-エチルへキシル酸亜鉛である。
 燐酸エステルとしては、モノアルキルエステル、ジアルキルエステル、トリアルキルエステルが挙げられ、前記においてアルキル基としては、メチル基、イソプロピル基、ブチル基、2-エチルヘキシル基、オクチル基、イソデシル基、イソステアリル基、デカニル基、セチル基などのC1~C20アルキル基が挙げられ、C6~C20アルキル基が好ましい。なかでも2-エチルヘキシル基のタイプは液状であり作業性を考慮するとより好ましい。
 本発明におけるカルボニル化合物としては、上記の亜鉛塩を形成する脂肪族カルボン酸化合物以外の、亜鉛と錯体を形成するカルボニル基含有化合物であり、例えばアセチルアセトンなどを挙げることができる。該錯体としては、2,4ペンタジオンを配位子とした、亜鉛アセチルアセトナートが好ましい。
 その他の亜鉛塩及び/又は亜鉛錯体としては、安息香酸亜鉛、p-tert-ブチル安息香酸亜鉛、フェノールスルホン酸亜鉛、亜鉛(II)=ジオクタノアート、ジエチル亜鉛、シアン化亜鉛、ホウ酸亜鉛、亜鉛(II)=ジドデカノアート、フタル酸亜鉛 、炭酸亜鉛、グルコン酸亜鉛、メタクリル酸亜鉛、8-ヒドロキシキノリン亜鉛錯塩、アミノ酢酸亜鉛(例えばグリシン亜鉛キレート化合物)、アルキル(C4~12)安息香酸亜鉛、ブロム酢酸亜鉛 などが挙げられる。
 これら亜鉛化合物は液体から固形のものまで使用が可能であり、1種もしくは2種以上のものを混合しても銀への変色効果を発揮することができる。
 好ましい亜鉛塩及び/又は亜鉛錯体としては、炭素数が6~20の脂肪族カルボン酸の亜鉛塩、リン酸C6~C20アルキルエステルの亜鉛塩又はカルボニル化合物との亜鉛錯体を挙げることができる。カルボニル化合物との亜鉛錯体としては亜鉛アセチルアセトナートが好ましい。
 本発明の銀変色防止剤は、亜鉛塩及び/又は亜鉛錯体を有効成分とするものであれば、該有効成分だけでも、また、該有効成分と希釈剤(例えば溶媒や樹脂等)との混合物であってもよい。通常使用上の便宜などの点から、該有効成分と希釈剤を含む組成物として使用される。該希釈剤を含む銀変色防止剤の場合、有効性成分濃度は特に限定されない。通常、使用の便宜上、そのまま使用出来る濃度が好ましい。そのまま使用出来る濃度としては、希釈剤100重量部に対して、有効成分が0.005重量部以上が好ましく、通常0.005~10重量部程度、好ましくは0.005~1重量部程度の割合である。
 上記の希釈剤としては、有機溶媒又は銀の表面を被覆できる樹脂であれば何れも使用することが出来る。該樹脂としては、発光ダイオード等に使用する場合は、硬化性樹脂が好ましい。硬化性樹脂としては、銀の表面を被覆した後、硬化する樹脂であれば何れも使用することが出来る。通常発光ダイオードの封止に使用出来る樹脂(封止樹脂)が好ましい。
 本発明の銀変色防止剤は、亜鉛塩及び/又は亜鉛錯体を銀の表面に存在させることでその効果をより有効に発揮することができる。本発明の銀変色防止剤によって変色防止効果が得られる銀としては、硫黄元素により変質を受ける銀であれば、純粋な銀であっても、銀メッキや銀合金の形態であってもよい。
 亜鉛塩及び/又は亜鉛錯体は銀の表面全体に存在させることが好ましい。通常、該亜鉛塩及び/又は亜鉛錯体を銀の表面に覆うように膜状等で存在させることが好ましい。なお、本発明の有効成分化合物を溶媒に溶解して使用した場合、乾燥した後には有効成分のみが存在することとなり、その場合必ずしも有効成分が膜状となっているか疑問もあるが、本発明においてはそのような場合も便宜上膜状に含めることとする。
 また、発光ダイオード等の場合は、該亜鉛塩及び/又は亜鉛錯体を含む封止樹脂で、銀の表面を封止することにより、亜鉛塩及び/又は亜鉛錯体を銀の表面を覆うことも出来る。
 本発明の銀変色防止剤の好ましい態様としては、有効成分として亜鉛塩又は亜鉛錯体の何れか一方若しくは両者及び希釈剤を含み、希釈剤100重量部に対して、該有効成分を0.005~10重量部、好ましくは0.005~3重量部、より好ましくは0.005~2重量部、更に好ましくは0.005~1重量部の割合で含有する態様を挙げること出来る。
 また、上記において、更に好ましい態様の一つとして、希釈剤が該有効成分を溶解する有機溶媒であり、該銀変色防止剤が常温液状の組成物である態様、又は、希釈剤が樹脂(必要に応じて、更に、樹脂及び該有効成分を溶解する有機溶媒等を含んでももよい)であり、該銀変色防止剤が樹脂組成物、好ましく常温で液状の樹脂組成物である態様を挙げることが出来る。
 本発明の銀変色防止剤での処理は、以下のようにして行うことができる。
 即ち、有効成分である該亜鉛塩及び/又は亜鉛錯体又は本発明の銀変色防止剤を、必要に応じて、適当な溶媒等の希釈剤で、希釈し(好ましくは溶解し)、適当な処理濃度の溶液とした後、目的の銀の表面に、該有効成分又は銀変色防止剤が銀の表面を被覆するように、適用することにより行うことができる。目的の銀の表面としては、銀メッキ部、チップ又は各種成型品の銀が使用されている個所の表面等を挙げることが出来る。適用する方法としては、目的の銀の表面を被覆することができれば何れの方法であっても支障は無い。例えば、スプレーやディスペンサ等を用いて噴霧、塗布又は滴下する等の方法、または、該銀変色防止剤を含む処理液中に、変色を防止する目的物を浸漬する方法、または、亜鉛塩及び/又は亜鉛錯体を含む樹脂組成物で銀の表面を封止する等の方法等を挙げることができる。なお、銀は純銀であっても、銀を含む合金等であっても、何れに対しても本発明の銀変色防止剤を適用することができる。 
 有効成分である該亜鉛塩及び/又は亜鉛錯体を溶解するための溶媒、又は本発明の銀変色防止剤の希釈剤として用いる溶媒としては、有機溶媒及び水を挙げることができ、該有効成分を溶解する有機溶媒が好ましい。有機溶媒として、例えば、メタノール、エタノール、イソプロパノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノンなどのケトン類、トルエン、キシレン、ヘキサン、シクロヘキサン、シクロペンタン等の炭化水素溶媒、クロロメタン、ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素溶媒、酢酸メチル、酢酸エチル等のエステル類、ジエチルエーテル、テトラヒドロフラン等のエーテル類、N,N-ジメチルホルムアミド等のアミド類等の通常使用し得る有機溶媒が挙げられ、これら溶媒の2種以上を併用してもよい。溶解性、処理のし易さ、環境問題などから、一般的にはケトン溶媒が好ましい。また、希釈剤として、液状の付加反応により硬化するシリコーン樹脂も好ましい。
 溶媒中の亜鉛塩及び/又は亜鉛錯体の使用濃度は適宜設定できる。通常、溶媒の総量に対する濃度で、0.005重量%以上、好ましくは0.005重量%~1重量%、更に好ましくは0.005~0.5重量%、最も好ましくは0.01重量%~0.5重量%とすればよい。
 あまり低濃度で処理した場合では長期にわたる銀への変色防止効果があまり期待できない。またあまり高濃度で処理した場合では、硫黄系ガスと接触した場合に着色しやすくなり、逆効果である。処理温度は適宜決定できる。例えば、銀表面に常温で適用した後、必要に応じて、乾燥したり、又は、樹脂を硬化することができる。具体的には、例えば、希釈剤として有機溶媒を使用した場合には、本発明の銀変色防止剤を銀表面に適用した後、通常は室温~200℃、好ましくは50℃から150℃、より好ましくは50℃から120℃以下で適宜乾燥すればよい。乾燥温度が低過ぎると有機溶媒が残存する可能性があり、後の工程で不都合を生じるおそれがある。例えば、発光ダイオードなどにおいて、希釈剤として溶媒及び樹脂を含む本発明の銀変色防止剤(樹脂組成物)で封止した場合、乾燥が不十分な場合は、該封止樹脂の硬化時に、残存する有機溶媒が泡として不具合を与える可能性がある。また乾燥温度が高すぎると、各種部品の着色、酸化を引き起こして発光ダイオードの性能を初期の段階から劣化させる恐れがある。
 通常銀製品を製造工程の途中で空気中に放置しておくと、その表面は黒ずんでくるため、製造工程の途中で中断する場合には、デシケーターなどの保管庫に入れる必要が生じる。しかしながら、本発明の銀変色防止剤で、銀メッキまたは銀を加工した成型品の表面を処理すれば、製造工程の途中での状態で長期間製品を保管させることができ、製造工程の合理化に寄与することもできる。例えば本発明の銀変色防止剤で銀の表面を被覆した発光ダイオードは、封止前の製造工程の途中であっても、デシケータに入れなくても銀の変色が発生することはない。
 更に、本発明では、該銀変色防止剤で銀を被覆した後に発光ダイオードを物理的に保護するために封止樹脂を滴下、注入及びまたは塗布し、その後封止樹脂を硬化させることで一般に使用できる発光ダイオードとして提供することが可能である。 
 使用できる該封止樹脂としては、発光ダイオードの封止部に使用できる樹脂ならば、特に制限を受けるものではない。たとえば、熱可塑性樹脂、熱硬化性樹脂等を挙げることができる。具体的には以下のような樹脂を例示することができる。
 例えば、シリコーン樹脂、エポキシ系樹脂、ポリエチレン、ポリプロピレン、ポリブチレン、及びそれらの共重合体類、シクロポリオレフィン等のポリオレフィン系樹脂、アルキド系樹脂、グアナミン系樹脂、フェノール系樹脂、テトラフルオロエチレン(PTFE)、フッ化エチレンポリプロピレンコポリマー(FEP)等のフッ素プラスチック系樹脂、ポリアクリロニトリル系樹脂、ポリスチレン系樹脂、ポリアセタール系樹脂、ナイロン6、11、12、46、66、610、612、及びそれらの共重合体等のポリアミド系樹脂、ポリメチルアクリレート、ポリメチルメタクリレート、エチレン-エチルアクリレート共重合体類等の(メタ)アクリル酸エステル系樹脂、熱可塑性ポリイミド、ポリエーテルイミド等のポリイミド系樹脂、ポリエーテルエーテルケトン系樹脂、ポリエチレンオキサイド系樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)及びそれらの共重合体類等のポリエステル系樹脂、ポリ酢酸ビニル系樹脂、ポリビニルアルコール系樹脂、ポリビニルエーテル系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンオキシド系樹脂、ポリメチルペンテン系樹脂、ポリウレタン系樹脂、メラミン系樹脂、ユリア系樹脂、ポリカーボネート系樹脂、フラン系樹脂、ケイ素系樹脂、アイオノマー系樹脂、ポリイソシアネート系樹脂、ポリテルペン系樹脂、及びこれらの共重合体等を挙げることができる。
