WO2011122201A1 - Molding die and method for manufacturing optical element - Google Patents

Molding die and method for manufacturing optical element Download PDF

Info

Publication number
WO2011122201A1
WO2011122201A1 PCT/JP2011/054585 JP2011054585W WO2011122201A1 WO 2011122201 A1 WO2011122201 A1 WO 2011122201A1 JP 2011054585 W JP2011054585 W JP 2011054585W WO 2011122201 A1 WO2011122201 A1 WO 2011122201A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
core
core portion
mold
support member
Prior art date
Application number
PCT/JP2011/054585
Other languages
French (fr)
Japanese (ja)
Inventor
佳佑 中山
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to CN2011800160217A priority Critical patent/CN102844163A/en
Priority to JP2012508155A priority patent/JPWO2011122201A1/en
Publication of WO2011122201A1 publication Critical patent/WO2011122201A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/76Cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to a molding die for an objective lens and other optical elements incorporated in an optical pickup device and the like, and a method for manufacturing such an optical element.
  • Patent Document 1 discloses a method for manufacturing a molding die having astigmatism, it is difficult to correct or correct the astigmatism once formed, and the countermeasures are also clearly indicated. It has not been. For example, when the amount of astigmatism obtained by the method of Patent Document 1 is not appropriate, it is considered that it takes time and labor to manufacture a mold that meets the conditions again.
  • Patent Document 3 is based on the premise that the optical surface is rotated by rotating the insert, and the curvature of the optical element surface of the insert cannot be changed. That is, even if the direction of astigmatism can be adjusted by rotating the insert on one side, the amount of astigmatism cannot be adjusted.
  • an object of the present invention is to provide a molding die and an optical element manufacturing method capable of adjusting the amount of astigmatism.
  • a molding die includes a core part having an optical surface transfer surface corresponding to the optical surface of the optical element at the tip, a support member that supports the core part from the back, and a core part.
  • a fixing member for fixing to the support member, and a local gap is provided on a connection surface arranged from the core portion to the support member.
  • the core part is made elastic using the gap provided between the core part and the support member.
  • the amount of astigmatism on the optical surface transfer surface can be finely adjusted because the elastic distortion amount or deflection amount of the core portion can be adjusted using the tightening state of the fixing member. be able to. That is, the direction and amount of astigmatism on the optical surface transfer surface can be adjusted afterwards without producing the core part again.
  • a local gap is formed by a step in the axial direction of the core portion provided on the connection surface.
  • the gap can be secured by using the difference in level of the step, and the formation of the gap becomes easy.
  • the core portion is deformed by tightening the fixing member.
  • the astigmatism amount on the optical surface transfer surface can be easily finely adjusted by adjusting the tightening force.
  • the local voids are formed symmetrically across the axis of the core portion.
  • the core portion is hardly distorted in the direction perpendicular to the direction in which it is elastically distorted, that is, the tilt is not generated, so that a change in coma due to adjustment of the astigmatism amount can be suppressed.
  • local voids are formed asymmetrically across the core axis. In this case, not only the amount of astigmatism but also coma can be adjusted.
  • the step on the surface is formed by a thin film locally formed on the surface of the member having the connection surface.
  • minute distortion and curvature can be given to the core part and the optical surface transfer surface by utilizing a minute thickness difference of the film.
  • a plate-like spacer is provided between the core portion and the support member, and a local gap is provided on at least one of the one support surfaces of the spacer.
  • the direction and amount of astigmatism can be adjusted as appropriate by rotating or replacing the spacer.
  • An optical element manufacturing method includes a core part having an optical surface transfer surface corresponding to the optical surface of the optical element at a tip, a support member that supports the core part from the back, and the core part as the support member.
  • a local gap is provided on the connection surface arranged from the core portion to the support member, and the optical surface transfer surface is deformed using the gap during molding.
  • the amount can be adjusted, and the direction and amount of astigmatism on the optical surface transfer surface can be finely adjusted. That is, the direction and amount of astigmatism on the optical surface transfer surface can be adjusted afterwards without producing the core part again.
  • the core part deformed by fastening the fixing member is fixed to the template.
  • the elastic strain amount of the core portion can be adjusted using the tightening state by the fixing member.
  • a mold space is formed by clamping a first mold having a mold plate in which a core portion and a fixing member are embedded, and a second mold facing the first mold.
  • the optical surface transfer surface is deformed.
  • the elastic strain amount of the core portion can be adjusted using the mold clamping state between the molds, the size of the gap, and the like.
  • a plate-like spacer is provided between the core portion and the support member, and a local gap is provided on at least one of the one support surfaces of the spacer. It was. In this case, the direction and amount of astigmatism can be adjusted as appropriate by rotating or replacing the spacer.
  • (A) is a fragmentary sectional side view explaining the structure of the molding die of 1st Embodiment
  • (B) is an expanded side view of the lens injection-molded by the metal mold
  • (A) is an exploded sectional view of the core unit
  • (B) is a front view of the spacer.
  • (A) And (B) is sectional drawing explaining the usage method of a core unit. It is side sectional drawing explaining the state before the mold clamping of a shaping die.
  • (A) And (B) is the top view and side cross section explaining the spacer in the modification of the shaping die of 1st Embodiment. It is a sectional side view explaining the modification of the shaping die of 1st Embodiment.
  • (A) And (B) is a sectional side view explaining the core unit in the molding die of 2nd Embodiment.
  • (A) And (B) is a sectional side view explaining the core unit in the molding die of 3rd Embodiment.
  • (A) is a sectional side view explaining the core unit in the molding die of 4th Embodiment,
  • (B) is a front view of a spacer. It is a sectional side view explaining the shaping die of a 5th embodiment.
  • (A) And (B) is a sectional side view explaining operation
  • (A) And (B) is a top view explaining the modification of a spacer.
  • the molding die 40 is composed of a fixed die (first die) 41 and a movable die (second die) 42, and is movable with the fixed die 41.
  • the mold 42 can be opened and closed with the parting line PL as a boundary.
  • a cavity CV which is a space between the fixed mold 41 and the movable mold 42, corresponds to the shape of a lens OL (see FIG. 1B) as an optical element that is a molded product.
  • the lens OL is made of plastic and includes a center portion OLa as an optical function portion having an optical function, and an annular flange portion OLb extending from the center portion OLa in the outer diameter direction.
  • the lens OL is an objective lens for an optical pickup device, and satisfies NA 0.85, NA 0.7, etc. for a light beam having a wavelength for BD (Blu-ray disc), DVD (digital versatile disc), etc. It is a lens. Note that the lens OL can be made to have extremely reduced astigmatism, for example, by adjustment described in detail later.
  • the fixed mold 41 includes a core unit 51, a template 53, and a mounting plate 54.
  • the core unit 51 is disposed to face the core unit 61 of the movable mold 42 in order to form the cavity CV.
  • the mold plate 53 is a mold member that holds the core unit 51 from the periphery
  • the mounting plate 54 is a mold member that integrally supports the core unit 51 and the mold plate 53 from behind.
  • the tip surface of the core unit 51 is provided with an optical surface forming surface 56a and a flange forming surface 56b in order to define a cavity CV.
  • the optical surface forming surface 56a is a relatively shallow concave surface, and is a transfer surface for forming one optical surface Sa of the central portion OLa constituting the lens OL.
  • the flange forming surface 56b is an annular flat surface, and is a transfer surface on which one flange surface F1 of the flange portion OLb constituting the lens OL is molded.
  • the core unit 51 includes a core portion 21, a support member 22, a fixing member 23, and a spacer 24.
  • a cylindrical through hole 57a for inserting and supporting the core unit 51 is formed in the template 53.
  • the template 53 has an end face 53a that forms a parting line PL.
  • the movable mold 42 includes a core unit 61, a mold plate 63, and a mounting plate 64.
  • the movable mold 42 is movable along the axis AX and opens and closes with respect to the fixed mold 41.
  • the core unit 61 is disposed to face the core unit 51 of the fixed mold 41 in order to form the cavity CV.
  • the mold plate 63 is a mold member that integrally supports the core unit 61 from the periphery
  • the mounting plate 64 is a mold member that integrally supports the core unit 61 and the mold plate 63 from behind.
  • the tip surface of the core unit 61 is provided with an optical surface forming surface 66a and a flange forming surface 66b in order to define a cavity CV.
  • the optical surface forming surface 66a is a relatively deep concave surface, and is a transfer surface on which one optical surface Sb of the center portion OLa of the lens OL is formed.
  • the flange forming surface 66b is an annular flat surface and is a transfer surface for forming the other flange surface F2 of the flange portion OLb of the lens OL.
  • a cylindrical through hole 67a for inserting and supporting the core unit 61 is formed in the template 63.
  • the template 63 has an end face 63a that forms a parting line PL.
  • FIG. 2A is an exploded cross-sectional view of the core unit 51.
  • FIG. The core unit 51 has a core portion 21 on the upper end side of the paper surface, that is, on the parting line PL shown in FIG. 1, and has a support member 22 on the lower side of the paper surface, that is, on the template 53 side.
  • the spacer 24 is sandwiched between them.
  • the core portion 21 can be fixed to the support member 22 via the spacer 24 by a fixing member 23 inserted into the support member 22 from behind.
  • the core portion 21 has a symmetrical shape around the axis AX, and has a disk-shaped main body portion 21a and a cylindrical shaft portion 21b.
  • the main body portion 21a has the optical surface forming surface 56a and the flange forming surface 56b already described as the surface 21e.
  • the main body portion 21 a has an annular back surface 21 f, and the back surface 21 f is a connection surface that contacts a part of the surface 24 e of the spacer 24 in the assembled state as the core unit 51.
  • the shaft portion 21b has a screw hole 21c extending along the axis AX at the center, and is screwed with a screw portion 23b provided at the tip of the fixing member 23 described later, whereby the core portion 21 and the fixing member 23 Fastening by screw tightening is possible.
  • the support member 22 has a cylindrical shape as a whole, and has a top portion 22a and a cylindrical portion 22b.
  • the through hole 22c formed in the top portion 22a can pass through the shaft portion 21b of the core portion 21, and the shaft portion 21b can be held with little looseness in the direction perpendicular to the axis AX.
  • the front surface 22 e of the top portion 22 a is a connection surface that comes into contact with the back surface 24 f of the spacer 24 in a state assembled as the core unit 51.
  • the back surface 22f of the top portion 22a faces the shoulder-shaped end surface 29 provided on the fixing member 23 in a state of being fastened to the core portion 21 so as to sandwich the washer 27 therebetween.
  • the through hole 22d formed in the cylindrical portion 22b can accommodate the fixing member 23 therein.
  • the back surface 22g of the cylindrical portion 22b is a portion that comes into contact with the mounting plate 54 when the core unit 51 is mounted on the fixed mold 41.
  • a spacer can be inserted between the back surface 22 g of the core unit 51 and the mounting plate 54.
  • the fixing member 23 has a symmetrical shape around the axis AX, and includes a columnar main body portion 23a, a screw portion 23b, and a washer 27.
  • the main body portion 23 a is housed in the through hole 22 c of the support member 22 and embedded in the support member 22 when the core portion 21 is attached to the tip of the support member 22 by the fixing member 23.
  • the screw portion 23 b is screwed into the screw hole 21 c of the core portion 21 when the core portion 21 is attached to the tip of the support member 22.
  • the fixing member 23 fixes the core portion 21 to the support member 22.
  • the spacer 24 has a disk-like outer shape, and has a through hole 24c for passing the shaft portion 21b of the core portion 21 at the center.
  • a part of the front surface 24 e of the spacer 24 is a connection surface that comes into contact with the back surface 21 f of the core portion 21 in a state assembled as the core unit 51.
  • the back surface 24 f of the spacer 24 is a connection surface that comes into contact with the front surface 22 e of the support member 22 in the assembled state as the core unit 51.
  • the spacer 24 includes a main body 24a having a uniform thickness and thin film portions 31 and 32 locally formed in the peripheral regions A1 and A2 on the front side thereof. As shown in FIG.
  • the peripheral areas A1 and A2 where the thin film portions 31 and 32 are formed are opposed to each other in the AB direction across the axis AX and have an arcuate outline. That is, the surfaces 31a and 32a of the thin film portions 31 and 32 form a part of the surface 24e of the spacer 24, and a step 24s is formed at the boundary with the surface 30a of the central region A0. Both thin film portions 31 and 32 are formed symmetrically with respect to the axis AX. That is, the gap GA (see FIG. 3A) formed between the front surface 24e of the spacer 24 and the back surface 21f of the core portion 21 is also symmetrically arranged with the axis AX interposed therebetween.
  • FIGS. 3 (A) and 3 (B) The function of the core unit 51 will be described with reference to FIGS. 3 (A) and 3 (B).
  • FIG. 3A when the screwing amount of the fixing member 23 with respect to the core portion 21 is small, the tightening force with respect to the spacer 24 sandwiched between the core portion 21 and the support member 22 is weak, and the core portion 21.
  • the back surface 21 f of the spacer 24 is in close contact with the front surfaces 31 a and 32 a of the spacer 24, and the back surface 24 f of the spacer 24 is only in close contact with the front surface 22 e of the support member 22.
  • a local gap GA is formed between the front surface 24e of the spacer 24 and the back surface 21f of the core portion 21 at a portion corresponding to the front surface 30a of the central region A0 shown in FIG.
  • the back surface 21f of the core portion 21 is not only in close contact with the front surfaces 31a and 32a of the spacer 24, but the thin film portions 31 and 32 are formed in regions facing the surface 24e of the spacer 24 with respect to the AB direction across the axis AX.
  • the gap GA is narrowed by approaching the surface 30a of the spacer 24 on the center side close to the axis AX.
  • the main body portion 21a of the core portion 21 is elastically deformed and deformed with respect to the AB direction by tightening the fixing member 23. Little distortion is formed in the vertical CD direction.
  • astigmatism can be generated on the surface 21e, that is, the optical surface forming surface 56a.
  • the surface 21e of the core portion 21 has almost no curvature with respect to the CD direction perpendicular to the AB direction.
  • the core portion 21 is inclined by an inclination angle ⁇ with respect to a plane perpendicular to the axis AX.
  • the optical surface forming surface 56a formed on the surface 21e of the core portion 21 can be deformed to cause astigmatism, and such deformation can be increased or decreased by the amount of screw tightening of the fixing member 23.
  • the amount of astigmatism on the optical surface Sa of the lens OL formed by the molding die 40 can be adjusted.
  • the direction of astigmatism of the optical surface Sa of the lens OL can also be adjusted by rotating the spacer 24 relative to the core portion 21.
  • FIG. 4 is a diagram for explaining a state before the mold 40 is clamped.
  • the core unit 51 of the fixed mold 41 is in a state corresponding to FIG. Specifically, the outer edge of the surface 21 e of the core unit 51 provided in the fixed mold 41 is on the same plane as the end surface 53 a of the template 53. Further, the outer edge of the surface 61 e of the core unit 61 provided in the movable mold 42 is also on the same plane as the end surface 63 a of the template 63. That is, when the mold is clamped, interference between the surface 21e of the fixed-side core unit 51 and the surface 61e of the movable-side core unit 61 is avoided.
  • the spacer 24 is single.
  • the body portion 21a of the core portion 21 can be further varied in elasticity. Distortion or deflection can be given, the adjustment range of astigmatism can be widened, and the adjustment accuracy can be improved.
