WO2011114836A1 - 表層硬化処理用鋼及び表層硬化鋼部品とその製造方法 - Google Patents

表層硬化処理用鋼及び表層硬化鋼部品とその製造方法 Download PDF

Info

Publication number
WO2011114836A1
WO2011114836A1 PCT/JP2011/053517 JP2011053517W WO2011114836A1 WO 2011114836 A1 WO2011114836 A1 WO 2011114836A1 JP 2011053517 W JP2011053517 W JP 2011053517W WO 2011114836 A1 WO2011114836 A1 WO 2011114836A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
carburizing
treatment
carburized
mass
Prior art date
Application number
PCT/JP2011/053517
Other languages
English (en)
French (fr)
Inventor
久保田 学
越智 達朗
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to CN201180001322.2A priority Critical patent/CN102341520B/zh
Priority to EP11755233.1A priority patent/EP2514847B1/en
Priority to US13/258,340 priority patent/US8475605B2/en
Priority to KR1020117020459A priority patent/KR101247478B1/ko
Priority to JP2011527141A priority patent/JP4927234B2/ja
Publication of WO2011114836A1 publication Critical patent/WO2011114836A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/16V-belts, i.e. belts of tapered cross-section consisting of several parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to a surface hardening steel, a surface hardening steel part, and a manufacturing method thereof.
  • Power transmission parts for example, gears, bearings, CVT sheaves, shafts, etc.
  • a surface hardening treatment for example, carburizing treatment is superior to other surface hardening treatments in terms of surface hardness, depth of hardened layer, productivity, etc. Many.
  • medium carbon alloy steel such as SCM420, SCR420, SNCM220 defined in JISG4053, hot forging, cold forging, cutting, or a combination thereof
  • Machining is performed so as to obtain a predetermined shape, and then carburizing or carbonitriding is performed.
  • Fatigue failure of carburized gears is broadly divided into bending fatigue (tooth root fatigue) and tooth surface fatigue (pitching, etc.).
  • bending fatigue strength can be improved by improving the structure of the surface layer (reducing the grain boundary oxide layer and incompletely quenched layer), and can be greatly improved by applying shot peening. ing.
  • the tooth surface fatigue strength can hardly be improved even by shot peening, so that the improvement of the tooth surface fatigue strength has been an issue. Further, since not only gears but also CVT sheaves and bearings are required to have higher surface pressure, there is a strong demand for improvement in surface fatigue such as tooth surface fatigue and rolling fatigue.
  • a “high carbon carburizing (also called high concentration carburizing) technique” in which cementite is actively precipitated on the surface of carburized parts has been proposed.
  • the carbon potential (hereinafter also referred to as CP) of the atmosphere is set to about 0.70 to 0.90%, and the carbon content of the surface layer part of the part is controlled to about 0.80%. Then, it is the process which makes the structure
  • cementite is deposited and dispersed in the surface layer portion, and finally, a structure in which cementite is dispersed in martensite is obtained.
  • Such a technique is also referred to as CD carburization: carbide dispersion carburizing.
  • Carbon potential is a term indicating the carburizing ability of the atmosphere in which steel is heated.
  • the basic definition of the carbon potential is “the carbon concentration of the steel surface when the steel is heated and carburized to a specific temperature in a gas atmosphere and reaches equilibrium with the gas atmosphere”.
  • the carbon potential means the virtual carbon surface concentration at which cementite precipitation does not occur. Become. In this case, the carbon potential does not always coincide with the carbon solid solution concentration on the actual steel surface.
  • high carbon carburizing is performed at a relatively high temperature (primary carburizing), and then cooled to near room temperature at a sufficiently high cooling rate so as not to form proeutectoid cementite. Then, it heats again, performs the precipitation process of the carbide
  • Patent Document 1 proposes a method of performing secondary quenching by induction quenching.
  • Patent Document 2 proposes a method of finely dispersing carbide by defining a heating pattern for secondary quenching.
  • the secondary quenching not only increases the heat treatment cost, but also deteriorates the component performance. That is, by repeating the heat treatment, deformation caused by the heat treatment accumulates, the deformation of the parts inevitably increases, and the dimensional accuracy deteriorates.
  • Patent Document 3 and Patent Document 4 the surface carbon concentration at the time of carburizing treatment is defined, carburizing treatment is performed in a temperature range calculated by an equation defined from chemical components, and carburizing treatment temperature and A method of manufacturing a high surface pressure resistant member having a required relationship and performing diffusion treatment at high temperature has been proposed.
  • the diffusion treatment is performed at a temperature higher than the carburizing temperature, the coarsening of the carbide is caused, which is insufficient as an alternative treatment for the secondary quenching.
  • the processing pattern shown as an invention of the embodiment of these references are quenched below 1 point A steel during carburizing. This is substantially the same process as the secondary quenching, and this method cannot avoid the deterioration of the dimensional accuracy of the parts.
  • the present invention provides a steel for surface layer hardening treatment and a surface hardening steel capable of obtaining a part having high tooth surface fatigue strength and avoiding an increase in heat treatment deformation (deterioration of dimensional accuracy of the part) due to secondary quenching.
  • An object is to provide a component and a method for manufacturing the component.
  • the high carbon carburizing process is defined as “a carburizing process in which the CP is 0.90% or more at a time of 50% or more of the total carburizing process time”.
  • high carbon gas carbonitriding treatment is performed on the surface somewhere in the carburizing treatment process in which CP is 0.90% or more in a time of 50% or more of the total carburizing treatment time.
  • a process including an additional step of containing nitrogen is defined.
  • a steel material containing 2.00 to 5.00% Cr by mass is subjected to high carbon gas carburizing or high carbon gas carbonitriding in a temperature range of 800 to 900 ° C.
  • (Cr, Fe) 23 C 6 and / or (Cr, Fe) 3 C are precipitated on the surface layer during the carburizing process, and these precipitates are used as precipitation nuclei for cementite.
  • a structure in which carbides (cementite and (Cr, Fe) 23 C 6 and / or (Cr, Fe) 3 C) are finely dispersed on the surface of the component is obtained by one heat treatment.
  • the gist of the present invention is as follows.
  • the steel for surface layer hardening treatment is a steel for surface layer hardening treatment that is carburized in a temperature range of 800 to 900 ° C., the chemical composition is in mass%, and C: 0.00. 10 to 0.60%, Si: 0.01 to 2.50%, Mn: 0.20 to 2.00%, S: 0.0001 to 0.10%, Cr: 2.00 to 5.00% Al: 0.001 to 0.50%, N: 0.0020 to 0.020%, P: 0.001 to 0.050%, and O: 0.0001 to 0.0030%.
  • the balance consists of Fe and inevitable impurities, and the total content of Cr, Si and Mn satisfies 2.0 ⁇ Cr + Si + Mn ⁇ 8.0 by mass%.
  • the chemical component is further in mass%, Ca: 0.0005 to 0.0030%, Mg: 0.0005 to 0.0030%, Zr: One or more of 0.0005 to 0.0030% may be contained.
  • the chemical component is further in mass%, Mo: 0.01 to 1.00%, B: 0.0005 to 0.0050. %, Cu: 0.05 to 1.00%, and Ni: 0.05 to 2.00% may be contained.
  • the chemical component is further in mass%, V: 0.005 to 0.50%, Nb: 0.005 to One or more of 0.10% and Ti: 0.005 to 0.50% may be contained.
  • a steel part according to another aspect of the present invention is a steel part that has been subjected to carburizing treatment or carbonitriding treatment, and the component of the steel in the non-carburized portion of the steel part is C%. : 0.10 to 0.60%, Si: 0.01 to 2.50%, Mn: 0.20 to 2.00%, S: 0.0001 to 0.100%, Cr: 2.00 to 5 0.000%, Al: 0.001 to 0.50%, N: 0.0020 to 0.0200%, P: 0.001 to 0.050%, and O: 0.0001 to 0.0030%.
  • the balance consists of Fe and inevitable impurities, and the total content of Cr, Si, Mn in the steel of the non-carburized part satisfies 2.0 ⁇ Cr + Si + Mn ⁇ 8.0 by mass%,
  • the average value of the carbon concentration is 1.00 to 6.7% by mass%.
  • the surface layer portion carbide area ratio of is at least 15%, the surface layer portion (Cr, Fe) 23 C 6 and (Cr, Fe) of the 3 C, have one or two precipitates,
  • the number of mesh carbides of 10 ⁇ m or more along the old ⁇ grain boundary is 2.5 pieces / mm 2 or less.
  • the components of the steel in the non-carburized part are further in mass%, Ca: 0.0005 to 0.0030%, Mg: 0.0005 to 0.0030% , Zr: 0.0005 to 0.0030% of one or more may be contained.
  • the component of the steel in the non-carburized part is further in mass%, Mo: 0.01-1.00%, B: 0.0005- One or more of 0.0050%, Cu: 0.05 to 1.00%, and Ni: 0.05 to 2.00% may be contained.
  • the component of the steel in the non-carburized part is further in mass%, V: 0.005 to 0.50%, Nb: 0 One or more of 0.005 to 0.10% and Ti: 0.005 to 0.50% may be contained.
  • a method for producing a surface hardened steel part according to another aspect of the present invention includes a molding step of forming the steel part by processing the steel for surface hardening according to any one of (1) to (4) above.
  • a gas carburizing treatment or a gas carbonitriding treatment in which the carbon potential of the carburizing atmosphere is 0.90% or more for a time of 50% or more of the treatment time is applied to the steel part in a temperature range of 800 to 900 ° C., and the carburized layer And carburizing step of depositing one or two of (Cr, Fe) 23 C 6 and (Cr, Fe) 3 C; and subsequent to the carburizing step, the carburizing treatment or gas carbonitriding treatment was performed.
  • the carburizing atmosphere has a carbon potential of 0.40 to 1.20% in a temperature range of 800 to 1100 ° C. before the carburizing step. You may further have the preliminary carburizing process which performs the carburizing process or the gas carbonitriding process to the said steel components.
  • the present invention even if the secondary quenching is abolished, it becomes possible to finely disperse the carbide in the carburized layer of the part. As a result, a component having high tooth surface fatigue strength and avoiding an increase in heat treatment deformation (deterioration in dimensional accuracy of the component) due to secondary quenching can be obtained at low cost. For this reason, it is extremely effective for increasing the number of rotations and transmission torque of power transmission parts such as automobiles (for example, gears, bearings, shafts, CVT sheaves, etc.) or reducing the size and weight.
  • power transmission parts such as automobiles (for example, gears, bearings, shafts, CVT sheaves, etc.) or reducing the size and weight.
  • (B) part is a figure which shows the example of the structure
  • a high carbon carburized structure is shown.
  • (Cr, Fe) is a diagram showing a 23 C 6 (Cr, Fe) 3 C is precipitated tissue.
  • the present inventors diligently studied various factors affecting the dispersion form of carbides in the carburized layer in the high carbon carburizing treatment, and found the following knowledge.
  • the carbide generated in the carburized layer during the high carbon carburizing treatment is mainly precipitated as a coarse mesh cementite along the austenite grain boundary when the Cr content in the steel is less than 2.00%.
  • the carbide takes a form in which granular or acicular fine carbide is dispersed in the austenite grains.
  • the carbide generated in the carburized layer during the high-carbon carburizing treatment becomes finer as the carburizing temperature is lower, and is dispersed as granular or acicular fine carbide in the austenite grains. .
  • the carburizing temperature is 900 ° C. or less, a structure in which carbides are sufficiently finely dispersed can be obtained. The reason is as follows.
  • the tooth surface fatigue strength can be further improved by further performing a nitriding step (so-called carbonitriding treatment) that is a treatment of adding ammonia to the heat treatment atmosphere following the gas high carbon carburizing treatment.
  • a nitriding step that is a treatment of adding ammonia to the heat treatment atmosphere following the gas high carbon carburizing treatment.
  • content% of a component means the mass%.
  • C 0.10 to 0.60% C is added to ensure the hardness of the core of the component. If the amount of C added is small, the time required for the carburizing process becomes too long. On the other hand, if added excessively, the workability when machining parts such as cutting and forging is significantly deteriorated through an increase in the hardness of the material. To do.
  • the C amount needs to be in the range of 0.10 to 0.60%. A preferable range of the amount of C is 0.15 to 0.30%.
  • Si 0.01-2.50% Si is an element effective for improving the tooth surface fatigue strength by remarkably increasing the temper softening resistance of low temperature tempered martensitic steel such as carburized parts.
  • 0.01% or more of Si is added.
  • Si when Si is added excessively, a complex oxide of Cr, Si, and Mn is generated on the surface of the steel material during gas carburization, thereby inhibiting the transfer of carbon from the carburizing atmosphere into the steel material. Therefore, the carbon content of the carburized layer may be lower than the target value.
  • the Si amount needs to be in the range of 0.01 to 2.50%.
  • a preferable range of Si content is 0.03% to 1.50%, more preferably 0.10% to 1.00%.
  • Mn 0.20 to 2.00% Since Mn has the effect of improving the hardenability of steel, 0.20% or more is added to obtain a martensite structure during carburizing and quenching. On the other hand, when added excessively, a complex oxide of Cr, Si, and Mn is generated on the surface of the steel material during gas carburization, thereby inhibiting carbon migration from the carburizing atmosphere into the steel material. Therefore, the carbon content of the carburized layer may be lower than the target value. Moreover, when it adds excessively, the workability at the time of processing, such as cutting and forging of parts, will deteriorate remarkably through the raise of the hardness of a raw material. In the present invention, the amount of Mn needs to be in the range of 0.20 to 2.00%. A preferable range of the amount of Mn is 0.40 to 1.00%.
  • S 0.0001 to 0.10% S combines with Mn to form MnS, and the effect of improving the machinability as the addition amount is increased, but if added excessively, MnS becomes a propagation path of fatigue cracks, and the bending of the gear Fatigue strength decreases.
  • excessive cost is required to limit the amount of S to 0.0001% or less. Therefore, in the present invention, the S amount needs to be in the range of 0.0001 to 0.10%.
  • a preferable range of the amount of S is 0.010 to 0.02%.
  • the Cr amount needs to be in the range of 2.00 to 5.00%.
  • a preferable Cr content range is 2.00 to 3.50%.
  • a more desirable range is 2.25 to 3.00%.
  • Al 0.001 to 0.50%
  • AlN functions to pin the austenite grain boundaries to suppress grain growth and prevent coarsening of the structure. If the addition amount of Al is small, the above effect cannot be obtained, and the effect is saturated even if it is added excessively. Therefore, in the present invention, the Al amount needs to be in the range of 0.001 to 0.50%. A preferable range of the Al content is 0.020 to 0.15%. When Ti is added in an amount of 0.08% or more, the amount of TiC increases and the pinning effect becomes sufficient, so the Al addition amount may be less than 0.020%.
  • N 0.0020 to 0.020%
  • N combines with Al in the steel to form AlN.
  • AlN functions to pin the austenite grain boundaries to suppress grain growth and prevent coarsening of the structure. If the addition amount of N is small, the above effect cannot be obtained, and if it is added excessively, the ductility at a high temperature range of 1000 ° C. or more is lowered, which causes a decrease in yield during continuous casting and rolling. Therefore, in the present invention, the N amount needs to be in the range of 0.0020 to 0.020%. A preferable range of the N amount is 0.0050 to 0.018%.
  • P 0.050% or less P is segregated to austenite grain boundaries, embrittles the prior austenite grain boundaries, and causes grain boundary cracking. Therefore, in this invention, it is necessary to make P amount into the range of 0.050% or less. A preferable range of the amount of P is 0.015% or less. Excessive cost is required to limit the amount of P to 0.001% or less. Therefore, a suitable lower limit of the P amount is 0.001%.
  • O 0.0030% or less O forms oxide inclusions.
  • O content is large, large inclusions that become the starting point of fatigue failure increase and cause deterioration of fatigue characteristics. Therefore, it is desirable to reduce as much as possible. Therefore, in the present invention, it is necessary to limit the O amount to 0.0030% or less.
  • a preferable range of the amount of O is 0.0015% or less. Excessive cost is required to limit the amount of O to 0.0001% or less. Therefore, a preferable lower limit of the O amount is 0.0001%.
  • Ca, Mg, Zr 0.0005 to 0.0030%
  • Ca, Mg, and Zr are optional components that can be added to the surface hardening steel of the present invention as necessary.
  • Ca, Mg, and Zr have the function of improving the machinability of steel through the form control of MnS and the formation of a protective film on the cutting tool surface during cutting.
  • one or more of Ca, Mg, and Zr may be added in an amount of 0.0005% or more.
  • coarse oxides and sulfides are formed, which may adversely affect the fatigue strength of the parts.
  • one or more of Ca, Mg, and Zr may be added in the range of 0.0005 to 0.0030%.
  • the preferred range is 0.0008 to 0.0020%.
  • the hardness of the material is higher than that of ordinary carburizing steel (such as SCR420 and SCM420 of JISG4053). Accordingly, when a part is molded by cutting, the cutting-related cost may increase due to a shortened life of the cutting tool. That is, since the life of the cutting tool can be extended by adding Ca, Mg, and Zr, adding Ca, Mg, and Zr for the high carbon carburization of the present invention has a great effect on actual production.
  • Mo 0.01 to 1.00%