 これらの中でもシリコーン樹脂、エポキシ系樹脂、シクロポリオレフィン系樹脂、ポリアクリロニトリル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、(メタ)アクリル酸エステル系樹脂、ポリエーテルエーテルケトン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、及びこれらの共重合体が好ましく、特定の性質を付与するために変性された樹脂であってもよい。また、これら樹脂は単独又は2種以上をブレンドして使用することもできる。
 特に発光ダイオードに半田リフロー耐久性を付与するためには、封止樹脂に少なくとも、熱硬化性樹脂を使用するのが好ましい。
 熱硬化性樹脂としては、エポキシ樹脂及び/又はシリコーン樹脂成分を含むものが好ましい。特にエポキシ樹脂では耐光性にすぐれたシクロヘキシルタイプのエポキシ樹脂が好ましい。シリコーン樹脂では、硬化後にゴム弾性を示すものや硬質性のレジンタイプから選択できる。さらにシリコーン樹脂の中でもヒドロシリル基(Si-H)と不飽和2重結合との付加反応による付加重合タイプやシラノール基やアルコキシル基などの縮合反応による縮合重合タイプから選択できる。特になかでも反応時にガスの発生を伴わない付加重合タイプのシリコーン樹脂が好ましい。
 シリコーン樹脂としては、発光ダイオードの封止に使用されるシリコーン樹脂であれば何れも使用することが出来る。主骨格にメチル基を主体としたジメチルシリコーン樹脂とフェニル基を主体としたフェニルメチルシリコーン樹脂から選択できる。付加重合タイプのシリコーン樹脂としては、例えば特開2004-186168、特開2007-63538等に開示されているシリコーン樹脂が好ましい。特に好ましくは、付加重合タイプのフェニルメチルシリコーン樹脂である。
 付加重合タイプのシリコーン樹脂はアルケニル基(好ましくはC2又はC3のアルケニル基、より好ましくはビニル基)を有するオルガノポリシロキサンを含むシリコーン樹脂である。より詳しくは、珪素原子に結合する少なくとも2つのアルケニル基(好ましくはC2又はC3アルケニル基、より具体的にはビニル基又はアリル基)を有するオルガノポリシロキサン(A成分)と、そのアルケニル基に付加重合する、珪素原子に結合する少なくとも2つの水素原子を有するオルガノハイドロジェンポリシロキサン(B成分)を含むシリコーン樹脂である。該シリコーン樹脂は通常、更に、付加反応触媒を含み、更に、任意の添加剤を含んでもよい。
 上記A成分又はB成分における上記アルケニル基以外のオルガノ基として、フェニル基又はナフチル基等の芳香族基、C1~C6飽和脂肪族基などが挙げられる。該C1~C6飽和脂肪族基としてはメチル基、エチル基、プロピル基、ブチル基などのC1~C4アルキル基、シクロヘキシル基などの環状脂肪族基等を挙げることが出来る。本発明においては、該オルガノ基として、(1)C1~C4アルキル基(より好ましくはメチル基)及び(2)フェニル、ナフチル基及びシクロヘキシル基からなる群から選ばれる少なくとも1つの基の両者を有するオルガノポリシロキサンを含むシリコーン樹脂が好ましく、フェニル基とメチル基を有するオルガノポリシロキサンを含むシリコーン樹脂がより好ましい。
 また、任意の添加剤として、エポキシ基などの官能基(例えばグリシジル基、エポキシシクロヘキシル基など)を含むオルガノポリシロキサンを含有してもよい。上記のアルケニル基はA成分にだけ含まれていても、又、A成分、及び、B成分の両者に含まれていてもよい。本発明においては、両者にアルケニル基が含まれている方が好ましい。 好ましいシリコーン樹脂としては、A成分が、オルガノ基として、(1)アルケニル基、(2)フェニル基、ナフチル基またはシクロヘキシル基の少なくとも一種、より好ましくはフェニル基、及び(3)C1~C4アルキル基、好ましくはメチル基、を有するオルガノポリシロキサンであり、B成分がオルガノ基として、(1)フェニル基、ナフチル基またはシクロヘキシル基の少なくとも一種、より好ましくはフェニル基、及び(2)C1~C4アルキル基(好ましくはメチル基)を有するオルガノハイドロジェンポリシロキサン、より好ましくは(1)アルケニル基、(2)フェニル基、ナフチル基またはシクロヘキシル基の少なくとも一種、より好ましくはフェニル基、及び(3)C1~C4アルキル基(好ましくはメチル基)を有するオルガノハイドロジェンポリシロキサン、更に好ましくは(1)アルケニル基、(2)フェニル基、及び(3)C1~C4アルキル基(好ましくはメチル基)を有するオルガノハイドロジェンポリシロキサンであるシリコーン樹脂である。より好ましくは、上記においてアルケニル基がビニル基であり、C1~C4アルキル基がメチル基であるフェニルメチルシリコーン樹脂である。
 上記のオルガノ基の割合は自由に選択することができる。好ましい大凡の割合の範囲の一例を挙げると下記の通りである。
 A成分のオルガノポリシロキサンにおける前記(1)~(3)の各成分のモル割合は、例えば、(1)のアルケニル基を1モルとした時、(2)のフェニル基等は0.1~60モル、好ましくは0.2~50モル、より好ましくは0.2~40モル、(3)のC1~C4アルキル基は0.1~60モル、好ましくは0.5~50モル、より好ましくは1~40モルの範囲である。
 また、B成分のオルガノハイドロジェンポリシロキサンの場合は、珪素原子に結合する水素原子のモル数を1モルとしたとき、アルケニル基は0~5モル、好ましくは0~3モル、より好ましくは0.1~3モル、更に好ましくは0.5~3モル、前記(1)のフェニル基等は0.5~30モル、好ましくは0.5~20モル、より好ましくは1~20モル、更に好ましくは1~10モル、前記(2)のC1~C4アルキル基は0.5~30モル、好ましくは0.5~20モル、より好ましくは1~20モル、更に好ましくは1~10モルである。
 上記の付加反応型シリコーン樹脂は上記公開公報等に記載されており、一般に公知のものを使用することが出来る。また、市販品を購入することもできる。
 アルケニル基を有するオルガノポリシロキサン(A成分)とオルガノハイドロジェンポリシロキサン(B成分)の割合は、通常、A成分の珪素原子に結合したアルケニル基1モル(B成分にもアルケニル基を含む場合は、A成分及びB成分の珪素原子に結合したアルケニル基1モル)に対して、B成分の珪素原子に結合した水素原子のモル数が0.5~5モル、好ましくは0.5~4モル、より好ましくは0.5~3モルとなる割合である。
 付加反応触媒としては、通常白金族触媒が使用され、より好ましくは白金触媒である。
 例えば、白金黒、塩化第2白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテート等の白金触媒、パラジウム触媒、ロジウム触媒などの白金族金族触媒が挙げられる。なお、この付加反応触媒の配合量は触媒量でよく、通常、白金族金属としてA及びB成分の合計重量に対して1~500ppm、特に2~100ppm程度配合することが好ましい。
 さらに、本発明の銀変色防止効果をより確実にするためには、封止樹脂の硬化後の硬度がデュロメータ タイプAで測定し、70を越える封止樹脂を使用するのが好ましい。 より好ましい硬化後の硬度はデュロメータ タイプAでの硬度が70を越え、デュロメータ タイプDでの硬度が20~70程度、より好ましくは30~70程度の範囲である。デュロメータでの硬度の測定は、タイプAでは比較的柔らかいものの硬度を測定し、タイプDでは比較的硬い物の硬度を測定する。タイプAで測定した硬度が90以上になる場合には、タイプDで行うのが一般的である。 なお、本発明において、硬化後の硬度が低すぎる封止樹脂を使用した場合には、封止後の封止樹脂表面のべたつきなどにより発光ダイオードとしての取り扱いが困難になる。また、硬化後の硬度が高すぎると、封止後又は使用中等にクラックが発生する原因となり易く、信頼性に欠ける。
 また、本発明においては、封止樹脂として屈折率が高い樹脂を用いるのが好ましい。封止樹脂の屈折率が高いと発光ダイオードからの光取り出し効率が高くなることから、銀の変色防止により照度の低下を防ぐと共に、高い屈折率の封止樹脂を使用することにより、より照度の高い発光ダイオードを得ることができる。好ましい封止樹脂の屈折率は1.45以上であり、より好ましくは1.49以上である。上限は、通常1.6以下程度である。
 次に、本発明の銀変色防止剤の一つ態様として、希釈剤に封止樹脂を用い、銀変色防止樹脂組成物として用いる態様を挙げることが出来る。
 以下にこの銀変色防止樹脂組成物について説明する。
 本発明では、希釈剤として、外部からの物理的衝撃等から銀部を保護する目的で、該銀部の被覆または封止に使用される樹脂(以下単に封止樹脂という)を用いることにより、銀変色防止樹脂組成物として使用することもできる。この場合は該封止樹脂中に、本発明の有効成分である亜鉛塩又は亜鉛錯体を、前記した使用濃度になるようにあらかじめ添加して、通常の封止樹脂として使用することにより、銀部の変色を防止することができる。
 該封止樹脂としては、前記した封止樹脂の項で説明した樹脂を挙げることが出来る。前記した封止樹脂の中で、エポキシ樹脂及び/又はシリコーン樹脂成分(シリコーン樹脂)を含むものが好ましい。本発明の効果を特に発揮できるという点から、シリコーン樹脂がより好ましい。該シリコーン樹脂としては、封止樹脂の項で好ましいとして挙げたシリコーン樹脂が好ましい。最も好ましいのは、付加反応で硬化するフェニルメチルシリローン樹脂である。