  • a main body 24a for the spacer 24 having a high flatness is prepared by processing stainless steel or the like, and only the portions corresponding to the peripheral regions A1 and A2 on the surface of the spacer 24 are formed. Films are formed to form the thin film portions 31 and 32.
  • a film forming material for forming the thin film portions 31 and 32 for example, a metal, a metal compound, a carbon thin film, or the like can be used.
  • titanium, chromium, or the like can be used as the metal of the film forming material.
  • titanium nitride, chromium nitride, chromium oxide, or the like can be used as the metal compound of the film forming material.
  • these film forming materials appropriate hardness can be ensured, and a film forming operation such as a desired film thickness can be appropriately performed.
  • diamond-like carbon or the like can be used as the carbon thin film of the film forming material.
  • the above film formation can be performed by a PVD method such as vacuum evaporation or sputtering, but can also be performed by a CVD method.
  • the mask can be disposed opposite to the central area A0 to form a film only in the peripheral areas A1 and A2.
  • the film thickness of the thin film portions 31 and 32 is controlled by adjusting the film formation time, for example, during film formation by the PVD method or the CVD method.
  • the film thickness of the thin film portions 31 and 32 can also be adjusted by changing the film formation amount per unit time.
  • the molding die 40 is used by being incorporated in an injection molding machine, and the fixed die 41 is fixed to a stationary platen of the injection molding machine, and a movable die 42 is used. Is fixed to the movable platen of the injection molding machine.
  • the fixed mold 41 and the movable mold 42 are heated to a temperature suitable for molding by a mold temperature controller (not shown), and the movable plate that supports the movable mold 42 is fixed to the fixed plate that supports the fixed mold 41.
  • the mold is closed by moving it to a position where the fixed mold 41 and the movable mold 42 come into contact with each other and closing the mold, and clamping the fixed mold 41 and the movable mold 42 with a necessary pressure. Do.
  • an injection device not shown
  • molten resin is injected into the cavity CV, which is a mold space formed between the fixed mold 41 and the movable mold 42, which are clamped, at a necessary pressure. Injection to inject is performed, and the molten resin is gradually cooled through a pressure holding step.
  • the fixed mold 41 and the movable mold 42 are separated from each other by performing mold opening for retracting the movable mold 42.
  • the lens OL as a resin molded product can be taken out between the fixed mold 41 and the movable mold 42.
  • FIG. 5A is a plan view for explaining a modification of the spacer 24 shown in FIG. 2B
  • FIG. 5B is a side sectional view of the spacer of the modification.
  • the thin film portion 31 is locally formed only in the peripheral region A1 on one side in the AB direction. Also in this case, a step 24s is formed at the boundary with the surface 130a of the remaining region A3.
  • the thin film portion 31 is formed asymmetrically with the axis AX interposed therebetween.
  • the gap GA formed between the front surface 24e of the spacer 124 and the back surface 21f of the core portion 21 is also asymmetrically arranged with the axis AX interposed therebetween.
  • the core portion 21 can be deformed in the AB direction by tightening the fixing member 23, and the main body portion 21a of the core portion 21 can be inclined with respect to the axis AX. The coma aberration can be adjusted.
  • the thin film portion 31 is formed only in one region of the surface 24e of the spacer 124. That is, the main body portion 21a of the core portion 21 shown in FIG. 2A can be tilted with respect to the axis AX by forming the thin film portion only on one side of the axis AX. In addition, the main body portion 21a can be bent and tilted by providing a difference in film thickness in the thin film portions 31 and 32 shown in FIG.
  • the thin film portions 31 and 32 are formed only on the front surface 24e side of the spacers 24 and 124. However, the thin film portions 31 and 32 may be formed on the back surface 24f of the spacers 24 and 124.
  • FIG. 6 shows a modification of the molding die 40 shown in FIGS.
  • the surface 21e of the core unit 51 of the fixed mold 41 is in a state of being retreated by a minute amount from the end surface 53a of the template 53.
  • the surface 61e of the core unit 61 of the movable mold 42 is also in a state of being retracted by a minute amount from the end surface 63a of the mold plate 63.
  • interference between the surface 21e of the fixed-side core unit 51 and the surface 61e of the movable-side core unit 61 is avoided during mold clamping.
  • the protrusion amount of the surfaces 21e and 61e is a micron order.
  • both the surface 21e of the core unit 51 of the fixed mold 41 and the surface 61e of the core unit 61 of the movable mold 42 are not retracted from the end face of the template, but one of them protrudes by a minute amount from the end face of the template. The other may be retracted larger than the protruding amount.
  • the connection surface (for example, between the front surface 24e of the spacer 24 and the back surface 21f of the core portion 21) is locally disposed from the core portion 21 to the support member 22. Since the gap GA is provided, the core portion 21 can be bent and deformed by using the gap GA, and the elastic strain amount or the deflection amount of the core portion 21 by using the tightening state by the fixing member 23. Can be adjusted. Therefore, the direction and amount of astigmatism of the optical surface forming surface 56a, which is an optical surface transfer surface, can be finely adjusted. That is, the direction and amount of astigmatism of the optical surface forming surface 56a, which is the optical surface transfer surface, can be adjusted afterwards without producing the core portion 21 again.
  • the axis AX is sandwiched with respect to the AB direction.
  • Thin film portions 231 and 232 are formed in regions facing each other.
  • the spacer 224 has the same structure as the spacer 24 in the core unit 51 of the first embodiment, but does not have the thin film portions 31 and 32.
  • the thin film parts 231 and 232 are formed in regions facing the AB direction across the axis AX, so the central side near the axis AX
  • the back surface 221f of the core portion 221 approaches the front surface 224e of the spacer 224, and the gap GA becomes narrow.
  • the thin film portions 231 and 232 are provided symmetrically with respect to the AB direction
  • the body portion 21a of the core portion 221 is elastically deformed and deformed with respect to the AB direction by tightening the fixing member 23. Little distortion is formed in the vertical CD direction.
  • the distortion amount of the core portion 221 differs in two directions perpendicular to each other, astigmatism can be generated on the surface 21e, that is, the optical surface forming surface 56a.
  • the core part 221 only one of the thin film parts 231 and 232 can be provided, and the thicknesses of the thin film parts 231 and 232 can be different.
  • a thin film is formed on the surface 322e side of the support member 322 of the core unit 51 in a region facing the AB direction across the axis AX. Portions 331 and 332 are formed.
  • the spacer 224 has the same structure as the spacer 24 in the core unit 51 of the first embodiment, but does not have the thin film portions 31 and 32 as in the second embodiment.
  • the thin film portions 331 and 332 are formed in regions facing the AB direction across the axis AX.
  • the back surface 24f of the spacer 224 approaches the front surface 322e of the support member 322, and the gap GA becomes narrow.
  • the fastening of the fixing member 23 causes the spacer 224 and the body portion 21a of the core portion 21 to be elastically strained and deformed with respect to the AB direction.
  • Little distortion is formed in the CD direction perpendicular to the AB direction.
  • the distortion amount of the core portion 21 differs in two directions perpendicular to each other, astigmatism can be generated on the surface 21e, that is, the optical surface forming surface 56a.
  • the support member 322 only one of the thin film portions 331 and 332 can be provided, and the thicknesses of the thin film portions 331 and 332 can be different.
  • the core unit 451 of the fourth embodiment includes a core portion 421, a support member 422, two fixing members 23, and a spacer 424.
  • the core portion 421 is a disk-shaped member, and the back surface 21f thereof is a connection surface that comes into contact with a part of the surface 24e of the spacer 424 in the assembled state as the core unit 451.
  • the core part 421 has a pair of screw holes 21c that are spaced apart in the AB direction across the axis AX, and is screwed with a screw part 23b provided at the tip of the fixing member 23, whereby the core part 21 and the fixing member Fastening with 23 is possible.
  • the support member 422 is a columnar member, and the front surface 22e is a connection surface that comes into contact with the back surface 24f of the spacer 424 in a state assembled as the core unit 451.
  • the support member 422 has a pair of through holes 22c that are spaced apart in the AB direction across the axis AX. Both through-holes 22c are through-holes 22d having a larger diameter on the root side.
  • the through-hole 22c on the distal end side can pass the screw portion 23b provided at the distal end of the fixing member 23, and the through-hole 22d on the root side allows the main body portion 23a of the fixing member 23 to pass therethrough. Be able to.
  • the tip of the main body portion 23a is locked by a step at the boundary between the through hole 22c and the through hole 22d, and the movement of the fixing member 23 toward the tip side is prevented.
  • the spacer 424 has a disk-like outer shape, and a part of the front surface 24e of the spacer 424 is in contact with the back surface 21f of the core portion 421 in the assembled state. It is a connecting surface that touches. Further, the back surface 24 f of the spacer 424 is a connection surface that comes into contact with the front surface 22 e of the support member 422 in a state where the spacer unit 424 is assembled as the core unit 451.
  • the spacer 424 has a pair of through holes 24c that are spaced apart in the AB direction across the axis AX.
  • the spacer 224 includes a main body 24a having a uniform thickness and a thin film portion 431 locally formed on the front side thereof.
  • the thin film portion 431 extends in the CD direction from the central region around the axis AX, and a pair of steps 24s is formed at the end of the thin film portion 431 in the AB direction.
  • the thin film portion 431 is formed symmetrically with respect to the axis AX. That is, the gap GA formed between the front surface 24e of the spacer 24 and the back surface 21f of the core portion 21 is also arranged symmetrically with respect to the axis AX.
  • the thin film portion 431 when the screwing amount of the pair of fixing members 23 with respect to the core portion 421 is increased, the thin film portion 431 is formed in the region extending in the AB direction through the axis AX, and thus separated from the axis AX in the AB direction.
  • the back surface 24f of the spacer 424 approaches the surface 22e of the support member 422, and the gap GA becomes narrow.
  • the core portion 421 is elastically deformed and deformed with respect to the AB direction by tightening the pair of fixing members 23, but the CD direction is perpendicular to the AB direction. Almost no distortion.
  • the distortion amount of the core portion 421 differs in two directions perpendicular to each other, astigmatism can be generated on the surface 21e, that is, the optical surface forming surface 56a.
  • the thin film portion 431 is provided on the front surface 24e of the spacer 424.
  • a thin film portion 431 extending in the CD direction from the center can also be provided.
  • a thin film portion 431 extending in the CD direction from the center can be provided on the back surface 21f of the core portion 421 and the front surface 22e of the support member 422.
  • the surface 21e of the core unit 51 of the fixed die 41 is in a state of protruding by a minute amount from the end surface 53a of the template 53.
  • the surface 61 e of the core unit 61 of the movable mold 42 is in a state of protruding a minute amount from the end surface 63 a of the mold plate 63.
  • the protrusion amount of the surfaces 21e and 61e is a micron order.
  • the fixing member 23 only fixes the core portion 21 to the support member 22 and does not tighten with a strong force that deforms the core portion 21.
  • the end surface 53a of the fixed mold 41 and the end surface 63a of the movable mold 42 are Is in close contact.
  • the surface 21e of the core unit 51 on the fixed side is deformed due to the clamping force because the core portion 21 has a shape that allows a slight amount of bending deformation. That is, deformation that causes astigmatism can be applied to the optical surface forming surface 56a of the surface 21e of the core portion 21.
  • the surface 61e of the movable core unit 61 is also deformed following the surface 21e of the core unit 51 due to the influence of the clamping force.
  • the movable die 42 is provided with a mechanism that allows a small amount of bending deformation that is the same as that of the core unit 51, the surface 61e of the core unit 61 can be more easily deformed.
  • the amount of deformation of the surface 21e of the core unit 51 can be adjusted by adjusting the amount of protrusion of the core unit 51 from the template 53. Specifically, the deformation of the surface 21e of the core unit 51 can be increased or decreased by replacing the spacer 24 incorporated in the core unit 51 with one having different steps.
  • the fixed die 41 having the mold plate 53 in which the core unit 51 having the core portion 21 and the fixing member 23 is embedded, and the fixed die 41
  • the cavity CV that is the mold space is formed by clamping the opposed movable mold 42
  • the optical surface forming surface 56a that is the optical surface transfer surface is deformed.
  • the amount of distortion or the amount of deflection of the core portion 21 can be adjusted by utilizing the clamping state between the molds 41 and 42, the size of the gap GA, and the like.
  • the present invention has been described based on the above embodiments, the present invention is not limited to the above embodiments, and various modifications are possible.
  • the surface 21e of the core portions 21, 221 and 421 is bent and deformed by adjusting the screw tightening amount of the fixing member 23.
  • the amount of deflection can be adjusted.
  • the surface 21e of the core portions 21, 221 and 421 can also be changed by changing the spring coefficient of the disc spring by disposing a disc spring between the fixing member 23 and the support members 22, 322, 422 and the like. The amount of deformation can be increased or decreased as appropriate.
  • the shape of the thin film portions 31 and 32 formed on the spacer 24 or the like is not limited to the bow shape, but may be a belt shape (see FIG. 12A) or a rectangular shape (see FIG. 12B).
  • the step 24 s is formed by the thin film portions 31 and 32, but the step 24 s can be formed without using the thin film portions 31 and 32. Specifically, for example, a similar step 24s can be formed by performing dry or wet etching on the surface of the spacer 24 or the like. Furthermore, a similar step 24s can be formed by machining the surface.
  • the step 24 s is not necessarily a clear one having a staircase side surface, but includes a step in which a thickness change occurs gently.
  • the spacer 24 and the spacer 124 are used alone.
  • the spacer 24 and the spacer 124 can be used in combination, and in this case, the core portions 21 and 421 can be bent and inclined variously. Can be adjusted. Further, when the thin film portion is formed on the back surface of the core portion 221 or the surface of the support member 322 as in the second embodiment or the third embodiment, the spacer 24 may be omitted.
  • the shape of the cavity CV provided in the injection mold composed of the fixed mold 41 and the movable mold 42 is not limited to that shown in the figure, and can be various shapes. That is, the shape of the cavity CV formed by the core units 51, 61 and the like is merely an example, and can be appropriately changed according to the use of the lens OL.
  • the optical surface forming surface 56a that is a relatively shallow concave surface is provided toward the core unit 51
  • the optical surface forming surface 66a that is a relatively deep concave surface is provided toward the core unit 61.
  • An optical surface forming surface that is a relatively deep concave surface may be provided toward the core unit 51, and an optical surface forming surface that is a relatively shallow concave surface may be provided toward the core unit 61.
  • the optical surface Sb of the lens OL is released before the optical surface Sa, and the optical surface Sb is released from the optical surface forming surface in a relatively warm state. . Therefore, in a lens in which a fine diffractive structure is provided on the optical surface Sb, it is possible to prevent the diffractive structure from being difficult to form the optical surface by cooling the lens and to prevent the mold release resistance from increasing. Structural deformation can be prevented, and a lens having a desired diffractive structure can be obtained.
  • the fixed mold 41 is mainly described.
  • the core unit 61 of the movable mold 42 has the same structure as the core unit 51 of the fixed mold 41. it can. Further, a spacer may be installed toward the movable mold 42.
  • the support member 22 and the spacer 24 have a disk-shaped outer shape, but may have a square-shaped outer shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