  • Mo is an optional component that can be added to the surface hardening steel of the present invention as required. Mo has the effect of enhancing the hardenability of the steel, so it may be added to obtain a martensite structure during carburizing and quenching. Mo does not form oxides in the gas carburizing atmosphere gas atmosphere, and it is difficult to form nitrides. Therefore, Mo-added steel produces oxide layers and nitrides on the surface of the carburized layer and carburized abnormal layers due to it. There is an excellent feature that it is difficult. However, excessive addition is undesirable because the addition cost is expensive. Therefore, in the present invention, the Mo amount may be in the range of 0.01 to 1.00%. A preferable range of Mo content is 0.10 to 0.60%.
  • B 0.0005 to 0.0050%
  • B is an optional component that can be added to the surface hardening steel of the present invention as required.
  • B is in a very small amount in the state of being dissolved in austenite and has the effect of greatly increasing the hardenability of the steel. Therefore, B may be added to obtain a martensitic structure during carburizing and quenching. If the addition amount is too small, the above effect cannot be obtained. On the other hand, even if it is added excessively, the effect is saturated. Therefore, in the present invention, the B amount may be in the range of 0.0005 to 0.0050%. A preferable range of the amount of B is 0.0010 to 0.0025%.
  • Cu 0.05 to 1.00%
  • Cu is an optional component that can be added to the surface hardening steel of the present invention as required. Since Cu has an effect of improving the hardenability of steel, it may be added to obtain a martensite structure during carburizing and quenching. Since Cu is an element that does not form oxides or nitrides in an atmosphere of gas carburizing, Cu-added steel is unlikely to form an oxide layer or nitride on the surface of the carburized layer, or a carburized abnormal layer resulting therefrom. There is a feature.
  • Cu when added excessively, the ductility at a high temperature range of 1000 ° C. or more is lowered, which causes a decrease in yield during continuous casting and rolling. Therefore, in the present invention, Cu may be added in the range of 0.05 to 1.00%. A preferable range of the amount of Cu is 0.010 to 0.50%. In addition, in order to improve the ductility of a high temperature range, when adding Cu, it is desirable to add Ni more than 1/2 of Cu addition amount simultaneously.
  • Ni 0.05-2.00%
  • Ni is an optional component that can be added to the surface hardening steel of the present invention as required.
  • Ni has an effect of improving the hardenability of steel, and may be added to obtain a martensite structure during carburizing and quenching.
  • Ni is an element that does not form oxides or nitrides in a gas carburizing atmosphere. Therefore, Ni-added steel is unlikely to generate an oxide layer or nitride on the surface of the carburized layer, or a carburized abnormal layer due to it. There is a feature.
  • Ni may be added in the range of 0.05 to 2.00%.
  • a preferable range of Ni content is 0.40 to 1.60%.
  • V 0.005 to 0.50%
  • V is an optional component that can be added to the surface hardening steel of the present invention as required.
  • V combines with N and C in steel to form V (C, N).
  • V (C, N) functions to pin the austenite grain boundary to suppress grain growth and prevent coarsening of the structure. If the addition amount is small, the above effect cannot be obtained. On the other hand, even if it is added excessively, the effect is saturated.
  • V may be added in the range of 0.005 to 0.50%.
  • a preferable range of the V amount is 0.05 to 0.20%.
  • Nb 0.005 to 0.10%
  • Nb is an optional component that can be added to the surface hardening steel of the present invention as required.
  • Nb combines with N and C to form Nb (C, N) in steel.
  • Nb (C, N) functions to pin the austenite grain boundaries to suppress grain growth and prevent coarsening of the structure. If the addition amount is small, the above effect cannot be obtained. On the other hand, even if it is added excessively, the effect is saturated.
  • Nb may be added in the range of 0.005 to 0.10%.
  • a preferable range of Nb is 0.010 to 0.050%.
  • Ti 0.005 to 0.50%
  • Ti is an optional component that can be added to the surface hardening steel of the present invention as required.
  • Ti combines with N and C in steel to form Ti (C, N).
  • Ti (C, N) functions to pin the austenite grain boundaries to suppress grain growth and prevent coarsening of the structure. If the addition amount is small, the above effect cannot be obtained. On the other hand, even if it is added excessively, the effect is saturated.
  • Ti may be added in the range of 0.005 to 0.50%. A preferable range of Ti content is 0.015 to 0.15%.
  • the total amount of these three components is within a certain range. It is desirable to regulate with.
  • the total content of the three components is set to 2.0% to 8.0%. More preferably, the total content of the three components is 3.0% to 4.5%.
  • Pb, Te, Zn, Sn and the like can be added within a range not impairing the effects of the present invention.
  • Pb, Te, Zn, and Sn are optional components that can be added to the steel for surface hardening treatment of the present invention as necessary. By adding these elements, the machinability and the like can be improved.
  • the upper limit of the addition amount of these additive components is Pb: 0.50% or less, Te: 0.0030% or less, Zn: 0.50% or less, Sn: 0 .. 50% or less.
  • the surface hardening-treated steel part of the present invention is subjected to carburizing or carbonitriding using the steel for surface hardening of the present invention.
  • the central part (core part) of the part that is not affected by the carburizing process or the carbonitriding process is referred to herein as a non-carburized part.
  • the chemical composition of the non-carburized part is substantially the same as the chemical composition of the surface hardened steel part that is the material of the part.
  • a region having a depth of 50 ⁇ m from the surface is referred to herein as a surface layer portion.
  • the average value of the carbon concentration in the surface layer portion of the carburized layer is 1.00 to 6.7% by mass. If the carbon concentration in the surface layer portion is less than 1.00%, the improvement in the tooth surface fatigue strength is insufficient, and if it is 6.7%, all of the surface layer portion becomes cementite, so that the carbon concentration does not exceed this.
  • carbonized_material of the said surface layer part is 15% or more. When the area ratio of carbide is less than 15%, the improvement in tooth surface fatigue strength is insufficient.
  • a preferable range of the area ratio of carbide is 20 to 80%.
  • the surface layer portion has 100 or more of one or two kinds of precipitates per 100 ⁇ m 2 among (Cr, Fe) 23 C 6 and (Cr, Fe) 3 C.
  • the high carbon gas carburizing or high carbon gas carbonitriding conditions of the present invention may be any as long as they comply with the above-mentioned definition of “high carbon gas carburizing or high carbon gas carbonitriding in the present invention”.
  • C. P. May be carburized at 0.90% or more.
  • C. of the first half time. P. Is 0.80%
  • the latter half of C.I. P. May be carburized at 0.90% or more which is a high carbon carburizing atmosphere.
  • the C. P. In a high carbon carburizing atmosphere of 0.90% or more. P. May be performed at about 0.80%.
  • C.I. P. By changing variously, the carbide fraction of the carburized layer of the part and the amount of retained austenite may be arbitrarily controlled.
  • the preferred range is 1.1-1.6%.
  • the quenching process performed after carburizing is generally performed by oil cooling, salt bath cooling, gas cooling, etc., but any method may be used.
  • oil cooling the preferred range of the temperature of the quenching oil is 50 to 180 ° C. If you want to minimize heat treatment deformation due to quenching, it is desirable to have a low cooling rate (high quenching oil temperature). If you want to minimize the incomplete quenching layer on the surface and increase fatigue strength, use cooling. A higher speed (a lower quenching oil temperature) is desirable.
  • Low-temperature tempering 300 ° C. or lower
  • Low temperature tempering is performed for the purpose of restoring the toughness of the core of the component and stabilizing the dimensional accuracy and material.
  • the surface-hardened steel part of the present invention can be subjected to low-temperature tempering after carburizing and quenching as usual.
  • the preferred temperature for tempering in the present invention is 120 to 200 ° C., and the preferred time is 30 to 180 minutes.
  • the temperature range of high carbon gas carburization or high carbon gas carbonitriding is set to 800 to 900 ° C.
  • the quenching treatment is performed at the temperature at which the carburizing treatment is performed or after cooling to a temperature range equal to or lower than the carburizing treatment temperature. The reason for this will be explained.
  • the tooth surface fatigue strength of a component can be improved without performing secondary quenching for fine dispersion of carbide (without deteriorating the dimensional accuracy of the component).
  • the carbide generated in the carburized layer during the high carbon carburizing treatment takes a form in which the precipitate becomes finer and the granular or acicular fine carbide is dispersed in the austenite grains as the carburizing temperature is lower. .
  • the lower the carburizing treatment temperature the finer the (Cr, Fe) 23 C 6 and / or in the carburized layer at the initial stage of the carburizing treatment.
  • (Cr, Fe) 3 C is likely to precipitate in the austenite grains, and the amount of precipitation increases.
  • cementite is precipitated with these fine precipitates as nuclei.
  • the amount of coarse network cementite produced along the austenite grain boundaries is also suppressed by the above treatment.
  • the carburizing temperature is 900 ° C. or less, a structure in which carbides are sufficiently finely dispersed can be obtained.
  • carbonized_material increases, so that carburizing process temperature is low, it is advantageous when improving tooth surface fatigue strength.
  • the temperature for performing the carburizing process needs to be in the range of 800 to 900 ° C.
  • the preferred temperature range for carburizing is 820 to 880 ° C.
  • the quenching when quenching is performed after carburizing, the quenching is performed after the temperature is lowered from the carburizing temperature to a certain low temperature for the purpose of reducing heat treatment deformation of the parts before quenching.
  • the carburizing temperature since the carburizing temperature is originally low, there is no need to lower the temperature, and there is no problem even if quenching is performed from the temperature at which the carburizing process is performed.
  • quenching may be performed after the temperature is lowered to a temperature lower than the carburizing temperature, but when the temperature is too low, C.I. P. Problems with control and atmosphere safety.
  • a preferable range of the quenching start temperature is 760 to 850 ° C.
  • the carbon potential of the carburizing atmosphere is 0.40 to 1 in the temperature range of 800 to 1100 ° C. before the high carbon carburizing treatment at 800 to 900 ° C. as described above. It may further include a preliminary carburizing step in which a gas carburizing process or a gas carbonitriding process is performed on the steel part under a condition of 20%. As described above, when the high carbon carburizing treatment is performed, the lower the carburizing treatment temperature, the finer (Cr, Fe) 23 C 6 and / or (Cr, Fe) 3 C in the carburized layer at the initial stage of the carburizing treatment.
  • carburizing or carbonitriding is performed under normal conditions, and subsequently, the temperature is lowered to a range of 800 to 900 ° C. and high-concentration carburizing or high-concentration carbonitriding is performed. Good.
  • the carburizing time can be shortened and the productivity can be improved.
  • the carburizing condition needs to be performed in a temperature range of 800 to 1100 ° C. If it is less than 800 degreeC, the effect of a hardened layer depth improvement will not be acquired, but it is meaningless.
  • the preferred temperature range is 900-1000 ° C.
  • the carbon potential in the carburizing atmosphere must be 0.40 to 1.20%. If it is less than 0.40%, the effect of improving the depth of the hardened layer is small. If it exceeds 1.20%, coarse reticulated cementite precipitates before the carburizing treatment at low temperature and high concentration, and then does not disappear. The characteristics as a part are impaired.
  • the preferred carbon potential range is 0.60 to 1.00%.
  • (Cr, Fe) 23 C 6 and / or (Cr, Fe) 3 C are precipitated in the carburized layer during the high carbon / low temperature carburizing treatment.
  • (Cr, Fe) 23 C 6 is a carbide in which Cr and Fe are the main constituent elements, but it is not limited to purely containing only Cr, Fe and C, and other elements such as Mo and Mn.
  • the alloy element may be included.
  • ⁇ Shot peening treatment may be performed after carburizing treatment on the surface-hardening treated parts produced by the steel of the present invention.
  • the increase in the compressive residual stress of the component surface layer introduced by the shot peening process suppresses the occurrence and development of fatigue cracks, so that the tooth root and tooth surface fatigue strength of the component manufactured by the steel of the present invention are further increased.
  • the shot peening treatment is desirably performed using shot grains having a diameter of 0.7 mm or less and an arc height of 0.4 mm or more.
  • the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • (Example) Converter molten steel having the component composition shown in Tables 1 and 2 was manufactured by continuous casting, and subjected to a soaking diffusion treatment as necessary, and through a split rolling process, a 162 mm square rolled material was obtained. Next, a steel bar shape with a diameter of 35 mm was formed by hot rolling.
  • hot forging simulation was performed under the condition that the hot-rolled steel material was heated at 1250 ° C. for 30 minutes and then air-cooled. . Subsequently, normalization was performed under the conditions of heating at 925 ° C. for 60 minutes and then gradually cooling. 20 pieces of roller pitching test pieces having a large diameter portion (test portion) 26 ⁇ and 20 smooth Ono-type rotating bending fatigue test pieces having a smooth portion 8 ⁇ were produced from the thus prepared materials by machining.
  • FIGS. 1A to 1O The produced test specimens were subjected to gas carburizing treatment or gas carbonitriding treatment with patterns shown in FIGS. 1A to 1O.
  • 1A to 1I and FIGS. 1N and 1O are carburizing patterns that meet the conditions of the present invention, and FIGS. 1K, 1L, and 1M are carburizing patterns for comparison.
  • all test pieces were tempered under the conditions of heating at 150 ° C. for 90 minutes and then air cooling. Thereafter, in order to improve the test accuracy of the fatigue test, the gripping portions of the roller pitching test piece and the smooth Ono type rotating bending fatigue test piece were finished.
  • the structure was observed from the outermost surface to a depth of 200 ⁇ m, and when reticulated cementite was present along the old ⁇ grain boundary, it was determined that “reticulated carbide was present”.
  • a visual field corresponding to 0.5 mm 2 was examined at 5 magnifications at each observation position at a magnification of 400 times.
  • the average density of the net-like carbide is 2.5 pieces / mm 2 or more.
  • FIG. 2 An example of a structure in which reticulated cementite is present is shown in part (a) of FIG. 2, and an example of a good high carbon carburized structure in which reticulated cementite is not present and fine carbides are dispersed in a large amount. Is shown in part (b) of FIG.
  • FIG. 3 shows an example in which (Cr, Fe) 23 C 6 and (Cr, Fe) 3 C are precipitated in the carburized layer.
  • roller pitching test was conducted under the conditions of a large roller: SCM420 carburized product, crowning 150R, rotation speed: 2000 rpm, lubricating oil: transmission oil, oil temperature 80 ° C, slip rate -40%, maximum 10 million cycles.
  • a diagram was created to determine the fatigue limit, which was defined as the roller pitting fatigue strength. Those having a roller pitting fatigue strength of less than 3000 MPa were judged to have inferior tooth surface fatigue strength.
  • the smooth Ono type rotating bending fatigue test was performed under the condition of the number of revolutions: 3000 rpm, an SN diagram was created to determine the fatigue limit, and the rotating bending fatigue strength was obtained.
  • the smooth Ono type rotating bending fatigue strength did not reach 600 MPa, it was determined that the tooth root bending fatigue strength was inferior.
  • the Si addition amount, the Mn addition amount, and the Cr addition amount are larger than the range of the present invention.
  • composite oxides of Cr, Si, and Mn were formed on the surface of the steel material, and the amount of carbon in the carburized layer was significantly reduced.
  • the amount of precipitated carbide was insufficient.
  • the hardness of the surface layer itself as a carburized part was insufficient, and both the roller pitching strength and the rotational bending fatigue strength were insufficient.
  • the present invention even if the secondary quenching is abolished, it becomes possible to finely disperse the carbide in the carburized layer of the component, and it has a high tooth surface fatigue strength and is suitable for the secondary quenching.
  • a component that avoids the increase in heat treatment deformation (deterioration of component accuracy) caused by this can be obtained at low cost. For this reason, it is extremely effective in increasing the rotational speed and transmission torque of power transmission parts such as automobiles (for example, gears, bearings, shafts, CVT sheaves, etc.) or reducing the size and weight.
  • the present invention can greatly contribute not only to the improvement of the performance of conventional automobiles but also to the improvement of the performance of hybrid cars and electric cars and the spread of such cars through such effects. The nature is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 800~900℃の温度域で浸炭処理されるこの表層硬化処理用鋼は、化学成分が、質量%で、C:0.10~0.60%、Si:0.01~2.50%、Mn:0.20~2.00%、S:0.0001~0.10%、Cr:2.00~5.00%、Al:0.001~0.50%、N:0.0020~0.020%、P:0.001~0.050%、及び、O:0.0001~0.0030%、を含有し、残部がFe及び不可避的不純物からなり、Cr、Si、Mnの合計含有量が、質量%で2.0≦Cr+Si+Mn≦8.0を満たす。

