WO2011117108A1 - Verfahren zum prüfen der funktionalität eines abgasrückführventils einer brennkraftmaschine - Google Patents

Verfahren zum prüfen der funktionalität eines abgasrückführventils einer brennkraftmaschine Download PDF

Info

Publication number
WO2011117108A1
WO2011117108A1 PCT/EP2011/053871 EP2011053871W WO2011117108A1 WO 2011117108 A1 WO2011117108 A1 WO 2011117108A1 EP 2011053871 W EP2011053871 W EP 2011053871W WO 2011117108 A1 WO2011117108 A1 WO 2011117108A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
signal
gas recirculation
measurement signal
recirculation valve
Prior art date
Application number
PCT/EP2011/053871
Other languages
English (en)
French (fr)
Inventor
Thomas Breitbach
Jens Pawlak
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to RU2012145008/07A priority Critical patent/RU2560091C2/ru
Priority to CN201180015142.XA priority patent/CN102791995B/zh
Priority to BR112012024042-0A priority patent/BR112012024042B1/pt
Publication of WO2011117108A1 publication Critical patent/WO2011117108A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1408Dithering techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/1038Sensors for intake systems for temperature or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/10386Sensors for intake systems for flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method for testing the functionality of an exhaust gas recirculation valve of an internal combustion engine.
  • Exhaust gas recirculation (EGR) valves are used in internal combustion engines to produce a mixture of fresh air and recirculated exhaust gas in the intake manifold and so to improve the combustion behavior, in particular with regard to a consumption and emission minimization.
  • the exhaust gas recirculation reduces the NOx emission.
  • a continuously adjustable exhaust gas recirculation valve is used and its open position regulated.
  • the invention is based on the measure of applying a periodically modulated signal to the actuator of an EGR valve and influencing a system output influenced by it, e.g. the signal of the boost pressure
  • the method is applicable in wide operating ranges of the engine, in particular both stationary and dynamic, and can thus meet the requirement of a continuous diagnosis.
  • the proposed concept can get along with already existing sensors and actuators, which are installed as standard in the vehicle, so that no additional costs for other sensors or actuators or ECU hardware arise.
  • the functionality of the exhaust gas recirculation valve can be checked at any time. With a small modulation of the control signal, the soot / NOx ratio can be considered approximately as linear, so that the method has no influence on the total emission.
  • the method thus basically intervenes in the EGR control, there is nevertheless no appreciable influence on the emission, which makes the invention particularly well applicable in practice.
  • the invention is suitable for internal combustion engines with self-ignition or spark ignition.
  • a periodic control signal a sinusoidal signal or a rectangular signal can be used.
  • a square wave signal is better reproducible at a lower sampling rate than a sine wave signal of the same frequency.
  • any periodic signal is suitable for modulation.
  • a Fourier analysis or a lock-in method can be used.
  • the additional advantage of a phase-sensitive method, in particular a lock-in method is that it directly measures the characteristic of the controlled system as a function of the position of the actuator can be. In order to assess the functionality, it is then only necessary to monitor a characteristic gradient with regard to predetermined threshold values. This can be in addition to a stiffness of the EGR valve and any change in the control path characteristic, for example, by aging of return springs, sooting of the valve, manipulation u.ä. recognize reliably.
  • An arithmetic unit according to the invention e.g. a control device of a motor vehicle is, in particular programmatically, configured to perform a method according to the invention.
  • FIG. 1 shows a schematic representation of an internal combustion engine with a control unit.
  • FIG. 2 schematically shows a flowchart of different alternatives of a preferred embodiment of a method according to the invention.
  • FIG. 1 shows an internal combustion engine 1 in which a piston 2 can be moved up and down in a cylinder 3.
  • the cylinder 3 is provided with a combustion chamber 4, to which via valves 5, an intake pipe 6 and an exhaust pipe 7 are connected.
  • the intake pipe 6 is connected to the exhaust pipe 7 via an exhaust gas recirculation valve 13 with a valve flap 13a as an actuator for external exhaust gas recirculation.
  • the valve flap 13a can be controlled by a signal (EGR) from a control unit (ECU) 16.
  • the valve flap 13a can be controlled by a signal (EGR) from a control unit (ECU) 16.
  • the valve flap 13a can be controlled by a signal (EGR) from a control unit (ECU) 16.
  • ECU control
  • a boost pressure sensor 18 which outputs a signal LD indicating the boost pressure in the intake manifold, and a throttle valve 12 whose rotational position is adjustable by means of a signal DK housed.
  • the turbocharger compressor would be arranged in turbocharged engines.
  • the intake pipe 6 is further provided with an air mass sensor 10 and the exhaust pipe 7 with a lambda sensor 1 1.
  • the air mass sensor 10 measures the air mass of the fresh air supplied to the intake pipe 6 and generates a signal LM in response thereto.
