JP2009221992A - 排出ガスセンサの異常診断装置 - Google Patents

排出ガスセンサの異常診断装置 Download PDF

Info

Publication number
JP2009221992A
JP2009221992A JP2008068578A JP2008068578A JP2009221992A JP 2009221992 A JP2009221992 A JP 2009221992A JP 2008068578 A JP2008068578 A JP 2008068578A JP 2008068578 A JP2008068578 A JP 2008068578A JP 2009221992 A JP2009221992 A JP 2009221992A
Authority
JP
Japan
Prior art keywords
exhaust gas
time
sensor
catalyst
catalyst downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008068578A
Other languages
English (en)
Inventor
Yasushi Shoda
裕史 荘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008068578A priority Critical patent/JP2009221992A/ja
Priority to US12/365,302 priority patent/US7954364B2/en
Publication of JP2009221992A publication Critical patent/JP2009221992A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • G01M15/102Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

【課題】排出ガス浄化用の触媒の下流側に設置された排出ガスセンサ(以下「触媒下流側センサ」という)の応答性劣化の検出精度を向上させる。
【解決手段】燃料カット開始から該燃料カットの影響が触媒下流側センサの出力に現れ始めるまでの積算排出ガス量Vg と、燃料噴射弁の搭載位置から触媒下流側センサの搭載位置までの流路容積Vとに基づいて、燃料カット開始から燃料カットの影響が触媒下流側センサの出力に現れ始めるまでのむだ時間T1 を算出すると共に、燃料カット開始から触媒下流側センサの出力がリーン判定値Lよりもリーン側に変化するまでの出力変化時間T2 を測定する。この出力変化時間T2 からむだ時間T1 を減算して求めた触媒下流側センサの応答時間Tr を異常判定値と比較することで、むだ時間T1 の影響を受けずに触媒下流側センサの応答性を精度良く評価して応答性劣化の有無を精度良く判定する。
【選択図】図2

