WO2011115176A1 - 金属空気電池 - Google Patents

金属空気電池 Download PDF

Info

Publication number
WO2011115176A1
WO2011115176A1 PCT/JP2011/056244 JP2011056244W WO2011115176A1 WO 2011115176 A1 WO2011115176 A1 WO 2011115176A1 JP 2011056244 W JP2011056244 W JP 2011056244W WO 2011115176 A1 WO2011115176 A1 WO 2011115176A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
air battery
positive electrode
storage material
oxygen storage
Prior art date
Application number
PCT/JP2011/056244
Other languages
English (en)
French (fr)
Inventor
潔 田名網
磯谷 祐二
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to EP11756360.1A priority Critical patent/EP2549583B1/en
Priority to US13/634,938 priority patent/US8697297B2/en
Priority to CN201180014293.3A priority patent/CN102812590B/zh
Priority to JP2012505727A priority patent/JP5122021B2/ja
Publication of WO2011115176A1 publication Critical patent/WO2011115176A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to metal-air batteries.
  • a metal-air battery which utilizes an oxidation-reduction reaction of oxygen at a positive electrode as a battery reaction.
  • the metal-air battery is one that performs the oxidation-reduction reaction using oxygen taken from the air, and the cathode includes an oxygen storage material, and the oxidation-reduction reaction is performed using oxygen released from the oxygen storage material. There is something to do.
  • the positive electrode contains an oxygen storage material
  • metal is oxidized at the negative electrode to generate metal ions, and the metal ions move to the positive electrode side.
  • oxygen released from the oxygen storage material is reduced to oxygen ions, and combined with the metal ions to form a metal oxide.
  • reverse reaction of the reaction occurs in the negative electrode and the positive electrode at the time of charging.
  • Patent Document 1 As such a metal-air battery, one using a manganese complex containing oxygen as the oxygen storage material (see, for example, Patent Document 1), or one using an Fe-based metal composite oxide having a perovskite structure is known. (See, for example, Patent Document 2).
  • the reaction rate of the cell reaction is governed by the diffusion rate at which oxygen molecules and oxygen ions diffuse into the oxygen storage material.
  • the reaction rate of the battery reaction is decreased, and the overvoltage is increased.
  • An object of the present invention is to provide a metal-air battery capable of eliminating such inconveniences, accelerating the reaction rate of the battery reaction, and suppressing an increase in overvoltage.
  • the metal-air battery of the present invention comprises a negative electrode comprising one metal selected from the group consisting of Li, Zn, Mg, Al, Fe, a carbon material for storing an oxygen-containing chemical species and A positive electrode comprising a mixture of oxygen storage materials, and an electrolyte disposed between the negative electrode and the positive electrode.
  • the metal constituting the negative electrode is preferably one metal selected from the group consisting of Li, Zn and Fe, and more preferably Li.
  • a metal-air battery using metal Zn and metal Fe for the negative electrode can obtain higher theoretical voltage and electrochemical equivalent as compared to the case where other metals are used, and a metal-air battery using metal Li Higher theoretical voltages and electrochemical equivalents can be obtained.
  • the metal-air battery of the present invention at the time of discharge, the metal is oxidized at the negative electrode to generate ions of the metal, and the generated metal ions move to the positive electrode through the electrolyte.
  • the oxygen-containing chemical species stored in the mixture of the carbon material and the oxygen storage material combine with the metal ion to form a metal compound.
  • an electromotive force can be obtained.
  • a reverse reaction occurs during the discharging.
  • the oxygen-containing chemical species acting upon bonding with the metal ion to form a metal compound may be occluded by the oxygen storage material, but the carbon What is adsorbed on the surface of the mixture of raw material and oxygen storage material can be made to act predominantly.
  • the oxygenated species that are only adsorbed on the surface of the mixture of carbon material and oxygen storage material need not diffuse into the oxygen storage material.
  • the reaction rate of the battery reaction can be increased, and as a result, an increase in overvoltage can be suppressed.
  • examples of the oxygen-containing species to be stored in said mixture O 2, O 2-, CO , CO 2, CO 3 2-, HCO 3 -, CH 3 COO - group consisting of And at least one molecule or anion selected from
  • the oxygen-containing chemical species it is possible to form an oxide, a carbonate, a hydrogen carbonate, and an acetate of the metal constituting the negative electrode at the positive electrode during discharge.
  • the oxygen storage material is preferably a composite oxide of yttrium and manganese, or a compound having a hexagonal crystal structure. As a result, the oxygen storage material can adsorb a greater amount of the oxygenated chemical species on its surface.
  • the oxygen storage material for example, a composite oxide represented by a chemical formula YMnO 3 can be mentioned, and the composite oxide is more preferably a compound having a hexagonal crystal structure.
  • the positive electrode is made of a mixture of the carbon material and the oxygen storage material and a binder.
  • the positive electrode can easily form the mixture by bonding the carbon material and the oxygen storage material with the binder.
  • the oxygen storage material has an average particle diameter of 50 ⁇ m or less, is supported by the carbon material, and is in the range of 10 to 90% by mass It is preferable to provide a mass of
  • the oxygen-containing chemical species can not be sufficiently adsorbed on the surface, and hence the charge / discharge reaction can not be sufficiently promoted. And the overvoltage may increase and the capacity may decrease accordingly.
  • the mass of the oxygen storage material is less than 10% by mass of the total mass of the positive electrode, sufficient charge / discharge capacity may not be obtained in the metal-air battery of the present invention.
  • the mass of the oxygen storage material exceeds 90% by mass of the total mass of the positive electrode, the electron conductivity of the positive electrode may be lowered, and a sufficient charge and discharge capacity may not be obtained.
  • the mixture preferably has a porosity of 10 to 90% by volume, preferably 40 to 80% by volume.
  • the porosity is less than 10% by volume, oxygen may not sufficiently diffuse, and the deposition of the metal compound formed on the positive electrode during discharge may be inhibited.
  • the porosity exceeds 90% by volume, the reaction between oxygen and an ion of a negative electrode metal such as Li ion on the catalyst may not sufficiently proceed.
  • the said porosity exceeds 90 volume%, mechanical strength may fall and the cycle characteristic may deteriorate the said mixture.
  • Explanatory sectional drawing which shows the structural example of the 1st aspect of the metal air battery of this invention.
  • Explanatory sectional drawing which shows the structural example of the 2nd aspect of the metal air battery of this invention.
  • the graph which shows the result of the X-ray-diffraction measurement of the oxygen storage material used for the metal air battery of this invention.
  • the graph which shows the particle size distribution of the oxygen storage material used for the metal air battery of the present invention.
  • the graph which shows the porosity of the positive electrode mixture used for the metal air battery of a 1st aspect of this invention.
  • Fig. 6 is a graph showing the discharge capacity in the metal-air battery of the embodiment 6 to 9 of the present invention.
  • the metal-air battery 1 of the present embodiment has a cylindrical shape, and includes a negative electrode 2, a positive electrode 3, and a separator 4 disposed between the negative electrode 2 and the positive electrode 3.
  • the separator 4 is impregnated with an electrolyte.
  • the negative electrode 2 is made of one metal selected from the group consisting of Li, Zn, Mg, Al, and Fe, and is preferably made of one metal selected from the group consisting of Li, Fe, and Zn.
  • the negative electrode 2 is more preferably made of metallic lithium.
  • the negative electrode 2 is accommodated in a negative electrode container 6 made of stainless steel via a negative electrode current collector 5 made of stainless steel, Ni mesh or the like.
  • the positive electrode 3 is a porous body made of a mixture of a carbon material, an oxygen storage material, and a binder, and is crimped to the positive electrode current collector 7 made of Al mesh, a porous body made of Ni or the like. Is accommodated in the positive electrode container 8 made of stainless steel.
  • the negative electrode container 6 and the positive electrode container 8 are electrically insulated by an insulating resin member 9 provided around the separator 4.
  • the separator 4 is made of, for example, a polypropylene membrane, glass filter paper, or the like. Further, as the electrolyte, for example, it can be in a mixed solution of ethylene carbonate and diethyl carbonate, include solutions or the like prepared by dissolving lithium hexafluorophosphate (LiPF 6) as a supporting salt. The electrolyte is impregnated in the separator 4.