 亜鉛塩及び/又は亜鉛錯体を封止樹脂に添加した際に封止樹脂の特性を低下させない程度に添加する必要がある。即ち、該亜鉛化合物を有効成分量において樹脂に配合した際に、発光ダイオードの封止樹脂における、光量、耐熱性、耐光性などの特性を低下させないことが望ましい。これら封止樹脂への添加量は、前記希釈剤の項で述べたと同様に、封止樹脂100重量部(総量)に対して本発明の該亜鉛塩及び/又は亜鉛錯体を0.05~10重量部、好ましくは0.05~4重量部、より好ましくは0.1~2重量部、特に好ましくは0.1~1重量部程度である。該添加量が少なすぎると、その効果が十分に発揮されず、多すぎると、封止樹脂に着色が発生し、発光する光を吸収して発光強度(光量)を逆に低下させることがある。なお、本発明では亜鉛化合物を封止樹脂への添加以外にも、コーティング組成物へ添加し使用する方法もあり、その方法には特にこだわらない。
 本発明の銀変色防止樹脂組成物には、必要に応じて、本発明の効果を損わない範囲で、各種添加剤を配合することができる。例えば、補強剤及び又は散乱剤としての無機充填材、蛍光体、酸化防止剤、光安定剤、架橋助剤、離型剤、紫外線吸収剤、加工助剤、着色剤及びその他の添加剤を配合することができる。
 無機充填材としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。これら無機充填材を使用する場合は、樹脂組成物中において0.5重量%~95重量%を占める量が用いられる。散乱目的で無機充填材を使用する場合には、粒径が200nm以上の物を使用するのが好ましく、含有量は、0.5重量%~50重量%が好ましい。また、光の散乱を目的としない場合には、粒径が200nm以下の物を使用し、含有量は0.5重量%~30重量%とするのが好ましい。
 蛍光体としては、例えば、青色LED素子から発せられた青色光の一部を吸収し、波長変換された黄色光を発することにより、白色光を形成する作用を有するものである。蛍光体を、硬化性樹脂組成物に予め分散させておいてから、光半導体を封止する。蛍光体としては特に制限がなく、従来公知の蛍光体を使用することができ、例えば、希土類元素のアルミン酸塩、チオ没食子酸塩、オルトケイ酸塩等が例示される。より具体的には、YAG蛍光体、TAG蛍光体、オルトシリケート蛍光体、チオガレート蛍光体、硫化物蛍光体等の蛍光体が挙げられ、YAlO:Ce、YAl12:Ce、YAl:Ce、YS:Eu、Sr(POCl:Eu、(SrEu)O・Alなどが例示される。係る蛍光体の粒径としては、この分野で公知の粒径のものが使用されるが、平均粒径としては、1~250μm、特に2~50μmが好ましい。これらの蛍光体を使用する場合、その添加量は、その樹脂成分100重量部に対して、1~80重量部、好ましくは、5~60重量部が好ましい。
 酸化防止剤としては、フェノール系、イオウ系、リン系酸化防止剤が挙げられる。酸化防止剤は単独で又は2種以上を組み合わせて使用できる。酸化防止剤の使用量は、本発明の樹脂組成物中の樹脂100重量部に対して、通常0.008~1重量部、好ましくは0.01~0.5重量部である。酸化防止剤としては、例えば、フェノール系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤などが挙げられる。
 フェノール系酸化防止剤の具体例として、2,6-ジ-t-ブチル-p-クレゾール、
ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-p-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール、等のモノフェノール類;2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスフォネート-ジエチルエステル、3,9-ビス[1,1-ジメチル-2-{β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルスルホン酸エチル)カルシウム等のビスフェノール類;1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’-ビス-(4’-ヒドロキシ-3’-t-ブチルフェニル)ブチリックアシッド]グリコールエステル、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、トコフェノール等の高分子型フェノール類が例示される。
 イオウ系酸化防止剤の具体例として、ジラウリル-3,3’-チオジプロピオネート、
ジミリスチル-3,3’-チオジプロピオネート、ジステアリルル-3,3’-チオジプロピオネート等が例示される。
 リン系酸化防止剤の具体例として、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-t-ブチル-4-メチルフェニル)ホスファイト、ビス[2-t-ブチル-6-メチル-4-{2-(オクタデシルオキシカルボニル)エチル}フェニル]ヒドロゲンホスファイト等のホスファイト類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のオキサホスファフェナントレンオキサイド類などが例示される。
 これらの酸化防止剤はそれぞれ単独で使用できるが、2種以上を組み合わせて併用しても構わない。特に本発明においてはリン系の酸化防止剤が好ましい。
 光安定剤としては、ヒンダートアミン系の光安定剤、特にHALS等が好適である。HALSとしては特に限定されるものではないが、代表的なものとしては、ジブチルアミン・1,3,5-トリアジン・N,N’―ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、ポリ〔{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドリキシフェニル〕メチル〕ブチルマロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1-オクチロキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、等が挙げられる。HALSは1種のみが用いられても良いし、2種類以上が併用されても良い。
 本発明の樹脂組成物は、各成分を均一に混合することにより得られる。本発明の樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。 例えば付加反応型シリコーン樹脂の場合には、付加反応触媒である白金触媒と、不飽和2重結合基(アルケニル基)を有するオルガノポリシロキサンを含むA成分と、水素原子を有するシリル基(Si-H)を有したオルガノハイドロジェンポリシロキサンを含むB成分、とを混合する際に、該亜鉛化合物を一緒に配合するか、該A成分又は該B成分の何れか一方若しくは両者に該亜鉛化合物を予め配合しておき、該A成分と該B成分を均一に混合後、得られた混合物を目的の銀表面に適用し、加熱硬化することにより、封止することができる。
 また、縮合型シリコーン樹脂の場合には、オルガノポリシロキサン及び縮合促進剤(例えば有機酸および又は有機金属など)を含有したA成分とシラノール基及びまたはアルコキシル基を有したオルガノポリシロキサンを含むB成分とを混合する際に、該亜鉛化合物を一緒に配合するか、該A成分又は該B成分の何れか一方若しくは両者に該亜鉛化合物を予め配合しておき、該A成分と該B成分を均一に混合後、得られた混合物を目的の銀表面に適用し、加熱硬化することにより、封止することができる。 
 本発明の封止樹脂組成物において、樹脂が上記のシリコーン樹脂の場合、該亜鉛化合物の濃度は、樹脂成分(前記A成分及びB成分の総量)に対する濃度を意味する。
 また、本発明の封止樹脂組成物の実施態様の一つとして、A成分、B成分及び該亜鉛化合物の3者は、使用時まで、3者が混合されずに一組のセットになっていて、使用時に混合されて、本発明の封止樹脂組成物を形成する態様、または、A成分又はB成分の何れか一方、若しくは両者に、該亜鉛化合物を配合しておき、該A成分及びB成分が混合されずに一組のセットになっていて、使用時に混合されて、本発明の封止樹脂組成物を形成する態様を挙げることができる。
 本発明の封止樹脂組成物に用いるシリコーン樹脂は、東レ・ダウコーニング・シリコーン株式会社、信越化学工業株式会社、モメンティブ・パフォーマンス・マテリアルズ、Gelest社等から購入することが出来る。
 エポキシ樹脂の場合には、エポキシ基を含有したエポキシ樹脂を含むA剤とエポキシの硬化剤である酸無水物化合物および又はアミン化合物および又はフェノール化合物、及び、必要により硬化促進剤を含有したB剤を混合する際に、該亜鉛化合物を一緒に配合するか、該A成分又は該B成分の何れか一方若しくは両者に該亜鉛化合物を予め配合しておき、該A成分と該B成分を均一に混合後、得られた混合物を目的の銀表面に適用し、加熱硬化することにより、封止することができる。本発明の封止樹脂組成物に用いるエポキシ樹脂は、ジャパン・エポキシ・レジン株式会社、日本化薬株式会社、ダイセル化学工業株式会社、新日本理化株式会社、四国化成工業株式会社等から入手可能である。
 更にこれら樹脂を混合する場合、さらに他の添加剤などを配合するときは、必要に応じてプラネタリー、高速分散機、押出機、ニーダ、ロール等を用いて均一になるまで充分に混合すればよい。得られた樹脂組成物が液状である場合は銀部を覆うように、ポッティングやキャスティング、基材に含浸または金型に樹脂組成物を流し込み注型し、加熱により硬化することにより、また該樹脂組成物が液固形の場合、溶融後注型、あるいはトランスファー成型機などを用いて成型し、さらに加熱により硬化することにより、銀部の変色を防止することができる。硬化温度は、時間としては80~200℃で2~10時間である。硬化方法としては高温で一気に固めることもできるが、ステップワイズに昇温し硬化反応を進めることが好ましい。具体的には80~150℃の間で初期硬化を行い、100℃~200℃の間で後硬化を行う。硬化の段階としては2~8段階に分けて昇温するのが好ましく、より好ましくは2~4段階である。 