  • the lambda sensor 1 1 measures the oxygen content of the exhaust gas in the exhaust pipe 7 and generates a signal lambda ( ⁇ ) in dependence thereon.
  • the lambda probe 11 is an exhaust system (not shown) including a catalytic converter, for example a 3-way catalytic converter, followed by. In the case of turbocharged engines, the turbine of a turbocharger would be installed after the lambda probe.
  • a crankshaft 14 is rotated by the driven piston, which ultimately drives the wheels of the motor vehicle.
  • an internal combustion engine with external or self-ignition may have more than one cylinder, which are assigned to the same crankshaft and the same exhaust pipe and form an exhaust bank.
  • the valve flap 13a are controlled modulated by the control unit 16 and, for example, the charge pressure LD and / or the air mass LM evaluated.
  • the control unit 16 is provided with a microprocessor which has stored in a storage medium, in particular in a read only memory (ROM), a program which is adapted to perform the entire control and / or regulation of the internal combustion engine 1.
  • the control unit 16 is set up to carry out a method according to the invention.
  • the control unit 16 is acted upon by input signals representing operating variables of the internal combustion engine measured by means of sensors.
  • the control unit 16 with the air mass sensor 10, the lambda sensor 1 1 and the boost pressure sensor 18 is connected.
  • the control unit 16 is connected to an accelerator pedal sensor 17, which generates a signal FP, which indicates the position of a driver-actuated accelerator pedal and thus the torque requested by the driver.
  • the control unit 16 generates output signals with which the behavior of the internal combustion engine 1 can be influenced in accordance with the desired control and / or regulation via actuators.
  • the control unit 16 is connected to the EGR valve 13, the injection valve 8, the spark plug 9 and the throttle valve 12 and generates the signals required for their control EGR, Tl, ZW and DK.
  • the course of several preferred alternatives of a method according to the invention will be explained below with reference to FIG. These embodiments may be based on an internal combustion engine according to FIG.
  • the illustrated steps do not necessarily take place one after the other, but can also take place parallel in time.
  • the method begins in an optional step 101, in which the presence of corresponding release conditions is checked and the functionality check or diagnosis method is started if necessary.
  • the actuator 13a of the EGR valve 13 is excited with a periodic signal having a predetermined amplitude and frequency, ie, a modulation signal is superimposed on the normal actuating signal.
  • the modulation signal may preferably be sinusoidal in accordance with 103a or rectangular in accordance with 103b. It should be understood, however, that in principle any periodic signal may be used for modulation.
  • a system variable influenced by the setting movement or position of the actuator or actuator 13a is measured, wherein it is expedient according to 105a to the measurement signal LM of an air mass meter 10, for example a hot-film air mass meter, or according to 105b the measurement signal LD of a boost pressure sensor 18 can act. It should also be clarified here that in principle any system size can be measured, which is influenced by the adjusting movement of the actuator 13a.
  • a moving average value of the measurement signal is calculated by means of low-pass filtering and this is subtracted from the original measurement signal in a step 107 in order to increase the robustness of the diagnosis.
  • the subtraction result is evaluated as a new measurement signal, whereby according to 108a a Fourier analysis or according to 108b a phase-sensitive lock-in method is offered.
  • the Fourier analysis according to 108a the Fourier spectrum is examined for the occurrence of the excitation frequency with a significantly higher amplitude than adjacent amplitudes. This can be done using a threshold comparison.
  • the measured characteristic gradient is compared with a predetermined characteristic gradient. This can also be done using a threshold comparison.
  • the modulation frequency is expediently detected selectively in the measurement signal. Due to the fixed phase relationship between modulation and measuring signal, this can be a very good
  • a symptom formation is performed on the basis of the respective comparison result (for example the integration of relevant frequencies over specific time intervals or other types of symptom formation) and finally in a step 1 10 a symptom evaluation or error detection is performed.
  • This evaluation is made e.g. by a comparison (larger / smaller / the same) with an application-specific threshold value or a difference formation (sign of the result), in order to conclude the intact or error case.
  • a faulty or intact exhaust gas recirculation valve can be detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Testing Of Engines (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Prüfen der Funktionalität eines Abgasrückführventils (13) einer Brennkraftmaschine (1), wobei die Position eines Stellgliedes (13a) des Abgasrückführventils (13) periodisch verändert wird, eine von der Bewegung des Stellglieds (13a) beeinflusste Systemgröße (LM, LD) gemessen wird und das Messsignal zum Prüfen der Funktionalität des Abgas- rückführventils (13) ausgewertet wird.