Description

本発明は、内燃機関の排出ガス浄化用の触媒の下流側に設置された排出ガスセンサの異常診断を行う排出ガスセンサの異常診断装置に関する発明である。
近年、内燃機関を搭載した車両では、排気管に排出ガス浄化用の触媒を設置すると共に、この触媒の上流側と下流側にそれぞれ排出ガスの空燃比又はリッチ/リーンを検出する排出ガスセンサ(空燃比センサ又は酸素センサ)を設置し、これらの排出ガスセンサの出力に基づいて空燃比をフィードバック制御して触媒の排出ガス浄化効率を高めるようにしたものがある。このような排出ガス浄化システムにおいては、排出ガスセンサが劣化して空燃比制御精度が低下した状態(排出ガス浄化効率が低下した状態)で運転が続けられるのを防ぐために、排出ガスセンサの異常診断を行う必要がある。
一般に、触媒の下流側に設置した排出ガスセンサ(以下「触媒下流側センサ」という)の出力は、触媒の酸素吸蔵量(リーン成分吸蔵量)の影響を受けるため、触媒上流側の空燃比の変化に対して遅れて変化する傾向がある。
このような特性を考慮して、特許文献1(特開2001−215205号公報)に記載されているように、内燃機関の燃料カット中や燃料カット終了後(燃料噴射開始後)に触媒下流側センサの故障判定を行うようにしたものがある。このものは、燃料カット開始から所定時間が経過したときに、触媒下流側センサの出力が閾値よりもリーン側になったか否かによって触媒下流側センサが正常か否かを判定する。燃料カット中に故障判定が実行されなかった場合には、その後、燃料カット終了から所定時間が経過するまでの間に、触媒下流側センサの出力が閾値よりもリッチ側になったか否かによって触媒下流側センサが正常か否かを判定する。その際、燃料カット終了から所定時間が経過した時点で触媒下流側センサの出力が閾値よりもリーン側の場合には、燃料カット終了からの排出ガスの積算量が所定値未満であれば、触媒下流側センサの故障判定を保留する。これにより、燃料カット終了後の排出ガスの積算量(リッチ成分の供給量)の不足によって触媒下流側の空燃比のリッチ方向への変化が遅れて触媒下流側センサの出力が閾値よりもリーン側になっている状態を、触媒下流側センサの故障と誤判定することを防止するようにしている。
特開2001−215205号公報
ところで、本発明者は、燃料カット開始から触媒下流側センサの出力が所定値よりもリーン側に変化するまでの時間(以下「出力変化時間」という)を測定し、この出力変化時間を異常判定値と比較して触媒下流側センサの異常(応答性劣化)の有無を判定するシステムを研究しているが、その研究過程で、次のような新たな課題が判明した。
近年、触媒下流側センサの応答性劣化の検出精度を向上させることが要求されるようになってきている。しかし、上述した出力変化時間には、燃料カット開始から触媒下流側センサの出力がリーン方向に変化し始めるまでの時間(以下「むだ時間」という)が含まれており、このむだ時間が触媒の劣化状態(酸素吸蔵可能量)や排出ガス流量によって変化して出力変化時間が変化するため、触媒下流側センサの応答性を精度良く評価することができず、触媒下流側センサの応答性劣化の検出精度向上の要求を満たすことができない。
上記特許文献1の技術においても、燃料カット開始から所定時間が経過したときに触媒下流側センサの出力が閾値よりもリーン側になったか否かを判定する際に、燃料カット開始から触媒下流側センサの出力が閾値よりもリーン側になるまでの時間にむだ時間が含まれるため、触媒下流側センサの応答性を精度良く評価することができず、触媒下流側センサの応答性劣化の検出精度向上の要求を満たすことができない。
本発明は、このような事情を考慮してなされたものであり、従って本発明の目的は、触媒下流側センサの応答性を精度良く評価することができ、触媒下流側センサの応答性劣化の検出精度を向上させることができる排出ガスセンサの異常診断装置を提供することにある。
