WO2011111741A1 - 樹脂モールド - Google Patents

樹脂モールド Download PDF

Info

Publication number
WO2011111741A1
WO2011111741A1 PCT/JP2011/055505 JP2011055505W WO2011111741A1 WO 2011111741 A1 WO2011111741 A1 WO 2011111741A1 JP 2011055505 W JP2011055505 W JP 2011055505W WO 2011111741 A1 WO2011111741 A1 WO 2011111741A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
acrylate
resin mold
meth
mold
Prior art date
Application number
PCT/JP2011/055505
Other languages
English (en)
French (fr)
Inventor
松本 真治
潤 古池
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to EP11753399.2A priority Critical patent/EP2546041B1/en
Priority to KR1020127022992A priority patent/KR101381489B1/ko
Priority to US13/583,171 priority patent/US20130049255A1/en
Priority to CN201180012708.3A priority patent/CN102791452B/zh
Publication of WO2011111741A1 publication Critical patent/WO2011111741A1/ja
Priority to US15/925,342 priority patent/US10766169B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3807Resin-bonded materials, e.g. inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/58Applying the releasing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • B29C2033/385Manufacturing moulds, e.g. shaping the mould surface by machining by laminating a plurality of layers

Definitions

  • the present invention relates to a resin mold for transfer, and more particularly to a resin mold containing fluorine.
  • micro-processing techniques include, for example, a method of directly micro-processing using an electron beam, and a method of batch drawing on a large area by interference exposure.
  • fine pattern processing by a step & repeat method using a stepper device in semiconductor technology is also known.
  • each of them requires a plurality of processing steps and requires high capital investment, and it is difficult to say that the technology is good in terms of production time and cost.
  • nanoimprint method This is a technology that can be easily transferred and copied to a resin (transfer material) with a processing accuracy of several nanometers to several tens of nanometers using a finely patterned member as a mold. Since it can be carried out at a low cost with a simple process, it has been attracting attention as a precision replication processing technology that is indispensable in industry. It is classified into thermal nanoimprint, optical nanoimprint, room temperature nanoimprint, soft lithography method, etc., depending on the physical properties of transfer materials and processing processes.
  • the photo nanoimprint method using a photo-curable resin is easy to apply to a roll-to-roll method process that can be rapidly and repeatedly transferred, and is attractive in terms of throughput.
  • the material on the mold side is mainly limited to quartz, sapphire, and glass molds, and due to its rigid material, there is a problem of lack of versatility in continuous manufacturing techniques and processing processes.
  • a resin mold having transparency and flexibility is required as an alternative to the rigid mold.
  • Patent Document 1 a resin mold having permeability and flexibility has been reported (Patent Document 1), but the thermoplastic resin mold disclosed in Patent Document 1 does not disclose adhesiveness to a substrate.
  • the resin material and the transfer material resin to be transferred using the mold are investigated by the inventors. It has become clear that the provision of a resin mold that is excellent in releasability between the two and the durability of the resin mold itself is a new issue.
  • the present invention has been made in view of the above points, and is a transfer material resin having excellent adhesion to a substrate, excellent releasability from a transfer material resin, and excellent durability of the resin mold itself.
  • An object of the present invention is to provide a resin mold that can withstand repeated transfer to the substrate.
  • the inventors have determined the fluorine element concentration (Es) at the resin surface portion (near the fine concavo-convex structure) in the resin mold as the average fluorine element concentration (Eb) in the resin constituting the resin mold. As described above, it is more preferable that the average fluorine element concentration (Es) on the resin surface portion is larger and the average fluorine element concentration (Eb) in the resin is reduced so that nanometer-sized uneven shapes are repeated from the resin to the resin. It has been found that a resin mold that can be transferred is obtained.
  • the resin surface portion is improved in releasability from the transfer material resin due to low free energy, Adhesiveness with the base material is improved by keeping the free energy high in the vicinity of the base material in the resin. Furthermore, since the strength of the resin itself is improved by lowering the average fluorine element concentration (Eb) in the resin relative to the resin surface portion, it is repeated from the resin mold having a nanometer size uneven shape to the resin. A resin mold that can be transferred can be produced.
  • the resin mold (B) produced by transferring from the resin mold (A) to the resin can be repeatedly transferred to the resin, the production efficiency is greatly improved, and a generally expensive master stamper is used. Costs can be absorbed. For this reason, the resin mold which concerns on this invention is industrially useful also from an environmental viewpoint. That is, the present invention is as follows.
