WO2012002172A1 - Molding die for optical element, and method for manufacturing optical element - Google Patents

Molding die for optical element, and method for manufacturing optical element Download PDF

Info

Publication number
WO2012002172A1
WO2012002172A1 PCT/JP2011/063890 JP2011063890W WO2012002172A1 WO 2012002172 A1 WO2012002172 A1 WO 2012002172A1 JP 2011063890 W JP2011063890 W JP 2011063890W WO 2012002172 A1 WO2012002172 A1 WO 2012002172A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
core portion
optical element
optical
core
Prior art date
Application number
PCT/JP2011/063890
Other languages
French (fr)
Japanese (ja)
Inventor
金岩慶
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012522558A priority Critical patent/JPWO2012002172A1/en
Publication of WO2012002172A1 publication Critical patent/WO2012002172A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • B29C45/376Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/0048Moulds for lenses
    • B29D11/005Moulds for lenses having means for aligning the front and back moulds

Definitions

  • the present invention relates to a molding die for an objective lens and other optical elements incorporated in an optical pickup device and the like, and a method for manufacturing such an optical element.
  • the optical characteristics of the lens are controlled by rotating an insert having an optical transfer surface or a spacer arranged in connection with the insert, or by using a spacer having an inclined or axially asymmetric surface.
  • a posture adjusting mechanism consisting of a holder for holding three hard balls is arranged between the insert and the base, and the size of the hard ball is selected by selecting the size of the hard ball.
  • a posture adjusting mechanism consisting of a holder for holding three hard balls is arranged between the insert and the base, and the size of the hard ball is selected by selecting the size of the hard ball.
  • An object of this invention is to provide the molding die for optical elements which can adjust precisely the inclination state of the core part corresponded to a scissors insert, and the manufacturing method of an optical element.
  • a molding die for a first optical element is disposed around a core part having an optical surface forming surface at the tip corresponding to the optical surface of the optical element, and around the core part. And a support portion having an opening exposing the optical surface forming surface of the core portion on the tip side, a spacer for supporting the core portion from the opposite side of the optical surface forming surface, and adjusting an inclination posture of the core portion with respect to the support portion;
  • the diameter of the opening of the support part is D and the diameter of the tip of the core part is d
  • the dimensional difference Dd is 1/1000 (mm) ⁇ Dd ⁇ 1/100 (mm) (1) It is characterized by satisfying the relationship.
  • the dimensional difference Dd is 1/1000 (mm) or more, so that a sufficient space for the tip of the core portion to be displaced when adjusting the tilting posture of the core portion with the spacer is ensured. Can do.
  • the inclination posture of the core portion can be reliably adjusted by the spacer, so that the inclination state of the core portion can be precisely adjusted and held, and the characteristics of the optical element can be precisely controlled.
  • the dimensional difference Dd is 1/100 (mm) or less, the gap formed between the tip of the core part and the opening of the support part becomes too wide, and the resin enters during molding to prevent burrs. It can be prevented from causing.
  • the spacer has a shape that can rotate around the axis of the core portion. In this case, the inclination direction of the tip of the core part can be adjusted by rotating the spacer.
  • a fixed mold and a movable mold are provided, and a spacer supports a core portion provided on one of the fixed mold and the movable mold from the opposite side of the optical surface forming surface.
  • the inclination posture of the core portion can be easily adjusted with a fixed die or a movable die alone.
  • a fixed mold and a movable mold are provided, and a spacer supports a core portion provided on each of the fixed mold and the movable mold from the opposite side of the optical surface forming surface.
  • the inclination posture of the core part can be adjusted by both the fixed mold and the movable mold.
  • the spacer is a plate-like body provided with an inclination angle.
  • the inclination angle of the core can be adjusted.
  • the spacer is a flat plate-like member and has a protrusion on one side of the plate surface.
  • the inclination angle of the core can be adjusted by preparing a plurality of spacers having different projection heights and using them separately.
  • the inclination direction and the inclination angle of the core portion by the spacer are adjusted based on the coma aberration of the optical element produced on a trial basis.
  • the coma aberration of the optical element can be finally reduced by adjusting the tilt posture of the core portion by feedback from the prototype.
  • a molding die for a second optical element includes a core part having an optical surface forming surface corresponding to the optical surface of the optical element at the tip, a core part disposed around the core part and on the tip side.
  • a support portion having an opening for exposing the optical surface forming surface, and a spacer for supporting the core portion from the opposite side of the optical surface forming surface and adjusting the inclination of the core portion with respect to the support portion.
  • a correction means for correcting an inclination angle of the tip of the core portion with respect to the support portion by changing the angle is further provided.
  • the correction means corrects the inclination angle of the tip of the core portion with respect to the support portion by changing the arrangement relationship with respect to the spacer, so the inclination state of the core portion is adjusted continuously or stepwise. It can be held stably and the characteristics of the optical element can be adjusted to an appropriate state.
  • the spacer is a plate-like body provided with an inclination angle
  • the correcting means is a plate-like body provided with an inclination angle while being arranged so as to overlap the spacer.
  • the inclination angle of the core portion can be easily increased or decreased by adjusting the relative rotational position of the spacer and the correcting means.
  • the spacer is a plate-like body provided with an inclination angle
  • the correction means is a plate-like portion provided on the base side of the core portion so as to contact the spacer and provide the inclination angle.
  • the inclination angle of the core portion can be continuously increased or decreased by adjusting the relative rotational position between the spacer and the core portion with the correcting means.
  • the spacer is a plate-like body
  • the correcting means is a protruding member formed so as to fit on one side of the plate surface of the spacer and change the amount of protrusion.
  • the inclination angle of the core portion can be continuously increased or decreased by adjusting the protrusion amount of the protrusion member fitted to the spacer.
  • the spacer is a plate-like body
  • the correcting means is a protruding member formed so as to fit on one side of the plate surface of the spacer and to change the fitting position.
  • the inclination angle of the core portion can be continuously increased or decreased by adjusting the fitting position of the protruding member fitted to the spacer, that is, the protruding position.
  • the first optical element manufacturing method includes a core portion having an optical surface forming surface corresponding to the optical surface of the optical element at the tip, and an optical core disposed on the tip side and disposed around the core portion.
  • the diameter of the opening of the support part is D
  • the diameter of the tip of the core part is d
  • the dimensional difference Dd is 1/1000 (mm) ⁇ Dd ⁇ 1/100 (mm) (1) It is characterized by satisfying the relationship.
  • the dimensional difference Dd is 1/1000 (mm) or more, it is possible to secure a space for displacing the tip of the core part when adjusting the inclined posture of the core part by the spacer. .
  • the inclination posture of the core part by a spacer can be adjusted reliably, the inclination state of a core part can be adjusted and hold
  • the dimensional difference Dd is 1/100 (mm) or less, the gap formed between the tip of the core portion and the opening of the support portion does not become too wide. It can be prevented from causing.
  • the second optical element manufacturing method includes a core part having an optical surface forming surface corresponding to the optical surface of the optical element at the tip, and an optical core disposed on the tip side and disposed around the core part.
  • the inclination angle of the core portion with respect to the support portion is corrected by adjusting the inclination posture of the core portion and changing the arrangement relationship with respect to the spacer by the correcting means.
  • the correcting means corrects the inclination angle of the tip of the core portion with respect to the support portion by changing the arrangement relationship with respect to the spacer, so that the inclination state of the core portion is adjusted continuously or stepwise to be stable. And the characteristics of the optical element can be adjusted to an appropriate state.
  • FIG. 2A is an enlarged side view of a lens that is injection-molded by the mold of FIG. 1
  • FIG. 2B is an enlarged side view of a lens of a comparative example.
  • FIG. 4A is a side sectional view of the spacer
  • FIG. 4B is a plan view of the spacer. It is a top view which shows the modification of the spacer shown in FIG.4 (B).
  • FIGS. 7A and 7B are a plan view and a cross-sectional view taken along the line AA illustrating the spacer in the molding die of the second embodiment, and FIG. 6 (C) illustrates a modified spacer. It is a top view.
  • FIGS. 7A and 7B are a plan view and a cross-sectional view taken along arrow AA illustrating a spacer in the molding die of the third embodiment. It is a partially expanded sectional view explaining the principal part of the movable metal mold
  • FIG. 9A is a cross-sectional view of the spacer
  • FIG. 9B is a cross-sectional view of the auxiliary spacer.
  • a molding die 40 for an optical element is composed of a fixed die 41 and a movable die 42, and both the dies 41, 42 are bounded by a parting line (mold matching surface) PL. Can be opened and closed.
  • a cavity CV that is a space between the fixed mold 41 and the movable mold 42 corresponds to the shape of a lens OL (see FIG. 2A) as an optical element that is a molded product.
  • the lens OL is made of plastic and includes a center portion OLa as an optical function portion having an optical function, and an annular flange portion OLb extending from the center portion OLa in the outer diameter direction.
  • This lens OL is an objective lens for an optical pickup device, for example, a lens that satisfies a standard such as NA 0.85 for a light beam having a wavelength for BD (blu-ray disc), DVD (digital versatile disc), or the like. .
  • the lens OL has extremely reduced coma aberration by adjustment described in detail later.
  • the fixed mold 41 includes a core portion 51, a template 53, and a mounting plate 54.
  • the core portion 51 is disposed to face the core portion 61 of the movable mold 42 in order to form a cavity (die space) CV.
  • the mold plate 53 is a mold member that holds the core portion 51 from the periphery
  • the mounting plate 54 is a mold member that integrally supports the core portion 51 from the back or the root side.
  • An optical surface forming surface 56a and a flange forming surface 56b are provided on the distal end surface of the core portion 51 in order to define a cavity CV.
  • the optical surface forming surface 56a is a relatively shallow concave surface, and is a transfer surface for forming one optical surface Sa of the central portion OLa constituting the lens OL.
  • the flange forming surface 56b is an annular flat surface, and is a transfer surface on which one flange surface F1 of the flange portion OLb constituting the lens OL is molded.
  • a columnar through hole 57a for inserting and supporting the core portion 51 is formed in the template 53.
  • the template 53 has an end face 53a that forms a parting line PL.
  • the movable mold 42 includes a core portion 61, a spacer 65, a support portion 62, a template 63, and a mounting plate 64.
  • the movable mold 42 is movable along the axis AX and opens and closes with respect to the fixed mold 41.
  • the core portion 61 is disposed to face the core portion 51 of the fixed mold 41 in order to form the cavity CV.
  • the support portion 62 is a mold member that holds the core portion 61 from the periphery
  • the mold plate 63 is a mold member that integrally supports the support portion 62 from the periphery
  • the mounting plate 64 supports the support portion 62 behind or The mold member is integrally supported from the base side.
  • the core portion 61 includes a cylindrical rod portion 61a and a disc-shaped base portion 61b.
  • the tip 61c of the rod portion 61a can be slightly displaced in the direction perpendicular to the axis AX and can move in the direction of the axis AX with a slight gap GA1 between the tip 61c and the small diameter hole 62i formed in the support portion 62. It is inserted.
  • the base 61b is inserted in a large diameter hole 62j formed in the support portion 62 so as to be minutely displaceable in a direction perpendicular to the axis AX and movable in the axis AX direction with a slight gap GA2.
  • the gap GA2 is sufficiently smaller than the gap GA1.
  • the return spring 68 mounted around the rod portion 61a urges the core portion 61 toward the base portion 61b at the base, and ensures the holding of the core portion 61 in the support portion 62.
  • the tip surface of the core portion 61 is provided with an optical surface forming surface 66a and a flange forming surface 66b in order to define a cavity CV.
  • the optical surface forming surface 66a is a relatively deep concave surface, and is a transfer surface that molds one optical surface Sb of the center portion OLa of the lens OL in FIG.
  • the flange forming surface 66b is an annular flat surface and is a transfer surface for forming the other flange surface F2 of the flange portion OLb of the lens OL.
  • the spacer 65 is a disk-like member that can rotate around the axis AX, that is, a plate-like body, and is inserted into the large-diameter hole 62j formed in the support portion 62 so as to be rotatable with almost no gap.
  • the spacer 65 includes a first contact surface 65f on the core portion 61 side and a second contact surface 65h on the mounting plate 64 side.
  • the first contact surface 65f and the second contact surface 65h are disposed substantially perpendicular to the central axis CX, but the both contact surfaces 65f and 65h are not parallel to each other and are slightly inclined to the core portion 61.
  • a predetermined minute inclination angle ⁇ is formed.
  • the support portion 62 is cylindrical and has an insertion hole 62 h for holding the core portion 61 in the support portion 62.
  • the insertion hole 62h has a two-stage structure having a small diameter hole 62i as an opening on the tip side and a large diameter hole 62j on the root side.
  • a cylindrical through hole 67a for inserting and supporting the support portion 62 is formed in the template 63.
  • the template 63 has an end face 63a that forms a parting line PL.
  • the core portion 61 and the spacer 65 are in contact with each other via the contact surfaces 61f and 65f.
  • the contact surface 61f on the core portion 61 side is formed with, for example, a recessed engagement portion 61g.
  • On the contact surface 65f on the spacer 65 side for example, a protruding engagement portion 65g is formed.
  • the spacer 65 has a wedge shape with an inclination angle ⁇ as shown in FIG. 4A and the like, and the inclination angle ⁇ is about 0 ′ to 1 ′. It has a size.