 以上説明した本発明の銀変色防止剤の好ましい態様を下記に挙げる。
(I)亜鉛塩又は亜鉛錯体の少なくとも何れか一方を有効成分として含む銀変色防止剤。(II) 亜鉛塩が炭素数が6~20の脂肪族カルボン酸の亜鉛塩又は亜鉛リン酸C6~C20アルキルエステルであり、亜鉛錯体がカルボニル化合物との亜鉛錯体である上記(I)に記載の銀変色防止剤。
(III)カルボニル化合物との亜鉛錯体が亜鉛アセチルアセトナートである上記(II)に記載の銀変色防止剤。
(IV)炭素数が6~20の脂肪族カルボン酸の亜鉛塩が2-エチルへキシル酸亜鉛、ネオデカン酸亜鉛、ラウリン酸亜鉛、リシノール酸亜鉛、ステアリン酸亜鉛、ウンデシレン酸亜鉛、及びナフテン酸亜鉛からなる群から選択される少なくとも一種であり、亜鉛リン酸C6~C20アルキルエステルが亜鉛リン酸2-エチルへキサンエステルである上記(II)又は(III)に記載の銀変色防止剤。
(V)炭素数6~20の脂肪族カルボン酸の亜鉛塩が2-エチルへキシル酸亜鉛である上記(II)~(IV)の何れか一項に記載の銀変色防止剤。
(VI)更に、希釈剤を含み、希釈剤100重量部に対して、亜鉛塩又は亜鉛錯体を0.005~10重量部の割合で含む上記(II)~(V)の何れか一項に記載の銀変色防止剤。
(VII)希釈剤100重量部に対する亜鉛塩又は亜鉛錯体の含量が0.005~3重量部の割合である上記(VI)に記載の銀変色防止剤。
(VIII)希釈剤が有機溶媒である上記(VI)または(VII)に記載の銀変色防止剤。
(IX)有機溶媒がケトン溶媒である上記(VIII)に記載の銀変色防止剤。
(X)有機溶媒100重量部に対する亜鉛塩又は亜鉛錯体の含量が0.005~0.5重量部の割合である上記(VIII)または(IX)に記載の銀変色防止剤。
(XII)希釈剤が熱硬化性樹脂である上記(VI)または(VII)に記載の銀変色防止剤。
(XIII)熱硬化性樹脂100重量部に対して、亜鉛塩又は亜鉛錯体を0.1~2重量部の割合で含む上記(XII)に記載の銀変色防止剤。
(XIV)硬化後に、JIS K 7215 のデュロメータ タイプAで測定した硬度において70を越える硬度の硬化物となる熱硬化性樹脂である上記(XII)又は(XIII)に記載の銀変色防止剤。
(XV)硬化後に、JIS K 7215 のデュロメータ タイプDで測定した硬度において、30~70の範囲である硬化物となる熱硬化性樹脂である上記(XII)~(XIV)の何れか一項に記載の銀変色防止剤。
(XVI)熱硬化性樹脂が付加反応型シリコーン樹脂である上記(XII)~(XV)の何れか一項に記載の銀変色防止剤。
(XVII)該シリコーン樹脂がC2又はC3アルケニル基を有するオルガノポリシロキサン(A成分)及びオルガノハイドロジェンポリシロキサン(B成分)を含む熱硬化性シリコーン樹脂である上記(XVI)に記載の銀変色防止剤。
(XVIII)C2又はC3アルケニル基を有するオルガノポリシロキサン(A成分)とオルガノハイドロジェンポリシロキサン(B成分)を、A成分のみがアルケニル基を有する場合は、A成分の珪素原子に結合するアルケニル基1モルに対して、また、A成分及びB成分の両者がアルケニル基を有する場合は、A成分及びB成分の珪素原子に結合するアルケニル基1モルに対して、B成分の珪素原子に結合する水素原子が0.5~4モルとなる割合において、含有する前記シリコーン樹脂である上記(XVII)に記載の銀変色防止剤。
(XIX)A成分のオルガノポリシロキサン及びB成分のオルガノハイドロジェンポリシロキサンにおけるアルケニル基以外のオルガノ基として、それぞれフェニル基、ナフチル基及びシクロヘキシル基からなる群から選択される少なくとも1つの基とC1~C4アルキル基の両者を有する前記シリコーン樹脂である上記(XVII)または(XVIII)に記載の銀変色防止剤。
(XX)上記アルケニル基以外のオルガノ基がフェニル基及びメチル基である上記(XIX)に記載の銀変色防止剤。
(XXI)上記アルケニル基がビニル基である上記(XVII)~(XX)の何れか一項に記載の銀変色防止剤。
(XXII)発光ダイオード用である上記(I)~(XXI)の何れか一項に記載の銀変色防止剤。
(XXIII)上記(I)~(XXI)の何れか一項に記載の銀変色防止剤を製造するための亜鉛塩又は亜鉛錯体の使用。
(XXIV)発光ダイオード用銀変色防止剤である上記(XXIII)に記載の亜鉛塩又は亜鉛錯体の使用。
(XXV)上記(I)~(XXII)の何れか一項に記載の銀変色防止剤を銀の表面に適用して、亜鉛塩又は亜鉛錯体を含む塗膜を形成し、乾燥又は硬化する銀の変色防止方法。
(XXVI)上記(XXII)に記載の銀変色防止剤の乾燥皮膜又は硬化被膜の何れかを銀の表面に有する発光ダイオード。
(XXVII)上記銀変色防止剤の乾燥皮膜又は硬化皮膜を銀の表面に有し、更に、その上を、封止樹脂で封止した上記(XXVI)に記載の発光ダイオード。
(XXVIII)上記(XII)~(XXI)の何れか一項に記載の銀変色防止剤で、発光ダイオードの銀部を直接封止した発光ダイオード。
(XXIX)熱硬化性樹脂の硬化後の硬化物の屈折率が1.45~1.6である上記(XII)~(XXII)の何れか一項に記載の銀変色防止剤。
 以下に、参考例、実施例及び試験例を挙げて、本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。尚、下記において特に断らない限り、「部」は「重量部」を意味する。
実施例1~3
 銀表面へ塗布した場合の銀変色防止剤を実施例1~3として具体的に示す。 
銀変色防止剤溶液の調製:
 銀変色防止剤の有効成分として2-エチルヘキシル酸亜鉛(ホープ製薬製、製品名:オクトープ18%亜鉛)を表1に示す濃度となるようにアセトンに溶解し、本発明の銀変色防止剤を調製した。
表1
銀変色防止剤   オクトープ18%亜鉛   アセトン   濃度%
 実施例1      0.01g      100g   0.01%
 実施例2      0.05g      100g   0.05%
 実施例3      0.1g       100g   0.1%
発光ダイオードの作成:
 開口部がφ5mm、リードフレームに銀メッキを施した配線を有し、465nm中心発光波長のチップを搭載した表面実装タイプ(以降Surface Mounted Devices = SMDと略す)の発光ダイオードパッケージ内へ実施例1の溶液0.015g(有効成分量として0.0000015g)を滴下し、得られた発光ダイオードパッケージを80℃の乾燥機内に1時間放置し、銀メッキ表面に本発明の銀変色防止剤の乾燥皮膜を有するSMDタイプの発光ダイオードを作成した。そのSMD発光ダイオードに、付加反応型フェニルメチルシリコーンレジン樹脂(硬化後のデュロメータタイプDの硬度40)を注ぎ、次いで、該樹脂を150℃、1時間で加熱硬化させ、該銀変色防止剤の乾燥皮膜の上を封止樹脂で封止した発光ダイオードを作成した。同様に、実施例2及び実施例3の溶液を使用して、同様に発光ダイオードを作成した。
 なお封止用に用いた上記フェニルメチルシリコーン樹脂は下記のA液及びB液を重量割合で1:4の割合で混合して得た。
A液:白金触媒を触媒量(0.1%以下)で含み、オルガノ基として、フェニル基:メチル基:ビニル基をモル換算で10:12:1で有するオルガノポリシロキサン
B液:オルガノ基として、フェニル基、メチル基、ビニル基を有するオルガノハイドロジェンポリシロキサンで、モル換算で、フェニル基:メチル基:ビニル基:ヒドロシリル基における水素原子の含有比が5.4:5.3:1:1.2であるオルガノハイドロジェンポリシロキサン
 次に作成した発光ダイオードの樹脂で封止された銀メッキ部の変色に対する硫黄系ガスに対する耐久性を確認するために、次に示す硫化試験(銀変色試験)を実施した。
 本発明では、安全面の観点から、硫化水素の代わりに、下記に示す硫化アンモニウム水溶液を使用して、銀の変色に対する耐久性を試験した。その結果を、用いた銀変色防止剤の組成と共に、表2に示した。
(硫化試験)
 硫化試験について以下に詳細を述べる。
 硫化アンモニウム水溶液(25%水溶液)25mlを入れた開口部φ2cmのガラス製瓶を、容積2Lガラス製密閉容器の底部に置き、該密閉容器の空間内に、上記で得られたSMDタイプの発光ダイオードを設置し、硫化アンモニウム水溶液から発生する硫化アンモニウムガス雰囲気下に、室温で放置した。時間毎に該発光ダイオードの銀メッキ部における銀の変色度合いを観察した。
密閉容器:2Lの容積を有するガラス製密閉容器
試験用硫化液:25%硫化アンモニウム水溶液25ml
      (開口部φ2cmのガラス製瓶に入れ、試験に供した)
外観観察:初期(暴露前)、1時間、6時間、10時間放置ごとに40倍実態顕微鏡にて封止剤下銀メッキ部の変色を観察した。
照度試験(光量確認):上記外観観察時に、20mA通電してSiフォトダイオード光検出機で光量を電流に変換して、その電流強度で光量の変化を観察した。照度保持率は初期に対する光量の変化を示す。
実施例4~12、比較例1、2
 実施例1と同様に、表2に示した組成の実施例4~12の銀変色防止剤溶液を調製し、それを用いて、実施例1と同様に、該銀変色防止剤の乾燥皮膜の上を封止樹脂で封止した発光ダイオードを作成した。さらに、実施例1と同様に、硫化試験を行った結果を、用いた銀変色防止剤の組成と共に、表2に記載した。また、本発明の銀変色防止剤を使用しない比較例1、2についての試験結果も併せて表2に示した。
 なお実施例7~12において封止用に用いた付加反応型フェニルメチルシリコーン樹脂(硬化後のデュロメータタイプDの硬度60)は下記のA液及びB液を重量割合で1:20の割合で混合して得た。
A液:白金触媒を触媒量(0.1%以下)で含み、オルガノ基として、フェニル基:メチル基:ビニル基をモル換算で0.4:1:1で有するオルガノポリシロキサン
B液:オルガノ基として、フェニル基、メチル基、ビニル基を有するオルガノハイドロジェンポリシロキサンで、モル換算で、フェニル基:メチル基:ビニル基:ヒドロシリル基(H-Si)における水素原子の含有比が2:2:1:1であるオルガノハイドロジェンポリシロキサン
Figure JPOXMLDOC01-appb-T000001
 表2の結果より、本発明の銀変色防止剤(実施例1~12)の乾燥皮膜を有する封止発光ダイオードは、銀変色防止剤の乾燥皮膜を有しない比較例1,2にくらべ、銀メッキリードフレームの変色が著しくを抑えられることが確認され、さらに発光ダイオードとして重要な照度(光量)の低下も見られない。
実施例13、14
 次に、実施例13、14として、亜鉛化合物(亜鉛塩及び/又は亜鉛錯体)と封止樹脂を含有する銀変色防止樹脂組成物(本発明の銀変色防止剤の1つの態様)を調製して、これを用いて発光ダイオードを封止し、銀変色防止効果を検討した。
銀変色防止樹脂組成物の調製:
 実施例1で使用したと同じ硬化後デュロメータタイプDの硬度が40になる付加反応型フェニルメチルシリコーンレジン100gに対して、オクトープ亜鉛18%の濃度を表3に示すように事前に添加、混合して封止材とする銀変色防止樹脂組成物を作成した。
添加濃度はシリコーン樹脂に対する添加割合である。
表3
   オクトープ亜鉛18% フェニルメチルシリコーンレジン   濃度%
実施例13 0.5g         100g        0.5%
実施例14  1g          100g         1%
発光ダイオードの作成:
 開口部がφ5mm、リードフレームに銀メッキを施した配線を有し、465nm中心発光波長のチップを搭載した表面実装タイプ(以降Surface Mounted Devices = SMDと略す)の発光ダイオードパッケージ内へ、上記実施例13の銀変色防止樹脂組成物を0.015g滴下して、150℃乾燥機に1時間放置し、フェニルメチルシリコーンレジンを熱硬化し銀メッキ部を被服した発光ダイオードを作成した。
 また、上記と同様にして、実施例14で得た銀変色防止樹脂組成物の硬化物で銀メッキ部を被覆した発光ダイオードを作成した。
 上記で得られた発光ダイオードの銀メッキ部の変色に対する耐久性を確認するために、実施例1と同様に硫化試験を実施し、その結果を、用いた銀変色防止剤の組成と共に表4に示した。 実施例13~14、及び比較例3、4につき併せて表4に示した。
実施例15~20、比較例3、4
 実施例13と同様に、表4に示した処方で実施例15~20の銀変色防止樹脂組成物を調製した。それらの銀変色防止樹脂組成物のそれぞれを用いて、それぞれの銀変色防止樹脂組成物の硬化物で銀部が被覆された発光ダイオードを実施例13と同様にして作成した。
上記で得られた発光ダイオードの銀メッキ部の変色に対する耐久性を確認するために、実施例1と同様に硫化試験を実施し、その結果を、用いた銀変色防止剤の組成と共に表4に示した。
 また、本発明の銀変色防止剤を含まない点を除き、本発明の実施例と同じ樹脂組成物を用いた比較例3及び4での結果も併せて表4に示した。
  表4
Figure JPOXMLDOC01-appb-I000001
 表4の結果より、本発明の銀変色防止樹脂組成物(実施例13~20)は、比較例3,
4にくらべ、銀メッキリードフレームの変色を抑えることが確認され、さらに発光ダイオードとして重要な照度(光量)の低下も見られない。
 表2、表4で使用されている原料、使用方法、試験について説明する。
・オクトープRTM18%亜鉛:2-エチルヘキシル酸亜鉛(有効成分100%)(ホープ製薬株式会社製)。
・亜鉛燐酸2-エチルヘキサンエステル化合物:亜鉛塩及び/又は亜鉛錯体として燐酸の2-エチルヘキサンエステルの亜鉛塩を含むプロピレングリコール溶液(リン酸:モノエステル体:ジエステル体:トリエステル体3.5:68.2:26.5:1.8 の混合物。ただし、トリメチルシリル化処理をして分析を行っているため、感度が異なり、正確な重量比ではない。リン:亜鉛=1.7:1、 ICP発光分光分析にて測定、JIS K 0166に準拠有効濃度75~78重量%品)(特表2003-51495号公報に準じて製造できる)。
・デュロメータタイプD硬度40の付加型加熱硬化タイプのフェニルメチルシリコーンレジン:実施例1で使用したと同じ、加熱硬化することで硬化後硬度が40になるシリコーン樹脂を使用した。
・デュロメータタイプD硬度60の付加型加熱硬化タイプのフェニルメチルシリコーンレジン;実施例7で使用したと同じ、加熱硬化することで、硬化後硬度が60になるシリコーン樹脂を使用した。
(硬度試験)
タイプD硬度:JIS K 7215「プラスチックのデュロメーター硬さ試験方法」に準拠したデュロメータータイプDで測定した。
屈折率:プリズムカプラ方式の屈折率測定装置、使用波長:633nm(メトリコン社製、モデル2010タイプ)。
実施例21及び22、比較例5
 実施例13において、付加反応型フェニルメチルシリコーンレジンを、硬化後のデュロメータータイプDで測定した硬度が30(デュロメータータイプAで測定した硬度78)の付加反応型フェニルメチルシリコーンレジン(adPMSi樹脂と略す)に変える以外は実施例13と同様にして、本発明の銀変色防止樹脂組成物を表5に示した濃度(シリコーン樹脂に対する2-エチルヘキシル酸亜鉛の濃度)で調製し、実施例13と同様にして、実施例21及び22のそれぞれの銀変色防止樹脂組成物を得た。また、実施例13と同様にして、実施例21及び22のそれぞれで得た銀変色防止樹脂組成物の硬化物でそれぞれの銀メッキ部を被覆した発光ダイオードを作成した。得られた発光ダイオードの銀メッキ部の変色に対する耐久性を確認するために、実施例1と同様に硫化試験を実施した。その結果を、用いた銀変色防止剤の組成、及び、2-エチルヘキシル酸亜鉛を配合しない点を除いて実施例21と同じ樹脂組成物を用いた比較例5の結果と共に表5に示した。
 なお封止用に用いた上記フェニルメチルシリコーン樹脂は下記のA液及びB液を重量割合で1:3の割合で混合して得た。
A液:白金触媒を触媒量(0.1%以下)で含み、オルガノ基として、フェニル基:メチル基:ビニル基をモル換算で28:31:1で有するオルガノポリシロキサン
B液:オルガノ基として、フェニル基、メチル基、ビニル基を有するオルガノハイドロジェンポリシロキサンで、モル換算で、フェニル基:メチル基:ビニル基:ヒドロシリル基における水素原子の含有比が5.2:5.2:1:1.2であるオルガノハイドロジェンポリシロキサン
 表5
Figure JPOXMLDOC01-appb-I000002
表5続き   
Figure JPOXMLDOC01-appb-I000003
実施例23
 実施例21において、2-エチルヘキシル酸亜鉛(オクトーブ18%亜鉛)をステアリン酸亜鉛に変える以外は実施例21と同様にして、ステアリン酸亜鉛の濃度を、シリコーン樹脂に対して0.5%の濃度(外割)で加えて本発明の銀変色防止樹脂組成物を調製し、実施例13と同様にして、該銀変色防止樹脂組成物の硬化物で銀メッキ部を被覆した発光ダイオードを作成した。得られた発光ダイオードの銀メッキ部の変色に対する耐久性を確認するために、実施例1と同様に硫化試験を実施した。その結果を、用いた銀変色防止剤の組成及び、2-エチルヘキシル酸亜鉛を配合しない点を除いて、実施例23と同じ樹脂組成物用いた比較例6の結果と共に表6に示した。
Figure JPOXMLDOC01-appb-T000002
LED点灯試験
 実施例1~12に付いては、実施例1~12と同様にして製造した発光ダイオードをLED点灯試験用に用いた。
 また、実施例13~20の銀変色防止樹脂組成物を用いたLED点灯試験用のLEDパッケージは下記の通り作成した。
 実施例13~20で得られた銀変色防止樹脂組成物を、シリンジに充填し精密吐出装置を用いて、中心発光波465nmのチップを搭載した外径5mm角表面実装型LEDパッケージに注型した。その注型物を加熱炉に投入して、150℃、1時間の硬化処理をしてLEDパッケージを作成した。
 また、参考例1のエポキシ樹脂を用いたLEDパッケージも、本発明の銀変色防止樹脂組成物を、該エポキシ樹脂に変え、硬化を、120℃で1時間、更に150℃で3時間で行う以外は、上記と同様に作成した。なお、該エポキシ樹脂は、ダウコーニング製のERL-4221を100部、硬化剤として新日本理化株式会社製MH-700Gを110部、硬化促進剤としてトリメチルセチルアンモニウムヒドロキシド0.1部を配合して得られたエポキシ樹脂組成物を用いた。
 上記で得られたそれぞれのLEDパッケージにつき、LEDを点灯させて200時間後の照度保持率を測定した。
なお、LED点灯条件は下記の通りであった。
LED点灯条件
LEDチップ:中心発光波長、465nm
LED点灯条件:定電流モード、60mAで点灯させた。
LED点灯環境:85℃85%湿熱機内での点灯
 照度保持率:(200時間点灯後の照度/初期照度)×100(単位%)
 評価基準として、照度保持率が、80%以上のものを○とし、70~80%を△、70%以下を×として評価すると、下記の通りである。なお、LEDチップ表面が着色した場合にも×とした。
実施例1~20:○(何れも照度保持率95%以上)
参考例1:×(照度保持率58%、さらにLEDチップ上で茶色に着色が認められた)
 上記の通り、参考例として挙げたエポキシ樹脂は銀変色防止機能は有するがLEDとしての耐久性は悪い。
 本発明によれば、硫黄系ガスを直接暴露した過酷な環境下においても、銀メッキを保護することが可能であり、発光ダイオードの耐久性を格段に向上させることができる。

Claims (25)

  1.  亜鉛塩又は亜鉛錯体の少なくとも何れか一方を有効成分として含む銀変色防止剤を製造するための亜鉛塩又は亜鉛錯体の使用。
  2.  銀変色防止剤が発光ダイオード用銀変色防止剤である請求項1に記載の使用。
  3.  銀変色防止剤が炭素数が3~20のカルボン酸化合物亜鉛塩、燐酸亜鉛塩、燐酸エステル亜鉛塩及びカルボニル化合物亜鉛錯体からなる群から選択される少なくとも一種を有効成分として含む銀変色防止剤である請求項2に記載の使用。
  4.  銀変色防止剤が炭素数が3~20の脂肪族カルボン酸亜鉛塩を有効成分として含む銀変色防止剤である請求項2に記載の使用。
  5.  該脂肪族カルボン酸亜鉛塩が飽和又は不飽和脂肪酸亜鉛塩である請求項4に記載の使用。
  6.  該脂肪族カルボン酸亜鉛塩が、2-エチルへキシル酸亜鉛、ネオデカン酸亜鉛、ラウリン酸亜鉛、リシノール酸亜鉛、ステアリン酸亜鉛、ウンデシレン酸亜鉛、及びナフテン酸亜鉛からなる群から選択される少なくとも一種である請求項4に記載の使用。
  7.  該脂肪族カルボン酸亜鉛塩が、少なくともシクロペンタン骨格又はシクロヘキサン骨格の何れか一方を有する脂環カルボン酸の亜鉛塩である請求項4に記載の使用。
  8.  有効成分として、燐酸エステル及び/又は燐酸の亜鉛塩を含む銀変色防止剤である請求項2に記載の使用。
  9.  有効成分として、亜鉛アセチルアセトナート錯体を含む銀変色防止剤である請求項2に記載の使用。
  10.  銀変色防止剤が、更に溶媒を含み、かつ、該溶媒中に0.005~1重量%の亜鉛塩又は亜鉛錯体の少なくとも何れか一方を有効成分として含む銀変色防止剤である請求項2に記載の使用。
  11.  亜鉛塩又は亜鉛錯体の少なくとも何れか一方及び封止樹脂を含有し、該樹脂100重量部に対して該亜鉛塩又は亜鉛錯体の少なくとも何れか一方を0.05~10重量部含有する発光ダイオード用銀変色防止樹脂組成物。
  12.  樹脂組成物の硬化物の硬度としてJIS K 7215 のデュロメータ タイプAで測定した硬さが70を越える請求項11に記載の銀変色防止樹脂組成物。
  13.  樹脂組成物の硬化物の屈折率が1.45を越える請求項11に記載の銀変色防止樹脂組成物。
  14.  封止樹脂がシリコーン骨格を含む封止樹脂である請求項11に記載の銀変色防止樹脂組成物。
  15.  銀の表面に、請求項1に記載の銀変色防止剤を適用する銀変色防止方法。
  16.  銀の表面が発光ダイオードの銀の表面である請求項15に記載の銀変色防止方法。
  17.  請求項1に記載の銀変色防止剤が、更に溶媒を含み、かつ、該溶媒中に0.005~1重量%の亜鉛塩又は亜鉛錯体の少なくとも何れか一方を有効成分として含む銀変色防止剤である請求項15に記載の銀変色防止方法。
  18.  請求項11に記載の銀変色防止樹脂組成物を、発光ダイオードの銀の表面に、適用する銀変色防止方法。
  19.  銀の表面に、亜鉛塩又は亜鉛錯体の少なくとも何れか一方を含む銀変色防止剤の乾燥皮膜又は硬化物被膜を有する発光ダイオード。
  20.  銀変色防止剤の乾燥皮膜又は硬化物被膜上を封止樹脂で封止した請求項19に記載の発光ダイオード。
  21.  請求項11に記載の銀変色防止樹脂組成物で、銀の表面を封止した発光ダイオード。
  22.   封止樹脂が、付加反応により硬化し、かつ、硬化後、JIS K 7215 のデュロメータ タイプAで測定した硬度が、70を越える硬化物を形成するシリコーン樹脂である請求項19又は20に記載の発光ダイオード。
  23.   亜鉛塩又は亜鉛錯体の少なくとも何れか一方を有効成分として含み、該有効成分を希釈剤100重量部に対して、0.005~1重量部の割合で含む銀変色防止剤。
  24.   希釈剤が有機溶媒である請求項23に記載の銀変色防止剤。
  25.  希釈剤がシリコーン樹脂である請求項23に記載の銀変色防止剤。
PCT/JP2011/002322 2010-04-22 2011-04-20 銀変色防止剤、銀変色防止樹脂組成物、銀変色防止方法、及びこれを使用した発光ダイオード WO2011132419A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG2012077384A SG184923A1 (en) 2010-04-22 2011-04-20 Silver anti-tarnish agent, silver anti-tarnish resin composition, silver anti-tarnish method, and light-emitting diode using the same
KR1020147011901A KR20140061556A (ko) 2010-04-22 2011-04-20 은 변색 방지제, 은 변색 방지 수지 조성물, 은 변색 방지방법, 및 이것을 사용한 발광 다이오드
KR1020127027634A KR101452173B1 (ko) 2010-04-22 2011-04-20 은 변색 방지제, 은 변색 방지 수지 조성물, 은 변색 방지방법, 및 이것을 사용한 발광 다이오드
EP11771760.3A EP2562293A4 (en) 2010-04-22 2011-04-20 TO MEASURE SILVER, RESIN COMPOSITION AGAINST SILENCE PROCESS, PROCEDURE AGAINST SILVER AND LIGHT EMITTING DIODE
JP2012511555A JP5948240B2 (ja) 2010-04-22 2011-04-20 銀変色防止剤、銀変色防止樹脂組成物、銀変色防止方法、及びこれを使用した発光ダイオード
US13/641,703 US20130032853A1 (en) 2010-04-22 2011-04-20 Silver Anti-Tarnishing Agent, Silver Anti-Tarnishing Resin Composition, Silver Anti-Tarnishing Method, And Light-Emitting Diode Using Same
CN201180019856.8A CN102906309B (zh) 2010-04-22 2011-04-20 防银变色剂、防银变色树脂组合物、防银变色方法、及使用该防银变色剂的发光二极管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-098444 2010-04-22
JP2010098444 2010-04-22

Publications (1)

Publication Number Publication Date
WO2011132419A1 true WO2011132419A1 (ja) 2011-10-27

Family

ID=44833960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002322 WO2011132419A1 (ja) 2010-04-22 2011-04-20 銀変色防止剤、銀変色防止樹脂組成物、銀変色防止方法、及びこれを使用した発光ダイオード

Country Status (8)

Country Link
US (1) US20130032853A1 (ja)
EP (1) EP2562293A4 (ja)
JP (2) JP5948240B2 (ja)
KR (2) KR101452173B1 (ja)
CN (2) CN102906309B (ja)
SG (1) SG184923A1 (ja)
TW (1) TWI605080B (ja)
WO (1) WO2011132419A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014025A1 (ja) * 2012-07-20 2014-01-23 日立化成株式会社 銀硫化防止材、銀硫化防止膜の形成方法、発光装置の製造方法及び発光装置
JP2014109042A (ja) * 2012-11-30 2014-06-12 Hitachi Chemical Co Ltd 銀硫化防止材、銀硫化防止膜の形成方法及び発光装置の製造方法
JP2016505213A (ja) * 2012-12-20 2016-02-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 保護用組成物
JP2017075216A (ja) * 2015-10-13 2017-04-20 株式会社ダイセル 硬化性樹脂組成物、その硬化物、及び半導体装置
JP2018060932A (ja) * 2016-10-06 2018-04-12 ローム株式会社 Ledパッケージ
CN110230060A (zh) * 2019-06-10 2019-09-13 超威电源有限公司 一种铜端子镀银保护剂及其抗硫化检测装置
JP2020198418A (ja) * 2019-05-31 2020-12-10 信越化学工業株式会社 プライマー組成物及びこれを用いた光半導体装置
WO2022181281A1 (ja) * 2021-02-25 2022-09-01 コニカミノルタ株式会社 封止材組成物、半導体封止材料及び半導体
WO2023171352A1 (ja) * 2022-03-08 2023-09-14 信越化学工業株式会社 熱伝導性付加硬化型シリコーン組成物及びそのシリコーン硬化物
WO2023171353A1 (ja) * 2022-03-08 2023-09-14 信越化学工業株式会社 2液型熱伝導性付加硬化型シリコーン組成物及びそのシリコーン硬化物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5811157B2 (ja) * 2013-10-24 2015-11-11 トヨタ自動車株式会社 装飾被膜
EP2947178A1 (en) * 2014-05-21 2015-11-25 IMEC vzw Conformal coating on three-dimensional substrates
CN106117553B (zh) * 2016-05-03 2019-10-01 南昌大学 一种用于提高led银元件防硫化性能的保护剂及制备和使用方法
KR20180023742A (ko) * 2016-08-26 2018-03-07 삼성전자주식회사 스위칭 레귤레이터 및 그것의 제어 회로
TWI829640B (zh) 2017-07-10 2024-01-21 美商陶氏有機矽公司 可固化聚矽氧組合物及光學半導體裝置
KR20220034846A (ko) * 2019-08-13 2022-03-18 쌩-고벵 글래스 프랑스 유리 기판 상의 은 와이어 부식 감소
TWI777271B (zh) * 2019-11-19 2022-09-11 日商柯尼卡美能達股份有限公司 電子元件、抗硫化劑及密封材
KR20220103533A (ko) * 2021-01-15 2022-07-22 고려대학교 산학협력단 금속막의 변색 방지 방법 및 이를 통하여 변색 방지 처리된 금속막

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251288A (ja) * 1984-05-25 1985-12-11 Otsuka Chem Co Ltd 揮散性非鉄金属用防錆剤組成物
JPH01320062A (ja) * 1988-06-23 1989-12-26 Aikoo Kk 腐食抑制作用をもつ反応型脱臭剤
JP2772445B2 (ja) 1992-03-13 1998-07-02 大塚製薬株式会社 抗菌剤
JP3385578B2 (ja) 1998-08-03 2003-03-10 アキレス株式会社 塩化ビニル系樹脂製フィルム
WO2003051495A1 (de) 2001-12-18 2003-06-26 Filterwerk Mann+Hummel Gmbh Verfahren zur herstellung eines hohlfasermembranmoduls, vorrichtung zur herstellung eines hohlfasermembranmoduls und hohlfasermembranmodul
JP2004049435A (ja) * 2002-07-18 2004-02-19 Kawaken Fine Chem Co Ltd リシノール酸多価金属塩よりなる消臭脱臭用基剤及びその製法
JP2004186168A (ja) 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
JP2006303092A (ja) * 2005-04-19 2006-11-02 Sumitomo Metal Electronics Devices Inc 発光素子搭載用パッケージ
JP2007039483A (ja) * 2005-08-01 2007-02-15 Ge Toshiba Silicones Co Ltd 硬化性ポリオルガノシロキサン組成物
JP2007063538A (ja) 2005-08-03 2007-03-15 Shin Etsu Chem Co Ltd 発光ダイオード用付加硬化型シリコーン樹脂組成物
JP2008274272A (ja) 2007-04-06 2008-11-13 Yokohama Rubber Co Ltd:The 光半導体素子封止用組成物、その硬化物および光半導体素子封止体
JP2009179497A (ja) * 2008-01-30 2009-08-13 Tayca Corp 中性領域で安定な酸化チタン分散液
JP2010007013A (ja) * 2008-06-30 2010-01-14 Jsr Corp 金属表面用コート材および発光装置、並びに金属表面保護方法
JP2010013183A (ja) * 2008-06-04 2010-01-21 Oji Paper Co Ltd チップ型電子部品収納台紙および製造方法
JP2010043136A (ja) 2008-08-08 2010-02-25 Yokohama Rubber Co Ltd:The シリコーン樹脂組成物、これを用いるシリコーン樹脂および光半導体素子封止体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7341677B2 (en) * 2003-06-30 2008-03-11 United Technologies Corporation Non-carcinogenic corrosion inhibiting additive
JP4530137B2 (ja) * 2003-09-17 2010-08-25 信越化学工業株式会社 精密電子部品封止・シール用オルガノポリシロキサン組成物、精密電子部品の腐蝕防止又は遅延方法、並びに銀含有精密電子部品
JP4645793B2 (ja) * 2003-10-14 2011-03-09 信越化学工業株式会社 電極回路保護用シリコーンゴム組成物、電極回路保護材及び電気・電子部品
JP4520437B2 (ja) * 2006-07-26 2010-08-04 信越化学工業株式会社 Led用蛍光物質入り硬化性シリコーン組成物およびその組成物を使用するled発光装置。
WO2008045122A2 (en) * 2006-10-05 2008-04-17 The Regents Of The University Of California Hybrid polymer light-emitting devices
JP2009120437A (ja) * 2007-11-14 2009-06-04 Niigata Univ シロキサンをグラフト化したシリカ及び高透明シリコーン組成物並びに該組成物で封止した発光半導体装置
FR2925516A1 (fr) * 2007-12-20 2009-06-26 Bluestar Silicones France Soc Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d'organopolysiloxanes.
JP4788837B2 (ja) * 2010-01-26 2011-10-05 横浜ゴム株式会社 シリコーン樹脂組成物およびその使用方法、シリコーン樹脂、シリコーン樹脂含有構造体、ならびに光半導体素子封止体
JP2011202154A (ja) * 2010-03-01 2011-10-13 Yokohama Rubber Co Ltd:The 加熱硬化性光半導体封止用シリコーン樹脂組成物およびこれを用いる光半導体封止体

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251288A (ja) * 1984-05-25 1985-12-11 Otsuka Chem Co Ltd 揮散性非鉄金属用防錆剤組成物
JPH01320062A (ja) * 1988-06-23 1989-12-26 Aikoo Kk 腐食抑制作用をもつ反応型脱臭剤
JP2772445B2 (ja) 1992-03-13 1998-07-02 大塚製薬株式会社 抗菌剤
JP3385578B2 (ja) 1998-08-03 2003-03-10 アキレス株式会社 塩化ビニル系樹脂製フィルム
WO2003051495A1 (de) 2001-12-18 2003-06-26 Filterwerk Mann+Hummel Gmbh Verfahren zur herstellung eines hohlfasermembranmoduls, vorrichtung zur herstellung eines hohlfasermembranmoduls und hohlfasermembranmodul
JP2004049435A (ja) * 2002-07-18 2004-02-19 Kawaken Fine Chem Co Ltd リシノール酸多価金属塩よりなる消臭脱臭用基剤及びその製法
JP2004186168A (ja) 2002-11-29 2004-07-02 Shin Etsu Chem Co Ltd 発光ダイオード素子用シリコーン樹脂組成物
JP2006303092A (ja) * 2005-04-19 2006-11-02 Sumitomo Metal Electronics Devices Inc 発光素子搭載用パッケージ
JP2007039483A (ja) * 2005-08-01 2007-02-15 Ge Toshiba Silicones Co Ltd 硬化性ポリオルガノシロキサン組成物
JP2007063538A (ja) 2005-08-03 2007-03-15 Shin Etsu Chem Co Ltd 発光ダイオード用付加硬化型シリコーン樹脂組成物
JP2008274272A (ja) 2007-04-06 2008-11-13 Yokohama Rubber Co Ltd:The 光半導体素子封止用組成物、その硬化物および光半導体素子封止体
JP2009179497A (ja) * 2008-01-30 2009-08-13 Tayca Corp 中性領域で安定な酸化チタン分散液
JP2010013183A (ja) * 2008-06-04 2010-01-21 Oji Paper Co Ltd チップ型電子部品収納台紙および製造方法
JP2010007013A (ja) * 2008-06-30 2010-01-14 Jsr Corp 金属表面用コート材および発光装置、並びに金属表面保護方法
JP2010043136A (ja) 2008-08-08 2010-02-25 Yokohama Rubber Co Ltd:The シリコーン樹脂組成物、これを用いるシリコーン樹脂および光半導体素子封止体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2562293A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014025A1 (ja) * 2012-07-20 2014-01-23 日立化成株式会社 銀硫化防止材、銀硫化防止膜の形成方法、発光装置の製造方法及び発光装置
KR20150036568A (ko) * 2012-07-20 2015-04-07 히타치가세이가부시끼가이샤 은 황화 방지재, 은 황화 방지막의 형성 방법, 발광 장치의 제조 방법 및 발광 장치
CN104508184A (zh) * 2012-07-20 2015-04-08 日立化成株式会社 银硫化防止材料、银硫化防止膜的形成方法、发光装置的制造方法及发光装置
JPWO2014014025A1 (ja) * 2012-07-20 2016-07-07 日立化成株式会社 銀硫化防止材、銀硫化防止膜の形成方法、発光装置の製造方法及び発光装置
KR101690627B1 (ko) * 2012-07-20 2016-12-28 히타치가세이가부시끼가이샤 은 황화 방지재, 은 황화 방지막의 형성 방법, 발광 장치의 제조 방법 및 발광 장치
JP2014109042A (ja) * 2012-11-30 2014-06-12 Hitachi Chemical Co Ltd 銀硫化防止材、銀硫化防止膜の形成方法及び発光装置の製造方法
JP2016505213A (ja) * 2012-12-20 2016-02-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 保護用組成物
JP2017075216A (ja) * 2015-10-13 2017-04-20 株式会社ダイセル 硬化性樹脂組成物、その硬化物、及び半導体装置
JP2018060932A (ja) * 2016-10-06 2018-04-12 ローム株式会社 Ledパッケージ
JP2020198418A (ja) * 2019-05-31 2020-12-10 信越化学工業株式会社 プライマー組成物及びこれを用いた光半導体装置
JP7111660B2 (ja) 2019-05-31 2022-08-02 信越化学工業株式会社 プライマー組成物及びこれを用いた光半導体装置
CN110230060A (zh) * 2019-06-10 2019-09-13 超威电源有限公司 一种铜端子镀银保护剂及其抗硫化检测装置
CN110230060B (zh) * 2019-06-10 2024-02-27 超威电源集团有限公司 一种铜端子镀银保护剂及其抗硫化检测装置
WO2022181281A1 (ja) * 2021-02-25 2022-09-01 コニカミノルタ株式会社 封止材組成物、半導体封止材料及び半導体
WO2023171352A1 (ja) * 2022-03-08 2023-09-14 信越化学工業株式会社 熱伝導性付加硬化型シリコーン組成物及びそのシリコーン硬化物
WO2023171353A1 (ja) * 2022-03-08 2023-09-14 信越化学工業株式会社 2液型熱伝導性付加硬化型シリコーン組成物及びそのシリコーン硬化物

Also Published As

Publication number Publication date
JPWO2011132419A1 (ja) 2013-07-18
TWI605080B (zh) 2017-11-11
JP5948402B2 (ja) 2016-07-06
EP2562293A1 (en) 2013-02-27
SG184923A1 (en) 2012-11-29
CN102906309A (zh) 2013-01-30
CN102906309B (zh) 2015-01-14
KR101452173B1 (ko) 2014-10-22
KR20130006490A (ko) 2013-01-16
TW201141926A (en) 2011-12-01
US20130032853A1 (en) 2013-02-07
CN104060274A (zh) 2014-09-24
EP2562293A4 (en) 2015-07-01
JP2015079991A (ja) 2015-04-23
KR20140061556A (ko) 2014-05-21
JP5948240B2 (ja) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5948402B2 (ja) 銀変色防止剤、銀変色防止樹脂組成物、銀変色防止方法、及びこれを使用した発光ダイオード
US8772431B2 (en) Silanol condensation catalyst, heat-curable silicone resin composition for sealing photosemiconductors and sealed photosemiconductor using same
US9051435B2 (en) Silanol condensation catalyst, heat-curable silicone resin composition for sealing photosemiconductors and sealed photosemiconductor using same
JP4788837B2 (ja) シリコーン樹脂組成物およびその使用方法、シリコーン樹脂、シリコーン樹脂含有構造体、ならびに光半導体素子封止体
JP5444631B2 (ja) 光半導体素子封止用組成物、その硬化物および光半導体素子封止体
KR101607108B1 (ko) 광반도체 소자 밀봉용 수지 조성물 및 당해 조성물로 밀봉된 광반도체 장치
JP5914991B2 (ja) 加熱硬化性シリコーン樹脂組成物
JP2011202154A (ja) 加熱硬化性光半導体封止用シリコーン樹脂組成物およびこれを用いる光半導体封止体
WO2012117822A1 (ja) 加熱硬化性光半導体封止用シリコーン樹脂組成物およびこれを用いる光半導体パッケージ
KR20140006786A (ko) 광반도체 장치용 밀봉제 및 그것을 이용한 광반도체 장치
JP5600869B2 (ja) 加熱硬化性光半導体封止用樹脂組成物およびこれを用いる光半導体封止体
JP2011219729A (ja) 加熱硬化性シリコーン樹脂組成物およびこれを用いる光半導体封止体
JP5367336B2 (ja) 光拡散性シリコーン樹脂組成物
US20150267053A1 (en) Curable silicone resin composition
JP5678592B2 (ja) 加熱硬化性光半導体封止用シリコーン樹脂組成物およびこれを用いる光半導体封止体
JP4385078B1 (ja) 加熱硬化性光半導体封止用樹脂組成物およびこれを用いる光半導体封止体
JP2012184353A (ja) 加熱硬化性光半導体封止用シリコーン樹脂組成物およびこれを用いる光半導体パッケージ
JP5407258B2 (ja) 接着性光半導体封止用シリコーン樹脂組成物およびこれを用いる光半導体封止体
JP7181035B2 (ja) 光半導体封止用組成物、光半導体装置、オルガノポリシロキサン
JP5435728B2 (ja) 光半導体封止体
TW201527503A (zh) 密封劑組成物及密封劑和電子元件
KR20170023334A (ko) 오르가노 폴리실록산 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019856.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771760

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012511555

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13641703

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011771760

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127027634

Country of ref document: KR

Kind code of ref document: A