A local gap (GA) is provided between connection surfaces, that is, the front surface (24e) of a spacer (24) and the back surface (21f) of the core part (21), which are disposed between a core part (21) and a support member (22), thereby making it possible to elastically distort and deform the core part (21) using the gap (GA) provided between the core part (21) and the support member (22) and adjust the amount of distortion of the core part (21) using a fastening state by a fixing member (23). At this time, since the core part (21) is rarely distorted in the direction perpendicular to the direction in which the core part is distorted and deformed, the directions and amounts of astigmatism of an optical surface formation surface (56a) that is an optical surface transfer surface, and the like can be fine adjusted. In other words, the directions and amounts of astigmatism of the optical surface formation surface (56a) that is the optical surface transfer surface, and the like can be adjusted after the fact without producing the core part (21) again.

Description

成形金型及び光学素子の製造方法Mold and optical element manufacturing method
 本発明は、光ピックアップ装置等に組み込まれる対物レンズその他の光学素子用の成形金型、及びかかる光学素子の製造方法に関する。 The present invention relates to a molding die for an objective lens and other optical elements incorporated in an optical pickup device and the like, and a method for manufacturing such an optical element.
 従来の成形金型として、円筒状のピンを楕円断面の凹部に陥入する動作によって、金型転写面に直接歪みを与え、このような歪みに基づいて形成される光学素子に非点収差を与えるものが存在する(特許文献1参照)。 As a conventional molding die, a cylindrical pin is inserted into a recess having an elliptical cross section to directly distort the mold transfer surface, and astigmatism is applied to the optical element formed based on such distortion. There is something to give (see Patent Document 1).
 また、ガラス用の成形金型であるが、金型の表面に凸部を設け、この凸部によって加熱・加圧成形時に光学レンズに溝を一体的に形成することで、光学レンズに非点収差を与えるものが存在する(特許文献2参照)。 Although it is a molding die for glass, a convex part is provided on the surface of the mold, and by this convex part, a groove is integrally formed in the optical lens at the time of heating and pressure molding, thereby making the optical lens astigmatic. There exists what gives aberration (see Patent Document 2).
 その他、光学転写面を有するインサートやこのインサートに連接して配置されるスペーサを回転させたり、傾斜や軸非対称面を形成したスペーサを用いたりしてレンズの光学特性を制御するものも存在する(特許文献3参照)。 In addition, there are those that control the optical characteristics of a lens by rotating an insert having an optical transfer surface or a spacer arranged in connection with the insert, or using a spacer having an inclined or axially asymmetric surface ( (See Patent Document 3).
特開2004-314325号公報JP 2004-314325 A 特開2000-119027号公報JP 2000-1119027 A 特開2004-284116号公報JP 2004-284116 A
 特許文献1の技術は、非点収差を有する成形金型を製造する方法を開示するものであることから、一度形成した非点収差を補正又は修正することが困難であり、その対処法も明示されていない。例えば、特許文献1の方法で得た非点収差量が適正でない場合、再度条件に適合する金型を製造するまでに時間と労力とを要するものと考えられる。 Since the technique of Patent Document 1 discloses a method for manufacturing a molding die having astigmatism, it is difficult to correct or correct the astigmatism once formed, and the countermeasures are also clearly indicated. It has not been. For example, when the amount of astigmatism obtained by the method of Patent Document 1 is not appropriate, it is considered that it takes time and labor to manufacture a mold that meets the conditions again.
 特許文献2の技術も、特許文献1の場合と同様に、一旦金型に形成した形状を補正することが困難であり、異なる非点収差にする必要がある場合、新たに異なる形状の凸部を有する金型を製造しなければならなくなる。また、この方法では、レンズの凹部を設けるためのスペースが必要になるため、レンズの径を大きくする必要がある。 As in the case of Patent Document 1, it is difficult to correct the shape once formed in the mold in the technique of Patent Document 2, and when it is necessary to make different astigmatism, a convex portion having a different shape is newly added. It will be necessary to manufacture a mold having Further, in this method, a space for providing a concave portion of the lens is required, and therefore it is necessary to increase the diameter of the lens.
 特許文献3の技術は、インサートの回転によって光学面を回転させることが前提となっており、インサートの光学素子面の曲率等を変化させることができない。つまり、片側のインサートを回転することにより、非点収差の方向を調整できても、非点収差量を調整することはできない。 The technique of Patent Document 3 is based on the premise that the optical surface is rotated by rotating the insert, and the curvature of the optical element surface of the insert cannot be changed. That is, even if the direction of astigmatism can be adjusted by rotating the insert on one side, the amount of astigmatism cannot be adjusted.
 そこで、本発明は、非点収差量の調整が可能な成形金型及び光学素子の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a molding die and an optical element manufacturing method capable of adjusting the amount of astigmatism.
 上記課題を解決するため、本発明に係る成形金型は、光学素子の光学面に対応する光学面転写面を先端に有するコア部と、コア部を背後から支持する支持部材と、コア部を支持部材に固定する固定部材と、を備え、コア部から支持部材にかけて配置される接続面に局所的な空隙を設けたことを特徴とする。 In order to solve the above problems, a molding die according to the present invention includes a core part having an optical surface transfer surface corresponding to the optical surface of the optical element at the tip, a support member that supports the core part from the back, and a core part. A fixing member for fixing to the support member, and a local gap is provided on a connection surface arranged from the core portion to the support member.
 上記成形金型では、コア部から支持部材にかけて配置される接続面に局所的な空隙を設けているので、コア部と支持部材との間に設けられた空隙を利用してコア部を弾性的に歪み変形させることができ、固定部材による締め付け状態等を利用してコア部の弾性的な歪み量又は撓み量を調整できるので、光学面転写面の非点収差の方向や量を微調整することができる。つまり、コア部を再度作製することなく、光学面転写面の非点収差の方向や量を事後的に調整することができる。 In the molding die described above, since a local gap is provided on the connection surface arranged from the core part to the support member, the core part is made elastic using the gap provided between the core part and the support member. The amount of astigmatism on the optical surface transfer surface can be finely adjusted because the elastic distortion amount or deflection amount of the core portion can be adjusted using the tightening state of the fixing member. be able to. That is, the direction and amount of astigmatism on the optical surface transfer surface can be adjusted afterwards without producing the core part again.
 本発明の具体的な態様又は観点では、上記成形金型において、局所的な空隙が、接続面に設けたコア部の軸方向に関する段差によって形成される。この場合、段差の高低差を利用して空隙を確保することができ、空隙の形成が容易になる。 In a specific aspect or viewpoint of the present invention, in the molding die, a local gap is formed by a step in the axial direction of the core portion provided on the connection surface. In this case, the gap can be secured by using the difference in level of the step, and the formation of the gap becomes easy.
 本発明の別の態様では、固定部材の締め付けによって、コア部を変形させる。この場合、締め付け力の調整によって、光学面転写面の非点収差量を簡易に微調整することができる。 In another aspect of the present invention, the core portion is deformed by tightening the fixing member. In this case, the astigmatism amount on the optical surface transfer surface can be easily finely adjusted by adjusting the tightening force.
 本発明のさらに別の態様では、局所的な空隙が、コア部の軸を挟んで対称的に形成される。この場合、コア部は、弾性的に歪み変形する方向と垂直な方向に関しては殆ど歪みが発生しない、つまり傾きが生じないため非点収差量の調整に伴うコマ収差の変化を抑えることができる。 In yet another aspect of the present invention, the local voids are formed symmetrically across the axis of the core portion. In this case, the core portion is hardly distorted in the direction perpendicular to the direction in which it is elastically distorted, that is, the tilt is not generated, so that a change in coma due to adjustment of the astigmatism amount can be suppressed.
 本発明のさらに別の態様では、局所的な空隙が、コア部の軸を挟んで非対称的に形成される。この場合、非点収差量のみならずコマ収差の調整が可能になる。 In yet another aspect of the present invention, local voids are formed asymmetrically across the core axis. In this case, not only the amount of astigmatism but also coma can be adjusted.
 本発明のさらに別の態様では、表面の段差が、接続面を有する部材の表面に局所的に成膜された薄膜によって形成される。この場合、膜の微小な厚み差を利用してコア部や光学面転写面に微小な歪みや湾曲を与えることができる。 In yet another aspect of the present invention, the step on the surface is formed by a thin film locally formed on the surface of the member having the connection surface. In this case, minute distortion and curvature can be given to the core part and the optical surface transfer surface by utilizing a minute thickness difference of the film.
 本発明のさらに別の態様では、コア部と支持部材との間に板状のスペーサを備え、スペーサの一方の支持面のうち少なくとも一方に局所的な空隙を設けた。この場合、スペーサの回転や交換によっても非点収差の方向や量を適宜調整することができる。 In yet another aspect of the present invention, a plate-like spacer is provided between the core portion and the support member, and a local gap is provided on at least one of the one support surfaces of the spacer. In this case, the direction and amount of astigmatism can be adjusted as appropriate by rotating or replacing the spacer.
 本発明に係る光学素子の製造方法は、光学素子の光学面に対応する光学面転写面を先端に有するコア部と、コア部を背後から支持する支持部材と、前記コア部を前記支持部材に固定する固定部材、を備える成形金型を用いた光学素子の製造方法であって、コア部から支持部材にかけての接続面に局所的な空隙を設けるとともに、成形に際して空隙を利用して光学面転写面を変形させることを特徴とする。 An optical element manufacturing method according to the present invention includes a core part having an optical surface transfer surface corresponding to the optical surface of the optical element at a tip, a support member that supports the core part from the back, and the core part as the support member. A method of manufacturing an optical element using a molding die including a fixing member for fixing, wherein a local gap is provided on a connection surface from a core portion to a support member, and an optical surface is transferred using the gap during molding. The surface is deformed.
 上記製造方法では、コア部から支持部材にかけて配置される接続面に局所的な空隙を設け、成形に際して空隙を利用して光学面転写面を変形させるので、コア部の弾性的な歪み量又は撓み量を調整でき、光学面転写面の非点収差の方向や量を微調整することができる。つまり、コア部を再度作製することなく、光学面転写面の非点収差の方向や量を事後的に調整することができる。 In the above manufacturing method, a local gap is provided on the connection surface arranged from the core portion to the support member, and the optical surface transfer surface is deformed using the gap during molding. The amount can be adjusted, and the direction and amount of astigmatism on the optical surface transfer surface can be finely adjusted. That is, the direction and amount of astigmatism on the optical surface transfer surface can be adjusted afterwards without producing the core part again.
 本発明の具体的な観点では、上記光学素子の製造方法において、固定部材の締め付けによって変形させたコア部を型板に固定する。この場合、固定部材による締め付け状態を利用してコア部の弾性的な歪み量を調整できる。 In a specific aspect of the present invention, in the optical element manufacturing method, the core part deformed by fastening the fixing member is fixed to the template. In this case, the elastic strain amount of the core portion can be adjusted using the tightening state by the fixing member.
 本発明の別の観点では、コア部及び固定部材を埋め込んだ型板を有する第1の金型と、第1の金型に対向する第2の金型と、を型締めすることによって型空間を形成する際に、光学面転写面を変形させる。この場合、金型相互の型締め状態や空隙のサイズ等を利用してコア部の弾性的な歪み量を調整できる。 In another aspect of the present invention, a mold space is formed by clamping a first mold having a mold plate in which a core portion and a fixing member are embedded, and a second mold facing the first mold. When forming the optical surface, the optical surface transfer surface is deformed. In this case, the elastic strain amount of the core portion can be adjusted using the mold clamping state between the molds, the size of the gap, and the like.
 本発明の具体的な観点では、上記光学素子の製造方法において、コア部と支持部材との間に板状のスペーサを備え、スペーサの一方の支持面のうち少なくとも一方に局所的な空隙を設けた。この場合、スペーサの回転や交換によっても非点収差の方向や量を適宜調整することができる。 In a specific aspect of the present invention, in the method for manufacturing an optical element, a plate-like spacer is provided between the core portion and the support member, and a local gap is provided on at least one of the one support surfaces of the spacer. It was. In this case, the direction and amount of astigmatism can be adjusted as appropriate by rotating or replacing the spacer.
(A)は、第1実施形態の成形金型の構造を説明する部分側断面図であり、(B)は、(A)の金型によって射出成形されるレンズの拡大側面図である。(A) is a fragmentary sectional side view explaining the structure of the molding die of 1st Embodiment, (B) is an expanded side view of the lens injection-molded by the metal mold | die of (A). (A)は、コアユニットの分解断面図であり、(B)は、スペーサの正面図である。(A) is an exploded sectional view of the core unit, and (B) is a front view of the spacer. (A)及び(B)は、コアユニットの使用方法を説明する断面図である。(A) And (B) is sectional drawing explaining the usage method of a core unit. 成形金型の型締め前の状態を説明する側方断面図である。It is side sectional drawing explaining the state before the mold clamping of a shaping die. (A)及び(B)は、第1実施形態の成形金型の変形例におけるスペーサを説明する平面図及び側方断面である。(A) And (B) is the top view and side cross section explaining the spacer in the modification of the shaping die of 1st Embodiment. 第1実施形態の成形金型の変形例を説明する側方断面図である。It is a sectional side view explaining the modification of the shaping die of 1st Embodiment. (A)及び(B)は、第2実施形態の成形金型におけるコアユニットを説明する側方断面図である。(A) And (B) is a sectional side view explaining the core unit in the molding die of 2nd Embodiment. (A)及び(B)は、第3実施形態の成形金型におけるコアユニットを説明する側方断面図である。(A) And (B) is a sectional side view explaining the core unit in the molding die of 3rd Embodiment. (A)は、第4実施形態の成形金型におけるコアユニッを説明する側方断面図であり、(B)は、スペーサの正面図である。(A) is a sectional side view explaining the core unit in the molding die of 4th Embodiment, (B) is a front view of a spacer. 第5実施形態の成形金型を説明する側方断面図である。It is a sectional side view explaining the shaping die of a 5th embodiment. (A)及び(B)は、第5実施形態の成形金型の動作を説明する側方断面図である。(A) And (B) is a sectional side view explaining operation | movement of the shaping die of 5th Embodiment. (A)及び(B)は、スペーサの変形例を説明する平面図である。(A) And (B) is a top view explaining the modification of a spacer.
 〔第1実施形態〕
 以下、本発明の第1実施形態に係る成形金型と、これを用いた光学素子の製造方法とについて、図面を参照しつつ説明する。
[First Embodiment]
Hereinafter, a molding die according to a first embodiment of the present invention and an optical element manufacturing method using the same will be described with reference to the drawings.
 図1(A)に示すように、成形金型40は、固定金型(第1の金型)41と可動金型(第2の金型)42とで構成され、固定金型41と可動金型42は、パーティングラインPLを境として開閉可能になっている。固定金型41と可動金型42とに挟まれた空間であるキャビティCVは、成形品である光学素子としてのレンズOL(図1(B)参照)の形状に対応するものとなっている。レンズOLは、プラスチック製で、光学的機能を有する光学的機能部としての中心部OLaと、中心部OLaから外径方向に延在する環状のフランジ部OLbとを備える。レンズOLは、光ピックアップ装置用の対物レンズであり、例えばBD(Blu-ray disc)、DVD(digital versatile disc)等用の波長を有する光束に対して、NA0.85、NA0.7等を満たすレンズである。なお、レンズOLは、後に詳述する調整によって、例えば非点収差を極めて低減したものとできる。 As shown in FIG. 1A, the molding die 40 is composed of a fixed die (first die) 41 and a movable die (second die) 42, and is movable with the fixed die 41. The mold 42 can be opened and closed with the parting line PL as a boundary. A cavity CV, which is a space between the fixed mold 41 and the movable mold 42, corresponds to the shape of a lens OL (see FIG. 1B) as an optical element that is a molded product. The lens OL is made of plastic and includes a center portion OLa as an optical function portion having an optical function, and an annular flange portion OLb extending from the center portion OLa in the outer diameter direction. The lens OL is an objective lens for an optical pickup device, and satisfies NA 0.85, NA 0.7, etc. for a light beam having a wavelength for BD (Blu-ray disc), DVD (digital versatile disc), etc. It is a lens. Note that the lens OL can be made to have extremely reduced astigmatism, for example, by adjustment described in detail later.
 固定金型41は、コアユニット51と、型板53と、取付板54とを備える。コアユニット51は、キャビティCVを形成するため、可動金型42のコアユニット61に対向して配置される。型板53は、コアユニット51を周囲から保持する型部材であり、取付板54は、コアユニット51や型板53を背後から一体的に支持する型部材である。 The fixed mold 41 includes a core unit 51, a template 53, and a mounting plate 54. The core unit 51 is disposed to face the core unit 61 of the movable mold 42 in order to form the cavity CV. The mold plate 53 is a mold member that holds the core unit 51 from the periphery, and the mounting plate 54 is a mold member that integrally supports the core unit 51 and the mold plate 53 from behind.