  • the engaging portion 65g provided on the spacer 65 is an octagonal protrusion having a regular octagonal cross section, and the engaging portion 61g of the core portion 61 is an octagonal depression having a regular octagonal cross section. Is rotatable about the axis AX or the central axis CX in units of 45 ° with respect to the core portion 61.
  • the directions DA, DB, DC, DD, DE, DF, DG, and DH in which the core portion 61 is inclined can be selected by appropriately rotating the spacer 65 around the axis AX with respect to the core portion 61. .
  • the tip 61c of the core portion 61 has the maximum thickness. Inclined in directions DE, DF, DG, DH, DA, DB, DC, DD in the diagonal direction of the thick part AT, respectively.
  • the spacer 65 can be exchanged, and the inclination angle ⁇ can be changed while maintaining the thickness t.
  • a large number of spacers 65 having different inclination angles ⁇ for example, in the range of 0.1 ′ to about 0 ′ to 1 ′ are prepared in advance, and the core portion 61 can be replaced by replacing the spacers 65 with appropriate inclination angles ⁇ . Can be finely adjusted within a range of about 0 'to 1'.
  • the tip 61c of the rod portion 61a of the core portion 61 By tilting the tip 61c of the rod portion 61a of the core portion 61 in a desired angle and direction, coma aberration of the molded lens OL can be reduced. That is, in the initial state where the thickness of the spacer 65 is not adjusted, when the rod portion 61a of the core portion 61 extends with an inclination with respect to the axis AX, the inclination angle ⁇ of the spacer 65 is appropriately corrected to rotate the spacer 65. By adjusting the position, the inclination of the optical surface forming surface 66a provided on the core portion 61 of the movable mold 42 can be finely adjusted with respect to the optical surface forming surface 56a provided on the core portion 51 of the fixed die 41.
  • the occurrence of coma aberration in the lens OL can be suppressed. Even if the rod portion 61a of the core portion 61 extends parallel to the axis AX in the initial state where the thickness of the spacer 65 is not adjusted, the optical surface forming surface provided at the tip of the rod portion 61a When the optical axis of 66a is inclined, the movable metal is moved relative to the optical surface forming surface 56a on the fixed mold 41 side by appropriately correcting the inclination angle ⁇ of the spacer 65 and adjusting the rotational position of the spacer 65. The inclination of the optical surface forming surface 66a on the mold 42 side can be finely adjusted, and the occurrence of coma aberration in the lens OL can be suppressed.
  • the background for suppressing the occurrence of coma aberration in the lens OL will be described. If the optical axis of the optical surface forming surface 56a on the fixed mold 41 side and the optical axis of the optical surface forming surface 66a on the movable mold 42 side are inclined with respect to each other, this is one important factor in lens performance. It is desirable to make the inclination of the optical axis as small as possible since it will exacerbate some coma. To explain using specific numerical values, when the lens OL manufactured by the molding die 40 is for BD, the inclination of the optical axis with respect to the optical surface of such a lens OL is 0.3 ′ (about 20 ′′) or less.
  • FIG. 2B shows a lens OL ′ of a comparative example.
  • the optical surface Sb ′ of the central portion OLa is formed to be inclined from the ideal optical surface Sb exaggerated by dotted lines, and coma aberration is increased.
  • errors such as the inclination of the optical surface Sb ′ of the lens OL ′, that is, the unintended inclination of the core portion 61 can be measured. If the core portion 61 is tilted so as to compensate coma aberration based on the coma aberration, a highly accurate lens OL with suppressed coma aberration can be obtained.
  • the BD lens OL has a large curvature of the optical surface Sb ′, and coma aberration is likely to occur. Therefore, adjustment of tilt or tilt by the spacer 65 as described above becomes important. Specifically, in the case of the lens OL for BD, it is desirable to ensure and adjust the inclination angle of the core portion 61 by about 0.3 ′ or more.
  • the dimensional difference Dd is 1/1000 (mm) or more
  • the inclination posture of the core part 61 by the spacer 65 can be adjusted with certainty, the inclination state of the core part 61 can be precisely adjusted and held, and the characteristics of the lens OL as an optical element can be precisely adjusted. Can be controlled.
  • the gap GA1 formed between the tip 61c of the core portion 61 and the small-diameter hole 62i of the support portion 62 becomes too wide, and at the time of molding. It is possible to prevent the resin from entering the gap GA1 and causing burrs.
  • the coma aberration is first measured by measuring the lens OL manufactured experimentally.
  • the coma aberration can be separated from other aberrations, and the direction and degree of the coma aberration can be obtained as numerical values.
  • Such coma aberration can be converted into the relative tilt amount and tilt direction of the optical surfaces Sa and Sb of the lens OL, that is, the relative tilt state of the optical surface forming surfaces 56a and 66a at the tip of the core 61, Based on this, the inclination direction and the amount of inclination generated in the core portion 61 can be calculated.
  • the inclination direction and the inclination amount of the core portion 61 do not indicate the absolute inclination state of the core portion 61, but are relative to the optical surface forming surfaces 56a and 66a that cause the coma aberration of the lens OL.
  • the trial production of the lens OL as described above is performed not only once but also a plurality of times for feedback reflecting the prototype result in the production conditions, and the inclination of the core portion 61 so as to cancel the measured coma aberration.
  • the alignment and tilt correction of the core portion 61 are completed by gradually correcting the direction and the tilt amount so as to minimize the obtained coma aberration. Thereafter, the lens OL with little coma aberration is mass-produced using the molding die 40 shown in FIG.
  • 20 ′′ A spacer 65 having an inclination angle ⁇ of 1 ′ ⁇ 3 may be used.
  • FIG. 5 shows a modification of the spacer 65 shown in FIG.
  • the spacer 165 four positioning holes 167a, 167b, 167c, 167d extending in a direction perpendicular to the central axis CX are formed at intervals of 90 °.
  • the positioning portion 162 is formed with two positioning holes 162a and 162b penetrating at opposing positions, and extends in a direction perpendicular to the central axis CX.
  • a pair of cylindrical positioning pins 72 are inserted into these positioning holes 162a and 162b so as to be embedded.
  • the number of positioning pins 72 is two, but the number of positioning pins 72 may be one.
  • the number of positioning holes 167a, 167b, 167c, 167d is not limited to four, and can be set to eight.
  • the spacer 265 of the movable mold 42 in the second embodiment is formed with an adjustment hole 281j extending in a direction parallel to the central axis CX at one location in the peripheral portion.
  • the tip end portion 281m of the protrusion member 281k protrudes as a protrusion from the contact surface 65f side of the adjustment hole 281j. That is, the adjustment hole 281j has a two-stage structure, and the axial length of the large-diameter fitting portion 281n is slightly smaller than the axial length of the protruding member 281k, and the protruding member 281k.
  • the thickness t of the spacer 265 is effectively increased by the thickness ⁇ of the tip 281m. If the thickness ⁇ of the tip portion 281m is adjusted, the effective inclination angle ⁇ ( ⁇ ) reflecting the thickness ⁇ of the tip portion 281m with respect to the spacer 265, as in the case of the spacer 65 shown in FIG. / W1 [rad]) can be generated, and the core portion 61 can be inclined to the side opposite to the direction in which the protruding member 281k as the correcting means is embedded.
  • a large number of protrusion members 281k having different axial lengths, that is, different in thickness ⁇ of the tip portion 281m are prepared in advance.
  • the amount of protrusion can be increased or decreased.
  • the amount of inclination of the core part 61 supported by the spacer 265 can be appropriately corrected by replacing the protruding member 281k without replacing the entire spacer 265.
  • the inclination direction of the core portion 61 can be adjusted by rotating the spacer 265 itself around the central axis CX.
  • FIG. 6C is a modification of the spacer 265 shown in FIG. 6A, and this spacer 265 has two adjustment holes 281j. These adjustment holes 281j are arranged so that the directions from the central axis CX toward the respective adjustment holes 281j are different from each other, and the support of the core portion 61 by the spacer 265 can be stabilized. ing. Note that the lengths in the axial direction of the pair of projecting members 281k inserted into and fitted in the two adjustment holes 281j can be slightly different from each other, and thereby the inclination direction of the core portion 61 can be slightly modified.
  • the spacer 365 of the movable mold 42 in the third embodiment has a large number of adjustment holes 281j formed at equal intervals from the central axis CX toward the periphery. Yes.
  • Each adjustment hole 281j extends in a direction parallel to the central axis CX, and has a large-diameter fitting portion 281n on the contact surface 65f side.
  • the axial length of the protruding member 281k is slightly larger than the axial length of the large-diameter fitting portion 281n.
  • the projection member 281k is single, and by selecting one adjustment hole 281j into which the projection member 281k is inserted from a large number of adjustment holes 281j arranged in a line at equal intervals, the projection member 281k is positioned at the position of the projection member 281k.
  • the thickness t of the spacer 365 is effectively increased by the thickness ⁇ of the tip 281m. That is, by selecting the adjustment hole 281j into which the protruding member 281k is inserted, an effective inclination angle ⁇ ( ⁇ / w2 [rad] with respect to the spacer 365, as in the case of the spacer 65 shown in FIG.
  • the core portion 61 can be inclined to the side opposite to the direction in which the protruding member 281k as the correcting means is embedded, and the amount of inclination can be corrected as appropriate. Note that the inclination direction of the core portion 61 can be adjusted by rotating the spacer 365 itself around the central axis CX.
  • adjustment holes 281j are arranged in the radial direction perpendicular to the central axis CX, but as in the case of FIG. 6C, the adjustment holes 281j are arranged in the radial direction, Two can be arranged in the circumferential direction.
  • a core portion 61, a spacer 65, and an auxiliary spacer 482 are held in the support portion 62.
  • an auxiliary spacer 482 is disposed on the base side of the core portion 61
  • a spacer 65 is disposed on the base side of the auxiliary spacer 482
  • the auxiliary spacer 482 is a plate-like body, and the base portion of the core portion 61. It is sandwiched between 61b and the spacer 65 in close contact with them.
  • the added auxiliary spacer 482 is a correcting means for correcting the inclination angle of the core portion 61.
  • the spacer 65 has the same shape and structure as that shown in FIG. 4 (A). That is, the spacer 65 has a wedge shape with an inclination angle ⁇ , and the inclination angle ⁇ has a size of about 0 ′ to 1 ′.
  • the auxiliary spacer 482 has the same shape and structure as that shown in FIG. That is, the auxiliary spacer 482 also has a wedge shape with an inclination angle ⁇ , and the inclination angle ⁇ has a size of about 0 ′ to 1 ′.
  • the core portion 61 and the auxiliary spacer 482 are in contact with each other via the contact surfaces 61f and 82j, and the core portion 61 and the auxiliary spacer 482 are relatively moved by the engaging portions 61g and 82g formed thereon. Rotation is regulated. Further, the auxiliary spacer 482 and the spacer 65 are in contact with each other via the contact surfaces 82f and 65f, and the auxiliary spacer 482 and the spacer 65 are relatively moved by the engaging portions 82h and 65g formed thereon. Rotation is regulated. As described above, the core portion 61, the auxiliary spacer 482, and the spacer 65 are held in the support portion 62 while maintaining the mutual rotational positional relationship.
  • the meaning of combining the spacer 65 and the auxiliary spacer 482 will be described.
  • the direction of the inclination angle ⁇ of the spacer 65 and the direction of the inclination angle ⁇ of the auxiliary spacer 482 are on the opposite side across the central axis CX, the combined thickness of the spacer 65 and the auxiliary spacer 482 is uniform.
  • the contact surfaces 82j and 65h on both sides are substantially parallel. For this reason, the core part 61 will be in the state which is not given the inclination especially.
  • the angle formed by the contact surfaces 82j and 65h on both sides that is, the total The inclination angle ⁇ is 2 ⁇ .
  • the relative rotation angle formed by the inclination direction of the spacer 65 and the inclination direction of the auxiliary spacer 482 is ⁇
  • the inclination angle ⁇ can be changed in the range of 0 to 2 ⁇ .
  • the spacer 65 having the inclination angle ⁇ of 2 and the auxiliary spacer 482 may be used in combination, where the relative rotation angle ⁇ between the spacer 65 and the auxiliary spacer 482 is changed in units of 45 °, for example.
  • the engaging portions 82h and 65g have a polygonal cross section of eight or more angles, the relative rotation angle ⁇ can be adjusted in increments of 45 °, and the total inclination angle ⁇ can be adjusted to some extent. It can be changed freely.
  • the inclination angle of the core portion 61 can be easily increased or decreased by adjusting the relative rotational positions of the spacer 65 and the auxiliary spacer 482.
  • the arrangement of the spacer 65 and the auxiliary spacer 482 can be interchanged. Even if the inclination angle ⁇ of the spacer 65 and the inclination angle ⁇ of the auxiliary spacer 482 are set to different values, the inclination angle ⁇ can be increased or decreased smoothly in the same manner.
  • a core portion 561 and a spacer 65 are held in the support portion 62.
  • the core portion 561 is similar to the core portion 61 shown in FIG. 8 or the like and the auxiliary spacer 482 shown in FIG. 9B connected and integrated, and the inclined portion 582 of the core portion 561 has the inclined portion 582 shown in FIG. This corresponds to the auxiliary spacer 482 shown in FIG.
  • can be changed, for example, in the range of 0 to 2 ⁇ .
  • the fixed die 641 includes a core part 51, a spacer 55, a support part 52, a mold plate 53, and a mounting plate 54.
  • the core part 51, the spacer 55, the support part 52, the mold plate 53, and the mounting plate 54 are the core part 61, the spacer 65, the support part 62 in the movable mold 42,
  • Each of the mold plates 63 and the mounting plate 64 has a corresponding function, and the inclination angle of the core portion 51 can be adjusted by exchanging the spacer 55 with an appropriately set inclination angle ⁇ . ing.
  • the spacer 55 is not limited to the spacer 65 having the inclination angle ⁇ , but can be replaced with a spacer 265 shown in FIG. 6A, a spacer 365 shown in FIG. 7A, or the like, and an auxiliary spacer 482 shown in FIG. Can be replaced.
  • the spacer 55 may be provided only on the fixed mold 641 and the spacer 65 of the movable mold 42 may be omitted.
  • the spacer 55 of the fixed mold 641 can be used for coarse adjustment
  • the spacer 65 of the movable mold 42 can be used for fine adjustment.
  • the present invention has been described based on the above embodiments, the present invention is not limited to the above embodiments, and various modifications are possible.
  • the spacers 65, 165, 265, 365, and 55 are disk-shaped, but may have other contour shapes.
  • the spacer 65 shown in FIG. 4A or the like is sufficient if it can form the inclination angle ⁇ , and can function in the same manner even when the contact surfaces 65f and 65h are partially missing.
  • the inclination angle ⁇ can be effectively generated by forming a fixed protrusion 781m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Optical Head (AREA)