  • LiPF 6 lithium hexafluorophosphate
  • the carbon material acts as a conductive material in the positive electrode 3 and also acts as a carrier of the oxygen storage material.
  • ketjen black made by Lion Corporation
  • the carbon material can be mentioned, for example.
  • the oxygen storage material examples include a composite oxide of yttrium and manganese represented by a chemical formula YMnO 3 , which has a hexagonal crystal structure.
  • the oxygen storage material preferably has a mass in the range of 10 to 90% by mass with respect to the total mass of the positive electrode.
  • the complex oxide is produced, for example, by adding an organic acid to a mixture of yttrium salt and manganese salt, reacting under heating for a predetermined time, grinding and mixing the reaction product, and calcining it.
  • an organic acid for example, malic acid can be used.
  • the composite oxide produced in this manner preferably has an average particle size of 50 ⁇ m or less.
  • the binder improves the mixed state of the carbon material and the oxygen storage material in the positive electrode 3.
  • a binder for example, polytetrafluoroethylene (PTFE) can be used.
  • the mixture of the carbon material, the oxygen storage material, and the binder preferably has a porosity of 10 to 90% by volume, more preferably 40 to 80% by volume.
  • the porosity of the mixture can be adjusted by the pressure applied to the positive electrode current collector 7.
  • the metal ion generated by oxidizing the metal in the negative electrode 2 is stored in the mixture when the metal compound is generated in the positive electrode 3. Chemical species are used. At this time, the mixture occludes the oxygen-containing species in the oxygen storage material, and adsorbs and holds the oxygen-containing species on the surface of the mixture.
  • the oxygen-containing chemical species adsorbed only on the surface of the mixture of the carbon material and the oxygen storage material need to be diffused into the oxygen storage material unlike the ones stored in the oxygen storage material. And the binding energy with the mixture is also low.
  • the metal-air battery 1 of the present embodiment when the metal ion generates a metal compound in the positive electrode 3, the oxygen-containing chemical species adsorbed on the surfaces of the carbon material and the oxygen storage material It can be made to act dominantly.
  • the reaction rate of the battery reaction can be increased to suppress the rise of the overvoltage, so that a large charge / discharge capacity can be obtained as compared with the conventional metal-air battery. Can.
  • the positive electrode container 8 includes a hole 10 containing the positive electrode 3 and the support, and a cylindrical air reservoir 11 communicating with the hole 10. It may be provided.
  • the positive electrode container 8 is provided at the bottom with a stainless steel pressing member 12 that presses the positive electrode 3 and the positive electrode current collector 7 against the separator 4, and the pressing member 12 communicates with the hole 10 and the air reservoir 11. Through holes 13 are provided.
  • the metal-air battery 1 of the present embodiment obtains a large charge / discharge capacity as compared with the conventional metal-air battery. be able to.
  • Example 1 In the present example, a metal air battery 1 having the configuration shown in FIG. 1 was produced as follows.
  • a composite oxide represented by the chemical formula YMnO 3 was prepared as an oxygen storage material.
  • yttrium nitrate pentahydrate, manganese nitrate hexahydrate and malic acid were pulverized and mixed so as to have a molar ratio of 1: 1: 6.
  • the obtained mixture was reacted at a temperature of 250 ° C. for 30 minutes, then reacted at a temperature of 300 ° C. for 30 minutes, and further reacted at a temperature of 350 ° C. for 1 hour.
  • the mixture of reaction products was ground and mixed, and then fired at 1000 ° C. for 1 hour to obtain the complex oxide.
  • the X-ray diffraction pattern of the complex oxide obtained in this example was measured.
  • the measurement was carried out using an X-ray diffractometer (manufactured by Bruker AX) at a tube voltage of 50 kV, a tube current of 150 mA, a diffractometer of 4 ° / min, and a measurement range (2 ⁇ ) of 10 to 90 °.
  • the results are shown in FIG. It was clarified from FIG. 3 that the composite oxide obtained in the present example is a composite oxide represented by a chemical formula YMnO 3 and has a hexagonal crystal structure.
  • the particle size distribution of the complex oxide obtained in the present example was measured.
  • the measurement was performed using a laser diffraction / scattering type particle size distribution measuring apparatus (manufactured by Horiba, Ltd.), and using ethanol as a solvent, the average particle size D50 was calculated.
  • the results are shown in FIG. It became clear from FIG. 4 that the average particle diameter of the complex oxide obtained in the present example is 5.75 ⁇ m.
  • 0.1 g of the complex oxide obtained in the present example was accommodated in a quartz sample tube, and the sample tube was placed in a tubular furnace.
  • Ar gas containing 3% by volume of H 2 was introduced into the sample tube at a flow rate of 100 ml / min from the inlet side of the sample tube. Then, the H 2 gas concentration was measured at the outlet side of the sample tube, and held until the H 2 gas concentration became constant.
  • the tubular furnace is heated to 600 ° C. at a rate of 10 ° C./minute while introducing Ar gas containing H 2 to the sample tube, and the temperature is discharged from the outlet side of the sample tube during the temperature rise
  • the concentration of H 2 O in the gas was measured, and the amount of adsorbed oxygen of the composite oxide was quantified from the measured H 2 O concentration.
  • the amount of adsorbed oxygen of the composite oxide obtained in the present embodiment is three or more times that of CeO 2 , and the composite oxide obtained in the present embodiment has excellent oxygen adsorption ability. It is clear that
  • a positive electrode material mixture was obtained.
  • the obtained positive electrode material mixture was pressure-bonded to a positive electrode current collector 7 made of Al mesh having a diameter of 15 mm at a pressure of 5 MPa to form a positive electrode 3 having a diameter of 15 mm and a thickness of 1 mm.
  • a bottomed cylindrical stainless steel negative electrode container 6 having an inner diameter of 15 mm is accommodated with a negative electrode 2 made of metal Li having a diameter of 15 mm and a thickness of 1 mm via the negative electrode current collector 5 made of stainless steel having a diameter of 15 mm. did.
  • the separator 4 made of a polypropylene film (made by Tapyrus Co., Ltd.) having a diameter of 15 mm was placed on the negative electrode 2.
  • the positive electrode 3 and the positive electrode current collector 7 were placed on the separator 4 such that the positive electrode 3 was in contact with the separator 4.
  • the electrolyte is a solution in which lithium hexafluorophosphate (LiPF 6 ) is dissolved in a mixed solution of 30 parts by mass of ethylene carbonate and 70 parts by mass of diethyl carbonate at a concentration of 1 mol / l as a supporting salt (Kishda Chemical Made in Japan).
  • LiPF 6 lithium hexafluorophosphate
  • the positive electrode 3 and the positive electrode current collector 7 were closed with the positive electrode container 8 to obtain a metal-air battery 1 having the configuration of FIG.
  • the positive electrode container 8 and the negative electrode container 6 are electrically insulated by the insulating resin member 9 disposed around the separator 4.
  • the insulating resin member 9 is ring-shaped having an outer diameter of 32 mm, an inner diameter of 30 mm, and a thickness of 5 mm, and is made of PTFE.
  • the metal-air battery 1 obtained in the present example is set in an electrochemical measurement apparatus (made by Toho Giken Co., Ltd.), and a current of 0.1 mA / cm 2 is applied between the negative electrode 2 and the positive electrode 3 And the cell voltage was discharged to 2.0 V.
  • the relationship between the cell voltage and the capacitance is shown in FIG. 7 (a).
  • Example 2 In this example, first, in the completely same manner as Example 1, a composite oxide represented by a chemical formula YMnO 3 was prepared as an oxygen storage material.
  • the composite oxide obtained in the present example is a composite oxide represented by the chemical formula YMnO 3 and was confirmed to have a hexagonal crystal structure.
  • a positive electrode material mixture was obtained.
  • the obtained positive electrode material mixture was pressure-bonded to a positive electrode current collector 7 made of Al mesh having a diameter of 15 mm at a pressure of 5 MPa to form a positive electrode 3 having a diameter of 15 mm and a thickness of 1 mm.
  • a metal-air battery 1 having the configuration of FIG. 1 was obtained in exactly the same manner as in Example 1 except that the positive electrode 3 obtained in this example was used.
