WO2011125316A1 - Glass filler - Google Patents

Glass filler Download PDF

Info

Publication number
WO2011125316A1
WO2011125316A1 PCT/JP2011/001961 JP2011001961W WO2011125316A1 WO 2011125316 A1 WO2011125316 A1 WO 2011125316A1 JP 2011001961 W JP2011001961 W JP 2011001961W WO 2011125316 A1 WO2011125316 A1 WO 2011125316A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
composition
oxide
content
acrylic resin
Prior art date
Application number
PCT/JP2011/001961
Other languages
French (fr)
Japanese (ja)
Inventor
藤原浩輔
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2012509309A priority Critical patent/JPWO2011125316A1/en
Publication of WO2011125316A1 publication Critical patent/WO2011125316A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical

Definitions

  • the present invention relates to a glass filler, and more particularly to a glass filler that can be suitably blended in a resin (particularly an acrylic resin).
  • the acrylic resin is a polymer of acrylic ester or methacrylic ester. Acrylic resins are superior in transparency, impact resistance, durability and processability compared to other resin materials, and are used as materials for optical materials.
  • a filler is blended in the acrylic resin.
  • a filler used for the purpose of reinforcing a thermoplastic resin or the like a glass filler having a scale shape, a fiber shape, a powder shape, a bead shape, or the like is known.
  • the glass constituting the glass filler non-alkali silicate glass such as E glass, alkali-containing silicate glass such as C glass, or ordinary soda lime glass is used.
  • the performance of the acrylic resin may be impaired. That is, since the difference between the refractive index of the acrylic resin and the refractive index of the glass filler is large, light is scattered at the interface between the acrylic resin and the glass filler, and the transparency of the acrylic resin is likely to be impaired.
  • Patent Document 1 discloses a high optical constant consistency with a transparent resin having a refractive index of 1.47 to 1.56, such as an epoxy resin, a cyclic olefin resin, and an acrylic resin, and has an affinity for the resin. High glass fibers are disclosed.
  • the glass composition disclosed in Patent Document 1 substantially requires SrO, BaO, or ZnO in order to be actually used as a glass filler.
  • glass compositions not containing SrO, BaO and ZnO are also disclosed (Examples 7, 8, and 10). Are devitrified and have insufficient water resistance (Example 7), and the working temperature (molding temperature) is too high (Examples 8 and 10).
  • the raw materials for SrO and BaO are generally expensive, which contributes to an increase in glass manufacturing costs. In addition, these raw materials need to be handled with care. Furthermore, since ZnO is a volatile component, it may be scattered when the glass is melted, and the composition of the glass varies, making it difficult to control the quality of the glass composition. Therefore, it is desirable to configure the glass filler with a glass composition that does not require SrO, BaO, and ZnO.
  • An object of the present invention is to provide a glass filler that is made of a glass composition that does not require SrO, BaO, and ZnO, and that can be suitably blended in a resin (particularly an acrylic resin).
  • the present invention is expressed in mass%, 55 ⁇ SiO 2 ⁇ 75, 5 ⁇ B 2 O 3 ⁇ 10, 5 ⁇ Al 2 O 3 ⁇ 15, Provided is a glass filler comprising a glass composition containing a component of 13 ⁇ Na 2 O ⁇ 20.
  • the present invention also provides another aspect
  • the glass raw material is melted and expressed in mass%. 55 ⁇ SiO 2 ⁇ 75, 5 ⁇ B 2 O 3 ⁇ 10, 5 ⁇ Al 2 O 3 ⁇ 15, Obtaining a glass melt containing a component of 13 ⁇ Na 2 O ⁇ 20;
  • the manufacturing method of the glass filler including the process of shape
  • the glass composition constituting the glass filler of the present invention contains silicon dioxide (SiO 2 ), diboron trioxide (B 2 O 3 ), aluminum oxide (Al 2 O 3 ), and sodium oxide (Na 2 O). .
  • the content of silicon dioxide, diboron trioxide, and aluminum oxide is set to 55 ⁇ SiO 2 ⁇ 75, 5 ⁇ B 2 O 3 ⁇ 10, and 5 ⁇ Al 2 O 3 ⁇ 15 in mass%. Yes. For this reason, it fully expresses the function of forming the skeleton of glass, realizes good meltability, high water resistance and high acid resistance, and adjusts the refractive index of glass within the range suitable for blending with acrylic resin can do.
  • the content rate of sodium oxide is set to 13 ⁇ Na 2 O ⁇ 20 in mass%. For this reason, the devitrification temperature and viscosity at the time of glass formation can be made favorable.
  • Strontium oxide and barium oxide are not essential components of the glass composition. Therefore, the manufacturing cost of glass can be suppressed, and special considerations when handling raw materials can be omitted.
  • Zinc oxide is not an essential component of the glass composition. Therefore, scattering at the time of melting of the glass can be suppressed, variation in the composition of the glass can be suppressed, and a glass composition having a predetermined composition can be easily manufactured.
  • the melting point of the glass can be lowered, the glass can be easily homogenized, and the load on the glass production apparatus can be reduced. Since the glass filler of this invention has favorable and stable quality, it can mix
  • FIG. 1A is a perspective view schematically showing scale-like glass in the embodiment
  • FIG. 1B is a plan view showing scale-like glass.
  • FIG. 2 is a cross-sectional view schematically showing a scaly glass manufacturing apparatus.
  • FIG. 3 is an explanatory view showing a spinning device for producing chopped strands.
  • FIG. 4 is an explanatory view showing an apparatus for producing chopped strands from a strand wound body obtained by the spinning apparatus of FIG.
  • the glass composition constituting the glass filler of the present embodiment includes silicon dioxide (SiO 2 ), diboron trioxide (B 2 O 3 ), aluminum oxide (alumina, Al 2 O 3 ), and sodium oxide (Na 2 O). Is contained as an essential component. The content of each component is expressed as mass%, and is set to 55 ⁇ SiO 2 ⁇ 75, 5 ⁇ B 2 O 3 ⁇ 10, 5 ⁇ Al 2 O 3 ⁇ 15, and 13 ⁇ Na 2 O ⁇ 20. .
  • Silicon dioxide (SiO 2 ) is a main component that forms a glass skeleton.
  • the “main component” means a component having the largest content.
  • Silicon dioxide is a component that adjusts the devitrification temperature and viscosity of the glass.
  • Silicon dioxide is also a component that improves water resistance and acid resistance.
  • Silicon dioxide is also a component that adjusts the refractive index of the glass. If the content rate of silicon dioxide is 55% or more, an increase in the devitrification temperature can be suppressed and a glass without devitrification can be easily produced. If the silicon dioxide content is 55% or more, the water resistance and acid resistance of the glass can be improved.
  • the refractive index of glass can be adjusted within a range suitable for blending with an acrylic resin. If the content rate of silicon dioxide is 75% or less, the melting point of the glass is lowered, and the glass is easily melted uniformly.
  • the content of silicon dioxide is 55% or more, preferably 58% or more, more preferably more than 60%, particularly preferably 62% or more, and most preferably more than 65%.
  • the content of silicon dioxide is 75% or less, preferably less than 74%, more preferably 72% or less, and most preferably 70% or less.
  • the content of silicon dioxide is selected so as to be within a range in which these upper and lower limits are arbitrarily combined.
  • the silicon dioxide content is preferably 58 to 75%, more preferably 58 to 72%.
  • Diboron trioxide (B 2 O 3 ) is a component that forms the skeleton of the glass, and is also a component that adjusts the devitrification temperature and viscosity during glass formation. By containing diboron trioxide, an effect of lowering the melting point of the glass can be obtained, so that the glass raw material can be easily melted uniformly. While diboron trioxide is a component that improves water resistance, it is also a component that deteriorates acid resistance. Diboron trioxide is also a component that adjusts the refractive index of the glass. If the content rate of diboron trioxide is 5% or more, adjustment of devitrification temperature and a viscosity and improvement of water resistance will become easy. When the content ratio of diboron trioxide exceeds 10%, the furnace walls of the melting kiln and the heat storage kiln are eroded when the glass is melted, and the lifetime of the kiln can be significantly reduced.
  • the content of diboron trioxide is 5% or more, preferably 5.5% or more, more preferably more than 6%, and most preferably 6.5% or more.
  • the content of diboron trioxide is 10% or less, preferably 9% or less, and more preferably less than 8%.
  • the content of diboron trioxide is selected so as to be within a range in which these upper and lower limits are arbitrarily combined.
  • the content of diboron trioxide is preferably 5 to 9%, and more preferably 5.5 to 9%.
  • Aluminum oxide (Al 2 O 3 ) is a component that forms a glass skeleton.
  • Aluminum oxide is a component that adjusts the devitrification temperature and viscosity of glass. While aluminum oxide is a component that improves water resistance, it is also a component that deteriorates acid resistance.
  • Aluminum oxide is also a component that adjusts the refractive index of glass. If the content of aluminum oxide is 5% or more, adjustment of the devitrification temperature and viscosity and improvement of water resistance are facilitated. If the content rate of aluminum oxide is 15% or less, the melting point of the glass is lowered, the glass is easily melted uniformly, and the acid resistance of the glass is also improved.
  • the content of aluminum oxide is 5% or more, preferably more than 5%, more preferably 6% or more, further preferably 7% or more, and most preferably more than 8%.
  • the content of aluminum oxide is 15% or less, preferably 14% or less, more preferably 13% or less, and most preferably less than 12%.
  • the range of the content of aluminum oxide is selected so as to be within a range in which these upper limit and lower limit are arbitrarily combined.
  • the content of aluminum oxide is preferably 6 to 14%, more preferably 7 to 13%.
  • Sodium oxide (Na 2 O) is a component that adjusts the devitrification temperature and viscosity of the glass. If the content rate of sodium oxide is 13% or more, the devitrification temperature and the viscosity can be easily adjusted. If the content rate of sodium oxide is 20% or less, the glass transition temperature becomes high, the heat resistance of the glass is improved, and the water resistance and acid resistance of the glass are also improved.
  • the content of sodium oxide is 13% or more, preferably more than 13%, more preferably 14% or more, and further preferably more than 15%.
  • the content of sodium oxide is 20% or less, preferably 19% or less, more preferably 18% or less, and most preferably less than 17%.
  • the content of sodium oxide is selected so as to be within a range in which these upper and lower limits are arbitrarily combined.
  • the content of sodium oxide is preferably 14 to 19%, more preferably 14 to 18%.
  • the refractive index of the glass When importance is attached to the ease of adjusting the refractive index of the glass, the sum of the contents of silicon dioxide and aluminum oxide (SiO 2 + Al 2 O 3 ), which are the components that form the glass skeleton, is important.
  • the refractive index of the glass can be adjusted within a range suitable for blending with an acrylic resin. If the total content of silicon dioxide and aluminum oxide (SiO 2 + Al 2 O 3 ) is 80% or less, the melting point of the glass is lowered and the glass is easily melted uniformly.
  • the total content of silicon dioxide and aluminum oxide (SiO 2 + Al 2 O 3 ) is 60% or more, preferably more than 60%, more preferably 64% or more, and further preferably more than 68%. , More preferably greater than 72% and most preferably greater than 73%.
  • the total content of silicon dioxide and aluminum oxide (SiO 2 + Al 2 O 3 ) is preferably 80% or less, more preferably 79% or less, and even more preferably 78% or less.
  • the total content of silicon dioxide and aluminum oxide (SiO 2 + Al 2 O 3 ) is selected to be within a range that arbitrarily combines these upper and lower limits.
  • Diphosphorus pentoxide (P 2 O 5 ) is an optional component.
  • the glass composition may further contain diphosphorus pentoxide.
  • Diphosphorus pentoxide is a component that forms the skeleton of glass, and is a component that adjusts the devitrification temperature and viscosity during glass formation, while also deteriorating water resistance.
  • Diphosphorus pentoxide is also a component that adjusts the refractive index of the glass. If the content of diphosphorus pentoxide is 10% or less, adjustment of devitrification temperature and viscosity and improvement of water resistance are facilitated, and the refractive index of the glass is within a range suitable for blending with an acrylic resin. Can be adjusted.
  • the content of diphosphorus pentoxide is preferably 0.1% or more, more preferably 0.5% or more, and most preferably 1% or more.
  • the content of diphosphorus pentoxide is preferably 10% or less, more preferably 8% or less, and even more preferably 5% or less.
  • the content of diphosphorus pentoxide is preferably 0.1 to 10%, and more preferably 0.1 to 8%.
  • Magnesium oxide (MgO) is an optional component.
  • the glass composition may further contain magnesium oxide.
  • Magnesium oxide is a component that adjusts the devitrification temperature and viscosity of the glass.
  • Magnesium oxide is also a component that adjusts the refractive index of the glass. If the content of magnesium oxide is 5% or less, it is possible to suppress the increase in devitrification temperature and easily produce glass without devitrification, and the refractive index of glass is suitable for blending with acrylic resin. Can be adjusted within the range.
  • the content of magnesium oxide is preferably 0.1% or more, and more preferably 0.5% or more.
  • the content of magnesium oxide is preferably 5% or less, more preferably less than 5%, further preferably 4% or less, particularly preferably less than 3%, and most preferably less than 2%.
  • the content of magnesium oxide is selected so as to be within a range in which these upper and lower limits are arbitrarily combined.
  • the content of magnesium oxide is preferably 0.1 to 5%, more preferably 0.1 to 4%.
  • Calcium oxide (CaO) is an optional component.
  • the glass composition may further contain calcium oxide.
  • Calcium oxide is a component that adjusts the devitrification temperature and viscosity of glass.
  • Calcium oxide is also a component that adjusts the refractive index of glass. If the content of calcium oxide is 5% or less, an increase in the devitrification temperature can be suppressed, and a glass without devitrification can be easily produced, and the refractive index of the glass is suitable for blending into an acrylic resin. Can be adjusted within the range.
  • the content of calcium oxide is preferably 5% or less, more preferably less than 5%, still more preferably 2% or less, particularly preferably less than 1%, and most preferably less than 0.5%.
  • the glass composition may further include magnesium oxide and / or calcium oxide.
  • the total content of magnesium oxide and calcium oxide (MgO + CaO) is 5% or less, the increase in the devitrification temperature can be suppressed, and a glass without devitrification can be easily produced. It can adjust in the range suitable for the mixing
  • the total content of magnesium oxide and calcium oxide (MgO + CaO) is preferably 0.1% or more, and more preferably 0.5% or more.
  • the total content of magnesium oxide and calcium oxide (MgO + CaO) is preferably 5% or less, more preferably less than 5%, still more preferably 4% or less, particularly preferably less than 4%, most preferably less than 3%, and 2% It may be less.
  • the total content of magnesium oxide and calcium oxide (MgO + CaO) is selected so as to be within a range in which these upper and lower limits are arbitrarily combined.
  • the total content of magnesium oxide and calcium oxide (MgO + CaO) is preferably 0.1 to 4%, more preferably 0.5 to 4%.
  • Lithium oxide (Li 2 O) is an optional component.
  • Lithium oxide is a component that adjusts the devitrification temperature and viscosity of the glass. When the content of lithium oxide exceeds 5%, the glass transition temperature is lowered, the heat resistance of the glass is deteriorated, and the water resistance and acid resistance of the glass are also deteriorated. When the content of lithium oxide exceeds 5%, it becomes difficult to adjust the refractive index of the glass within a range suitable for blending with an acrylic resin.
  • the content of lithium oxide is preferably 5% or less, more preferably less than 2%, further preferably less than 1%, particularly preferably less than 0.5%, and most preferably not substantially contained. .
  • Potassium oxide (K 2 O) is an optional component. Potassium oxide is a component that adjusts the devitrification temperature and viscosity of the glass. If the content rate of potassium oxide is 5% or less, a glass transition temperature will become high and the heat resistance of glass will improve. When the content of potassium oxide is 5% or less, the water resistance and acid resistance of the glass are improved, and the refractive index of the glass can be adjusted within a range suitable for blending with an acrylic resin.
  • the content of potassium oxide is preferably 5% or less, more preferably less than 2%, further preferably less than 1%, and particularly preferably less than 0.5%.
  • the sum of the content of sodium oxide is a component that adjusts the devitrification temperature and viscosity when forming glass (Na 2 O) and potassium oxide (K 2 O) (Na 2 O + K 2 O) is important.
  • the total content of sodium oxide and potassium oxide (Na 2 O + K 2 O) is 13% or more, the devitrification temperature and the viscosity can be easily adjusted. If the total content of sodium oxide and potassium oxide (Na 2 O + K 2 O) is 20% or less, the glass transition temperature is increased, the heat resistance of the glass is improved, and the water resistance and acid resistance of the glass are also improved. .
  • the total content of sodium oxide and potassium oxide is 13% or more, preferably more than 13%, more preferably 14% or more, and further preferably more than 15%.
  • the total content of sodium oxide and potassium oxide (Na 2 O + K 2 O) is preferably 20% or less, more preferably 19% or less, further preferably 18% or less, and most preferably less than 17%.
  • the total content of sodium oxide and potassium oxide (Na 2 O + K 2 O) is selected so as to be within a range in which these upper and lower limits are arbitrarily combined.
  • the total content of sodium oxide and potassium oxide (Na 2 O + K 2 O) is preferably 14 to 19%, more preferably 14 to 18%.
  • alkali metal oxides lithium oxide (Li 2 O), sodium oxide (Na 2 O), potassium oxide, which are components for adjusting the devitrification temperature and viscosity during glass formation
  • the sum of the contents of (K 2 O)] (Li 2 O + Na 2 O + K 2 O) is important.
  • the total content of lithium oxide, sodium oxide and potassium oxide Li 2 O + Na 2 O + K 2 O
  • the devitrification temperature and viscosity can be easily adjusted. If the total content of lithium oxide, sodium oxide and potassium oxide (Li 2 O + Na 2 O + K 2 O) is 20% or less, the glass transition temperature is increased, the heat resistance of the glass is improved, the water resistance of the glass and Acid resistance is also improved.
  • the total content of lithium oxide, sodium oxide and potassium oxide is 13% or more, preferably more than 13%, more preferably 14% or more, and more than 15%. More preferably.
  • the total content of lithium oxide, sodium oxide and potassium oxide is preferably 20% or less, more preferably 19% or less, further preferably 18% or less, and less than 17%. Most preferred.
  • the total content of lithium oxide, sodium oxide and potassium oxide is selected so as to be within a range in which these upper and lower limits are arbitrarily combined.
  • the total content of lithium oxide, sodium oxide and potassium oxide (Li 2 O + Na 2 O + K 2 O) is preferably 14 to 19%, more preferably 14 to 18%.
  • Titanium oxide (TiO 2 ) is an optional component. Titanium oxide is a component that adjusts the devitrification temperature and viscosity of the glass. When the content of titanium oxide exceeds 5%, the devitrification temperature of the glass rises excessively, making it difficult to produce the glass, and adjusting the refractive index of the glass within a range suitable for blending with an acrylic resin. It becomes difficult to do.
  • the content of titanium oxide is preferably 5% or less, more preferably less than 2%, further preferably less than 1%, particularly preferably less than 0.5%, and most preferably not substantially contained. .
  • Zirconium oxide (ZrO 2 ) is an optional component.
  • Zirconium oxide is a component that adjusts the devitrification temperature and viscosity of the glass. If the content of zirconium oxide exceeds 5%, the devitrification temperature of the glass rises too much, making it difficult to produce the glass and adjusting the refractive index of the glass within a range suitable for blending with an acrylic resin. It becomes difficult to do.
  • the content of zirconium oxide is preferably 5% or less, more preferably less than 2%, further preferably less than 1%, particularly preferably less than 0.5%, and most preferably not substantially contained. .
  • Iron (Fe) is an optional component. Iron (Fe) contained in glass usually exists in the state of Fe 3+ or Fe 2+ . Fe 3+ is a component that improves the ultraviolet absorption property of the glass, and Fe 2+ is a component that improves the heat ray absorption property of the glass. Even if iron is not intentionally included, it may inevitably be mixed into the glass composition from other industrial raw materials. If there is little iron content, coloring of glass can be prevented. When an acrylic resin molded body is obtained by blending a glass filler with a highly transparent acrylic resin, the transparency of the acrylic resin molded body is not impaired if the iron content in the glass filler is small.
  • the content of iron is small, preferably 0.5% or less, more preferably 0.1% or less, and substantially not containing iron ferric trioxide (Fe 2 O 3 ). preferable.
  • Sulfur trioxide (SO 3 ) is an optional component, but may be used as a fining agent. When a sulfate raw material is used, sulfur trioxide may be contained in the glass composition at a content of 0.5% or less.
  • Strontium oxide (SrO) requires high care for handling the raw material and is expensive. Therefore, it is preferable that strontium oxide is not substantially contained.
  • Barium oxide (BaO) requires high care for handling the raw material and is expensive. Therefore, it is preferable that barium oxide is not substantially contained.
  • zinc oxide (ZnO) Since zinc oxide (ZnO) is easily volatilized, it may be scattered when the glass is melted, and there is also a problem that it is difficult to control the content in the glass. Therefore, it is preferable that zinc oxide is not substantially contained.
  • the glass composition does not substantially contain SrO, BaO and ZnO.
  • fluorine (F, Cl, Br, I) Since fluorine (F) is easily volatilized, there is a possibility that the fluorine (F) may be scattered at the time of melting, and it is difficult to control the content in the glass. Therefore, it is preferable that fluorine is not substantially contained.
  • chlorine is easily volatilized, there is a possibility that it may be scattered at the time of melting, and it is difficult to control the content in the glass. Therefore, it is preferable that chlorine is not substantially contained.
  • bromine (Br) is easy to volatilize, there is a possibility that it will be scattered at the time of melting, and it is difficult to control the content in glass. Therefore, it is preferable that bromine is not substantially contained.
  • iodine (I) Since iodine (I) is easily volatilized, it may be scattered when melted, and it is difficult to control the content in the glass. Therefore, it is preferable that iodine is not substantially contained.
  • the total content of fluorine, chlorine, bromine and iodine is preferably less than 0.01%.
  • lead oxide (PbO) It is preferable that lead oxide (PbO) is not substantially contained because it requires consideration for handling of the raw material.
  • Tin (Sn) contained in the glass usually exists in the state of Sn 2+ or Sn 4+ . It is preferable that tin is not substantially contained since the handling of the raw material needs to be considered.
  • the content of tin (Sn) is preferably less than 0.01% in terms of tin dioxide (SnO 2 ).