Abstract

Provided is a molding die for an optical element, wherein the inclination state of a core part corresponding to an insert can be precisely adjusted. Also provided is a method for manufacturing an optical element. Regarding a gap (GA1) on the leading end side between a core part (61) and a support part (62), when the diameter of a small diameter hole (62i) serving as an opening of the support part (62) is denoted by D and the diameter of a leading end (61c) of a rod part (61a) is denoted by d, the dimensional difference (D-d) is 1/1000 (mm) or more, and consequently a space for the leading end (61c) of the core part (61) to be displaced when the inclined posture of the core part (61) is adjusted by a spacer (65) can be sufficiently secured, and the characteristics of a lens (OL) serving as an optical element can be precisely controlled. Further, the dimensional difference (D-d) is 1/100 (mm) or less, thereby making it possible to prevent a phenomenon in which since the gap (GA1) formed between the leading end (61c) of the core part (61) and the small diameter hole (62i) of the support part (62) is too wide, resin gets into the gap (GA1) at the time of molding to thereby cause fins.

Description

光学素子用の成形金型、及び光学素子の製造方法Mold for optical element and method for manufacturing optical element
 本発明は、光ピックアップ装置等に組み込まれる対物レンズその他の光学素子用の成形金型、及びかかる光学素子の製造方法に関する。 The present invention relates to a molding die for an objective lens and other optical elements incorporated in an optical pickup device and the like, and a method for manufacturing such an optical element.
 従来の成形金型として、光学転写面を有するインサートやこのインサートに連接して配置されるスペーサーを回転させたり、傾斜や軸非対称面を形成したスペーサーを用いたりしてレンズの光学特性を制御するものが存在する(特許文献1参照)。 As a conventional molding die, the optical characteristics of the lens are controlled by rotating an insert having an optical transfer surface or a spacer arranged in connection with the insert, or by using a spacer having an inclined or axially asymmetric surface. There exists a thing (refer patent document 1).
 また、別の成形金型として、3つの硬球を保持する保持具からなる姿勢調節機構を、インサートと基台との間に配置し、硬球のサイズを選定することによって成形面外周のコバ面の傾きを調節するものが存在する(特許文献2参照)。 Also, as another molding die, a posture adjusting mechanism consisting of a holder for holding three hard balls is arranged between the insert and the base, and the size of the hard ball is selected by selecting the size of the hard ball. There is one that adjusts the inclination (see Patent Document 2).
 しかし、特許文献1のようにスペーサーを回転等させる方法では、インサートの傾斜状態を精密に調整することが容易でない。 However, in the method of rotating the spacer as in Patent Document 1, it is not easy to precisely adjust the inclination state of the insert.
 また、特許文献2のように硬球のサイズを選定する方法でも、インサートの傾斜状態を精密に調整することが容易でない。 Also, even with the method of selecting the size of the hard sphere as in Patent Document 2, it is not easy to precisely adjust the inclination state of the insert.
特開2004-284116号公報JP 2004-284116 A 特開2007-301744号公報JP 2007-301744 A
本発明は、 インサートに相当するコア部の傾斜状態を精密に調整することができる光学素子用の成形金型、及び光学素子の製造方法を提供することを目的とする。 An object of this invention is to provide the molding die for optical elements which can adjust precisely the inclination state of the core part corresponded to a scissors insert, and the manufacturing method of an optical element.
 上記目的を達成するため、本発明に係る第1の光学素子用の成形金型は、光学素子の光学面に対応する光学面形成面を先端に有するコア部と、コア部の周囲に配置されるとともに先端側にコア部の光学面形成面を露出させる開口を有する支持部と、コア部を光学面形成面の反対側から支持するとともに、支持部に対するコア部の傾斜姿勢を調整するスペーサーとを備え、支持部の開口の直径をD、コア部の先端の直径をdとした場合に、寸法差D-dが、
1/1000(mm)≦D-d≦1/100(mm)   (1)
の関係を満たすことを特徴とする。
In order to achieve the above object, a molding die for a first optical element according to the present invention is disposed around a core part having an optical surface forming surface at the tip corresponding to the optical surface of the optical element, and around the core part. And a support portion having an opening exposing the optical surface forming surface of the core portion on the tip side, a spacer for supporting the core portion from the opposite side of the optical surface forming surface, and adjusting an inclination posture of the core portion with respect to the support portion; When the diameter of the opening of the support part is D and the diameter of the tip of the core part is d, the dimensional difference Dd is
1/1000 (mm) ≤ Dd ≤ 1/100 (mm) (1)
It is characterized by satisfying the relationship.
 上記成形金型では、寸法差D-dが1/1000(mm)以上であるので、スペーサーによってコア部の傾斜姿勢を調整する際にコア部の先端が変位するための空間を十分確保することができる。これにより、スペーサーによってコア部の傾斜姿勢を確実に調整することができるので、コア部の傾斜状態を精密に調整して保持することができ、光学素子の特性を精密に制御することができる。また、寸法差D-dが1/100(mm)以下であるので、コア部の先端と支持部の開口との間に形成される隙間が広くなりすぎて、成形時に樹脂が入り込んでバリの原因となることを防止できる。 In the above mold, the dimensional difference Dd is 1/1000 (mm) or more, so that a sufficient space for the tip of the core portion to be displaced when adjusting the tilting posture of the core portion with the spacer is ensured. Can do. As a result, the inclination posture of the core portion can be reliably adjusted by the spacer, so that the inclination state of the core portion can be precisely adjusted and held, and the characteristics of the optical element can be precisely controlled. In addition, since the dimensional difference Dd is 1/100 (mm) or less, the gap formed between the tip of the core part and the opening of the support part becomes too wide, and the resin enters during molding to prevent burrs. It can be prevented from causing.
 本発明の具体的な態様又は観点では、上記成形金型において、スペーサーが、コア部の軸のまわりに回転可能な形状を有する。この場合、スペーサーの回転によってコア部の先端の傾斜方向を調節することができる。 In a specific aspect or viewpoint of the present invention, in the molding die, the spacer has a shape that can rotate around the axis of the core portion. In this case, the inclination direction of the tip of the core part can be adjusted by rotating the spacer.
 本発明の別の観点では、固定金型と可動金型とを備え、スペーサーが、固定金型と可動金型との一方に設けたコア部を光学面形成面の反対側から支持する。この場合、固定金型又は可動金型単独でコア部の傾斜姿勢を簡易に調整することができる。 In another aspect of the present invention, a fixed mold and a movable mold are provided, and a spacer supports a core portion provided on one of the fixed mold and the movable mold from the opposite side of the optical surface forming surface. In this case, the inclination posture of the core portion can be easily adjusted with a fixed die or a movable die alone.
 本発明のさらに別の観点では、固定金型と可動金型とを備え、スペーサーが、固定金型と可動金型とにそれぞれ設けたコア部を光学面形成面の反対側から支持する。この場合、固定金型及び可動金型双方でコア部の傾斜姿勢を調整することができる。 In still another aspect of the present invention, a fixed mold and a movable mold are provided, and a spacer supports a core portion provided on each of the fixed mold and the movable mold from the opposite side of the optical surface forming surface. In this case, the inclination posture of the core part can be adjusted by both the fixed mold and the movable mold.
 本発明のさらに別の観点では、スペーサーが、傾斜角を設けた板状体である。この場合、例えば傾斜角が異なる複数のスペーサーを準備してこれらを使い分けることでコアの傾斜角を調整することができる。 In still another aspect of the present invention, the spacer is a plate-like body provided with an inclination angle. In this case, for example, by preparing a plurality of spacers having different inclination angles and using them separately, the inclination angle of the core can be adjusted.
 本発明のさらに別の観点では、スペーサーが、平板状の部材であり、板面の一方側に突起を有する。この場合、突起の高さが異なる複数のスペーサーを準備してこれらを使い分けることでコアの傾斜角を調整することができる。 In still another aspect of the present invention, the spacer is a flat plate-like member and has a protrusion on one side of the plate surface. In this case, the inclination angle of the core can be adjusted by preparing a plurality of spacers having different projection heights and using them separately.
 本発明のさらに別の観点では、スペーサーによるコア部の傾斜方向及び傾斜角は、試験的に作製された光学素子のコマ収差に基づいて調整されている。この場合、試作品からのフィードバックによるコア部の傾斜姿勢の調整によって、光学素子のコマ収差を最終的に低減することができる。 In still another aspect of the present invention, the inclination direction and the inclination angle of the core portion by the spacer are adjusted based on the coma aberration of the optical element produced on a trial basis. In this case, the coma aberration of the optical element can be finally reduced by adjusting the tilt posture of the core portion by feedback from the prototype.
 本発明に係る第2の光学素子用の成形金型は、光学素子の光学面に対応する光学面形成面を先端に有するコア部と、コア部の周囲に配置されるとともに先端側にコア部の光学面形成面を露出させる開口を有する支持部と、コア部を光学面形成面の反対側から支持するとともに、支持部に対するコア部の傾斜姿勢を調整するスペーサーとを備え、スペーサーに対する配置関係を変化させることによって、コア部の先端の支持部に対する傾斜角を修正する修正手段をさらに備える。 A molding die for a second optical element according to the present invention includes a core part having an optical surface forming surface corresponding to the optical surface of the optical element at the tip, a core part disposed around the core part and on the tip side. A support portion having an opening for exposing the optical surface forming surface, and a spacer for supporting the core portion from the opposite side of the optical surface forming surface and adjusting the inclination of the core portion with respect to the support portion. Further, a correction means for correcting an inclination angle of the tip of the core portion with respect to the support portion by changing the angle is further provided.
 上記成形金型では、修正手段が、そのスペーサーに対する配置関係を変化させることによって、コア部の先端の支持部に対する傾斜角を修正するので、コア部の傾斜状態を連続的に又は段階的に調整し安定して保持することができ、光学素子の特性を適切な状態に調整することができる。 In the above mold, the correction means corrects the inclination angle of the tip of the core portion with respect to the support portion by changing the arrangement relationship with respect to the spacer, so the inclination state of the core portion is adjusted continuously or stepwise. It can be held stably and the characteristics of the optical element can be adjusted to an appropriate state.
 本発明の具体的な観点では、スペーサーが、傾斜角を設けた板状体であり、修正手段が、スペーサーに重ね合わせて配置されるとともに傾斜角を設けた板状体である。この場合、スペーサーと修正手段との相対的な回転位置を調整することで、コア部の傾斜角を簡易に増減させることができる。 In a specific aspect of the present invention, the spacer is a plate-like body provided with an inclination angle, and the correcting means is a plate-like body provided with an inclination angle while being arranged so as to overlap the spacer. In this case, the inclination angle of the core portion can be easily increased or decreased by adjusting the relative rotational position of the spacer and the correcting means.
 本発明の別の観点では、スペーサーが、傾斜角を設けた板状体であり、修正手段が、コア部の根元側に設けられてスペーサーに当接するとともに傾斜角を設けた板状部分である。この場合、スペーサーと修正手段を付随させたコア部との相対的な回転位置を調整することで、コア部の傾斜角を連続的に増減させることができる。 In another aspect of the present invention, the spacer is a plate-like body provided with an inclination angle, and the correction means is a plate-like portion provided on the base side of the core portion so as to contact the spacer and provide the inclination angle. . In this case, the inclination angle of the core portion can be continuously increased or decreased by adjusting the relative rotational position between the spacer and the core portion with the correcting means.
 本発明のさらに別の観点では、スペーサーが、板状体であり、修正手段が、スペーサーの板面の一方側に嵌合するとともに突起量を変更可能に形成された突起部材である。この場合、スペーサーに嵌合する突起部材の突起量を調整することで、コア部の傾斜角を連続的に増減させることができる。 In still another aspect of the present invention, the spacer is a plate-like body, and the correcting means is a protruding member formed so as to fit on one side of the plate surface of the spacer and change the amount of protrusion. In this case, the inclination angle of the core portion can be continuously increased or decreased by adjusting the protrusion amount of the protrusion member fitted to the spacer.
 本発明のさらに別の観点では、スペーサーが、板状体であり、修正手段が、スペーサーの板面の一方側に嵌合するとともに嵌合位置を変更可能に形成された突起部材である。この場合、スペーサーに嵌合する突起部材の嵌合位置すなわち突起位置を調整することで、コア部の傾斜角を連続的に増減させることができる。 In still another aspect of the present invention, the spacer is a plate-like body, and the correcting means is a protruding member formed so as to fit on one side of the plate surface of the spacer and to change the fitting position. In this case, the inclination angle of the core portion can be continuously increased or decreased by adjusting the fitting position of the protruding member fitted to the spacer, that is, the protruding position.
 本発明に係る第1の光学素子の製造方法は、光学素子の光学面に対応する光学面形成面を先端に有するコア部と、コア部の周囲に配置されるとともに先端側にコア部の光学面形成面を露出させる開口を有する支持部と、コア部を光学面形成面の反対側から支持するスペーサーとを有する成形金型を用いた光学素子の製造方法であって、スペーサーによって支持部に対するコア部の傾斜姿勢を調整し、支持部の開口の直径をD、コア部の先端の直径をdとした場合に、寸法差D-dは、
1/1000(mm)≦D-d≦1/100(mm)   (1)
の関係を満たすことを特徴とする。
The first optical element manufacturing method according to the present invention includes a core portion having an optical surface forming surface corresponding to the optical surface of the optical element at the tip, and an optical core disposed on the tip side and disposed around the core portion. A method of manufacturing an optical element using a molding die having a support part having an opening for exposing a surface forming surface and a spacer for supporting a core part from the opposite side of the optical surface forming surface. When the inclination of the core part is adjusted, the diameter of the opening of the support part is D, and the diameter of the tip of the core part is d, the dimensional difference Dd is
1/1000 (mm) ≤ Dd ≤ 1/100 (mm) (1)
It is characterized by satisfying the relationship.
 上記製造方法では、寸法差D-dが1/1000(mm)以上であるので、スペーサーによってコア部の傾斜姿勢を調整する際にコア部の先端が変位するための空間を確保することができる。これにより、スペーサーによるコア部の傾斜姿勢を確実に調整することができ、コア部の傾斜状態を精密に調整して保持することができ、光学素子の特性を精密に制御することができる。また、寸法差D-dが1/100(mm)以下であるので、コア部の先端と支持部の開口との間に形成される隙間が広くなりすぎず、成形時に樹脂が入り込んでバリの原因となることを防止できる。 In the above manufacturing method, since the dimensional difference Dd is 1/1000 (mm) or more, it is possible to secure a space for displacing the tip of the core part when adjusting the inclined posture of the core part by the spacer. . Thereby, the inclination posture of the core part by a spacer can be adjusted reliably, the inclination state of a core part can be adjusted and hold | maintained precisely, and the characteristic of an optical element can be controlled precisely. In addition, since the dimensional difference Dd is 1/100 (mm) or less, the gap formed between the tip of the core portion and the opening of the support portion does not become too wide. It can be prevented from causing.