上記目的を達成するために、請求項1に係る発明は、内燃機関の排出ガス浄化用の触媒の下流側に設置された排出ガスセンサ(以下「触媒下流側センサ」という)の異常診断を行う排出ガスセンサの異常診断装置において、内燃機関の燃料カット開始から該燃料カットの影響が触媒下流側センサの出力に現れ始めるまでの時間(以下「むだ時間」という)をむだ時間判定手段により判定すると共に、燃料カット開始から触媒下流側センサの出力が所定値よりもリーン側に変化するまでの時間(以下「出力変化時間」という)を出力変化時間測定手段により測定し、出力変化時間からむだ時間を減算して触媒下流側センサの応答時間を求め、該応答時間に基づいて触媒下流側センサの異常の有無を異常判定手段により判定するようにしたものである。
この構成では、出力変化時間からむだ時間を減算して触媒下流側センサの応答時間を求めため、触媒下流側センサの応答時間を精度良く求めることができ、この精度の良い触媒下流側センサの応答時間を用いて触媒下流側センサの異常の有無を判定できるため、むだ時間の影響を受けずに触媒下流側センサの応答性を精度良く評価して異常(応答性劣化)の有無を精度良く判定することができ、触媒下流側センサの応答性劣化の検出精度を向上させることができる。
むだ時間の具体的な判定方法としては、例えば、請求項2のように、内燃機関の燃料噴射弁の搭載位置から触媒下流側センサの搭載位置までの流路容積と、燃料カット開始から該燃料カットの影響が触媒下流側センサの出力に現れ始めるまでの排出ガス量の積算値とに基づいてむだ時間を算出するようにしても良い。燃料カット開始から該燃料カットの影響が触媒下流側センサの出力に現れ始めるまでの排出ガス量の積算値は、燃料カット開始から該燃料カットの影響が触媒下流側センサの出力に現れ始めるまでの平均的な排出ガス流量(単位時間当りに流れる排出ガス量)を反映した情報となる。従って、燃料噴射弁の搭載位置から触媒下流側センサの搭載位置までの流路容積と、燃料カット開始から該燃料カットの影響が触媒下流側センサの出力に現れ始めるまでの排出ガス量の積算値(平均的な排出ガス流量を反映した情報)とを用いれば、むだ時間を精度良く求めることができる。
この場合、請求項3のように、排出ガス量の代用情報として吸入空気量を用いるようにしても良い。吸入空気量に応じて排出ガス量が変化するため、吸入空気量は排出ガス量を精度良く反映した情報となる。
或は、請求項4のように、内燃機関の回転速度と負荷のうちの少なくとも一方に基づいて排出ガス量を求めるようにしても良い。内燃機関の回転速度や負荷(例えば吸気管圧力やスロットル開度等)に応じて排出ガス量が変化するため、内燃機関の回転速度や負荷を用いれば、排出ガス量を精度良く求めることができる。
また、請求項5のように、燃料カット開始から触媒下流側センサの出力がリーン方向に変化し始めるまでの時間をむだ時間として測定するようにしても良い。このようにすれば、むだ時間を直接測定することができる。
また、請求項6のように、内燃機関の燃料噴射弁の搭載位置から触媒下流側センサの搭載位置までの流路容積と排出ガス流量とに基づいて燃料噴射弁の搭載位置から触媒下流側センサの搭載位置までガスが流れるのに要する時間(以下「ガス移動時間」という)を算出すると共に、触媒の劣化状態に基づいて燃料カットにより該触媒に流入するガスの空燃比が変化してから該触媒から流出するガスの空燃比が変化し始めるまでの時間(以下「触媒反応時間」という)を算出し、ガス移動時間に触媒反応時間を加算してむだ時間を求めるようにしても良い。
つまり、燃料噴射弁の搭載位置から触媒下流側センサの搭載位置までの流路容積を排出ガス流量(単位時間当りに流れる排出ガス量)で除算することでガス移動時間を求めることができる。また、触媒の劣化状態に応じて触媒の酸素吸蔵可能量が変化して触媒反応時間が変化するため、触媒の劣化状態から触媒反応時間を求めることができる。これらのガス移動時間と触媒反応時間によってむだ時間が発生するため、ガス移動時間に触媒反応時間を加算することで、精度の良いむだ時間を求めることができる。
以下、本発明を実施するための最良の形態を具体化した一実施例を説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。