Description

表層硬化処理用鋼及び表層硬化鋼部品とその製造方法
 本発明は、表層硬化処理用鋼及び表層硬化鋼部品とその製造方法に関する。
 本願は、2010年3月19日に、日本に出願された特願2010-064880号に基づき優先権を主張し、その内容をここに援用する。
 自動車、建機、農機、発電用風車、その他の産業機械等に使用されている動力伝達部品(例えば、歯車、軸受、CVTシーブ、シャフト等)は、部品の疲労特性の向上、耐磨耗性の向上等の目的から、表面硬化処理が施されて使用されることがほとんどである。既知の複数の表面硬化処理の中で、浸炭処理は、表面の硬さ、硬化層の深さ、生産性等の点で、他の表面硬化処理よりも優れているので、適用部品が非常に多い。
 例えば、歯車、軸受部品の通常の製造工程では、JISG4053に規定されるSCM420、SCR420、SNCM220等の中炭素合金鋼を用いて、熱間鍛造、冷間鍛造、切削、又は、これらの組合せによって、所定の形状を得るように機械加工を施し、その後、浸炭処理や浸炭窒化処理を施す。
 浸炭歯車の疲労破壊は、曲げ疲労(歯元疲労)と、歯面疲労(ピッチング等)とに大別される。歯車部品の高強度化を図るためには、この2種の疲労強度を両方とも向上させることが必要である。このうち、曲げ疲労強度は、表層の組織改善(粒界酸化層、不完全焼入れ層の軽減)で改善することができ、また、ショットピーニングを施すことによって、大幅に改善することができることが分かっている。
 一方、歯面疲労強度は、ショットピーニングを施しても、ほとんど改善することができないため、歯面疲労強度の向上が課題となっていた。また、歯車のみならず、CVTシーブ、軸受類には、更に、高面圧化が求められるので、歯面疲労や転動疲労といった面疲労向上に対する要求が強い。
 これに対して、歯車の使用中に、歯面の表面温度が300℃程度まで上昇することから、300℃での硬さ(又は、300℃焼戻し後の硬さ、以下、300℃焼戻し硬さという)を高めることが、歯面疲労強度の改善に有効であることが、最近、報告されている。
 これにより、SiやCrの添加量を増加して、300℃焼戻し硬さを向上させる鋼材が提案されている。しかし、鋼材成分のみで300℃焼戻し硬さを向上させることには限界があり、また、大幅に向上させることは難しいので、更なる改善技術が求められている。
 近年、300℃焼戻し硬さを大幅に改善する技術として、浸炭部品の表面に、積極的にセメンタイトを析出させる「高炭素浸炭(高濃度浸炭とも言う)技術」が提案されている。通常の浸炭処理は、雰囲気のカーボンポテンシャル(以下C.P.ともいう)を0.70~0.90%程度に設定し、部品の表層部の炭素量を0.80%程度に制御し、その後、焼入れを行うことによって、部品の表層部の組織を、炭素量0.80%程度のマルテンサイト組織にする処理である。
 これに対して、別の高炭素浸炭技術では、C.P.を通常よりも高く設定(共析炭素量に相当する値以上)することによって、表面の炭素量がAcm組成を超えるような浸炭を行う。これによって、表層部にセメンタイトを析出・分散させ、最終的に、マルテンサイト中にセメンタイトが分散した組織を得る。このような技術はCD浸炭:carbide dispersion carburizing とも呼ばれる。
 「カーボンポテンシャル」とは鋼を加熱する雰囲気の浸炭能力を示す用語である。カーボンポテンシャルの基本的な定義は、「あるガス雰囲気中で鋼を特定の温度に加熱浸炭し、そのガス雰囲気と平衡に達したときの鋼の表面の炭素濃度」である。ただし、カーボンポテンシャルの値が浸炭処理を行う鋼のAcm組成を超えるような条件で浸炭を行う場合は、カーボンポテンシャルは、セメンタイト析出が起こらないような仮想的な鋼の表面の炭素濃度という意味になる。この場合は、カーボンポテンシャルが実際の鋼の表面の炭素固溶濃度と一致するとは限らない。
 マルテンサイトは、部品の使用中に高温にさらされると、焼戻しを受けて軟化していく。一方、セメンタイト等の炭化物は、マルテンサイトよりも大幅に硬く、温度が上がっても容易に軟化しない。このため、多量の炭化物を鋼中に分散させることができれば、上述の300℃焼戻し硬さを大幅に向上させることができる。この方法は、歯面疲労強度、転動疲労強度等の面疲労強度を向上させる有力な手段である。
 しかし、JISG4053に規定されるSCM420、SCR420、SNCM220等の中炭素合金鋼に対して高炭素浸炭を行った場合、粗大なセメンタイトが、必ず、オーステナイト粒界に沿って析出し(いわゆる、初析セメンタイト)、疲労亀裂の発生場所や伝播経路となる。このため、曲げ疲労強度が低下し、また、歯面疲労強度にもばらつきが生じ、期待した疲労強度が得られないという問題がある。
 このため、通常の高炭素浸炭の場合は、まず、比較的高温で高炭素浸炭を行い(一次浸炭)、その後、初析セメンタイトが生成しないよう、十分大きい冷却速度でいったん室温付近まで冷却する。その後、再び加熱し、オーステナイト+セメンタイトの二相域で炭化物の析出処理を行って、その後に、焼入れを行う。この処理は、一般に、「二次焼入れ」と呼ばれている。
 例えば、特許文献1には、高周波焼入れにより二次焼入れを行う方法が提案されている。特許文献2には、二次焼入れの加熱パターンを規定することによって、炭化物を微細分散させる方法が提案されている。しかし、二次焼入れを行うと、熱処理コストの増加を招くだけでなく、部品性能も劣化する。すなわち、熱処理を繰り返すことによって、熱処理に起因する変形が蓄積し、部品の変形が不可避的に増加し、寸法精度が劣化する。
 例えば、歯車、軸受の場合、部品の寸法精度が劣化すると、部品をトランスミッション等のユニットに組み入れて、ユニットを運転する際、騒音、振動の増加の原因となる。部品の寸法精度を回復するために、二次焼入れ後に、再び、切削加工を行うことがある(仕上げ加工)。
 しかし、高炭素浸炭によって表層部を極めて硬くした部品に対して切削加工を施すため、切削加工が、非常に困難かつ非効率となり、コストが増大する。また、仕上げ加工で表層部の一部を除去するため、それだけ余分に深い硬化層を形成しておく必要があり、そのため、浸炭処理も長時間となって、浸炭処理の生産性が低下する。
 つまり、現行の技術では、所望の性能を得るためには二次焼入れを行うことが必須であるが、二次焼入れを行うことによって、さまざまな問題が発生し、その結果、多大なコスト増大を招くということになる。
 上記のような問題を解決するため、高炭素浸炭用の材料や高炭素浸炭処理方法が提案されている。
 特許文献3及び特許文献4には、浸炭処理時の表面炭素濃度を規定し、化学成分から規定される式により算出される温度範囲で浸炭処理を行い、浸炭処理に引き続いて、浸炭処理温度と所要の関係を有する、高温での拡散処理を施す耐高面圧部材の製造方法が提案されている。
 しかし、拡散処理を浸炭温度より高温で行うことにより、炭化物の粗大化を招くので、二次焼入れの代替処理としては不十分である。また、これらの文献の実施例の発明例として示されている処理パターンは、浸炭処理の間に鋼をA点以下に急冷している。これは、実質的に二次焼入れと同じ処理であり、この方法では部品の寸法精度の劣化は免れることができない。
日本国特開2005-48270号公報 日本国特開2002-356738号公報 日本国特開2001-98343号公報 日本国特許第4022607号公報
 本発明は、高い歯面疲労強度を持ち、かつ、二次焼入れに起因する熱処理変形の増加(部品の寸法精度の劣化)を回避した部品を得ることができる表層硬化処理用鋼及び表面硬化鋼部品とその製造方法を提供することを目的とする。
 本発明では、浸炭時のC.P.を、通常より高く設定し、二次焼入れを行なわずに、浸炭層に炭化物を微細に分散させることにより、上記課題を達成する。
 高炭素浸炭処理と通常浸炭処理との区別はあいまいであり、厳密な区別や一般的な定義は存在しない。本発明では、高炭素浸炭処理を「全浸炭処理時間の50%以上の時間において、C.P.が0.90%以上である浸炭処理」と定義する。
 また、本発明では、高炭素ガス浸炭窒化処理を、「全浸炭処理時間の50%以上の時間において、C.P.が0.90%以上である浸炭処理工程のどこかに、表面に積極的に窒素を含有させる工程を加えた処理」と定義する。
 本発明では、質量%で、2.00~5.00%のCrを含有した鋼材に、800~900℃の温度域で、高炭素ガス浸炭、又は、高炭素ガス浸炭窒化処理を施す。これによって、浸炭処理時の表層部に(Cr、Fe)23、及び/又は、(Cr、Fe)Cを析出させ、これらの析出物をセメンタイトの析出核として利用する。この結果、1回の熱処理で、部品表面に、炭化物(セメンタイトと、(Cr、Fe)23、及び/又は、(Cr、Fe)C)が微細に分散した組織が得られる。
 従来は、粗大な炭化物を微細分散化するために、複数回の加熱・焼入れの熱処理を要していたが、本発明では、1回の浸炭・焼入れ処理で済む。これによって、熱処理回数の増加に伴って生じる諸問題、例えば、部品の熱処理歪みの増大、熱処理コストの増大等を抑制できる。本発明の要旨は、下記の通りである。
(1) 本発明の一態様にかかる表層硬化処理用鋼は、800~900℃の温度域で浸炭処理される表層硬化処理用鋼であって、化学成分が、質量%で、C:0.10~0.60%、Si:0.01~2.50%、Mn:0.20~2.00%、S:0.0001~0.10%、Cr:2.00~5.00%、Al:0.001~0.50%、N:0.0020~0.020%、P:0.001~0.050%、及び、O:0.0001~0.0030%、を含有し、残部がFe及び不可避的不純物からなり、Cr、Si、Mnの合計含有量が、質量%で2.0≦Cr+Si+Mn≦8.0を満たす。
(2) 上記(1)の表層硬化処理用鋼で、前記化学成分が、更に、質量%で、Ca:0.0005~0.0030%、Mg:0.0005~0.0030%、Zr:0.0005~0.0030%の内の1種または2種以上を含有してもよい。
(3) 上記(1)または(2)の表層硬化処理用鋼で、前記化学成分が、更に、質量%で、Mo:0.01~1.00%、B:0.0005~0.0050%、Cu:0.05~1.00%、及び、Ni:0.05~2.00%の1種又は2種以上を含有してもよい。
(4) 上記(1)~(3)のいずれかの表層硬化処理用鋼で、前記化学成分が、更に、質量%で、V:0.005~0.50%、Nb:0.005~0.10%、及び、Ti:0.005~0.50%の1種又は2種以上を含有してもよい。
(5) 本発明の別の一態様にかかる鋼部品は、浸炭処理又は浸炭窒化処理が施された鋼部品であって、前記鋼部品の非浸炭部の鋼の成分が、質量%で、C:0.10~0.60%、Si:0.01~2.50%、Mn:0.20~2.00%、S:0.0001~0.100%、Cr:2.00~5.00%、Al:0.001~0.50%、N:0.0020~0.0200%、P:0.001~0.050%、及び、O:0.0001~0.0030%、を含有し、残部がFe及び不可避的不純物からなり、前記非浸炭部の鋼のCr、Si、Mnの合計含有量が、質量%で2.0≦Cr+Si+Mn≦8.0を満たし、浸炭層の最表面から50μm深さまでの部分である表層部で、炭素濃度の平均値が質量%で1.00~6.7%であり、前記表層部の炭化物の面積率が15%以上であり、前記表層部が(Cr、Fe)23及び(Cr、Fe)Cのうち、1種または2種の析出物を有し、前記表層部で、旧γ粒界に沿った10μm以上の網目状炭化物が2.5個/mm以下である。
(6) 上記(5)の鋼部品では、前記非浸炭部の前記鋼の成分が、更に、質量%で、Ca:0.0005~0.0030%、Mg:0.0005~0.0030%、Zr:0.0005~0.0030%の内の1種または2種以上を含有してもよい。
(7) 上記(5)または(6)の鋼部品で、前記非浸炭部の前記鋼の成分が、更に、質量%で、Mo:0.01~1.00%、B:0.0005~0.0050%、Cu:0.05~1.00%、及び、Ni:0.05~2.00%、の内の1種又は2種以上を含有してもよい。
(8) 上記(5)~(7)のいずれかの鋼部品で、前記非浸炭部の前記鋼の成分が、更に、質量%で、V:0.005~0.50%、Nb:0.005~0.10%、及びTi:0.005~0.50%、の1種又は2種以上を含有してもよい。
(9) 本発明の別の一態様にかかる表層硬化鋼部品の製造方法は、上記(1)~(4)のいずれかの表層硬化処理用鋼を加工して鋼部品を成型する成型工程と;処理時間の50%以上の時間において、浸炭雰囲気のカーボンポテンシャルが0.90%以上であるガス浸炭処理又はガス浸炭窒化処理を、800~900℃の温度域で前記鋼部品に施し、浸炭層に、(Cr、Fe)23及び(Cr、Fe)Cの1種又は2種を析出させる、浸炭工程と;前記浸炭工程に続いて、前記浸炭処理又はガス浸炭窒化処理を行った温度のまま、又は、浸炭処理温度以下の温度域に冷却した後に、焼入れ処理を施す焼入れ工程と;を有する。
(10) 上記(9)の表層硬化鋼部品の製造方法は、前記浸炭工程の前に、800~1100℃の温度域で浸炭雰囲気のカーボンポテンシャルが0.40~1.20%の条件でガス浸炭処理又はガス浸炭窒化処理を前記鋼部品に施す、予備浸炭工程を更に有してもよい。
 本発明によれば、二次焼入れを廃止しても、部品の浸炭層に炭化物を微細に分散させることが可能となる。これによって、高い歯面疲労強度を持ち、かつ、二次焼入れに起因する熱処理変形の増加(部品の寸法精度の劣化)を回避した部品を、低コストで得ることができる。このため、自動車等の動力伝達部品(例えば、歯車、軸受、シャフト、CVTシーブ等)の回転数や伝達トルクの増加、又は、小型・軽量化に極めて有効である。
本発明の一態様に係る浸炭条件を示す図である。 本発明の一態様に係る浸炭条件を示す図である。 本発明の一態様に係る浸炭条件を示す図である。 本発明の一態様に係る浸炭条件を示す図である。 本発明の一態様に係る浸炭条件を示す図である。 本発明の一態様に係る浸炭条件を示す図である。 本発明の一態様に係る浸炭条件を示す図である。 本発明の一態様に係る浸炭条件を示す図である。 本発明の一態様に係る浸炭条件を示す図である。 本発明の比較例に係る浸炭条件を示す図である。 本発明の比較例に係る浸炭条件を示す図である。 本発明の比較例に係る浸炭条件を示す図である。 本発明の一態様に係る浸炭条件を示す図である。 本発明の一態様に係る浸炭条件を示す図である。 (a)部は、従来技術に係る高炭素浸炭における浸炭層の組織の例を示す図であり、網目状のセメンタイトが存在している組織を示す。(b)部は、本発明の一態様に係る高炭素浸炭における浸炭層の組織の例を示す図であり、網目状のセメンタイトが存在せず、微細な炭化物が多量に分散している良好な高炭素浸炭組織を示す。 (Cr、Fe)23と(Cr、Fe)Cが析出した組織を示す図である。