 本発明に係る第2の光学素子の製造方法は、光学素子の光学面に対応する光学面形成面を先端に有するコア部と、コア部の周囲に配置されるとともに先端側にコア部の光学面形成面を露出させる開口を有する支持部と、コア部を光学面形成面の反対側から支持するスペーサーとを有する成形金型を用いた光学素子の製造方法であって、スペーサーによって支持部に対するコア部の傾斜姿勢を調整し、修正手段によりスペーサーに対する配置関係を変化させることによって、コア部の先端の支持部に対する傾斜角を修正することを特徴とする。 The second optical element manufacturing method according to the present invention includes a core part having an optical surface forming surface corresponding to the optical surface of the optical element at the tip, and an optical core disposed on the tip side and disposed around the core part. A method of manufacturing an optical element using a molding die having a support part having an opening for exposing a surface forming surface and a spacer for supporting a core part from the opposite side of the optical surface forming surface. The inclination angle of the core portion with respect to the support portion is corrected by adjusting the inclination posture of the core portion and changing the arrangement relationship with respect to the spacer by the correcting means.
 上記製造方法では、修正手段が、スペーサーに対する配置関係を変化させることによってコア部の先端の支持部に対する傾斜角を修正するので、コア部の傾斜状態を連続的に又は段階的に調整し安定して保持することができ、光学素子の特性を適切な状態に調整することができる。 In the above manufacturing method, the correcting means corrects the inclination angle of the tip of the core portion with respect to the support portion by changing the arrangement relationship with respect to the spacer, so that the inclination state of the core portion is adjusted continuously or stepwise to be stable. And the characteristics of the optical element can be adjusted to an appropriate state.
第1実施形態に係る光学素子用の成形金型の構造を説明する部分側断面図である。It is a fragmentary sectional side view explaining the structure of the shaping die for optical elements which concerns on 1st Embodiment. 図2(A)は、図1の金型によって射出成形されるレンズの拡大側面図であり、図2(B)は、比較例のレンズの拡大側面図である。2A is an enlarged side view of a lens that is injection-molded by the mold of FIG. 1, and FIG. 2B is an enlarged side view of a lens of a comparative example. 可動金型の要部を説明する一部拡大断面図である。It is a partially expanded sectional view explaining the principal part of a movable metal mold | die. 図4(A)は、スペーサーの側断面図であり、図4(B)は、スペーサーの平面図である。FIG. 4A is a side sectional view of the spacer, and FIG. 4B is a plan view of the spacer. 図4(B)等に示すスペーサーの変形例を示す平面図である。It is a top view which shows the modification of the spacer shown in FIG.4 (B). 図6(A)及び6(B)は、第2実施形態の成形金型におけるスペーサーを説明する平面図及びAA矢視断面図であり、図6(C)は、変形例のスペーサーを説明する平面図である。6 (A) and 6 (B) are a plan view and a cross-sectional view taken along the line AA illustrating the spacer in the molding die of the second embodiment, and FIG. 6 (C) illustrates a modified spacer. It is a top view. 図7(A)及び7(B)は、第3実施形態の成形金型におけるスペーサーを説明する平面図及びAA矢視断面図である。FIGS. 7A and 7B are a plan view and a cross-sectional view taken along arrow AA illustrating a spacer in the molding die of the third embodiment. 第4実施形態における可動金型の要部を説明する一部拡大断面図である。It is a partially expanded sectional view explaining the principal part of the movable metal mold | die in 4th Embodiment. 図9(A)は、スペーサーの断面図であり、図9(B)は、補助スペーサーの断面図である。FIG. 9A is a cross-sectional view of the spacer, and FIG. 9B is a cross-sectional view of the auxiliary spacer. 第5実施形態における可動金型の要部を説明する一部拡大断面図である。It is a partially expanded sectional view explaining the principal part of the movable metal mold | die in 5th Embodiment. 第6実施形態に係る光学素子用の成形金型の構造を説明する部分側断面図である。It is a fragmentary sectional side view explaining the structure of the shaping die for optical elements which concerns on 6th Embodiment. 図12(A)及び12(B)は、変形例のスペーサーを説明する平面図及びAA矢視断面図である。12 (A) and 12 (B) are a plan view and a cross-sectional view taken along arrow AA illustrating a spacer according to a modification.
 〔第1実施形態〕
 以下、本発明の第1実施形態に係る光学素子用の成形金型と光学素子の製造方法とについて、図面を参照しつつ説明する。
[First Embodiment]
Hereinafter, a molding die for an optical element according to a first embodiment of the present invention and a method for manufacturing the optical element will be described with reference to the drawings.
 図1に示すように、光学素子用の成形金型40は、固定金型41と可動金型42とで構成され、両金型41,42は、パーティングライン(型合わせ面)PLを境として開閉可能になっている。固定金型41と可動金型42とに挟まれた空間であるキャビティCVは、成形品である光学素子としてのレンズOL(図2(A)参照)の形状に対応するものとなっている。レンズOLは、プラスチック製で、光学的機能を有する光学的機能部としての中心部OLaと、中心部OLaから外径方向に延在する環状のフランジ部OLbとを備える。このレンズOLは、光ピックアップ装置用の対物レンズであり、例えばBD(blu-ray disc)、DVD(digital versatile disc)等用の波長の光束に対してNA0.85等の規格を満たすレンズである。なお、このレンズOLは、後に詳述する調整によって、コマ収差を極めて低減したものとなっている。 As shown in FIG. 1, a molding die 40 for an optical element is composed of a fixed die 41 and a movable die 42, and both the dies 41, 42 are bounded by a parting line (mold matching surface) PL. Can be opened and closed. A cavity CV that is a space between the fixed mold 41 and the movable mold 42 corresponds to the shape of a lens OL (see FIG. 2A) as an optical element that is a molded product. The lens OL is made of plastic and includes a center portion OLa as an optical function portion having an optical function, and an annular flange portion OLb extending from the center portion OLa in the outer diameter direction. This lens OL is an objective lens for an optical pickup device, for example, a lens that satisfies a standard such as NA 0.85 for a light beam having a wavelength for BD (blu-ray disc), DVD (digital versatile disc), or the like. . The lens OL has extremely reduced coma aberration by adjustment described in detail later.
 固定金型41は、コア部51と、型板53と、取付板54とを備える。ここで、コア部51は、キャビティ(型空間)CVを形成するため、可動金型42のコア部61に対向して配置される。型板53は、コア部51を周囲から保持する型部材であり、取付板54は、コア部51を背後又は根元側から一体的に支持する型部材である。 The fixed mold 41 includes a core portion 51, a template 53, and a mounting plate 54. Here, the core portion 51 is disposed to face the core portion 61 of the movable mold 42 in order to form a cavity (die space) CV. The mold plate 53 is a mold member that holds the core portion 51 from the periphery, and the mounting plate 54 is a mold member that integrally supports the core portion 51 from the back or the root side.
 コア部51の先端面には、キャビティCVを画成するため、光学面形成面56aとフランジ形成面56bとが設けられている。光学面形成面56aは、比較的浅い凹面であり、レンズOLを構成する中心部OLaの一方の光学面Saを成形する転写面である。フランジ形成面56bは、環状の平面であり、レンズOLを構成するフランジ部OLbの一方のフランジ面F1を成形する転写面である。 An optical surface forming surface 56a and a flange forming surface 56b are provided on the distal end surface of the core portion 51 in order to define a cavity CV. The optical surface forming surface 56a is a relatively shallow concave surface, and is a transfer surface for forming one optical surface Sa of the central portion OLa constituting the lens OL. The flange forming surface 56b is an annular flat surface, and is a transfer surface on which one flange surface F1 of the flange portion OLb constituting the lens OL is molded.
 その他、型板53には、コア部51を挿入支持する円柱状の貫通孔57aが形成されている。また、型板53は、パーティングラインPLを形成する端面53aを有する。 In addition, a columnar through hole 57a for inserting and supporting the core portion 51 is formed in the template 53. The template 53 has an end face 53a that forms a parting line PL.
 可動金型42は、コア部61と、スペーサー65と、支持部62と、型板63と、取付板64とを備える。可動金型42は、軸AXに沿って移動可能になっており、固定金型41に対して開閉動作する。可動金型42において、コア部61は、キャビティCVを形成するため、固定金型41のコア部51に対向して配置される。支持部62は、コア部61を周囲から保持する型部材であり、型板63は、支持部62を周囲から一体的に支持する型部材であり、取付板64は、支持部62を背後又は根元側から一体的に支持する型部材である。 The movable mold 42 includes a core portion 61, a spacer 65, a support portion 62, a template 63, and a mounting plate 64. The movable mold 42 is movable along the axis AX and opens and closes with respect to the fixed mold 41. In the movable mold 42, the core portion 61 is disposed to face the core portion 51 of the fixed mold 41 in order to form the cavity CV. The support portion 62 is a mold member that holds the core portion 61 from the periphery, the mold plate 63 is a mold member that integrally supports the support portion 62 from the periphery, and the mounting plate 64 supports the support portion 62 behind or The mold member is integrally supported from the base side.
 図3に示すように、コア部61は、円柱状のロッド部61aと、円板状の基部61bとを備える。ロッド部61aの先端61cは、支持部62に形成された小径孔62iとの間に僅かな隙間GA1を有する状態で軸AXに垂直な方向に微小変位可能、かつ、軸AX方向に移動可能に挿通されている。基部61bは、支持部62に形成された大径孔62jに僅かな隙間GA2を有する状態で軸AXに垂直な方向に微小変位可能、かつ、軸AX方向に移動可能に挿通されている。なお、隙間GA2は、隙間GA1よりも十分に小さな値となっている。ロッド部61aの周囲に装着された戻しバネ68は、コア部61を根元の基部61b側に付勢しており、支持部62内におけるコア部61の保持を確実なものとしている。 As shown in FIG. 3, the core portion 61 includes a cylindrical rod portion 61a and a disc-shaped base portion 61b. The tip 61c of the rod portion 61a can be slightly displaced in the direction perpendicular to the axis AX and can move in the direction of the axis AX with a slight gap GA1 between the tip 61c and the small diameter hole 62i formed in the support portion 62. It is inserted. The base 61b is inserted in a large diameter hole 62j formed in the support portion 62 so as to be minutely displaceable in a direction perpendicular to the axis AX and movable in the axis AX direction with a slight gap GA2. Note that the gap GA2 is sufficiently smaller than the gap GA1. The return spring 68 mounted around the rod portion 61a urges the core portion 61 toward the base portion 61b at the base, and ensures the holding of the core portion 61 in the support portion 62.
 コア部61の先端面には、キャビティCVを画成するため、光学面形成面66aとフランジ形成面66bとが設けられている。光学面形成面66aは、比較的深い凹面であり、図2(A)のレンズOLの中心部OLaの一方の光学面Sbを成形する転写面である。フランジ形成面66bは、環状の平面であり、レンズOLのフランジ部OLbの他方のフランジ面F2を成形する転写面である。 The tip surface of the core portion 61 is provided with an optical surface forming surface 66a and a flange forming surface 66b in order to define a cavity CV. The optical surface forming surface 66a is a relatively deep concave surface, and is a transfer surface that molds one optical surface Sb of the center portion OLa of the lens OL in FIG. The flange forming surface 66b is an annular flat surface and is a transfer surface for forming the other flange surface F2 of the flange portion OLb of the lens OL.
 スペーサー65は、軸AXのまわりに回転可能な円板状の部材すなわち板状体であり、支持部62に形成された大径孔62jに殆ど隙間のない状態で回転可能に挿入されている。スペーサー65は、図4(A)及び4(B)に示すように、コア部61側の第1当接面65fと、取付板64側の第2当接面65hとを備える。第1当接面65fと、第2当接面65hとは、中心軸CXに略垂直に配置されるが、両当接面65f,65hは、互いに平行ではなく、コア部61に微小な傾斜を与えるために所定の微小な傾斜角θをなしている。 The spacer 65 is a disk-like member that can rotate around the axis AX, that is, a plate-like body, and is inserted into the large-diameter hole 62j formed in the support portion 62 so as to be rotatable with almost no gap. As shown in FIGS. 4A and 4B, the spacer 65 includes a first contact surface 65f on the core portion 61 side and a second contact surface 65h on the mounting plate 64 side. The first contact surface 65f and the second contact surface 65h are disposed substantially perpendicular to the central axis CX, but the both contact surfaces 65f and 65h are not parallel to each other and are slightly inclined to the core portion 61. In order to provide the above, a predetermined minute inclination angle θ is formed.
 図1に戻って、支持部62は、筒状で、コア部61を支持部62内に保持するための挿通孔62hを有する。この挿通孔62hは、先端側に開口としての小径孔62iを有し、根元側に大径孔62jを有する2段構造となっている。 Referring back to FIG. 1, the support portion 62 is cylindrical and has an insertion hole 62 h for holding the core portion 61 in the support portion 62. The insertion hole 62h has a two-stage structure having a small diameter hole 62i as an opening on the tip side and a large diameter hole 62j on the root side.
 その他、型板63には、支持部62を挿入支持する円柱状の貫通孔67aが形成されている。また、型板63は、パーティングラインPLを形成する端面63aを有する。 In addition, a cylindrical through hole 67a for inserting and supporting the support portion 62 is formed in the template 63. The template 63 has an end face 63a that forms a parting line PL.
 なお、コア部61とスペーサー65とは、当接面61f,65fを介して互いに当接しており、コア部61側の当接面61fには、例えば窪み状の係合部61gが形成され、スペーサー65側の当接面65fには、例えば突起状の係合部65gが形成されている。これら係合部61g,65gが緩く嵌合することにより、コア部61とスペーサー65との相対的な回転が規制されるので、コア部61とスペーサー65とが互いの回転位置関係を保って支持部62の挿通孔62h内に保持される。 The core portion 61 and the spacer 65 are in contact with each other via the contact surfaces 61f and 65f. The contact surface 61f on the core portion 61 side is formed with, for example, a recessed engagement portion 61g. On the contact surface 65f on the spacer 65 side, for example, a protruding engagement portion 65g is formed. When the engaging portions 61g and 65g are loosely fitted, the relative rotation between the core portion 61 and the spacer 65 is restricted, so that the core portion 61 and the spacer 65 are supported while maintaining the mutual rotational positional relationship. It is held in the insertion hole 62 h of the part 62.
 スペーサー65の役割をより詳しく説明すると、スペーサー65は、図4(A)等に示すように、傾斜角θのクサビ形状を有しており、この傾斜角θは、0′~1′程度の大きさを有している。また、スペーサー65に設けた係合部65gは、正八角形の断面を有する八角の突起であり、コア部61の係合部61gは、正八角形の断面を有する八角の窪みであるので、スペーサー65は、コア部61に対して軸AX又は中心軸CXのまわりに45°単位で回転可能になっている。このため、スペーサー65をコア部61に対して軸AXのまわりに適宜回転させることで、コア部61を傾ける方向DA,DB,DC,DD,DE,DF,DG,DHを選択することができる。具体的には、スペーサー65の最大肉厚部ATを図示のいずれかの方向DA,DB,DC,DD,DE,DF,DG,DHに配置した場合、コア部61の先端61cは、最大肉厚部ATの対角方向にある方向DE,DF,DG,DH,DA,DB,DC,DDにそれぞれ傾く。なお、スペーサー65は、交換可能になっており、厚みtを維持したままで傾斜角θを変化させることができる。つまり、傾斜角θが例えば0.1′単位で0′~1′程度まで異なる多数のスペーサー65が予め準備されており、適当な傾斜角θを有するスペーサー65に交換することで、コア部61の軸AXに対する傾斜角度を0′~1′程度の範囲で微調整することができる。 The role of the spacer 65 will be described in more detail. The spacer 65 has a wedge shape with an inclination angle θ as shown in FIG. 4A and the like, and the inclination angle θ is about 0 ′ to 1 ′. It has a size. The engaging portion 65g provided on the spacer 65 is an octagonal protrusion having a regular octagonal cross section, and the engaging portion 61g of the core portion 61 is an octagonal depression having a regular octagonal cross section. Is rotatable about the axis AX or the central axis CX in units of 45 ° with respect to the core portion 61. For this reason, the directions DA, DB, DC, DD, DE, DF, DG, and DH in which the core portion 61 is inclined can be selected by appropriately rotating the spacer 65 around the axis AX with respect to the core portion 61. . Specifically, when the maximum thickness portion AT of the spacer 65 is disposed in any of the illustrated directions DA, DB, DC, DD, DE, DF, DG, and DH, the tip 61c of the core portion 61 has the maximum thickness. Inclined in directions DE, DF, DG, DH, DA, DB, DC, DD in the diagonal direction of the thick part AT, respectively. The spacer 65 can be exchanged, and the inclination angle θ can be changed while maintaining the thickness t. In other words, a large number of spacers 65 having different inclination angles θ, for example, in the range of 0.1 ′ to about 0 ′ to 1 ′ are prepared in advance, and the core portion 61 can be replaced by replacing the spacers 65 with appropriate inclination angles θ. Can be finely adjusted within a range of about 0 'to 1'.