  • Arsenic (As) contained in the glass usually exists in the state of As 3+ or As 5+ .
  • Arsenic is preferably not substantially contained because it requires careful handling of the raw material.
  • the content of arsenic is preferably less than 0.01% in terms of diarsenic trioxide (As 2 O 3 ).
  • Antimony (Sb) contained in the glass is usually present in the state of Sb 3+ or Sb 5+ . It is preferable that antimony is not substantially contained since the handling of the raw material needs to be considered.
  • the content of antimony is preferably less than 0.01% in terms of diantimony trioxide (Sb 2 O 3 ).
  • the total (As 2 O 3 + Sb 2 O 3 ) of the content when arsenic is converted to diarsenic trioxide and the content when antimony is converted to antimony trioxide is less than 0.01%. It is preferable.
  • substantially does not contain means that it is not intentionally included unless it is inevitably mixed from industrial raw materials, for example.
  • the phrase “not containing substantially” means that the content is less than 0.1%, preferably less than 0.05%, more preferably less than 0.03%, and most preferably less than 0.01%. Means.
  • the glass filler of the present invention contains silicon dioxide, diboron trioxide, aluminum oxide and sodium oxide as essential components.
  • the glass filler of the present invention may be composed of only these essential components, or, in addition to these essential components, diphosphorus pentoxide, magnesium oxide, calcium oxide, lithium oxide, and oxidation, if necessary.
  • Potassium, titanium oxide, zirconium oxide, iron oxide (FeO, Fe 2 O 3 ) and sulfur trioxide may be contained.
  • the following components may be contained or expressed substantially by the following components, expressed in terms of mass%. In this specification, “substantially constituted” means that other components are not substantially contained.
  • the temperature at which the viscosity of the molten glass is 1000 dPa ⁇ sec (1000 poise) is called the working temperature of the glass, and is the most suitable temperature for glass molding.
  • the working temperature is 1100 ° C. or higher, the variation in the glass flake thickness or glass fiber diameter can be reduced. If the working temperature is 1300 ° C. or lower, the fuel cost for melting the glass can be reduced, the glass manufacturing apparatus is less susceptible to corrosion due to heat, and the life of the apparatus is extended.
  • the working temperature is preferably 1100 ° C. or higher, more preferably 1150 ° C. or higher.
  • the working temperature is preferably 1300 ° C or lower, more preferably 1280 ° C or lower, further preferably 1260 ° C or lower, and most preferably 1250 ° C or lower.
  • the working temperature is selected to be within a range that arbitrarily combines these upper and lower limits.
  • the working temperature is preferably 1100 to 1300 ° C, more preferably 1100 to 1280 ° C, and even more preferably 1150 to 1280 ° C.
  • ⁇ T is preferably 0 ° C. or higher, more preferably 50 ° C. or higher, further preferably 100 ° C. or higher, particularly preferably 150 ° C. or higher, most preferably 200 ° C. or higher, and may be 300 ° C. or higher. If ⁇ T is 600 ° C. or less, the glass composition can be easily adjusted. Therefore, ⁇ T is preferably 600 ° C. or lower, more preferably 550 ° C. or lower, and further preferably 500 ° C. or lower. For example, ⁇ T is preferably 50 to 600 ° C., more preferably 200 to 600 ° C., and further preferably 300 to 550 ° C.
  • devitrification means that white turbidity is generated by crystals formed and grown in a molten glass substrate.
  • a crystallized lump may exist in the glass filler manufactured from such a molten glass substrate.
  • Such a glass filler is not preferable as a filler blended in an acrylic resin.
  • the refractive index of a glass composition is near the refractive index of an acrylic resin.
  • the acrylic resin usually has a refractive index n d of about 1.490 to 1.495 when measured with yellow helium d-line (light wavelength 587.6 nm).
  • the refractive index n d of the glass composition is preferably from 1.480 to 1.505, more preferably from 1.483 to 1.502, and even more preferably from 1.485 to 1.500.
  • the difference in refractive index between the glass composition and the acrylic resin is preferably 0.010 or less, more preferably 0.007 or less, still more preferably 0.005 or less, and most preferably 0.002 or less.
  • the refractive index of the glass filler is preferably close to the refractive index of the acrylic resin.
  • the acrylic resin usually has a refractive index n D of about 1.490 to 1.495 as measured with yellow sodium D line (wavelength of light 589.3 nm).
  • the refractive index n D of the glass filler is preferably from 1.480 to 1.505, more preferably from 1.483 to 1.502, and even more preferably from 1.485 to 1.500.
  • the difference in refractive index between the glass filler and the acrylic resin is preferably 0.010 or less, more preferably 0.005 or less, still more preferably 0.003 or less, and most preferably 0.002 or less.
  • a glass composition is excellent in chemical durability, such as acid resistance, water resistance, and alkali resistance.
  • the alkali elution amount described later is adopted, and the smaller the alkali elution amount, the higher the water resistance.
  • the alkali elution amount of the glass composition is preferably 0.2 mg or less, and more preferably 0.1 mg or less.
  • the alkali elution amount of the glass composition is preferably 0.001 to 0.20 mg, for example.
  • the glass filler comprised with such a glass composition can be suitably mix
  • the glass filler of this invention can be manufactured by shape
  • the glass composition is formed into a glass filler having a predetermined shape, such as scale-like glass, chopped strands, milled fiber, glass powder, and glass beads.
  • the glass filler of the present invention preferably has a form corresponding to at least one selected from flaky glass, chopped strands, milled fiber, glass powder and glass beads. However, these forms are not strictly distinguished from each other. Moreover, you may use as a filler combining 2 or more types of glass fillers which have a mutually different form.
  • FIG. 1A is a perspective view schematically showing scaly glass
  • FIG. 1B is a plan view showing the scaly glass
  • the flaky glass 10 is, for example, a flaky shape having an average thickness t of 0.1 to 15 ⁇ m, an average particle diameter a of 0.2 to 15000 ⁇ m, and an aspect ratio (average particle diameter a / average thickness t) of 2 to 1000. Particles.
  • S in FIG. 1B is an area when the scale-like glass 10 is viewed in plan.
  • the average thickness of the glass flakes is that at least 100 glass flakes are extracted, the thickness of these glass flakes is measured using a scanning electron microscope (SEM), and the total thickness is calculated as follows: It is the value divided by the number of measured glass flakes.
  • the average particle diameter of the glass flakes is a particle diameter (D50) corresponding to a cumulative volume percentage of 50% in the particle size distribution measured based on the laser diffraction scattering method.
  • the scaly glass 10 can be manufactured using, for example, a manufacturing apparatus shown in FIG. As shown in FIG. 2, the glass substrate 11 having a predetermined composition melted in the refractory kiln 12 is swelled in a balloon shape by the gas fed into the blow nozzle 13 to become a hollow glass film 14. By crushing the hollow glass film 14 with a pair of pressing rolls 15, the scale-like glass 10 is obtained.
  • the chopped strand used as the glass filler is a glass fiber having a fiber diameter of 1 to 50 ⁇ m and an aspect ratio (fiber length / fiber diameter) of 2 to 1000.
  • the chopped strand can be manufactured using, for example, the apparatus shown in FIGS.
  • a glass substrate having a predetermined composition that is melted in a refractory kiln is drawn out from a bushing 20 having a large number (for example, 2400) nozzles at the bottom to form a large number of glass filaments 21. .
  • a binder (bundling agent) 24 is applied by the application roller 23 of the binder applicator 22.
  • a large number of glass filaments 21 to which the binder 24 is applied are focused by a reinforcing pad 25 as three strands 26 each made of, for example, about 800 glass filaments 21.
  • Each strand 26 is wound around a cylindrical tube 29 fitted to a collet 28 while traversing with a traverse finger 27. Then, the cylindrical tube 29 around which the strand 26 is wound is removed from the collet 28 to obtain a cake (strand wound body) 30.
  • the cake 30 is accommodated in the creel 31, the strand 26 is pulled out from the cake 30, and bundled as a strand bundle 33 by the focusing guide 32.
  • Water or a treatment liquid is sprayed onto the strand bundle 33 from the spraying device 34.
  • the strand bundle 33 is cut by the rotary blade 36 of the cutting device 35 to obtain a chopped strand 37.
  • Milled fiber used as a glass filler is a glass fiber having a fiber diameter of 1 to 50 ⁇ m and an aspect ratio (fiber length / fiber diameter) of 2 to 500. Such a milled fiber can be produced according to a known method.
  • Glass powder is produced by pulverizing glass.
  • the average particle size of the glass powder is preferably 1 to 500 ⁇ m.
  • the average particle diameter is defined as the diameter of a sphere having the same volume as the glass powder particles.
  • Such glass powder can be produced according to a known method.
  • Glass beads are manufactured by molding a glass composition into a spherical shape or a shape close thereto.
  • the particle size of the glass beads is preferably 1 to 500 ⁇ m.
  • the particle diameter is defined as the diameter of a sphere having the same volume as the glass bead particle.
  • Such glass beads can be produced according to a known method.
  • an acrylic resin composition having excellent performance By blending the glass filler obtained from the glass composition into the acrylic resin, an acrylic resin composition having excellent performance can be obtained.
  • the glass filler of the present invention has a small difference in refractive index from the acrylic resin, little elution of alkali components, and excellent chemical durability. Therefore, the acrylic resin composition containing the acrylic resin and the glass filler of the present invention has both transparency equivalent to the acrylic resin, mechanical strength and heat resistance superior to the acrylic resin.
  • the acrylic resin composition can be produced according to a known method. Specifically, an acrylic resin and a glass filler may be melt-kneaded while heating using a mixer or the like. A publicly known thing can be used as an acrylic resin. As described above, the glass filler blended in the acrylic resin is not limited to one type of glass filler, and a plurality of types of glass fillers may be used in combination. In order to improve the performance of the acrylic resin composition, various coupling agents and additives may be blended as necessary.
  • the melt kneading temperature is preferably not higher than the heat resistance temperature of the acrylic resin.
  • a molded product obtained by molding such an acrylic resin composition can be suitably used for optical materials, electrical equipment, automobile parts, building materials, and the like.
  • the molding may be performed according to a known method, and an extrusion molding method, an injection molding method, a press molding method, a sheet molding method by calendar molding, or the like is employed.
  • molding is below the heat-resistant temperature of an acrylic resin.
  • the glass composition of the present embodiment is expressed in mass%, and the content of silicon dioxide, diboron trioxide and aluminum oxide is 55 ⁇ SiO 2 ⁇ 75, 5 ⁇ B 2 O 3 ⁇ 10 and 5 ⁇ Al 2 O 3 ⁇ 15 is set.
  • the function of forming the glass skeleton by silicon dioxide, boron oxide and aluminum oxide can be fully expressed, the meltability is good, the water resistance and acid resistance can be improved, and the refractive index is changed to acrylic resin. It can be adjusted to a state suitable for blending.
  • the content rate of sodium oxide is set to 13 ⁇ Na 2 O ⁇ 20.
  • the devitrification temperature and viscosity at the time of glass formation can be made favorable.
  • fusing point of a glass composition can be lowered
  • the working temperature of the glass composition is 1100 to 1300 ° C., it is possible to suppress variations in thickness and fiber diameter when glass fillers are manufactured, and to suppress corrosion of glass manufacturing equipment and to reduce equipment life. Can be extended.
  • the strength of the acrylic resin composition decreases when the alkali elution amount, which is an index of water resistance of the glass composition, is 0.001 to 0.20 mg. Will not be caused.
  • the glass filler for acrylic resin can be easily formed from the above glass composition. Specifically, the glass filler for acrylic resin is molded by melting a glass composition and then processing it into a predetermined shape. As the form of the glass filler for acrylic resin, at least one form selected from flaky glass, chopped strands, milled fiber, glass powder and glass beads is suitably employed.
  • the acrylic resin composition contains an acrylic resin and the above glass filler for acrylic resin.
  • a molded product formed by molding this acrylic resin composition is excellent in transparency, mechanical strength, heat resistance and the like.
  • Examples 1 to 35 and Comparative Examples 1 to 9 Conventional glass raw materials such as silica sand were prepared so as to have the compositions shown in Tables 1 to 5, and batches of glass raw materials were prepared for each of Examples and Comparative Examples. Using an electric furnace, each batch was heated to 1400-1600 ° C. to melt and maintained for about 4 hours until the composition became uniform. Thereafter, the molten glass (glass melt) was poured onto an iron plate and gradually cooled to room temperature in an electric furnace to obtain a glass composition (plate-like product) as a bulk.
  • the relationship between viscosity and temperature was examined by a normal platinum ball pulling method, and the working temperature was determined from the result.
  • the platinum ball pulling method refers to the relationship between the load (resistance) and the gravity and buoyancy acting on the platinum sphere when the platinum sphere is immersed in molten glass and the platinum sphere is pulled up at a constant speed.
  • the viscosity is measured by applying the Stokes law, which shows the relationship between the viscosity and the falling speed when fine particles settle in the fluid.
  • a glass composition pulverized to a particle size of 1.0 to 2.8 mm is placed in a platinum boat and held in an electric furnace provided with a temperature gradient (800 to 1400 ° C.) for 2 hours.
  • the devitrification temperature was determined from the maximum temperature of the corresponding electric furnace.
  • the particle diameter is a value measured by a sieving method. Note that different temperatures (temperature distribution in the electric furnace) depending on the location in the electric furnace are measured in advance, and the glass placed in a predetermined location in the electric furnace is measured in advance. Heated at the place temperature.
  • ⁇ T is a temperature difference obtained by subtracting the devitrification temperature from the working temperature.
  • the glass composition by using a Pulfrich refractometer was measured refractive index n d of yellow helium d line (wavelength of light 587.6 nm).
  • the alkali elution amount was measured by a method based on “Test method R 3502-1995 for glassware for chemical analysis” of Japanese Industrial Standard (JIS).
  • JIS Japanese Industrial Standard
  • the glass powder obtained by pulverizing the glass sample is passed through a standard mesh sieve specified in JIS Z 8801, passed through a standard mesh sieve with an opening of 420 ⁇ m, and the glass powder remaining in the standard mesh sieve with an opening of 250 ⁇ m is the specific gravity of the glass. Weighed the same gram quantity. After this glass powder was immersed in 50 mL of distilled water at 100 ° C. for 1 hour, the alkaline component in this aqueous solution was titrated with 0.01 N sulfuric acid.
  • the working temperature of the glass compositions obtained in Examples 1 to 35 was 1167 ° C. to 1270 ° C. This is a temperature suitable for molding a glass filler.
  • ⁇ T (working temperature ⁇ devitrification temperature) of the glass compositions obtained in Examples 1 to 35 was 222 ° C. to 469 ° C. This is a temperature difference at which glass devitrification does not occur in the glass filler manufacturing process.
  • Refractive index n d of the glass composition obtained in Examples 1 to 35 was from 1.494 to 1.505.
  • the alkali elution amount of the glass compositions obtained in Examples 1 to 35 was 0.02 to 0.13 mg.
  • the glass composition obtained in Comparative Example 1 had the composition of a conventional plate glass, and the content ratios of B 2 O 3 and Al 2 O 3 were outside the composition range defined in the present invention. Therefore, the refractive index n d of the glass composition obtained in Comparative Example 1 was 1.517, which was higher than the refractive index n d of the glass compositions obtained in Examples 1 to 35. Further, the alkali elution amount of the glass composition obtained in Comparative Example 1 was 0.43 mg, which was larger than the alkali elution amount of the glass compositions obtained in Examples 1 to 35.
  • the glass composition obtained in Comparative Example 2 has the composition of a conventional C glass, and the content of B 2 O 3 , Al 2 O 3 and Na 2 O is outside the composition range specified in the present invention. there were. Therefore, the refractive index n d of the glass composition obtained in Comparative Example 2 was 1.523, which was higher than the refractive index n d of the glass compositions obtained in Examples 1 to 35.
  • the glass composition obtained in Comparative Example 3 had a composition of conventional E glass, and the content ratios of SiO 2 and Na 2 O were outside the composition range defined in the present invention. Therefore, the refractive index n d of the glass composition obtained in Comparative Example 3 was 1.561, which was higher than the refractive index n d of the glass compositions obtained in Examples 1 to 35.
  • the glass compositions obtained in Comparative Examples 4 to 6 were respectively SrO, BaO and ZnO described in Example 7, Example 8 and Example 10 of JP 2008-255002 (Patent Document 1). It has the same composition as glass that does not contain.
  • the contents of B 2 O 3 , Al 2 O 3 and Na 2 O were outside the composition range specified in the present invention. Therefore, in Comparative Example 4, a homogeneous glass composition could not be obtained due to the devitrification of the glass.
  • the glass composition obtained in Comparative Example 4 has the same composition as that of the glass disclosed in Example 7 of JP 2008-255002 A (Patent Document 1).
  • Patent Document 1 the refractive index and the Abbe number of glass are measured, and it is described that the glass fiber can be formed without causing yarn breakage due to devitrification. However, when the inventor made additional trials, devitrification occurred and spinning could not be performed.
  • the glass composition of Comparative Example 4 is considered to be a composition that has high devitrification properties and can be spun only under severely limited conditions.
  • the alkali elution amount of the glass composition obtained in Comparative Example 4 was 0.25 mg, which was larger than the alkali elution amount of the glass composition obtained in Examples 1 to 35.
  • the glass composition obtained in Comparative Example 5 had a Na 2 O content outside the composition range defined in the present invention. For this reason, the working temperature of the glass composition obtained in Comparative Example 5 was 1350 ° C., which was higher than the working temperature of the glass compositions obtained in Examples 1 to 35.
  • the refractive index n d of the glass composition obtained in Comparative Example 5 was 1.512, which was higher than the refractive index n d of the glass compositions obtained in Examples 1 to 35.
  • the content ratios of B 2 O 3 , Al 2 O 3 and Na 2 O were outside the composition range defined in the present invention. For this reason, the working temperature of the glass composition obtained in Comparative Example 6 was 1305 ° C., which was higher than the working temperature of the glass compositions obtained in Examples 1 to 35.
  • the glass composition obtained in Comparative Example 7 had a Na 2 O content outside the composition range defined in the present invention. Therefore, the working temperature of the glass composition obtained in Comparative Example 7 was 1073 ° C., which was lower than the working temperature of the glass compositions obtained in Examples 1 to 35.
  • the refractive index n d of the glass composition obtained in Comparative Example 7 was 1.510, which was higher than the refractive index n d of the glass compositions obtained in Examples 1 to 35.
  • the alkali elution amount of the glass composition obtained in Comparative Example 7 was 3.49 mg, which was larger than the alkali elution amount of the glass compositions obtained in Examples 1 to 35.
  • the working temperature of the glass composition obtained in Comparative Example 8 was 1313 ° C., which was higher than the working temperature of the glass compositions obtained in Examples 1 to 35.
  • the glass composition obtained in Comparative Example 9 had a B 2 O 3 content outside the composition range defined in the present invention. Therefore, the refractive index n d of the glass composition obtained in Comparative Example 9 was 1.512, which was higher than the refractive index n d of the glass compositions obtained in Examples 1 to 35.
  • the glass compositions of the present invention shown in Examples 1 to 35 have melting characteristics suitable for molding glass fillers and have a refractive index suitable for blending into acrylic resins as fillers. I understand.
  • Example 36 to 70 scaly glass was produced using the glass compositions obtained in Examples 1 to 35, respectively. That is, the glass composition (bulk) was remelted in an electric furnace and then formed into pellets while cooling. The pellets were put into the production apparatus shown in FIG. 2 to produce scale-like glass having an average thickness of 0.5 to 1 ⁇ m and an average particle diameter of 100 to 500 ⁇ m.
  • the average thickness of the glass flakes was measured by measuring the thickness of the glass flakes from the cross section of 100 glass flakes using an electron microscope (Keyence Corporation, Real Surface View Microscope, VE-7800). This is a value obtained by averaging the thickness.
  • the average particle diameter of the glass flakes was measured with a laser diffraction particle size distribution measuring device (Nikkiso Co., Ltd., particle size analyzer, Microtrac HRA).
  • the refractive index (n D ) of the glass flakes obtained in Examples 36 to 70 was measured.
  • n D yellow sodium D line (wavelength of light 589.3 nm). The measurement results are shown in Tables 6 to 9.
  • the refractive index of the glass flake obtained in Examples 36 ⁇ 70 is in the range of 1.488 to 1.501, the refractive index of the acrylic resin (n D was close to 1.490 to 1.495).
  • Examples 71 to 105 chopped strands that can be used as glass fillers were produced using the glass compositions obtained in Examples 1 to 35, respectively. That is, the glass composition (bulk) was remelted in an electric furnace and then formed into pellets while cooling. The pellets were put into the production apparatus shown in FIGS. 3 and 4 to produce chopped strands having an average fiber diameter of 10 to 20 ⁇ m and a length of 3 mm.
  • the glass is constructed so that the skeleton of the glass can be maintained well by adjusting the total content of silicon dioxide, diboron trioxide and aluminum oxide (SiO 2 + B 2 O 3 + Al 2 O 3 ) in the glass composition. You can also The total content of silicon dioxide, diboron trioxide and aluminum oxide (SiO 2 + B 2 O 3 + Al 2 O 3 ) is, for example, 67 to 86%.
  • the glass skeleton is improved. It is also possible to configure the glass so that it can be maintained.
  • the total content (SiO 2 + B 2 O 3 + Al 2 O 3 + P 2 O 5 ) of silicon dioxide, diboron trioxide, aluminum oxide and niolin pentoxide is, for example, 67 to 86%.
  • the total content of magnesium oxide and sodium oxide (MgO + Na 2 O) in the glass composition is, for example, 14 to 24%.
  • Magnesium oxide in the glass composition by adjusting the total content of calcium oxide and sodium oxide (MgO + CaO + Na 2 O ), it is also possible to configure the glass so that it can better adjust the devitrification temperature and viscosity of glass.
  • the total content of magnesium oxide, calcium oxide and sodium oxide (MgO + CaO + Na 2 O) is, for example, 14 to 24%.