 本発明者らは、高炭素浸炭処理における浸炭層の炭化物の分散形態に及ぼす各種因子について鋭意検討し、以下の知見を見出した。
 (a)高炭素浸炭処理時に浸炭層に生成する炭化物は、鋼中のCr量が多いほど、析出量が多くなる。
 (b)高炭素浸炭処理時に浸炭層に生成する炭化物は、鋼中のCr量が2.00%未満の場合、主に、オーステナイト粒界に沿って粗大な網目状のセメンタイトとして析出する。これに対して、鋼中のCr量が2.00%以上の場合、炭化物は、オーステナイト粒内に、粒状、又は、針状の微細な炭化物が分散する形態をとる。
 (c)高炭素浸炭処理時に浸炭層に生成する炭化物は、浸炭処理温度が低いほど、析出量が多くなる。
 (d)高炭素浸炭処理時に浸炭層に生成する炭化物は、浸炭処理温度が低いほど、析出物が微細になり、かつ、オーステナイト粒内に、粒状、又は、針状の微細な炭化物として分散する。特に、浸炭処理温度が900℃以下の場合に、炭化物が十分に微細分散した組織を得ることができる。この理由は以下の通りである。
 (e)Cr量添加量が多いほど、また、浸炭処理温度が低いほど、浸炭処理の初期に、浸炭層において、微細な(Cr、Fe)23、及び/又は、(Cr、Fe)Cが、オーステナイト粒内に析出し易くなり、また、析出量も増加する。また、浸炭処理の後期には、これらの微細析出物を核として、セメンタイトが析出する。また、このことによって、オーステナイト粒界に沿った粗大な網目状のセメンタイトの生成量も抑制される。
 (f)ガス浸炭方式によって高炭素浸炭処理を行う際、Cr添加量、又は、Cr、Si、Mnの添加量が比較的多く、かつ、浸炭処理温度が高い場合、Cr酸化物、及び、Cr、Si、Mnの複合酸化物が鋼材表面に生成し、浸炭雰囲気から鋼材中への炭素の移行を阻害する。このため、浸炭層の炭素量が、目標とする値よりも低下し、実質的に、高炭素浸炭処理を行うことができない場合がある。この現象は、浸炭処理温度が900℃を超える場合に発生し易い。
 (g)ガス高炭素浸炭処理に引き続いて、熱処理雰囲気にアンモニアを加える処理である浸窒工程(いわゆる、浸炭窒化処理)を更に行うことによって、歯面疲労強度を更に向上させることができる。
 以上より、Cr添加量を増加し、かつ、高炭素浸炭処理の温度を従来技術の温度(930~950℃近傍)よりも低い温度にして行うことは、浸炭層の炭化物の微細分散に対して極めて効果的である。これによって、炭化物の微細分散のための二次焼入れを行うことなしに(部品の寸法精度を劣化させずに)、部品の歯面疲労強度を向上させることができる。
 以下、本発明について詳細に説明する。まず、成分組成の限定理由について説明する。なお、成分の含有量%は質量%を意味する。
 C:0.10~0.60%
 Cは、部品の心部の硬さを確保するために添加する。C添加量が少ないと、浸炭処理に要する時間が長くなりすぎ、一方、過剰に添加すると、素材の硬さの上昇を通じて、部品の切削・鍛造等の加工を行うときの加工性が顕著に劣化する。本発明では、C量を0.10~0.60%の範囲にする必要がある。好適なC量の範囲は0.15~0.30%である。
 Si:0.01~2.50%
 Siは、浸炭部品のような低温焼戻しマルテンサイト鋼の焼戻し軟化抵抗を顕著に増加することによって、歯面疲労強度を向上するのに有効な元素である。本発明では、Siを、0.01%以上添加する。しかし、Siを過剰に添加すると、ガス浸炭時に、Cr、Si、Mnの複合酸化物が鋼材表面に生成し、浸炭雰囲気から鋼材中への炭素の移行を阻害する。そのため、浸炭層の炭素量が、目標とする値よりも低下する場合がある。また、Siを過剰に添加すると、素材の硬さの上昇を通じて、部品の切削・鍛造等の加工を行うときの加工性が顕著に劣化する。本発明では、Si量を0.01~2.50%の範囲にする必要がある。好適なSi量の範囲は0.03%~1.50%、更に好ましくは0.10%~1.00%である。
 Mn:0.20~2.00%
 Mnは、鋼の焼入れ性を高める効果があるので、浸炭焼入れ時にマルテンサイト組織を得るために、0.20%以上添加する。一方、過剰に添加すると、ガス浸炭時に、Cr、Si、Mnの複合酸化物が鋼材表面に生成し、浸炭雰囲気から鋼材中への炭素の移行を阻害する。そのため、浸炭層の炭素量が目標とする値よりも低下する場合がある。また、過剰に添加すると、素材の硬さの上昇を通じて、部品の切削・鍛造等の加工を行うときの加工性が顕著に劣化する。本発明では、Mn量を0.20~2.00%の範囲にする必要がある。好適なMn量の範囲は0.40~1.00%である。
 S:0.0001~0.10%
 Sは、Mnと結合してMnSを形成し、添加量を増加するほど、被削性を向上させる効果を持つが、過剰に添加すると、MnSが疲労亀裂の伝播経路となって、歯車の曲げ疲労強度が低下する。また、S量を0.0001%以下に制限するには過剰なコストがかかる。従って、本発明では、S量を0.0001~0.10%の範囲にする必要がある。S量の好適範囲は0.010~0.02%である。
 Cr:2.00~5.00%
 Crは、添加量が多いほど、高炭素浸炭処理時に、浸炭層に生成する炭化物の析出量が増加する。また、Crの添加量が所定の量以上の場合に、浸炭処理の初期に浸炭層において、微細な(Cr、Fe)23、及び/又は(Cr、Fe)Cが、オーステナイト粒内に析出し易くなり、また、析出量も増加する。浸炭処理の後期には、これらの微細析出物を核としてセメンタイトが析出するので、炭化物の微細分散化と、オーステナイト粒界に沿った粗大な網目状のセメンタイトの抑制に対して、極めて有効な元素であるので、比較的多量に添加する。
 これらの効果は、他の添加元素では代替することが難しいので、本発明においては、Crが最も重要な添加元素である。一方、過剰に添加すると、ガス浸炭時に、Cr、Si、Mnの複合酸化物が鋼材表面に生成し、浸炭雰囲気から鋼材中への炭素の移行を阻害する。そのため、浸炭層の炭素量が目標とする値よりも低下する。また、過剰に添加すると、素材の硬さの上昇を通じて部品の切削・鍛造等の加工を行うときの加工性が顕著に劣化する。従って、本発明ではCr量を、2.00~5.00%の範囲にする必要がある。好適なCr量の範囲は2.00~3.50%である。更に望ましい範囲は2.25~3.00%である。なお、Cr量が上記範囲の場合、浸炭層に十分な炭素量を確保するためには、特に浸炭処理温度を900℃以下に規制することが重要となる。
 Al:0.001~0.50%
 Alは、鋼の脱酸のために有効な元素であるとともに、鋼中でNと結合してAlNを形成する。AlNは、オーステナイト結晶粒界をピン止めして粒成長を抑制し、組織の粗大化を防止する働きをする。Alの添加量が少ないと、上記の効果が得られず、過剰に添加しても効果が飽和する。従って、本発明ではAl量を0.001~0.50%の範囲にする必要がある。Al量の好適な範囲は0.020~0.15%である。なお、Tiが0.08%以上添加される場合には、TiCの量が増加し、ピン止め効果が十分になるので、Al添加量は0.020%よりも少なくてよい。
 N:0.0020~0.020%
 Nは、鋼中でAlと結合してAlNを形成する。AlNは、オーステナイト結晶粒界をピン止めして粒成長を抑制して、組織の粗大化を防止する働きをする。Nの添加量が少ないと、上記の効果が得られず、過剰に添加すると、1000℃以上の高温域における延性が低下し、連続鋳造、圧延時の歩留まり低下の原因になる。従って、本発明ではN量を、0.0020~0.020%の範囲にする必要がある。N量の好適な範囲は0.0050~0.018%である。
 P:0.050%以下
 Pは、オーステナイト粒界に偏析して、旧オーステナイト粒界を脆化させて、粒界割れの原因となるので、できるだけ低減することが望ましい。そのため、本発明では、P量を0.050%以下の範囲にする必要がある。P量の好適な範囲は0.015%以下である。P量を0.001%以下に制限するには過剰なコストがかかる。従って、P量の好適な下限は0.001%である。
 O:0.0030%以下
 Oは、酸化物系介在物を形成する。O含有量が多い場合は、疲労破壊の起点となる大きな介在物が増加し、疲労特性の低下の原因となるので、できるだけ低減することが望ましい。そのため、本発明ではO量を0.0030%以下に制限する必要がある。O量の好適範囲は0.0015%以下である。O量を0.0001%以下に制限するには過剰なコストがかかる。そのため、好適なO量の下限は0.0001%である。
 Ca、Mg、Zr:0.0005~0.0030%
 Ca、Mg、Zrは必要に応じて本発明の表層硬化処理用鋼に添加可能な任意成分である。Ca、Mg、ZrはMnSの形態制御、及び切削時の切削工具表面における保護被膜形成を通じて鋼の被削性を向上する働きがある。この効果を得るために、Ca、Mg、Zrのうちの1種または2種以上を各0.0005%以上添加してもよい。一方、0.0030%を超えて添加すると、粗大な酸化物や硫化物を形成して部品の疲労強度に悪影響を与える場合がある。従って本発明では、Ca、Mg、Zrのうちの1種または2種以上をそれぞれ0.0005~0.0030%の範囲で添加してもよい。好適範囲は0.0008~0.0020%である。本願発明のような比較的Cr添加量の多い鋼種の場合、通常の浸炭用鋼(JISG4053のSCR420、SCM420等)よりも素材の硬さが高めになる。従って、部品を切削加工で成型する場合に、切削工具の寿命が短くなることによって、切削に関わるコストが高くなる場合がある。すなわち、Ca、Mg、Zrを添加することによって切削工具の寿命を延長することができるため、本願発明の高炭素浸炭用にCa、Mg、Zrを添加することは実生産上の効果が大きい。
 Mo:0.01~1.00%
 Moは必要に応じて本発明の表層硬化処理用鋼に添加可能な任意成分である。Moは、鋼の焼入れ性を高める効果があるので、浸炭焼入れ時に、マルテンサイト組織を得るために添加してもよい。Moは、ガス浸炭の雰囲気ガス雰囲気では酸化物を形成せず、窒化物を形成し難いので、Mo添加鋼は、浸炭層表面の酸化物層や窒化物、それに起因する浸炭異常層を生成し難いという優れた特徴がある。しかし、添加コストが高価であるので、過剰の添加は望ましくない。そのため、本発明では、Mo量を0.01~1.00%の範囲にしてもよい。好適なMo量の範囲は0.10~0.60%である。
 B:0.0005~0.0050%
 Bは必要に応じて本発明の表層硬化処理用鋼に添加可能な任意成分である。Bは、オーステナイト中に固溶している状態において、微量で、鋼の焼入れ性を大きく高める効果があるので、浸炭焼入れ時に、マルテンサイト組織を得るために添加してもよい。添加量が少なすぎると、上記の効果が得られず、一方、過剰に添加しても、効果が飽和する。従って、本発明ではB量を、0.0005~0.0050%の範囲にしてもよい。好適なB量の範囲は0.0010~0.0025%である。
 なお、鋼中に一定量以上のNが存在している場合、BがNと結合してBNが生成し、固溶B量が減少して、焼入れ性向上効果が得られない場合がある。Bを添加する場合には、Nを固定するTiやAlを、同時に適量添加することが望ましい。
 Cu:0.05~1.00%
 Cuは必要に応じて本発明の表層硬化処理用鋼に添加可能な任意成分である。Cuは、鋼の焼入れ性を高める効果があるので、浸炭焼入れ時に、マルテンサイト組織を得るために添加してもよい。Cuは、ガス浸炭の雰囲気ガス雰囲気では、酸化物や窒化物を形成しない元素であるので、Cu添加鋼は、浸炭層表面の酸化物層や窒化物、それに起因する浸炭異常層を生成し難いという特徴がある。
 しかし、過剰にCuを添加すると、1000℃以上の高温域における延性が低下し、連続鋳造、圧延時の歩留まり低下の原因になる。従って、本発明では、Cuを0.05~1.00%の範囲で添加してもよい。Cu量の好適範囲は0.010~0.50%である。なお、高温域の延性を改善するために、Cuを添加する場合には、Cu添加量の1/2以上の量のNiを、同時に添加することが望ましい。
 Ni:0.05~2.00%
 Niは必要に応じて本発明の表層硬化処理用鋼に添加可能な任意成分である。Niは、鋼の焼入れ性を高める効果があるので、浸炭焼入れ時に、マルテンサイト組織を得るために添加してもよい。Niは、ガス浸炭の雰囲気ガス雰囲気では、酸化物や窒化物を形成しない元素であるので、Ni添加鋼は、浸炭層表面の酸化物層や窒化物、それに起因する浸炭異常層を生成し難いという特徴がある。
 しかし、添加コストが高価であるので、過剰のNi添加は望ましくない。そのため、本発明では、Niを0.05~2.00%の範囲で添加してもよい。好適なNi量の範囲は0.40~1.60%である。
 V:0.005~0.50%
 Vは必要に応じて本発明の表層硬化処理用鋼に添加可能な任意成分である。Vは、鋼中で、N、Cと結合して、V(C、N)を形成する。V(C、N)は、オーステナイト結晶粒界をピン止めして粒成長を抑制し、組織の粗大化を防止する働きをする。添加量が少ないと、上記の効果が得られず、一方、過剰に添加しても、効果が飽和する。本発明では、Vを0.005~0.50%の範囲で添加してもよい。V量の好適な範囲は0.05~0.20%である。
 Nb:0.005~0.10%
 Nbは必要に応じて本発明の表層硬化処理用鋼に添加可能な任意成分である。Nbは、鋼中で、N、Cと結合してNb(C、N)を形成する。Nb(C、N)は、オーステナイト結晶粒界をピン止めして粒成長を抑制し、組織の粗大化を防止する働きをする。添加量が少ないと、上記の効果が得られず、一方、過剰に添加しても、効果が飽和する。本発明では、Nbを0.005~0.10%の範囲で添加してもよい。Nbの好適な範囲は0.010~0.050%である。
 Ti:0.005~0.50%
 Tiは必要に応じて本発明の表層硬化処理用鋼に添加可能な任意成分である。Tiは、鋼中で、N、Cと結合して、Ti(C、N)を形成する。Ti(C、N)は、オーステナイト結晶粒界をピン止めして粒成長を抑制し、組織の粗大化を防止する働きをする。添加量が少ないと、上記の効果が得られず、一方、過剰に添加しても、効果が飽和する。本発明では、Tiを0.005~0.50%の範囲で添加してもよい。Ti量の好適な範囲は0.015~0.15%である。