 コア部61のロッド部61aの先端61cを所望の角度及び方向に傾けることにより、成形されるレンズOLのコマ収差を低減することができる。つまり、スペーサー65の厚みが調整されていない当初の状態で、コア部61のロッド部61aが軸AXに対して傾いて延びている場合、スペーサー65の傾斜角θを適宜修正しスペーサー65の回転位置を調整することで、固定金型41のコア部51に設けた光学面形成面56aに対して可動金型42のコア部61に設けた光学面形成面66aの傾きを微調整することができ、レンズOLのコマ収差発生を抑えることができる。スペーサー65の厚みが調整されていない当初の状態で、コア部61のロッド部61aが軸AXに対して平行に延びている場合であっても、ロッド部61aの先端に設けた光学面形成面66aの光軸が傾いて形成されている場合、スペーサー65の傾斜角θを適宜修正しスペーサー65の回転位置を調整することで、固定金型41側の光学面形成面56aに対して可動金型42側の光学面形成面66aの傾きを微調整することができ、レンズOLのコマ収差発生を抑えることができる。 By tilting the tip 61c of the rod portion 61a of the core portion 61 in a desired angle and direction, coma aberration of the molded lens OL can be reduced. That is, in the initial state where the thickness of the spacer 65 is not adjusted, when the rod portion 61a of the core portion 61 extends with an inclination with respect to the axis AX, the inclination angle θ of the spacer 65 is appropriately corrected to rotate the spacer 65. By adjusting the position, the inclination of the optical surface forming surface 66a provided on the core portion 61 of the movable mold 42 can be finely adjusted with respect to the optical surface forming surface 56a provided on the core portion 51 of the fixed die 41. And the occurrence of coma aberration in the lens OL can be suppressed. Even if the rod portion 61a of the core portion 61 extends parallel to the axis AX in the initial state where the thickness of the spacer 65 is not adjusted, the optical surface forming surface provided at the tip of the rod portion 61a When the optical axis of 66a is inclined, the movable metal is moved relative to the optical surface forming surface 56a on the fixed mold 41 side by appropriately correcting the inclination angle θ of the spacer 65 and adjusting the rotational position of the spacer 65. The inclination of the optical surface forming surface 66a on the mold 42 side can be finely adjusted, and the occurrence of coma aberration in the lens OL can be suppressed.
 レンズOLのコマ収差発生を抑える背景について説明する。固定金型41側の光学面形成面56aの光軸と、可動金型42側の光学面形成面66aの光軸とが互いに傾いて形成されていると、レンズ性能の1つの重要な要素であるコマ収差を悪化させることになるので、このような光軸の傾きをできるだけ小さくすることが望ましい。具体的な数値を用いて説明すると、成形金型40によって製造されるレンズOLがBD用であるものとすると、このようなレンズOLの光学面に関する光軸の傾きは、0.3′(約20″)程度以下にすることが求められる。従来は、金型41,42の加工精度を上げることで光学面形成面66a等の光軸の傾きを抑えるように対処してきたが、0.3′程度以下の傾きは、機械加工のバラツキに埋もれる程度の値であり、調整が容易でなく、コスト増大の要因となる。一方、本実施形態のように、適度の傾斜角θを有するスペーサー65に交換してコア部61に対する回転位置を調節することで、光学面形成面66a等の光軸の傾きを微調整することができ、光学面形成面66a等の光軸の傾きすなわちレンズOLの光学面Sbに関する光軸の傾きを0.3′程度以下にすることができる。 The background for suppressing the occurrence of coma aberration in the lens OL will be described. If the optical axis of the optical surface forming surface 56a on the fixed mold 41 side and the optical axis of the optical surface forming surface 66a on the movable mold 42 side are inclined with respect to each other, this is one important factor in lens performance. It is desirable to make the inclination of the optical axis as small as possible since it will exacerbate some coma. To explain using specific numerical values, when the lens OL manufactured by the molding die 40 is for BD, the inclination of the optical axis with respect to the optical surface of such a lens OL is 0.3 ′ (about 20 ″) or less. Conventionally, measures have been taken to suppress the inclination of the optical axis of the optical surface forming surface 66a and the like by increasing the processing accuracy of the dies 41, 42, but 0.3 An inclination of about 'or less is a value that is buried in the machining variation, and is not easy to adjust and causes an increase in cost, whereas the spacer 65 having an appropriate inclination angle θ as in this embodiment. And adjusting the rotational position with respect to the core portion 61, the inclination of the optical axis of the optical surface forming surface 66a or the like can be finely adjusted, and the inclination of the optical axis of the optical surface forming surface 66a or the like, ie, the lens OL. Light relating to the optical surface Sb Slope of a can be less than or equal to about 0.3 '.
 図2(B)は、比較例のレンズOL'を示している。この場合、中心部OLaの光学面Sb'は、点線で誇張して示す理想的な光学面Sbから傾いて形成されており、コマ収差が増大している。このことから明らかなように、レンズOL,OL'のコマ収差を測定すれば、レンズOL'の光学面Sb'の傾きすなわちコア部61の意図しない傾き等の誤差を計測することができ、計測したコマ収差に基づいてコマ収差を補償するようにコア部61を傾ければ、コマ収差を抑えた高精度のレンズOLを得ることができる。なお、BD用のレンズOLは、光学面Sb'の曲率が大きく、コマ収差が生じやすくなるので、上記のようなスペーサー65による傾斜又はチルトの調整が重要になってくる。具体的には、BD用のレンズOLの場合、コア部61の傾斜角を0.3′程度以上確保して調整することが望ましい。 FIG. 2B shows a lens OL ′ of a comparative example. In this case, the optical surface Sb ′ of the central portion OLa is formed to be inclined from the ideal optical surface Sb exaggerated by dotted lines, and coma aberration is increased. As is clear from this, by measuring the coma aberration of the lenses OL and OL ′, errors such as the inclination of the optical surface Sb ′ of the lens OL ′, that is, the unintended inclination of the core portion 61 can be measured. If the core portion 61 is tilted so as to compensate coma aberration based on the coma aberration, a highly accurate lens OL with suppressed coma aberration can be obtained. Note that the BD lens OL has a large curvature of the optical surface Sb ′, and coma aberration is likely to occur. Therefore, adjustment of tilt or tilt by the spacer 65 as described above becomes important. Specifically, in the case of the lens OL for BD, it is desirable to ensure and adjust the inclination angle of the core portion 61 by about 0.3 ′ or more.
 以上のようにコア部61の強制的な傾斜によってレンズOLのコマ収差を低減する場合、図3に示すように、コア部61の先端61cに適度の隙間GA1を設けることが重要になる。コア部61と支持部62との先端側における隙間GA1については、支持部62の開口としての小径孔62iの直径をD、ロッド部61aの先端61cの直径をdとした場合に、これら寸法差D-dが、
1/1000(mm)≦D-d≦1/100(mm)   (1)
の関係を満たしている。ここで、寸法差D-dが1/1000(mm)以上であるので、スペーサー65によってコア部61の傾斜姿勢を調整する際にコア部61の先端61cが変位するための空間を十分に確保することができる。このため、スペーサー65によるコア部61の傾斜姿勢を確実に調整することができ、コア部61の傾斜状態を精密に調整して保持することができ、光学素子としてのレンズOLの特性を精密に制御することができる。また、寸法差D-dが1/100(mm)以下であるので、コア部61の先端61cと支持部62の小径孔62iとの間に形成される隙間GA1が広くなりすぎて、成形時に隙間GA1に樹脂が入り込んでバリの原因となることを防止できる。
As described above, when the coma aberration of the lens OL is reduced by the forced inclination of the core portion 61, it is important to provide an appropriate gap GA1 at the tip 61c of the core portion 61 as shown in FIG. Regarding the gap GA1 on the tip side of the core portion 61 and the support portion 62, when the diameter of the small diameter hole 62i as the opening of the support portion 62 is D and the diameter of the tip 61c of the rod portion 61a is d, these dimensional differences Dd is
1/1000 (mm) ≤ Dd ≤ 1/100 (mm) (1)
Meet the relationship. Here, since the dimensional difference Dd is 1/1000 (mm) or more, when the inclined posture of the core portion 61 is adjusted by the spacer 65, a sufficient space for the tip 61c of the core portion 61 to be displaced is secured. can do. For this reason, the inclination posture of the core part 61 by the spacer 65 can be adjusted with certainty, the inclination state of the core part 61 can be precisely adjusted and held, and the characteristics of the lens OL as an optical element can be precisely adjusted. Can be controlled. Further, since the dimensional difference Dd is 1/100 (mm) or less, the gap GA1 formed between the tip 61c of the core portion 61 and the small-diameter hole 62i of the support portion 62 becomes too wide, and at the time of molding. It is possible to prevent the resin from entering the gap GA1 and causing burrs.
 以下、具体的な調整方法及び製造方法について説明する。この場合、まず試験的に作製したレンズOLを計測してコマ収差を計測するものとする。例えば干渉計を用いてレンズOLの収差を計測する場合、コマ収差を他の収差から分離することができ、コマ収差の方向及び程度を数値として得ることができる。このようなコマ収差は、レンズOLの光学面Sa,Sbの相対的な傾き量及び傾き方向すなわちコア部61先端の光学面形成面56a,66aの相対的な傾斜状態に換算することができ、これに基づいて、コア部61に生じている傾斜方向及び傾斜量を算出することができる。ここで、コア部61の傾斜方向及び傾斜量は、コア部61の絶対的な傾斜状態を示すものではなく、レンズOLのコマ収差の原因となっている光学面形成面56a,66aの相対的傾斜状態を意味し、このような相対的傾斜状態をなくすようにコア部61の傾斜方向及び傾斜量を調整することで、レンズOLのコマ収差を低減できる。上記のようなレンズOLの試験的な作製は、試作結果を作製条件に反映させるフィードバックのために一回だけでなく複数回行われ、計測されたコマ収差を相殺するようにコア部61の傾斜方向及び傾斜量を徐々に修正し、得られるコマ収差が最小限となるようにして、コア部61のアライメントすなわち傾斜補正を完了する。その後は、図1に示す成形金型40を用いてコマ収差の少ないレンズOLを量産することになる。なお、コア部61が1′傾くことで0.09λrmsのコマ収差が発生する場合、その1/3の0.03λrmsのコマ収差が発生しているレンズOLを修正するためには、20″=1′÷3の傾斜角θを有するスペーサー65を用いればよい。 Hereinafter, specific adjustment methods and manufacturing methods will be described. In this case, the coma aberration is first measured by measuring the lens OL manufactured experimentally. For example, when the aberration of the lens OL is measured using an interferometer, the coma aberration can be separated from other aberrations, and the direction and degree of the coma aberration can be obtained as numerical values. Such coma aberration can be converted into the relative tilt amount and tilt direction of the optical surfaces Sa and Sb of the lens OL, that is, the relative tilt state of the optical surface forming surfaces 56a and 66a at the tip of the core 61, Based on this, the inclination direction and the amount of inclination generated in the core portion 61 can be calculated. Here, the inclination direction and the inclination amount of the core portion 61 do not indicate the absolute inclination state of the core portion 61, but are relative to the optical surface forming surfaces 56a and 66a that cause the coma aberration of the lens OL. This means an inclined state, and the coma aberration of the lens OL can be reduced by adjusting the inclination direction and the amount of inclination of the core portion 61 so as to eliminate such a relative inclination state. The trial production of the lens OL as described above is performed not only once but also a plurality of times for feedback reflecting the prototype result in the production conditions, and the inclination of the core portion 61 so as to cancel the measured coma aberration. The alignment and tilt correction of the core portion 61 are completed by gradually correcting the direction and the tilt amount so as to minimize the obtained coma aberration. Thereafter, the lens OL with little coma aberration is mass-produced using the molding die 40 shown in FIG. When the coma aberration of 0.09λ rms is generated by tilting the core portion 1 ′, in order to correct the lens OL in which the coma aberration of 0.03λ rms is reduced to 1/3, 20 ″ = A spacer 65 having an inclination angle θ of 1 ′ ÷ 3 may be used.
 図5は、図4(B)等に示すスペーサー65の変形例を示す。このスペーサー165には、中心軸CXに垂直な方向に延びる4つの位置決め穴167a,167b,167c,167dが90°間隔で形成されている。また、支持部162には、対向する位置において貫通する2つの位置決め穴162a,162bが形成されており、中心軸CXに垂直な方向に延びている。これらの位置決め穴162a,162bには、一対の円柱状の位置決めピン72が埋め込むように挿入される。これにより、支持部162内におけるスペーサー165の回転が規制され、延いてはコア部61の回転が確実に制限される。なお、本実施形態では、位置決めピン72を2本としたが、位置決めピン72を1本としてもかまわない。さらに、位置決め穴167a,167b,167c,167dの数も、4つに限らず、8つ等に設定することができる。 FIG. 5 shows a modification of the spacer 65 shown in FIG. In the spacer 165, four positioning holes 167a, 167b, 167c, 167d extending in a direction perpendicular to the central axis CX are formed at intervals of 90 °. Further, the positioning portion 162 is formed with two positioning holes 162a and 162b penetrating at opposing positions, and extends in a direction perpendicular to the central axis CX. A pair of cylindrical positioning pins 72 are inserted into these positioning holes 162a and 162b so as to be embedded. Thereby, the rotation of the spacer 165 in the support portion 162 is restricted, and the rotation of the core portion 61 is surely limited. In the present embodiment, the number of positioning pins 72 is two, but the number of positioning pins 72 may be one. Furthermore, the number of positioning holes 167a, 167b, 167c, 167d is not limited to four, and can be set to eight.
 〔第2実施形態〕
 以下、第2実施形態に係る光学素子用の成形金型等について説明する。なお、第2実施形態に係る成形金型や製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態と同様であるものとする。
[Second Embodiment]
Hereinafter, a molding die for an optical element according to the second embodiment will be described. Note that the molding die and the manufacturing method according to the second embodiment are modifications of the first embodiment, and parts that are not particularly described are the same as those of the first embodiment.
 図6(A)及び6(B)に示すように、第2実施形態における可動金型42のスペーサー265には、周辺部の一箇所に中心軸CXに平行な方向に延びる調整穴281jが形成されており、この調整穴281jに適当な長さの突起部材281kを挿入すると、調整穴281jの当接面65f側から突起部材281kの先端部281mが突起としてはみ出した状態となる。つまり、調整穴281jは、2段構造になっており、大径の嵌合部281nの軸方向の長さは、突起部材281kの軸方向の長さよりも僅かに小さくなっており、突起部材281kの位置で、スペーサー265の厚みtが先端部281mの厚みΔだけ実効的に増加した状態となる。先端部281mの厚みΔを調整すれば、図4(A)等に示すスペーサー65の場合と同様に、スペーサー265に対して先端部281mの厚みΔを反映した実効的な傾斜角θ(≒Δ/w1〔rad〕)を生じさせることができ、修正手段である突起部材281kを埋め込んだ方向とは反対側にコア部61を傾斜させることができる。 As shown in FIGS. 6A and 6B, the spacer 265 of the movable mold 42 in the second embodiment is formed with an adjustment hole 281j extending in a direction parallel to the central axis CX at one location in the peripheral portion. When the protrusion member 281k having an appropriate length is inserted into the adjustment hole 281j, the tip end portion 281m of the protrusion member 281k protrudes as a protrusion from the contact surface 65f side of the adjustment hole 281j. That is, the adjustment hole 281j has a two-stage structure, and the axial length of the large-diameter fitting portion 281n is slightly smaller than the axial length of the protruding member 281k, and the protruding member 281k. In this position, the thickness t of the spacer 265 is effectively increased by the thickness Δ of the tip 281m. If the thickness Δ of the tip portion 281m is adjusted, the effective inclination angle θ (≈Δ) reflecting the thickness Δ of the tip portion 281m with respect to the spacer 265, as in the case of the spacer 65 shown in FIG. / W1 [rad]) can be generated, and the core portion 61 can be inclined to the side opposite to the direction in which the protruding member 281k as the correcting means is embedded.
 突起部材281kについては、軸方向の長さすなわち先端部281mの厚みΔが異なるものを予め多数用意してあり、これらの突起部材281kを交換することで、先端部281mの厚みΔすなわち突起部材281kの突起量を増減させることができる。これにより、スペーサー265全体を交換しないで突起部材281kを交換することにより、スペーサー265に支持されるコア部61の傾斜量を適宜修正することができる。なお、スペーサー265自体を中心軸CXのまわりに回転させることで、コア部61の傾斜方向の調整が可能になる。 A large number of protrusion members 281k having different axial lengths, that is, different in thickness Δ of the tip portion 281m are prepared in advance. The amount of protrusion can be increased or decreased. Thereby, the amount of inclination of the core part 61 supported by the spacer 265 can be appropriately corrected by replacing the protruding member 281k without replacing the entire spacer 265. Note that the inclination direction of the core portion 61 can be adjusted by rotating the spacer 265 itself around the central axis CX.