Description

Beschreibung Titel
Verfahren zum Prüfen der Funktionalität eines Abgasrückführventils einer Brennkraftmaschine
Die vorliegende Erfindung betrifft ein Verfahren zum Prüfen der Funktionalität eines Abgasrückführventils einer Brennkraftmaschine.
Stand der Technik
Abgasrückführventile (AGR-Ventile) werden in Brennkraftmaschinen eingesetzt, um im Saugrohr ein Gemisch aus Frischluft und rückgeführtem Abgas zu erzeugen und so das Brennverhalten, insbesondere im Hinblick auf eine Verbrauchsund Emissionsminimierung, zu verbessern. Beispielsweise vermindert die Abgasrückführung die NOx-Emission. Für die Abgasrückführung vom Abgasrohr zum Saugrohr wird ein kontinuierlich verstellbares Abgasrückführventil eingesetzt und dessen Öffnungsstellung geregelt. Während des Betriebs kann es jedoch aufgrund von Verschmutzung, Verrußung, Alterung usw. zu einer Störung der Funktionalität, insbesondere durch eine Abweichung der Ist-Stellung von der Soll- Stellung, kommen. Dies wirkt sich negativ auf die Verbrennung aus.
Es ist daher wünschenswert, die Funktionalität eines Abgasrückführventils einfach und zuverlässig prüfen zu können.
Offenbarung der Erfindung
Erfindungsgemäß wird ein Verfahren mit den Merkmalen des Patentanspruchs 1 vorgeschlagen. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche sowie der nachfolgenden Beschreibung. Vorteile der Erfindung
Die Erfindung basiert im Wesentlichen auf der Maßnahme, den Steller eines AGR-Ventils mit einem periodisch modulierten Signal zu beaufschlagen und ei- nen davon beeinflussten Systemausgang, z.B. das Signal des Ladedruck-
Sensors oder das Signal des Luftmassen-Sensors, im Frequenzbereich zu analysieren. Das Verfahren ist in weiten Betriebsbereichen des Motors, insbesondere sowohl stationär als auch dynamisch, anwendbar und kann so die Anforderung einer kontinuierlichen Diagnose erfüllen. Das vorgeschlagene Konzept kann mit ohnehin vorhandenen Sensoren und Aktoren auskommen, die serienmäßig im Fahrzeug verbaut sind, so dass keine Zusatzkosten für weitere Sensorik oder Aktorik oder Steuergerätehardware entstehen. Bei einer kontinuierlichen Durchführung des Verfahrens kann zu jedem Zeitpunkt die Funktionalität des Abgas- rückführventils überprüft werden. Bei einer kleinen Modulation des Stellsignals kann das Ruß/NOx-Verhältnis näherungsweise als linear betrachtet werden, so dass das Verfahren keinen Einfluss auf die Gesamtemission nimmt. Obwohl das Verfahren somit grundsätzlich in die AGR-Regelung eingreift, findet dennoch kein nennenswerter Einfluss auf die Emission statt, was die Erfindung in der Praxis besonders gut anwendbar macht. Die Erfindung ist für Brennkraftmaschinen mit Selbst- oder Fremdzündung geeignet.
Als periodisches Stellsignal kann ein sinusförmiges Signal oder ein Rechtecksignal eingesetzt werden. Ein Rechtecksignal ist bei geringerer Abtastrate besser darstellbar als ein Sinussignal gleicher Frequenz. Prinzipiell ist jedoch jedes peri- odische Signal zur Modulation geeignet.
Es bietet sich an, einen gleitenden Mittelwert (Tiefpassfilterung) des Messsignals zu berechnen und diesen Mittelwert vom Messsignal zu subtrahieren, um die Robustheit der Diagnose zu steigern.
Zur Auswertung des Messsignals kann eine Fourieranalyse oder ein Lock-In- Verfahren dienen. Der zusätzliche Vorteil eines phasenempfindlichen Verfahrens, insbesondere eines Lock-In-Verfahrens, besteht darin, dass hiermit direkt die Kennlinie der Regelstrecke in Abhängigkeit von der Stellerposition gemessen werden kann. Zur Beurteilung der Funktionalität muss dann lediglich ein Kennliniengradient im Hinblick auf vorbestimmte Schwellwerte überwacht werden. Hierdurch lässt sich zusätzlich zu einer Schwergängigkeit des AGR-Ventils auch eine eventuell auftretende Änderung der Regelstreckenkennlinie, z.B. durch Alterung von Rückstellfedern, Versottung des Ventils, Manipulation u.ä. zuverlässig erkennen.
Eine erfindungsgemäße Recheneinheit, z.B. ein Steuergerät eines Kraftfahrzeugs, ist, insbesondere programmtechnisch, dazu eingerichtet, ein erfindungsgemäßes Verfahren durchzuführen.
Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und der beiliegenden Zeichnung.
Es versteht sich, dass die vorstehend genannten und die nachfolgend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Die Erfindung ist anhand von Ausführungsbeispielen in der Zeichnung schematisch dargestellt und wird im Folgenden unter Bezugnahme auf die Zeichnung ausführlich beschrieben.
Kurze Beschreibung der Zeichnungen
Figur 1 zeigt eine schematische Darstellung einer Brennkraftmaschine mit einem Steuergerät.
Figur 2 zeigt schematisch einen Ablaufplan unterschiedlicher Alternativen einer bevorzugten Ausführungsform eines erfindungsgemäßen Verfahrens.
Ausführungsform(en) der Erfindung ln Figur 1 ist eine Brennkraftmaschine 1 dargestellt, bei der ein Kolben 2 in einem Zylinder 3 auf- und abbewegbar ist. Der Zylinder 3 ist mit einem Brennraum 4 versehen, an den über Ventile 5 ein Ansaugrohr 6 und ein Abgasrohr 7 angeschlossen sind. Das Ansaugrohr 6 ist mit dem Abgasrohr 7 über ein Abgasrück- führventil 13 mit einer Ventilklappe 13a als Stellglied zur externen Abgasrückführung verbunden. Die Ventilklappe 13a ist mit einem Signal EGR von einem Steuergerät (ECU) 16 ansteuerbar. Des Weiteren sind mit dem Brennraum 4 ein mit einem Signal Tl ansteuerbares Einspritzventil 8 und eine mit einem Signal ZW ansteuerbare Zündkerze 9 verbunden. Die Brennkraftmaschine 1 gemäß Figur 1 beruht auf dem Fremdzündungsverfahren. Es sei jedoch klargestellt, dass die Er findung nicht vom Zündverfahren der Brennkraftmaschine abhängt und auch für Brennkraftmaschinen mit Selbstzündung gut geeignet ist.
In dem Ansaugrohr 6 sind ein Ladedrucksensor 18, der ein Signal LD ausgibt, das den Ladedruck im Saugrohr anzeigt, und eine Drosselklappe 12, deren Drehstellung mittels eines Signals DK einstellbar ist, untergebracht. Zwischen dem Luftmassensensor 10 und der Drosselklappe 12 wäre bei Motoren mit Turboaufladung der Kompressor eines Turboladers angeordnet.
Das Ansaugrohr 6 ist weiterhin mit einem Luftmassensensor 10 und das Abgasrohr 7 mit einem Lambda-Sensor 1 1 versehen. Der Luftmassensensor 10 misst die Luftmasse der dem Ansaugrohr 6 zugeführten Frischluft und erzeugt in Abhängigkeit davon ein Signal LM. Der Lambda-Sensor 1 1 misst den Sauerstoffgehalt des Abgases in dem Abgasrohr 7 und erzeugt in Abhängigkeit davon ein Signal Lambda (λ). Der Lambda-Sonde 1 1 ist eine Auspuffanlage (nicht gezeigt) einschließlich eines Katalysators, bspw. 3-Wege-Katalysators, nachgeschlossen Bei Motoren mit Turboaufladung wäre nach der Lambdasonde die Turbine eines Turboladers verbaut.
Im Betrieb wird durch den angetriebenen Kolben eine Kurbelwelle 14 in eine Drehbewegung versetzt, über die letztendlich die Räder des Kraftfahrzeugs angetrieben werden. Es versteht sich, dass eine Brennkraftmaschine mit Fremd- oder Selbstzündung mehr als einen Zylinder aufweisen kann, die derselben Kurbelwelle sowie demselben Abgasrohr zugeordnet sind und eine Abgasbank bilden. In bevorzugter Ausgestaltung der Erfindung werden die Ventilklappe 13a von dem Steuergerät 16 moduliert angesteuert und bspw. der Ladedruck LD und/oder die Luftmasse LM ausgewertet. Zu diesem Zweck ist das Steuergerät 16 mit einem Mikroprozessor versehen, der in einem Speichermedium, insbesondere in einem Read Only Memory (ROM) ein Programm abgespeichert hat, das dazu geeignet ist, die gesamte Steuerung und/oder Regelung der Brennkraftmaschine 1 durchzuführen. Das Steuergerät 16 ist zur Durchführung eines erfindungsgemäßen Verfahrens eingerichtet.
Das Steuergerät 16 ist von Eingangssignalen beaufschlagt, die mittels Sensoren gemessene Betriebsgrößen der Brennkraftmaschine darstellen. Beispielsweise ist das Steuergerät 16 mit dem Luftmassensensor 10, dem Lambda-Sensor 1 1 und dem Ladedruck-Sensor 18 verbunden. Des Weiteren ist das Steuergerät 16 mit einem Fahrpedalsensor 17 verbunden, der ein Signal FP erzeugt, das die Stellung eines von einem Fahrer betätigbaren Fahrpedals und damit das von dem Fahrer angeforderte Moment angibt. Das Steuergerät 16 erzeugt Ausgangssignale, mit den über Aktoren das Verhalten der Brennkraftmaschine 1 entsprechend der erwünschten Steuerung und/oder Regelung beeinflusst werden kann. Beispielsweise ist das Steuergerät 16 mit dem AGR-Ventil 13, dem Einspritzventil 8, der Zündkerze 9 und der Drosselklappe 12 verbunden und erzeugt die zu deren Ansteuerung erforderlichen Signale EGR, Tl, ZW und DK.