  • the metal-air battery 1 obtained in the present example is set in an electrochemical measurement apparatus (made by Toho Giken Co., Ltd.), and a current of 0.1 mA / cm 2 is applied between the negative electrode 2 and the positive electrode 3 And the cell voltage was discharged to 2.0 V.
  • the relationship between the cell voltage and the capacitance is shown in FIG. 8 (a).
  • the metal-air battery 1 obtained in the present example is set in an electrochemical measurement apparatus (made by Toho Giken Co., Ltd.), and a current of 0.1 mA / cm 2 is applied between the negative electrode 2 and the positive electrode 3 And the cell voltage was charged to 4.0V.
  • the relationship between the cell voltage and the capacitance is shown in FIG. 8 (b).
  • Example 3 In the present embodiment, the configuration of FIG. 1 is completely the same as in Embodiment 1 except that metal iron of 15 mm in diameter and 0.5 mm in thickness is used as the negative electrode 2 and 6 mol / l KOH aqueous solution is used as the electrolyte.
  • the metal-air battery 1 obtained in the present example is set in an electrochemical measurement apparatus (made by Toho Giken Co., Ltd.), and a current of 0.1 mA / cm 2 is applied between the negative electrode 2 and the positive electrode 3 And the cell voltage was discharged to 0.1 V.
  • the relationship between the cell voltage and the capacitance is shown in FIG. Example 4
  • the configuration of FIG. 1 is completely the same as in Embodiment 1 except that metal zinc of 15 mm in diameter and 0.5 mm in thickness is used as the negative electrode 2 and 6 mol / l KOH aqueous solution is used as the electrolyte.
  • the metal-air battery 1 obtained in the present example is set in an electrochemical measurement apparatus (made by Toho Giken Co., Ltd.), and a current of 0.1 mA / cm 2 is applied between the negative electrode 2 and the positive electrode 3 And the cell voltage was discharged to 0.5V.
  • the relationship between the cell voltage and the capacitance is shown in FIG. [Example 5]
  • the metal-air battery 1 having the configuration shown in FIG. 2 was produced as follows.
  • a composite oxide represented by the chemical formula YMnO 3 was prepared as an oxygen storage material.
  • the composite oxide obtained in the present example is a composite oxide represented by the chemical formula YMnO 3 and was confirmed to have a hexagonal crystal structure.
  • the obtained positive electrode material mixture was pressure-bonded to the positive electrode current collector 7 made of a porous body made of Ni at a pressure of 5 MPa to obtain the positive electrode 3.
  • the Ni porous body has a pore diameter of 0.45 mm and a specific surface area of 8000 m 2 / m 3 .
  • the porosity of the said mixture was measured by the mercury intrusion method using the fully automatic pore distribution measuring apparatus (made by Quantachrome). The results are shown in FIG. It is clear from FIG. 11 that the porosity of the positive electrode material mixture in the present example is 66% by volume.
  • a negative electrode made of metal Li having a diameter of 15 mm and a thickness of 1 mm is interposed between a bottomed cylindrical stainless steel negative electrode container 6 with an inner diameter of 15 mm and a negative electrode current collector 5 made of a mesh body made of Ni 15 mm in diameter. Contained two.
  • the separator 4 made of glass filter paper (Advantec Toyo Co., Ltd., trade name: GA 200) with a diameter of 15 mm was placed.
  • the positive electrode 3 and the positive electrode current collector 7 were placed on the separator 4 such that the positive electrode 3 was in contact with the separator 4.
  • the electrolyte is a solution in which lithium hexafluorophosphate (LiPF 6 ) is dissolved in a mixed solution of 50 parts by mass of ethylene carbonate and 50 parts by mass of diethyl carbonate at a concentration of 1 mol / l as a supporting salt (Kishda Chemical Made in Japan).
  • LiPF 6 lithium hexafluorophosphate
  • the positive electrode container 8 is a bottomed cylindrical body provided with a hole 10 on the inner peripheral side, and includes a plurality of cylindrical air reservoirs 11 communicated with the bottom of the hole 10. .
  • the positive electrode 3, the positive electrode current collector 7, and the pressing member 12 are accommodated in the hole 10.
  • the pressing member 12 has a plurality of through holes 13 communicating with the air reservoir 11 on the inner circumferential side.
  • the positive electrode container 8 and the negative electrode container 6 are electrically insulated by the insulating resin member 9 disposed around the separator 4.
  • the insulating resin member 9 is ring-shaped having an outer diameter of 32 mm, an inner diameter of 30 mm, and a thickness of 5 mm, and is made of PTFE.
  • the metal-air battery 1 obtained in the present example is set in an electrochemical measurement apparatus (manufactured by Solartron, trade name: SI1287), and 0.1 mA / cm 2 between the negative electrode 2 and the positive electrode 3. Current was applied, and the cell voltage was discharged to 2.0 V. The relationship between the cell voltage and the capacitance is shown in FIG.
  • the metal-air battery 1 obtained in the present example is set in an electrochemical measurement apparatus (manufactured by Solartron, trade name: SI1287), and 0.1 mA / cm 2 between the negative electrode 2 and the positive electrode 3. Current was applied and charged until the cell voltage was 4.0V. The relationship between the cell voltage and the capacitance is shown in FIG. Comparative Example In this comparative example, a metal-air battery 1 having the configuration shown in FIG. 2 was obtained in the same manner as in Example 5 except that manganese dioxide was used instead of the oxygen storage material in Example 5.
  • Example 6 In this embodiment, when the positive electrode material mixture comprising the composite oxide obtained in the fifth embodiment, carbon black and PTFE is pressure bonded to the positive electrode current collector 7 comprising a porous body made of Ni, the pressure is selected. A positive electrode 3 was obtained in exactly the same manner as in Example 5 except that the pressure was changed to 1 MPa. Next, the porosity of the positive electrode material mixture was measured in the same manner as in Example 5 except that the positive electrode 3 obtained in this example was used. The results are shown in FIG. It is clear from FIG. 11 that the porosity of the positive electrode material mixture in the present example is 78% by volume.
  • a metal-air battery 1 was obtained in exactly the same manner as in Example 5, except that the positive electrode 3 obtained in this example was used.
  • Example 7 the discharge performance of the metal-air battery 1 obtained in the present example was measured in exactly the same manner as in Example 5 except that the metal-air battery 1 obtained in the present example was used.
  • the results are shown in FIG. [Example 7]
  • the positive electrode material mixture comprising the composite oxide obtained in the fifth embodiment, carbon black and PTFE is pressure bonded to the positive electrode current collector 7 comprising a porous body made of Ni, the pressure is selected.
  • a positive electrode 3 was obtained in exactly the same manner as in Example 5 except that the pressure was changed to 10 MPa.
  • the porosity of the mixture was measured in the same manner as in Example 5 except that the positive electrode 3 obtained in the present example was used. The results are shown in FIG.
  • the porosity of the positive electrode material mixture in the present example is 44% by volume. Further, from FIG. 11, when the positive electrode material mixture is pressure-bonded to the positive electrode current collector 7 made of a porous body made of Ni, the porosity of the positive electrode material mixture is 40 by setting the pressure in the range of 1 to 10 MPa. It is clear that it can be adjusted in the range of ⁇ 80% by volume.
  • a metal-air battery 1 was obtained in exactly the same manner as in Example 5, except that the positive electrode 3 obtained in this example was used.
  • Example 8 the discharge performance of the metal-air battery 1 obtained in the present example was measured in exactly the same manner as in Example 5 except that the metal-air battery 1 obtained in the present example was used.
  • the results are shown in FIG. Example 8 In this embodiment, except that injection of gas the balance N 2 comprises the air reservoir 11 to 90 volume% of oxygen instead of air, to obtain a metal-air battery 1 in the same manner as in Example 5.
  • Example 9 the discharge performance of the metal-air battery 1 obtained in the present example was measured in exactly the same manner as in Example 5 except that the metal-air battery 1 obtained in the present example was used.
  • the results are shown in FIG. [Example 9]
  • 90 parts by mass of the complex oxide obtained in Example 5 5 parts by mass of ketjen black (manufactured by Lion Co., Ltd.), and 5 parts by mass of PTFE (manufactured by Daikin Industries, Ltd.) are mixed to form the positive electrode
  • a metal-air battery 1 was obtained in exactly the same manner as in Example 5 except that the material mixture was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 従来より大きな充放電容量を得ることができる金属空気電池を提供する。 金属空気電池1は、Li、Zn、Mg、Al、Feからなる群から選択される1つの金属からなる負極2と、炭素材及び酸素貯蔵材の混合物を含む正極3と、負極2及び正極3の間に配設された電解質とを備える。電解質はセパレータ4に含浸されている。負極2は金属Liからなる。酸素貯蔵材は、イットリウムとマンガンとの複合酸化物である。酸素貯蔵材は、六方晶構造を有することが好ましい。