更に、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18に、吸気管圧力を検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、各気筒の吸気マニホールド20の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁21が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各点火プラグ22の火花放電によって筒内の混合気に着火される。
一方、エンジン11の排気管23には、排出ガスを浄化する三元触媒等の触媒24が設けられ、この触媒24の上流側に、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ25(空燃比センサ、酸素センサ等)が設けられ、触媒24の下流側に、排出ガスのリッチ/リーンを検出する酸素センサ(以下「触媒下流側センサ」という)26が設けられている。
また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ27や、ノッキング振動を検出するノックセンサ28が取り付けられている。また、クランク軸29の外周側には、クランク軸29が所定クランク角回転する毎にパルス信号を出力するクランク角センサ30が取り付けられ、このクランク角センサ30の出力信号に基づいてクランク角やエンジン回転速度が検出される。
これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)31に入力される。このECU31は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁21の燃料噴射量や点火プラグ22の点火時期を制御する。
また、ECU31は、後述する図3及び図4の触媒下流側センサ異常診断用の各ルーチンを実行することで、次のようにして触媒下流側センサ26の異常診断を実施する。図2のタイムチャートに示すように、エンジン11の燃料カットが開始された時点t0 から該燃料カットの影響が触媒下流側センサ26の出力に現れ始める時点t1 までの時間をむだ時間T1 として算出すると共に、燃料カットが開始された時点t0 から触媒下流側センサ26の出力が所定のリーン判定値Lよりもリーン側に変化する時点t2 までの時間を出力変化時間T2 として測定する。
ここで、むだ時間T1 の算出方法について説明する。まず、燃料カット開始から触媒下流側センサ26の出力が所定の閾値(例えば燃料カット前の触媒下流側センサ26の出力よりも少しリーン側に設定された値)よりもリーン側に変化するまでの吸入空気量の積算値である積算吸入空気量Vg を求めることで、燃料カット開始から該燃料カットの影響が触媒下流側センサ26の出力に現れ始めるまでの排出ガス量の積算値である積算排出ガス量Vg を求める。この積算排出ガス量Vg は、燃料カット開始から該燃料カットの影響が触媒下流側センサ26の出力に現れ始めるまでの平均的な排出ガス流量(単位時間当りに流れる排出ガス量)を反映した情報となる。
この後、エンジン11の燃料噴射弁21の搭載位置から触媒下流側センサ26の搭載位置までの流路容積Vを積算排出ガス量Vg で除算した値に所定の係数を乗算してむだ時間T1 を求める。
むだ時間T1 =(V/Vg )×係数
尚、流路容積Vは、燃料噴射弁21及び触媒下流側センサ26の搭載位置、エンジン11の排気量、排気管23の内径、触媒24の容積等によって定まる値である。
このようにして、むだ時間T1 と出力変化時間T2 を求めた後、出力変化時間T2 からむだ時間T1 を減算した時間を触媒下流側センサ26の応答時間Tr として求め、この応答時間Tr を異常判定値と比較する。その結果、応答時間Tr が異常判定値よりも大きいと判定された場合には、触媒下流側センサ26の異常(応答性劣化)有りと判定する。これに対して、応答時間Tr が異常判定値以下であると判定された場合には、触媒下流側センサ26の異常無し(正常)と判定する。
以下、ECU31が実行する図3及び図4の触媒下流側センサ異常診断用の各ルーチンの処理内容を説明する。
[触媒下流側センサ異常診断ルーチン]
図3に示す触媒下流側センサ異常診断ルーチンは、ECU31の電源オン中に所定周期で実行される。本ルーチンが起動されると、まず、ステップ101で、燃料カット開始前の触媒下流側センサ26の出力が所定値Hよりも大きい(リッチ側)か否かを判定する。この所定値Hは、リーン判定値Lよりも大きい値(リッチ側の値)に設定されている。