Abstract

Disclosed is a glass filler comprising a glass composition which comprises silicon dioxide (SiO2), diboron trioxide (B2O3), aluminum oxide (Al2O3) and sodium oxide (Na2O). The contents (in mass%) of the components are as follows: 55≤SiO2≤75, 5≤B2O3≤10, 5≤Al2O3≤15, and 13≤Na2O≤20. The glass filler can be used suitably as a filler that can be added to acrylic resins.

Description

ガラスフィラーGlass filler
 本発明は、ガラスフィラーに関し、より詳しくは、樹脂(特に、アクリル樹脂)に好適に配合することができるガラスフィラーに関する。 The present invention relates to a glass filler, and more particularly to a glass filler that can be suitably blended in a resin (particularly an acrylic resin).
 アクリル樹脂は、アクリル酸エステルまたはメタクリル酸エステルの重合体である。アクリル樹脂は他の樹脂材料に比較して、透明性、耐衝撃性、耐久性および加工性に優れており、光学材料の素材などに用いられている。 The acrylic resin is a polymer of acrylic ester or methacrylic ester. Acrylic resins are superior in transparency, impact resistance, durability and processability compared to other resin materials, and are used as materials for optical materials.
 アクリル樹脂の機械的強度や耐熱性などをさらに向上させる場合には、アクリル樹脂にフィラーが配合される。一般的に、熱可塑性樹脂などの補強を目的として用いられるフィラーとしては、鱗片状、繊維状、粉末状、ビーズ状などの形態を有するガラスフィラーが知られている。ガラスフィラーを構成するガラスとしては、Eガラスのような無アルカリ珪酸塩ガラス、Cガラスのような含アルカリ珪酸塩ガラスまたは通常のソーダライムガラスが用いられる。 In order to further improve the mechanical strength and heat resistance of the acrylic resin, a filler is blended in the acrylic resin. Generally, as a filler used for the purpose of reinforcing a thermoplastic resin or the like, a glass filler having a scale shape, a fiber shape, a powder shape, a bead shape, or the like is known. As the glass constituting the glass filler, non-alkali silicate glass such as E glass, alkali-containing silicate glass such as C glass, or ordinary soda lime glass is used.
 しかし、アクリル樹脂に配合するガラスフィラーとして上記のガラスを用いた場合には、アクリル樹脂の性能が損なわれることがある。すなわち、アクリル樹脂の屈折率とガラスフィラーの屈折率との差が大きいため、アクリル樹脂とガラスフィラーとの間の界面において光が散乱し、アクリル樹脂の透明性が損なわれ易い。 However, when the above glass is used as a glass filler to be blended with the acrylic resin, the performance of the acrylic resin may be impaired. That is, since the difference between the refractive index of the acrylic resin and the refractive index of the glass filler is large, light is scattered at the interface between the acrylic resin and the glass filler, and the transparency of the acrylic resin is likely to be impaired.
 近年、アクリル樹脂への配合に適したガラスフィラーが開発されている。例えば、特許文献1には、エポキシ樹脂、環状オレフィン樹脂、アクリル樹脂など、屈折率が1.47~1.56である透明樹脂との光学恒数の整合性が高く、樹脂との親和性が高いガラス繊維が開示されている。 Recently, glass fillers suitable for blending with acrylic resins have been developed. For example, Patent Document 1 discloses a high optical constant consistency with a transparent resin having a refractive index of 1.47 to 1.56, such as an epoxy resin, a cyclic olefin resin, and an acrylic resin, and has an affinity for the resin. High glass fibers are disclosed.
特開2008-255002号公報JP 2008-255002 A
 しかし、特許文献1に開示されているガラス組成物は、実際にガラスフィラーとして用いるためには、SrO、BaOまたはZnOを実質的に必要とする。特許文献1の実施例には、SrO、BaOおよびZnOを含まないガラス組成物も開示されているが(実施例7,8,10)、本発明者の検討によると、これらのガラス組成物には、失透しやすく耐水性も十分ではない(実施例7)、作業温度(成形温度)が高すぎる(実施例8,10)といった問題があった。 However, the glass composition disclosed in Patent Document 1 substantially requires SrO, BaO, or ZnO in order to be actually used as a glass filler. In Examples of Patent Document 1, glass compositions not containing SrO, BaO and ZnO are also disclosed (Examples 7, 8, and 10). Are devitrified and have insufficient water resistance (Example 7), and the working temperature (molding temperature) is too high (Examples 8 and 10).
 SrOおよびBaOの原料は一般的に高価であり、ガラスの製造コストを上げる一因となる。また、これらの原料は、取り扱いに配慮が必要である。さらに、ZnOは揮発性に富む成分であるため、ガラスの溶融時に飛散する可能性があるうえ、ガラスの組成が変動するためガラス組成物の品質の制御が困難になる。したがって、SrO、BaOおよびZnOを必要としないガラス組成物によってガラスフィラーを構成することが望まれる。 The raw materials for SrO and BaO are generally expensive, which contributes to an increase in glass manufacturing costs. In addition, these raw materials need to be handled with care. Furthermore, since ZnO is a volatile component, it may be scattered when the glass is melted, and the composition of the glass varies, making it difficult to control the quality of the glass composition. Therefore, it is desirable to configure the glass filler with a glass composition that does not require SrO, BaO, and ZnO.
 本発明の目的は、SrO、BaOおよびZnOを必要としないガラス組成物からなり、樹脂(特に、アクリル樹脂)に好適に配合することができるガラスフィラーを提供することである。 An object of the present invention is to provide a glass filler that is made of a glass composition that does not require SrO, BaO, and ZnO, and that can be suitably blended in a resin (particularly an acrylic resin).
 本発明は、質量%で表して、
 55≦SiO2≦75、
 5≦B23≦10、
 5≦Al23≦15、
 13≦Na2O≦20、の成分を含有するガラス組成物からなるガラスフィラーを提供する。
The present invention is expressed in mass%,
55 ≦ SiO 2 ≦ 75,
5 ≦ B 2 O 3 ≦ 10,
5 ≦ Al 2 O 3 ≦ 15,
Provided is a glass filler comprising a glass composition containing a component of 13 ≦ Na 2 O ≦ 20.
 本発明はまた、別の観点から、
 ガラス原料を溶融し、質量%で表して、
 55≦SiO2≦75、
 5≦B23≦10、
 5≦Al23≦15、
 13≦Na2O≦20、の成分を含有するガラス溶融物を得る工程と、
 前記ガラス溶融物をガラスフィラーへと成形する工程とを含むガラスフィラーの製造方法を提供する。
The present invention also provides another aspect
The glass raw material is melted and expressed in mass%.
55 ≦ SiO 2 ≦ 75,
5 ≦ B 2 O 3 ≦ 10,
5 ≦ Al 2 O 3 ≦ 15,
Obtaining a glass melt containing a component of 13 ≦ Na 2 O ≦ 20;
The manufacturing method of the glass filler including the process of shape | molding the said glass melt into a glass filler is provided.
 本発明のガラスフィラーを構成するガラス組成物は、二酸化珪素(SiO2)、三酸化二ホウ素(B23)、酸化アルミニウム(Al23)および酸化ナトリウム(Na2O)を含有する。二酸化珪素、三酸化二ホウ素および酸化アルミニウムの含有率は、質量%で表して、55≦SiO2≦75、5≦B23≦10、5≦Al23≦15、に設定されている。このため、ガラスの骨格を形成する機能を十分に発現するとともに、良好な溶融性、高い耐水性および高い耐酸性を実現し、ガラスの屈折率をアクリル樹脂への配合に適した範囲内に調整することができる。酸化ナトリウムの含有率は、質量%で表して、13≦Na2O≦20に設定されている。このため、ガラス形成時における失透温度および粘度を良好にすることができる。酸化ストロンチウムおよび酸化バリウムは、ガラス組成物の必須成分ではない。それゆえ、ガラスの製造コストを抑え、原料を取り扱う際の特別な配慮を省くことができる。酸化亜鉛は、ガラス組成物の必須成分ではない。それゆえ、ガラスの溶融時の飛散を抑え、ガラスの組成変動を抑制し、所定の組成を有するガラス組成物の製造を容易に行うことができる。ガラス組成物における各必須成分の含有率を上述の範囲に設定することにより、ガラスの融点を下げ、ガラスを容易に均質化するとともに、ガラス製造装置に対する負荷を軽減することができる。本発明のガラスフィラーは、良好かつ安定した品質を有するため、樹脂(特に、アクリル樹脂)に好適に配合することができる。 The glass composition constituting the glass filler of the present invention contains silicon dioxide (SiO 2 ), diboron trioxide (B 2 O 3 ), aluminum oxide (Al 2 O 3 ), and sodium oxide (Na 2 O). . The content of silicon dioxide, diboron trioxide, and aluminum oxide is set to 55 ≦ SiO 2 ≦ 75, 5 ≦ B 2 O 3 ≦ 10, and 5 ≦ Al 2 O 3 ≦ 15 in mass%. Yes. For this reason, it fully expresses the function of forming the skeleton of glass, realizes good meltability, high water resistance and high acid resistance, and adjusts the refractive index of glass within the range suitable for blending with acrylic resin can do. The content rate of sodium oxide is set to 13 ≦ Na 2 O ≦ 20 in mass%. For this reason, the devitrification temperature and viscosity at the time of glass formation can be made favorable. Strontium oxide and barium oxide are not essential components of the glass composition. Therefore, the manufacturing cost of glass can be suppressed, and special considerations when handling raw materials can be omitted. Zinc oxide is not an essential component of the glass composition. Therefore, scattering at the time of melting of the glass can be suppressed, variation in the composition of the glass can be suppressed, and a glass composition having a predetermined composition can be easily manufactured. By setting the content of each essential component in the glass composition within the above range, the melting point of the glass can be lowered, the glass can be easily homogenized, and the load on the glass production apparatus can be reduced. Since the glass filler of this invention has favorable and stable quality, it can mix | blend suitably with resin (especially acrylic resin).
図1Aは実施形態における鱗片状ガラスを模式的に示す斜視図、図1Bは鱗片状ガラスを示す平面図である。FIG. 1A is a perspective view schematically showing scale-like glass in the embodiment, and FIG. 1B is a plan view showing scale-like glass. 図2は、鱗片状ガラスの製造装置を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a scaly glass manufacturing apparatus. 図3は、チョップドストランドを製造するための紡糸装置を示す説明図である。FIG. 3 is an explanatory view showing a spinning device for producing chopped strands. 図4は、図3の紡糸装置で得られたストランド巻体からチョップドストランドを製造するための装置を示す説明図である。FIG. 4 is an explanatory view showing an apparatus for producing chopped strands from a strand wound body obtained by the spinning apparatus of FIG.
 以下、本発明を具体化した実施形態について詳細に説明する。 Hereinafter, embodiments embodying the present invention will be described in detail.
[ガラス組成物]
 本実施形態のガラスフィラーを構成するガラス組成物は、二酸化珪素(SiO2)、三酸化二ホウ素(B23)、酸化アルミニウム(アルミナ、Al23)および酸化ナトリウム(Na2O)を必須成分として含有する。各成分の含有量はそれぞれ、質量%で表して、55≦SiO2≦75、5≦B23≦10、5≦Al23≦15、13≦Na2O≦20に設定される。
[Glass composition]
The glass composition constituting the glass filler of the present embodiment includes silicon dioxide (SiO 2 ), diboron trioxide (B 2 O 3 ), aluminum oxide (alumina, Al 2 O 3 ), and sodium oxide (Na 2 O). Is contained as an essential component. The content of each component is expressed as mass%, and is set to 55 ≦ SiO 2 ≦ 75, 5 ≦ B 2 O 3 ≦ 10, 5 ≦ Al 2 O 3 ≦ 15, and 13 ≦ Na 2 O ≦ 20. .
 以下、このガラス組成物を構成する各成分について説明する。以下において成分の含有率を示す%表示は全て質量%である。 Hereinafter, each component constituting this glass composition will be described. In the following, all percentages indicating the content of components are mass%.
(SiO2
 二酸化珪素(SiO2)は、ガラスの骨格を形成する主成分である。本明細書において、「主成分」とは含有量が最も多い成分であることを意味する。二酸化珪素は、ガラスの失透温度および粘度を調整する成分である。二酸化珪素は、耐水性および耐酸性を向上させる成分でもある。二酸化珪素は、ガラスの屈折率を調整する成分でもある。二酸化珪素の含有率が55%以上であれば、失透温度の上昇を抑制し、失透のないガラスを容易に製造することができる。二酸化珪素の含有率が55%以上であれば、ガラスの耐水性および耐酸性を向上させることができる。二酸化珪素の含有率が55%以上であれば、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することができる。二酸化珪素の含有率が75%以下であれば、ガラスの融点が低くなり、ガラスを均一に溶融し易くなる。
(SiO 2 )
Silicon dioxide (SiO 2 ) is a main component that forms a glass skeleton. In the present specification, the “main component” means a component having the largest content. Silicon dioxide is a component that adjusts the devitrification temperature and viscosity of the glass. Silicon dioxide is also a component that improves water resistance and acid resistance. Silicon dioxide is also a component that adjusts the refractive index of the glass. If the content rate of silicon dioxide is 55% or more, an increase in the devitrification temperature can be suppressed and a glass without devitrification can be easily produced. If the silicon dioxide content is 55% or more, the water resistance and acid resistance of the glass can be improved. If the content rate of silicon dioxide is 55% or more, the refractive index of glass can be adjusted within a range suitable for blending with an acrylic resin. If the content rate of silicon dioxide is 75% or less, the melting point of the glass is lowered, and the glass is easily melted uniformly.
 したがって、二酸化珪素の含有率は、55%以上であり、58%以上が好ましく、60%より大きいことがより好ましく、62%以上が特に好ましく、65%より大きいことが最も好ましい。二酸化珪素の含有率は、75%以下であり、74%未満が好ましく、72%以下がより好ましく、70%以下が最も好ましい。二酸化珪素の含有率は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。例えば、二酸化珪素の含有率は58~75%が好ましく、58~72%がより好ましい。 Therefore, the content of silicon dioxide is 55% or more, preferably 58% or more, more preferably more than 60%, particularly preferably 62% or more, and most preferably more than 65%. The content of silicon dioxide is 75% or less, preferably less than 74%, more preferably 72% or less, and most preferably 70% or less. The content of silicon dioxide is selected so as to be within a range in which these upper and lower limits are arbitrarily combined. For example, the silicon dioxide content is preferably 58 to 75%, more preferably 58 to 72%.
(B23
 三酸化二ホウ素(B23)は、ガラスの骨格を形成する成分であり、ガラス形成時の失透温度および粘度を調整する成分でもある。三酸化二ホウ素を含有することにより、ガラスの融点を下げる効果が得られるため、ガラス原料を均一に溶融し易くなる。三酸化二ホウ素は、耐水性を向上させる成分である一方で、耐酸性を悪化させる成分でもある。三酸化二ホウ素は、ガラスの屈折率を調整する成分でもある。三酸化二ホウ素の含有率が5%以上であれば、失透温度および粘度の調整、ならびに耐水性の改善が容易になる。三酸化二ホウ素の含有率が10%を超えると、ガラスを溶融する際に溶融窯および蓄熱窯の炉壁が浸食され、窯の寿命が著しく低下しうる。
(B 2 O 3 )
Diboron trioxide (B 2 O 3 ) is a component that forms the skeleton of the glass, and is also a component that adjusts the devitrification temperature and viscosity during glass formation. By containing diboron trioxide, an effect of lowering the melting point of the glass can be obtained, so that the glass raw material can be easily melted uniformly. While diboron trioxide is a component that improves water resistance, it is also a component that deteriorates acid resistance. Diboron trioxide is also a component that adjusts the refractive index of the glass. If the content rate of diboron trioxide is 5% or more, adjustment of devitrification temperature and a viscosity and improvement of water resistance will become easy. When the content ratio of diboron trioxide exceeds 10%, the furnace walls of the melting kiln and the heat storage kiln are eroded when the glass is melted, and the lifetime of the kiln can be significantly reduced.
 したがって、三酸化二ホウ素の含有率は、5%以上であり、5.5%以上が好ましく、6%より大きいことがより好ましく、6.5%以上が最も好ましい。三酸化二ホウ素の含有率は、10%以下であり、9%以下が好ましく、8%未満がより好ましい。三酸化二ホウ素の含有率は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。例えば、三酸化二ホウ素の含有率は5~9%が好ましく、5.5~9%がより好ましい。 Therefore, the content of diboron trioxide is 5% or more, preferably 5.5% or more, more preferably more than 6%, and most preferably 6.5% or more. The content of diboron trioxide is 10% or less, preferably 9% or less, and more preferably less than 8%. The content of diboron trioxide is selected so as to be within a range in which these upper and lower limits are arbitrarily combined. For example, the content of diboron trioxide is preferably 5 to 9%, and more preferably 5.5 to 9%.
(Al23
 酸化アルミニウム(Al23)は、ガラスの骨格を形成する成分である。酸化アルミニウムは、ガラスの失透温度および粘度を調整する成分である。酸化アルミニウムは、耐水性を向上させる成分である一方で、耐酸性を悪化させる成分でもある。酸化アルミニウムは、ガラスの屈折率を調整する成分でもある。酸化アルミニウムの含有率が5%以上であれば、失透温度および粘度の調整、ならびに耐水性の改善が容易になる。酸化アルミニウムの含有率が15%以下であれば、ガラスの融点が低くなり、ガラスを均一に溶融し易くなるとともに、ガラスの耐酸性も向上する。
(Al 2 O 3 )
Aluminum oxide (Al 2 O 3 ) is a component that forms a glass skeleton. Aluminum oxide is a component that adjusts the devitrification temperature and viscosity of glass. While aluminum oxide is a component that improves water resistance, it is also a component that deteriorates acid resistance. Aluminum oxide is also a component that adjusts the refractive index of glass. If the content of aluminum oxide is 5% or more, adjustment of the devitrification temperature and viscosity and improvement of water resistance are facilitated. If the content rate of aluminum oxide is 15% or less, the melting point of the glass is lowered, the glass is easily melted uniformly, and the acid resistance of the glass is also improved.
 したがって、酸化アルミニウムの含有率は、5%以上であり、5%より大きいことが好ましく、6%以上がより好ましく、7%以上がさらに好ましく、8%より大きいことが最も好ましい。酸化アルミニウムの含有率は、15%以下であり、14%以下が好ましく、13%以下がより好ましく、12%未満が最も好ましい。酸化アルミニウムの含有率の範囲は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。例えば、酸化アルミニウムの含有率は6~14%が好ましく、7~13%がより好ましい。 Therefore, the content of aluminum oxide is 5% or more, preferably more than 5%, more preferably 6% or more, further preferably 7% or more, and most preferably more than 8%. The content of aluminum oxide is 15% or less, preferably 14% or less, more preferably 13% or less, and most preferably less than 12%. The range of the content of aluminum oxide is selected so as to be within a range in which these upper limit and lower limit are arbitrarily combined. For example, the content of aluminum oxide is preferably 6 to 14%, more preferably 7 to 13%.
(Na2O)
 酸化ナトリウム(Na2O)は、ガラスの失透温度および粘度を調整する成分である。酸化ナトリウムの含有率が13%以上であれば、失透温度および粘度の調整が容易になる。酸化ナトリウムの含有率が20%以下であれば、ガラス転移温度が高くなり、ガラスの耐熱性が向上するとともに、ガラスの耐水性および耐酸性も向上する。
(Na 2 O)
Sodium oxide (Na 2 O) is a component that adjusts the devitrification temperature and viscosity of the glass. If the content rate of sodium oxide is 13% or more, the devitrification temperature and the viscosity can be easily adjusted. If the content rate of sodium oxide is 20% or less, the glass transition temperature becomes high, the heat resistance of the glass is improved, and the water resistance and acid resistance of the glass are also improved.
 したがって、酸化ナトリウムの含有率は、13%以上であり、13%より大きいことが好ましく、14%以上がより好ましく、15%より大きいことがさらに好ましい。酸化ナトリウムの含有率は、20%以下であり、19%以下が好ましく、18%以下がより好ましく、17%未満が最も好ましい。酸化ナトリウムの含有率は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。例えば、酸化ナトリウムの含有率は14~19%が好ましく、14~18%がより好ましい。 Therefore, the content of sodium oxide is 13% or more, preferably more than 13%, more preferably 14% or more, and further preferably more than 15%. The content of sodium oxide is 20% or less, preferably 19% or less, more preferably 18% or less, and most preferably less than 17%. The content of sodium oxide is selected so as to be within a range in which these upper and lower limits are arbitrarily combined. For example, the content of sodium oxide is preferably 14 to 19%, more preferably 14 to 18%.
(SiO2+Al23
 ガラスの屈折率の調整し易さを重視する場合、ガラスの骨格を形成する成分である二酸化珪素および酸化アルミニウムの含有率の和(SiO2+Al23)が重要である。二酸化珪素および酸化アルミニウムの合計含有率(SiO2+Al23)が60%以上であれば、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することができる。二酸化珪素および酸化アルミニウムの合計含有率(SiO2+Al23)が80%以下であれば、ガラスの融点が低くなり、ガラスを均一に溶融し易くなる。
(SiO 2 + Al 2 O 3 )
When importance is attached to the ease of adjusting the refractive index of the glass, the sum of the contents of silicon dioxide and aluminum oxide (SiO 2 + Al 2 O 3 ), which are the components that form the glass skeleton, is important. When the total content of silicon dioxide and aluminum oxide (SiO 2 + Al 2 O 3 ) is 60% or more, the refractive index of the glass can be adjusted within a range suitable for blending with an acrylic resin. If the total content of silicon dioxide and aluminum oxide (SiO 2 + Al 2 O 3 ) is 80% or less, the melting point of the glass is lowered and the glass is easily melted uniformly.
 したがって、二酸化珪素および酸化アルミニウムの合計含有率(SiO2+Al23)は、60%以上であり、60%より大きいことが好ましく、64%以上がより好ましく、68%より大きいことがさらに好ましく、72%より大きいことが特に好ましく、73%より大きいことが最も好ましい。二酸化珪素および酸化アルミニウムの合計含有率(SiO2+Al23)は、80%以下が好ましく、79%以下がより好ましく、78%以下がさらに好ましい。二酸化珪素および酸化アルミニウムの合計含有率(SiO2+Al23)は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。 Accordingly, the total content of silicon dioxide and aluminum oxide (SiO 2 + Al 2 O 3 ) is 60% or more, preferably more than 60%, more preferably 64% or more, and further preferably more than 68%. , More preferably greater than 72% and most preferably greater than 73%. The total content of silicon dioxide and aluminum oxide (SiO 2 + Al 2 O 3 ) is preferably 80% or less, more preferably 79% or less, and even more preferably 78% or less. The total content of silicon dioxide and aluminum oxide (SiO 2 + Al 2 O 3 ) is selected to be within a range that arbitrarily combines these upper and lower limits.
(P25
 五酸化二リン(P25)は任意成分である。ガラス組成物は、五酸化二リンをさらに含んでいてもよい。五酸化二リンは、ガラスの骨格を形成する成分であり、ガラス形成時の失透温度および粘度を調整する成分でもある一方で、耐水性を悪化させる成分である。五酸化二リンは、ガラスの屈折率を調整する成分でもある。五酸化二リンの含有率が10%以下であれば、失透温度および粘度の調整、ならびに耐水性の改善が容易になるとともに、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することができる。
(P 2 O 5 )
Diphosphorus pentoxide (P 2 O 5 ) is an optional component. The glass composition may further contain diphosphorus pentoxide. Diphosphorus pentoxide is a component that forms the skeleton of glass, and is a component that adjusts the devitrification temperature and viscosity during glass formation, while also deteriorating water resistance. Diphosphorus pentoxide is also a component that adjusts the refractive index of the glass. If the content of diphosphorus pentoxide is 10% or less, adjustment of devitrification temperature and viscosity and improvement of water resistance are facilitated, and the refractive index of the glass is within a range suitable for blending with an acrylic resin. Can be adjusted.
 したがって、五酸化二リンの含有率は、0.1%以上が好ましく、0.5%以上がより好ましく、1%以上が最も好ましい。五酸化二リンの含有率は、10%以下が好ましく、8%以下がより好ましく、5%以下がさらに好ましい。例えば、五酸化二リンの含有率は0.1~10%が好ましく、0.1~8%がより好ましい。 Therefore, the content of diphosphorus pentoxide is preferably 0.1% or more, more preferably 0.5% or more, and most preferably 1% or more. The content of diphosphorus pentoxide is preferably 10% or less, more preferably 8% or less, and even more preferably 5% or less. For example, the content of diphosphorus pentoxide is preferably 0.1 to 10%, and more preferably 0.1 to 8%.