  • the resin mold of the present invention is a resin mold having a fine concavo-convex structure on the surface, and the fluorine element concentration (Es) on the surface of the resin mold is equal to or higher than the average fluorine element concentration (Eb) in the resin constituting the resin mold. It is characterized by being.
  • the ratio of the average fluorine element concentration (Eb) in the resin constituting the resin mold to the fluorine element concentration (Es) of the resin mold surface portion satisfies the following formula (1). preferable.
  • the total light transmittance at 350 nm to 450 nm is preferably 50% or more.
  • the resin mold of the present invention is preferably composed of a cured product of a photopolymerizable mixture formed by optical nanoimprint.
  • the photopolymerizable mixture preferably contains (meth) acrylate, fluorine-containing (meth) acrylate, and a photopolymerization initiator.
  • the fluorine-containing (meth) acrylate is 0.1 to 50 parts by weight and the photopolymerization initiator is 0.01 parts by weight to 100 parts by weight of the (meth) acrylate. It is preferable to contain 10 parts by weight.
  • the fine concavo-convex structure preferably has a pitch of 50 nm to 1000 nm and a height of 50 nm to 500 nm.
  • the resin mold of the present invention is preferably for nanoimprinting.
  • the ratio of the average fluorine element concentration (Eb) in the resin constituting the resin mold and the fluorine element concentration (Es) of the resin mold surface portion satisfies the following formula (2).
  • the resin mold of the present invention includes a copolymer comprising fluorine-containing (meth) acrylate and non-fluorine-containing (meth) acrylate, and the fluorine-containing (meth) acrylate is represented by the following chemical formula (1) and / or Alternatively, it is preferably represented by the following chemical formula (2).
  • R1 represents the following chemical formula (3)
  • R2 represents the following chemical formula (4).
  • n is an integer of 1-6.
  • R is H or CH 3.
  • the resin mold of the present invention preferably contains 0.8 to 6 parts by weight of fluorine-containing (meth) acrylate with respect to 100 parts by weight of the non-fluorine-containing (meth) acrylate.
  • the method for producing a resin mold of the present invention is a method for producing the above resin mold, comprising 100 parts by weight of non-fluorine-containing (meth) acrylate, 0.8 to 6 parts by weight of fluorine-containing (meth) acrylate, and light.
  • a resin mold that can withstand repeated transfer to a transfer material resin, having excellent adhesion to a substrate, excellent releasability from a transfer material resin, and excellent durability of the resin mold itself. Can be provided.
  • (meth) acrylate means an acrylate or a methacrylate.
  • the resin mold according to the present invention is a resin mold having a fine concavo-convex structure on the surface, and the fluorine element concentration (Es) of the resin mold surface portion is equal to or higher than the average fluorine element concentration (Eb) in the resin constituting the resin mold. It is characterized by being.
  • the resin surface By setting the fluorine concentration on the resin surface (near the fine concavo-convex structure) in the resin mold to be equal to or higher than the average fluorine concentration of the resin mold, the resin surface has excellent releasability from the transfer material resin due to low free energy, and A resin mold excellent in releasability that can repeatedly transfer resin / resin with nanometer-sized uneven shapes can be obtained, and adhesion can be improved by keeping high free energy in the vicinity of the substrate.
  • the fluorine element concentration (Es) on the surface of the resin mold is larger than the average fluorine element concentration (Eb) in the resin constituting the resin mold, the resin surface is separated from the transfer material resin due to low free energy. Resin mold with excellent moldability and releasability that allows repeated resin / resin transfer of nanometer-sized concavo-convex shapes can be obtained. Can be improved.
  • the resin mold having a fine concavo-convex structure on the surface the ratio of the average fluorine element concentration (Eb) in the resin constituting the resin mold and the fluorine element concentration (Es) of the mold surface portion is represented by the following formula (1) It is more preferable to satisfy the above condition because the above effect is more exhibited.
  • a surface layer having a high fluorine content can be formed, which improves mold release, and preferably 3 ⁇ Es / Eb ⁇ 1500, 10 ⁇ Es / Eb ⁇ . Since it becomes more releasable as it becomes the range of 100, it is preferable.