このステップ101で、燃料カット開始前の触媒下流側センサ26の出力が所定値H以下(所定値Hよりもリーン側)であると判定された場合には、触媒下流側センサ26の出力が既にリーン判定値Lに近いため、触媒下流側センサ26の応答時間Tr を精度良く検出できないと判断して、ステップ102以降の処理を行うことなく、本ルーチンを終了する。
一方、上記ステップ101で、燃料カット開始前の触媒下流側センサ26の出力が所定値Hよりも大きい(リッチ側)と判定された場合には、ステップ102に進み、燃料カットが開始されたか否かを判定し、燃料カットが開始されたと判定された時点で、ステップ103に進み、後述する図4のむだ時間算出ルーチンを実行することで、燃料カット開始から該燃料カットの影響が触媒下流側センサ26の出力に現れ始めるまでの時間であるむだ時間T1 を算出する。
この後、ステップ104に進み、燃料カット開始からの経過時間を計測するタイマの計時動作を開始した後、ステップ105に進み、触媒下流側センサ26の出力がリーン判定値Lよりも小さい(リーン側)か否かを判定し、触媒下流側センサ26の出力が所定値Lよりも小さいと判定された時点で、ステップ106に進み、タイマの計測値に基づいて燃料カット開始から触媒下流側センサ26の出力が所定値Lよりもリーン側に変化するまでの時間である出力変化時間T2 を測定する。これらのステップ104〜106の処理が特許請求の範囲でいう出力変化時間測定手段としての役割を果たす。
この後、ステップ107に進み、出力変化時間T2 からむだ時間T1 を減算して触媒下流側センサ26の応答時間Tr を求める。
Tr =T2 −T1
この後、ステップ108に進み、応答時間Tr が異常判定値よりも大きいか否かを判定する。その結果、応答時間Tr が異常判定値よりも大きいと判定された場合には、ステップ109に進み、触媒下流側センサ26の異常(応答性劣化)有りと判定して、異常フラグをONにセットし、運転席のインストルメントパネルに設けられた警告ランプ(図示せず)を点灯したり、或は、運転席のインストルメントパネルの警告表示部(図示せず)に警告表示して運転者に警告すると共に、その異常情報(異常コード等)をECU31のバックアップRAM(図示せず)等の書き換え可能な不揮発性メモリ(ECU31の電源オフ中でも記憶データを保持する書き換え可能なメモリ)に記憶して、本ルーチンを終了する。
する。
これに対して、上記ステップ108で、応答時間Tr が異常判定値以下であると判定された場合には、ステップ110に進み、触媒下流側センサ26の異常無し(正常)と判定して異常フラグをOFFに維持して、本ルーチンを終了する。
これらのステップ107〜110の処理が特許請求の範囲でいう異常判定手段としての役割を果たす。
[むだ時間算出ルーチン]
図4に示すむだ時間算出ルーチンは、前記図3の触媒下流側センサ異常診断ルーチンのステップ103で実行されるサブルーチンであり、特許請求の範囲でいうむだ時間判定手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ201で、エアフローメータ14の出力に基づいて検出した吸入空気量(体積)を読み込んだ後、ステップ202に進み、燃料カット開始からの積算吸入空気量に今回の吸入空気量を加算して燃料カット開始からの積算吸入空気量Vg を更新する。
この後、ステップ203に進み、触媒下流側センサ26の出力が閾値よりも小さい(リーン側)か否かによって、触媒下流側センサ26の出力がリーン方向に変化したか否かを判定する。この閾値は、例えば燃料カット前の触媒下流側センサ26の出力よりも少しリーン側に設定されている。
このステップ203で、触媒下流側センサ26の出力がリーン方向に変化していないと判定されれば、ステップ201に戻り、燃料カット開始からの積算吸入空気量に今回の吸入空気量を加算して燃料カット開始からの積算吸入空気量Vg を更新する処理(ステップ201、202)を触媒下流側センサ26の出力がリーン方向に変化したと判定されるまで繰り返す。これにより、燃料カット開始から該燃料カットの影響が触媒下流側センサ26の出力に現れ始めるまでの積算吸入空気量Vg を求めることで、燃料カット開始から該燃料カットの影響が触媒下流側センサ26の出力に現れ始めるまでの積算排出ガス量Vg を求める。