 2.0%≦Cr+Si+Mn≦8.0%
 鋼中のCr、Si、Mnの各元素量に応じて、ガス浸炭時に、Cr、Si、Mnの複合酸化物が鋼材表面に生成し、浸炭雰囲気から鋼材中への炭素の移行が阻害される。従って、高炭素浸炭において部品の表層部の炭素量を確保し、(Cr、Fe)23や(Cr、Fe)Cを析出させるためには、これら3成分の合計量を一定の範囲で規制するのが望ましい。本発明では、上記3成分の合計含有量を2.0%~8.0%とする。より望ましい上記3成分の合計含有量は3.0%~4.5%である。
 本発明では、上記成分の他、本発明の効果を損なわない範囲で、Pb、Te、Zn、Sn等を添加することができる。Pb、Te、Zn、Snは必要に応じて本発明の表面硬化処理用鋼に添加可能な任意成分である。これらの元素を添加することによって、切削加工性等を改善することができる。本発明の効果を損なわないためには、これらの添加成分の添加量の上限をそれぞれ、Pb:0.50%以下、Te:0.0030%以下、Zn:0.50%以下、Sn:0.50%以下、とすればよい。
 本発明の表層硬化処理鋼部品は、上記本発明の表面硬化処理用鋼を用い、浸炭処理又は浸炭窒化処理が施されている。鋼部品中で、浸炭処理又は浸炭窒化処理の影響を受けない、部品の中央部(芯部)をここでは非浸炭部と呼ぶ。この非浸炭部の化学組成は、部品の材料となる表層硬化処理鋼部品の化学組成と実質的に同一である。
 鋼部品の浸炭層のうち、表面から50μm深さの領域をここでは表層部と呼ぶ。本発明の表層硬化処理鋼部品で、浸炭層の表層部の炭素濃度の平均値は質量%で1.00~6.7%である。表層部の炭素濃度が1.00%未満では歯面疲労強度の向上が不十分であり、6.7%で表層部の全てがセメンタイトになるため、これ以上の炭素濃度にはならない。また、上記表層部(表面から50μm深さの領域)の炭化物の面積率は15%以上である。炭化物の面積率が15%未満の場合は、歯面疲労強度の向上が不十分である。炭化物の面積率の好適範囲は20~80%である。表層部は(Cr、Fe)23及び(Cr、Fe)Cのうち、1種または2種の析出物を100μmあたり100個以上有する。
 本発明の高炭素ガス浸炭、又は、高炭素ガス浸炭窒化条件は、先に述べた「本発明における高炭素ガス浸炭、又は、高炭素ガス浸炭窒化の定義」に従うものであればよい。
 例えば、全浸炭時間を通してC.P.を0.90%以上で浸炭してもよい。前半の時間のC.P.を0.80%とし、後半のC.P.を、高炭素浸炭雰囲気である0.90%以上で浸炭しても良い。逆に、前半の時間のC.P.を0.90%以上の高炭素浸炭雰囲気とし、後半のC.P.を0.80%程度で行ってもよい。
 このように、C.P.を種々変えることによって、部品の浸炭層の炭化物分率や、残留オーステナイト量を、任意に制御してもよい。高炭素浸炭雰囲気のC.P.が高い方が、浸炭層において微細な(Cr、Fe)23、及び/又は、(Cr、Fe)Cが析出し易くなるので、1.0%以上に設定することが望ましい。好適範囲は1.1~1.6%である。
 また、浸炭に引き続いて行う焼入れ処理は、一般に、油冷却、塩浴冷却、ガス冷却等が実施されているが、いずれの方法でもよい。例えば、油冷却の場合、焼入れ油の温度の好適範囲は50~180℃である。焼入れ処理に伴う熱処理変形を最小限にしたい場合は、冷却速度が小さい(焼入れ油の温度が高い)方が望ましく、表面の不完全焼入れ層を最小限にして疲労強度を高めたい場合は、冷却速度が大きい(焼入れ油の温度が低い)方が望ましい。
 浸炭処理によって製造される表層硬化鋼部品には、通常、浸炭焼入れの後に、低温焼戻し(300℃以下)が施される。低温焼戻しは、部品の心部の靭性の回復や、寸法精度・材質の安定化を目的に行われる。
 通常、焼戻しの温度が、100℃未満であると、上記の効果が得られず、300℃を超えると、硬化層の軟化が著しくなり、疲労強度が低下するおそれがあるので、低温焼戻しは100~300℃の範囲で行なうことが多い。本発明の表層硬化鋼部品においても、勿論、通常どおり、浸炭焼入れの後に、低温焼戻しを施すことができる。
 本発明における焼戻しの好適温度は120~200℃であり、好適時間は30~180分である。
 本発明に係る方法では、高炭素ガス浸炭、又は、高炭素ガス浸炭窒化処理の温度域を800~900℃とする。高炭素ガス浸炭又は、高炭素ガス浸炭窒化処理に続いて、浸炭処理を行った温度のまま、又は、浸炭処理温度以下の温度域に冷却した後に、焼入れ処理を行う。この理由を説明する。
 本発明では、炭化物の微細分散のための二次焼入れを行うことなしに(部品の寸法精度を劣化させずに)、部品の歯面疲労強度を向上させることができる。このためには、高温浸炭処理時に、浸炭層に生成する炭化物を多量・微細に分散した形態に制御する必要がある。高炭素浸炭処理時に浸炭層に生成する炭化物は、浸炭処理温度が低いほど、析出物が微細になり、かつ、オーステナイト粒内に、粒状、又は、針状の微細な炭化物が分散する形態をとる。
 本発明に係る成分組成の鋼に対して高炭素浸炭処理を行った場合、浸炭処理温度が低いほど、浸炭処理の初期に、浸炭層において、微細な(Cr、Fe)23、及び/又は、(Cr、Fe)Cが、オーステナイト粒内に析出し易くなり、また、析出量も増加する。浸炭処理の後期には、これらの微細析出物を核として、セメンタイトが析出する。
 また、上記処理によって、オーステナイト粒界に沿った粗大な網目状のセメンタイトの生成量も抑制される。特に、浸炭処理温度が900℃以下の場合に、炭化物が十分に微細分散した組織を得ることができる。また、全体の炭化物の析出量も、浸炭処理温度が低いほど多くなるため、歯面疲労強度を向上する上で有利である。
 一方、浸炭処理温度が低すぎると、所望の浸炭硬化層深さを得るために要する時間が長くなりすぎ、生産性が大きく低下する。従って、本発明では、浸炭処理を行う温度は、800~900℃の範囲にする必要がある。浸炭処理を行う温度の好適範囲は820~880℃である。
 一般的な技術で、浸炭後に焼入れ処理を行う場合は、焼入れの前に、部品の熱処理変形を低減する目的で、浸炭温度からある程度低い温度まで降温した後に焼入れ処理を行う。本発明に係る浸炭処理では、もともと浸炭処理温度が低いため、降温する必要はなく、浸炭処理を行った温度から焼入れを行っても問題はない。
 更に、熱処理変形を低減する必要がある場合は、浸炭処理温度よりも低い温度に降温してから焼入れを行ってもよいが、その温度が低すぎる場合は、C.P.の制御や雰囲気の安全性に問題が出る。焼入れ開始温度の好適範囲は760~850℃である。
 本発明にかかる表層硬化鋼部品の製造方法は、上記のような800~900℃の高炭素浸炭処理の前に、800~1100℃の温度域で、浸炭雰囲気のカーボンポテンシャルが0.40~1.20%の条件でガス浸炭処理又はガス浸炭窒化処理を前記鋼部品に施す、予備浸炭工程を更に有してもよい。
 前述のように、高炭素浸炭処理を行った場合、浸炭処理温度が低いほど浸炭処理の初期に浸炭層において微細な(Cr,Fe)23、又は/及び(Cr,Fe)Cがオーステナイト粒内に析出しやすくなり、また析出量も増加する。そして、浸炭処理の後期にはこれらの微細析出物を核としてセメンタイトが析出する。
 他方、浸炭処理温度が低い場合は炭素の拡散距離が短いため、有効硬化層深さが浅めになり、所望の有効硬化層深さを得るための浸炭時間が長めになるという欠点がある。しかし、この低温・高炭素浸炭処理の前に、予備浸炭工程を行うことが出来る。この予備浸炭工程は、粗大な網目状のセメンタイトが析出しない浸炭条件であれば、どのような条件で浸炭を行っても、引き続いて行う低温・高濃度浸炭処理に悪影響は与えない。従って、炭素をより深い位置まで拡散させるために、まず通常の条件で浸炭又は浸炭窒化を行い、引き続いて800~900℃の範囲に降温して高濃度浸炭又は高濃度浸炭窒化処理を施してもよい。この場合、有効硬化層深さの向上と高濃度浸炭による歯面疲労強度の向上が両立できるので、浸炭時間の短縮につながり、生産性の向上を図ることができる。通常浸炭の条件は800~1100℃の温度範囲で行う必要がある。800℃未満では硬化層深さ向上の効果が得られず、意味がない。1100℃を超えると結晶粒が顕著に粗大化し、浸炭部品としての特性を損なう。好適な温度範囲は900~1000℃である。浸炭雰囲気のカーボンポテンシャルは0.40~1.20%の条件で行う必要がある。0.40%未満では硬化層深さ向上の効果が小さく、1.20%を超えると低温・高濃度浸炭処理を施す前に粗大な網目状セメンタイトが析出し、その後消えることはないため、浸炭部品としての特性を損なう。好適なカーボンポテンシャルの範囲は0.60~1.00%である。
 本発明にかかる表層硬化鋼部品の製造方法では、高炭素・低温浸炭処理時の浸炭層に、(Cr、Fe)23、及び/又は、(Cr、Fe)Cを析出させる。
 上述のように、本発明の鋼に対して高炭素浸炭処理を施した場合、浸炭処理の初期に、浸炭層において、微細な(Cr、Fe)23、及び/又は、(Cr、Fe)Cが、オーステナイト粒内に析出する。浸炭処理の後期には、これらの微細析出物を核としてセメンタイトが析出し、その結果、浸炭層に生成する炭化物が多量・微細に分散した形態に制御することができる。
 また、このことによって、オーステナイト粒界に沿った粗大な網目状のセメンタイトの生成量も抑制される。従って、浸炭処理時の浸炭層に、(Cr、Fe)23、及び/又は、(Cr、Fe)Cを析出させる必要がある。なお、ここでいう(Cr,Fe)23はCrとFeが主たる構成元素である炭化物であるが、純粋にCrとFeとCのみを含むものに限るわけではなく、MoやMnといった他の合金元素を含んでも良い。
 本発明の鋼によって製造された表面硬化処理部品に対して、浸炭処理後に、ショットピーニング処理を施してもよい。ショットピーニング処理によって導入される部品表層の圧縮残留応力の増加は、疲労亀裂の発生及び進展を抑制するので、本発明の鋼によって製造された部品の歯元、及び、歯面疲労強度を、更に向上させることができる。ショットピーニング処理は、直径が0.7mm以下のショット粒を用い、アークハイトが0.4mm以上の条件で行うことが望ましい。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。
 (実施例)
 表1、2に示す成分組成を有する転炉溶製鋼を連続鋳造により製造し、必要に応じて、均熱拡散処理を施し、分塊圧延工程を経て、162mm角の圧延素材とした。次に、熱間圧延によって、直径が35mmの棒鋼形状とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、表2中で各元素の「-」は無添加を意味する。表中の下線は、その数値が本発明の範囲外であることを示す。
 次に、歯車の製造工程(熱履歴)をシミュレートするため、熱間圧延鋼材に対して、1250℃×30分の加熱を施し、その後、空冷する条件で、熱間鍛造シミュレートを行った。引き続いて、925℃×60分加熱し、その後、徐冷する条件で、焼準処理を行った。こうして作製した素材から、大径部(試験部)26φのローラーピッチング試験片、及び、平滑部8φの平滑小野式回転曲げ疲労試験片を、機械加工により、それぞれ、20本作製した。
 作製した試験片に対し、図1A~図1Oに示すパターンのガス浸炭処理、又は、ガス浸炭窒化処理を施した。図1A~図1I及び図1Nと図1Oは本願発明の条件に合致する浸炭パターンであり、図1K、図1L及び図1Mは比較のための浸炭パターンである。浸炭に引き続いて、全ての試験片について、150℃×90分加熱し、その後、空冷する条件で、焼戻しを行った。その後、疲労試験の試験精度を向上するため、ローラーピッチング試験片、平滑小野式回転曲げ疲労試験片のつかみ部に、仕上げ加工を施した。
 各試験水準のローラーピッチング試験片のうち、1本の大径部を切断し、断面の組織観察を行なった。組織観察は、断面を鏡面研磨した後にナイタル腐食を行い、400~1000倍の倍率で光学顕微鏡写真を撮影し、その後、画像解析装置を用いて、表面から50μm深さの位置における炭化物の面積率を測定した。
 また、最表面~200μm深さにわたって、組織観察を行い、旧γ粒界に沿って網目状のセメンタイトが存在している場合は、「網目状炭化物あり」と判定した。判定では上記の観察位置において400倍の倍率で0.5mm相当の視野を各サンプル5視野検査した。判定の基準は、旧γ粒界に長さ10μm以上の炭化物が5個以上存在している視野が1つでもある場合「網目状炭化物あり」と判定した。この方法で「網目状炭化物あり」と判定される場合、網目状炭化物の平均密度は2.5個/mm以上になる。
 網目状のセメンタイトが存在している組織の例を、図2の(a)部に示し、網目状セメンタイトが存在せず、微細な炭化物が多量に分散している良好な高炭素浸炭組織の例を、図2の(b)部に示す。
 また、組織観察用試験片について、SEMによる観察を行い、表面から50μm深さの位置における微細析出物の観察、及び、EDSによる組成分析を行った。また、更に、この微細析出物について、抽出レプリカ法によるTEM観察を行い、電子線回折により析出物を同定した。同定の結果、(Cr、Fe)23、及び/又は、(Cr、Fe)Cが100μmあたり100個以上確認された場合は、「(Cr、Fe)23、又は、(Cr、Fe)Cの析出あり」と判定した。(Cr、Fe)23と(Cr、Fe)Cが浸炭層に析出している例を、図3に示す。
 ローラーピッチング試験は、大ローラー:SCM420浸炭品・クラウニング150R、回転数:2000rpm、潤滑油:トランスミッション油、油温80℃、すべり率-40%、最大1000万回の条件で行い、S-N線図を作成して疲労限を求め、ローラーピッチング疲労強度とした。ローラーピッチング疲労強度が3000MPaに達しないものは、歯面疲労強度が劣ると判定した。
 また、平滑小野式回転曲げ疲労試験は、回転数:3000rpmの条件で行い、S-N線図を作成して疲労限を求め、回転曲げ疲労強度とした。平滑小野式回転曲げ疲労強度が600MPaに達しないものは、歯元曲げ疲労強度が劣ると判定した。
 これらの評価結果を表3に示す。製造No.1~21、及び製造No.31~45の発明例は、いずれも、目標を達成しており、優れた歯面疲労強度を持ち、かつ、回転曲げ疲労強度も十分である。製造No.9は、高炭素浸炭に加え、浸炭窒化処理も施しているので、ローラーピッチング疲労強度が、特に高い。
Figure JPOXMLDOC01-appb-T000003
 