  • the fluorine element concentration (Es) on the surface of the resin mold is the resin mold. Since the free energy on the resin surface is effectively reduced, the releasability from the transfer material resin is improved. Also, by reducing the average fluorine element concentration (Eb) in the resin relative to the fluorine element concentration (Es) on the resin mold surface, the strength of the resin itself is improved and the vicinity of the substrate in the resin Then, since free energy can be kept high, adhesiveness with a base material improves.
  • a resin mold having excellent adhesion to the substrate, excellent releasability from the transfer material resin, and capable of repeatedly transferring the nanometer-sized uneven shape from the resin to the resin can be obtained.
  • it is in the range of 30 ⁇ Es / Eb ⁇ 160 the free energy on the resin surface can be reduced, the strength of the resin can be maintained, and the repetitive transfer property is further improved, and preferably 31 ⁇ Es / Eb. More preferably, ⁇ 155. If 46 ⁇ Es / Eb ⁇ 155, the above effect can be further exhibited, which is preferable.
  • the resin mold according to the present invention can be obtained by photopolymerization and thermal polymerization as described below, but the resin mold is preferably made of a cured product formed from a photopolymerizable mixture by optical nanoimprint.
  • the photopolymerizable mixture preferably contains a non-fluorine-containing (meth) acrylate, a fluorine-containing (meth) acrylate, and a photopolymerization initiator, and is based on 100 parts by weight of the non-fluorine-containing (meth) acrylate.
  • the fluorine-containing (meth) acrylate is preferably contained in an amount of 0.1 to 50 parts by weight
  • the photopolymerization initiator is preferably contained in an amount of 0.01 to 10 parts by weight.
  • the fluorine-containing (meth) acrylate is 0.1 parts by weight or more, the release property is excellent, and if it is 50 parts by weight or less, the adhesion to the substrate is excellent. In particular, 5 to 10 parts by weight is excellent in surface segregation of fluorine-containing (meth) acrylates.
  • the fluorine-containing (meth) acrylate is 0.8 parts by weight or more in the above range, the fluorine element concentration (Es) of the resin mold surface part (surface of the fine uneven structure) can be increased.
  • it is more preferably 6 parts by weight or less because the average fluorine element concentration (Eb) in the resin can be lowered, and the bulk strength and the adhesive force at the substrate interface can be increased.
  • the range of 1 to 6 parts by weight is preferable because the free energy on the resin surface can be further lowered and the repetitive transferability is improved.
  • the fluorine-containing (meth) acrylate is a fluorine-containing urethane (meth) acrylate represented by the following chemical formula (1) and / or a fluorine-containing (meth) acrylate represented by the following chemical formula (2):
  • the surface free energy can be reduced more effectively, the adhesiveness with the substrate can be further improved, and the average fluorine element concentration (Eb) in the resin can be reduced to maintain the strength of the resin. It is preferable for further improvement.
  • R1 represents the following chemical formula (3)
  • R2 represents the following chemical formula (4).
  • n is an integer of 1-6.
  • R is H or CH 3.
  • the “surface portion of the resin mold” means the surface portion of the fine uneven structure of the resin mold, and in the thickness direction perpendicular to the surface of the resin mold, approximately 1% to from the surface side of the resin mold. It means a part in the range of 10% or a part in the range of 2 nm to 20 nm.
  • required by XPS method mentioned later is employ
  • the fluorine element concentration (Es) is a measured value at a depth of several nanometers, which is the X-ray penetration length in the XPS method.
  • the “average fluorine element concentration (Eb) in the resin constituting the resin mold” is a value calculated from the charged amount or a value that can be analyzed from a gas chromatograph mass spectrometer (GC / MS). Is adopted. That is, the fluorine element concentration contained in the resin constituting the resin mold is meant. For example, a section of a resin mold composed of a cured product of a photopolymerizable mixture formed into a film and having a resin part physically peeled off is decomposed by a flask combustion method and subsequently subjected to ion chromatography analysis. Thus, the average fluorine element concentration (Eb) in the resin can be identified.
  • the method for producing the resin mold is not particularly limited, but a method of producing a resin by photopolymerization or thermal polymerization is common. Also, obtain a resin molded body by transfer by optical nanoimprint from the resin mold, consider this resin molded body as a resin mold, obtain a new resin molded body by optical nanoimprint, and use the obtained resin molded body as a resin mold Is also possible. Hereinafter, the case of synthesizing by photopolymerization and the case of synthesis by thermal polymerization are described separately.
  • the photopolymerizable mixture it is preferable to use a non-fluorine-containing (meth) acrylate, a fluorine-containing (meth) acrylate, and a photopolymerization initiator.