Description

金属空気電池
 本発明は、金属空気電池に関するものである。
 従来、電池反応として、正極における酸素の酸化還元反応を利用する金属空気電池が知られている。前記金属空気電池には、空気中から取り入れた酸素を用いて前記酸化還元反応を行うものと、正極に酸素吸蔵材を備え、該酸素吸蔵材から放出される酸素を用いて前記酸化還元反応を行うものとがある。
 正極に酸素吸蔵材を備える金属空気電池では、放電時には、負極においては金属が酸化されて金属イオンを生じ、該金属イオンが正極側に移動する。一方、正極においては前記酸素吸蔵材から放出された酸素が酸素イオンに還元され、該金属イオンと結合して金属酸化物を形成する。また、前記金属空気電池では、充電時には、前記負極及び前記正極において、前記反応の逆反応が起きる。
 このような金属空気電池として、前記酸素吸蔵材に、酸素を含むマンガン錯体を用いるもの(例えば特許文献1参照)、又はペロブスカイト型構造を有するFe系金属複合酸化物を用いるものが知られている(例えば特許文献2参照)。
特開2009-230985号公報 特開2009-283381号公報
 しかしながら、正極に前記酸素吸蔵材を備える金属空気電池では、電池反応の反応速度が、酸素分子及び酸素イオンが該酸素吸蔵材に拡散する拡散速度に支配されるという不都合がある。この結果、正極に前記酸素吸蔵材を備える金属空気電池では、前記電池反応の反応速度が低下し、過電圧が上昇する。
 本発明は、かかる不都合を解消して、前記電池反応の反応速度を高速化し、過電圧の上昇を抑制することができる金属空気電池を提供することを目的とする。
 かかる目的を達成するために、本発明の金属空気電池は、Li、Zn、Mg、Al、Feからなる群から選択される1つの金属からなる負極と、含酸素化学種を貯蔵する炭素材及び酸素貯蔵材の混合物を含む正極と、該負極及び正極の間に配設された電解質とを備えることを特徴とする。
 本発明の金属空気電池では、前記負極を構成する金属は、Li、Zn、Feからなる群から選択される1つの金属であることが好ましく、Liであることがさらに好ましい。前記負極に金属Zn、金属Feを用いた金属空気電池は、他の金属を用いた場合に比較して高い理論電圧及び電気化学当量を得ることができ、金属Liを用いた金属空気電池は、さらに高い理論電圧及び電気化学当量を得ることができる。
 本発明の金属空気電池では、放電時には、負極において前記金属が酸化されてその金属のイオンを生じると共に、生成した金属イオンは前記電解質を介して正極に移動する。一方、正極においては前記炭素材及び酸素貯蔵材の混合物に貯蔵されている前記含酸素化学種が、前記金属イオンと結合して金属化合物を形成する。この結果、起電力を得ることができる。また、充電時には、前記放電時の逆反応が起きる。
 本発明の金属空気電池において、前記金属イオンと結合して金属化合物を形成する際に作用する前記含酸素化学種は、前記酸素貯蔵材に吸蔵されているものであってもよいが、前記炭素材及び酸素貯蔵材の混合物の表面に吸着されているものを優位に作用させることができる。前記炭素材及び酸素貯蔵材の混合物の表面に吸着されているに過ぎない前記含酸素化学種は、前記酸素貯蔵材中に拡散する必要がない。
 従って、本発明の金属空気電池によれば、前記電池反応の反応速度を高速化することができ、この結果、過電圧の上昇を抑制することができる。
 本発明の金属空気電池において、前記混合物に貯蔵される前記含酸素化学種としては、O、O2-、CO、CO、CO 2-、HCO 、CHCOOからなる群から選択される少なくとも1種の分子又は陰イオンを挙げることができる。
 前記含酸素化学種によれば、放電時、正極において、負極を構成する金属の酸化物、炭酸化物、炭酸水素化物、酢酸塩を形成することができる。
 本発明の金属空気電池において、前記酸素貯蔵材は、イットリウムとマンガンとの複合酸化物であるか、または六方晶構造を有する化合物であることが好ましい。この結果、前記酸素貯蔵材は、より多くの量の前記含酸素化学種をその表面に吸着することができる。
 前記酸素貯蔵材として、例えば、化学式YMnOで表される複合酸化物を挙げることができ、該複合酸化物は六方晶構造を有する化合物であることがさらに好ましい。
 また、本発明の金属空気電池において、前記正極は、前記炭素材及び前記酸素貯蔵材の混合物と結合剤とからなることが好ましい。前記正極は、前記結合剤により、前記炭素材と前記酸素貯蔵材とを結合させることにより、前記混合物を容易に形成することができる。
 また、本発明の金属空気電池において、前記酸素貯蔵材は、平均粒子径が50μm以下であって、前記炭素材に担持されると共に、前記正極の全質量に対して10~90質量%の範囲の質量を備えることが好ましい。
 前記酸素貯蔵材は、平均粒子径が50μmよりも大きい場合には、その表面に前記含酸素化学種を十分に吸着させることができず、そのために充放電反応を十分に促進させることができないことがあり、過電圧が増大したり、それに伴って容量が低下することがある。
 また、前記酸素貯蔵材の質量が前記正極の全質量の10質量%未満であるときは、本発明の金属空気電池において十分な充放電容量を得ることができないことがある。一方、前記酸素貯蔵材の質量が前記正極の全質量の90質量%を超えると、該正極の電子伝導性が低下し、十分な充放電容量を得ることができないことがある。
 また、本発明の金属空気電池において、前記混合物は、10~90容量%の範囲、好ましくは40~80容量%の空隙率を備えることが好ましい。
 前記混合物は、前記空隙率が10容積%未満では酸素が十分に拡散せず、放電時に正極に生成する金属化合物の析出が阻害されることがある。また、前記混合物は、前記空隙率が90容量%を超えると、触媒上におけるLiイオン等の負極金属のイオンと酸素との反応が十分に進行できないことがある。また、前記混合物は、前記空隙率が90容量%を超えると、機械的強度が低下し、サイクル特性が悪化することがある。
本発明の金属空気電池の第1の態様の構成例を示す説明的断面図。 本発明の金属空気電池の第2の態様の構成例を示す説明的断面図。 本発明の金属空気電池に用いる酸素貯蔵材のX線回折測定の結果を示すグラフ。 本発明の金属空気電池に用いる酸素貯蔵材の粒子径分布を示すグラフ。 本発明の金属空気電池に用いる酸素貯蔵材とCeOとの吸着酸素量の比較を示すグラフ。 本発明の第1の態様の金属空気電池に用いる正極混合物の空隙率を示すグラフ。 本発明の実施例1の金属空気電池における放電容量及び充電容量を示すグラフ。 本発明の実施例2の金属空気電池における放電容量及び充電容量を示すグラフ。 本発明の実施例3の金属空気電池における放電容量を示すグラフ。 本発明の実施例4の金属空気電池における放電容量を示すグラフ。 本発明の第2の態様の金属空気電池に用いる正極混合物の空隙率を示すグラフ。 本発明の実施例5の金属空気電池における放電容量及び充電容量を示すグラフ。 本発明の実施例6~9の実施形態の金属空気電池における放電容量を示すグラフ。
 次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。
 図1に示すように、本実施形態の金属空気電池1は円柱状であり、負極2と、正極3と、負極2及び正極3の間に配設されたセパレータ4とを備えている。セパレータ4には電解質が含浸されている。
 負極2は、Li、Zn、Mg、Al、Feからなる群から選択される1つの金属からなり、好ましくはLi、Fe、Znなる群から選択される1つの金属からなる。負極2は、さらに好ましくは金属リチウムからなる。負極2は、ステンレス鋼、Niメッシュ等からなる負極集電体5を介して、ステンレス製の負極容器6に収容されている。
 正極3は、炭素材と、酸素貯蔵材と、バインダーとの混合物からなる多孔質体であり、Alメッシュ、Ni製多孔質体等からなる正極集電体7に圧着され、正極集電体7を介してステンレス製の正極容器8に収容されている。負極容器6と正極容器8とは、セパレータ4の周囲に設けられた絶縁樹脂部材9により、電気的に絶縁されている。
 セパレータ4は、例えば、ポリプロピレン膜、ガラス濾紙等からなる。また、前記電解質としては、例えば、エチレンカーボネートとジエチルカーボネートとの混合溶液に、支持塩として六フッ化リン酸リチウム(LiPF)を溶解した溶液等を挙げることができる。前記電解質は、セパレータ4に含浸されている。
 前記炭素材は、正極3において導電材料として作用するともに、前記酸素貯蔵材の担体として作用する。このような炭素材として、例えば、ケッチェンブラック(ライオン株式会社製)等を挙げることができる。
 前記酸素貯蔵材として、例えば、化学式YMnOで表されるイットリウムとマンガンとの複合酸化物であって、六方晶構造を有するものを挙げることができる。また、前記酸素貯蔵材は、正極の全質量に対して10~90質量%の範囲の質量を備えていることが好ましい。
 前記複合酸化物は、例えば、イットリウム塩とマンガン塩との混合物に、さらに有機酸を添加して、加熱下に所定時間反応させ、反応生成物を粉砕混合した後、焼成することにより製造することができる。前記イットリウム塩としては、イットリウムの硝酸塩または酢酸塩を用いることができ、前記マンガン塩としては、マンガンの硝酸塩または酢酸塩を用いることができる。また、前記有機酸としては、例えば、リンゴ酸等を用いることができる。このようにして製造された前記複合酸化物は、平均粒子径が50μm以下であることが好ましい。
 前記バインダーは、正極3において前記炭素材と前記酸素貯蔵材との混合状態を良好にする。このようなバインダーとして、例えば、ポリテトラフルオロエチレン(PTFE)等を用いることができる。
 また、前記炭素材と、前記酸素貯蔵材と、前記バインダーとからなる混合物は、好ましくは10~90容量%、さらに好ましくは40~80容量%の範囲の空隙率を備えている。前記混合物は、正極集電体7に圧着する際の圧力により前記空隙率を調整することができる。
 前記構成を備える本実施形態の金属空気電池1では、負極2において前記金属が酸化されて生成した金属イオンが、正極3において金属化合物を生成する際に、前記混合物に貯蔵されている前記含酸素化学種が用いられる。このとき、前記混合物は、前記酸素貯蔵材に前記含酸素化学種を吸蔵すると共に、該混合物の表面に前記含酸素化学種を吸着して保持しいる。
 ここで、前記炭素材及び酸素貯蔵材の混合物の表面に吸着されているに過ぎない前記含酸素化学種は、前記酸素貯蔵材に吸蔵されているものと異なり該酸素貯蔵材中に拡散する必要がなく、前記混合物との結合エネルギーも低い。
 この結果、本実施形態の金属空気電池1によれば、正極3において前記金属イオンが金属化合物を生成する際に、前記炭素材及び酸素貯蔵材の表面に吸着されている前記含酸素化学種を優位に作用させることができる。
 この結果、金属空気電池1によれば、前記電池反応の反応速度を高速化して、過電圧の上昇を抑制することができるので、従来の金属空気電池に比較して、大きな充放電容量を得ることができる。
 また、本実施形態の金属空気電池1は、図2に示すように、正極容器8が、正極3及び支持体を収容する穴部10と、穴部10に連通する円筒状の空気溜り11を備えるものであってもよい。このとき、正極容器8は、正極3及び正極集電体7をセパレータ4に押圧するステンレス製の押圧部材12を底部に備えており、押圧部材12は、穴部10と空気溜り11とに連通する貫通孔13を備えている。
 本実施形態の金属空気電池1は、図2に示す空気溜り11を備える構成の場合にも、図1に示す構成と同様に、従来の金属空気電池に比較して、大きな充放電容量を得ることができる。
 次に、本発明の実施例及び比較例を示す。
〔実施例1〕
 本実施例では、次のようにして、図1に示す構成を備える金属空気電池1を作成した。
 まず、酸素貯蔵材として化学式YMnOで表される複合酸化物を調製した。前記複合酸化物の調製は、まず、硝酸イットリウム5水和物と、硝酸マンガン6水和物と、リンゴ酸とを、1:1:6のモル比となるようにして、粉砕混合した。次に、得られた混合物を250℃の温度で30分間反応させた後、300℃の温度で30分間反応させ、さらに350℃の温度で1時間反応させた。次に、反応生成物の混合物を粉砕混合した後、1000℃で1時間焼成して前記複合酸化物を得た。
 次に、本実施例で得られた前記複合酸化物のX線回折パターンを測定した。測定は、X線回折装置(ブルカーエイエックス社製)を用い、管電圧50kV、管電流150mA、ディフラクトメーター4°/分、計測範囲(2θ)10~90°の範囲で行った。結果を図3に示す。図3から、本実施例で得られた前記複合酸化物は、化学式YMnO3で表される複合酸化物であり、六方晶構造を有することが明らかになった。
 次に、本実施例で得られた前記複合酸化物の粒子径分布を測定した。測定は、レーザー回折/散乱式粒度分布測定装置(株式会社堀場製作所製)を用い、エタノールを溶媒として平均粒子径D50を算出した。結果を図4に示す。図4から、本実施例で得られた前記複合酸化物の平均粒子径は5.75μmであることが明らかになった。
 次に、本実施例で得られた前記複合酸化物0.1gを石英製サンプル管に収容し、該サンプル管を管状炉内に設置した。前記サンプル管の入口側から3容積%のHを含むArガスを100ml/分の流量で該サンプル管に導入した。そして、前記サンプル管の出口側でHガス濃度を測定し、Hガス濃度が一定になるまで保持した。
 次に、前記サンプル管に対する前記Hを含むArガスを導入しながら、前記管状炉を10℃/分の速度で600℃まで昇温し、昇温中に該サンプル管の出口側から放出されるガス中のHO濃度を計測し、計測されたHO濃度から、前記複合酸化物の吸着酸素量を定量した。
 次に、本実施例で得られた前記複合酸化物に代えてCeOを用いた以外は、本実施例で得られた前記複合酸化物の場合と全く同一にして、CeOの吸着酸素量を定量した。結果を図5に示す。
 図5から、本実施例で得られた前記複合酸化物の吸着酸素量は、CeOの3倍以上であり、本実施例で得られた前記複合酸化物が優れた酸素吸着能を備えていることが明らかである。
 次に、本実施例で得られた前記複合酸化物40質量部、ケッチェンブラック(株式会社ライオン製)50質量部、結合剤としてのPTFE(ダイキン工業株式会社製)10質量部を混合し、正極材料混合物を得た。得られた正極材料混合物を、直径15mmのAlメッシュからなる正極集電体7に5MPaの圧力で圧着して、直径15mm、厚さ1mmの正極3とした。
 本実施例で得られた正極3は、水銀圧入法により、80容積%の空隙率を備えていることが確認された。結果を図6に示す。
 次に、内径15mmの有底円筒状のステンレス製の負極容器6に、直径15mmのステンレス鋼からなる負極集電体5を介して、直径15mm、厚さ1mmの金属Liからなる負極2を収容した。
 次に、負極2上に直径15mmのポリプロピレン膜(タピルス株式会社製)からなるセパレータ4を載置した。次に、セパレータ4上に正極3及び正極集電体7を、正極3がセパレータ4に接するように載置した。
 次に、セパレータ4に電解質を注入した。前記電解質は、エチレンカーボネート30質量部と、ジエチルカーボネート70質量部との混合溶液に、六フッ化リン酸リチウム(LiPF)を支持塩として、1モル/リットルの濃度で溶解した溶液(キシダ化学株式会社製)である。
 次に、正極3及び正極集電体7を正極容器8で閉蓋し、図1の構成を備える金属空気電池1を得た。金属空気電池1において、正極容器8と負極容器6とは、セパレータ4の周囲に配設された絶縁樹脂部材9により、電気的に絶縁されている。絶縁樹脂部材9は、外径32mm、内径30mm、厚さ5mmのリング状であり、PTFEからなる。
 次に、本実施例で得られた金属空気電池1を電気化学測定装置(東方技研株式会社製)にセットし、負極2と正極3との間に、0.1mA/cmの電流を印加し、セル電圧が2.0Vになるまで放電した。セル電圧と容量との関係を図7(a)に示す。
 次に、本実施例で得られた金属空気電池1を電気化学測定装置(東方技研株式会社製)にセットし、負極2と正極3との間に、0.1mA/cmの電流を印加し、セル電圧が4.1Vになるまで充電した。セル電圧と容量との関係を図7(b)に示す。
〔実施例2〕
 本実施例では、まず、実施例1と全く同一にして、酸素貯蔵材として化学式YMnOで表される複合酸化物を調製した。本実施例で得られた前記複合酸化物は、化学式YMnO3で表される複合酸化物であり、六方晶構造を有することが確認された。
 次に、本実施例で得られた前記複合酸化物80質量部、ケッチェンブラック(株式会社ライオン製)10質量部、結合剤としてのPTFE(ダイキン工業株式会社製)10質量部を混合し、正極材料混合物を得た。得られた正極材料混合物を、直径15mmのAlメッシュからなる正極集電体7に5MPaの圧力で圧着して、直径15mm、厚さ1mmの正極3とした。
 本実施例で得られた正極3は、水銀圧入法により、70容積%の空隙率を備えていることが確認された。結果を図6に示す。
 次に、本実施例で得られた正極3を用いた以外は、実施例1と全く同一にして、図1の構成を備える金属空気電池1を得た。