Nachfolgend wird anhand Figur 2 der Ablauf mehrerer bevorzugter Alternativen eines erfindungsgemäßen Verfahrens erläutert. Diesen Ausführungsformen kann eine Brennkraftmaschine gemäß Figur 1 zugrunde liegen. Die dargestellten Schritte finden nicht unbedingt nacheinander statt, sondern können auch zeitlich parallel erfolgen. Das Verfahren beginnt in einem optionalen Schritt 101 , in dem das Vorhandensein von entsprechenden Freigabebedingungen überprüft wird und das Funktio- nalitätsprüfungs- bzw. -diagnoseverfahren gegebenenfalls gestartet wird. In einem Schritt 102 wird der Steller 13a des AGR-Ventils 13 mit einem periodischen Signal mit vorbestimmter Amplitude und Frequenz angeregt, d.h. dem normalen Stellsignal wird ein Modulationssignal überlagert. Das Modulationssignal kann vorzugsweise gemäß 103a sinusförmig oder gemäß 103b rechteckför- mig ausgebildet sein. Es sei jedoch klargestellt, dass prinzipiell jedes periodische Signal zur Modulation verwendet werden kann.
In einem im Wesentlichen gleichzeitig stattfindenden Schritt 104 wird eine von der Stellbewegung bzw. Position des Stellers bzw. Stellglieds 13a beeinflusste Systemgröße gemessen, wobei es sich zweckmäßigerweise gemäß 105a um das Messsignal LM eines Luftmassenmessers 10, beispielsweise eines Heißfilm- luftmassenmessers, oder gemäß 105b um das Messsignal LD eines Ladedruckfühlers 18 handeln kann. Es sei auch hier klargestellt, dass prinzipiell jede Systemgröße gemessen werden kann, die von der Stellbewegung des Stellers 13a beeinflusst wird.
In einem anschließenden, optionalen Schritt 106 wird mittels einer Tiefpassfilterung ein gleitender Mittelwert des Messsignals berechnet und dieser in einem Schritt 107 von dem ursprünglichen Messsignal subtrahiert, um die Robustheit der Diagnose zu steigern.
Anschließend wird das Subtraktionsergebnis als neues Messsignal ausgewertet, wobei sich gemäß 108a eine Fourieranalyse oder gemäß 108b ein phasenempfindliches Lock-In-Verfahren anbietet. Bei der Fourieranalyse gemäß 108a wird das Fourierspektrum auf das Auftreten der Anregungsfrequenz mit einer deutlich höheren Amplitude als benachbarte Amplituden hin untersucht. Dies kann anhand eines Schwellwertvergleichs erfolgen. Bei dem Lock-In-Verfahren gemäß 108b wird der gemessene Kennliniengradient mit einem vorbestimmten Kennliniengradienten verglichen. Dies kann ebenfalls anhand eines Schwellwertvergleichs erfolgen. Dabei wird zweckmäßigerweise die Modulations-Frequenz selektiv in dem Messsignal nachgewiesen. Durch die feste Phasenbeziehung zwischen Modulation und Messsignal lässt sich hierbei eine sehr gute
Rausch-Unterdrückung erreichen. Zusätzlich ergibt sich die Möglichkeit, die Kennlinien- Steilheit des Stellers zu prüfen, da das Ausgangssignal eines Lock-In-Verstärkers proportional zum Kennlinien-Gradienten ist. Bei einem Steller mit nichtlinearer Kennlinie lässt sich so prüfen, ob die gewünschte Position des Stellers innerhalb vorgegebener Grenzen auch tatsächlich erreicht wurde.
In einem Schritt 109 wird anhand des jeweiligen Vergleichsergebnisses eine Symptombildung durchgeführt (z.B. die Integration relevanter Frequenzen über bestimmte Zeitintervalle oder andere Arten der Symptombildung) und schließlich in einem Schritt 1 10 eine Symptomauswertung bzw. Fehlererkennung durchgeführt. Diese Auswertung erfolgt z.B. durch einen Vergleich (größer/kleiner/gleich) mit einem anwendungsspezifischem Schwellwert oder eine Differenzbildung (Vorzeichen des Ergebnisses), um auf den Intakt- oder Fehlerfall zu schließen. Dadurch kann ein fehlerhaftes oder intaktes Abgasrückführventil erkannt werden.