  • a mixture in which (meth) acrylate and fluorine-containing (meth) acrylate are mixed together with a photopolymerization initiator the mixture is cured while the mixture is in contact with a hydrophobic interface having a low surface free energy.
  • the fluorine element concentration (Es) on the resin mold surface portion is set to be equal to or higher than the average fluorine element concentration (Eb) in the resin constituting the resin mold, and further the average fluorine element concentration (Eb) in the resin is made smaller. Can be adjusted.
  • the surface of the photopolymerizable mixture can be freely applied with the average fluorine element concentration (Eb) in the resin kept low. It is desirable to cure in contact with a low energy interface. As a result, the fluorine-containing (meth) acrylate is effectively segregated to the interface having a low surface free energy so as to reduce the energy of the entire system, and thus the Es / Eb becomes larger, and the resin having good repeatability and transferability.
  • a mold can be produced.
  • Each component used for manufacturing the resin mold according to the present invention will be described below.
  • the (meth) acrylate is not limited as long as it is a polymerizable monomer other than the (B) fluorine-containing (meth) acrylate described later, but a monomer having an acryloyl group or a methacryloyl group, a vinyl group. And a monomer having an allyl group are preferred, and a monomer having an acryloyl group or a methacryloyl group is more preferred. And it is preferable that they are non-fluorine containing monomers.
  • the polymerizable monomer is preferably a polyfunctional monomer having a plurality of polymerizable groups, and the number of polymerizable groups is preferably an integer of 1 to 4 because of excellent polymerizability.
  • the average number of polymerizable groups is preferably 1 to 3.
  • the number of polymerizable groups may be 3 or more in order to increase the crosslinking point after the polymerization reaction and to obtain physical stability (strength, heat resistance, etc.) of the cured product. preferable.
  • a monomer having 1 or 2 polymerizable groups it is preferably used in combination with monomers having different polymerizable numbers.
  • the (meth) acrylate monomer examples include the following compounds.
  • the monomer having an acryloyl group or a methacryloyl group include (meth) acrylic acid, aromatic (meth) acrylate [phenoxyethyl acrylate, benzyl acrylate, and the like.
  • Hydrocarbon-based (meth) acrylate [stearyl acrylate, lauryl acrylate, 2-ethylhexyl acrylate, allyl acrylate, 1,3-butanediol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol di Acrylate, trimethylolpropane triacrylate, pentaaerythritol triacrylate, dipentaerythritol hexaacrylate and the like.
  • Hydrocarbon-based (meth) acrylates containing etheric oxygen atoms [ethoxyethyl acrylate, methoxyethyl acrylate, glycidyl acrylate, tetrahydrofurfryl acrylate, diethylene glycol diacrylate, neopentyl glycol diacrylate, polyoxyethylene glycol diacrylate , Tripropylene glycol diacrylate and the like.
  • Hydrocarbon-based (meth) acrylates [2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl vinyl ether, N, N-diethylaminoethyl acrylate, N, N-dimethylaminoethyl acrylate, N-vinyl pyrrolidone, dimethylaminoethyl methacrylate, etc. ], Silicone-based acrylates, and the like.
  • Others include EO-modified glycerol tri (meth) acrylate, ECH-modified glycerol tri (meth) acrylate, PO-modified glycerol tri (meth) acrylate, pentaerythritol triacrylate, EO-modified phosphate triacrylate, trimethylolpropane tri (meth) Acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, EO-modified trimethylolpropane tri (meth) acrylate, dipentaerythritol hexa (meta) ) Acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, dipentaerythritol hydroxypenta (meth) acrylate Alkyl
  • Examples of the monomer having an allyl group include p-isopropenylphenol, and examples of the monomer having a vinyl group include styrene, ⁇ -methylstyrene, acrylonitrile, and vinylcarbazole.
  • EO modification means ethylene oxide modification
  • ECH modification means epichlorohydrin modification
  • PO modification means propylene oxide modification.
  • the fluorine-containing (meth) acrylate preferably has a polyfluoroalkylene chain and / or perfluoro (polyoxyalkylene) chain and a polymerizable group, and is a linear perfluoroalkylene group. Or a perfluorooxyalkylene group having an etheric oxygen atom inserted between carbon atoms and having a trifluoromethyl group in the side chain. Moreover, a linear polyfluoroalkylene chain having a trifluoromethyl group at the molecular side chain or molecular structure terminal and / or a linear perfluoro (polyoxyalkylene) chain is particularly preferred.