(MgO)
 酸化マグネシウム(MgO)は任意成分である。ガラス組成物は、酸化マグネシウムをさらに含んでいてもよい。酸化マグネシウムは、ガラスの失透温度および粘度を調整する成分である。酸化マグネシウムは、ガラスの屈折率を調整する成分でもある。酸化マグネシウムの含有率が5%以下であれば、失透温度の上昇を抑制し、失透のないガラスを容易に製造することができるとともに、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することができる。
(MgO)
Magnesium oxide (MgO) is an optional component. The glass composition may further contain magnesium oxide. Magnesium oxide is a component that adjusts the devitrification temperature and viscosity of the glass. Magnesium oxide is also a component that adjusts the refractive index of the glass. If the content of magnesium oxide is 5% or less, it is possible to suppress the increase in devitrification temperature and easily produce glass without devitrification, and the refractive index of glass is suitable for blending with acrylic resin. Can be adjusted within the range.
 したがって、酸化マグネシウムの含有率は、0.1%以上が好ましく、0.5%以上がより好ましい。酸化マグネシウムの含有率は、5%以下が好ましく、5%未満がより好ましく、4%以下がさらに好ましく、3%未満が特に好ましく、2%未満が最も好ましい。酸化マグネシウムの含有率は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。例えば、酸化マグネシウムの含有率は0.1~5%が好ましく、0.1~4%がより好ましい。 Therefore, the content of magnesium oxide is preferably 0.1% or more, and more preferably 0.5% or more. The content of magnesium oxide is preferably 5% or less, more preferably less than 5%, further preferably 4% or less, particularly preferably less than 3%, and most preferably less than 2%. The content of magnesium oxide is selected so as to be within a range in which these upper and lower limits are arbitrarily combined. For example, the content of magnesium oxide is preferably 0.1 to 5%, more preferably 0.1 to 4%.
(CaO)
 酸化カルシウム(CaO)は任意成分である。ガラス組成物は、酸化カルシウムをさらに含んでいてもよい。酸化カルシウムは、ガラスの失透温度および粘度を調整する成分である。酸化カルシウムは、ガラスの屈折率を調整する成分でもある。酸化カルシウムの含有率が5%以下であれば、失透温度の上昇を抑制し、失透のないガラスを容易に製造することができるとともに、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することができる。
(CaO)
Calcium oxide (CaO) is an optional component. The glass composition may further contain calcium oxide. Calcium oxide is a component that adjusts the devitrification temperature and viscosity of glass. Calcium oxide is also a component that adjusts the refractive index of glass. If the content of calcium oxide is 5% or less, an increase in the devitrification temperature can be suppressed, and a glass without devitrification can be easily produced, and the refractive index of the glass is suitable for blending into an acrylic resin. Can be adjusted within the range.
 したがって、酸化カルシウムの含有率は、5%以下が好ましく、5%未満がより好ましく、2%以下がさらに好ましく、1%未満が特に好ましく、0.5%未満が最も好ましい。 Therefore, the content of calcium oxide is preferably 5% or less, more preferably less than 5%, still more preferably 2% or less, particularly preferably less than 1%, and most preferably less than 0.5%.
(MgO+CaO)
 上記のように、ガラス組成物は、酸化マグネシウムおよび/または酸化カルシウムをさらに含んでいてもよい。ガラスフィラーの成形し易さを重視する場合、ガラス形成時の失透温度および粘度を調整する成分である酸化マグネシウム(MgO)および酸化カルシウム(CaO)の含有率の和(MgO+CaO)が重要である。酸化マグネシウムおよび酸化カルシウムの合計含有率(MgO+CaO)が5%以下であれば、失透温度の上昇を抑制し、失透のないガラスを容易に製造することができるとともに、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することができる。
(MgO + CaO)
As described above, the glass composition may further include magnesium oxide and / or calcium oxide. When emphasizing ease of molding of the glass filler, the sum of the contents of magnesium oxide (MgO) and calcium oxide (CaO), which are components for adjusting the devitrification temperature and viscosity during glass formation, is important (MgO + CaO). . If the total content of magnesium oxide and calcium oxide (MgO + CaO) is 5% or less, the increase in the devitrification temperature can be suppressed, and a glass without devitrification can be easily produced. It can adjust in the range suitable for the mixing | blending to an acrylic resin.
 したがって、酸化マグネシウムおよび酸化カルシウムの合計含有率(MgO+CaO)は、0.1%以上が好ましく、0.5%以上がより好ましい。酸化マグネシウムおよび酸化カルシウムの合計含有率(MgO+CaO)は、5%以下が好ましく、5%未満がより好ましく、4%以下がさらに好ましく、4%未満が特に好ましく、3%未満が最も好ましく、2%未満であってもよい。酸化マグネシウムおよび酸化カルシウムの合計含有率(MgO+CaO)は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。例えば、酸化マグネシウムおよび酸化カルシウムの合計含有率(MgO+CaO)は0.1~4%が好ましく、0.5~4%がより好ましい。 Therefore, the total content of magnesium oxide and calcium oxide (MgO + CaO) is preferably 0.1% or more, and more preferably 0.5% or more. The total content of magnesium oxide and calcium oxide (MgO + CaO) is preferably 5% or less, more preferably less than 5%, still more preferably 4% or less, particularly preferably less than 4%, most preferably less than 3%, and 2% It may be less. The total content of magnesium oxide and calcium oxide (MgO + CaO) is selected so as to be within a range in which these upper and lower limits are arbitrarily combined. For example, the total content of magnesium oxide and calcium oxide (MgO + CaO) is preferably 0.1 to 4%, more preferably 0.5 to 4%.
(Li2O)
 酸化リチウム(Li2O)は任意成分である。酸化リチウムは、ガラスの失透温度および粘度を調整する成分である。酸化リチウムの含有率が5%を超えると、ガラス転移温度が低くなり、ガラスの耐熱性が悪くなるとともに、ガラスの耐水性および耐酸性も悪化する。酸化リチウムの含有率が5%を超えると、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することが難しくなる。
(Li 2 O)
Lithium oxide (Li 2 O) is an optional component. Lithium oxide is a component that adjusts the devitrification temperature and viscosity of the glass. When the content of lithium oxide exceeds 5%, the glass transition temperature is lowered, the heat resistance of the glass is deteriorated, and the water resistance and acid resistance of the glass are also deteriorated. When the content of lithium oxide exceeds 5%, it becomes difficult to adjust the refractive index of the glass within a range suitable for blending with an acrylic resin.
 したがって、酸化リチウムの含有率は、5%以下であることが好ましく、2%未満がより好ましく、1%未満がさらに好ましく、0.5%未満が特に好ましく、実質的に含有しないことが最も好ましい。 Therefore, the content of lithium oxide is preferably 5% or less, more preferably less than 2%, further preferably less than 1%, particularly preferably less than 0.5%, and most preferably not substantially contained. .
(K2O)
 酸化カリウム(K2O)は任意成分である。酸化カリウムは、ガラスの失透温度および粘度を調整する成分である。酸化カリウムの含有率が5%以下であれば、ガラス転移温度が高くなり、ガラスの耐熱性が向上する。酸化カリウムの含有率が5%以下であれば、ガラスの耐水性および耐酸性も向上するとともに、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することができる。
(K 2 O)
Potassium oxide (K 2 O) is an optional component. Potassium oxide is a component that adjusts the devitrification temperature and viscosity of the glass. If the content rate of potassium oxide is 5% or less, a glass transition temperature will become high and the heat resistance of glass will improve. When the content of potassium oxide is 5% or less, the water resistance and acid resistance of the glass are improved, and the refractive index of the glass can be adjusted within a range suitable for blending with an acrylic resin.
 したがって、酸化カリウムの含有率は、5%以下であることが好ましく、2%未満がより好ましく、1%未満がさらに好ましく、0.5%未満が特に好ましい。 Therefore, the content of potassium oxide is preferably 5% or less, more preferably less than 2%, further preferably less than 1%, and particularly preferably less than 0.5%.
(Na2O+K2O)
 ガラスフィラーの成形し易さを重視する場合、ガラス形成時の失透温度および粘度を調整する成分である酸化ナトリウム(Na2O)および酸化カリウム(K2O)の含有率の和(Na2O+K2O)が重要である。酸化ナトリウムおよび酸化カリウムの合計含有率(Na2O+K2O)が13%以上であれば、失透温度および粘度の調整が容易になる。酸化ナトリウムおよび酸化カリウムの合計含有率(Na2O+K2O)が20%以下であれば、ガラス転移温度が高くなり、ガラスの耐熱性が向上するとともに、ガラスの耐水性および耐酸性も向上する。
(Na 2 O + K 2 O)
When importance is attached to the molding easiness of the glass filler, the sum of the content of sodium oxide is a component that adjusts the devitrification temperature and viscosity when forming glass (Na 2 O) and potassium oxide (K 2 O) (Na 2 O + K 2 O) is important. When the total content of sodium oxide and potassium oxide (Na 2 O + K 2 O) is 13% or more, the devitrification temperature and the viscosity can be easily adjusted. If the total content of sodium oxide and potassium oxide (Na 2 O + K 2 O) is 20% or less, the glass transition temperature is increased, the heat resistance of the glass is improved, and the water resistance and acid resistance of the glass are also improved. .
 したがって、酸化ナトリウムおよび酸化カリウムの合計含有率(Na2O+K2O)は、13%以上であり、13%より大きいことが好ましく、14%以上がより好ましく、15%より大きいことがさらに好ましい。酸化ナトリウムおよび酸化カリウムの合計含有率(Na2O+K2O)は、20%以下が好ましく、19%以下がより好ましく、18%以下がさらに好ましく、17%未満が最も好ましい。酸化ナトリウムおよび酸化カリウムの合計含有率(Na2O+K2O)は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。例えば、酸化ナトリウムおよび酸化カリウムの合計含有率(Na2O+K2O)は14~19%が好ましく、14~18%がより好ましい。 Accordingly, the total content of sodium oxide and potassium oxide (Na 2 O + K 2 O) is 13% or more, preferably more than 13%, more preferably 14% or more, and further preferably more than 15%. The total content of sodium oxide and potassium oxide (Na 2 O + K 2 O) is preferably 20% or less, more preferably 19% or less, further preferably 18% or less, and most preferably less than 17%. The total content of sodium oxide and potassium oxide (Na 2 O + K 2 O) is selected so as to be within a range in which these upper and lower limits are arbitrarily combined. For example, the total content of sodium oxide and potassium oxide (Na 2 O + K 2 O) is preferably 14 to 19%, more preferably 14 to 18%.
(Li2O+Na2O+K2O)
 ガラスフィラーの成形し易さを重視する場合、ガラス形成時の失透温度および粘度を調整する成分であるアルカリ金属酸化物〔酸化リチウム(Li2O)、酸化ナトリウム(Na2O)、酸化カリウム(K2O)〕の含有率の和(Li2O+Na2O+K2O)が重要である。酸化リチウム、酸化ナトリウムおよび酸化カリウムの合計含有率(Li2O+Na2O+K2O)が13%以上であれば、失透温度および粘度の調整が容易になる。酸化リチウム、酸化ナトリウムおよび酸化カリウムの合計含有率(Li2O+Na2O+K2O)が20%以下であれば、ガラス転移温度が高くなり、ガラスの耐熱性が向上するとともに、ガラスの耐水性および耐酸性も向上する。
(Li 2 O + Na 2 O + K 2 O)
When emphasizing ease of molding of glass filler, alkali metal oxides [lithium oxide (Li 2 O), sodium oxide (Na 2 O), potassium oxide, which are components for adjusting the devitrification temperature and viscosity during glass formation The sum of the contents of (K 2 O)] (Li 2 O + Na 2 O + K 2 O) is important. When the total content of lithium oxide, sodium oxide and potassium oxide (Li 2 O + Na 2 O + K 2 O) is 13% or more, the devitrification temperature and viscosity can be easily adjusted. If the total content of lithium oxide, sodium oxide and potassium oxide (Li 2 O + Na 2 O + K 2 O) is 20% or less, the glass transition temperature is increased, the heat resistance of the glass is improved, the water resistance of the glass and Acid resistance is also improved.
 したがって、酸化リチウム、酸化ナトリウムおよび酸化カリウムの合計含有率(Li2O+Na2O+K2O)は、13%以上であり、13%より大きいことが好ましく、14%以上がより好ましく、15%より大きいことがさらに好ましい。酸化リチウム、酸化ナトリウムおよび酸化カリウムの合計含有率(Li2O+Na2O+K2O)は、20%以下であることが好ましく、19%以下がより好ましく、18%以下がさらに好ましく、17%未満が最も好ましい。酸化リチウム、酸化ナトリウムおよび酸化カリウムの合計含有率(Li2O+Na2O+K2O)は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。例えば、酸化リチウム、酸化ナトリウムおよび酸化カリウムの合計含有率(Li2O+Na2O+K2O)は14~19%が好ましく、14~18%がより好ましい。 Accordingly, the total content of lithium oxide, sodium oxide and potassium oxide (Li 2 O + Na 2 O + K 2 O) is 13% or more, preferably more than 13%, more preferably 14% or more, and more than 15%. More preferably. The total content of lithium oxide, sodium oxide and potassium oxide (Li 2 O + Na 2 O + K 2 O) is preferably 20% or less, more preferably 19% or less, further preferably 18% or less, and less than 17%. Most preferred. The total content of lithium oxide, sodium oxide and potassium oxide (Li 2 O + Na 2 O + K 2 O) is selected so as to be within a range in which these upper and lower limits are arbitrarily combined. For example, the total content of lithium oxide, sodium oxide and potassium oxide (Li 2 O + Na 2 O + K 2 O) is preferably 14 to 19%, more preferably 14 to 18%.
(TiO2
 酸化チタン(TiO2)は任意成分である。酸化チタンは、ガラスの失透温度および粘度を調整する成分である。酸化チタンの含有率が5%を超えると、ガラスの失透温度が上昇し過ぎ、ガラスを製造することが難しくなるとともに、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することが難しくなる。
(TiO 2 )
Titanium oxide (TiO 2 ) is an optional component. Titanium oxide is a component that adjusts the devitrification temperature and viscosity of the glass. When the content of titanium oxide exceeds 5%, the devitrification temperature of the glass rises excessively, making it difficult to produce the glass, and adjusting the refractive index of the glass within a range suitable for blending with an acrylic resin. It becomes difficult to do.
 したがって、酸化チタンの含有率は、5%以下であることが好ましく、2%未満がより好ましく、1%未満がさらに好ましく、0.5%未満が特に好ましく、実質的に含有しないことが最も好ましい。 Accordingly, the content of titanium oxide is preferably 5% or less, more preferably less than 2%, further preferably less than 1%, particularly preferably less than 0.5%, and most preferably not substantially contained. .
(ZrO2
 酸化ジルコニウム(ZrO2)は任意成分である。酸化ジルコニウムは、ガラスの失透温度および粘度を調整する成分である。酸化ジルコニウムの含有率が5%を超えると、ガラスの失透温度が上昇し過ぎ、ガラスを製造することが難しくなるとともに、ガラスの屈折率を、アクリル樹脂への配合に適した範囲内に調整することが難しくなる。
(ZrO 2 )
Zirconium oxide (ZrO 2 ) is an optional component. Zirconium oxide is a component that adjusts the devitrification temperature and viscosity of the glass. If the content of zirconium oxide exceeds 5%, the devitrification temperature of the glass rises too much, making it difficult to produce the glass and adjusting the refractive index of the glass within a range suitable for blending with an acrylic resin. It becomes difficult to do.
 したがって、酸化ジルコニウムの含有率は、5%以下であることが好ましく、2%未満がより好ましく、1%未満がさらに好ましく、0.5%未満が特に好ましく、実質的に含有しないことが最も好ましい。 Accordingly, the content of zirconium oxide is preferably 5% or less, more preferably less than 2%, further preferably less than 1%, particularly preferably less than 0.5%, and most preferably not substantially contained. .
(Fe)
 鉄(Fe)は任意成分である。ガラス中に含まれる鉄(Fe)は、通常、Fe3+またはFe2+の状態で存在する。Fe3+はガラスの紫外線吸収特性を向上させる成分であり、Fe2+はガラスの熱線吸収特性を向上させる成分である。鉄は、意図的に含ませなくとも、他の工業用原料から不可避的にガラス組成物に混入する場合がある。鉄の含有量が少なければ、ガラスの着色を防止することができる。透明性の高いアクリル樹脂にガラスフィラーを配合してアクリル樹脂成形体を得る場合、ガラスフィラー中の鉄の含有量が少なければ、アクリル樹脂成形体の透明性を損なうことがない。
(Fe)
Iron (Fe) is an optional component. Iron (Fe) contained in glass usually exists in the state of Fe 3+ or Fe 2+ . Fe 3+ is a component that improves the ultraviolet absorption property of the glass, and Fe 2+ is a component that improves the heat ray absorption property of the glass. Even if iron is not intentionally included, it may inevitably be mixed into the glass composition from other industrial raw materials. If there is little iron content, coloring of glass can be prevented. When an acrylic resin molded body is obtained by blending a glass filler with a highly transparent acrylic resin, the transparency of the acrylic resin molded body is not impaired if the iron content in the glass filler is small.
 したがって、鉄の含有率は小さいほうが好ましく、三酸化二鉄(Fe23)に換算して0.5%以下が好ましく、0.1%以下がより好ましく、実質的に含有しないことがさらに好ましい。 Therefore, it is preferable that the content of iron is small, preferably 0.5% or less, more preferably 0.1% or less, and substantially not containing iron ferric trioxide (Fe 2 O 3 ). preferable.
(SO3
 三酸化硫黄(SO3)は任意成分であるが、清澄剤として使用してもよい。硫酸塩の原料を使用すると、ガラス組成物中に三酸化硫黄が0.5%以下の含有率で含まれることがある。
(SO 3 )
Sulfur trioxide (SO 3 ) is an optional component, but may be used as a fining agent. When a sulfate raw material is used, sulfur trioxide may be contained in the glass composition at a content of 0.5% or less.
(SrO)
 酸化ストロンチウム(SrO)は、その原料の取扱いに配慮を要するとともに、高価である。したがって、酸化ストロンチウムは実質的に含有しないことが好ましい。
(SrO)
Strontium oxide (SrO) requires high care for handling the raw material and is expensive. Therefore, it is preferable that strontium oxide is not substantially contained.
(BaO)
 酸化バリウム(BaO)は、その原料の取扱いに配慮を要するとともに、高価である。したがって、酸化バリウムは実質的に含有しないことが好ましい。
(BaO)
Barium oxide (BaO) requires high care for handling the raw material and is expensive. Therefore, it is preferable that barium oxide is not substantially contained.
(ZnO)
 酸化亜鉛(ZnO)は、揮発しやすいため、ガラスの溶融時に飛散する可能性があるとともに、ガラス中の含有量を管理し難いという問題もある。したがって、酸化亜鉛は実質的に含有しないことが好ましい。
(ZnO)
Since zinc oxide (ZnO) is easily volatilized, it may be scattered when the glass is melted, and there is also a problem that it is difficult to control the content in the glass. Therefore, it is preferable that zinc oxide is not substantially contained.
(SrO+BaO+ZnO)
 以上の理由から、ガラス組成物は、SrO、BaOおよびZnOを実質的に含有しないことが好ましい。
(SrO + BaO + ZnO)
For the above reasons, it is preferable that the glass composition does not substantially contain SrO, BaO and ZnO.
(F、Cl、Br、I)
 フッ素(F)は、揮発し易いため、溶融時に飛散する可能性があるとともに、ガラス中の含有量を管理し難いという問題もある。したがって、フッ素は実質的に含有しないことが好ましい。
(F, Cl, Br, I)
Since fluorine (F) is easily volatilized, there is a possibility that the fluorine (F) may be scattered at the time of melting, and it is difficult to control the content in the glass. Therefore, it is preferable that fluorine is not substantially contained.
 塩素(Cl)は、揮発し易いため、溶融時に飛散する可能性があるとともに、ガラス中の含有量を管理し難いという問題もある。したがって、塩素は実質的に含有しないことが好ましい。 Since chlorine (Cl) is easily volatilized, there is a possibility that it may be scattered at the time of melting, and it is difficult to control the content in the glass. Therefore, it is preferable that chlorine is not substantially contained.
 臭素(Br)は、揮発し易いため、溶融時に飛散する可能性があるとともに、ガラス中の含有量を管理し難いという問題もある。したがって、臭素は実質的に含有しないことが好ましい。 Since bromine (Br) is easy to volatilize, there is a possibility that it will be scattered at the time of melting, and it is difficult to control the content in glass. Therefore, it is preferable that bromine is not substantially contained.
 ヨウ素(I)は、揮発し易いため、溶融時に飛散する可能性があるとともに、ガラス中の含有量を管理し難いという問題もある。したがって、ヨウ素は実質的に含有しないことが好ましい。 Since iodine (I) is easily volatilized, it may be scattered when melted, and it is difficult to control the content in the glass. Therefore, it is preferable that iodine is not substantially contained.
 フッ素、塩素、臭素およびヨウ素の含有率の合計(F+Cl+Br+I)は、0.01%未満であることが好ましい。 The total content of fluorine, chlorine, bromine and iodine (F + Cl + Br + I) is preferably less than 0.01%.
(PbO)
 酸化鉛(PbO)は、その原料の取扱いに配慮を要するため、実質的に含有しないことが好ましい。
(PbO)
It is preferable that lead oxide (PbO) is not substantially contained because it requires consideration for handling of the raw material.
(Sn)
 ガラス中に含まれる錫(Sn)は、通常、Sn2+またはSn4+の状態で存在する。錫は、その原料の取扱いに配慮を要するため、実質的に含有しないことが好ましい。錫(Sn)の含有率は、二酸化錫(SnO2)に換算して0.01%未満であることが好ましい。
(Sn)
Tin (Sn) contained in the glass usually exists in the state of Sn 2+ or Sn 4+ . It is preferable that tin is not substantially contained since the handling of the raw material needs to be considered. The content of tin (Sn) is preferably less than 0.01% in terms of tin dioxide (SnO 2 ).
(As、Sb)
 ガラス中に含まれるヒ素(As)は、通常、As3+またはAs5+の状態で存在する。ヒ素は、その原料の取扱いに配慮を要するため、実質的に含有しないことが好ましい。ヒ素の含有率は、三酸化二ヒ素(As23)に換算して0.01%未満であることが好ましい。
(As, Sb)
Arsenic (As) contained in the glass usually exists in the state of As 3+ or As 5+ . Arsenic is preferably not substantially contained because it requires careful handling of the raw material. The content of arsenic is preferably less than 0.01% in terms of diarsenic trioxide (As 2 O 3 ).
 ガラス中に含まれるアンチモン(Sb)は、通常、Sb3+またはSb5+の状態で存在する。アンチモンは、その原料の取扱いに配慮を要するため、実質的に含有しないことが好ましい。アンチモンの含有率は、三酸化二アンチモン(Sb23)に換算して0.01%未満であることが好ましい。 Antimony (Sb) contained in the glass is usually present in the state of Sb 3+ or Sb 5+ . It is preferable that antimony is not substantially contained since the handling of the raw material needs to be considered. The content of antimony is preferably less than 0.01% in terms of diantimony trioxide (Sb 2 O 3 ).
 ヒ素を三酸化二ヒ素に換算したときの含有率と、アンチモンを三酸化二アンチモンに換算したときの含有率との合計(As23+Sb23)は、0.01%未満であることが好ましい。 The total (As 2 O 3 + Sb 2 O 3 ) of the content when arsenic is converted to diarsenic trioxide and the content when antimony is converted to antimony trioxide is less than 0.01%. It is preferable.
 なお、本明細書において、「実質的に含有しない」とは、例えば工業用原料から不可避的に混入する場合を除き、意図的に含ませないことを意味する。実質的に含有しないとは、具体的には、含有率が0.1%未満、好ましくは0.05%未満、より好ましくは0.03%未満、最も好ましくは0.01%未満であることを意味する。 In the present specification, “substantially does not contain” means that it is not intentionally included unless it is inevitably mixed from industrial raw materials, for example. Specifically, the phrase “not containing substantially” means that the content is less than 0.1%, preferably less than 0.05%, more preferably less than 0.03%, and most preferably less than 0.01%. Means.
 以上のように、本発明のガラスフィラーは、二酸化珪素、三酸化二ホウ素、酸化アルミニウムおよび酸化ナトリウムを必須成分とする。本発明のガラスフィラーは、これらの必須成分のみで構成されていてもよく、あるいは、これらの必須成分の他に、必要に応じて、五酸化二リン、酸化マグネシウム、酸化カルシウム、酸化リチウム、酸化カリウム、酸化チタン、酸化ジルコニウム、酸化鉄(FeO、Fe23)および三酸化硫黄が含まれていてもよい。具体的には、質量%で表して、以下の成分を含んでいてもよい、あるいは以下の成分から実質的に構成されていてもよいことが理解できる。本明細書において、「実質的に構成される」とは、その他の成分を実質的に含有しないことを意味する。
 55≦SiO2≦75、
 5≦B23≦10、
 5≦Al23≦15、
 13≦Na2O≦20、
 0≦P25≦10、
 0≦MgO≦5、
 0≦CaO≦5、
 0≦Li2O≦5、
 0≦K2O≦5、
 0≦TiO2≦5、
 0≦ZrO2≦5、
 0≦Fe23(全Feから換算したFe23)≦0.5、
 0≦SO3≦0.5。