 コアユニット51の先端面には、キャビティCVを画成するため、光学面形成面56aとフランジ形成面56bとが設けられている。光学面形成面56aは、比較的浅い凹面であり、レンズOLを構成する中心部OLaの一方の光学面Saを成形する転写面である。フランジ形成面56bは、環状の平面であり、レンズOLを構成するフランジ部OLbの一方のフランジ面F1を成形する転写面である。なお、コアユニット51は、後に詳述するが、コア部21と、支持部材22と、固定部材23と、スペーサ24とを有する。 The tip surface of the core unit 51 is provided with an optical surface forming surface 56a and a flange forming surface 56b in order to define a cavity CV. The optical surface forming surface 56a is a relatively shallow concave surface, and is a transfer surface for forming one optical surface Sa of the central portion OLa constituting the lens OL. The flange forming surface 56b is an annular flat surface, and is a transfer surface on which one flange surface F1 of the flange portion OLb constituting the lens OL is molded. As will be described in detail later, the core unit 51 includes a core portion 21, a support member 22, a fixing member 23, and a spacer 24.
 その他、型板53には、コアユニット51を挿入支持する円柱状の貫通孔57aが形成されている。また、型板53は、パーティングラインPLを形成する端面53aを有する。 In addition, a cylindrical through hole 57a for inserting and supporting the core unit 51 is formed in the template 53. The template 53 has an end face 53a that forms a parting line PL.
 可動金型42は、コアユニット61と、型板63と、取付板64とを備える。可動金型42は、軸AXに沿って移動可能になっており、固定金型41に対して開閉動作する。可動金型42において、コアユニット61は、キャビティCVを形成するため、固定金型41のコアユニット51に対向して配置される。型板63は、コアユニット61を周囲から一体的に支持する型部材であり、取付板64は、コアユニット61や型板63を背後から一体的に支持する型部材である。 The movable mold 42 includes a core unit 61, a mold plate 63, and a mounting plate 64. The movable mold 42 is movable along the axis AX and opens and closes with respect to the fixed mold 41. In the movable mold 42, the core unit 61 is disposed to face the core unit 51 of the fixed mold 41 in order to form the cavity CV. The mold plate 63 is a mold member that integrally supports the core unit 61 from the periphery, and the mounting plate 64 is a mold member that integrally supports the core unit 61 and the mold plate 63 from behind.
 コアユニット61の先端面には、キャビティCVを画成するため、光学面形成面66aとフランジ形成面66bとが設けられている。光学面形成面66aは、比較的深い凹面であり、レンズOLの中心部OLaの一方の光学面Sbを成形する転写面である。フランジ形成面66bは、環状の平面であり、レンズOLのフランジ部OLbの他方のフランジ面F2を成形する転写面である。 The tip surface of the core unit 61 is provided with an optical surface forming surface 66a and a flange forming surface 66b in order to define a cavity CV. The optical surface forming surface 66a is a relatively deep concave surface, and is a transfer surface on which one optical surface Sb of the center portion OLa of the lens OL is formed. The flange forming surface 66b is an annular flat surface and is a transfer surface for forming the other flange surface F2 of the flange portion OLb of the lens OL.
 その他、型板63には、コアユニット61を挿入支持する円柱状の貫通孔67aが形成されている。また、型板63は、パーティングラインPLを形成する端面63aを有する。 In addition, a cylindrical through hole 67a for inserting and supporting the core unit 61 is formed in the template 63. The template 63 has an end face 63a that forms a parting line PL.
 図2(A)は、コアユニット51の分解断面図である。コアユニット51は、紙面上端側すなわち図1に示すパーティングラインPL側にコア部21を有し、紙面下側すなわち型板53側に支持部材22を有し、コア部21と支持部材22との間にスペーサ24を挟んだ構造を有する。そして、コア部21は、支持部材22に背後から挿入される固定部材23によって、スペーサ24を介して支持部材22に固定可能になっている。 2A is an exploded cross-sectional view of the core unit 51. FIG. The core unit 51 has a core portion 21 on the upper end side of the paper surface, that is, on the parting line PL shown in FIG. 1, and has a support member 22 on the lower side of the paper surface, that is, on the template 53 side. The spacer 24 is sandwiched between them. The core portion 21 can be fixed to the support member 22 via the spacer 24 by a fixing member 23 inserted into the support member 22 from behind.
 コア部21は、軸AXのまわりに対称な形状を有しており、円板状の本体部分21aと、円筒状の軸部分21bとを有する。本体部分21aは、表面21eとして、既に説明した光学面形成面56aとフランジ形成面56bとを有する。本体部分21aは、環状の裏面21fを有しており、裏面21fは、コアユニット51として組み立てた状態でスペーサ24の表面24eの一部と当接する接続面となっている。軸部分21bは、中心に軸AXに沿って延びるネジ穴21cを有しており、後述する固定部材23の先端に設けたネジ部23bと螺合することで、コア部21と固定部材23とのねじ締めによる締結を可能にしている。 The core portion 21 has a symmetrical shape around the axis AX, and has a disk-shaped main body portion 21a and a cylindrical shaft portion 21b. The main body portion 21a has the optical surface forming surface 56a and the flange forming surface 56b already described as the surface 21e. The main body portion 21 a has an annular back surface 21 f, and the back surface 21 f is a connection surface that contacts a part of the surface 24 e of the spacer 24 in the assembled state as the core unit 51. The shaft portion 21b has a screw hole 21c extending along the axis AX at the center, and is screwed with a screw portion 23b provided at the tip of the fixing member 23 described later, whereby the core portion 21 and the fixing member 23 Fastening by screw tightening is possible.
 支持部材22は、全体として筒状で、頂部22aと円筒部22bとを有する。頂部22aに形成された貫通孔22cは、コア部21の軸部分21bを通すことができるようになっており、軸部分21bを軸AXに垂直な方向に関して殆ど緩みなく保持することができる。頂部22aの表面22eは、コアユニット51として組み立てた状態でスペーサ24の裏面24fと当接する接続面となっている。頂部22aの裏面22fは、コア部21に締め付けられた状態の固定部材23に設けたショルダ状の端面29とワッシャ27を挟持するように対向する。円筒部22bに形成された貫通孔22dは、固定部材23を内部に収納することができるようになっている。円筒部22bの裏面22gは、コアユニット51を固定金型41に取り付ける際に、取付板54に当接する部分となっている。なお、コアユニット51の裏面22gと取付板54との間には、スペーサを挿入することもできる。 The support member 22 has a cylindrical shape as a whole, and has a top portion 22a and a cylindrical portion 22b. The through hole 22c formed in the top portion 22a can pass through the shaft portion 21b of the core portion 21, and the shaft portion 21b can be held with little looseness in the direction perpendicular to the axis AX. The front surface 22 e of the top portion 22 a is a connection surface that comes into contact with the back surface 24 f of the spacer 24 in a state assembled as the core unit 51. The back surface 22f of the top portion 22a faces the shoulder-shaped end surface 29 provided on the fixing member 23 in a state of being fastened to the core portion 21 so as to sandwich the washer 27 therebetween. The through hole 22d formed in the cylindrical portion 22b can accommodate the fixing member 23 therein. The back surface 22g of the cylindrical portion 22b is a portion that comes into contact with the mounting plate 54 when the core unit 51 is mounted on the fixed mold 41. A spacer can be inserted between the back surface 22 g of the core unit 51 and the mounting plate 54.
 固定部材23は、軸AXのまわりに対称な形状を有しており、円柱状の本体部分23aと、ネジ部23bと、ワッシャ27とを有する。本体部分23aは、固定部材23によってコア部21を支持部材22の先端に取り付ける際に、支持部材22の貫通孔22c内に収納されて支持部材22内に埋め込まれた状態となる。ネジ部23bは、コア部21を支持部材22の先端に取り付ける際に、コア部21のネジ穴21cにねじ込まれる。固定部材23は、コア部21を支持部材22に固定する。 The fixing member 23 has a symmetrical shape around the axis AX, and includes a columnar main body portion 23a, a screw portion 23b, and a washer 27. The main body portion 23 a is housed in the through hole 22 c of the support member 22 and embedded in the support member 22 when the core portion 21 is attached to the tip of the support member 22 by the fixing member 23. The screw portion 23 b is screwed into the screw hole 21 c of the core portion 21 when the core portion 21 is attached to the tip of the support member 22. The fixing member 23 fixes the core portion 21 to the support member 22.
 スペーサ24は、円板状の外形を有し、中央にコア部21の軸部分21bを通すための貫通孔24cを有する。スペーサ24の表面24eの一部は、コアユニット51として組み立てた状態でコア部21の裏面21fと当接する接続面となっている。また、スペーサ24の裏面24fは、コアユニット51として組み立てた状態で支持部材22の表面22eと当接する接続面となっている。スペーサ24は、均一な厚みの本体24aと、その表側の周辺領域A1,A2に局所的に形成された薄膜部31,32とを有する。薄膜部31,32が形成された周辺領域A1,A2は、図2(B)に示すように、軸AXを挟んでAB方向に関して対向しており弓形の輪郭を有する。つまり、両薄膜部31,32の表面31a,32aは、スペーサ24の表面24eの一部を成しており、中央領域A0の表面30aとの境界において、段差24sが形成されている。両薄膜部31,32は、軸AXを挟んで対称的に形成される。つまり、スペーサ24の表面24eとコア部21の裏面21fとの間に形成される空隙GA(図3(A)参照)も、軸AXを挟んで対称的に配置される。 The spacer 24 has a disk-like outer shape, and has a through hole 24c for passing the shaft portion 21b of the core portion 21 at the center. A part of the front surface 24 e of the spacer 24 is a connection surface that comes into contact with the back surface 21 f of the core portion 21 in a state assembled as the core unit 51. In addition, the back surface 24 f of the spacer 24 is a connection surface that comes into contact with the front surface 22 e of the support member 22 in the assembled state as the core unit 51. The spacer 24 includes a main body 24a having a uniform thickness and thin film portions 31 and 32 locally formed in the peripheral regions A1 and A2 on the front side thereof. As shown in FIG. 2B, the peripheral areas A1 and A2 where the thin film portions 31 and 32 are formed are opposed to each other in the AB direction across the axis AX and have an arcuate outline. That is, the surfaces 31a and 32a of the thin film portions 31 and 32 form a part of the surface 24e of the spacer 24, and a step 24s is formed at the boundary with the surface 30a of the central region A0. Both thin film portions 31 and 32 are formed symmetrically with respect to the axis AX. That is, the gap GA (see FIG. 3A) formed between the front surface 24e of the spacer 24 and the back surface 21f of the core portion 21 is also symmetrically arranged with the axis AX interposed therebetween.
 図3(A)及び図3(B)を参照して、コアユニット51の機能について説明する。図3(A)に示すように、コア部21に対する固定部材23のねじ締め量が少ない場合、コア部21と支持部材22との間に挟まれたスペーサ24に対する締め付け力が弱く、コア部21の裏面21fは、スペーサ24の表面31a,32aと密着し、スペーサ24の裏面24fは、支持部材22の表面22eと密着するのみである。ただし、スペーサ24の表面24eとコア部21の裏面21fとの間には、図2(B)に示す中央領域A0の表面30aに対応する部分に局所的な空隙GAが形成されている。一方、図3(B)に示すように、コア部21に対する固定部材23のねじ締め量が多くなった場合、コア部21と支持部材22との間に挟まれたスペーサ24に対する締め付け力が極めて大きくなり、コア部21の裏面21fは、スペーサ24の表面31a,32aと密着するだけでなく、スペーサ24の表面24eに軸AXを挟んでAB方向に関して対向する領域に薄膜部31,32が形成されているので、軸AXに近い中央側でスペーサ24の表面30aに近づいて空隙GAが狭くなる。この際、薄膜部31,32がAB方向に関して対称に設けられているため、固定部材23の締め付けによって、コア部21の本体部分21aは、AB方向に関して弾性的に歪み変形するが、AB方向に垂直なCD方向に関して殆ど歪みを形成しない。このように、互いに垂直な2方向でコア部21の歪み量が異なるので、表面21eすなわち光学面形成面56aに非点収差を発生させることができる。なお、コア部21の表面21eは、AB方向に垂直なCD方向に関して殆ど曲率を有しないものとなる。例えばコア部21の表面21eの周辺側では、図3(B)に誇張して示すように、軸AXに垂直な面に対して傾斜角度θだけ傾く。この結果、コア部21の表面21eに形成された光学面形成面56aに非点収差の要因となる変形を与えることができ、このような変形を固定部材23のねじ締め量によって増減調整することができる。つまり、成形金型40によって形成されるレンズOLの光学面Saの非点収差量を調整することができる。この際、スペーサ24をコア部21に対して相対的に回転させることで、レンズOLの光学面Saの非点収差の方向も調整することができる。 The function of the core unit 51 will be described with reference to FIGS. 3 (A) and 3 (B). As shown in FIG. 3A, when the screwing amount of the fixing member 23 with respect to the core portion 21 is small, the tightening force with respect to the spacer 24 sandwiched between the core portion 21 and the support member 22 is weak, and the core portion 21. The back surface 21 f of the spacer 24 is in close contact with the front surfaces 31 a and 32 a of the spacer 24, and the back surface 24 f of the spacer 24 is only in close contact with the front surface 22 e of the support member 22. However, a local gap GA is formed between the front surface 24e of the spacer 24 and the back surface 21f of the core portion 21 at a portion corresponding to the front surface 30a of the central region A0 shown in FIG. On the other hand, as shown in FIG. 3B, when the screwing amount of the fixing member 23 with respect to the core portion 21 is increased, the tightening force on the spacer 24 sandwiched between the core portion 21 and the support member 22 is extremely high. The back surface 21f of the core portion 21 is not only in close contact with the front surfaces 31a and 32a of the spacer 24, but the thin film portions 31 and 32 are formed in regions facing the surface 24e of the spacer 24 with respect to the AB direction across the axis AX. Therefore, the gap GA is narrowed by approaching the surface 30a of the spacer 24 on the center side close to the axis AX. At this time, since the thin film portions 31 and 32 are provided symmetrically with respect to the AB direction, the main body portion 21a of the core portion 21 is elastically deformed and deformed with respect to the AB direction by tightening the fixing member 23. Little distortion is formed in the vertical CD direction. As described above, since the distortion amount of the core portion 21 is different in two directions perpendicular to each other, astigmatism can be generated on the surface 21e, that is, the optical surface forming surface 56a. The surface 21e of the core portion 21 has almost no curvature with respect to the CD direction perpendicular to the AB direction. For example, on the peripheral side of the surface 21e of the core portion 21, as shown in an exaggerated manner in FIG. 3B, the core portion 21 is inclined by an inclination angle θ with respect to a plane perpendicular to the axis AX. As a result, the optical surface forming surface 56a formed on the surface 21e of the core portion 21 can be deformed to cause astigmatism, and such deformation can be increased or decreased by the amount of screw tightening of the fixing member 23. Can do. That is, the amount of astigmatism on the optical surface Sa of the lens OL formed by the molding die 40 can be adjusted. At this time, the direction of astigmatism of the optical surface Sa of the lens OL can also be adjusted by rotating the spacer 24 relative to the core portion 21.
 図4は、成形金型40の型締め前の状態を説明する図である。固定金型41のコアユニット51は、図3(B)に対応する状態となっている。具体的には、固定金型41に設けたコアユニット51の表面21eの外縁は、型板53の端面53aと同一平面上にある。また、可動金型42に設けたコアユニット61の表面61eの外縁も、型板63の端面63aと同一平面上にある。つまり、型締めに際して、固定側のコアユニット51の表面21eと、可動側のコアユニット61の表面61eとが干渉することが回避されている。 FIG. 4 is a diagram for explaining a state before the mold 40 is clamped. The core unit 51 of the fixed mold 41 is in a state corresponding to FIG. Specifically, the outer edge of the surface 21 e of the core unit 51 provided in the fixed mold 41 is on the same plane as the end surface 53 a of the template 53. Further, the outer edge of the surface 61 e of the core unit 61 provided in the movable mold 42 is also on the same plane as the end surface 63 a of the template 63. That is, when the mold is clamped, interference between the surface 21e of the fixed-side core unit 51 and the surface 61e of the movable-side core unit 61 is avoided.
 以上の例では、スペーサ24が単一であるとしたが、薄膜部31,32の厚みを変えたスペーサ24を多数準備して交換することで、コア部21の本体部分21aにさらに多様な弾性的な歪み変形又は撓みを与えることができ、非点収差の調整幅も広げ、調整精度を向上させることができる。 In the above example, it is assumed that the spacer 24 is single. However, by preparing a large number of spacers 24 with different thicknesses of the thin film portions 31 and 32 and exchanging them, the body portion 21a of the core portion 21 can be further varied in elasticity. Distortion or deflection can be given, the adjustment range of astigmatism can be widened, and the adjustment accuracy can be improved.
 スペーサ24の作製について説明すると、まず、ステンレス鋼等を加工することによって平坦度の高いスペーサ24用の本体24aを準備し、スペーサ24の表面のうち周辺領域A1,A2に対応する部分にのみ成膜を行って薄膜部31,32を形成する。ここで、薄膜部31,32を形成するための成膜材料としては、例えば金属、金属化合物、炭素薄膜等を用いることができる。成膜材料の金属として、例えばチタン、クロム等を用いることができる。また、成膜材料の金属化合物として、例えば窒化チタン、窒化クロム、酸化クロム等を用いることができる。これらの成膜材料によれば、適切な硬度を確保することができ、また所望の膜厚にするなど成膜作業を適切に行うことが出来る。さらに、成膜材料の炭素薄膜として、例えばダイヤモンド・ライク・カーボン等を用いることができる。以上の成膜は、真空蒸着、スパッタリング等のPVD法によって行うこともできるが、CVD法によって行うこともできる。この際、中央領域A0に対向してマスクを配置することで、周辺領域A1,A2にのみ成膜を行うことができる。薄膜部31,32の膜厚の制御は、例えばPVD法やCVD法による成膜時において、成膜時間の調整によって行う。ただし、単位時間当たりの成膜量を変えることによっても、薄膜部31,32の膜厚を調整することができる。 The production of the spacer 24 will be described. First, a main body 24a for the spacer 24 having a high flatness is prepared by processing stainless steel or the like, and only the portions corresponding to the peripheral regions A1 and A2 on the surface of the spacer 24 are formed. Films are formed to form the thin film portions 31 and 32. Here, as a film forming material for forming the thin film portions 31 and 32, for example, a metal, a metal compound, a carbon thin film, or the like can be used. For example, titanium, chromium, or the like can be used as the metal of the film forming material. Further, for example, titanium nitride, chromium nitride, chromium oxide, or the like can be used as the metal compound of the film forming material. According to these film forming materials, appropriate hardness can be ensured, and a film forming operation such as a desired film thickness can be appropriately performed. Furthermore, for example, diamond-like carbon or the like can be used as the carbon thin film of the film forming material. The above film formation can be performed by a PVD method such as vacuum evaporation or sputtering, but can also be performed by a CVD method. At this time, the mask can be disposed opposite to the central area A0 to form a film only in the peripheral areas A1 and A2. The film thickness of the thin film portions 31 and 32 is controlled by adjusting the film formation time, for example, during film formation by the PVD method or the CVD method. However, the film thickness of the thin film portions 31 and 32 can also be adjusted by changing the film formation amount per unit time.
 以下、図1の成形金型40を用いた樹脂製品の製造方法について説明する。なお、図示を省略しているが、成形金型40は、射出成形機に組み込まれて使用されるものであり、固定金型41は、射出成形機の固定盤に固定され、可動金型42は、射出成形機の可動盤に固定される。 Hereinafter, a method for producing a resin product using the molding die 40 of FIG. 1 will be described. Although not shown, the molding die 40 is used by being incorporated in an injection molding machine, and the fixed die 41 is fixed to a stationary platen of the injection molding machine, and a movable die 42 is used. Is fixed to the movable platen of the injection molding machine.
 金型温度調節機(不図示)により、固定金型41と可動金型42は成形に適する温度まで加熱されており、可動金型42を支持する可動盤を固定金型41を支持する固定盤に近接させて、固定金型41と可動金型42とが接触する型当たり位置まで移動させて型閉じを行うとともに、固定金型41と可動金型42とを必要な圧力で締め付ける型締めを行う。次に、射出装置(不図示)を動作させて、型締めされた固定金型41と可動金型42との間に形成される型空間であるキャビティCV中に、必要な圧力で溶融樹脂を注入する射出が行われ、保圧工程を経て溶融樹脂が緩やかに冷却される。溶融樹脂が冷却されて十分硬化した段階で、可動金型42を後退させる型開きを行うことにより、固定金型41と可動金型42とが離間する。この結果、固定両型41と可動金型42間から樹脂成形品としてのレンズOLを取り出すことができる。 The fixed mold 41 and the movable mold 42 are heated to a temperature suitable for molding by a mold temperature controller (not shown), and the movable plate that supports the movable mold 42 is fixed to the fixed plate that supports the fixed mold 41. The mold is closed by moving it to a position where the fixed mold 41 and the movable mold 42 come into contact with each other and closing the mold, and clamping the fixed mold 41 and the movable mold 42 with a necessary pressure. Do. Next, by operating an injection device (not shown), molten resin is injected into the cavity CV, which is a mold space formed between the fixed mold 41 and the movable mold 42, which are clamped, at a necessary pressure. Injection to inject is performed, and the molten resin is gradually cooled through a pressure holding step. When the molten resin is cooled and sufficiently cured, the fixed mold 41 and the movable mold 42 are separated from each other by performing mold opening for retracting the movable mold 42. As a result, the lens OL as a resin molded product can be taken out between the fixed mold 41 and the movable mold 42.
 図5(A)は、図2(B)に示すスペーサ24の変形例を説明する平面図であり、図5(B)は、変形例のスペーサの側方断面図である。図5に示すスペーサ124の場合、AB方向の一方側である周辺領域A1のみに、薄膜部31を局所的に形成している。この場合も、残りの領域A3の表面130aとの境界において、段差24sが形成されている。図示のスペーサ124の場合、薄膜部31が軸AXを挟んで非対称的に形成されることになる。つまり、スペーサ124の表面24eとコア部21の裏面21fとの間に形成される空隙GAも、軸AXを挟んで非対称的に配置される。このようなスペーサ124を用いることにより、固定部材23の締め付けによりコア部21はAB方向について変形させるとともにコア部21の本体部分21aを軸AXに対して傾けることができ、非点収差量のみならずコマ収差の調整が可能になる。 FIG. 5A is a plan view for explaining a modification of the spacer 24 shown in FIG. 2B, and FIG. 5B is a side sectional view of the spacer of the modification. In the case of the spacer 124 shown in FIG. 5, the thin film portion 31 is locally formed only in the peripheral region A1 on one side in the AB direction. Also in this case, a step 24s is formed at the boundary with the surface 130a of the remaining region A3. In the case of the illustrated spacer 124, the thin film portion 31 is formed asymmetrically with the axis AX interposed therebetween. That is, the gap GA formed between the front surface 24e of the spacer 124 and the back surface 21f of the core portion 21 is also asymmetrically arranged with the axis AX interposed therebetween. By using such a spacer 124, the core portion 21 can be deformed in the AB direction by tightening the fixing member 23, and the main body portion 21a of the core portion 21 can be inclined with respect to the axis AX. The coma aberration can be adjusted.
 なお、図5(A)等に示す例では、スペーサ124の表面24eのうち片側の領域のみに薄膜部31を形成している。つまり、軸AXを挟んで片側の領域のみに薄膜部を形成することにより図2(A)のコア部21の本体部分21aを軸AXに対して傾けることができる。また、図2(B)に示す薄膜部31,32において膜厚差を設けることによっても、本体部分21aを撓ませかつ傾けることができる。 In the example shown in FIG. 5A and the like, the thin film portion 31 is formed only in one region of the surface 24e of the spacer 124. That is, the main body portion 21a of the core portion 21 shown in FIG. 2A can be tilted with respect to the axis AX by forming the thin film portion only on one side of the axis AX. In addition, the main body portion 21a can be bent and tilted by providing a difference in film thickness in the thin film portions 31 and 32 shown in FIG.
 なお、以上の説明では、スペーサ24,124の表面24e側にのみ薄膜部31,32を形成しているが、スペーサ24,124の裏面24fに薄膜部31,32を形成することもできる。 In the above description, the thin film portions 31 and 32 are formed only on the front surface 24e side of the spacers 24 and 124. However, the thin film portions 31 and 32 may be formed on the back surface 24f of the spacers 24 and 124.
 図6は、図1、図4等に示す成形金型40の変形例を示す。この場合、固定金型41のコアユニット51の表面21eは、型板53の端面53aよりも微小量後退した状態となっている。また、可動金型42のコアユニット61の表面61eも、型板63の端面63aよりも微小量後退した状態となっている。結果的に、型締めに際して、固定側のコアユニット51の表面21eと、可動側のコアユニット61の表面61eとが干渉することが回避されている。なお、図面では誇張しているが、表面21e,61eの突出量はミクロンオーダーである。また、固定金型41のコアユニット51の表面21eと可動金型42のコアユニット61の表面61eの両方を型板端面よりも後退させるのではなく、一方を型板の端面よりも微小量突出させ、他方をその突出量よりも大きく後退させるようにしても良い。 FIG. 6 shows a modification of the molding die 40 shown in FIGS. In this case, the surface 21e of the core unit 51 of the fixed mold 41 is in a state of being retreated by a minute amount from the end surface 53a of the template 53. Further, the surface 61e of the core unit 61 of the movable mold 42 is also in a state of being retracted by a minute amount from the end surface 63a of the mold plate 63. As a result, interference between the surface 21e of the fixed-side core unit 51 and the surface 61e of the movable-side core unit 61 is avoided during mold clamping. In addition, although exaggerated in drawing, the protrusion amount of the surfaces 21e and 61e is a micron order. Further, both the surface 21e of the core unit 51 of the fixed mold 41 and the surface 61e of the core unit 61 of the movable mold 42 are not retracted from the end face of the template, but one of them protrudes by a minute amount from the end face of the template. The other may be retracted larger than the protruding amount.
 以上のように、本実施形態の成形金型によれば、コア部21から支持部材22にかけて配置される接続面(例えば、スペーサ24の表面24eとコア部21の裏面21fとの間)に局所的な空隙GAを設けているので、かかる空隙GAを利用してコア部21を撓み変形させることができ、固定部材23による締め付け状態を利用してコア部21の弾性的な歪み量又は撓み量を調整できる。よって、光学面転写面である光学面形成面56a等の非点収差の方向や量を微調整することができる。つまり、コア部21を再度作製することなく、光学面転写面である光学面形成面56a等の非点収差の方向や量を事後的に調整することができる。 As described above, according to the molding die of the present embodiment, the connection surface (for example, between the front surface 24e of the spacer 24 and the back surface 21f of the core portion 21) is locally disposed from the core portion 21 to the support member 22. Since the gap GA is provided, the core portion 21 can be bent and deformed by using the gap GA, and the elastic strain amount or the deflection amount of the core portion 21 by using the tightening state by the fixing member 23. Can be adjusted. Therefore, the direction and amount of astigmatism of the optical surface forming surface 56a, which is an optical surface transfer surface, can be finely adjusted. That is, the direction and amount of astigmatism of the optical surface forming surface 56a, which is the optical surface transfer surface, can be adjusted afterwards without producing the core portion 21 again.
 〔第2実施形態〕
 以下、本発明の第2実施形態に係る成形金型とこれを用いた光学素子の製造方法とについて、図面を参照しつつ説明する。なお、第2実施形態に係る成形金型や製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
[Second Embodiment]
Hereinafter, a molding die according to a second embodiment of the present invention and an optical element manufacturing method using the same will be described with reference to the drawings. Note that the molding die and the manufacturing method according to the second embodiment are modifications of the first embodiment, and parts that are not particularly described are the same as those of the first embodiment.
 図7(A)及び図7(B)に示すように、第2実施形態の場合、コアユニット51のコア部221に設けた本体部分21aの裏面221f側において、軸AXを挟んでAB方向に関して対向する領域に、薄膜部231,232が形成されている。なお、スペーサ224は、第1実施形態のコアユニット51におけるスペーサ24と同様の構造を有するが、薄膜部31,32を有していない。 As shown in FIG. 7A and FIG. 7B, in the case of the second embodiment, on the back surface 221f side of the main body portion 21a provided in the core portion 221 of the core unit 51, the axis AX is sandwiched with respect to the AB direction. Thin film portions 231 and 232 are formed in regions facing each other. The spacer 224 has the same structure as the spacer 24 in the core unit 51 of the first embodiment, but does not have the thin film portions 31 and 32.
 本実施形態において、コア部221に対する固定部材23のねじ締め量を増すと、軸AXを挟んでAB方向に関して対向する領域に薄膜部231,232が形成されているので、軸AXに近い中央側で、コア部221の裏面221fがスペーサ224の表面224eに近づいて空隙GAが狭くなる。この際、薄膜部231,232がAB方向に関して対称に設けられているため、固定部材23の締め付けによって、コア部221の本体部分21aは、AB方向に関して弾性的に歪み変形するが、AB方向に垂直なCD方向に関して殆ど歪みを形成しない。このように、互いに垂直な2方向でコア部221の歪み量が異なるので、その表面21eすなわち光学面形成面56aに非点収差を発生させることができる。 In the present embodiment, when the screwing amount of the fixing member 23 with respect to the core part 221 is increased, the thin film parts 231 and 232 are formed in regions facing the AB direction across the axis AX, so the central side near the axis AX Thus, the back surface 221f of the core portion 221 approaches the front surface 224e of the spacer 224, and the gap GA becomes narrow. At this time, since the thin film portions 231 and 232 are provided symmetrically with respect to the AB direction, the body portion 21a of the core portion 221 is elastically deformed and deformed with respect to the AB direction by tightening the fixing member 23. Little distortion is formed in the vertical CD direction. As described above, since the distortion amount of the core portion 221 differs in two directions perpendicular to each other, astigmatism can be generated on the surface 21e, that is, the optical surface forming surface 56a.
 なお、コア部221において、薄膜部231,232のうち一方のみを設けることができ、両薄膜部231,232の厚みを異なるものとできる。 In the core part 221, only one of the thin film parts 231 and 232 can be provided, and the thicknesses of the thin film parts 231 and 232 can be different.
 〔第3実施形態〕
 以下、本発明の第3実施形態に係る成形金型とこれを用いた光学素子の製造方法とについて、図面を参照しつつ説明する。なお、第3実施形態に係る成形金型や製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態や第2実施形態と同様であるものとする。
[Third Embodiment]
Hereinafter, a molding die according to a third embodiment of the present invention and an optical element manufacturing method using the same will be described with reference to the drawings. The molding die and the manufacturing method according to the third embodiment are modifications of the first embodiment, and parts that are not particularly described are the same as those in the first embodiment and the second embodiment. .
 図8(A)及び図8(B)に示すように、第3実施形態の場合、コアユニット51の支持部材322の表面322e側において、軸AXを挟んでAB方向に関して対向する領域に、薄膜部331,332が形成されている。なお、スペーサ224は、第1実施形態のコアユニット51におけるスペーサ24と同様の構造を有するが、第2実施形態と同様に薄膜部31,32を有していない。 As shown in FIGS. 8A and 8B, in the case of the third embodiment, a thin film is formed on the surface 322e side of the support member 322 of the core unit 51 in a region facing the AB direction across the axis AX. Portions 331 and 332 are formed. The spacer 224 has the same structure as the spacer 24 in the core unit 51 of the first embodiment, but does not have the thin film portions 31 and 32 as in the second embodiment.
 本実施形態において、コア部21に対する固定部材23のねじ締め量を増すと、軸AXを挟んでAB方向に関して対向する領域に薄膜部331,332が形成されているので、軸AXに近い中央側でスペーサ224の裏面24fが支持部材322の表面322eに近づいて空隙GAが狭くなる。この際、薄膜部331,332がAB方向に関して対称に設けられているため、固定部材23の締め付けによって、スペーサ224とコア部21の本体部分21aとは、AB方向に関して弾性的に歪み変形するが、AB方向に垂直なCD方向に関して殆ど歪みを形成しない。このように、互いに垂直な2方向でコア部21の歪み量が異なるので、その表面21eすなわち光学面形成面56aに非点収差を発生させることができる。 In the present embodiment, when the screwing amount of the fixing member 23 with respect to the core portion 21 is increased, the thin film portions 331 and 332 are formed in regions facing the AB direction across the axis AX. Thus, the back surface 24f of the spacer 224 approaches the front surface 322e of the support member 322, and the gap GA becomes narrow. At this time, since the thin film portions 331 and 332 are provided symmetrically with respect to the AB direction, the fastening of the fixing member 23 causes the spacer 224 and the body portion 21a of the core portion 21 to be elastically strained and deformed with respect to the AB direction. , Little distortion is formed in the CD direction perpendicular to the AB direction. As described above, since the distortion amount of the core portion 21 differs in two directions perpendicular to each other, astigmatism can be generated on the surface 21e, that is, the optical surface forming surface 56a.
 なお、支持部材322において、薄膜部331,332のうち一方のみを設けることができ、両薄膜部331,332の厚みを異なるものとできる。 In the support member 322, only one of the thin film portions 331 and 332 can be provided, and the thicknesses of the thin film portions 331 and 332 can be different.
 〔第4実施形態〕
 以下、本発明の第4実施形態に係る成形金型とこれを用いた光学素子の製造方法とについて、図面を参照しつつ説明する。なお、第4実施形態に係る成形金型や製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
[Fourth Embodiment]
Hereinafter, a molding die according to a fourth embodiment of the present invention and an optical element manufacturing method using the same will be described with reference to the drawings. The molding die and the manufacturing method according to the fourth embodiment are modifications of the first embodiment, and parts that are not particularly described are the same as those of the first embodiment.
 図9(A)に示すように、第4実施形態のコアユニット451は、コア部421と、支持部材422と、2本の固定部材23と、スペーサ424とを有する。 As shown in FIG. 9A, the core unit 451 of the fourth embodiment includes a core portion 421, a support member 422, two fixing members 23, and a spacer 424.
 コア部421は、円板状の部材であり、その裏面21fは、コアユニット451として組み立てた状態でスペーサ424の表面24eの一部と当接する接続面となっている。コア部421は、軸AXを挟んでAB方向に離間する一対のネジ穴21cを有しており、固定部材23の先端に設けたネジ部23bと螺合することで、コア部21と固定部材23とのねじ締めによる締結を可能にしている。 The core portion 421 is a disk-shaped member, and the back surface 21f thereof is a connection surface that comes into contact with a part of the surface 24e of the spacer 424 in the assembled state as the core unit 451. The core part 421 has a pair of screw holes 21c that are spaced apart in the AB direction across the axis AX, and is screwed with a screw part 23b provided at the tip of the fixing member 23, whereby the core part 21 and the fixing member Fastening with 23 is possible.
 支持部材422は、円柱状の部材であり、その表面22eは、コアユニット451として組み立てた状態でスペーサ424の裏面24fと当接する接続面となっている。支持部材422は、軸AXを挟んでAB方向に離間する一対の貫通孔22cを有している。両貫通孔22cは、根元側でより直径の大きな貫通孔22dとなっている。ここで、先端側の貫通孔22cは、固定部材23の先端に設けたネジ部23bを通すことができるようになっており、根元側の貫通孔22dは、固定部材23の本体部分23aを通すことができるようになっている。なお、貫通孔22cと貫通孔22dとの境界の段差によって本体部分23aの先端を係止しており、固定部材23の先端側への移動を阻止している。 The support member 422 is a columnar member, and the front surface 22e is a connection surface that comes into contact with the back surface 24f of the spacer 424 in a state assembled as the core unit 451. The support member 422 has a pair of through holes 22c that are spaced apart in the AB direction across the axis AX. Both through-holes 22c are through-holes 22d having a larger diameter on the root side. Here, the through-hole 22c on the distal end side can pass the screw portion 23b provided at the distal end of the fixing member 23, and the through-hole 22d on the root side allows the main body portion 23a of the fixing member 23 to pass therethrough. Be able to. Note that the tip of the main body portion 23a is locked by a step at the boundary between the through hole 22c and the through hole 22d, and the movement of the fixing member 23 toward the tip side is prevented.
 スペーサ424は、図9(B)にも示すように、円板状の外形を有し、スペーサ424の表面24eの一部は、コアユニット451として組み立てた状態でコア部421の裏面21fと当接する接続面となっている。また、スペーサ424の裏面24fは、コアユニット451として組み立てた状態で支持部材422の表面22eと当接する接続面となっている。スペーサ424は、軸AXを挟んでAB方向に離間する一対の貫通孔24cを有している。スペーサ224は、均一な厚みの本体24aと、その表側に局所的に形成された薄膜部431とを有する。薄膜部431は、軸AXの周辺の中央領域からCD方向に延びており、薄膜部431のAB方向の端部には、一対の段差24sが形成されている。薄膜部431は、軸AXを挟んで対称的に形成される。つまり、スペーサ24の表面24eとコア部21の裏面21fとの間に形成される空隙GAも、軸AXを挟んで対称的に配置される。 As shown in FIG. 9B, the spacer 424 has a disk-like outer shape, and a part of the front surface 24e of the spacer 424 is in contact with the back surface 21f of the core portion 421 in the assembled state. It is a connecting surface that touches. Further, the back surface 24 f of the spacer 424 is a connection surface that comes into contact with the front surface 22 e of the support member 422 in a state where the spacer unit 424 is assembled as the core unit 451. The spacer 424 has a pair of through holes 24c that are spaced apart in the AB direction across the axis AX. The spacer 224 includes a main body 24a having a uniform thickness and a thin film portion 431 locally formed on the front side thereof. The thin film portion 431 extends in the CD direction from the central region around the axis AX, and a pair of steps 24s is formed at the end of the thin film portion 431 in the AB direction. The thin film portion 431 is formed symmetrically with respect to the axis AX. That is, the gap GA formed between the front surface 24e of the spacer 24 and the back surface 21f of the core portion 21 is also arranged symmetrically with respect to the axis AX.
 本実施形態において、コア部421に対する一対の固定部材23のねじ締め量を増すと、軸AXを通ってAB方向に延びる領域に薄膜部431が形成されているので、軸AXからAB方向に離れた周辺側でスペーサ424の裏面24fが支持部材422の表面22eに近づいて空隙GAが狭くなる。この際、薄膜部431がAB方向に関して対称に設けられているため、一対の固定部材23の締め付けによって、コア部421は、AB方向に関して弾性的に歪み変形するが、AB方向に垂直なCD方向に関して殆ど歪みを形成しない。このように、互いに垂直な2方向でコア部421の歪み量が異なるので、その表面21eすなわち光学面形成面56aに非点収差を発生させることができる。 In the present embodiment, when the screwing amount of the pair of fixing members 23 with respect to the core portion 421 is increased, the thin film portion 431 is formed in the region extending in the AB direction through the axis AX, and thus separated from the axis AX in the AB direction. On the peripheral side, the back surface 24f of the spacer 424 approaches the surface 22e of the support member 422, and the gap GA becomes narrow. At this time, since the thin film portion 431 is provided symmetrically with respect to the AB direction, the core portion 421 is elastically deformed and deformed with respect to the AB direction by tightening the pair of fixing members 23, but the CD direction is perpendicular to the AB direction. Almost no distortion. As described above, since the distortion amount of the core portion 421 differs in two directions perpendicular to each other, astigmatism can be generated on the surface 21e, that is, the optical surface forming surface 56a.
 以上の説明では、スペーサ424の表面24eに薄膜部431を設けているが、スペーサ424の裏面24fにおいて、その中央からCD方向に延びる薄膜部431を設けることもできる。さらに、コア部421の裏面21fや支持部材422の表面22eにおいて、その中央からCD方向に延びる薄膜部431を設けることもできる。 In the above description, the thin film portion 431 is provided on the front surface 24e of the spacer 424. However, on the back surface 24f of the spacer 424, a thin film portion 431 extending in the CD direction from the center can also be provided. Furthermore, a thin film portion 431 extending in the CD direction from the center can be provided on the back surface 21f of the core portion 421 and the front surface 22e of the support member 422.
 〔第5実施形態〕
 以下、本発明の第5実施形態に係る成形金型とこれを用いた光学素子の製造方法とについて、図面を参照しつつ説明する。なお、第5実施形態に係る成形金型や製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
[Fifth Embodiment]
Hereinafter, a molding die according to a fifth embodiment of the present invention and an optical element manufacturing method using the same will be described with reference to the drawings. The molding die and the manufacturing method according to the fifth embodiment are modifications of the first embodiment, and parts that are not particularly described are the same as those of the first embodiment.
 図10に示すように、第5実施形態の成形金型540において、固定金型41のコアユニット51の表面21eは、型板53の端面53aよりも微小量突出した状態となっている。また、可動金型42のコアユニット61の表面61eは、型板63の端面63aよりも微小量突出した状態となっている。なお、図面では誇張しているが、表面21e,61eの突出量はミクロンオーダーである。 As shown in FIG. 10, in the molding die 540 of the fifth embodiment, the surface 21e of the core unit 51 of the fixed die 41 is in a state of protruding by a minute amount from the end surface 53a of the template 53. Further, the surface 61 e of the core unit 61 of the movable mold 42 is in a state of protruding a minute amount from the end surface 63 a of the mold plate 63. In addition, although exaggerated in drawing, the protrusion amount of the surfaces 21e and 61e is a micron order.
 本実施形態の場合、固定部材23は、コア部21を支持部材22に固定するだけであり、コア部21を変形させるような強い力で締め付けない。 In the case of the present embodiment, the fixing member 23 only fixes the core portion 21 to the support member 22 and does not tighten with a strong force that deforms the core portion 21.
 図11(A)に示すように、固定金型41と可動金型42とを接触させる型閉じを行うと、コアユニット51の表面21eとコアユニット61の表面61eとが最初に接触する。 As shown in FIG. 11A, when mold closing is performed by bringing the fixed mold 41 and the movable mold 42 into contact with each other, the surface 21e of the core unit 51 and the surface 61e of the core unit 61 first come into contact with each other.
 その後、図11(B)に示すように、固定金型41と可動金型42とを必要な圧力で締め付ける型締めを行うと、固定金型41の端面53aと可動金型42の端面63aとが密着する。この際、固定側のコアユニット51の表面21eは、コア部21が微量の撓み変形を許容する形状であることから型締め力の影響で変形する。つまり、コア部21の表面21eの光学面形成面56aに対して非点収差の要因となる変形を与えることができる。この際、可動側のコアユニット61の表面61eも、型締め力の影響でコアユニット51の表面21eに倣って変形する。なお、可動金型42にコアユニット51と同様であるが反転した微量の撓み変形を許容する機構を設けておけば、コアユニット61の表面61eの変形がより容易になる。 Thereafter, as shown in FIG. 11B, when clamping is performed to clamp the fixed mold 41 and the movable mold 42 with necessary pressure, the end surface 53a of the fixed mold 41 and the end surface 63a of the movable mold 42 are Is in close contact. At this time, the surface 21e of the core unit 51 on the fixed side is deformed due to the clamping force because the core portion 21 has a shape that allows a slight amount of bending deformation. That is, deformation that causes astigmatism can be applied to the optical surface forming surface 56a of the surface 21e of the core portion 21. At this time, the surface 61e of the movable core unit 61 is also deformed following the surface 21e of the core unit 51 due to the influence of the clamping force. In addition, if the movable die 42 is provided with a mechanism that allows a small amount of bending deformation that is the same as that of the core unit 51, the surface 61e of the core unit 61 can be more easily deformed.
 コアユニット51の表面21eの変形量の調整は、コアユニット51の型板53からの突出量の調整によって可能になる。具体的には、コアユニット51に組み込んだスペーサ24を異なる段差を持つものに交換等することによって、コアユニット51の表面21eの変形を増減調整することができる。 The amount of deformation of the surface 21e of the core unit 51 can be adjusted by adjusting the amount of protrusion of the core unit 51 from the template 53. Specifically, the deformation of the surface 21e of the core unit 51 can be increased or decreased by replacing the spacer 24 incorporated in the core unit 51 with one having different steps.
 以上のように、第5実施形態に係る成形金型540によれば、コア部21及び固定部材23を有するコアユニット51を埋め込んだ型板53を有する固定金型41と、固定金型41に対向する可動金型42とを型締めすることによって型空間であるキャビティCVを形成する際に、光学面転写面である光学面形成面56a等を変形させる。この場合、金型41,42相互の型締め状態や空隙GAのサイズ等を利用してコア部21の歪み量又は撓み量を調整できる。 As described above, according to the molding die 540 according to the fifth embodiment, the fixed die 41 having the mold plate 53 in which the core unit 51 having the core portion 21 and the fixing member 23 is embedded, and the fixed die 41 When the cavity CV that is the mold space is formed by clamping the opposed movable mold 42, the optical surface forming surface 56a that is the optical surface transfer surface is deformed. In this case, the amount of distortion or the amount of deflection of the core portion 21 can be adjusted by utilizing the clamping state between the molds 41 and 42, the size of the gap GA, and the like.
 以上実施形態に即して本発明を説明したが、本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。例えば、上記第1~第4実施形態では、固定部材23のねじ締め量を調整することによって、コア部21,221,421の表面21eを撓み変形させているが、バネを併用して歪み量又は撓み量を調整することもできる。具体的には、固定部材23と支持部材22,322,422等との間に皿バネを配置して皿バネのバネ係数を変化させることによっても、コア部21,221,421の表面21eの変形量を適宜増減させることができる。 Although the present invention has been described based on the above embodiments, the present invention is not limited to the above embodiments, and various modifications are possible. For example, in the first to fourth embodiments, the surface 21e of the core portions 21, 221 and 421 is bent and deformed by adjusting the screw tightening amount of the fixing member 23. Alternatively, the amount of deflection can be adjusted. Specifically, the surface 21e of the core portions 21, 221 and 421 can also be changed by changing the spring coefficient of the disc spring by disposing a disc spring between the fixing member 23 and the support members 22, 322, 422 and the like. The amount of deformation can be increased or decreased as appropriate.
 また、スペーサ24等に形成される薄膜部31,32の形状は、弓形に限らず、帯状(図12(A)参照)、矩形状(図12(B)参照)とすることができる。 Further, the shape of the thin film portions 31 and 32 formed on the spacer 24 or the like is not limited to the bow shape, but may be a belt shape (see FIG. 12A) or a rectangular shape (see FIG. 12B).
 以上では、薄膜部31,32等によって段差24sを形成しているが、かかる薄膜部31,32によらないで段差24sを形成することもできる。具体的には、例えばスペーサ24等の表面にドライ又はウエットエッチングを施すことによっても、同様の段差24sを形成することができる。さらに、表面に機械加工を施すことによっても、同様の段差24sを形成することができる。ここで、段差24sは、必ずしも階段側面を有する明確なものに限らず、緩やかに厚み変化が生じているようなものを含むものとする。 In the above description, the step 24 s is formed by the thin film portions 31 and 32, but the step 24 s can be formed without using the thin film portions 31 and 32. Specifically, for example, a similar step 24s can be formed by performing dry or wet etching on the surface of the spacer 24 or the like. Furthermore, a similar step 24s can be formed by machining the surface. Here, the step 24 s is not necessarily a clear one having a staircase side surface, but includes a step in which a thickness change occurs gently.
 以上では、スペーサ24とスペーサ124とを単独で使用することを前提として説明したが、スペーサ24とスペーサ124と組み合わせて使用することができ、この場合、コア部21,421の撓みや傾斜を多様に調整することができる。また、第2実施形態や第3実施形態のようにコア部221の裏面や支持部材322の表面に薄膜部を形成した場合は、スペーサ24を省略してもよい。 The above description is based on the assumption that the spacer 24 and the spacer 124 are used alone. However, the spacer 24 and the spacer 124 can be used in combination, and in this case, the core portions 21 and 421 can be bent and inclined variously. Can be adjusted. Further, when the thin film portion is formed on the back surface of the core portion 221 or the surface of the support member 322 as in the second embodiment or the third embodiment, the spacer 24 may be omitted.
 固定金型41及び可動金型42で構成される射出成形金型に設けるキャビティCVの形状は、図示のものに限らず、様々な形状とすることができる。すなわち、コアユニット51,61等によって形成されるキャビティCVの形状は、単なる例示であり、レンズOLの用途等に応じて適宜変更することができる。上記実施形態では、コアユニット51の方に比較的浅い凹面である光学面形成面56aが設けられ、コアユニット61の方に比較的深い凹面である光学面形成面66aが設けられているが、コアユニット51の方に比較的深い凹面である光学面形成面を設け、コアユニット61の方に比較的浅い凹面である光学面形成面を設けてもよい。このようにすることにより、レンズOLの光学面Sbが光学面Saより先に離型されることになり、光学面Sbが比較的あたたかな状態で光学面形成面から離型されることになる。そのため、光学面Sbに微細な回折構造が付与されているようなレンズにおいて、レンズ冷却によって回折構造が光学面形成面にくいつき、離型抵抗が大きくなることを防止出来るため、離型時の回折構造の変形を防止でき、所望の回折構造を有するレンズを得ることが出来る。 The shape of the cavity CV provided in the injection mold composed of the fixed mold 41 and the movable mold 42 is not limited to that shown in the figure, and can be various shapes. That is, the shape of the cavity CV formed by the core units 51, 61 and the like is merely an example, and can be appropriately changed according to the use of the lens OL. In the above embodiment, the optical surface forming surface 56a that is a relatively shallow concave surface is provided toward the core unit 51, and the optical surface forming surface 66a that is a relatively deep concave surface is provided toward the core unit 61. An optical surface forming surface that is a relatively deep concave surface may be provided toward the core unit 51, and an optical surface forming surface that is a relatively shallow concave surface may be provided toward the core unit 61. By doing so, the optical surface Sb of the lens OL is released before the optical surface Sa, and the optical surface Sb is released from the optical surface forming surface in a relatively warm state. . Therefore, in a lens in which a fine diffractive structure is provided on the optical surface Sb, it is possible to prevent the diffractive structure from being difficult to form the optical surface by cooling the lens and to prevent the mold release resistance from increasing. Structural deformation can be prevented, and a lens having a desired diffractive structure can be obtained.
 また、上記第1~第4実施形態は、主に固定金型41の説明であったが、可動金型42のコアユニット61を固定金型41のコアユニット51と同様の構造を有するものとできる。また、スペーサを可動金型42の方に設置してもよい。 In the first to fourth embodiments, the fixed mold 41 is mainly described. However, the core unit 61 of the movable mold 42 has the same structure as the core unit 51 of the fixed mold 41. it can. Further, a spacer may be installed toward the movable mold 42.
 また、上記実施形態では、支持部材22やスペーサ24は円板状の外形であったが、四角状の外形であってもよい。 In the above embodiment, the support member 22 and the spacer 24 have a disk-shaped outer shape, but may have a square-shaped outer shape.
 21 コア部
 21a 本体部分
 21b 軸部分
 22 支持部材
 23 固定部材
 23a 本体部分
 23b ネジ部
 24,124 スペーサ
 24s 段差
 31,32 薄膜部
 31a,32a 表面
 40 成形金型
 41 固定金型
 42 可動金型
 51,61 コアユニット
 53,63 型板
 53a,63a 端面
 54,64 取付板
 56a,66a 光学面形成面
 A0 中央領域
 A1,A2 周辺領域
 AX 軸
 CV キャビティ
 GA 空隙
 OL レンズ
 PL パーティングライン
21 Core part 21a Main body part 21b Shaft part 22 Support member 23 Fixing member 23a Main body part 23b Screw part 24, 124 Spacer 24s Step 31, 32 Thin film part 31a, 32a Surface 40 Molding die 41 Fixed mold 42 Movable mold 51, 61 Core unit 53, 63 Templates 53a, 63a End faces 54, 64 Mounting plates 56a, 66a Optical surface forming surface A0 Central area A1, A2 Peripheral area AX Axis CV Cavity GA Air gap OL Lens PL Parting line

Claims (10)

  1.  光学素子の光学面に対応する光学面転写面を先端に有するコア部と、
     前記コア部を背後から支持する支持部材と、
     前記コア部を前記支持部材に固定する固定部材と、を備え、
     前記コア部から前記支持部材にかけて配置される接続面に局所的な空隙を設けたことを特徴とする成形金型。
    A core portion having an optical surface transfer surface corresponding to the optical surface of the optical element at the tip;
    A support member for supporting the core portion from behind;
    A fixing member for fixing the core part to the support member,
    A molding die characterized in that a local gap is provided on a connection surface arranged from the core portion to the support member.
  2.  前記局所的な空隙は、前記接続面に設けた前記コア部の軸方向に関する段差によって形成されることを特徴とする請求項1に記載の成形金型。 2. The molding die according to claim 1, wherein the local gap is formed by a step in the axial direction of the core portion provided on the connection surface.
  3.  前記固定部材の締め付けによって、前記コア部を変形させることを特徴とする請求項1に記載の成形金型。 2. The molding die according to claim 1, wherein the core portion is deformed by tightening the fixing member.
  4.  前記局所的な空隙は、前記コア部の軸を挟んで対称的に形成されることを特徴とする請求項1から請求項3までのいずれか一項に記載の成形金型。 The molding die according to any one of claims 1 to 3, wherein the local voids are formed symmetrically with respect to an axis of the core portion.
  5.  前記局所的な空隙は、前記コア部の軸を挟んで非対称的に形成されることを特徴とする請求項1から請求項3までのいずれか一項に記載の成形金型。 The molding die according to any one of claims 1 to 3, wherein the local gap is formed asymmetrically with respect to the axis of the core portion.
  6.  前記コア部と前記支持部材との間に板状のスペーサを備え、
     前記スペーサの一方の支持面のうち少なくとも一方に局所的な空隙を設けたことを特徴とする請求項1から請求項5までのいずれか一項に記載の成形金型。
    A plate-like spacer is provided between the core part and the support member,
    The molding die according to any one of claims 1 to 5, wherein a local gap is provided on at least one of the one support surfaces of the spacer.
  7.  光学素子の光学面に対応する光学面転写面を先端に有するコア部と、前記コア部を背後から支持する支持部材と、前記コア部を前記支持部材に固定する固定部材、を備える成形金型を用いた光学素子の製造方法であって、
     前記コア部から前記支持部材にかけての接続面に局所的な空隙を設けるとともに、成形に際して前記空隙を利用して前記光学面転写面を変形させることを特徴とする光学素子の製造方法。
    A molding die comprising: a core portion having an optical surface transfer surface corresponding to the optical surface of the optical element at a tip; a support member that supports the core portion from behind; and a fixing member that fixes the core portion to the support member. A method of manufacturing an optical element using
    A method of manufacturing an optical element, wherein a local gap is provided on a connection surface from the core portion to the support member, and the optical surface transfer surface is deformed using the gap during molding.
  8.  前記固定部材の締め付けによって変形させた前記コア部を型板に固定することを特徴とする請求項7に記載の光学素子の製造方法。 The method of manufacturing an optical element according to claim 7, wherein the core portion deformed by tightening the fixing member is fixed to a template.
  9.  前記コア部及び前記固定部材を埋め込んだ型板を有する第1の金型と、前記第1の金型に対向する第2の金型と、を型締めすることによって型空間を形成する際に、前記光学面転写面を変形させることを特徴とする請求項7又は請求項8に記載の光学素子の製造方法。 When forming a mold space by clamping a first mold having a mold plate in which the core part and the fixing member are embedded, and a second mold facing the first mold. The method of manufacturing an optical element according to claim 7, wherein the optical surface transfer surface is deformed.
  10.  前記コア部と前記支持部材との間に板状のスペーサを備え、
     前記スペーサの一方の支持面のうち少なくとも一方に局所的な空隙を設けたことを特徴とする請求項7から請求項9までのいずれか一項に記載の光学素子の製造方法。
    A plate-like spacer is provided between the core part and the support member,
    The method for manufacturing an optical element according to any one of claims 7 to 9, wherein a local gap is provided on at least one of the one support surfaces of the spacer.
PCT/JP2011/054585 2010-03-31 2011-03-01 Molding die and method for manufacturing optical element WO2011122201A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800160217A CN102844163A (en) 2010-03-31 2011-03-01 Molding die and method for manufacturing optical element
JP2012508155A JPWO2011122201A1 (en) 2010-03-31 2011-03-01 Mold and optical element manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010083584 2010-03-31
JP2010-083584 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011122201A1 true WO2011122201A1 (en) 2011-10-06

Family

ID=44711930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054585 WO2011122201A1 (en) 2010-03-31 2011-03-01 Molding die and method for manufacturing optical element

Country Status (3)

Country Link
JP (1) JPWO2011122201A1 (en)
CN (1) CN102844163A (en)
WO (1) WO2011122201A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104685397A (en) * 2012-09-27 2015-06-03 柯尼卡美能达株式会社 Optical communication lens, optical communication module, and molding die
US10406767B2 (en) 2013-02-08 2019-09-10 Johnson & Johnson Vision Care, Inc. Casting cup assembly for forming an ophthalmic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104260286B (en) * 2014-09-26 2016-07-20 中山联合光电科技有限公司 A kind of plastic cement optical lens die structure of adjustable core shift

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497812A (en) * 1990-08-14 1992-03-30 Toshiba Corp Mold for molding optical part made of plastic
JPH0886904A (en) * 1994-09-16 1996-04-02 Asahi Optical Co Ltd Forming mold device for composite aspherical lens
JPH1177763A (en) * 1997-09-04 1999-03-23 Ricoh Co Ltd Optical image forming element injection molding die and its assembly method
JP2004314325A (en) * 2003-04-11 2004-11-11 Konica Minolta Holdings Inc Mold manufacturing method and mold
JP2007301744A (en) * 2006-05-09 2007-11-22 Matsushita Electric Ind Co Ltd Mold for molding resin lens and resin lens molding method
JP2008056540A (en) * 2006-08-31 2008-03-13 Olympus Corp Forming mold

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101529300B (en) * 2006-11-01 2011-01-19 柯尼卡美能达精密光学株式会社 Optical element, resin molding metal die and optical element manufacturing method
JPWO2009084414A1 (en) * 2007-12-28 2011-05-19 コニカミノルタオプト株式会社 Mold and method for molding optical element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497812A (en) * 1990-08-14 1992-03-30 Toshiba Corp Mold for molding optical part made of plastic
JPH0886904A (en) * 1994-09-16 1996-04-02 Asahi Optical Co Ltd Forming mold device for composite aspherical lens
JPH1177763A (en) * 1997-09-04 1999-03-23 Ricoh Co Ltd Optical image forming element injection molding die and its assembly method
JP2004314325A (en) * 2003-04-11 2004-11-11 Konica Minolta Holdings Inc Mold manufacturing method and mold
JP2007301744A (en) * 2006-05-09 2007-11-22 Matsushita Electric Ind Co Ltd Mold for molding resin lens and resin lens molding method
JP2008056540A (en) * 2006-08-31 2008-03-13 Olympus Corp Forming mold

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104685397A (en) * 2012-09-27 2015-06-03 柯尼卡美能达株式会社 Optical communication lens, optical communication module, and molding die
CN104685397B (en) * 2012-09-27 2016-07-06 柯尼卡美能达株式会社 The lens of optic communication, optical communications module and shaping dies
US10406767B2 (en) 2013-02-08 2019-09-10 Johnson & Johnson Vision Care, Inc. Casting cup assembly for forming an ophthalmic device

Also Published As

Publication number Publication date
CN102844163A (en) 2012-12-26
JPWO2011122201A1 (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP3664522B2 (en) Optical element molding die, optical element molding method, and optical element
JP5704172B2 (en) Molding equipment
WO2011122201A1 (en) Molding die and method for manufacturing optical element
WO2008053692A1 (en) Optical element, resin molding metal die and optical element manufacturing method
US8711482B2 (en) Pressing mold for optical lenses and method for manufacturing glass optical lenses
JP4993326B2 (en) lens
JP5691520B2 (en) Optical element forming mold, optical element forming mold manufacturing method, wafer lens manufacturing method, and wafer lens
JP5299067B2 (en) Mold stamper manufacturing method, mold stamper and molded product manufacturing method
WO2009084414A1 (en) Forming mold, and optical element molding method
JP2004291607A (en) Method of adjusting mold unit and molding assembly
JP4808089B2 (en) Optical element molding method
WO2013150742A1 (en) Optical element, imaging device provided therewith, and optical element manufacturing method
JP5479704B2 (en) Two-color molded product and its manufacturing method
JP6277682B2 (en) Mold for optical element and molding method
EP3640689B1 (en) Toric lens, optical element, and image forming apparatus
JP2013193330A (en) Molding metal mold and method of manufacturing optical element
JP2004295998A (en) Objective lens, optical pickup device and optical information recording/reproducing device
JP6751068B2 (en) Ball joint manufacturing method and stabilizer link manufacturing method
JP2012071546A (en) Method of manufacturing optical element and molding die
JP2002269794A (en) Objective lens for optical pickup, and optical pickup
US8179605B2 (en) Optical element
JP6357904B2 (en) Mold apparatus and optical element
JP2004284110A (en) Optical element manufacturing apparatus
WO2012002172A1 (en) Molding die for optical element, and method for manufacturing optical element
WO2013146652A1 (en) Lens manufacturing method and molding die

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016021.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762441

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508155

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762441

Country of ref document: EP

Kind code of ref document: A1