その後、ステップ203で、触媒下流側センサ26の出力がリーン方向に変化したと判定された時点で、ステップ204に進み、エンジン11の燃料噴射弁21の搭載位置から触媒下流側センサ26の搭載位置までの流路容積Vを積算排出ガス量Vg で除算した値に所定の係数を乗算してむだ時間T1 を求める。
むだ時間T1 =(V/Vg )×係数
尚、図4のむだ時間算出ルーチンでは、エアフローメータ14で検出した吸入空気量を積算して積算排出ガス量Vg を求めるようにしたが、エンジン回転速度とエンジン負荷(例えば吸気管圧力やスロットル開度等)のうちの一方又は両方に応じてマップ等により排出ガス量を求め、その排出ガス量を積算して積算排出ガス量Vg を求めるようにしても良い。
以上説明した本実施例では、エンジン11の燃料カット開始から該燃料カットの影響が触媒下流側センサ26の出力に現れ始めるまでのむだ時間T1 を算出すると共に、燃料カット開始から触媒下流側センサ26の出力がリーン判定値Lよりもリーン側に変化するまでの出力変化時間T2 を測定し、この出力変化時間T2 からむだ時間T1 を減算して触媒下流側センサ26の応答時間Tr を求め、この応答時間Tr を異常判定値と比較して触媒下流側センサ26の異常(応答性劣化)の有無を判定するようにしたので、むだ時間T1 の影響を受けずに触媒下流側センサ26の応答性を精度良く評価して異常(応答性劣化)の有無を精度良く判定することができ、触媒下流側センサ26の応答性劣化の検出精度を向上させることができる。
尚、上記実施例では、エンジン11の燃料噴射弁21の搭載位置から触媒下流側センサ26の搭載位置までの流路容積Vと、燃料カット開始から該燃料カットの影響が触媒下流側センサ26の出力に現れ始めるまでの積算排出ガス量Vg とに基づいてむだ時間T1 を求めるようにしたが、むだ時間T1 を判定する方法を適宜変更しても良く、例えば、燃料カット開始から触媒下流側センサ26の出力がリーン方向に変化し始めるまでの時間をむだ時間として測定するようにしても良い。
或は、エンジン11の燃料噴射弁21の搭載位置から触媒下流側センサ26の搭載位置までの流路容積Vと排出ガス流量とに基づいて燃料噴射弁21の搭載位置から触媒下流側センサ26の搭載位置までガスが流れるのに要する時間であるガス移動時間を求めると共に、触媒24の劣化状態に基づいて燃料カットにより触媒24に流入するガスの空燃比が変化してから触媒24から流出するガスの空燃比が変化し始めるまでの時間である触媒反応時間を算出し、ガス移動時間に触媒反応時間を加算してむだ時間を求めるようにしても良い。
つまり、燃料噴射弁21の搭載位置から触媒下流側センサ26の搭載位置までの流路容積Vを排出ガス流量(単位時間当りに流れる排出ガス量)で除算することでガス移動時間を求めることができる。また、触媒24の劣化状態に応じて触媒24の酸素吸蔵可能量が変化して触媒反応時間が変化するため、触媒24の劣化状態から触媒反応時間を求めることができる。これらのガス移動時間と触媒反応時間によってむだ時間が発生するため、ガス移動時間に触媒反応時間を加算することで、精度の良いむだ時間を求めることができる。
また、上記実施例では、触媒下流側センサ26として酸素センサを設置したシステムに本発明を適用したが、触媒下流側センサ26として空燃比センサを設置したシステムに本発明を適用しても良い。
本発明の一実施例におけるエンジン制御システム全体の概略構成図である。 触媒下流側センサの異常診断の実行例を説明するタイムチャートである。 触媒下流側センサ異常診断ルーチンの処理の流れを説明するフローチャートである。 むだ時間算出ルーチンの処理の流れを説明するフローチャートである。
符号の説明
11…エンジン(内燃機関)、12…吸気管、14…エアフローメータ、16…スロットルバルブ、21…燃料噴射弁、22…点火プラグ、23…排気管、24…触媒、25…排出ガスセンサ、26…触媒下流側センサ、31…ECU(むだ時間判定手段,出力変化時間測定手段,異常判定手段)

Claims (6)

  1. 内燃機関の排出ガス浄化用の触媒の下流側に設置された、空燃比又はリッチ/リーンを検出する排出ガスセンサ(以下「触媒下流側センサ」という)の異常診断を行う排出ガスセンサの異常診断装置において、
    内燃機関の燃料カット開始から該燃料カットの影響が前記触媒下流側センサの出力に現れ始めるまでの時間(以下「むだ時間」という)を判定するむだ時間判定手段と、
    前記燃料カット開始から前記触媒下流側センサの出力が所定値よりもリーン側に変化するまでの時間(以下「出力変化時間」という)を測定する出力変化時間測定手段と、
    前記出力変化時間から前記むだ時間を減算して前記触媒下流側センサの応答時間を求め、該応答時間に基づいて前記触媒下流側センサの異常の有無を判定する異常判定手段と
    を備えていることを特徴とする排出ガスセンサの異常診断装置。
  2. 前記むだ時間判定手段は、内燃機関の燃料噴射弁の搭載位置から前記触媒下流側センサの搭載位置までの流路容積と、前記燃料カット開始から該燃料カットの影響が前記触媒下流側センサの出力に現れ始めるまでの排出ガス量の積算値とに基づいて前記むだ時間を算出することを特徴とする請求項1に記載の排出ガスセンサの異常診断装置。
  3. 前記むだ時間判定手段は、前記排出ガス量の代用情報として吸入空気量を用いることを特徴とする請求項2に記載の排出ガスセンサの異常診断装置。
  4. 前記むだ時間判定手段は、内燃機関の回転速度と負荷のうちの少なくとも一方に基づいて前記排出ガス量を求めることを特徴とする請求項2に記載の排出ガスセンサの異常診断装置。
  5. 前記むだ時間判定手段は、前記燃料カット開始から前記触媒下流側センサの出力がリーン方向に変化し始めるまでの時間を前記むだ時間として測定することを特徴とする請求項1に記載の排出ガスセンサの異常診断装置。
  6. 前記むだ時間判定手段は、内燃機関の燃料噴射弁の搭載位置から前記触媒下流側センサの搭載位置までの流路容積と排出ガス流量とに基づいて前記燃料噴射弁の搭載位置から前記触媒下流側センサの搭載位置までガスが流れるのに要する時間(以下「ガス移動時間」という)を算出すると共に、前記触媒の劣化状態に基づいて前記燃料カットにより該触媒に流入するガスの空燃比が変化してから該触媒から流出するガスの空燃比が変化し始めるまでの時間(以下「触媒反応時間」という)を算出し、前記ガス移動時間に前記触媒反応時間を加算して前記むだ時間を求めることを特徴とする請求項1に記載の排出ガスセンサの異常診断装置。
JP2008068578A 2008-03-17 2008-03-17 排出ガスセンサの異常診断装置 Pending JP2009221992A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008068578A JP2009221992A (ja) 2008-03-17 2008-03-17 排出ガスセンサの異常診断装置
US12/365,302 US7954364B2 (en) 2008-03-17 2009-02-04 Malfunction diagnosis apparatus for exhaust gas sensor and method for diagnosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008068578A JP2009221992A (ja) 2008-03-17 2008-03-17 排出ガスセンサの異常診断装置