 表3中、鋼No.、浸炭パターン、炭化物面積率、(Cr,Fe)23 と(Cr,Fe)Cの析出有無の欄で、下線はその数値が本発明の範囲外であることを意味する。また、網目状炭化物の有無、ローラーピッチング疲労強度、回転曲げ疲労強度の下線は、その数値が目標未達成であることを意味する。
 一方、製造No.22では、通常の浸炭パターンを用いたため、処理温度が高く、また、C.P.も低い。この結果、表層部に炭化物の析出がなく、ローラーピッチング疲労強度が不十分であった。
 製造No.23では、C.P.が高いため、部品の表層部に炭化物が析出している。しかし、処理温度が高いので、旧γ粒界に沿った網目状のセメンタイトが存在している。この網目状セメンタイトが、疲労強度を低下させるので、ローラーピッチング強度、回転曲げ疲労強度ともに、不十分であった。
 製造No.24では、処理温度は適正であるが、C.P.が低い。この結果、部品の表層部に炭化物の析出がなく、ローラーピッチング疲労強度が不十分であった。
 製造No.25と26では、Cr添加量が本発明の範囲より少ない。この結果、部品中の炭化物の分率が少なく、また、網目状セメンタイトも抑制できなかった。このため、ローラーピッチング強度、回転曲げ疲労強度ともに不十分であった。
 製造No.27では、表層部に十分な炭化物が析出し、かつ、網目状セメンタイトも抑制できていた。この結果、ローラーピッチング疲労強度は優れていた。一方、素材のC量が少なすぎるので、心部の硬さが低く、回転曲げ疲労強度が不十分だった。
 製造No.28、29、及び、30では、それぞれ、Si添加量、Mn添加量、及び、Cr添加量が、本発明の範囲より多い。この結果、ガス浸炭中に、Cr、Si、Mnの複合酸化物が鋼材表面に生成し、浸炭層の炭素量が顕著に低下し、その結果、炭化物の析出量が不十分だった。更に、浸炭部品としての表層の硬さ自体も不足して、ローラーピッチング強度、回転曲げ疲労強度ともに、不十分だった。
 製造No.46は鋼中のCr、Si、Mnの合計添加量が多すぎるため、ガス浸炭時に、Cr、Si、Mnの複合酸化物が鋼材表面に生成し、浸炭処理後も表面の炭素濃度が全く増加していなかった。このため炭化物も全く析出せず、浸炭部品としての表層の硬さ自体も不足して、ローラーピッチング強度、回転曲げ疲労強度ともに、不十分だった。
 前述したように、本発明によれば、二次焼入れを廃止しても、部品の浸炭層に炭化物を微細に分散させることが可能となり、高い歯面疲労強度を持ち、かつ、二次焼入れに起因する熱処理変形の増加(部品精度の劣化)を回避した部品を、低コストで得ることができる。このため、自動車等の動力伝達部品(例えば、歯車、軸受、シャフト、CVTシーブ等)の回転数や伝達トルクの増加、又は、小型・軽量化に極めて有効である。
 従って、本発明は、このような効果を介して、従来の自動車の性能向上のみならず、ハイブリッド自動車や電気自動車の性能改善や、普及に、大きく貢献することができるので、産業上の利用可能性が大きい。