  • the polyfluoroalkylene chain is preferably a polyfluoroalkylene group having 2 to 24 carbon atoms. Moreover, the polyfluoroalkylene group may have a functional group.
  • the perfluoro (polyoxyalkylene) chain is a group consisting of (CF 2 CF 2 O) units, (CF 2 CF (CF 3 ) O) units, (CF 2 CF 2 CF 2 O) units and (CF 2 O) units. It is preferably composed of one or more perfluoro (oxyalkylene) units selected from: (CF 2 CF 2 O) units, (CF 2 CF (CF 3 ) O) units, or (CF 2 CF 2 CF 2 O). ) Units.
  • the perfluoro (polyoxyalkylene) chain is particularly preferably composed of (CF 2 CF 2 O) units because the physical properties (heat resistance, acid resistance, etc.) of the fluoropolymer are excellent.
  • the number of perfluoro (oxyalkylene) units is preferably an integer of 2 to 200, more preferably an integer of 2 to 50, since the release property and hardness of the fluoropolymer are high.
  • Examples of the polymerizable group include a vinyl group, an allyl group, an acryloyl group, a methacryloyl group, an epoxy group, a dichitacene group, a cyano group, an isocyanate group, or a formula — (CH 2 ) aSi (M1) 3-b (M2) b.
  • a hydrolyzable silyl group is preferable, and an acryloyl group or a methacryloyl group is more preferable.
  • M1 is a substituent which is converted into a hydroxyl group by a hydrolysis reaction. Examples of such a substituent include a halogen atom, an alkoxy group, and an acyloxy group.
  • M2 is a monovalent hydrocarbon group. Examples of M2 include an alkyl group, an alkyl group substituted with one or more aryl groups, an alkenyl group, an alkynyl group, a cycloalkyl group, and an aryl group, and an alkyl group or an alkenyl group is preferable.
  • M2 is an alkyl group
  • an alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group or an ethyl group is more preferable.
  • M2 is an alkenyl group
  • an alkenyl group having 2 to 4 carbon atoms is preferable, and a vinyl group or an allyl group is more preferable.
  • a is an integer of 1 to 3, and 3 is preferable.
  • b is 0 or an integer of 1 to 3, and 0 is preferable.
  • hydrolyzable silyl groups include (CH 3 O) 3 SiCH 2 —, (CH 3 CH 2 O) 3 SiCH 2 —, (CH 3 O) 3 Si (CH 2 ) 3 — or (CH 3 CH 2 O ) 3 Si (CH 2 ) 3 — is preferred.
  • the number of polymerizable groups is preferably an integer of 1 to 4 and more preferably an integer of 1 to 3 because of excellent polymerizability. When two or more compounds are used, the average number of polymerizable groups is preferably 1 to 3.
  • Fluorine-containing (meth) acrylate has excellent adhesion to a transparent substrate when it has a functional group.
  • the functional group include a carboxyl group, a sulfonic acid group, a functional group having an ester bond, a functional group having an amide bond, a hydroxyl group, an amino group, a cyano group, a urethane group, an isocyanate group, and a functional group having an isocyanuric acid derivative. It is done.
  • it preferably contains at least one functional group having a carboxyl group, a urethane group, or an isocyanuric acid derivative.
  • the isocyanuric acid derivatives include those having an isocyanuric acid skeleton in which at least one hydrogen atom bonded to a nitrogen atom is substituted with another group.
  • fluorine-containing (meth) acrylate fluoro (meth) acrylate, fluorodiene, or the like can be used.
  • Specific examples of the fluorine-containing (meth) acrylate include the following compounds.
  • the fluorine-containing (meth) acrylate used in the present invention is a fluorine-containing urethane (meth) acrylate represented by the following chemical formula (1)
  • it is effective in a state where the average fluorine element concentration (Eb) in the resin is lowered.
  • the fluorine element concentration (Es) on the surface of the resin mold can be increased, and the adhesion to the substrate and the releasability can be expressed more effectively, which is more preferable.
  • urethane (meth) acrylate for example, “OPTOOL DAC” manufactured by Daikin Industries, Ltd. can be used.
  • R1 represents the following chemical formula (3)
  • R2 represents the following chemical formula (4).
  • n is an integer of 1-6.
  • R is H or CH 3.