Publications (1)

Publication Number Publication Date
JP2009221992A true JP2009221992A (ja) 2009-10-01

Family

ID=41061491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008068578A Pending JP2009221992A (ja) 2008-03-17 2008-03-17 排出ガスセンサの異常診断装置

Country Status (2)

Country Link
US (1) US7954364B2 (ja)
JP (1) JP2009221992A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196475A (ja) * 2009-02-23 2010-09-09 Nissan Motor Co Ltd 内燃機関用排気センサの診断装置
JP2017031823A (ja) * 2015-07-29 2017-02-09 トヨタ自動車株式会社 下流側空燃比センサの異常診断装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10338580B2 (en) 2014-10-22 2019-07-02 Ge Global Sourcing Llc System and method for determining vehicle orientation in a vehicle consist
US10464579B2 (en) 2006-04-17 2019-11-05 Ge Global Sourcing Llc System and method for automated establishment of a vehicle consist
JP4661814B2 (ja) * 2007-03-29 2011-03-30 トヨタ自動車株式会社 内燃機関の排気浄化装置
US8086392B2 (en) * 2009-03-31 2011-12-27 GM Global Technology Operations LLC Post oxygen sensor performance diagnostic with minimum air flow
US8316828B2 (en) * 2009-04-17 2012-11-27 GM Global Technology Operations LLC Exhaust gas recirculation diagnostic for coordinated torque control systems
JP4853548B2 (ja) * 2009-05-29 2012-01-11 株式会社デンソー 排気センサ診断装置
DE102010003203A1 (de) * 2010-03-24 2011-09-29 Robert Bosch Gmbh Verfahren zum Prüfen der Funktionalität eines Abgasrückführventils einer Brennkraftmaschine
US9046050B2 (en) 2011-09-15 2015-06-02 General Electric Company Shaft imbalance detection system
US9897082B2 (en) 2011-09-15 2018-02-20 General Electric Company Air compressor prognostic system
US8626372B2 (en) 2011-09-15 2014-01-07 General Electric Company Systems and methods for diagnosing an engine
US8984930B2 (en) 2011-09-15 2015-03-24 General Electric Company System and method for diagnosing a reciprocating compressor
US8875561B2 (en) 2011-09-15 2014-11-04 General Electric Company Systems and methods for diagnosing an engine
US20130280095A1 (en) 2012-04-20 2013-10-24 General Electric Company Method and system for reciprocating compressor starting
US9606022B2 (en) 2012-08-31 2017-03-28 General Electric Company Systems and methods for diagnosing engine components and auxiliary equipment associated with an engine
KR101551017B1 (ko) * 2013-12-18 2015-09-07 현대자동차주식회사 차량의 배기가스 정화 시스템
US9574965B2 (en) 2014-06-24 2017-02-21 General Electric Company System and method of determining bearing health in a rotating machine
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6374818B2 (en) 2000-01-31 2002-04-23 Honda Giken Kogyo Kabushiki Kaisha Apparatus for determining a failure of an oxygen concentration sensor
US6662638B2 (en) * 2001-11-26 2003-12-16 Ford Global Technologies, Llc System and method for determining degradation of an exhaust gas sensor in an engine
US6976382B2 (en) * 2002-02-20 2005-12-20 Denso Corporation Abnormality diagnosing apparatus of exhaust gas sensor
JP2007262945A (ja) * 2006-03-28 2007-10-11 Denso Corp 排出ガスセンサの異常診断装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196475A (ja) * 2009-02-23 2010-09-09 Nissan Motor Co Ltd 内燃機関用排気センサの診断装置
JP2017031823A (ja) * 2015-07-29 2017-02-09 トヨタ自動車株式会社 下流側空燃比センサの異常診断装置
US10156200B2 (en) 2015-07-29 2018-12-18 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system of downstream side air-fuel ratio sensor

Also Published As

Publication number Publication date
US20090229355A1 (en) 2009-09-17
US7954364B2 (en) 2011-06-07

Similar Documents

Publication Publication Date Title
JP2009221992A (ja) 排出ガスセンサの異常診断装置
JP4462142B2 (ja) 内燃機関用制御装置
US7387011B2 (en) Deterioration diagnosis system for exhaust gas sensor
JP4320778B2 (ja) 空燃比センサの異常診断装置
JP2008121533A (ja) 内燃機関の制御装置
JP4453836B2 (ja) エンジンの触媒劣化診断装置及びその方法および排気ガス浄化用の触媒装置
JP4873378B2 (ja) 吸入空気量センサの異常診断装置
JP2009047112A (ja) 内燃機関の異常診断装置
JP2009036024A (ja) 内燃機関の空燃比制御装置
JP2008038847A (ja) 内燃機関の酸素センサ診断装置
JP2005188309A (ja) スロットル系の異常判定装置
JP2010174872A (ja) 内燃機関の二次空気供給システムの異常診断装置
JP2010163932A (ja) 内燃機関の触媒劣化診断装置
JP2006057523A (ja) エンジン制御システムの異常診断装置
JP4470661B2 (ja) 排出ガスセンサの異常診断装置
JP3988073B2 (ja) 排出ガスセンサの異常診断装置
JP2006177371A (ja) 内燃機関の制御装置
JP4210940B2 (ja) 吸気系センサの異常診断装置
JP4101133B2 (ja) 内燃機関の空燃比制御装置の自己診断装置
JP3855720B2 (ja) 内燃機関の触媒早期暖機制御システムの異常診断装置
JP4365671B2 (ja) エンジンの制御装置
JP4882958B2 (ja) 排出ガスセンサの異常診断装置
JP2008038720A (ja) 排出ガス浄化システムの下流側酸素センサの異常診断装置
JP2006046071A (ja) 車両の大気圧推定装置
JP3975436B2 (ja) 排出ガスセンサの異常診断装置