Claims (10)

  1.  800~900℃の温度域で浸炭処理される表層硬化処理用鋼であって、
     化学成分が、質量%で、
     C:0.10~0.60%、
     Si:0.01~2.50%、
     Mn:0.20~2.00%、
     S:0.0001~0.10%、
     Cr:2.00~5.00%、
     Al:0.001~0.50%、
     N:0.0020~0.020%、
     P:0.001~0.050%、及び、
     O:0.0001~0.0030%、
     を含有し、
     残部がFe及び不可避的不純物からなり、
     Cr、Si、Mnの合計含有量が、質量%で2.0≦Cr+Si+Mn≦8.0を満たす
     ことを特徴とする表層硬化処理用鋼。
  2.  前記化学成分が、更に、質量%で、
     Ca:0.0005~0.0030%、
     Mg:0.0005~0.0030%、
     Zr:0.0005~0.0030%
    の内の1種または2種以上を含有することを特徴とする請求項1に記載の表層硬化処理用鋼。
  3.  前記化学成分が、更に、質量%で、
     Mo:0.01~1.00%、
     B:0.0005~0.0050%、
     Cu:0.05~1.00%、及び、
     Ni:0.05~2.00%の1種又は2種以上を含有することを特徴とする請求項1または2に記載の表層硬化処理用鋼。
  4.  前記化学成分が、更に、質量%で、
     V:0.005~0.50%、
     Nb:0.005~0.10%、及び、
     Ti:0.005~0.50%の1種又は2種以上を含有することを特徴とする請求項1または2に記載の表層硬化処理用鋼。
  5.  浸炭処理又は浸炭窒化処理が施された鋼部品であって、
     前記鋼部品の非浸炭部の鋼の成分が、質量%で、
     C:0.10~0.60%、
     Si:0.01~2.50%、
     Mn:0.20~2.00%、
     S:0.0001~0.100%、
     Cr:2.00~5.00%、
     Al:0.001~0.50%、
     N:0.0020~0.0200%、
     P:0.001~0.050%、及び、
     O:0.0001~0.0030%、を含有し、
     残部がFe及び不可避的不純物からなり、
     前記非浸炭部の鋼のCr、Si、Mnの合計含有量が、質量%で2.0≦Cr+Si+Mn≦8.0を満たし、
     浸炭層の最表面から50μm深さまでの部分である表層部で、炭素濃度の平均値が質量%で1.00~6.7%であり、
     前記表層部の炭化物の面積率が15%以上であり、
     前記表層部が(Cr、Fe)23及び(Cr、Fe)Cのうち、1種または2種の析出物を有し、
     前記表層部で、旧γ粒界に沿った10μm以上の網目状炭化物が2.5個/mm以下である
     ことを特徴とする表層硬化鋼部品。
  6.  非浸炭部の前記鋼の成分が、更に、質量%で、
     Ca:0.0005~0.0030%、
     Mg:0.0005~0.0030%、
     Zr:0.0005~0.0030%
    の内の1種または2種以上を含有することを特徴とする請求項5に記載の表面硬化鋼部品。
  7.  非浸炭部の前記鋼の成分が、更に、質量%で、
     Mo:0.01~1.00%、
     B:0.0005~0.0050%、
     Cu:0.05~1.00%、及び、
     Ni:0.05~2.00%、
     の内の1種又は2種以上を含有することを特徴とする請求項5または6に記載の表層硬化鋼部品。
  8.  非浸炭部の前記鋼の成分が、更に、質量%で、
     V:0.005~0.50%、
     Nb:0.005~0.10%、及び
     Ti:0.005~0.50%、
     の1種又は2種以上を含有することを特徴とする請求項5または6に記載の表層硬化鋼部品。
  9.  請求項1または2に記載の表層硬化処理用鋼を加工して鋼部品を成型する成型工程と;
     処理時間の50%以上の時間において、浸炭雰囲気のカーボンポテンシャルが0.90%以上であるガス浸炭処理又はガス浸炭窒化処理を、800~900℃の温度域で前記鋼部品に施し、浸炭層に、(Cr、Fe)23及び(Cr、Fe)Cの1種又は2種を析出させる、浸炭工程と;
     前記浸炭工程に続いて、前記浸炭処理又はガス浸炭窒化処理を行った温度のまま、又は、浸炭処理温度以下の温度域に冷却した後に、焼入れ処理を施す焼入れ工程と;
     を有することを特徴とする表層硬化鋼部品の製造方法。
  10.  前記浸炭工程の前に、800~1100℃の温度域で浸炭雰囲気のカーボンポテンシャルが0.40~1.20%の条件でガス浸炭処理又はガス浸炭窒化処理を前記鋼部品に施す、予備浸炭工程を更に有することを特徴とする請求項9に記載の表層硬化鋼部品の製造方法。
PCT/JP2011/053517 2010-03-19 2011-02-18 表層硬化処理用鋼及び表層硬化鋼部品とその製造方法 WO2011114836A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180001322.2A CN102341520B (zh) 2010-03-19 2011-02-18 表层硬化钢部件及其制造方法
EP11755233.1A EP2514847B1 (en) 2010-03-19 2011-02-18 Surface layer-hardened steel part and method of manufacturing the same
US13/258,340 US8475605B2 (en) 2010-03-19 2011-02-18 Surface layer-hardened steel part and method of manufacturing the same
KR1020117020459A KR101247478B1 (ko) 2010-03-19 2011-02-18 표층 경화강 부품 및 그의 제조 방법
JP2011527141A JP4927234B2 (ja) 2010-03-19 2011-02-18 表層硬化鋼部品及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010064880 2010-03-19
JP2010-064880 2010-03-19

Publications (1)

Publication Number Publication Date
WO2011114836A1 true WO2011114836A1 (ja) 2011-09-22

Family

ID=44648943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053517 WO2011114836A1 (ja) 2010-03-19 2011-02-18 表層硬化処理用鋼及び表層硬化鋼部品とその製造方法

Country Status (6)

Country Link
US (1) US8475605B2 (ja)
EP (1) EP2514847B1 (ja)
JP (1) JP4927234B2 (ja)
KR (1) KR101247478B1 (ja)
CN (1) CN102341520B (ja)
WO (1) WO2011114836A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207247A (ja) * 2011-03-29 2012-10-25 Aichi Steel Works Ltd 浸炭部材、浸炭部材用鋼および浸炭部材の製造方法
WO2013065718A1 (ja) * 2011-11-01 2013-05-10 新日鐵住金株式会社 鋼製部品の製造方法
WO2014104113A1 (ja) * 2012-12-28 2014-07-03 新日鐵住金株式会社 浸炭用鋼
JP2014136811A (ja) * 2013-01-15 2014-07-28 Jtekt Corp 摺動部材、クラッチプレートおよびそれらの製造方法
JP2014201811A (ja) * 2013-04-08 2014-10-27 本田技研工業株式会社 浸炭部品、その製造方法及び浸炭部品用鋼
JP2015045036A (ja) * 2013-08-27 2015-03-12 山陽特殊製鋼株式会社 水素環境下における耐ピッチング特性に優れる歯車用はだ焼鋼
WO2015098106A1 (ja) * 2013-12-27 2015-07-02 新日鐵住金株式会社 浸炭鋼部品の製造方法及び浸炭鋼部品
EP2789709A4 (en) * 2011-12-06 2016-01-27 Nsk Ltd BEARING BEARING AND METHOD OF MANUFACTURING THE SAME
JP2016050350A (ja) * 2014-09-01 2016-04-11 山陽特殊製鋼株式会社 耐ピッチング性および耐摩耗性に優れる高強度高靱性機械構造用鋼製部品およびその製造方法
US20160145732A1 (en) * 2013-06-26 2016-05-26 Daido Steel Co., Ltd. Carburized component
JP2017053002A (ja) * 2015-09-09 2017-03-16 山陽特殊製鋼株式会社 耐白色組織変化はく離寿命に優れる軸受用鋼
WO2017047767A1 (ja) * 2015-09-18 2017-03-23 国立大学法人大阪大学 高硬度かつ靱性に優れた鋼
JP2018053291A (ja) * 2016-09-28 2018-04-05 山陽特殊製鋼株式会社 水素環境下での転動疲労寿命に優れる高清浄度軸受用鋼
WO2019026909A1 (ja) * 2017-08-03 2019-02-07 アイシン精機株式会社 鋼部品の製造方法および鋼部品
WO2019198539A1 (ja) * 2018-04-10 2019-10-17 日本製鉄株式会社 機械部品とその製造方法
JP2021143421A (ja) * 2020-02-19 2021-09-24 クエステック イノベーションズ リミテッド ライアビリティ カンパニー 析出強化された浸炭可能及び窒化可能な合金鋼