 図6(C)は、図6(A)に示すスペーサー265の変形例であり、このスペーサー265は、2つの調整穴281jを有している。これらの調整穴281jは、中心軸CXから各調整穴281jに向けての方向が異なる方向になるように並べられており、スペーサー265によるコア部61の支持を安定化させることができるようになっている。なお、両調整穴281jに挿入されこれらと嵌合する一対の突起部材281kの軸方向の長さは、互いに多少異なるものとでき、これによってコア部61の傾斜方向を多少修正することができる。 FIG. 6C is a modification of the spacer 265 shown in FIG. 6A, and this spacer 265 has two adjustment holes 281j. These adjustment holes 281j are arranged so that the directions from the central axis CX toward the respective adjustment holes 281j are different from each other, and the support of the core portion 61 by the spacer 265 can be stabilized. ing. Note that the lengths in the axial direction of the pair of projecting members 281k inserted into and fitted in the two adjustment holes 281j can be slightly different from each other, and thereby the inclination direction of the core portion 61 can be slightly modified.
 〔第3実施形態〕
 以下、第3実施形態に係る光学素子用の成形金型等について説明する。なお、第3実施形態に係る成形金型や製造方法は、第1又は第2実施形態を変形したものであり、特に説明しない部分については、第1実施形態等と同様であるものとする。
[Third Embodiment]
Hereinafter, a molding die for an optical element according to the third embodiment will be described. The molding die and the manufacturing method according to the third embodiment are modifications of the first or second embodiment, and parts that are not particularly described are the same as those of the first embodiment.
 図7(A)及び7(B)に示すように、第3実施形態における可動金型42のスペーサー365には、中心軸CXから周辺に向けて等間隔で多数の調整穴281jが形成されている。各調整穴281jは、中心軸CXに平行な方向に延びており、当接面65f側に大径の嵌合部281nを有している。突起部材281kの軸方向の長さは、大径の嵌合部281nの軸方向の長さよりも僅かに大きくなっている。この場合、突起部材281kは、単一であり、等間隔で一列に配列された多数の調整穴281jから突起部材281kを挿入する1つの調整穴281jを選択することで、突起部材281kの位置で、スペーサー365の厚みtが先端部281mの厚みΔだけ実効的に増加した状態となる。つまり、突起部材281kを挿入する調整穴281jの選択により、図4(A)等に示すスペーサー65の場合と同様に、スペーサー365に対して実効的な傾斜角θ(≒Δ/w2〔rad〕)を生じさせることができ、修正手段である突起部材281kを埋め込んだ方向とは反対側にコア部61を傾斜させることができ、その傾斜量を適宜修正することができる。なお、スペーサー365自体を中心軸CXのまわりに回転させることで、コア部61の傾斜方向の調整が可能になる。 As shown in FIGS. 7A and 7B, the spacer 365 of the movable mold 42 in the third embodiment has a large number of adjustment holes 281j formed at equal intervals from the central axis CX toward the periphery. Yes. Each adjustment hole 281j extends in a direction parallel to the central axis CX, and has a large-diameter fitting portion 281n on the contact surface 65f side. The axial length of the protruding member 281k is slightly larger than the axial length of the large-diameter fitting portion 281n. In this case, the projection member 281k is single, and by selecting one adjustment hole 281j into which the projection member 281k is inserted from a large number of adjustment holes 281j arranged in a line at equal intervals, the projection member 281k is positioned at the position of the projection member 281k. The thickness t of the spacer 365 is effectively increased by the thickness Δ of the tip 281m. That is, by selecting the adjustment hole 281j into which the protruding member 281k is inserted, an effective inclination angle θ (≈Δ / w2 [rad] with respect to the spacer 365, as in the case of the spacer 65 shown in FIG. ), And the core portion 61 can be inclined to the side opposite to the direction in which the protruding member 281k as the correcting means is embedded, and the amount of inclination can be corrected as appropriate. Note that the inclination direction of the core portion 61 can be adjusted by rotating the spacer 365 itself around the central axis CX.
 以上の説明では、多数の調整穴281jが中心軸CXに垂直な半径方向に配列されているとしたが、図6(C)の場合と同様に、調整穴281jを半径方向に配列しつつ、周方向に2つずつ配列することもできる。 In the above description, a large number of adjustment holes 281j are arranged in the radial direction perpendicular to the central axis CX, but as in the case of FIG. 6C, the adjustment holes 281j are arranged in the radial direction, Two can be arranged in the circumferential direction.
 〔第4実施形態〕
 以下、第4実施形態に係る光学素子用の成形金型等について説明する。なお、第4実施形態に係る成形金型や製造方法は、第1実施形態を変形したものであり、特に説明しない部分については、第1実施形態等と同様であるものとする。
[Fourth Embodiment]
Hereinafter, a molding die for an optical element according to the fourth embodiment will be described. The molding die and the manufacturing method according to the fourth embodiment are modifications of the first embodiment, and parts that are not particularly described are the same as those of the first embodiment.
 図8に示すように、可動金型442において、支持部62内には、コア部61と、スペーサー65と、補助スペーサー482とが保持されている。具体的には、コア部61の根元側に補助スペーサー482が配置され、補助スペーサー482の根元側にスペーサー65が配置されており、補助スペーサー482は、板状体であり、コア部61の基部61bとスペーサー65との間にこれらに密着した状態で挟まれている。なお、追加された補助スペーサー482は、コア部61の傾斜角を修正するための修正手段である。 As shown in FIG. 8, in the movable mold 442, a core portion 61, a spacer 65, and an auxiliary spacer 482 are held in the support portion 62. Specifically, an auxiliary spacer 482 is disposed on the base side of the core portion 61, and a spacer 65 is disposed on the base side of the auxiliary spacer 482, and the auxiliary spacer 482 is a plate-like body, and the base portion of the core portion 61. It is sandwiched between 61b and the spacer 65 in close contact with them. The added auxiliary spacer 482 is a correcting means for correcting the inclination angle of the core portion 61.
 図9(A)に示すように、スペーサー65は、図4(A)に示すものと同様の形状及び構造を有している。つまり、スペーサー65は、傾斜角θのクサビ形状を有しており、この傾斜角θは、0′~1′程度の大きさを有している。また、図9(B)に示すように、補助スペーサー482は、図4(A)に示すものと同様の形状及び構造を有している。つまり、補助スペーサー482も、傾斜角θのクサビ形状を有しており、この傾斜角θは、0′~1′程度の大きさを有している。 As shown in FIG. 9 (A), the spacer 65 has the same shape and structure as that shown in FIG. 4 (A). That is, the spacer 65 has a wedge shape with an inclination angle θ, and the inclination angle θ has a size of about 0 ′ to 1 ′. As shown in FIG. 9B, the auxiliary spacer 482 has the same shape and structure as that shown in FIG. That is, the auxiliary spacer 482 also has a wedge shape with an inclination angle θ, and the inclination angle θ has a size of about 0 ′ to 1 ′.
 なお、コア部61と補助スペーサー482とは、当接面61f,82jを介して互いに当接しており、これらに形成された係合部61g,82gにより、コア部61と補助スペーサー482との相対的な回転が規制される。また、補助スペーサー482とスペーサー65とは、当接面82f,65fを介して互いに当接しており、これらに形成された係合部82h,65gにより、補助スペーサー482とスペーサー65との相対的な回転が規制される。以上により、コア部61と補助スペーサー482とスペーサー65とが互いの回転位置関係を保って支持部62内に保持される。 The core portion 61 and the auxiliary spacer 482 are in contact with each other via the contact surfaces 61f and 82j, and the core portion 61 and the auxiliary spacer 482 are relatively moved by the engaging portions 61g and 82g formed thereon. Rotation is regulated. Further, the auxiliary spacer 482 and the spacer 65 are in contact with each other via the contact surfaces 82f and 65f, and the auxiliary spacer 482 and the spacer 65 are relatively moved by the engaging portions 82h and 65g formed thereon. Rotation is regulated. As described above, the core portion 61, the auxiliary spacer 482, and the spacer 65 are held in the support portion 62 while maintaining the mutual rotational positional relationship.
 ここで、スペーサー65と補助スペーサー482とを組み合わせる意味について説明する。スペーサー65の傾斜角θの方向と、補助スペーサー482の傾斜角θの方向とが中心軸CXを挟んで反対側にある場合、スペーサー65と補助スペーサー482とを合わせた厚みは一様になり、両側の当接面82j,65hは略平行である。このため、コア部61は、特に傾斜を与えられていない状態となる。逆に、スペーサー65の傾斜角θの方向と、補助スペーサー482の傾斜角θの方向とが中心軸CXを挟んで同一側にある場合、両側の当接面82j,65hの成す角度すなわち合計の傾斜角αは2θとなる。スペーサー65の傾斜方向と、補助スペーサー482の傾斜方向との成す相対的な回転角をβとすると、スペーサー65及び補助スペーサー482による合計の傾斜角αは、回転角βの関数であり、例えば近似的には
α=2θcos(β/2)
と表すことでき、傾斜角αを0~2θの範囲で変化させることができる。つまり、コア部61が1′傾くことで0.09λrmsのコマ収差が発生する場合、0.03λrmsのコマ収差が発生しているレンズOLを修正するためには、10″=1′÷3÷2の傾斜角θをそれぞれ有するスペーサー65と補助スペーサー482とを組み合わせて使用すればよい。ここで、スペーサー65と補助スペーサー482との相対的な回転角βは、例えば45°単位で変化させることができる。なお、係合部82h,65gを8角以上の多角形断面とすることにより、45°よりも小刻みに相対的な回転角βを調整することができ、合計の傾斜角αをある程度自由に変化させることができる。
Here, the meaning of combining the spacer 65 and the auxiliary spacer 482 will be described. When the direction of the inclination angle θ of the spacer 65 and the direction of the inclination angle θ of the auxiliary spacer 482 are on the opposite side across the central axis CX, the combined thickness of the spacer 65 and the auxiliary spacer 482 is uniform. The contact surfaces 82j and 65h on both sides are substantially parallel. For this reason, the core part 61 will be in the state which is not given the inclination especially. Conversely, when the direction of the inclination angle θ of the spacer 65 and the direction of the inclination angle θ of the auxiliary spacer 482 are on the same side across the central axis CX, the angle formed by the contact surfaces 82j and 65h on both sides, that is, the total The inclination angle α is 2θ. When the relative rotation angle formed by the inclination direction of the spacer 65 and the inclination direction of the auxiliary spacer 482 is β, the total inclination angle α by the spacer 65 and the auxiliary spacer 482 is a function of the rotation angle β. Specifically, α = 2θ cos (β / 2)
The inclination angle α can be changed in the range of 0 to 2θ. That is, when the coma aberration of 0.09λrms is generated by tilting the core 61 by 1 ′, 10 ″ = 1 ′ ÷ 3 ÷ in order to correct the lens OL in which the coma aberration of 0.03λrms is generated. The spacer 65 having the inclination angle θ of 2 and the auxiliary spacer 482 may be used in combination, where the relative rotation angle β between the spacer 65 and the auxiliary spacer 482 is changed in units of 45 °, for example. In addition, by making the engaging portions 82h and 65g have a polygonal cross section of eight or more angles, the relative rotation angle β can be adjusted in increments of 45 °, and the total inclination angle α can be adjusted to some extent. It can be changed freely.
 以上のように、本実施形態の場合、スペーサー65と補助スペーサー482との相対的な回転位置を調整することで、コア部61の傾斜角を簡易に増減させることができる。 As described above, in the case of this embodiment, the inclination angle of the core portion 61 can be easily increased or decreased by adjusting the relative rotational positions of the spacer 65 and the auxiliary spacer 482.
 なお、スペーサー65と補助スペーサー482との配置は入れ替えることができる。また、スペーサー65の傾斜角θと補助スペーサー482の傾斜角θとを異なる値に設定しても、傾斜角αを同様に滑らかに増減させることができる。 Note that the arrangement of the spacer 65 and the auxiliary spacer 482 can be interchanged. Even if the inclination angle θ of the spacer 65 and the inclination angle θ of the auxiliary spacer 482 are set to different values, the inclination angle α can be increased or decreased smoothly in the same manner.
 〔第5実施形態〕
 以下、第5実施形態に係る光学素子用の成形金型等について説明する。なお、第5実施形態に係る成形金型や製造方法は、第1又は第4実施形態を変形したものであり、特に説明しない部分については、第1実施形態等と同様であるものとする。
[Fifth Embodiment]
Hereinafter, a molding die for an optical element according to the fifth embodiment will be described. Note that the molding die and the manufacturing method according to the fifth embodiment are modifications of the first or fourth embodiment, and parts that are not particularly described are the same as those of the first embodiment.
 図10に示すように、可動金型542において、支持部62内には、コア部561と、スペーサー65とが保持されている。コア部561は、図8等に示すコア部61と図9(B)に示す補助スペーサー482とを接続して一体化したと同様のものであり、コア部561のうち傾斜部582が図9(B)に示す補助スペーサー482に対応する。コア部561とスペーサー65との相対的な回転角βを調整することで、コア部561の傾斜部582に対するスペーサー65の相対的な回転角βを調整することができ、コア部561の傾斜角αを例えば0~2θの範囲で変化させることができる。 As shown in FIG. 10, in the movable mold 542, a core portion 561 and a spacer 65 are held in the support portion 62. The core portion 561 is similar to the core portion 61 shown in FIG. 8 or the like and the auxiliary spacer 482 shown in FIG. 9B connected and integrated, and the inclined portion 582 of the core portion 561 has the inclined portion 582 shown in FIG. This corresponds to the auxiliary spacer 482 shown in FIG. By adjusting the relative rotation angle β between the core portion 561 and the spacer 65, the relative rotation angle β of the spacer 65 with respect to the inclined portion 582 of the core portion 561 can be adjusted. α can be changed, for example, in the range of 0 to 2θ.
 〔第6実施形態〕
 以下、第6実施形態に係る光学素子用の成形金型等について説明する。なお、第6実施形態に係る成形金型や製造方法は、第1実施形態等を変形したものであり、特に説明しない部分については、第1実施形態等と同様であるものとする。
[Sixth Embodiment]
Hereinafter, a molding die for optical elements according to the sixth embodiment will be described. Note that the molding die and the manufacturing method according to the sixth embodiment are modifications of the first embodiment and the like, and parts that are not particularly described are the same as those of the first embodiment.
 図11に示すように、成形金型640において、固定金型641は、コア部51と、スペーサー55と、支持部52と、型板53と、取付板54とを備える。固定金型641において、コア部51と、スペーサー55と、支持部52と、型板53と、取付板54とは、可動金型42におけるコア部61と、スペーサー65と、支持部62と、型板63と、取付板64とにそれぞれ対応する機能を有しており、適当に設定された傾斜角θを有するスペーサー55に交換することで、コア部51の傾斜角を調整できるようになっている。なお、スペーサー55は、傾斜角θを有するスペーサー65に限らず、図6(A)に示すスペーサー265、図7(A)に示すスペーサー365等に置き換えることができ、図8に示す補助スペーサー482に置き換えることができる。 As shown in FIG. 11, in the molding die 640, the fixed die 641 includes a core part 51, a spacer 55, a support part 52, a mold plate 53, and a mounting plate 54. In the fixed mold 641, the core part 51, the spacer 55, the support part 52, the mold plate 53, and the mounting plate 54 are the core part 61, the spacer 65, the support part 62 in the movable mold 42, Each of the mold plates 63 and the mounting plate 64 has a corresponding function, and the inclination angle of the core portion 51 can be adjusted by exchanging the spacer 55 with an appropriately set inclination angle θ. ing. The spacer 55 is not limited to the spacer 65 having the inclination angle θ, but can be replaced with a spacer 265 shown in FIG. 6A, a spacer 365 shown in FIG. 7A, or the like, and an auxiliary spacer 482 shown in FIG. Can be replaced.
 なお、上記第6実施形態において、固定金型641にのみスペーサー55を設け、可動金型42のスペーサー65等を省略することもできる。 In the sixth embodiment, the spacer 55 may be provided only on the fixed mold 641 and the spacer 65 of the movable mold 42 may be omitted.
 また、上記第6実施形態において、例えば固定金型641のスペーサー55を粗調整用とし、可動金型42のスペーサー65を微調整用として用いることもできる。 In the sixth embodiment, for example, the spacer 55 of the fixed mold 641 can be used for coarse adjustment, and the spacer 65 of the movable mold 42 can be used for fine adjustment.
 以上実施形態に即して本発明を説明したが、本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。例えば、上記実施形態では、スペーサー65,165,265,365,55が円板状であるとしたが、その他の輪郭形状を有するものとすることができる。 Although the present invention has been described based on the above embodiments, the present invention is not limited to the above embodiments, and various modifications are possible. For example, in the above embodiment, the spacers 65, 165, 265, 365, and 55 are disk-shaped, but may have other contour shapes.
 また、図4(A)等に示すスペーサー65は、傾斜角θを形成できるものであれば足り、当接面65f,65hが部分的に欠落していても、同様に機能させることができる。例えば、図12(A)及び12(B)に示すように、固定的な突起781mを形成することによっても、実施的に傾斜角θを生じさせることができる。 Further, the spacer 65 shown in FIG. 4A or the like is sufficient if it can form the inclination angle θ, and can function in the same manner even when the contact surfaces 65f and 65h are partially missing. For example, as shown in FIGS. 12A and 12B, the inclination angle θ can be effectively generated by forming a fixed protrusion 781m.