Claims

Ansprüche
1 . Verfahren zum Prüfen der Funktionalität eines Abgasrückführventils (13) einer Brennkraftmaschine (1 ),
wobei die Position eines Stellgliedes (13a) des Abgasrückführventils (13) periodisch verändert wird (103a, 103b),
eine von der Bewegung des Stellglieds (13a) beeinflusste Systemgröße (LM, LD) gemessen wird (105a, 105b) und
das Messsignal zum Prüfen der Funktionalität des Abgasrückführventils (13) ausgewertet wird (106-1 10).
2. Verfahren nach Anspruch 1 , wobei als Systemgröße ein Ladedruck (LD) o- der eine Luftmasse (LM) in einem Saugrohr (6) gemessen wird.
3. Verfahren nach Anspruch 1 oder 2, wobei zum Auswerten des Messsignals eine Fourier-Transformation eingesetzt wird (108a).
4. Verfahren nach einem der vorstehenden Ansprüche, wobei zum Auswerten des Messsignals ein phasenempfindliches Verfahren, insbesondere ein Lock-In-Verfahren, eingesetzt wird (108b).
5. Verfahren nach einem der vorstehenden Ansprüche, wobei das Messsignal vor dem Auswerten gefiltert wird (106), insbesondere mittels eines Tiefpasses.
6. Verfahren nach Anspruch 5, wobei bei der Filterung ein gleitender Mittelwert des Messsignals gebildet wird (106) und vor dem Auswerten der gleitende Mittelwert von dem ursprünglichen Messsignal subtrahiert wird (107) und das Subtraktionsergebnis als neues Messsignal ausgewertet wird.
7. Verfahren nach einem der vorstehenden Ansprüche, wobei als periodisches Stellsignal ein sinusförmiges Signal oder ein Rechtecksignal eingesetzt wird (103a, 103b).
8. Recheneinheit, die dazu eingerichtet ist, ein Verfahren nach einem der vorstehenden Ansprüche durchzuführen.
PCT/EP2011/053871 2010-03-24 2011-03-15 Verfahren zum prüfen der funktionalität eines abgasrückführventils einer brennkraftmaschine WO2011117108A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2012145008/07A RU2560091C2 (ru) 2010-03-24 2011-03-15 Способ проверки функциональности клапана рециркуляции отработавших газов двигателя внутреннего сгорания
CN201180015142.XA CN102791995B (zh) 2010-03-24 2011-03-15 用于检查内燃机的废气再循环阀的功能的方法
BR112012024042-0A BR112012024042B1 (pt) 2010-03-24 2011-03-15 Processo para testar a funcionalidade de uma válvula de recirculação de gás de escape de um motor de combustão e unidade de cálculo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010003203.4 2010-03-24
DE102010003203A DE102010003203A1 (de) 2010-03-24 2010-03-24 Verfahren zum Prüfen der Funktionalität eines Abgasrückführventils einer Brennkraftmaschine

Publications (1)

Publication Number Publication Date
WO2011117108A1 true WO2011117108A1 (de) 2011-09-29

Family

ID=43799450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/053871 WO2011117108A1 (de) 2010-03-24 2011-03-15 Verfahren zum prüfen der funktionalität eines abgasrückführventils einer brennkraftmaschine

Country Status (5)

Country Link
CN (1) CN102791995B (de)
BR (1) BR112012024042B1 (de)
DE (1) DE102010003203A1 (de)
RU (1) RU2560091C2 (de)
WO (1) WO2011117108A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10704506B2 (en) 2018-01-22 2020-07-07 Ford Global Technologies, Llc Methods and systems for EGR valve diagnostics
US10941735B2 (en) 2018-01-22 2021-03-09 Ford Global Technologies, Llc Methods and systems for an exhaust-gas recirculation valve

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3511558B1 (de) * 2016-09-07 2020-05-13 Nissan Motor Co., Ltd. Motorsteuerungsverfahren und steuerungsvorrichtung
DE102016219781A1 (de) * 2016-10-12 2018-04-12 Robert Bosch Gmbh Verfahren und Steuergerät zum Abgleich und zur Diagnose eines Abgasrückführmassenstrommessers
CN112539121B (zh) * 2020-11-27 2022-03-01 潍柴动力股份有限公司 一种egr***的积碳在线检测方法、检测装置及机动车

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508926A (en) * 1994-06-24 1996-04-16 General Motors Corporation Exhaust gas recirculation diagnostic
US5996337A (en) * 1998-02-06 1999-12-07 Engelhard Corporation Dynamic calorimetric sensor system
DE10025133A1 (de) * 2000-05-20 2001-12-06 Volkswagen Ag Verfahren zum Überprüfen eines Abgasrückführungssystems
DE10225285A1 (de) * 2001-06-13 2002-12-19 Luk Lamellen & Kupplungsbau Verfahren und ein System zum Regeln des Drehmomentübertragungsvermögens einer reibschlüssig Drehmoment übertragenden Baugruppe
DE102005002540A1 (de) * 2004-01-20 2005-08-04 Honda Motor Co., Ltd. Leckdetektionsvorrichtung für ein Abgasrückführungssystem eines Motors
EP2014946A2 (de) * 2007-07-12 2009-01-14 LuK Lamellen und Kupplungsbau Beteiligungs KG Verfahren zur Tastpunktermittlung einer automatisierten Kupplung
DE102009027010A1 (de) * 2009-06-18 2010-12-23 Robert Bosch Gmbh Verfahren zur Diagnose eines Aktors eines Ladedrucksystems einer Brennkraftmaschine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4406281C2 (de) * 1993-03-01 1996-08-22 Mitsubishi Motors Corp Verfahren zum Bestimmen eines Ausfalls einer Vorrichtung zur Abgasrückführung
CA2521533A1 (en) * 2003-04-16 2004-10-28 Westport Research Inc. Internal combustion engine with injection of gaseous fuel
JP4487887B2 (ja) * 2005-09-02 2010-06-23 トヨタ自動車株式会社 内燃機関のバルブ制御装置
FR2919671B1 (fr) * 2007-08-03 2009-10-30 Sphere Tech Europ Sarl Procede de diagnostic d'un moteur a combustion interne par analyse des gaz d'echappement et dispositif de mise en oeuvre.
JP2009221992A (ja) * 2008-03-17 2009-10-01 Denso Corp 排出ガスセンサの異常診断装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508926A (en) * 1994-06-24 1996-04-16 General Motors Corporation Exhaust gas recirculation diagnostic
US5996337A (en) * 1998-02-06 1999-12-07 Engelhard Corporation Dynamic calorimetric sensor system
DE10025133A1 (de) * 2000-05-20 2001-12-06 Volkswagen Ag Verfahren zum Überprüfen eines Abgasrückführungssystems
DE10225285A1 (de) * 2001-06-13 2002-12-19 Luk Lamellen & Kupplungsbau Verfahren und ein System zum Regeln des Drehmomentübertragungsvermögens einer reibschlüssig Drehmoment übertragenden Baugruppe
DE102005002540A1 (de) * 2004-01-20 2005-08-04 Honda Motor Co., Ltd. Leckdetektionsvorrichtung für ein Abgasrückführungssystem eines Motors
EP2014946A2 (de) * 2007-07-12 2009-01-14 LuK Lamellen und Kupplungsbau Beteiligungs KG Verfahren zur Tastpunktermittlung einer automatisierten Kupplung
DE102009027010A1 (de) * 2009-06-18 2010-12-23 Robert Bosch Gmbh Verfahren zur Diagnose eines Aktors eines Ladedrucksystems einer Brennkraftmaschine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10704506B2 (en) 2018-01-22 2020-07-07 Ford Global Technologies, Llc Methods and systems for EGR valve diagnostics
US10941735B2 (en) 2018-01-22 2021-03-09 Ford Global Technologies, Llc Methods and systems for an exhaust-gas recirculation valve

Also Published As

Publication number Publication date
DE102010003203A1 (de) 2011-09-29
BR112012024042B1 (pt) 2020-09-29
RU2560091C2 (ru) 2015-08-20
RU2012145008A (ru) 2014-05-10
BR112012024042A2 (pt) 2016-08-30
CN102791995B (zh) 2016-03-30
CN102791995A (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
DE102009047829B4 (de) Verfahren zum Schätzen der NOx-Erzeugung in einem Verbrennungsprozess eines Viertaktverbrennungsmotors
DE112009001425B4 (de) Verfahren und Vorrichtung zur Kraftstoffsystemdiagnose durch Analyse des Motorkurbelwellen-Drehzahlsignals
EP1907683B1 (de) Zur dosierung von kraftstoff zu brennräumen eines verbrennungsmotors dienendes verfahren und steuergerät
DE102006014916B4 (de) Diagnoseverfahren für eine Abgassonde und Diagnosevorrichtung für eine Abgassonde
DE102017200290A1 (de) Verfahren und Computerprogrammprodukt zur Erkennung und Unterscheidung eines Durchflussfehlers und eines Dynamikfehlers einer Abgasrückführung
DE102011088296A1 (de) Verfahren und Vorrichtung zur Dynamiküberwachung von Gas-Sensoren
DE102015213825A1 (de) Verfahren und Vorrichtung zur Dynamiküberwachung eines Luftfüllungssystems einer Brennkraftmaschine
DE102005045888B3 (de) Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2011117108A1 (de) Verfahren zum prüfen der funktionalität eines abgasrückführventils einer brennkraftmaschine
WO2017021183A1 (de) Verfahren zur erkennung fehlerhafter komponenten eines kraftstoffeinspritzsystems
DE102016219781A1 (de) Verfahren und Steuergerät zum Abgleich und zur Diagnose eines Abgasrückführmassenstrommessers
DE102006057528A1 (de) System und Verfahren zum Überwachen von Partikelfilterleistung
DE102004041708A1 (de) Verfahren zur modellbasierten Bestimmung der während einer Ansaugphase in die Zylinderbrennkammer einer Brennkraftmaschine einströmenden Frischluftmasse
DE102013224766A1 (de) Verfahren und Messanordnung zur Bestimmung eines Frischluftmassenstromes
DE102007026945B4 (de) Verfahren und Vorrichtung zum Überprüfen eines Abgasrückführsystems und Computerprogramm zur Durchführung des Verfahrens
EP1797304A2 (de) Verfahren zum erfassen des umgebungsdrucks in einer brennkraftmaschiene
EP2076667B1 (de) Verfahren und vorrichtung zur überwachung eines kraftstoffeinspritzsystems
DE102007007815B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102004038733A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2011076551A1 (de) Verfahren und vorrichtung zur durchführung einer onboard-diagnose
DE102013218900A1 (de) Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
DE202014005514U1 (de) Elektronisches Steuergerät für einen Verbrennungsmotor
DE102005020139B4 (de) Verfahren und Vorrichtung zum Erkennen eines Verbrennungsaussetzers in einem Brennraum eines Zylinders einer Brennkraftmaschine
WO2017157580A1 (de) Verfahren und steuervorrichtung zum bestimmen einer menge einer füllungskomponente in einem zylinder einer verbrennungskraftmaschine
DE102007058234A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015142.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11708266

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 8109/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012145008

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 11708266

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012024042

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012024042

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120921