As described above, the glass filler of the present invention contains silicon dioxide, diboron trioxide, aluminum oxide and sodium oxide as essential components. The glass filler of the present invention may be composed of only these essential components, or, in addition to these essential components, diphosphorus pentoxide, magnesium oxide, calcium oxide, lithium oxide, and oxidation, if necessary. Potassium, titanium oxide, zirconium oxide, iron oxide (FeO, Fe 2 O 3 ) and sulfur trioxide may be contained. Specifically, it can be understood that the following components may be contained or expressed substantially by the following components, expressed in terms of mass%. In this specification, “substantially constituted” means that other components are not substantially contained.
55 ≦ SiO 2 ≦ 75,
5 ≦ B 2 O 3 ≦ 10,
5 ≦ Al 2 O 3 ≦ 15,
13 ≦ Na 2 O ≦ 20,
0 ≦ P 2 O 5 ≦ 10,
0 ≦ MgO ≦ 5,
0 ≦ CaO ≦ 5,
0 ≦ Li 2 O ≦ 5,
0 ≦ K 2 O ≦ 5,
0 ≦ TiO 2 ≦ 5,
0 ≦ ZrO 2 ≦ 5,
0 ≦ Fe 2 O 3 (Fe 2 O 3 was converted from the total Fe) ≦ 0.5,
0 ≦ SO 3 ≦ 0.5.
[ガラス組成物の物性]
 次に、ガラスフィラーを構成するガラス組成物の物性について、以下詳細に説明する。
[Physical properties of glass composition]
Next, the physical property of the glass composition which comprises a glass filler is demonstrated in detail below.
(溶融特性)
 溶融ガラスの粘度が1000dPa・sec(1000poise)となるときの温度は、当該ガラスの作業温度と呼ばれ、ガラスの成形に最も適する温度である。ガラスフィラーとして鱗片状ガラスまたはガラス繊維を製造する場合、ガラスの作業温度が1100℃以上であれば、鱗片状ガラスの厚みまたはガラス繊維径のばらつきを小さくできる。作業温度が1300℃以下であれば、ガラスを溶融する際の燃料費を低減でき、ガラス製造装置が熱による腐食を受け難くなり、装置寿命が延びる。
(Melting characteristics)
The temperature at which the viscosity of the molten glass is 1000 dPa · sec (1000 poise) is called the working temperature of the glass, and is the most suitable temperature for glass molding. When producing glass flakes or glass fibers as the glass filler, if the glass working temperature is 1100 ° C. or higher, the variation in the glass flake thickness or glass fiber diameter can be reduced. If the working temperature is 1300 ° C. or lower, the fuel cost for melting the glass can be reduced, the glass manufacturing apparatus is less susceptible to corrosion due to heat, and the life of the apparatus is extended.
 したがって、作業温度は、1100℃以上が好ましく、1150℃以上がより好ましい。作業温度は、1300℃以下が好ましく、1280℃以下がより好ましく、1260℃以下がさらに好ましく、1250℃以下が最も好ましい。作業温度は、これら上限と下限とを任意に組み合わせた範囲内にあるように選ばれる。例えば、作業温度は1100~1300℃が好ましく、1100~1280℃がより好ましく、1150~1280℃がさらに好ましい。 Therefore, the working temperature is preferably 1100 ° C. or higher, more preferably 1150 ° C. or higher. The working temperature is preferably 1300 ° C or lower, more preferably 1280 ° C or lower, further preferably 1260 ° C or lower, and most preferably 1250 ° C or lower. The working temperature is selected to be within a range that arbitrarily combines these upper and lower limits. For example, the working temperature is preferably 1100 to 1300 ° C, more preferably 1100 to 1280 ° C, and even more preferably 1150 to 1280 ° C.
 作業温度から失透温度を差し引いた温度差ΔTが大きいほど、ガラス成形時に失透が生じ難く、均質なガラスを高い歩留りで製造できる。したがって、ΔTは0℃以上が好ましく、50℃以上がより好ましく、100℃以上がさらに好ましく、150℃以上が特に好ましく、200℃以上が最も好ましく、300℃以上であってもよい。ΔTが600℃以下であれば、ガラス組成の調整が容易になる。したがって、ΔTは600℃以下が好ましく、550℃以下がより好ましく、500℃以下がさらに好ましい。例えば、ΔTは50~600℃が好ましく、200~600℃がより好ましく、300~550℃がさらに好ましい。 As the temperature difference ΔT obtained by subtracting the devitrification temperature from the working temperature is larger, devitrification is less likely to occur at the time of glass forming, and a homogeneous glass can be produced with a higher yield. Therefore, ΔT is preferably 0 ° C. or higher, more preferably 50 ° C. or higher, further preferably 100 ° C. or higher, particularly preferably 150 ° C. or higher, most preferably 200 ° C. or higher, and may be 300 ° C. or higher. If ΔT is 600 ° C. or less, the glass composition can be easily adjusted. Therefore, ΔT is preferably 600 ° C. or lower, more preferably 550 ° C. or lower, and further preferably 500 ° C. or lower. For example, ΔT is preferably 50 to 600 ° C., more preferably 200 to 600 ° C., and further preferably 300 to 550 ° C.
 なお、失透とは、溶融ガラス素地中に生成して成長した結晶により、白濁を生じることをいう。このような溶融ガラス素地から製造されたガラスフィラーの中には、結晶化した塊が存在することがある。このようなガラスフィラーはアクリル樹脂に配合されるフィラーとして好ましくない。 In addition, devitrification means that white turbidity is generated by crystals formed and grown in a molten glass substrate. A crystallized lump may exist in the glass filler manufactured from such a molten glass substrate. Such a glass filler is not preferable as a filler blended in an acrylic resin.
(光学特性)
 ガラスフィラーおよびアクリル樹脂の屈折率が互いに等しければ、ガラスフィラーとアクリル樹脂との間の界面における光の散乱がないため、アクリル樹脂の透明性を維持できる。このため、ガラス組成物の屈折率は、アクリル樹脂の屈折率に近いことが好ましい。アクリル樹脂は、通常、黄色ヘリウムd線(光の波長587.6nm)で測定したときの屈折率ndが、1.490~1.495程度である。本発明において、ガラス組成物の屈折率ndは、1.480~1.505が好ましく、1.483~1.502がより好ましく、1.485~1.500がさらに好ましい。
(optical properties)
If the refractive indexes of the glass filler and the acrylic resin are equal to each other, there is no light scattering at the interface between the glass filler and the acrylic resin, so that the transparency of the acrylic resin can be maintained. For this reason, it is preferable that the refractive index of a glass composition is near the refractive index of an acrylic resin. The acrylic resin usually has a refractive index n d of about 1.490 to 1.495 when measured with yellow helium d-line (light wavelength 587.6 nm). In the present invention, the refractive index n d of the glass composition is preferably from 1.480 to 1.505, more preferably from 1.483 to 1.502, and even more preferably from 1.485 to 1.500.
 ガラス組成物およびアクリル樹脂の屈折率の差は、0.010以下が好ましく、0.007以下がより好ましく、0.005以下がさらに好ましく、0.002以下が最も好ましい。 The difference in refractive index between the glass composition and the acrylic resin is preferably 0.010 or less, more preferably 0.007 or less, still more preferably 0.005 or less, and most preferably 0.002 or less.
 厳密に言えば、バルク(塊)としてのガラス組成物の屈折率よりもむしろガラスフィラーの屈折率について言及することが適切である。すなわち、ガラスフィラーの屈折率は、アクリル樹脂の屈折率に近いことが好ましい。アクリル樹脂は、通常、黄色ナトリウムD線(光の波長589.3nm)で測定したときの屈折率nDが、1.490~1.495程度である。したがって、ガラスフィラーの屈折率nDは、1.480~1.505が好ましく、1.483~1.502がより好ましく、1.485~1.500がさらに好ましい。 Strictly speaking, it is appropriate to refer to the refractive index of the glass filler rather than the refractive index of the glass composition as a bulk. That is, the refractive index of the glass filler is preferably close to the refractive index of the acrylic resin. The acrylic resin usually has a refractive index n D of about 1.490 to 1.495 as measured with yellow sodium D line (wavelength of light 589.3 nm). Accordingly, the refractive index n D of the glass filler is preferably from 1.480 to 1.505, more preferably from 1.483 to 1.502, and even more preferably from 1.485 to 1.500.
 ガラスフィラーおよびアクリル樹脂の屈折率の差は、0.010以下が好ましく、0.005以下がより好ましく、0.003以下がさらに好ましく、0.002以下が最も好ましい。 The difference in refractive index between the glass filler and the acrylic resin is preferably 0.010 or less, more preferably 0.005 or less, still more preferably 0.003 or less, and most preferably 0.002 or less.
(化学的耐久性)
 ガラス組成物が含有する各成分の含有率が上述で規定した組成範囲内にあれば、ガラス組成物は耐酸性、耐水性、耐アルカリ性などの化学的耐久性に優れる。
(Chemical durability)
If the content rate of each component which a glass composition contains is in the composition range prescribed | regulated above, a glass composition is excellent in chemical durability, such as acid resistance, water resistance, and alkali resistance.
 耐水性の指標としては、後述するアルカリ溶出量が採用され、このアルカリ溶出量が小さいほど耐水性が高いことを示す。ガラスフィラーをアクリル樹脂組成物中に分散させる場合、ガラスのアルカリ溶出量が0.2mg以下であれば、アクリル樹脂組成物の強度低下が引き起こされることがない。したがって、ガラス組成物のアルカリ溶出量は、0.2mg以下が好ましく、0.1mg以下がより好ましい。ガラス組成物のアルカリ溶出量は、例えば、0.001~0.20mgであることが好ましい。このようなガラス組成物により構成されるガラスフィラーは、アクリル樹脂に好適に配合することができる。 As an index of water resistance, the alkali elution amount described later is adopted, and the smaller the alkali elution amount, the higher the water resistance. When the glass filler is dispersed in the acrylic resin composition, the strength of the acrylic resin composition is not reduced as long as the alkali elution amount of the glass is 0.2 mg or less. Therefore, the alkali elution amount of the glass composition is preferably 0.2 mg or less, and more preferably 0.1 mg or less. The alkali elution amount of the glass composition is preferably 0.001 to 0.20 mg, for example. The glass filler comprised with such a glass composition can be suitably mix | blended with an acrylic resin.
[ガラスフィラー]
 前記ガラス組成物の溶融物を所定の形状に成形することにより、本発明のガラスフィラーを製造することができる。前記ガラス組成物は、例えば、鱗片状ガラス、チョップドストランド、ミルドファイバー、ガラス粉末、ガラスビーズなど、所定の形状を有するガラスフィラーに成形される。本発明のガラスフィラーは、鱗片状ガラス、チョップドストランド、ミルドファイバー、ガラス粉末およびガラスビーズから選ばれる少なくとも1つに相当する形態を有することが好ましい。ただし、これらの形態は、互いに厳密に区別されるものではない。また、互いに異なる形態を有する2種以上のガラスフィラーを組み合わせてフィラーとして用いてもよい。
[Glass filler]
The glass filler of this invention can be manufactured by shape | molding the melt of the said glass composition in a defined shape. The glass composition is formed into a glass filler having a predetermined shape, such as scale-like glass, chopped strands, milled fiber, glass powder, and glass beads. The glass filler of the present invention preferably has a form corresponding to at least one selected from flaky glass, chopped strands, milled fiber, glass powder and glass beads. However, these forms are not strictly distinguished from each other. Moreover, you may use as a filler combining 2 or more types of glass fillers which have a mutually different form.
 図1Aは、鱗片状ガラスを模式的に示す斜視図であり、図1Bはその鱗片状ガラスを示す平面図である。鱗片状ガラス10は、例えば、平均厚さtが0.1~15μm、平均粒子径aが0.2~15000μm、アスペクト比(平均粒子径a/平均厚さt)が2~1000の薄片状粒子である。なお、図1B中のSは、鱗片状ガラス10を平面視したときの面積である。 FIG. 1A is a perspective view schematically showing scaly glass, and FIG. 1B is a plan view showing the scaly glass. The flaky glass 10 is, for example, a flaky shape having an average thickness t of 0.1 to 15 μm, an average particle diameter a of 0.2 to 15000 μm, and an aspect ratio (average particle diameter a / average thickness t) of 2 to 1000. Particles. In addition, S in FIG. 1B is an area when the scale-like glass 10 is viewed in plan.
 なお、鱗片状ガラスの平均厚さとは、少なくとも100枚の鱗片状ガラスを抜き取り、それらの鱗片状ガラスについて走査型電子顕微鏡(SEM)を用いて厚さを測定し、その厚さの合計を、測定した鱗片状ガラスの枚数で割った値のことである。鱗片状ガラスの平均粒子径とは、レーザ回折散乱法に基づいて測定された粒度分布において、累積体積百分率が50%に相当する粒子径(D50)のことである。 Note that the average thickness of the glass flakes is that at least 100 glass flakes are extracted, the thickness of these glass flakes is measured using a scanning electron microscope (SEM), and the total thickness is calculated as follows: It is the value divided by the number of measured glass flakes. The average particle diameter of the glass flakes is a particle diameter (D50) corresponding to a cumulative volume percentage of 50% in the particle size distribution measured based on the laser diffraction scattering method.
 この鱗片状ガラス10は、例えば、図2に示す製造装置を用いて製造できる。図2に示すように、耐火窯槽12において溶融された、所定の組成を有するガラス素地11は、ブローノズル13に送り込まれたガスにより風船状に膨らみ、中空状ガラス膜14となる。この中空状ガラス膜14を一対の押圧ロール15で粉砕することにより、鱗片状ガラス10が得られる。 The scaly glass 10 can be manufactured using, for example, a manufacturing apparatus shown in FIG. As shown in FIG. 2, the glass substrate 11 having a predetermined composition melted in the refractory kiln 12 is swelled in a balloon shape by the gas fed into the blow nozzle 13 to become a hollow glass film 14. By crushing the hollow glass film 14 with a pair of pressing rolls 15, the scale-like glass 10 is obtained.
 ガラスフィラーとして用いられるチョップドストランドは、繊維径1~50μm、アスペクト比(繊維長/繊維径)2~1000の寸法を有するガラス繊維である。チョップドストランドは、例えば、図3および図4に示す装置を用いて製造できる。 The chopped strand used as the glass filler is a glass fiber having a fiber diameter of 1 to 50 μm and an aspect ratio (fiber length / fiber diameter) of 2 to 1000. The chopped strand can be manufactured using, for example, the apparatus shown in FIGS.
 図3に示すように、耐火窯槽内で溶融され、所定の組成を有するガラス素地は、底部に多数(例えば2400本)のノズルを有するブッシング20から引き出され、多数のガラスフィラメント21を形成する。ガラスフィラメント21には、冷却水が吹きかけられた後、バインダアプリケータ22の塗布ローラ23によりバインダ(集束剤)24が塗布される。バインダ24が塗布された多数のガラスフィラメント21は、補強パッド25により、各々が例えば800本程度のガラスフィラメント21からなる3本のストランド26として集束される。各ストランド26は、トラバースフィンガ27で綾振りされつつコレット28に嵌められた円筒チューブ29に巻き取られる。そして、ストランド26が巻き取られた円筒チューブ29をコレット28から外して、ケーキ(ストランド巻体)30が得られる。 As shown in FIG. 3, a glass substrate having a predetermined composition that is melted in a refractory kiln is drawn out from a bushing 20 having a large number (for example, 2400) nozzles at the bottom to form a large number of glass filaments 21. . After the cooling water is sprayed on the glass filament 21, a binder (bundling agent) 24 is applied by the application roller 23 of the binder applicator 22. A large number of glass filaments 21 to which the binder 24 is applied are focused by a reinforcing pad 25 as three strands 26 each made of, for example, about 800 glass filaments 21. Each strand 26 is wound around a cylindrical tube 29 fitted to a collet 28 while traversing with a traverse finger 27. Then, the cylindrical tube 29 around which the strand 26 is wound is removed from the collet 28 to obtain a cake (strand wound body) 30.
 次に、図4に示すように、クリル31にケーキ30を収容し、そのケーキ30からストランド26を引き出して、集束ガイド32によりストランド束33として束ねる。このストランド束33に、噴霧装置34より水または処理液を噴霧する。さらに、このストランド束33を切断装置35の回転刃36で切断して、チョップドストランド37が得られる。 Next, as shown in FIG. 4, the cake 30 is accommodated in the creel 31, the strand 26 is pulled out from the cake 30, and bundled as a strand bundle 33 by the focusing guide 32. Water or a treatment liquid is sprayed onto the strand bundle 33 from the spraying device 34. Further, the strand bundle 33 is cut by the rotary blade 36 of the cutting device 35 to obtain a chopped strand 37.
 ガラスフィラーとして用いられるミルドファイバーは、繊維径が1~50μm、アスペクト比(繊維長/繊維径)2~500の寸法を有するガラス繊維である。このようなミルドファイバーは、公知の方法に従って製造できる。 Milled fiber used as a glass filler is a glass fiber having a fiber diameter of 1 to 50 μm and an aspect ratio (fiber length / fiber diameter) of 2 to 500. Such a milled fiber can be produced according to a known method.
 ガラス粉末は、ガラスを粉砕することによって製造される。ガラスフィラーとして用いるためには、ガラス粉末の平均粒子径が1~500μmであることが好ましい。ここで、平均粒子径は、ガラス粉末粒子と同じ体積を有する球体の直径として定義するものとする。このようなガラス粉末は、公知の方法に従って製造できる。 Glass powder is produced by pulverizing glass. For use as a glass filler, the average particle size of the glass powder is preferably 1 to 500 μm. Here, the average particle diameter is defined as the diameter of a sphere having the same volume as the glass powder particles. Such glass powder can be produced according to a known method.
 ガラスビーズは、ガラス組成物を球形またはそれに近い形となるように成形することによって製造される。ガラスフィラーとして用いるためには、ガラスビーズの粒子径が1~500μmであることが好ましい。ここで、粒子径は、ガラスビーズ粒子と同じ体積を有する球体の直径として定義するものとする。このようなガラスビーズは、公知の方法に従って製造できる。 Glass beads are manufactured by molding a glass composition into a spherical shape or a shape close thereto. In order to use as a glass filler, the particle size of the glass beads is preferably 1 to 500 μm. Here, the particle diameter is defined as the diameter of a sphere having the same volume as the glass bead particle. Such glass beads can be produced according to a known method.
[アクリル樹脂組成物]
 ガラス組成物から得られたガラスフィラーをアクリル樹脂に配合することにより、優れた性能を有するアクリル樹脂組成物が得られる。本発明のガラスフィラーは、アクリル樹脂との屈折率の差が小さく、アルカリ成分の溶出が少なく、化学的耐久性に優れている。したがって、アクリル樹脂と本発明のガラスフィラーとを含有するアクリル樹脂組成物は、アクリル樹脂と同等の透明性と、アクリル樹脂よりも優れた機械的強度および耐熱性とを兼ね備えている。
[Acrylic resin composition]
By blending the glass filler obtained from the glass composition into the acrylic resin, an acrylic resin composition having excellent performance can be obtained. The glass filler of the present invention has a small difference in refractive index from the acrylic resin, little elution of alkali components, and excellent chemical durability. Therefore, the acrylic resin composition containing the acrylic resin and the glass filler of the present invention has both transparency equivalent to the acrylic resin, mechanical strength and heat resistance superior to the acrylic resin.
 アクリル樹脂組成物は、公知の方法に従って製造できる。具体的には、混合機などを用いて加熱しながらアクリル樹脂とガラスフィラーとを溶融混練すればよい。アクリル樹脂としては、公知のものを使用できる。上述したように、アクリル樹脂に配合されるガラスフィラーとして、1種類の形態のガラスフィラーに限らず、複数種の形態のガラスフィラーを組み合わせて用いてもよい。アクリル樹脂組成物の性能を向上させるために、必要に応じて、各種のカップリング剤および添加剤を配合してもよい。溶融混練の温度は、アクリル樹脂の耐熱温度以下であることが好ましい。 The acrylic resin composition can be produced according to a known method. Specifically, an acrylic resin and a glass filler may be melt-kneaded while heating using a mixer or the like. A publicly known thing can be used as an acrylic resin. As described above, the glass filler blended in the acrylic resin is not limited to one type of glass filler, and a plurality of types of glass fillers may be used in combination. In order to improve the performance of the acrylic resin composition, various coupling agents and additives may be blended as necessary. The melt kneading temperature is preferably not higher than the heat resistance temperature of the acrylic resin.
 このようなアクリル樹脂組成物を成形して得られた成形品は、光学材料、電気機器、自動車部品、建築材料などに好適に使用できる。成形は公知の方法に従って行えばよく、押出成形法、射出成形法、プレス成形法、カレンダー成形によるシート成形法などが採用される。なお、成形時の加熱温度は、アクリル樹脂の耐熱温度以下であることが好ましい。 A molded product obtained by molding such an acrylic resin composition can be suitably used for optical materials, electrical equipment, automobile parts, building materials, and the like. The molding may be performed according to a known method, and an extrusion molding method, an injection molding method, a press molding method, a sheet molding method by calendar molding, or the like is employed. In addition, it is preferable that the heating temperature at the time of shaping | molding is below the heat-resistant temperature of an acrylic resin.
[実施形態による効果のまとめ]
 (1) 本実施形態のガラス組成物は、質量%で表して、二酸化珪素、三酸化二ホウ素および酸化アルミニウムの含有率が、55≦SiO2≦75、5≦B23≦10および5≦Al23≦15を満たすように設定されている。このため、二酸化ケイ素、酸化ホウ素および酸化アルミニウムによるガラスの骨格を形成する機能を十分に発現することができ、溶融性が良く、耐水性や耐酸性を高めることができ、屈折率をアクリル樹脂への配合に適した状態に調整することができる。また、酸化ナトリウムの含有率が、13≦Na2O≦20に設定されている。このため、ガラス形成時における失透温度および粘度を良好にすることができる。そして、各必須成分の配合割合によってガラス組成物の融点を下げることができ、組成の均一化を容易に図ることができる。したがって、本実施形態のガラス組成物からなるガラスフィラーは、アクリル樹脂に配合されるガラスフィラーとして好適に用いられ、良好かつ安定した品質を示すとともに、ガラス製造装置に対する負荷を軽減することができる。
[Summary of effects by embodiment]
(1) The glass composition of the present embodiment is expressed in mass%, and the content of silicon dioxide, diboron trioxide and aluminum oxide is 55 ≦ SiO 2 ≦ 75, 5 ≦ B 2 O 3 ≦ 10 and 5 ≦ Al 2 O 3 ≦ 15 is set. For this reason, the function of forming the glass skeleton by silicon dioxide, boron oxide and aluminum oxide can be fully expressed, the meltability is good, the water resistance and acid resistance can be improved, and the refractive index is changed to acrylic resin. It can be adjusted to a state suitable for blending. Moreover, the content rate of sodium oxide is set to 13 ≦ Na 2 O ≦ 20. For this reason, the devitrification temperature and viscosity at the time of glass formation can be made favorable. And the melting | fusing point of a glass composition can be lowered | hung with the compounding ratio of each essential component, and the uniformity of a composition can be aimed at easily. Therefore, the glass filler which consists of a glass composition of this embodiment is used suitably as a glass filler mix | blended with an acrylic resin, and while being able to show favorable and stable quality, it can reduce the load with respect to a glass manufacturing apparatus.
 (2) ガラス組成物の屈折率ndが1.480~1.505であることにより、ガラスフィラーがアクリル樹脂に配合されたとき、光の散乱が抑制され、アクリル樹脂の透明性を保持することができる。 (2) by the refractive index n d of the glass composition is from 1.480 to 1.505, when the glass filler is blended in an acrylic resin, the scattering of light is suppressed, to retain the transparency of the acrylic resin be able to.
 (3) ガラス組成物の作業温度が1100~1300℃であることにより、ガラスフィラーを製造したときその厚みや繊維径のばらつきを抑えることができるとともに、ガラス製造装置の腐食を抑制し、装置寿命を延長させることができる。 (3) Since the working temperature of the glass composition is 1100 to 1300 ° C., it is possible to suppress variations in thickness and fiber diameter when glass fillers are manufactured, and to suppress corrosion of glass manufacturing equipment and to reduce equipment life. Can be extended.
 (4) ガラス組成物の作業温度から失透温度を差し引いた温度差ΔTが0~600℃であることにより、ガラス成形時に失透が生じ難く、均質なガラスを収率良く製造することができるとともに、ガラス組成の調整を容易にすることができる。 (4) When the temperature difference ΔT obtained by subtracting the devitrification temperature from the working temperature of the glass composition is 0 to 600 ° C., devitrification is unlikely to occur during glass forming, and a homogeneous glass can be produced with high yield. At the same time, the glass composition can be easily adjusted.