  • a fluorine-containing (meth) acrylate may be used individually by 1 type, and may use 2 or more types together. Further, it can be used in combination with surface modifiers such as abrasion resistance, scratch resistance, fingerprint adhesion prevention, antifouling property, leveling property and water / oil repellency. For example, “Factent” manufactured by Neos Co., Ltd.
  • the fluorine-containing (meth) acrylate preferably has a molecular weight Mw of 50 to 50000, preferably a molecular weight Mw of 50 to 5000, and more preferably a molecular weight Mw of 100 to 5000 from the viewpoint of compatibility.
  • a diluting solvent may be used.
  • a solvent having a boiling point of a single solvent of 40 ° C. to 180 ° C. is preferable, 60 ° C. to 180 ° C. is more preferable, and 60 ° C. to 140 ° C. is further preferable. Two or more kinds of diluents may be used.
  • the solvent content may be at least an amount that can be dispersed in the curable resin composition, and is preferably more than 0 to 50 parts by weight with respect to 100 parts by weight of the curable composition. Considering that the residual solvent amount after drying is removed as much as possible, more than 0 to 10 parts by weight is more preferable.
  • the solvent content is preferably 0.1 parts by weight or more and 40 parts by weight or less with respect to 100 parts by weight of (meth) acrylate. If the solvent content is 0.5 to 20 parts by weight, the curability of the photopolymerizable mixture can be maintained, and more preferably 1 to 15 parts by weight.
  • the solvent is contained in order to reduce the film thickness of the photopolymerizable mixture, if the solvent content is 300 parts by weight or more and 10,000 parts by weight or less with respect to 100 parts by weight of (meth) acrylate, drying after coating is performed. Since the solution stability in a process can be maintained, it is preferable and it is more preferable if it is 300 to 1000 weight part.
  • photopolymerization initiator causes a radical reaction or an ionic reaction by light, and a photopolymerization initiator that causes a radical reaction is preferable.
  • examples of the photopolymerization initiator include the following photopolymerization initiators.
  • Acetophenone-based photopolymerization initiators acetophenone, p-tert-butyltrichloroacetophenone, chloroacetophenone, 2,2-diethoxyacetophenone, hydroxyacetophenone, 2,2-dimethoxy-2′-phenylacetophenone, 2-aminoacetophenone, dialkyl Aminoacetophenone and the like.
  • Benzoin-based photopolymerization initiators benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-2-methyl Propan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, benzyldimethyl ketal and the like.
  • Benzophenone-based photopolymerization initiators benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, methyl-o-benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, hydroxypropylbenzophenone, acrylic benzophenone, 4,4'-bis (dimethylamino) ) Benzophenone, perfluorobenzophenone, etc.
  • Thioxanthone photopolymerization initiators thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, diethylthioxanthone, dimethylthioxanthone, and the like.
  • Anthraquinone photopolymerization initiators 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1-chloroanthraquinone, 2-amylanthraquinone.
  • Ketal photopolymerization initiators acetophenone dimethyl ketal and benzyl dimethyl ketal.
  • photopolymerization initiators ⁇ -acyl oxime ester, benzyl- (o-ethoxycarbonyl) - ⁇ -monooxime, acyl phosphine oxide, glyoxy ester, 3-ketocoumarin, 2-ethylanthraquinone, camphorquinone, tetramethylthiuram Sulfide, azobisisobutyronitrile, benzoyl peroxide, dialkyl peroxide, tert-butyl peroxypivalate, and the like.
  • Photopolymerization initiators having fluorine atoms Known and commonly used photopolymerization initiators such as perfluorotert-butyl peroxide and perfluorobenzoyl peroxide can be used alone or in combination of two or more.
  • the photopolymerizable mixture may contain a photosensitizer.
  • a photosensitizer include n-butylamine, di-n-butylamine, tri-n-butylphosphine, allylthiourea, s-benzisoisouronium-p-toluenesulfinate, triethylamine, diethylaminoethyl methacrylate.
  • Examples of commercially available initiators include “IRGACURE” manufactured by Ciba (for example, IRGACURE 651, 184, 500, 2959, 127, 754, 907, 369, 379, 379EG, 819, 1800, 784, OXE01, OXE02 ) And “DAROCUR” (for example, DAROCUR 1173, MBF, TPO, 4265).
  • DAROCUR for example, DAROCUR 1173, MBF, TPO, 4265.