 次に、本実施例で得られた金属空気電池1を電気化学測定装置(東方技研株式会社製)にセットし、負極2と正極3との間に、0.1mA/cmの電流を印加し、セル電圧が2.0Vになるまで放電した。セル電圧と容量との関係を図8(a)に示す。
 次に、本実施例で得られた金属空気電池1を電気化学測定装置(東方技研株式会社製)にセットし、負極2と正極3との間に、0.1mA/cmの電流を印加し、セル電圧が4.0Vになるまで充電した。セル電圧と容量との関係を図8(b)に示す。
〔実施例3〕
 本実施例では、負極2として直径15mm、厚さ0.5mmの金属鉄を用い、電解質として、6モル/リットルのKOH水溶液を用いた以外は、実施例1と全く同一にして図1の構成を備える金属空気電池1を得た。
 次に、本実施例で得られた金属空気電池1を電気化学測定装置(東方技研株式会社製)にセットし、負極2と正極3との間に、0.1mA/cmの電流を印加し、セル電圧が0.1Vになるまで放電した。セル電圧と容量との関係を図9に示す。
〔実施例4〕
 本実施例では、負極2として直径15mm、厚さ0.5mmの金属亜鉛を用い、電解質として、6モル/リットルのKOH水溶液を用いた以外は、実施例1と全く同一にして図1の構成を備える金属空気電池1を得た。
 次に、本実施例で得られた金属空気電池1を電気化学測定装置(東方技研株式会社製)にセットし、負極2と正極3との間に、0.1mA/cmの電流を印加し、セル電圧が0.5Vになるまで放電した。セル電圧と容量との関係を図10に示す。
〔実施例5〕
 本実施例では、次のようにして、図2に示す構成を備える金属空気電池1を作成した。
 まず、実施例1と全く同一にして、酸素貯蔵材として化学式YMnOで表される複合酸化物を調製した。本実施例で得られた前記複合酸化物は、化学式YMnO3で表される複合酸化物であり、六方晶構造を有することが確認された。
 次に、本実施例で得られた前記複合酸化物10質量部、ケッチェンブラック(株式会社ライオン製)80質量部、PTFE(ダイキン工業株式会社製)10質量部を混合し、正極材料混合物を得た。得られた正極材料混合物をNi製多孔質体からなる正極集電体7に5MPaの圧力で圧着して正極3とした。前記Ni製多孔質体は、0.45mmの孔径と、8000m/mの比表面積を備えている。
 次に、前記混合物の空隙率を、全自動細孔分布測定装置(Quantachrome社製)を用いて、水銀圧入法により測定した。結果を図11に示す。図11から本実施例における前記正極材料混合物の空隙率は、66容量%であることが明らかである。
 次に、内径15mmの有底円筒状のステンレス製の負極容器6に、直径15mmのNi製メッシュ状体からなる負極集電体5を介して、直径15mm、厚さ1mmの金属Liからなる負極2を収容した。
 次に、負極2上に直径15mmのガラス濾紙(アドバンテック東洋株式会社製、商品名:GA200)からなるセパレータ4を載置した。次に、セパレータ4上に正極3及び正極集電体7を、正極3がセパレータ4に接するように載置した。
 次に、セパレータ4に電解質を注入した。前記電解質は、エチレンカーボネート50質量部と、ジエチルカーボネート50質量部との混合溶液に、六フッ化リン酸リチウム(LiPF)を支持塩として、1モル/リットルの濃度で溶解した溶液(キシダ化学株式会社製)である。
 次に、正極3及び正極集電体7をステンレス製の正極容器8で閉蓋し、図2の構成を備える金属空気電池1を得た。
 図2に示す金属空気電池1において、正極容器8は内周側に穴部10を備える有底円筒状体であり、穴部10の底部に連通する円筒状の空気溜まり11を複数備えている。穴部10には、正極3、正極集電体7、押圧部材12が収容されている。押圧部材12は、内周側に空気溜まり11に連通する複数の貫通孔13を素姉手いる。
 また、金属空気電池1において、正極容器8と負極容器6とは、セパレータ4の周囲に配設された絶縁樹脂部材9により、電気的に絶縁されている。絶縁樹脂部材9は、外径32mm、内径30mm、厚さ5mmのリング状であり、PTFEからなる。
 次に、本実施例で得られた金属空気電池1を電気化学測定装置(ソーラートロン社製、商品名:SI1287)にセットし、負極2と正極3との間に、0.1mA/cmの電流を印加し、セル電圧が2.0Vになるまで放電した。セル電圧と容量との関係を図12(a)に示す。
 次に、本実施例で得られた金属空気電池1を電気化学測定装置(ソーラートロン社製、商品名:SI1287)にセットし、負極2と正極3との間に、0.1mA/cmの電流を印加し、セル電圧が4.0Vになるまで充電した。セル電圧と容量との関係を図12(b)に示す。
〔比較例〕
 本比較例では、実施例5における前記酸素貯蔵材に変えて、二酸化マンガンを用いた以外は、実施例5と全く同一にして、図2に示す構成を備える金属空気電池1を得た。
 次に、本比較例で得られた金属空気電池1を用いた以外は実施例5と全く同一にして、本比較例で得られた金属空気電池1の放電性能と充電性能とを測定した。放電性能の測定結果を図12(a)に、充電性能の測定結果を図12(b)に示す。
 図12(a)及び図12(b)から、本発明に従う実施例5の金属空気電池1によれば、二酸化マンガンを正極3に用いる従来の金属空気電池に比較して、大きな充放電容量を得ることができることが明らかである。
〔実施例6〕
 本実施例では、実施例5で得られた前記複合酸化物と、カーボンブラックと、PTFEとからなる正極材料混合物をNi製多孔質体からなる正極集電体7に圧着する際に、圧力を1MPaとした以外は、実施例5と全く同一にして、正極3を得た。次に、本実施例で得られた正極3を用いた以外は、実施例5と全く同一にして、前記正極材料混合物の空隙率を測定した。結果を図11に示す。図11から本実施例における前記正極材料混合物の空隙率は、78容量%であることが明らかである。
 次に、本実施例で得られた正極3を用いた以外は、実施例5と全く同一にして金属空気電池1を得た。
 次に、本実施例で得られた金属空気電池1を用いた以外は、実施例5と全く同一にして、本実施例で得られた金属空気電池1の放電性能を測定した。結果を図13に示す。
〔実施例7〕
 本実施例では、実施例5で得られた前記複合酸化物と、カーボンブラックと、PTFEとからなる正極材料混合物をNi製多孔質体からなる正極集電体7に圧着する際に、圧力を10MPaとした以外は、実施例5と全く同一にして、正極3を得た。次に、本実施例で得られた正極3を用いた以外は、実施例5と全く同一にして、前記混合物の空隙率を測定した。結果を図11に示す。
 図11から本実施例における前記正極材料混合物の空隙率は、44容量%であることが明らかである。また、図11から、前記正極材料混合物をNi製多孔質体からなる正極集電体7に圧着する際に、圧力を1~10MPaの範囲とすることにより、該正極材料混合物の空隙率を40~80容量%の範囲で調整することができることが明らかである。
 次に、本実施例で得られた正極3を用いた以外は、実施例5と全く同一にして金属空気電池1を得た。
 次に、本実施例で得られた金属空気電池1を用いた以外は、実施例5と全く同一にして、本実施例で得られた金属空気電池1の放電性能を測定した。結果を図13に示す。
〔実施例8〕
 本実施例では、空気溜り11に空気に代えて90容量%の酸素を含み残部Nである気体を注入した以外は、実施例5と全く同一にして金属空気電池1を得た。
 次に、本実施例で得られた金属空気電池1を用いた以外は、実施例5と全く同一にして、本実施例で得られた金属空気電池1の放電性能を測定した。結果を図13に示す。
〔実施例9〕
 本実施例では、実施例5で得られた前記複合酸化物90質量部、ケッチェンブラック(株式会社ライオン製)5質量部、PTFE(ダイキン工業株式会社製)5質量部を混合して前記正極材料混合物を得た以外は、実施例5と全く同一にして金属空気電池1を得た。
 次に、本実施例で得られた金属空気電池1を用いた以外は、実施例5と全く同一にして、本実施例で得られた金属空気電池1の放電性能を測定した。結果を図13に示す。
 図13から、前記混合物の空隙率を40~80容量%の範囲で調整した実施例6及び実施例7の金属空気電池1によれば、実施例5の金属空気電池1と同等の充放電容量を得ることができることが明らかである。また、空気に代えて90容量%の酸素を含み残部Nである気体を用いる実施例8の金属空気電池1によれば、安定したセル電圧と優れた放電容量を得ることができることが明らかである。また、前記正極材料混合物における酸素貯蔵材の含有量を実施例5より増量した実施例9の金属空気電池1によれば、実施例5~7と、実施例8との中間の放電容量を得ることができることが明らかである。
 1…金属空気電池、 2…負極、 3…正極、 4…電解質が含浸されたセパレータ。

Claims (10)

  1.  Li、Zn、Mg、Al、Feからなる群から選択される1つの金属からなる負極と、含酸素化学種を貯蔵する炭素材及び酸素貯蔵材の混合物を含む正極と、該負極及び正極の間に配設された電解質とを備えることを特徴とする金属空気電池。
  2.  請求項1記載の金属空気電池において、前記負極は金属Li、Zn、Feからなる群から選択される1つの金属からなることを特徴とする金属空気電池。
  3.  請求項1記載の金属空気電池において、前記負極は金属Liからなることを特徴とする金属空気電池。
  4.  請求項1記載の金属空気電池において、前記混合物の表面に貯蔵される前記含酸素化学種は、O、O2-、CO、CO、CO 2-、HCO 、CHCOOからなる群から選択される少なくとも1種の分子又は陰イオンであることを特徴とする金属空気電池。
  5.  請求項1記載の金属空気電池において、前記酸素貯蔵材は、イットリウムとマンガンとの複合酸化物であることを特徴とする金属空気電池。
  6.  請求項1記載の金属空気電池において、前記酸素貯蔵材は、六方晶構造を有することを特徴とする金属空気電池。
  7.  請求項1記載の金属空気電池において、前記正極は、前記炭素材及び前記酸素貯蔵材の混合物と結合剤とからなることを特徴とする金属空気電池。
  8.  請求項1記載の金属空気電池において、前記酸素貯蔵材は、平均粒子径が50μm以下であって、前記炭素材に担持されると共に、前記正極の全質量に対して10~90質量%の範囲の質量を備えることを特徴とする金属空気電池。
  9.  請求項1記載の金属空気電池において、前記混合物は、10~90容量%の範囲の空隙率を備えることを特徴とする金属空気電池。
  10.  請求項9記載の金属空気電池において、前記混合物は、40~80容量%の範囲の空隙率を備えることを特徴とする金属空気電池。
PCT/JP2011/056244 2010-03-16 2011-03-16 金属空気電池 WO2011115176A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11756360.1A EP2549583B1 (en) 2010-03-16 2011-03-16 Metal-air battery
US13/634,938 US8697297B2 (en) 2010-03-16 2011-03-16 Metal-air battery
CN201180014293.3A CN102812590B (zh) 2010-03-16 2011-03-16 金属空气电池
JP2012505727A JP5122021B2 (ja) 2010-03-16 2011-03-16 金属空気電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010058810 2010-03-16
JP2010-058810 2010-03-16

Publications (1)

Publication Number Publication Date
WO2011115176A1 true WO2011115176A1 (ja) 2011-09-22

Family

ID=44649259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056244 WO2011115176A1 (ja) 2010-03-16 2011-03-16 金属空気電池

Country Status (5)

Country Link
US (1) US8697297B2 (ja)
EP (1) EP2549583B1 (ja)
JP (1) JP5122021B2 (ja)
CN (1) CN102812590B (ja)
WO (1) WO2011115176A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029743A1 (ja) * 2010-08-31 2012-03-08 本田技研工業株式会社 金属酸素電池
JP2013016385A (ja) * 2011-07-05 2013-01-24 Honda Motor Co Ltd 金属酸素電池及びそれに用いる酸素貯蔵材料の製造方法
JP2013033732A (ja) * 2011-07-05 2013-02-14 Honda Motor Co Ltd 金属酸素電池
JP2013033730A (ja) * 2011-07-04 2013-02-14 Honda Motor Co Ltd 金属酸素電池
JP2013033731A (ja) * 2011-07-06 2013-02-14 Honda Motor Co Ltd 金属酸素電池
JP2013033733A (ja) * 2011-07-06 2013-02-14 Honda Motor Co Ltd 金属酸素電池
JP5202766B2 (ja) * 2011-05-10 2013-06-05 本田技研工業株式会社 酸素電池
JP5220232B1 (ja) * 2012-12-26 2013-06-26 本田技研工業株式会社 金属酸素電池及びそれに用いる酸素貯蔵材料の製造方法
JP2013182719A (ja) * 2012-02-29 2013-09-12 Honda Motor Co Ltd 金属酸素電池
WO2013146383A1 (ja) * 2012-03-29 2013-10-03 本田技研工業株式会社 金属酸素電池
US20140045082A1 (en) * 2011-04-19 2014-02-13 Honda Motor Co., Ltd. Lithium ion oxygen battery
JP2016103474A (ja) * 2014-11-18 2016-06-02 株式会社神戸製鋼所 金属−空気二次電池用負極材料、これを備える金属−空気二次電池、及び金属−空気二次電池用負極材料の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5276203B2 (ja) * 2011-09-07 2013-08-28 本田技研工業株式会社 金属酸素電池
JP5254483B2 (ja) * 2011-09-13 2013-08-07 本田技研工業株式会社 金属酸素電池
JP5276204B2 (ja) * 2011-09-13 2013-08-28 本田技研工業株式会社 金属酸素電池
JP5393747B2 (ja) * 2011-09-14 2014-01-22 本田技研工業株式会社 金属酸素電池
WO2014047137A1 (en) 2012-09-24 2014-03-27 Cornell University Methods, systems, and applications for solar-thermal microfluidic pcr
WO2014074504A1 (en) 2012-11-06 2014-05-15 Cornell University Carbon dioxide assisted metal-oxygen battery and related method
GB2517460A (en) * 2013-08-21 2015-02-25 Univ Newcastle Metal-air batteries
CN110112512B (zh) * 2019-04-19 2022-10-11 上海大学 全封闭式金属-二氧化碳电池及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112724A (ja) * 2006-10-06 2008-05-15 Toyota Central R&D Labs Inc 正極用触媒及びリチウム空気二次電池
JP2008270166A (ja) * 2007-03-29 2008-11-06 Toyota Central R&D Labs Inc 空気電池
JP2009230985A (ja) 2008-03-21 2009-10-08 Toyota Central R&D Labs Inc 非水系空気電池
JP2009283381A (ja) 2008-05-26 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> リチウム空気二次電池およびリチウム空気二次電池製造方法
JP2010108622A (ja) * 2008-10-28 2010-05-13 Toyota Motor Corp 金属空気電池
JP2010140821A (ja) * 2008-12-12 2010-06-24 Toyota Central R&D Labs Inc 空気電池
WO2010100752A1 (ja) * 2009-03-06 2010-09-10 トヨタ自動車株式会社 空気極および非水空気電池
WO2010131536A1 (ja) * 2009-05-13 2010-11-18 日本電気株式会社 触媒電極、燃料電池、空気電池および発電方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935027A (en) * 1975-04-09 1976-01-27 Westinghouse Electric Corporation Oxygen-reduction electrocatalysts for electrodes
JP2003123773A (ja) * 2001-10-16 2003-04-25 Nissan Motor Co Ltd 固体電解質型燃料電池用空気極およびそれを用いた燃料電池
EP1708299A1 (en) * 2004-01-22 2006-10-04 Toyota Jidosha Kabushiki Kaisha Cathode for fuel cell and solid polymer fuel cell having same
JP4031463B2 (ja) * 2004-04-26 2008-01-09 株式会社東芝 液体燃料型固体高分子燃料電池用アノード電極、液体燃料型固体高分子燃料電池用膜電極複合体及び液体燃料型固体高分子燃料電池
US20070054170A1 (en) * 2005-09-02 2007-03-08 Isenberg Arnold O Oxygen ion conductors for electrochemical cells
US7696126B2 (en) * 2006-02-14 2010-04-13 Honda Motor Co., Ltd. Method of producing oxidation catalyst for cleaning exhaust gas
JP2007307446A (ja) * 2006-05-16 2007-11-29 Honda Motor Co Ltd 排ガス浄化酸化触媒
JP4735849B2 (ja) * 2006-10-26 2011-07-27 ミネベア株式会社 面状照明装置
JP5095538B2 (ja) * 2008-07-15 2012-12-12 本田技研工業株式会社 排ガス浄化用酸化触媒装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112724A (ja) * 2006-10-06 2008-05-15 Toyota Central R&D Labs Inc 正極用触媒及びリチウム空気二次電池
JP2008270166A (ja) * 2007-03-29 2008-11-06 Toyota Central R&D Labs Inc 空気電池
JP2009230985A (ja) 2008-03-21 2009-10-08 Toyota Central R&D Labs Inc 非水系空気電池
JP2009283381A (ja) 2008-05-26 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> リチウム空気二次電池およびリチウム空気二次電池製造方法
JP2010108622A (ja) * 2008-10-28 2010-05-13 Toyota Motor Corp 金属空気電池
JP2010140821A (ja) * 2008-12-12 2010-06-24 Toyota Central R&D Labs Inc 空気電池
WO2010100752A1 (ja) * 2009-03-06 2010-09-10 トヨタ自動車株式会社 空気極および非水空気電池
WO2010131536A1 (ja) * 2009-05-13 2010-11-18 日本電気株式会社 触媒電極、燃料電池、空気電池および発電方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2549583A4 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029743A1 (ja) * 2010-08-31 2012-03-08 本田技研工業株式会社 金属酸素電池
JPWO2012029743A1 (ja) * 2010-08-31 2013-10-28 本田技研工業株式会社 金属酸素電池
JP5202767B2 (ja) * 2010-08-31 2013-06-05 本田技研工業株式会社 金属酸素電池
US20140045082A1 (en) * 2011-04-19 2014-02-13 Honda Motor Co., Ltd. Lithium ion oxygen battery
US9130228B2 (en) * 2011-04-19 2015-09-08 Honda Motor Co., Ltd. Lithium ion oxygen battery
JP5202766B2 (ja) * 2011-05-10 2013-06-05 本田技研工業株式会社 酸素電池
JPWO2012153774A1 (ja) * 2011-05-10 2014-07-31 本田技研工業株式会社 酸素電池
JP2013033730A (ja) * 2011-07-04 2013-02-14 Honda Motor Co Ltd 金属酸素電池
JP2013033732A (ja) * 2011-07-05 2013-02-14 Honda Motor Co Ltd 金属酸素電池
JP2013016385A (ja) * 2011-07-05 2013-01-24 Honda Motor Co Ltd 金属酸素電池及びそれに用いる酸素貯蔵材料の製造方法
JP2013033733A (ja) * 2011-07-06 2013-02-14 Honda Motor Co Ltd 金属酸素電池
US8835061B2 (en) 2011-07-06 2014-09-16 Honda Motor Co., Ltd. Metal oxygen battery
JP2013033731A (ja) * 2011-07-06 2013-02-14 Honda Motor Co Ltd 金属酸素電池
JP2013182719A (ja) * 2012-02-29 2013-09-12 Honda Motor Co Ltd 金属酸素電池
JP5383954B1 (ja) * 2012-03-29 2014-01-08 本田技研工業株式会社 金属酸素電池
WO2013146383A1 (ja) * 2012-03-29 2013-10-03 本田技研工業株式会社 金属酸素電池
CN104137325A (zh) * 2012-03-29 2014-11-05 本田技研工业株式会社 金属氧电池
CN104137325B (zh) * 2012-03-29 2016-08-31 本田技研工业株式会社 金属氧电池
US10008725B2 (en) 2012-03-29 2018-06-26 Honda Motor Co., Ltd. Metal-oxygen cell
WO2014045841A1 (ja) * 2012-12-26 2014-03-27 本田技研工業株式会社 金属酸素電池及びそれに用いる酸素貯蔵材料の製造方法
CN104011933A (zh) * 2012-12-26 2014-08-27 本田技研工业株式会社 金属氧电池以及用于该金属氧电池的储氧材料的制造方法
EP2744035A4 (en) * 2012-12-26 2015-05-06 Honda Motor Co Ltd METAL-OXYGEN BATTERY AND METHOD OF MANUFACTURING OXYGEN-STORING MATERIAL USED IN THIS BATTERY
JP5220232B1 (ja) * 2012-12-26 2013-06-26 本田技研工業株式会社 金属酸素電池及びそれに用いる酸素貯蔵材料の製造方法
US9246163B2 (en) 2012-12-26 2016-01-26 Honda Motor Co., Ltd. Metal oxygen battery and a method for manufacturing oxygen storage material used therein
JP2016103474A (ja) * 2014-11-18 2016-06-02 株式会社神戸製鋼所 金属−空気二次電池用負極材料、これを備える金属−空気二次電池、及び金属−空気二次電池用負極材料の製造方法

Also Published As

Publication number Publication date
CN102812590B (zh) 2015-03-25
US8697297B2 (en) 2014-04-15
JPWO2011115176A1 (ja) 2013-07-04
US20130011754A1 (en) 2013-01-10
JP5122021B2 (ja) 2013-01-16
EP2549583B1 (en) 2015-04-29
CN102812590A (zh) 2012-12-05
EP2549583A1 (en) 2013-01-23
EP2549583A4 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
WO2011115176A1 (ja) 金属空気電池
JP5202767B2 (ja) 金属酸素電池
JPWO2013018769A1 (ja) マグネシウム金属空気電池
US11145876B2 (en) Carbon catalyst, cell electrode, and cell
WO2012153774A1 (ja) 酸素電池
JP5204334B2 (ja) 金属酸素電池
JP2013033732A (ja) 金属酸素電池
JP5204333B2 (ja) 金属酸素電池
JP5276203B2 (ja) 金属酸素電池
US9246163B2 (en) Metal oxygen battery and a method for manufacturing oxygen storage material used therein
JP6695302B2 (ja) リチウム空気二次電池
JP5393735B2 (ja) 金属酸素電池
JP6715209B2 (ja) リチウム空気二次電池
KR20160097413A (ko) 아연공기 2차 전지 및 이의 제조방법
JP5202697B2 (ja) 金属酸素電池
JP5393748B2 (ja) 金属酸素電池
EP3952013A1 (en) Catalyst for air electrodes, air electrode and metal air secondary battery
JP5398879B2 (ja) 金属酸素電池
JP2019096451A (ja) リチウム空気二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014293.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756360

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505727

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13634938

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011756360

Country of ref document: EP