 (5) ガラス組成物の耐水性の指標であるアルカリ溶出量が0.001~0.20mgであることにより、ガラスフィラーをアクリル樹脂組成物中に分散させた場合、アクリル樹脂組成物の強度低下が引き起こされることがない。 (5) When the glass filler is dispersed in the acrylic resin composition, the strength of the acrylic resin composition decreases when the alkali elution amount, which is an index of water resistance of the glass composition, is 0.001 to 0.20 mg. Will not be caused.
 (6) アクリル樹脂用ガラスフィラーは、前述のガラス組成物から容易に形成することができる。具体的には、アクリル樹脂用ガラスフィラーはガラス組成物を溶融した後、所定形状の形態に加工して成形される。アクリル樹脂用ガラスフィラーの形態としては、鱗片状ガラス、チョップドストランド、ミルドファイバー、ガラス粉末およびガラスビーズから選ばれる少なくとも1種の形態が好適に採用される。 (6) The glass filler for acrylic resin can be easily formed from the above glass composition. Specifically, the glass filler for acrylic resin is molded by melting a glass composition and then processing it into a predetermined shape. As the form of the glass filler for acrylic resin, at least one form selected from flaky glass, chopped strands, milled fiber, glass powder and glass beads is suitably employed.
 (7) アクリル樹脂組成物は、アクリル樹脂と上記のアクリル樹脂用ガラスフィラーを含有するものである。このアクリル樹脂組成物を成形してなる成形品は、透明性、機械的強度、耐熱性などに優れている。 (7) The acrylic resin composition contains an acrylic resin and the above glass filler for acrylic resin. A molded product formed by molding this acrylic resin composition is excellent in transparency, mechanical strength, heat resistance and the like.
 以下、実施例および比較例を挙げて本発明の実施形態をさらに具体的に説明する。 Hereinafter, embodiments of the present invention will be described more specifically with reference to examples and comparative examples.
(実施例1~35および比較例1~9)
 表1~表5に示した組成となるように、珪砂等の通常のガラス原料を調合し、実施例および比較例毎にガラス原料のバッチを作製した。電気炉を用いて、各バッチを1400~1600℃まで加熱して溶融させ、組成が均一になるまで約4時間そのまま維持した。その後、溶融したガラス(ガラス溶融物)を鉄板上に流し出し、電気炉中で室温まで徐冷し、バルクとしてのガラス組成物(板状物)を得た。
(Examples 1 to 35 and Comparative Examples 1 to 9)
Conventional glass raw materials such as silica sand were prepared so as to have the compositions shown in Tables 1 to 5, and batches of glass raw materials were prepared for each of Examples and Comparative Examples. Using an electric furnace, each batch was heated to 1400-1600 ° C. to melt and maintained for about 4 hours until the composition became uniform. Thereafter, the molten glass (glass melt) was poured onto an iron plate and gradually cooled to room temperature in an electric furnace to obtain a glass composition (plate-like product) as a bulk.
 得られたガラス組成物について、通常の白金球引き上げ法により粘度と温度との関係を調べ、その結果から作業温度を求めた。ここで、白金球引き上げ法とは、溶融ガラス中に白金球を浸し、その白金球を等速運動で引き上げる際の負荷荷重(抵抗)と、白金球に働く重力および浮力などとの関係を、微小の粒子が流体中を沈降する際の粘度と落下速度との関係を示したストークス(Stokes)の法則にあてはめることにより、粘度を測定する方法である。 For the obtained glass composition, the relationship between viscosity and temperature was examined by a normal platinum ball pulling method, and the working temperature was determined from the result. Here, the platinum ball pulling method refers to the relationship between the load (resistance) and the gravity and buoyancy acting on the platinum sphere when the platinum sphere is immersed in molten glass and the platinum sphere is pulled up at a constant speed. In this method, the viscosity is measured by applying the Stokes law, which shows the relationship between the viscosity and the falling speed when fine particles settle in the fluid.
 粒子径1.0~2.8mmの大きさに粉砕したガラス組成物を白金ボートに入れ、温度勾配(800~1400℃)を設けた電気炉中で2時間保持し、結晶の出現した位置に対応する電気炉の最高温度から失透温度を求めた。ここで、粒子径は、ふるい分け法により測定された値である。なお、電気炉内の場所に応じて異なる温度(電気炉内の温度分布)は、予め測定されており、電気炉内の所定の場所に置かれたガラスは、予め測定された、当該所定の場所の温度で加熱される。ΔTは、作業温度から失透温度を差し引いた温度差である。 A glass composition pulverized to a particle size of 1.0 to 2.8 mm is placed in a platinum boat and held in an electric furnace provided with a temperature gradient (800 to 1400 ° C.) for 2 hours. The devitrification temperature was determined from the maximum temperature of the corresponding electric furnace. Here, the particle diameter is a value measured by a sieving method. Note that different temperatures (temperature distribution in the electric furnace) depending on the location in the electric furnace are measured in advance, and the glass placed in a predetermined location in the electric furnace is measured in advance. Heated at the place temperature. ΔT is a temperature difference obtained by subtracting the devitrification temperature from the working temperature.
 ガラス組成物について、プルフリッヒ屈折率計を用いることにより、黄色ヘリウムd線(光の波長587.6nm)の屈折率ndを測定した。 The glass composition, by using a Pulfrich refractometer was measured refractive index n d of yellow helium d line (wavelength of light 587.6 nm).
 アルカリ溶出量の測定は、日本工業規格(JIS)の「化学分析用ガラス器具の試験方法 R 3502‐1995」に準拠した方法により行った。ガラス試料を粉砕して得たガラス粉末をJIS Z 8801に規定の標準網ふるいにかけ、目開き420μmの標準網ふるいを通過し、目開き250μmの標準網ふるいにとどまったガラス粉末を、ガラスの比重と同じグラム数量秤り取った。このガラス粉末を100℃の蒸留水50mLに1時間浸漬した後、この水溶液中のアルカリ成分を0.01Nの硫酸で滴定した。滴定に要した0.01Nの硫酸のミリリットル数に0.31を乗じることにより、Na2Oに換算したアルカリ成分のミリグラム数を求め、このミリグラム数をアルカリ溶出量とした。このアルカリ溶出量が小さいほど耐水性が高いことを示す。 The alkali elution amount was measured by a method based on “Test method R 3502-1995 for glassware for chemical analysis” of Japanese Industrial Standard (JIS). The glass powder obtained by pulverizing the glass sample is passed through a standard mesh sieve specified in JIS Z 8801, passed through a standard mesh sieve with an opening of 420 μm, and the glass powder remaining in the standard mesh sieve with an opening of 250 μm is the specific gravity of the glass. Weighed the same gram quantity. After this glass powder was immersed in 50 mL of distilled water at 100 ° C. for 1 hour, the alkaline component in this aqueous solution was titrated with 0.01 N sulfuric acid. By multiplying the number of milliliters of 0.01 N sulfuric acid required for titration by 0.31, the number of milligrams of the alkali component converted to Na 2 O was obtained, and this milligram number was defined as the amount of alkali elution. It shows that water resistance is so high that this alkali elution amount is small.
 これらの測定結果を表1~表5に示した。なお、表中のガラス組成は、すべて質量%で表示した値である。 These measurement results are shown in Tables 1 to 5. In addition, all the glass compositions in a table | surface are the values displayed by the mass%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1~35で得られたガラス組成物の作業温度は、1167℃~1270℃であった。これは、ガラスフィラーを成形する場合に好適な温度である。実施例1~35で得られたガラス組成物のΔT(作業温度-失透温度)は、222℃~469℃であった。これは、ガラスフィラーの製造工程において、ガラスの失透が生じない温度差である。実施例1~35で得られたガラス組成物の屈折率ndは、1.494~1.505であった。実施例1~35で得られたガラス組成物のアルカリ溶出量は、0.02~0.13mgであった。 The working temperature of the glass compositions obtained in Examples 1 to 35 was 1167 ° C. to 1270 ° C. This is a temperature suitable for molding a glass filler. ΔT (working temperature−devitrification temperature) of the glass compositions obtained in Examples 1 to 35 was 222 ° C. to 469 ° C. This is a temperature difference at which glass devitrification does not occur in the glass filler manufacturing process. Refractive index n d of the glass composition obtained in Examples 1 to 35 was from 1.494 to 1.505. The alkali elution amount of the glass compositions obtained in Examples 1 to 35 was 0.02 to 0.13 mg.
 他方、比較例1で得られたガラス組成物は、従来の板ガラスの組成を有し、B23およびAl23の含有率が本発明において規定される組成範囲より外にあった。そのため、比較例1で得られたガラス組成物の屈折率ndは1.517であり、実施例1~35で得られたガラス組成物の屈折率ndに比べて高かった。さらに、比較例1で得られたガラス組成物のアルカリ溶出量は0.43mgであり、実施例1~35で得られたガラス組成物のアルカリ溶出量に比べて大きかった。 On the other hand, the glass composition obtained in Comparative Example 1 had the composition of a conventional plate glass, and the content ratios of B 2 O 3 and Al 2 O 3 were outside the composition range defined in the present invention. Therefore, the refractive index n d of the glass composition obtained in Comparative Example 1 was 1.517, which was higher than the refractive index n d of the glass compositions obtained in Examples 1 to 35. Further, the alkali elution amount of the glass composition obtained in Comparative Example 1 was 0.43 mg, which was larger than the alkali elution amount of the glass compositions obtained in Examples 1 to 35.
 比較例2で得られたガラス組成物は、従来のCガラスの組成を有し、B23、Al23およびNa2Oの含有率が本発明において規定される組成範囲より外にあった。そのため、比較例2で得られたガラス組成物の屈折率ndは1.523であり、実施例1~35で得られたガラス組成物の屈折率ndに比べて高かった。 The glass composition obtained in Comparative Example 2 has the composition of a conventional C glass, and the content of B 2 O 3 , Al 2 O 3 and Na 2 O is outside the composition range specified in the present invention. there were. Therefore, the refractive index n d of the glass composition obtained in Comparative Example 2 was 1.523, which was higher than the refractive index n d of the glass compositions obtained in Examples 1 to 35.
 比較例3で得られたガラス組成物は、従来のEガラスの組成を有し、SiO2およびNa2Oの含有率が本発明において規定される組成範囲より外にあった。そのため、比較例3で得られたガラス組成物の屈折率ndは1.561であり、実施例1~35で得られたガラス組成物の屈折率ndに比べて高かった。 The glass composition obtained in Comparative Example 3 had a composition of conventional E glass, and the content ratios of SiO 2 and Na 2 O were outside the composition range defined in the present invention. Therefore, the refractive index n d of the glass composition obtained in Comparative Example 3 was 1.561, which was higher than the refractive index n d of the glass compositions obtained in Examples 1 to 35.
 比較例4~6で得られたガラス組成物は、それぞれ特開2008-255002号公報(特許文献1)の実施例7、実施例8および実施例10に記載されている、SrO、BaOおよびZnOを含まないガラスと同様の組成を有する。 The glass compositions obtained in Comparative Examples 4 to 6 were respectively SrO, BaO and ZnO described in Example 7, Example 8 and Example 10 of JP 2008-255002 (Patent Document 1). It has the same composition as glass that does not contain.
 比較例4で得られたガラス組成物は、B23、Al23およびNa2Oの含有率が本発明において規定される組成範囲より外にあった。それゆえ、比較例4では、ガラスの失透のために、均質なガラス組成物が得られなかった。比較例4で得られたガラス組成物は、特開2008-255002号公報(特許文献1)の実施例7に開示されたガラスと同様の組成を有する。特許文献1の実施例7には、ガラスの屈折率およびアッベ数が測定され、失透による糸切れを生じることなくガラス繊維化できたと記載されている。しかし、本発明者が追試したところ、失透が生じて紡糸することができなかった。比較例4のガラス組成は、失透性が高く、厳しく限定された条件の下でしか紡糸することができない組成であると考えられる。比較例4で得られたガラス組成物のアルカリ溶出量は0.25mgであり、実施例1~35で得られたガラス組成物のアルカリ溶出量に比べて大きかった。 In the glass composition obtained in Comparative Example 4, the contents of B 2 O 3 , Al 2 O 3 and Na 2 O were outside the composition range specified in the present invention. Therefore, in Comparative Example 4, a homogeneous glass composition could not be obtained due to the devitrification of the glass. The glass composition obtained in Comparative Example 4 has the same composition as that of the glass disclosed in Example 7 of JP 2008-255002 A (Patent Document 1). In Example 7 of Patent Document 1, the refractive index and the Abbe number of glass are measured, and it is described that the glass fiber can be formed without causing yarn breakage due to devitrification. However, when the inventor made additional trials, devitrification occurred and spinning could not be performed. The glass composition of Comparative Example 4 is considered to be a composition that has high devitrification properties and can be spun only under severely limited conditions. The alkali elution amount of the glass composition obtained in Comparative Example 4 was 0.25 mg, which was larger than the alkali elution amount of the glass composition obtained in Examples 1 to 35.
 比較例5で得られたガラス組成物は、Na2Oの含有率が本発明において規定される組成範囲より外にあった。このため、比較例5で得られたガラス組成物の作業温度は1350℃であり、実施例1~35で得られたガラス組成物の作業温度に比べて高かった。比較例5で得られたガラス組成物の屈折率ndは1.512であり、実施例1~35で得られたガラス組成物の屈折率ndに比べて高かった。 The glass composition obtained in Comparative Example 5 had a Na 2 O content outside the composition range defined in the present invention. For this reason, the working temperature of the glass composition obtained in Comparative Example 5 was 1350 ° C., which was higher than the working temperature of the glass compositions obtained in Examples 1 to 35. The refractive index n d of the glass composition obtained in Comparative Example 5 was 1.512, which was higher than the refractive index n d of the glass compositions obtained in Examples 1 to 35.
 比較例6で得られたガラス組成物は、B23、Al23およびNa2Oの含有率が本発明において規定される組成範囲より外にあった。このため、比較例6で得られたガラス組成物の作業温度は1305℃であり、実施例1~35で得られたガラス組成物の作業温度に比べて高かった。 In the glass composition obtained in Comparative Example 6, the content ratios of B 2 O 3 , Al 2 O 3 and Na 2 O were outside the composition range defined in the present invention. For this reason, the working temperature of the glass composition obtained in Comparative Example 6 was 1305 ° C., which was higher than the working temperature of the glass compositions obtained in Examples 1 to 35.
 比較例7で得られたガラス組成物は、Na2Oの含有率が本発明において規定される組成範囲より外にあった。そのため、比較例7で得られたガラス組成物の作業温度は1073℃であり、実施例1~35で得られたガラス組成物の作業温度に比べて低かった。比較例7で得られたガラス組成物の屈折率ndは1.510であり、実施例1~35で得られたガラス組成物の屈折率ndに比べて高かった。比較例7で得られたガラス組成物のアルカリ溶出量は3.49mgであり、実施例1~35で得られたガラス組成物のアルカリ溶出量に比べて大きかった。 The glass composition obtained in Comparative Example 7 had a Na 2 O content outside the composition range defined in the present invention. Therefore, the working temperature of the glass composition obtained in Comparative Example 7 was 1073 ° C., which was lower than the working temperature of the glass compositions obtained in Examples 1 to 35. The refractive index n d of the glass composition obtained in Comparative Example 7 was 1.510, which was higher than the refractive index n d of the glass compositions obtained in Examples 1 to 35. The alkali elution amount of the glass composition obtained in Comparative Example 7 was 3.49 mg, which was larger than the alkali elution amount of the glass compositions obtained in Examples 1 to 35.
 比較例8で得られたガラス組成物は、B23の含有率が本発明において規定される組成範囲より外にあった。そのため、比較例8で得られたガラス組成物の作業温度は1313℃であり、実施例1~35で得られたガラス組成物の作業温度に比べて高かった。 In the glass composition obtained in Comparative Example 8, the content of B 2 O 3 was outside the composition range specified in the present invention. Therefore, the working temperature of the glass composition obtained in Comparative Example 8 was 1313 ° C., which was higher than the working temperature of the glass compositions obtained in Examples 1 to 35.
 比較例9で得られたガラス組成物は、B23の含有率が本発明において規定される組成範囲より外にあった。そのため、比較例9で得られたガラス組成物の屈折率ndは1.512であり、実施例1~35で得られたガラス組成物の屈折率ndに比べて高かった。 The glass composition obtained in Comparative Example 9 had a B 2 O 3 content outside the composition range defined in the present invention. Therefore, the refractive index n d of the glass composition obtained in Comparative Example 9 was 1.512, which was higher than the refractive index n d of the glass compositions obtained in Examples 1 to 35.
 以上のように、実施例1~35に示す本発明のガラス組成物は、ガラスフィラーの成形に適した溶融特性を有するとともに、フィラーとしてアクリル樹脂へ配合するために適した屈折率を有することが分かる。 As described above, the glass compositions of the present invention shown in Examples 1 to 35 have melting characteristics suitable for molding glass fillers and have a refractive index suitable for blending into acrylic resins as fillers. I understand.
(実施例36~70)
 実施例36~70では、それぞれ実施例1~35で得られたガラス組成物を用いて鱗片状ガラスを作製した。すなわち、ガラス組成物(バルク)を電気炉で再溶融した後、冷却しながらペレットに成形した。このペレットを図2に示す製造装置に投入し、平均厚さが0.5~1μmおよび平均粒子径が100~500μmである鱗片状ガラスを作製した。鱗片状ガラスの平均厚さは、電子顕微鏡((株)キーエンス、リアルサーフェスビュー顕微鏡、VE-7800)を用い、100枚の鱗片状ガラスの断面から鱗片状ガラスの厚さを測定し、それらの厚さを平均することにより求めた値である。鱗片状ガラスの平均粒子径は、レーザ回折粒度分布測定装置(日機装(株)、粒度分析計、マイクロトラックHRA)によって測定した。
(Examples 36 to 70)
In Examples 36 to 70, scaly glass was produced using the glass compositions obtained in Examples 1 to 35, respectively. That is, the glass composition (bulk) was remelted in an electric furnace and then formed into pellets while cooling. The pellets were put into the production apparatus shown in FIG. 2 to produce scale-like glass having an average thickness of 0.5 to 1 μm and an average particle diameter of 100 to 500 μm. The average thickness of the glass flakes was measured by measuring the thickness of the glass flakes from the cross section of 100 glass flakes using an electron microscope (Keyence Corporation, Real Surface View Microscope, VE-7800). This is a value obtained by averaging the thickness. The average particle diameter of the glass flakes was measured with a laser diffraction particle size distribution measuring device (Nikkiso Co., Ltd., particle size analyzer, Microtrac HRA).
 実施例36~70で得られた鱗片状ガラスの屈折率(nD)を測定した。鱗片状ガラスについて、浸液法により、黄色ナトリウムD線(光の波長589.3nm)の屈折率nDを測定した。この測定結果を表6~表9に示す。 The refractive index (n D ) of the glass flakes obtained in Examples 36 to 70 was measured. For glass flakes, by immersion method, a refractive index was measured n D yellow sodium D line (wavelength of light 589.3 nm). The measurement results are shown in Tables 6 to 9.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表6~表9に示すように、実施例36~70で得られた鱗片状ガラスの屈折率(nD)は1.488~1.501の範囲であり、アクリル樹脂の屈折率(nDが1.490~1.495)に近い値であった。 As shown in Table 6 to Table 9, the refractive index of the glass flake obtained in Examples 36 ~ 70 (n D) is in the range of 1.488 to 1.501, the refractive index of the acrylic resin (n D Was close to 1.490 to 1.495).
 実施例36~70で得られた鱗片状ガラス(ガラスフィラー)を各々アクリル樹脂に配合することにより、種々のアクリル樹脂組成物が得られた。 Various acrylic resin compositions were obtained by blending each of the scaly glasses (glass fillers) obtained in Examples 36 to 70 with an acrylic resin.
(実施例71~105)
 実施例71~105では、それぞれ実施例1~35で得られたガラス組成物を用いて、ガラスフィラーとして用いることのできるチョップドストランドを作製した。すなわち、ガラス組成物(バルク)を電気炉で再溶融した後、冷却しながらペレットに成形した。このペレットを図3および図4に示す製造装置に投入し、平均繊維径が10~20μm、長さが3mmであるチョップドストランドを作製した。
(Examples 71 to 105)
In Examples 71 to 105, chopped strands that can be used as glass fillers were produced using the glass compositions obtained in Examples 1 to 35, respectively. That is, the glass composition (bulk) was remelted in an electric furnace and then formed into pellets while cooling. The pellets were put into the production apparatus shown in FIGS. 3 and 4 to produce chopped strands having an average fiber diameter of 10 to 20 μm and a length of 3 mm.
 実施例71~105で得られたチョップドストランドを各々アクリル樹脂に配合することにより、種々のアクリル樹脂組成物が得られた。 Various acrylic resin compositions were obtained by blending the chopped strands obtained in Examples 71 to 105 into acrylic resins.
 本発明は、上述した実施形態に限定されるものではなく、以下に示す指針に従って変更を加えて実施することもできる。 The present invention is not limited to the above-described embodiment, and can be implemented with modifications according to the following guidelines.
 ・ ガラス組成物における二酸化珪素、三酸化二ホウ素および酸化アルミニウムの合計含有率(SiO2+B23+Al23)を調整することにより、ガラスの骨格を良好に維持できるようにガラスを構成することもできる。二酸化珪素、三酸化二ホウ素および酸化アルミニウムの合計含有率(SiO2+B23+Al23)は、例えば、67~86%である。 ・ The glass is constructed so that the skeleton of the glass can be maintained well by adjusting the total content of silicon dioxide, diboron trioxide and aluminum oxide (SiO 2 + B 2 O 3 + Al 2 O 3 ) in the glass composition. You can also The total content of silicon dioxide, diboron trioxide and aluminum oxide (SiO 2 + B 2 O 3 + Al 2 O 3 ) is, for example, 67 to 86%.
 ・ ガラス組成物における二酸化珪素、三酸化二ホウ素、酸化アルミニウムおよび五酸化ニリンの合計含有率(SiO2+B23+Al23+P25)を調整することにより、ガラスの骨格を良好に維持できるようにガラスを構成することもできる。二酸化珪素、三酸化二ホウ素、酸化アルミニウムおよび五酸化ニリンの合計含有率(SiO2+B23+Al23+P25)は、例えば、67~86%である。 ・ By adjusting the total content of silicon dioxide, diboron trioxide, aluminum oxide and niline pentoxide (SiO 2 + B 2 O 3 + Al 2 O 3 + P 2 O 5 ) in the glass composition, the glass skeleton is improved. It is also possible to configure the glass so that it can be maintained. The total content (SiO 2 + B 2 O 3 + Al 2 O 3 + P 2 O 5 ) of silicon dioxide, diboron trioxide, aluminum oxide and niolin pentoxide is, for example, 67 to 86%.
 ・ ガラス組成物における酸化マグネシウムおよび酸化ナトリウムの合計含有率(MgO+Na2O)を調整することにより、ガラスの失透温度および粘度を良好に調整できるようにガラスを構成することもできる。酸化マグネシウムおよび酸化ナトリウムの合計含有率(MgO+Na2O)は、例えば、14~24%である。 · By adjusting the total content of magnesium oxide and sodium oxide (MgO + Na 2 O) in the glass composition, it is also possible to configure the glass so that it can better adjust the devitrification temperature and viscosity of glass. The total content of magnesium oxide and sodium oxide (MgO + Na 2 O) is, for example, 14 to 24%.
 ・ ガラス組成物における酸化マグネシウム、酸化カルシウムおよび酸化ナトリウムの合計含有率(MgO+CaO+Na2O)を調整することにより、ガラスの失透温度および粘度を良好に調整できるようにガラスを構成することもできる。酸化マグネシウム、酸化カルシウムおよび酸化ナトリウムの合計含有率(MgO+CaO+Na2O)は、例えば、14~24%である。 Magnesium oxide in the glass composition, by adjusting the total content of calcium oxide and sodium oxide (MgO + CaO + Na 2 O ), it is also possible to configure the glass so that it can better adjust the devitrification temperature and viscosity of glass. The total content of magnesium oxide, calcium oxide and sodium oxide (MgO + CaO + Na 2 O) is, for example, 14 to 24%.