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5522105B2 (ja) * 2011-03-31 2014-06-18 アイシン・エィ・ダブリュ株式会社 鋼製歯車およびその製造方法
JP5522106B2 (ja) * 2011-03-31 2014-06-18 アイシン・エィ・ダブリュ株式会社 鋼製歯車およびその製造方法
EP2888378B1 (en) * 2012-08-21 2019-02-20 Aktiebolaget SKF Method for heat treating a steel component
JP2014074212A (ja) * 2012-10-05 2014-04-24 Jtekt Corp 転がり摺動部材及びその製造方法並びに転がり軸受
JPWO2014171472A1 (ja) * 2013-04-18 2017-02-23 新日鐵住金株式会社 肌焼用鋼材と肌焼鋼部品
WO2015073094A2 (en) * 2013-08-27 2015-05-21 University Of Virginia Patent Foundation Lattice materials and structures and related methods thereof
CN105814226B (zh) * 2013-12-12 2018-01-19 爱知制钢株式会社 Cvt用环部件及其制造方法
KR101446134B1 (ko) * 2013-12-19 2014-10-07 주식회사 세아베스틸 내피팅성이 우수한 기계구조용 고탄소 침탄용 강 및 고탄소 침탄 열처리방법
KR101575435B1 (ko) 2013-12-24 2015-12-07 현대자동차주식회사 고탄소침탄강 소재 및 이를 이용한 기어 제조방법
KR20160069595A (ko) * 2014-12-08 2016-06-17 현대자동차주식회사 내구성이 우수한 침탄 합금강 및 이의 제조방법
KR101685486B1 (ko) 2015-04-14 2016-12-13 현대자동차주식회사 내구성을 향상시킨 침탄 합금강 및 이의 제조방법
KR101705168B1 (ko) * 2015-04-20 2017-02-10 현대자동차주식회사 내구성이 향상된 침탄 합금강 및 이의 제조방법
JP6436232B2 (ja) * 2015-05-15 2018-12-12 新日鐵住金株式会社 ばね鋼
US9828650B2 (en) * 2016-02-04 2017-11-28 GM Global Technology Operations LLC Method of manufacturing a sliding camshaft
KR101795401B1 (ko) * 2016-05-26 2017-11-08 현대자동차 주식회사 침탄강 및 침탄강의 제조방법
JP6753714B2 (ja) * 2016-07-15 2020-09-09 アイシン・エィ・ダブリュ株式会社 Cvtシーブ用鋼材、cvtシーブおよびcvtシーブの製造方法
KR20180080843A (ko) * 2017-01-05 2018-07-13 현대자동차주식회사 가공부하에 의하여 침탄이 방지된 합금강 및 이의 제조방법
JP6652226B2 (ja) * 2017-09-13 2020-02-19 日本製鉄株式会社 転動疲労特性に優れた鋼材
JP7167428B2 (ja) * 2017-11-10 2022-11-09 昭和電工マテリアルズ株式会社 鉄基焼結合金材及びその製造方法
NL1042939B1 (en) * 2018-07-27 2020-01-31 Bosch Gmbh Robert A method for manufacturing a transverse member for a drive belt from a low alloy carbon steel including a small amount of vanadium
CN112375985B (zh) * 2018-11-06 2022-04-19 江苏省无锡交通高等职业技术学校 恶劣工况柴油用机超高压共轨燃油喷射***针阀体用钢
CN113025877A (zh) * 2019-12-24 2021-06-25 通用汽车环球科技运作有限责任公司 高性能压制硬化钢
US20230106078A1 (en) * 2021-10-06 2023-04-06 Aktiebolaget Skf Method of manufacturing a brinelling-resistant hub bearing unit
CN114411057B (zh) * 2021-12-30 2022-12-16 钢铁研究总院 一种可烧结摩擦层的高强心板用钢
DE102022100951A1 (de) 2022-01-17 2023-07-20 Schaeffler Technologies AG & Co. KG Stahllegierung für ein Großwälzlagerbauteil sowie Großwälzlager und Verfahren zur Wärmebehandlung des Großwälzlagerbauteils aus dieser Stahllegierung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176219A (ja) * 1996-12-17 1998-06-30 Komatsu Ltd 高耐面圧用鋼部品およびその製造方法
JP3033349B2 (ja) * 1992-07-10 2000-04-17 株式会社神戸製鋼所 耐ピッチング性に優れた浸炭鋼部品
JP2002339054A (ja) * 2001-05-17 2002-11-27 Daido Steel Co Ltd 耐高面圧部材およびその製造方法
JP2005273759A (ja) * 2004-03-24 2005-10-06 Nsk Ltd 転がり支持装置、転がり支持装置の構成部品の製造方法、鋼の熱処理方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230385A (ja) * 1988-10-22 1989-09-13 Sankyo Kk 弾球遊技機
JP4022607B2 (ja) 1999-07-21 2007-12-19 日産自動車株式会社 耐高面圧部材の製造方法
JP2002356738A (ja) 2001-05-29 2002-12-13 Daido Steel Co Ltd 耐高面圧部材およびその製造方法
JP3738003B2 (ja) * 2002-12-04 2006-01-25 新日本製鐵株式会社 冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材およびその製造方法
JP4102266B2 (ja) * 2003-07-31 2008-06-18 株式会社神戸製鋼所 表面硬化部品の製造方法及び表面硬化部品
JP4448456B2 (ja) * 2004-01-29 2010-04-07 新日本製鐵株式会社 浸炭時の粗大粒防止特性と疲労特性に優れた肌焼鋼とその製造方法
JP4515329B2 (ja) 2005-05-26 2010-07-28 株式会社神戸製鋼所 耐ケースクラッシング性に優れた熱処理歪の少ない鋼製歯車とその製法
JP4688691B2 (ja) * 2006-02-17 2011-05-25 株式会社神戸製鋼所 低サイクル疲労強度に優れた肌焼鋼
JP4970811B2 (ja) 2006-03-13 2012-07-11 山陽特殊製鋼株式会社 高面圧用部品とその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3033349B2 (ja) * 1992-07-10 2000-04-17 株式会社神戸製鋼所 耐ピッチング性に優れた浸炭鋼部品
JPH10176219A (ja) * 1996-12-17 1998-06-30 Komatsu Ltd 高耐面圧用鋼部品およびその製造方法
JP2002339054A (ja) * 2001-05-17 2002-11-27 Daido Steel Co Ltd 耐高面圧部材およびその製造方法
JP2005273759A (ja) * 2004-03-24 2005-10-06 Nsk Ltd 転がり支持装置、転がり支持装置の構成部品の製造方法、鋼の熱処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2514847A4 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207247A (ja) * 2011-03-29 2012-10-25 Aichi Steel Works Ltd 浸炭部材、浸炭部材用鋼および浸炭部材の製造方法
WO2013065718A1 (ja) * 2011-11-01 2013-05-10 新日鐵住金株式会社 鋼製部品の製造方法
JPWO2013065718A1 (ja) * 2011-11-01 2015-04-02 新日鐵住金株式会社 鋼製部品の製造方法
US9410232B2 (en) 2011-11-01 2016-08-09 Nippon Steel & Sumitomo Metal Corporation Method for producing steel component
EP2789709A4 (en) * 2011-12-06 2016-01-27 Nsk Ltd BEARING BEARING AND METHOD OF MANUFACTURING THE SAME
WO2014104113A1 (ja) * 2012-12-28 2014-07-03 新日鐵住金株式会社 浸炭用鋼
JP2014136811A (ja) * 2013-01-15 2014-07-28 Jtekt Corp 摺動部材、クラッチプレートおよびそれらの製造方法
US9771643B2 (en) 2013-04-08 2017-09-26 Honda Motor Co., Ltd. Carburized part, method for manufacturing thereof, and steel for carburized part
JP2014201811A (ja) * 2013-04-08 2014-10-27 本田技研工業株式会社 浸炭部品、その製造方法及び浸炭部品用鋼
US10428414B2 (en) * 2013-06-26 2019-10-01 Daido Steel Co., Ltd. Carburized component
US20160145732A1 (en) * 2013-06-26 2016-05-26 Daido Steel Co., Ltd. Carburized component
JP2015045036A (ja) * 2013-08-27 2015-03-12 山陽特殊製鋼株式会社 水素環境下における耐ピッチング特性に優れる歯車用はだ焼鋼
WO2015098106A1 (ja) * 2013-12-27 2015-07-02 新日鐵住金株式会社 浸炭鋼部品の製造方法及び浸炭鋼部品
JPWO2015098106A1 (ja) * 2013-12-27 2017-03-23 新日鐵住金株式会社 浸炭鋼部品の製造方法及び浸炭鋼部品
JP6098732B2 (ja) * 2013-12-27 2017-03-22 新日鐵住金株式会社 浸炭鋼部品の製造方法及び浸炭鋼部品
US10202677B2 (en) 2013-12-27 2019-02-12 Nippon Steel & Sumitomo Metal Corporation Production method of carburized steel component and carburized steel component
JP2016050350A (ja) * 2014-09-01 2016-04-11 山陽特殊製鋼株式会社 耐ピッチング性および耐摩耗性に優れる高強度高靱性機械構造用鋼製部品およびその製造方法
JP2017053002A (ja) * 2015-09-09 2017-03-16 山陽特殊製鋼株式会社 耐白色組織変化はく離寿命に優れる軸受用鋼
US11203803B2 (en) 2015-09-18 2021-12-21 Osaka University Steel with high hardness and excellent toughness
WO2017047767A1 (ja) * 2015-09-18 2017-03-23 国立大学法人大阪大学 高硬度かつ靱性に優れた鋼
CN108350538A (zh) * 2015-09-18 2018-07-31 国立大学法人大阪大学 高硬度且韧性优异的钢
JP2018053291A (ja) * 2016-09-28 2018-04-05 山陽特殊製鋼株式会社 水素環境下での転動疲労寿命に優れる高清浄度軸受用鋼
WO2019026909A1 (ja) * 2017-08-03 2019-02-07 アイシン精機株式会社 鋼部品の製造方法および鋼部品
JPWO2019026909A1 (ja) * 2017-08-03 2020-06-25 アイシン精機株式会社 鋼部品の製造方法および鋼部品
JPWO2019198539A1 (ja) * 2018-04-10 2021-02-25 日本製鉄株式会社 機械部品とその製造方法
WO2019198539A1 (ja) * 2018-04-10 2019-10-17 日本製鉄株式会社 機械部品とその製造方法
JP2021143421A (ja) * 2020-02-19 2021-09-24 クエステック イノベーションズ リミテッド ライアビリティ カンパニー 析出強化された浸炭可能及び窒化可能な合金鋼
JP7478685B2 (ja) 2020-02-19 2024-05-07 クエステック イノベーションズ リミテッド ライアビリティ カンパニー 析出強化された浸炭可能及び窒化可能な合金鋼

Also Published As

Publication number Publication date
EP2514847B1 (en) 2014-12-17
US20120018050A1 (en) 2012-01-26
US8475605B2 (en) 2013-07-02
EP2514847A1 (en) 2012-10-24
CN102341520A (zh) 2012-02-01
EP2514847A4 (en) 2013-08-28
CN102341520B (zh) 2014-02-26
KR20110128282A (ko) 2011-11-29
KR101247478B1 (ko) 2013-04-01
JPWO2011114836A1 (ja) 2013-06-27
JP4927234B2 (ja) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4927234B2 (ja) 表層硬化鋼部品及びその製造方法
JP5639064B2 (ja) 浸炭窒化部材の製造方法
JP4819201B2 (ja) 軟窒化用鋼、並びに軟窒化鋼部品及びその製造方法
JP5099276B1 (ja) 面疲労強度に優れたガス浸炭鋼部品、ガス浸炭用鋼材およびガス浸炭鋼部品の製造方法
JP2007308772A (ja) 浸炭部品およびその製造方法
KR20120123589A (ko) 고주파 켄칭용 강, 고주파 켄칭용 조형재, 그 제조 방법 및 고주파 켄칭 강 부품
JP5886119B2 (ja) 肌焼鋼鋼材
WO2019244503A1 (ja) 機械部品
JP5652844B2 (ja) 高加工性浸炭用鋼板
JP5206271B2 (ja) 鋼製の浸炭窒化部品
JP2000273574A (ja) 浸炭あるいは浸炭窒化処理用鋼
JP4807949B2 (ja) 高温浸炭特性に優れた肌焼用圧延棒鋼
JP2016188421A (ja) 浸炭部品
JP5272609B2 (ja) 鋼製の浸炭窒化部品
JP7436779B2 (ja) 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
WO2016158375A1 (ja) 浸炭窒化用鋼材および浸炭窒化部品
TW201739933A (zh) 表面硬化鋼
JP4411096B2 (ja) 球状化後の冷間鍛造性に優れた肌焼用鋼線材・棒鋼
WO2017122612A1 (ja) 浸炭窒化用鋼材および浸炭窒化部品
JP7368697B2 (ja) 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
JP2008133501A (ja) 真空浸炭歯車用鋼
JP2024034953A (ja) 鋼材及び鋼部品
JP2023069388A (ja) 鋼、および、浸炭焼入れ部品
JP2024034952A (ja) 窒化高周波焼入れ用鋼材及び鋼部品
JP2006161143A (ja) 転動疲労寿命と高温浸炭特性に優れた浸炭用鋼材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001322.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011527141

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117020459

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13258340

Country of ref document: US

Ref document number: 2011755233

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE