JP2012051773A - Glass for resin composite substrate - Google Patents

Glass for resin composite substrate Download PDF

Info

Publication number
JP2012051773A
JP2012051773A JP2010196998A JP2010196998A JP2012051773A JP 2012051773 A JP2012051773 A JP 2012051773A JP 2010196998 A JP2010196998 A JP 2010196998A JP 2010196998 A JP2010196998 A JP 2010196998A JP 2012051773 A JP2012051773 A JP 2012051773A
Authority
JP
Japan
Prior art keywords
glass
resin composite
composite substrate
resin
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010196998A
Other languages
Japanese (ja)
Inventor
Shinsaku Nishida
晋作 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2010196998A priority Critical patent/JP2012051773A/en
Publication of JP2012051773A publication Critical patent/JP2012051773A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium

Abstract

PROBLEM TO BE SOLVED: To provide a filler and a glass fiber matching optical properties (a refractive index nd, an Abbe's number νd) of a transparent resin and hardly causing alkaline elution for improving transparency and reliability of a resin composite substrate.SOLUTION: Glass for the resin composite substrate includes, as a glass composition, by mass% in terms of the following oxides: 50-65% of SiO; 0-20% of AlO; 0-20% of BO; 5-20% of MgO+CaO+SrO+BaO+ZnO (as a total of MgO, CaO, SrO, BaO, and ZnO); 0-5% of LiO+NaO+KO (as a total of LiO, NaO, and KO); 0-10% of TiO; 0-10% of ZrO; and 0-2% of SnO.

Description

本発明は、樹脂複合体基板用ガラスに関し、具体的には可視光に対して透明であり、且つ透明樹脂の光学特性(屈折率nd、アッベ数νd)に整合した樹脂複合体基板用ガラスに関する。   The present invention relates to a glass for a resin composite substrate, and specifically relates to a glass for a resin composite substrate that is transparent to visible light and matches the optical characteristics (refractive index nd, Abbe number νd) of the transparent resin. .

近年、電子ペーパー等のフレキシブルディスプレイの基板として、可視光に対して透明な樹脂複合体基板が注目されている。一般的に、樹脂複合体基板は、樹脂、充填材、ガラス繊維を含む複合材料である(例えば、特許文献1、2参照)。なお、樹脂複合体基板は、ガラス基板よりもフレキシブル性に優れており、樹脂基板よりも寸法安定性、機械的強度に優れている。   In recent years, resin composite substrates that are transparent to visible light have attracted attention as substrates for flexible displays such as electronic paper. Generally, the resin composite substrate is a composite material including a resin, a filler, and glass fibers (see, for example, Patent Documents 1 and 2). The resin composite substrate is more flexible than the glass substrate, and more excellent in dimensional stability and mechanical strength than the resin substrate.

樹脂としては、透明性の観点から、エポキシ樹脂、アクリル樹脂、環状オレフィン樹脂やこれらの混合物が使用される。これらの樹脂は、屈折率ndが1.48〜1.55、アッベ数νdが50〜65である。充填材は、樹脂複合体基板の熱膨張特性の制御、空隙の低減のために添加される。ガラス繊維は、樹脂複合体基板の寸法安定性、機械的強度を高めるために添加される。   As the resin, an epoxy resin, an acrylic resin, a cyclic olefin resin, or a mixture thereof is used from the viewpoint of transparency. These resins have a refractive index nd of 1.48 to 1.55 and an Abbe number νd of 50 to 65. The filler is added to control the thermal expansion characteristics of the resin composite substrate and reduce the voids. Glass fiber is added to increase the dimensional stability and mechanical strength of the resin composite substrate.

充填材は、例えば、双ローラーにより溶融ガラスをフィルム形状に成形した後、ボールミル等によりガラスフィルムを粉末形状に粉砕することで作製される。   The filler is produced, for example, by forming molten glass into a film shape with a twin roller and then crushing the glass film into a powder shape with a ball mill or the like.

ガラス繊維は、例えば、貴金属製のブッシングを使用して、連続的に成形、紡糸することで作製される。ブッシングの構造は、溶融ガラスを滞留させるために容器形状を有しており、その底部には鉛直方向に多数のノズルが配設されている。溶融ガラスは、成形温度近傍(紡糸温度、約10dPa・sにおける温度)において、ノズルから引き出されて繊維形状に成形される。 The glass fiber is produced, for example, by continuously molding and spinning using a noble metal bushing. The bushing structure has a container shape for retaining molten glass, and a number of nozzles are arranged in the vertical direction at the bottom. The molten glass is drawn out of the nozzle and formed into a fiber shape in the vicinity of the forming temperature (spinning temperature, temperature at about 10 3 dPa · s).

特開2008−255002号公報JP 2008-255002 A 特開2008−230949号公報JP 2008-230949 A

樹脂複合体基板の透明性を高めるには、構成材料同士の光学特性(屈折率nd、アッベ数νd)を整合させる必要がある。また、樹脂複合体基板の信頼性を高めるには、樹脂と充填材、或いは樹脂とガラス繊維の界面における接着強度を高める必要がある。   In order to improve the transparency of the resin composite substrate, it is necessary to match the optical characteristics (refractive index nd, Abbe number νd) between the constituent materials. Further, in order to increase the reliability of the resin composite substrate, it is necessary to increase the adhesive strength at the interface between the resin and the filler or between the resin and the glass fiber.

しかし、従来の充填材とガラス繊維は、透明樹脂の光学特性に整合させつつ、接着強度を高めることが困難であった。   However, it has been difficult for conventional fillers and glass fibers to increase the adhesive strength while matching the optical properties of the transparent resin.

具体的に説明すると、従来の充填材とガラス繊維は、ガラス組成中にアルカリ金属酸化物を多量に含んでいる。このため、樹脂と充填材とガラス繊維を複合化して、樹脂複合体基板に加工する際に、アルカリ溶出により樹脂の硬化が阻害される場合があり、また樹脂複合体基板の作製後、樹脂と充填材、或いは樹脂とガラス繊維の界面における接着強度がアルカリ溶出により経時的に低下して、樹脂複合体基板の機械的強度が低下し易くなる。   Specifically, the conventional filler and glass fiber contain a large amount of alkali metal oxide in the glass composition. For this reason, when a resin, a filler, and a glass fiber are combined and processed into a resin composite substrate, the curing of the resin may be hindered by alkali elution. The adhesive strength at the interface between the filler or the resin and the glass fiber decreases with time due to alkali elution, and the mechanical strength of the resin composite substrate is likely to decrease.

従来の充填材とガラス繊維からアルカリ金属酸化物を低減すると、アルカリ溶出に起因する不具合を解消し得るが、透明樹脂の光学特性(屈折率nd、アッベ数νd)に整合させることが困難になる。   If alkali metal oxides are reduced from conventional fillers and glass fibers, problems due to alkali elution can be eliminated, but it becomes difficult to match the optical properties (refractive index nd, Abbe number νd) of the transparent resin. .

そこで、本発明は、透明樹脂の光学特性(屈折率nd、アッベ数νd)に整合し、且つアルカリ溶出量の少ない充填材やガラス繊維を創案することにより、樹脂複合体基板の透明性や信頼性を高めることを技術的課題とする。   Therefore, the present invention creates a filler or glass fiber that matches the optical characteristics (refractive index nd, Abbe number νd) of the transparent resin and has a small amount of alkali elution, thereby improving the transparency and reliability of the resin composite substrate. The technical challenge is to improve the performance.

本発明者は、鋭意検討の結果、樹脂複合体基板用ガラスのガラス組成を厳密に規制することにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明の樹脂複合体基板用ガラスは、ガラス組成として、下記酸化物換算の質量%で、SiO 50〜65%、Al 0〜20%、B 0〜20%、MgO+CaO+SrO+BaO+ZnO(MgO、CaO、SrO、BaO、及びZnOの合量) 5〜20%、LiO+NaO+KO(LiO、NaO、及びKOの合量) 0〜5%、TiO 0〜10%、ZrO 0〜10%、SnO 0〜2%を含有することを特徴とする。このようにすれば、透明樹脂であるエポキシ樹脂、アクリル樹脂、環状オレフィン樹脂等の屈折率ndやアッベ数νdに整合し易くなると共に、アルカリ溶出量を低減することができる。その結果、充填材やガラス繊維として、樹脂複合体基板に好適に使用可能になる。 As a result of intensive studies, the present inventors have found that the above technical problem can be solved by strictly regulating the glass composition of the glass for a resin composite substrate, and propose the present invention. That is, the glass for a resin composite substrate of the present invention has a glass composition of mass% in terms of the following oxides: SiO 2 50 to 65%, Al 2 O 3 0 to 20%, B 2 O 3 0 to 20%. MgO + CaO + SrO + BaO + ZnO (total amount of MgO, CaO, SrO, BaO and ZnO) 5 to 20%, Li 2 O + Na 2 O + K 2 O (total amount of Li 2 O, Na 2 O and K 2 O) 0 to 5% , TiO 2 0 to 10%, ZrO 2 0 to 10%, SnO 2 0 to 2%. If it does in this way, it becomes easy to match | combine with refractive index nd and Abbe number (nu) d, such as an epoxy resin, an acrylic resin, and cyclic olefin resin which are transparent resins, and it can reduce the amount of alkali elution. As a result, the resin composite substrate can be suitably used as a filler or glass fiber.

第二に、本発明の樹脂複合体基板用ガラスは、屈折率ndが1.48〜1.55、アッベ数νdが50〜65であることを特徴とする。このようにすれば、透明樹脂であるエポキシ樹脂、アクリル樹脂、環状オレフィン樹脂等の屈折率ndやアッベ数νdに整合し易くなるため、樹脂複合体基板の透明性を高め易くなる。ここで、「屈折率nd」は、例えば、屈折率計(カルニュー製KPR−200)で測定可能であり、またヘリウムランプのd線(波長:587.56nm)における測定値である。「アッベ数νd」は、屈折率計(カルニュー製KPR−200)で測定可能であり、ヘリウムランプのd線、水素ランプのF線(波長:486.13nm)、及び水素ランプのC線(波長:656.27nm)における屈折率(nd、nF、nC)を測定した上で、算出式{(nd−1)/(nF−nC)}により算出可能である。   Secondly, the glass for a resin composite substrate of the present invention is characterized by a refractive index nd of 1.48 to 1.55 and an Abbe number νd of 50 to 65. In this way, it becomes easy to match the refractive index nd and Abbe number νd of epoxy resin, acrylic resin, cyclic olefin resin, etc., which are transparent resins, so that it becomes easy to improve the transparency of the resin composite substrate. Here, the “refractive index nd” can be measured with, for example, a refractometer (KPR-200 manufactured by Karnew Co., Ltd.) and is a measured value at the d-line (wavelength: 587.56 nm) of the helium lamp. The “Abbe number νd” can be measured with a refractometer (KPR-200 manufactured by Kalnew). The d-line of a helium lamp, the F-line of a hydrogen lamp (wavelength: 486.13 nm), and the C-line (wavelength of a hydrogen lamp) : 656.27 nm) after measurement of the refractive index (nd, nF, nC), it can be calculated by the calculation formula {(nd-1) / (nF-nC)}.

第三に、本発明の樹脂複合体基板用ガラスは、アルカリ溶出量が0.35mg以下であることを特徴とする。このようにすれば、樹脂複合体基板の製造工程における熱処理の際に、アルカリイオンがガラスの表層から樹脂に移動し難くなるため、樹脂とガラスの接着強度が低下し難くなる。また樹脂複合体基板の作製後、樹脂と充填材、或いは樹脂とガラス繊維の界面における接着強度が、アルカリ溶出により経時的に低下し難くなり、結果として、樹脂複合体基板の機械的強度が低下し難くなる。さらに、樹脂複合体基板の耐薬品性も低下し難くなる。ここで、「アルカリ溶出量」は、JIS R3502(1995)に準拠した方法で測定した値を指す。   Thirdly, the resin composite substrate glass of the present invention is characterized in that the alkali elution amount is 0.35 mg or less. If it does in this way, in the case of the heat processing in the manufacturing process of a resin composite board | substrate, since an alkali ion becomes difficult to move to resin from the surface layer of glass, it becomes difficult to reduce the adhesive strength of resin and glass. In addition, after the production of the resin composite substrate, the adhesive strength at the interface between the resin and the filler or the resin and the glass fiber is less likely to decrease over time due to alkali elution, resulting in a decrease in the mechanical strength of the resin composite substrate. It becomes difficult to do. Furthermore, the chemical resistance of the resin composite substrate is difficult to decrease. Here, “alkaline elution amount” refers to a value measured by a method based on JIS R3502 (1995).

第四に、本発明の樹脂複合体基板用ガラスは、粉末形状を有することを特徴とする。   Fourthly, the glass for a resin composite substrate of the present invention is characterized by having a powder shape.

第五に、本発明の樹脂複合体基板用ガラスは、繊維形状を有することを特徴とする。   Fifth, the glass for a resin composite substrate of the present invention is characterized by having a fiber shape.

本発明の樹脂複合体基板用ガラスにおいて、上記のように各成分の含有範囲を規定した理由を以下に説明する。なお、各成分の含有範囲の説明において、%表示は質量%を指す。   In the glass for a resin composite substrate of the present invention, the reason for defining the content range of each component as described above will be described below. In addition, in description of the containing range of each component,% display points out the mass%.

SiOは、ガラス骨格構造を形成する主要成分であり、その含有量は50〜65%、好ましくは50〜62%、より好ましくは50〜59%である。SiOの含有量が少な過ぎると、機械的強度が低下し易くなる。一方、SiOの含有量が多過ぎると、高温粘度が高くなって、溶融性や成形性が低下し易くなり、結果として、充填材やガラス繊維の製造コストが高騰してしまう。特に、SiOの含有量を50〜59%に規制すれば、機械的強度を損なうことなく、溶融性や成形性を高めることができる。 SiO 2 is a main component that forms a glass skeleton structure, and its content is 50 to 65%, preferably 50 to 62%, more preferably 50 to 59%. When the content of SiO 2 is too small, the mechanical strength tends to decrease. On the other hand, if the content of SiO 2 is too large, higher high temperature viscosity, it tends to decrease. Meltability and formability, as a result, the manufacturing cost of the fillers and glass fibers increasing too high. In particular, if the content of SiO 2 is regulated to 50 to 59%, meltability and moldability can be improved without impairing mechanical strength.

Alは、化学的耐久性や機械的強度を高める成分であり、また適量添加により耐失透性を高める成分、更には弾性率を高めて、紡糸状態を安定化させる成分であり、その含有量は0〜20%、好ましくは5〜20%、より好ましくは10〜20%である。Alの含有量が多過ぎると、高温粘度が高くなって、溶融性や成形性が低下し易くなり、結果として、充填材やガラス繊維の製造コストが高騰してしまう。特に、Alの含有量を10〜20%に規制すれば、成形時に溶融ガラス中に結晶が析出し難くなると共に、紡糸状態が安定化し易くなる。 Al 2 O 3 is a component that increases chemical durability and mechanical strength, is a component that increases devitrification resistance by addition of an appropriate amount, and further is a component that increases the elastic modulus and stabilizes the spinning state. Its content is 0-20%, preferably 5-20%, more preferably 10-20%. When the content of Al 2 O 3 is too large, higher high temperature viscosity, it tends to decrease. Meltability and formability, as a result, the manufacturing cost of the fillers and glass fibers increasing too high. In particular, if the content of Al 2 O 3 is restricted to 10 to 20%, crystals are hardly precipitated in the molten glass during molding, and the spinning state is easily stabilized.

は、SiOと同様にして、ガラス骨格構造を形成する成分であるが、SiOと相違して、高温粘度を低下させる成分であり、その含有量は0〜20%、好ましくは5〜20%、より好ましくは10〜18%である。Bの含有量が多過ぎると、分相傾向が顕著になり、一旦、分相が生じると、所望の光学特性を確保し難くなることに加えて、化学的耐久性が低下し易くなる。特に、Bの含有量を10〜18%に規制すれば、分相傾向を抑制できると共に、溶融コスト等を低廉化し易くなる。 B 2 O 3 is, in the same manner as SiO 2, is a component for forming a glass network structure, different from the SiO 2, a component to lower the high temperature viscosity, the content thereof is 0-20%, preferably Is 5 to 20%, more preferably 10 to 18%. If the content of B 2 O 3 is too large, the tendency of phase separation becomes prominent. Once phase separation occurs, it becomes difficult to ensure desired optical characteristics, and chemical durability is likely to decrease. Become. In particular, if the content of B 2 O 3 is restricted to 10 to 18%, the phase separation tendency can be suppressed and the melting cost and the like can be easily reduced.

MgO+CaO+SrO+BaO+ZnOは、高温粘度を低下させて、溶融性を高める成分であり、また光学特性(屈折率nd、アッベ数νd)を適正化する成分であり、その含有量は5〜20%、好ましくは5〜18%、より好ましくは5〜15%である。MgO+CaO+SrO+BaO+ZnOの含有量が多過ぎると、屈折率ndが大きくなり過ぎると共に、耐失透性が低下し、更にはガラスが分相し易くなる。特に、MgO+CaO+SrO+BaO+ZnOの含有量を5〜15%に規制すれば、溶融性の向上に加えて、分相傾向を弱めつつ、溶融ガラスからの結晶の析出を防止し易くなる。   MgO + CaO + SrO + BaO + ZnO is a component that lowers the high-temperature viscosity and improves the meltability, and is a component that optimizes optical properties (refractive index nd, Abbe number νd), and its content is 5 to 20%, preferably 5 -18%, more preferably 5-15%. When the content of MgO + CaO + SrO + BaO + ZnO is too large, the refractive index nd becomes too large, the devitrification resistance is lowered, and the glass is more likely to be phase separated. In particular, if the content of MgO + CaO + SrO + BaO + ZnO is regulated to 5 to 15%, in addition to improving the meltability, it becomes easy to prevent the precipitation of crystals from the molten glass while weakening the phase separation tendency.

MgOは、高温粘度を低下させて、溶融性を高める成分であり、また光学特性(屈折率nd、アッベ数νd)を適正化する成分であり、その含有量は0〜10%、0〜8%、特に0〜4%が好ましい。MgOの含有量が多過ぎると、ガラスが分相し易くなる。   MgO is a component that lowers the viscosity at high temperature and improves the meltability, and is a component that optimizes optical characteristics (refractive index nd, Abbe number νd), and its content is 0 to 10%, 0 to 8 %, Particularly 0 to 4% is preferred. When there is too much content of MgO, it will become easy to phase-separate glass.

CaOは、高温粘度を低下させて、溶融性を高める成分であり、また光学特性(屈折率nd、アッベ数νd)を適正化する成分であり、その含有量は0〜10%、0.1〜8%、特に1〜4.5%が好ましい。CaOの含有量が多過ぎると、溶融ガラスからCaを含む結晶が析出し易くなる。   CaO is a component that lowers the high-temperature viscosity and improves the meltability, and is a component that optimizes optical properties (refractive index nd, Abbe number νd), and its content is 0 to 10%, 0.1 -8%, particularly 1-4.5% is preferred. When there is too much content of CaO, the crystal | crystallization containing Ca will precipitate easily from molten glass.

SrOは、高温粘度を低下させて、溶融性を高める成分であり、また光学特性(屈折率nd、アッベ数νd)を適正化する成分であり、その含有量は0〜10%、0〜8%、特に0〜5%が好ましい。SrOの含有量が多過ぎると、溶融ガラスからSrを含む結晶が析出し易くなる。   SrO is a component that lowers the high-temperature viscosity and increases the meltability, and is a component that optimizes optical properties (refractive index nd, Abbe number νd), and its content is 0 to 10%, 0 to 8 %, Particularly 0 to 5% is preferred. When there is too much content of SrO, the crystal | crystallization containing Sr will precipitate easily from molten glass.

BaOは、高温粘度を低下させて、溶融性を高める成分であり、また光学特性(屈折率nd、アッベ数νd)を適正化する成分であり、その含有量は0〜10%、0〜8%、特に0〜4%が好ましい。BaOの含有量が多過ぎると、溶融ガラスからBaを含む結晶が析出し易くなる。   BaO is a component that lowers the viscosity at high temperature and increases the meltability, and is a component that optimizes optical properties (refractive index nd, Abbe number νd), and its content is 0 to 10%, 0 to 8 %, Particularly 0 to 4% is preferred. When there is too much content of BaO, it will become easy to precipitate the crystal | crystallization containing Ba from molten glass.

ZnOは、高温粘度を低下させて、溶融性を高める成分である。また、ZnOは、ガラス組成中にアルカリ金属酸化物を含む場合に、アルカリ溶出量を低下させる効果があり、特にZnOとTiOを併存させると、その効果が大きくなる。但し、アルカリ金属酸化物の含有量が過剰になると、この効果が小さくなる。さらに、ZnOは、光学特性を適正化する成分、具体的には屈折率ndを上げて、アッベ数νdを下げる成分である。ZnOの含有量は0〜10%、0.1〜8%、特に2超〜5%が好ましい。ZnOの含有量が多過ぎると、ガラスが分相し易くなる。 ZnO is a component that lowers the high-temperature viscosity and increases the meltability. In addition, ZnO has an effect of reducing the amount of alkali elution when an alkali metal oxide is contained in the glass composition. In particular, when ZnO and TiO 2 coexist, the effect becomes large. However, when the content of the alkali metal oxide is excessive, this effect is reduced. Furthermore, ZnO is a component that optimizes the optical characteristics, specifically, a component that increases the refractive index nd and decreases the Abbe number νd. The content of ZnO is preferably 0 to 10%, 0.1 to 8%, particularly more than 2 to 5%. When there is too much content of ZnO, it will become easy to phase-separate glass.

LiO+NaO+KOは、高温粘度を低下させて、溶融性を高める成分である。そして、溶融性が良好であると、低温で均質なガラスを製造し易くなる。LiO+NaO+KOの含有量は0〜5%、好ましくは0〜3%、より好ましくは0〜2%、更に好ましくは0〜1%未満、特に好ましくは0〜0.1%未満である。LiO+NaO+KOの含有量が多過ぎると、樹脂と充填材とガラス繊維を複合化して、樹脂複合体基板に加工する際に、アルカリ溶出により樹脂の硬化が阻害される場合があり、また樹脂複合体基板の作製後、樹脂と充填材、或いは樹脂とガラス繊維の界面における接着強度がアルカリ溶出により経時的に低下して、樹脂複合体基板の機械的強度が低下し易くなる。なお、高温粘度を低下させて、溶融性を高めたい場合は、LiO+NaO+KOの含有量を0.1%以上にすることが好ましい。 Li 2 O + Na 2 O + K 2 O is a component that lowers the high-temperature viscosity and increases the meltability. And if the meltability is good, it becomes easy to produce a homogeneous glass at a low temperature. The content of Li 2 O + Na 2 O + K 2 O is 0 to 5%, preferably 0 to 3%, more preferably 0 to 2%, still more preferably 0 to less than 1%, particularly preferably 0 to less than 0.1%. It is. If the content of Li 2 O + Na 2 O + K 2 O is too large, curing of the resin may be inhibited by alkali elution when the resin, filler and glass fiber are combined and processed into a resin composite substrate. In addition, after the production of the resin composite substrate, the adhesive strength at the interface between the resin and the filler or the resin and the glass fiber is lowered with time due to alkali elution, and the mechanical strength of the resin composite substrate is easily lowered. Note that lowering the high temperature viscosity, if you want to enhance the meltability, it is preferable that the content of Li 2 O + Na 2 O + K 2 O more than 0.1%.

LiOは、高温粘度を低下させて、溶融性を高める成分であり、その含有量は0〜5%、0〜3%、0〜2%、0〜1%、特に0〜0.1%未満が好ましい。LiOの含有量が多過ぎると、ガラス表面からLi成分が溶出し易くなることに加えて、溶融ガラスからLiを含む結晶が析出し易くなる。 Li 2 O is a component that lowers the high-temperature viscosity and enhances the meltability, and its content is 0 to 5%, 0 to 3%, 0 to 2%, 0 to 1%, particularly 0 to 0.1. % Is preferred. The content of Li 2 O is too large, Li component from the glass surface in addition to being easily eluted, crystals are liable to precipitate containing Li from the molten glass.

NaOは、高温粘度を低下させて、溶融性を高める成分であり、その含有量は0〜5%、0〜3%、0〜2%、0〜1%、特に0〜0.1%未満が好ましい。NaOの含有量が多過ぎると、ガラス表面からNa成分が溶出し易くなる。なお、NaOは、他のアルカリ金属酸化物に比べて、ガラス表面から溶出する傾向が強い。 Na 2 O is a component that lowers the high-temperature viscosity and increases the meltability, and its content is 0 to 5%, 0 to 3%, 0 to 2%, 0 to 1%, particularly 0 to 0.1. % Is preferred. When the content of Na 2 O is too large, easily Na component eluted from the glass surface. Na 2 O is more likely to be eluted from the glass surface than other alkali metal oxides.

Oは、高温粘度を低下させて、溶融性を高める成分であり、その含有量は0〜5%、0〜3%、0〜2%、0〜1%、特に0〜0.1%未満が好ましい。KOの含有量が多過ぎると、ガラス表面からK成分が溶出し易くなる。 K 2 O is a component that lowers the high-temperature viscosity and increases the meltability, and its content is 0 to 5%, 0 to 3%, 0 to 2%, 0 to 1%, particularly 0 to 0.1. % Is preferred. When the content of K 2 O is too large, easily K components are eluted from the glass surface.

TiOは、光学特性(屈折率nd、アッベ数νd)を適正化する成分であり、具体的には屈折率ndを上げて、アッベ数νdを顕著に下げる成分である。また、TiOは、ガラス組成中にアルカリ金属酸化物を含む場合に、アルカリ溶出量を低下させる効果がある。TiOの含有量は0〜10%、好ましくは0.1〜5%、より好ましくは1〜4%である。TiOの含有量が多過ぎると、溶融ガラスからTiを含む結晶が析出し易くなることに加えて、屈折率ndが高くなり過ぎる場合がある。さらに、分相傾向が強くなり、溶融ガラスからSiを含む結晶が析出し易くなる。 TiO 2 is a component that optimizes optical characteristics (refractive index nd, Abbe number νd). Specifically, TiO 2 is a component that increases the refractive index nd and significantly decreases the Abbe number νd. Further, TiO 2 has an effect of reducing the amount of alkali elution when an alkali metal oxide is contained in the glass composition. The content of TiO 2 is 0 to 10%, preferably 0.1 to 5%, more preferably 1 to 4%. If the content of TiO 2 is too large, the refractive index nd may become too high in addition to the precipitation of Ti-containing crystals from the molten glass. Furthermore, the phase separation tendency becomes strong, and crystals containing Si are likely to precipitate from the molten glass.

ZrOは、TiOと同様にして、光学特性(屈折率nd、アッベ数νd)を適正化する成分であり、具体的には屈折率ndを上げて、アッベ数νdを下げる成分である。ZrOの含有量は0〜10%、好ましくは0〜8%、より好ましくは0〜5%である。ZrOの含有量が多過ぎると、溶融ガラスからTiを含む結晶が析出し易くなって、充填材やガラス繊維を製造し難くなる。 ZrO 2 is a component that optimizes optical characteristics (refractive index nd, Abbe number νd) in the same manner as TiO 2. Specifically, ZrO 2 is a component that increases the refractive index nd and decreases the Abbe number νd. The content of ZrO 2 is 0 to 10%, preferably 0 to 8%, more preferably 0 to 5%. When the content of ZrO 2 is too high, it is easy crystals precipitated comprising Ti from the molten glass, is difficult to manufacture the filler or glass fiber.

SnOは、清澄剤として作用して、泡品位を高める成分であり、その含有量は0〜2%、好ましくは0.01〜1%、より好ましくは0.05〜0.5%である。SnOの含有量が多過ぎると、ガラスが着色して、樹脂複合体基板に適用し難くなる。 SnO 2 is a component that acts as a fining agent and enhances foam quality, and its content is 0 to 2%, preferably 0.01 to 1%, more preferably 0.05 to 0.5%. . When the content of SnO 2 is too large, the glass is colored, it becomes difficult to apply the resin composite substrate.

上記成分以外にも、他の成分を添加してもよい。例えば、光学特性、化学的耐久性、高温粘度等の改良のために、P、Cr、Sb、SO、Cl、PbO、La、WO、Nb、Y、CeO等を添加してもよい。なお、これらの成分の添加量は合量で3%以下が好ましい。 In addition to the above components, other components may be added. For example, in order to improve optical properties, chemical durability, high temperature viscosity, etc., P 2 O 5 , Cr 2 O 3 , Sb 2 O 3 , SO 3 , Cl 2 , PbO, La 2 O 3 , WO 3 , Nb 2 O 5 , Y 2 O 3 , CeO 2 or the like may be added. The total amount of these components is preferably 3% or less.

Asは、清澄剤として作用して、泡品位を高める成分であるが、環境的影響が懸念される成分であり、その含有量は0〜1%、0〜0.1%、特に0〜0.1%未満が好ましい。 As 2 O 3 is a component that acts as a refining agent and improves foam quality, but is a component that is concerned about environmental impact, and its content is 0 to 1%, particularly 0 to 0.1%. 0 to less than 0.1% is preferable.

樹脂複合体基板の透明性を高めたい場合は、Feの含有量を0.5%以下、特に0.1%以下に規制することが好ましい。また、H、CO、CO、HO、He、Ne、Ar、N等の微量成分を0.1%まで含んでもよい。さらに、樹脂複合体基板の特性に悪影響を及ぼさない限り、ガラス中にPt、Rh等の貴金属元素を500ppmまで添加してもよい。 When it is desired to increase the transparency of the resin composite substrate, it is preferable to regulate the content of Fe 2 O 3 to 0.5% or less, particularly 0.1% or less. Moreover, H 2, CO 2, CO , H 2 O, He, Ne, Ar, minor components such as N 2 may contain up to 0.1%. Furthermore, as long as the properties of the resin composite substrate are not adversely affected, noble metal elements such as Pt and Rh may be added to the glass up to 500 ppm.

本発明の樹脂複合体基板用ガラスにおいて、屈折率ndは1.48〜1.55、アッベ数νdは50〜65が好ましい。屈折率ndが1.48より小さいと、透明樹脂であるエポキシ樹脂、アクリル樹脂、環状オレフィン樹脂等の屈折率ndより遥かに小さくなるため、透明樹脂に入射した可視光線の直進性が損なわれて、入射光線が分散し、結果として、無色で透明な樹脂複合体基板を得ることができず、樹脂複合体基板の透光性が低下し易くなる。一方、屈折率ndが1.55より大きいと、透明樹脂であるエポキシ樹脂、アクリル樹脂、環状オレフィン樹脂等のアッベ数νdに整合させることが困難になるため、不透明、或いは透明であっても青、赤、紫等に着色した状態になり易い。また、波長587.56nm以外の可視域の波長範囲において、透光性を実現するためには、アッベ数νdを所定範囲に規制することが好ましい。アッベ数νdが50未満、或いは65を超えると、透明樹脂であるエポキシ樹脂、アクリル樹脂、環状オレフィン樹脂等のアッベ数νdに整合させることが困難になるため、不透明、或いは透明であっても青、赤、紫等に着色した状態になり易い。   In the glass for a resin composite substrate of the present invention, the refractive index nd is preferably 1.48 to 1.55, and the Abbe number νd is preferably 50 to 65. If the refractive index nd is smaller than 1.48, it is much smaller than the refractive index nd of epoxy resin, acrylic resin, cyclic olefin resin, etc. which are transparent resins, so the straightness of visible light incident on the transparent resin is impaired. The incident light is dispersed, and as a result, a colorless and transparent resin composite substrate cannot be obtained, and the translucency of the resin composite substrate tends to decrease. On the other hand, if the refractive index nd is larger than 1.55, it becomes difficult to match the Abbe number νd of epoxy resin, acrylic resin, cyclic olefin resin or the like which is a transparent resin. It tends to be colored red, purple, etc. In order to achieve translucency in a visible wavelength range other than the wavelength of 587.56 nm, it is preferable to limit the Abbe number νd to a predetermined range. If the Abbe number νd is less than 50 or exceeds 65, it is difficult to match the Abbe number νd of epoxy resin, acrylic resin, cyclic olefin resin or the like which is a transparent resin. It tends to be colored red, purple, etc.

本発明の樹脂複合体基板用ガラスにおいて、アルカリ溶出量は0.35mg以下、0.30mg以下、0.20mg以下、0.15mg以下、特に0.10mg未満が好ましい。アルカリ溶出量が0.35mgより多いと、樹脂複合体基板の製造工程における熱処理の際に、アルカリイオンがガラスの表層から樹脂に移動して、樹脂とガラスの接着強度が低下し易くなる。また、アルカリ溶出量が0.35mgより多いと、樹脂複合体基板の作製後、樹脂と充填材、或いは樹脂とガラス繊維の界面における接着強度が、アルカリ溶出により経時的に低下して、樹脂複合体基板の機械的強度が低下し易くなる。さらに、樹脂複合体基板の耐薬品性も低下し易くなる。   In the glass for a resin composite substrate of the present invention, the alkali elution amount is preferably 0.35 mg or less, 0.30 mg or less, 0.20 mg or less, 0.15 mg or less, particularly preferably less than 0.10 mg. When the alkali elution amount is more than 0.35 mg, the alkali ions move from the surface layer of the glass to the resin during the heat treatment in the manufacturing process of the resin composite substrate, and the adhesive strength between the resin and the glass tends to decrease. If the alkali elution amount is more than 0.35 mg, the adhesive strength at the interface between the resin and the filler or the resin and the glass fiber decreases with time due to the alkali elution, after the resin composite substrate is produced. The mechanical strength of the body substrate tends to decrease. Furthermore, the chemical resistance of the resin composite substrate is likely to decrease.

本発明の樹脂複合体基板用ガラスは、粉末形状を有することが好ましい。このようにすれば、充填材に適用し易くなる。上記の通り、充填材は、双ローラーにより溶融ガラスをフィルム形状に成形した後、ボールミル等によりガラスフィルムを粉末形状に粉砕することで作製可能である。また、溶融ガラスを水砕することでも作製可能である。   The glass for a resin composite substrate of the present invention preferably has a powder shape. If it does in this way, it will become easy to apply to a filler. As described above, the filler can be produced by forming molten glass into a film shape with a twin roller and then grinding the glass film into a powder shape with a ball mill or the like. It can also be produced by water granulating molten glass.

充填材の表面に薬剤が塗布されていることが好ましい。薬剤として、カップリング剤が使用可能である。充填材の表面をカップリング処理すると、樹脂成分との馴染みが良くなって、樹脂と充填材の接着強度が向上すると共に、水分に対して劣化し難くなって、樹脂複合体基板の製品寿命が改善される。なお、カップリング処理は、弱酸〜中性領域で行うことが好ましい。   It is preferable that a drug is applied to the surface of the filler. A coupling agent can be used as the drug. Coupling treatment of the surface of the filler improves the compatibility with the resin component, improves the adhesive strength between the resin and the filler, and makes it difficult to deteriorate against moisture, thus reducing the product life of the resin composite substrate. Improved. The coupling treatment is preferably performed in a weak acid to neutral region.

充填材の平均粒子径D50は0.1〜50μm、1〜20μm、特に2〜10μmが好ましい。このようにすれば、熱膨張特性を制御し易くなると共に、樹脂複合体基板の空隙を低減し易くなる。平均粒子径D50が小さ過ぎると、ハンドリング性や材料収率が低下し易くなる。一方、平均粒子径D50が大き過ぎると、樹脂等と複合化する際に、均一に混合し難くなると共に、樹脂複合体基板の表面に凹凸が発生し易くなる。ここで、「平均粒子径D50」は、レーザー回折法で測定した値であり、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径を指す。 The average particle diameter D50 of the filler is preferably 0.1 to 50 μm, 1 to 20 μm, and particularly preferably 2 to 10 μm. If it does in this way, while it becomes easy to control a thermal expansion characteristic, it becomes easy to reduce the space | gap of a resin composite board | substrate. When the average particle diameter D 50 is too small, handling properties and material yield is likely to decrease. On the other hand, when the average particle diameter D 50 is too large, when combined with a resin or the like, with uniformly becomes difficult to mix, irregularities easily occur in the surface of the resin complex substrate. Here, the “average particle diameter D 50 ” is a value measured by the laser diffraction method. In the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle. The particle diameter is 50%.

本発明の樹脂複合体基板用ガラスは、繊維形状を有することが好ましい。このようにすれば、ガラス繊維として使用することができる。上記の通り、ガラス繊維は、貴金属製のブッシングを使用して、連続的に成形、紡糸することで作製可能である。また、成形方法として、直接成形法(ダイレクトメルト法)、間接成形法(マーブルメルト法)等の方法を採用することができる。   The glass for a resin composite substrate of the present invention preferably has a fiber shape. If it does in this way, it can be used as glass fiber. As described above, the glass fiber can be produced by continuously forming and spinning using a noble metal bushing. Further, as a molding method, a direct molding method (direct melt method), an indirect molding method (marble melt method), or the like can be employed.

ガラス繊維の表面に薬剤が塗布されていることが好ましい。薬剤として、集束剤、帯電防止剤、界面活性剤、重合開始剤、重合抑制剤、酸化防止剤、被膜形成剤、カップリング剤、潤滑剤が使用可能である。   It is preferable that the chemical | medical agent is apply | coated to the surface of glass fiber. As the agent, a sizing agent, an antistatic agent, a surfactant, a polymerization initiator, a polymerization inhibitor, an antioxidant, a film forming agent, a coupling agent, and a lubricant can be used.

ガラス繊維の長さは、繊維形状である限り、特に限定されない。ガラス繊維は、ミルドファイバ、チョップドストランド、ヤーン、ロービング等であってもよい。ガラス繊維の直径は、繊維形状である限り、特に限定されないが、オングストロームオーダー〜ミクロンオーダーが好ましい。ガラス繊維の断面形状は、繊維形状である限り、特に限定されない。ガラス繊維の断面形状として、真円形状、扁平形状、矩形状、多角形状が挙げられる。   The length of the glass fiber is not particularly limited as long as it has a fiber shape. The glass fiber may be milled fiber, chopped strand, yarn, roving or the like. The diameter of the glass fiber is not particularly limited as long as it has a fiber shape, but is preferably in the order of angstrom to micron. The cross-sectional shape of the glass fiber is not particularly limited as long as it has a fiber shape. Examples of the cross-sectional shape of glass fiber include a perfect circle shape, a flat shape, a rectangular shape, and a polygonal shape.

ガラス繊維の場合、熱処理により、屈折率ndを調整することが可能である。また、熱処理に伴って、化学強化処理(イオン交換処理)を行うこともできる。さらに、ガラス繊維中に微細結晶が析出していても、樹脂複合体基板の特性に悪影響を及ぼさない限り、使用可能である。   In the case of glass fiber, the refractive index nd can be adjusted by heat treatment. Moreover, a chemical strengthening process (ion exchange process) can also be performed with heat processing. Furthermore, even if fine crystals are precipitated in the glass fiber, they can be used as long as they do not adversely affect the characteristics of the resin composite substrate.

以下、実施例に基づいて、本発明を詳細に説明する。   Hereinafter, based on an Example, this invention is demonstrated in detail.

表1〜3は、本発明の実施例(試料No.1〜18)及び比較例(試料No.19)を示している。   Tables 1 to 3 show examples (sample Nos. 1 to 18) and comparative examples (sample No. 19) of the present invention.

以下のようにして、各試料を調製した。まず、表中のガラス組成になるように、天然原料、化成原料等の各種ガラス原料を秤量、混合して、ガラスバッチを作製した。次に、このガラスバッチを白金ロジウム合金製坩堝に投入した後、間接加熱電気炉内で1600℃、8時間加熱して、溶融ガラスを得た。なお、均質な溶融ガラスを得るために、加熱時に、耐熱性撹拌棒を用いて、溶融ガラスを複数回攪拌した。続いて、得られた溶融ガラスを耐火性鋳型内に流し出し、板状のガラスを成形した後、徐冷炉内でアニール処理(1013dPa・sにおける温度より30〜50℃高い温度で30分間加熱した後、徐冷点〜歪点の温度域を1℃/分で降温)を行った。得られた各試料につき、アルカリ溶出量、屈折率nd、アッベ数νdを測定した。なお、試料No.1〜5、8〜14、18については、ガラス組成中にアルカリ金属酸化物を含んでいないため、アルカリ溶出量の評価を行っていない。 Each sample was prepared as follows. First, various glass raw materials, such as a natural raw material and a chemical raw material, were weighed and mixed so that it might become the glass composition in a table | surface, and the glass batch was produced. Next, after putting this glass batch into a crucible made of platinum rhodium alloy, it was heated in an indirect heating electric furnace at 1600 ° C. for 8 hours to obtain a molten glass. In order to obtain a homogeneous molten glass, the molten glass was stirred a plurality of times using a heat-resistant stirrer during heating. Subsequently, the molten glass obtained was poured into a refractory mold to form a plate-like glass, and then annealed in a slow cooling furnace (heated at a temperature 30 to 50 ° C. higher than the temperature at 10 13 dPa · s for 30 minutes) Then, the temperature range from the annealing point to the strain point was lowered at 1 ° C./min). For each of the obtained samples, the alkali elution amount, the refractive index nd, and the Abbe number νd were measured. Sample No. About 1-5, 8-14, 18, since the alkali metal oxide is not included in a glass composition, the alkali elution amount is not evaluated.

アルカリ溶出量は、JIS R3502(1995)に準拠した方法で測定した。   The alkali elution amount was measured by a method based on JIS R3502 (1995).

屈折率ndは、カルニュー製屈折率計KPR−200で測定した値であり、ヘリウムランプのd線(波長:587.56nm)における測定値である。また、「アッベ数νd」は、カルニュー製屈折率計KPR−200により、ヘリウムランプのd線、水素ランプのF線(波長:486.13nm)、及び水素ランプのC線(波長:656.27nm)における屈折率(nd、nF、nC)を測定した上で、算出式{(nd−1)/(nF−nC)}により算出した値である。   The refractive index nd is a value measured with a Kalnew refractometer KPR-200, and is a measured value at the d-line (wavelength: 587.56 nm) of the helium lamp. In addition, “Abbe number νd” is calculated by Kalnew refractometer KPR-200, using helium lamp d-line, hydrogen lamp F-line (wavelength: 486.13 nm), and hydrogen lamp C-line (wavelength: 656.27 nm). ) And the refractive index (nd, nF, nC), and the value calculated by the calculation formula {(nd-1) / (nF-nC)}.

表1〜3から明らかなように、試料No.1〜18は、所定のガラス組成を有するため、屈折率ndが1.48〜1.55、アッベ数νdが50〜65、アルカリ溶出量が0.35mg以下であった。一方、試料No.19は、所定のガラス組成を有していないため、屈折率ndが1.70、アッベ数νdが48、アルカリ溶出量が0.50mgであった。   As is apparent from Tables 1 to 3, sample No. Since Nos. 1 to 18 have a predetermined glass composition, the refractive index nd was 1.48 to 1.55, the Abbe number νd was 50 to 65, and the alkali elution amount was 0.35 mg or less. On the other hand, sample No. Since No. 19 does not have a predetermined glass composition, the refractive index nd was 1.70, the Abbe number νd was 48, and the alkali elution amount was 0.50 mg.

Claims (5)

ガラス組成として、下記酸化物換算の質量%で、SiO 50〜65%、Al 0〜20%、B 0〜20%、MgO+CaO+SrO+BaO+ZnO 5〜20%、LiO+NaO+KO 0〜5%、TiO 0〜10%、ZrO 0〜10%、SnO 0〜2%を含有することを特徴とする樹脂複合体基板用ガラス。 As a glass composition, in weight percent terms of oxide, SiO 2 50~65%, Al 2 O 3 0~20%, B 2 O 3 0~20%, MgO + CaO + SrO + BaO + 5~20% ZnO, Li 2 O + Na 2 O + K 2 A glass for a resin composite substrate containing O 0-5%, TiO 2 0-10%, ZrO 2 0-10%, SnO 2 0-2%. 屈折率ndが1.48〜1.55、アッベ数νdが50〜65であることを特徴とする請求項1に記載の樹脂複合体基板用ガラス。   The glass for a resin composite substrate according to claim 1, wherein the refractive index nd is 1.48 to 1.55, and the Abbe number νd is 50 to 65. アルカリ溶出量が0.35mg以下であることを特徴とする請求項1又は2に記載の樹脂複合体基板用ガラス。   The glass for a resin composite substrate according to claim 1 or 2, wherein the alkali elution amount is 0.35 mg or less. 粉末形状を有することを特徴とする請求項1〜3のいずれかに記載の樹脂複合体基板用ガラス。   The glass for a resin composite substrate according to any one of claims 1 to 3, which has a powder shape. 繊維形状を有することを特徴とする請求項1〜3のいずれかに記載の樹脂複合体基板用ガラス。   It has a fiber shape, The glass for resin composite substrates in any one of Claims 1-3 characterized by the above-mentioned.
JP2010196998A 2010-09-02 2010-09-02 Glass for resin composite substrate Pending JP2012051773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010196998A JP2012051773A (en) 2010-09-02 2010-09-02 Glass for resin composite substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010196998A JP2012051773A (en) 2010-09-02 2010-09-02 Glass for resin composite substrate