Claims (12)

  1.  質量%で表して、
     55≦SiO2≦75、
     5≦B23≦10、
     5≦Al23≦15、
     13≦Na2O≦20、の成分を含有するガラス組成物からなるガラスフィラー。
    Expressed in mass%,
    55 ≦ SiO 2 ≦ 75,
    5 ≦ B 2 O 3 ≦ 10,
    5 ≦ Al 2 O 3 ≦ 15,
    13 ≦ Na 2 O ≦ 20, glass filler composed of glass compositions containing components.
  2.  前記ガラス組成物がSrO、BaOおよびZnOの成分を実質的に含有しない請求項1に記載のガラスフィラー。 The glass filler according to claim 1, wherein the glass composition does not substantially contain components of SrO, BaO and ZnO.
  3.  前記ガラス組成物が酸化マグネシウム(MgO)および/または酸化カルシウム(CaO)をさらに含み、前記酸化マグネシウムおよび前記酸化カルシウムの合計含有率が質量%で表して、
     0.1≦(MgO+CaO)≦5
    である請求項1に記載のガラスフィラー。
    The glass composition further contains magnesium oxide (MgO) and / or calcium oxide (CaO), and the total content of the magnesium oxide and the calcium oxide is expressed by mass%,
    0.1 ≦ (MgO + CaO) ≦ 5
    The glass filler according to claim 1.
  4.  前記ガラス組成物が酸化マグネシウム(MgO)をさらに含み、前記酸化マグネシウムの含有率が質量%で表して、
     0.1≦MgO≦5
    である請求項1に記載のガラスフィラー。
    The glass composition further includes magnesium oxide (MgO), and the magnesium oxide content is expressed in mass%,
    0.1 ≦ MgO ≦ 5
    The glass filler according to claim 1.
  5.  前記ガラス組成物が五酸化二リン(P25)をさらに含み、前記五酸化二リンの含有率が質量%で表して、
     0.1≦P25≦10
    である請求項1に記載のガラスフィラー。
    The glass composition further includes diphosphorus pentoxide (P 2 O 5 ), and the content of the diphosphorus pentoxide is expressed in mass%,
    0.1 ≦ P 2 O 5 ≦ 10
    The glass filler according to claim 1.
  6.  前記ガラス組成物の屈折率ndが1.480~1.505である請求項1に記載のガラスフィラー。 The glass filler according to claim 1, wherein the refractive index n d of the glass composition is 1.480 to 1.505.
  7.  前記ガラス組成物の作業温度が1100~1300℃である請求項1に記載のガラスフィラー。 The glass filler according to claim 1, wherein the working temperature of the glass composition is 1100 to 1300 ° C.
  8.  前記ガラス組成物の作業温度から失透温度を差し引いた温度差ΔTが0~600℃である請求項1に記載のガラスフィラー。 The glass filler according to claim 1, wherein the temperature difference ΔT obtained by subtracting the devitrification temperature from the working temperature of the glass composition is 0 to 600 ° C.
  9.  JIS R 3502-1995に準拠する測定方法による、前記ガラス組成物のアルカリ溶出量が、0.001~0.20mgである請求項1に記載のガラスフィラー。 The glass filler according to claim 1, wherein the alkali elution amount of the glass composition by a measuring method based on JIS R 3502-1995 is 0.001 to 0.20 mg.
  10.  鱗片状ガラス、チョップドストランド、ミルドファイバー、ガラス粉末およびガラスビーズから選ばれる少なくとも1つに相当する形態を有する請求項1に記載のガラスフィラー。 2. The glass filler according to claim 1, having a form corresponding to at least one selected from flaky glass, chopped strands, milled fiber, glass powder and glass beads.
  11.  アクリル樹脂と請求項1に記載のガラスフィラーとを含有するアクリル樹脂組成物。 An acrylic resin composition containing an acrylic resin and the glass filler according to claim 1.
  12.  ガラス原料を溶融し、質量%で表して、
     55≦SiO2≦75、
     5≦B23≦10、
     5≦Al23≦15、
     13≦Na2O≦20、の成分を含有するガラス溶融物を得る工程と、
     前記ガラス溶融物をガラスフィラーへと成形する工程とを含むガラスフィラーの製造方法。
    The glass raw material is melted and expressed in mass%.
    55 ≦ SiO 2 ≦ 75,
    5 ≦ B 2 O 3 ≦ 10,
    5 ≦ Al 2 O 3 ≦ 15,
    Obtaining a glass melt containing a component of 13 ≦ Na 2 O ≦ 20;
    The manufacturing method of the glass filler including the process of shape | molding the said glass melt into a glass filler.
PCT/JP2011/001961 2010-04-01 2011-03-31 Glass filler WO2011125316A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509309A JPWO2011125316A1 (en) 2010-04-01 2011-03-31 Glass filler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-084748 2010-04-01
JP2010084748 2010-04-01

Publications (1)

Publication Number Publication Date
WO2011125316A1 true WO2011125316A1 (en) 2011-10-13

Family

ID=44762287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001961 WO2011125316A1 (en) 2010-04-01 2011-03-31 Glass filler

Country Status (2)

Country Link
JP (1) JPWO2011125316A1 (en)
WO (1) WO2011125316A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108897A (en) * 2012-11-30 2014-06-12 Nippon Sheet Glass Co Ltd Glass filler
US11951713B2 (en) 2020-12-10 2024-04-09 Corning Incorporated Glass with unique fracture behavior for vehicle windshield

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535216A (en) * 1976-07-02 1978-01-18 Okuno Chem Ind Co Glass enamel composition
JPH01226749A (en) * 1988-03-08 1989-09-11 Ngk Insulators Ltd Glass composition for joining ceramic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535216A (en) * 1976-07-02 1978-01-18 Okuno Chem Ind Co Glass enamel composition
JPH01226749A (en) * 1988-03-08 1989-09-11 Ngk Insulators Ltd Glass composition for joining ceramic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108897A (en) * 2012-11-30 2014-06-12 Nippon Sheet Glass Co Ltd Glass filler
US11951713B2 (en) 2020-12-10 2024-04-09 Corning Incorporated Glass with unique fracture behavior for vehicle windshield

Also Published As

Publication number Publication date
JPWO2011125316A1 (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP5432711B2 (en) Glass composition
JPWO2008156091A1 (en) Glass composition
JP2012051773A (en) Glass for resin composite substrate
JP5810086B2 (en) Glass filler
JP2012153582A (en) Glass composition and application thereof
JP5964219B2 (en) Glass filler
WO2022168964A1 (en) Glass composition, and glass filler and method for producing same
JP5809900B2 (en) Glass composition, glass filler for polycarbonate resin using the same, and polycarbonate resin composition
CN104876440A (en) Optical glass
JP5330754B2 (en) Glass composition and dental composition using the same
JP2013121905A (en) Resin composite substrate glass
JP2013159546A (en) Glass filler
JP2018104237A (en) Glass composition for glass fiber, glass fiber, and method for producing glass fiber
WO2011125316A1 (en) Glass filler
JP2011162415A (en) Glass composition and use thereof
US11577990B2 (en) Glass fiber and method for producing same
JPWO2016068125A1 (en) Optical glass, optical element and optical glass material
JP3771073B2 (en) Glass fiber
JP2023510200A (en) Fiberglass composition for higher modulus
JP2002173334A (en) Optical glass
WO2019194086A1 (en) Optical transmission fiber glass and optical transmission fiber
TWI826278B (en) Glass fiber and compositions for glass fiber
JPH06157072A (en) Corrosion resistant glass fiber
WO2023190983A1 (en) Glass fiber
TW202402697A (en) Glass product for resin composite materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765218

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509309

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765218

Country of ref document: EP

Kind code of ref document: A1