Claims (14)

  1.  光学素子の光学面に対応する光学面形成面を先端に有するコア部と、
     前記コア部の周囲に配置されるとともに先端側に前記コア部の光学面形成面を露出させる開口を有する支持部と、
     前記コア部を前記光学面形成面の反対側から支持するとともに、前記支持部に対する前記コア部の傾斜姿勢を調整するスペーサーとを備え、
     前記支持部の前記開口の直径をD、前記コア部の前記先端の直径をdとした場合に、寸法差D-dは、
    1/1000(mm)≦D-d≦1/100(mm)
    の関係を満たすことを特徴とする光学素子用の成形金型。
    A core portion having an optical surface forming surface at the tip corresponding to the optical surface of the optical element;
    A support part that is disposed around the core part and has an opening that exposes the optical surface forming surface of the core part on the tip side;
    And supporting the core part from the opposite side of the optical surface forming surface, and a spacer for adjusting the inclination posture of the core part with respect to the support part,
    When the diameter of the opening of the support portion is D and the diameter of the tip of the core portion is d, the dimensional difference D−d is:
    1/1000 (mm) ≤ Dd ≤ 1/100 (mm)
    The molding die for optical elements characterized by satisfying the above relationship.
  2.  前記スペーサーは、前記コア部の軸のまわりに回転可能な形状を有することを特徴とする請求項1に記載の光学素子用の成形金型。 2. The molding die for an optical element according to claim 1, wherein the spacer has a shape rotatable around an axis of the core portion.
  3.  固定金型と可動金型とを備え、
     前記スペーサーは、前記固定金型と前記可動金型との一方に設けた前記コア部を前記光学面形成面の反対側から支持することを特徴とする請求項1に記載の光学素子用の成形金型。
    It has a fixed mold and a movable mold,
    2. The molding for an optical element according to claim 1, wherein the spacer supports the core portion provided on one of the fixed mold and the movable mold from the opposite side of the optical surface forming surface. Mold.
  4.  固定金型と可動金型とを備え、
     前記スペーサーは、前記固定金型と前記可動金型とにそれぞれ設けた前記コア部を前記光学面形成面の反対側から支持することを特徴とする請求項1に記載の光学素子用の成形金型。
    It has a fixed mold and a movable mold,
    2. The molding die for an optical element according to claim 1, wherein the spacer supports the core portions respectively provided on the fixed die and the movable die from the opposite side of the optical surface forming surface. Type.
  5.  前記スペーサーは、傾斜角を設けた板状体であることを特徴とする請求項1に記載の光学素子用の成形金型。 2. The molding die for an optical element according to claim 1, wherein the spacer is a plate-like body provided with an inclination angle.
  6.  前記スペーサーは、平板状の部材であり、板面の一方側に突起を有することを特徴とする請求項1に記載の光学素子用の成形金型。 The molding die for an optical element according to claim 1, wherein the spacer is a flat plate member and has a protrusion on one side of the plate surface.
  7.  前記スペーサーによる前記コア部の傾斜方向及び傾斜角は、試験的に作製された光学素子のコマ収差に基づいて調整されていることを特徴とする請求項1に記載の光学素子用の成形金型。 2. The molding die for an optical element according to claim 1, wherein an inclination direction and an inclination angle of the core portion by the spacer are adjusted based on a coma aberration of an optical element produced on a trial basis. .
  8.  光学素子の光学面に対応する光学面形成面を先端に有するコア部と、
     前記コア部の周囲に配置されるとともに先端側に前記コア部の光学面形成面を露出させる開口を有する支持部と、
     前記コア部を前記光学面形成面の反対側から支持するとともに、前記支持部に対する前記コア部の傾斜姿勢を調整するスペーサーとを備え、
     前記スペーサーに対する配置関係を変化させることによって、前記コア部の前記先端の前記支持部に対する傾斜角を修正する修正手段をさらに備える光学素子用の成形金型。
    A core portion having an optical surface forming surface at the tip corresponding to the optical surface of the optical element;
    A support part that is disposed around the core part and has an opening that exposes the optical surface forming surface of the core part on the tip side;
    And supporting the core part from the opposite side of the optical surface forming surface, and a spacer for adjusting the inclination posture of the core part with respect to the support part,
    A molding die for an optical element, further comprising correcting means for correcting an inclination angle of the tip of the core portion with respect to the support portion by changing an arrangement relationship with respect to the spacer.
  9.  前記スペーサーは、傾斜角を設けた板状体であり、前記修正手段は、前記スペーサーに重ね合わせて配置されるとともに傾斜角を設けた板状体であることを特徴とする請求項8に記載の光学素子用の成形金型。 9. The spacer according to claim 8, wherein the spacer is a plate-like body provided with an inclination angle, and the correction means is a plate-like body provided so as to be superimposed on the spacer and provided with an inclination angle. Molds for optical elements.
  10.  前記スペーサーは、傾斜角を設けた板状体であり、前記修正手段は、前記コア部の根元側に設けられて前記スペーサーに当接するとともに傾斜角を設けた板状部分であることを特徴とする請求項8に記載の光学素子用の成形金型。 The spacer is a plate-like body provided with an inclination angle, and the correction means is a plate-like portion provided on the base side of the core portion and contacting the spacer and having an inclination angle. A molding die for an optical element according to claim 8.
  11.  前記スペーサーは、板状体であり、前記修正手段は、前記スペーサーの板面の一方側に嵌合するとともに突起量を変更可能に形成された突起部材であることを特徴とする請求項8に記載の光学素子用の成形金型。 9. The spacer according to claim 8, wherein the spacer is a plate-like body, and the correction means is a protruding member that is fitted to one side of the plate surface of the spacer and is capable of changing the amount of protrusion. The molding die for optical elements as described.
  12.  前記スペーサーは、板状体であり、前記修正手段は、前記スペーサーの板面の一方側に嵌合するとともに嵌合位置を変更可能に形成された突起部材であることを特徴とする請求項8に記載の光学素子用の成形金型。 9. The spacer according to claim 8, wherein the spacer is a plate-like body, and the correcting means is a protruding member that is fitted to one side of the plate surface of the spacer and is capable of changing the fitting position. A molding die for an optical element as described in 1.
  13.  光学素子の光学面に対応する光学面形成面を先端に有するコア部と、前記コア部の周囲に配置されるとともに先端側に前記コア部の光学面形成面を露出させる開口を有する支持部と、前記コア部を前記光学面形成面の反対側から支持するスペーサーとを有する成形金型を用いた光学素子の製造方法であって、
     前記スペーサーによって前記支持部に対する前記コア部の傾斜姿勢を調整し、
     前記支持部の前記開口の直径をD、前記コア部の前記先端の直径をdとした場合に、寸法差D-dは、
    1/1000(mm)≦D-d≦1/100(mm)
    の関係を満たすことを特徴とする光学素子の製造方法。
    A core portion having an optical surface forming surface corresponding to the optical surface of the optical element at the tip, and a support portion disposed around the core portion and having an opening exposing the optical surface forming surface of the core portion on the tip side; , A manufacturing method of an optical element using a molding die having a spacer that supports the core portion from the opposite side of the optical surface forming surface,
    Adjusting the inclination posture of the core part with respect to the support part by the spacer;
    When the diameter of the opening of the support portion is D and the diameter of the tip of the core portion is d, the dimensional difference D−d is:
    1/1000 (mm) ≤ Dd ≤ 1/100 (mm)
    The manufacturing method of the optical element characterized by satisfy | filling these relationships.
  14.  光学素子の光学面に対応する光学面形成面を先端に有するコア部と、前記コア部の周囲に配置されるとともに先端側に前記コア部の光学面形成面を露出させる開口を有する支持部と、前記コア部を前記光学面形成面の反対側から支持するスペーサーとを有する成形金型を用いた光学素子の製造方法であって、
     前記スペーサーによって前記支持部に対する前記コア部の傾斜姿勢を調整し、
     修正手段により前記スペーサーに対する配置関係を変化させることによって、前記コア部の前記先端の前記支持部に対する傾斜角を修正することを特徴とする光学素子の製造方法。
    A core portion having an optical surface forming surface corresponding to the optical surface of the optical element at the tip, and a support portion disposed around the core portion and having an opening exposing the optical surface forming surface of the core portion on the tip side; , A manufacturing method of an optical element using a molding die having a spacer that supports the core portion from the opposite side of the optical surface forming surface,
    Adjusting the inclination posture of the core part with respect to the support part by the spacer;
    A method of manufacturing an optical element, wherein an inclination angle of the tip of the core portion with respect to the support portion is corrected by changing an arrangement relationship with respect to the spacer by correction means.
PCT/JP2011/063890 2010-06-30 2011-06-17 Molding die for optical element, and method for manufacturing optical element WO2012002172A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012522558A JPWO2012002172A1 (en) 2010-06-30 2011-06-17 Mold for optical element and method for manufacturing optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-149613 2010-06-30
JP2010149613 2010-06-30