Publications (1)

Publication Number Publication Date
JP2012051773A true JP2012051773A (en) 2012-03-15

Family

ID=45905572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010196998A Pending JP2012051773A (en) 2010-09-02 2010-09-02 Glass for resin composite substrate

Country Status (1)

Country Link
JP (1) JP2012051773A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166998A (en) * 2011-02-16 2012-09-06 Panasonic Corp Transparent film
WO2012132328A1 (en) * 2011-03-31 2012-10-04 日本板硝子株式会社 Low-expansion glass and tempered glass
JP2015006973A (en) * 2013-05-31 2015-01-15 日本電気硝子株式会社 Composition for glass fiber, glass fiber and manufacturing method of glass fiber
WO2015152342A1 (en) * 2014-04-03 2015-10-08 日本電気硝子株式会社 Glass, cover glass produced using same, and method for producing glass
CN107109027A (en) * 2014-10-30 2017-08-29 旭玻璃纤维股份有限公司 Transparent ABS resin composition
JP2019501859A (en) * 2015-12-21 2019-01-24 コーニング インコーポレイテッド Borosilicate glass with low alkali content
CN110171929A (en) * 2019-06-14 2019-08-27 泰山玻璃纤维有限公司 Low bubble dielectric glass fibre composition and its production technology
JP2021109821A (en) * 2019-12-31 2021-08-02 富喬工業股▲分▼有限公司 Glass composition and glass fiber
WO2021238476A1 (en) * 2020-05-27 2021-12-02 成都光明光电股份有限公司 Glass material
WO2022168963A1 (en) * 2021-02-05 2022-08-11 日本板硝子株式会社 Glass composition and glass fiber and method for producing same
CN116023035A (en) * 2021-10-25 2023-04-28 重庆国际复合材料股份有限公司 Glass composition, glass fiber, composite material and glass fiber preparation method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012166998A (en) * 2011-02-16 2012-09-06 Panasonic Corp Transparent film
WO2012132328A1 (en) * 2011-03-31 2012-10-04 日本板硝子株式会社 Low-expansion glass and tempered glass
JP2015006973A (en) * 2013-05-31 2015-01-15 日本電気硝子株式会社 Composition for glass fiber, glass fiber and manufacturing method of glass fiber
KR20210142775A (en) * 2014-04-03 2021-11-25 니폰 덴키 가라스 가부시키가이샤 Glass, cover glass produced using same, and method for producing glass
WO2015152342A1 (en) * 2014-04-03 2015-10-08 日本電気硝子株式会社 Glass, cover glass produced using same, and method for producing glass
JP2016102045A (en) * 2014-04-03 2016-06-02 日本電気硝子株式会社 Glass
KR20160141737A (en) * 2014-04-03 2016-12-09 니폰 덴키 가라스 가부시키가이샤 Glass, cover glass produced using same, and method for producing glass
KR102563271B1 (en) * 2014-04-03 2023-08-02 니폰 덴키 가라스 가부시키가이샤 Glass, cover glass produced using same, and method for producing glass
KR102332532B1 (en) * 2014-04-03 2021-11-26 니폰 덴키 가라스 가부시키가이샤 Glass, cover glass produced using same, and method for producing glass
CN107109027A (en) * 2014-10-30 2017-08-29 旭玻璃纤维股份有限公司 Transparent ABS resin composition
US10774200B2 (en) 2014-10-30 2020-09-15 Asahi Fiber Glass Co., Ltd. Transparent ABS resin composition
TWI758207B (en) * 2015-12-21 2022-03-11 美商康寧公司 Borosilicate glasses with low alkali content
US11577988B2 (en) 2015-12-21 2023-02-14 Corning Incorporated Borosilicate glasses with low alkali content
JP2019501859A (en) * 2015-12-21 2019-01-24 コーニング インコーポレイテッド Borosilicate glass with low alkali content
CN110171929B (en) * 2019-06-14 2021-01-22 泰山玻璃纤维有限公司 Low-bubble low-dielectric glass fiber composition and production process thereof
CN110171929A (en) * 2019-06-14 2019-08-27 泰山玻璃纤维有限公司 Low bubble dielectric glass fibre composition and its production technology
JP2021109821A (en) * 2019-12-31 2021-08-02 富喬工業股▲分▼有限公司 Glass composition and glass fiber
WO2021238476A1 (en) * 2020-05-27 2021-12-02 成都光明光电股份有限公司 Glass material
WO2022168963A1 (en) * 2021-02-05 2022-08-11 日本板硝子株式会社 Glass composition and glass fiber and method for producing same
CN116023035A (en) * 2021-10-25 2023-04-28 重庆国际复合材料股份有限公司 Glass composition, glass fiber, composite material and glass fiber preparation method

Similar Documents

Publication Publication Date Title
JP2012051773A (en) Glass for resin composite substrate
US11827560B2 (en) Glass for chemical strengthening
JP2008255002A (en) Glass composition for glass fiber, glass fiber, method for producing glass fiber and composite material
TW201210972A (en) Glass for display device and glass plate
JP5432711B2 (en) Glass composition
CN102311229A (en) Optical glass and optical element
CN101863617B (en) Optical glass and optical element
JP2013121905A (en) Resin composite substrate glass
JP5541434B2 (en) Glass fiber for composite material, method for producing glass fiber, and visible light transmitting composite material
JP2017178711A (en) Glass substrate for magnetic recording medium and manufacturing method therefor
JP5441045B2 (en) Optical glass
EP2565169B1 (en) Optical glass and optical element
JP2018104237A (en) Glass composition for glass fiber, glass fiber, and method for producing glass fiber
AU2018372323A1 (en) Glass fiber composition, and glass fiber and composite material thereof
WO2020230550A1 (en) Glass composition for glass fibers
JP5810086B2 (en) Glass filler
KR20160002677A (en) High refractive index glass
JP5809900B2 (en) Glass composition, glass filler for polycarbonate resin using the same, and polycarbonate resin composition
CN111433166B (en) Glass fiber and method for producing same
JP2013103867A (en) Glass for resin-glass composite transparent substrate
JP5964219B2 (en) Glass filler
JP2012197217A (en) Optical glass
CN101117267A (en) High-refractivity spectacle glass
JP3771073B2 (en) Glass fiber
JP2011162415A (en) Glass composition and use thereof