Publications (1)

Publication Number Publication Date
WO2012002172A1 true WO2012002172A1 (en) 2012-01-05

Family

ID=45401895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063890 WO2012002172A1 (en) 2010-06-30 2011-06-17 Molding die for optical element, and method for manufacturing optical element

Country Status (2)

Country Link
JP (1) JPWO2012002172A1 (en)
WO (1) WO2012002172A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096311A (en) * 2013-11-15 2015-05-21 コニカミノルタ株式会社 Molding die for optical element, and molding method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159311A (en) * 1991-12-11 1993-06-25 Konica Corp Optical disk device
JP2004284116A (en) * 2003-03-20 2004-10-14 Matsushita Electric Ind Co Ltd Mold for molding optical element, optical element molding method and optical element
JP2007301744A (en) * 2006-05-09 2007-11-22 Matsushita Electric Ind Co Ltd Mold for molding resin lens and resin lens molding method
JP2008183754A (en) * 2007-01-29 2008-08-14 Matsushita Electric Ind Co Ltd Lens molding mold

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159311A (en) * 1991-12-11 1993-06-25 Konica Corp Optical disk device
JP2004284116A (en) * 2003-03-20 2004-10-14 Matsushita Electric Ind Co Ltd Mold for molding optical element, optical element molding method and optical element
JP2007301744A (en) * 2006-05-09 2007-11-22 Matsushita Electric Ind Co Ltd Mold for molding resin lens and resin lens molding method
JP2008183754A (en) * 2007-01-29 2008-08-14 Matsushita Electric Ind Co Ltd Lens molding mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096311A (en) * 2013-11-15 2015-05-21 コニカミノルタ株式会社 Molding die for optical element, and molding method

Also Published As

Publication number Publication date
JPWO2012002172A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
US10365450B2 (en) Auto-centering of an optical element within a barrel
JP5704172B2 (en) Molding equipment
JP5559132B2 (en) Device for positioning the bridge on the plate
JP3664522B2 (en) Optical element molding die, optical element molding method, and optical element
US20140247488A1 (en) Lens, lens unit, and lens manufacturing method
US8711482B2 (en) Pressing mold for optical lenses and method for manufacturing glass optical lenses
WO2012002172A1 (en) Molding die for optical element, and method for manufacturing optical element
CN101909842A (en) Optical element manufacturing method, and optical element forming mold
WO2014073323A1 (en) Molding device and molding method
JP2022520483A (en) Centering of optics using edge contact mounting
JP6485449B2 (en) Mold for optical element and method for manufacturing optical element
JP5189420B2 (en) Resin lens and resin lens molding method
JP2006327009A (en) Mold
JP2006298692A (en) Method for manufacturing beam shaping element, and beam shaping element manufactured by the same
WO2011122201A1 (en) Molding die and method for manufacturing optical element
KR20030072554A (en) Fresnel lens and die for the same
JP5413260B2 (en) Aperture device and lens barrel
JP6277682B2 (en) Mold for optical element and molding method
JP2011177997A (en) Molding mold for optical element and method of manufacturing optical element
JP2008030160A (en) Method for centering circular lens and method for manufacturing circular lens using the method
EP3770663A1 (en) Space ring, lens system, method for manufacturing space ring, and method for assembling lens system
JP5416633B2 (en) Resin lens and resin lens manufacturing method
JP2007111917A (en) Mold and mold assembling method
JP2012071546A (en) Method of manufacturing optical element and molding die
JP2007331111A (en) Mirror surface piece, mold assembly, optical element and processing method of mirror surface piece

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800637

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522558

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800637

Country of ref document: EP

Kind code of ref document: A1