  • the photopolymerization initiator may be used alone or in combination of two or more. When using 2 or more types together, it is good to select from a viewpoint of the dispersibility of a fluorine-containing (meth) acrylate, the fine uneven
  • a fluorine-containing (meth) acrylate the fine uneven
  • internal curability for example, the combined use of an ⁇ -hydroxyketone photopolymerization initiator and an ⁇ -aminoketone photopolymerization initiator can be mentioned.
  • “Irgacure” manufactured by Ciba, “Irgacure” and “Darocure” are combined as Darocure 1173 and Irgacure 819, Irgacure 379 and Irgacure 127, Irgacure 8e1 Irgacure 184 and Irgacure 369; Irgacure 184 and Irgacure 379EG; Irgacure 184 and Irgacure 907; Irgacure 127 and Irgacure 379EG;
  • the photopolymerizable mixture comprises 0.1 to 50 parts by weight of fluorine-containing (meth) acrylate and 0.01 parts by weight of photopolymerization initiator with respect to 100 parts by weight of (meth) acrylate.
  • the (meth) acrylate is preferably a non-fluorine-containing (meth) acrylate.
  • fluorine-containing (meth) acrylate in particular, 100 parts by weight of non-fluorine-containing (meth) acrylate, fluorine-containing (meth) acrylate is excellent in releasability if it is 0.1 parts by weight or more, and 50 parts by weight or less. If it exists, since it is excellent in the adhesiveness to a base material, it is preferable. In addition, since the (meth) acrylate is 0.8 parts by weight or more, the fluorine element concentration (Es) of the resin mold surface part (surface of the fine concavo-convex structure) can be increased, more preferably 6 parts by weight.
  • the average fluorine element concentration (Eb) in the resin is lowered and the bulk strength and the adhesive force at the base material interface can be increased. Furthermore, it is preferable that the (meth) acrylate is in the range of 1 to 6 parts by weight because the free energy of the resin surface can be further lowered and the repetitive transferability is improved.
  • the photopolymerization initiator is excellent in polymerizability if it is 0.01 parts by weight or more with respect to 100 parts by weight of (meth) acrylate, particularly non-fluorine-containing (meth) acrylate, and if it is 10 parts by weight or less. It is preferable because bleed-out to the resin surface of the unreacted initiator and decomposition product after curing can be reduced.
  • the photopolymerization initiator is more preferably 0.5 parts by weight or more, and still more preferably 1 part by weight or more.
  • the photocuring agent is more preferably 5 parts by weight or less. In particular, when the photopolymerization initiator is 0.5 to 5 parts by weight, the resin transmittance after curing is excellent.
  • the solvent content is preferably 0.1 to 40 parts by weight with respect to 100 parts by weight of (meth) acrylate. If the solvent content is 0.5 to 20 parts by weight, the curability of the photopolymerizable mixture can be maintained, and more preferably 1 to 15 parts by weight.
  • the solvent is included to reduce the film thickness of the photopolymerization mixture, it is 300 parts by weight or more and 10,000 parts by weight or less with respect to 100 parts by weight of (meth) acrylate. It is preferable because the solution stability can be maintained, and more preferably 300 parts by weight or more and 1000 parts by weight or less.
  • the resin mold is denoted as F.
  • the pattern shape or the inverted shape of the pattern shape is described, it is expressed as unevenness or uneven pattern, and among them, the resin mold according to the present invention having the uneven pattern shape is expressed as F (+), and F (+).
  • the resin mold having a concavo-convex pattern transferred from is denoted as F ( ⁇ ).
  • a resin mold can be formed by using a cured product of a photopolymerizable mixture (hereinafter referred to as curable resin composition).
  • a resin mold is a resin molding with a fine concavo-convex pattern shape (fine concavo-convex structure) obtained by optical nanoimprint transfer using a curable resin composition as a transfer agent from a master mold having a fine pattern shape on the surface. Is the body.
  • the resin molding is repeatedly transferred not only to the curable resin composition according to the present invention but also to an inorganic material including curing by a sol-gel reaction, and optical nanoimprint transfer to a known photosensitive resin composition. It can be used as a resin mold that can be transferred.
  • “repeated transfer” means one or both of the following two cases ((1) and (2)).
  • a plurality of transferred concavo-convex pattern transfer products are produced from an F (+) resin mold having a concavo-convex pattern shape.
  • an inverted F ( ⁇ ) transfer body is obtained from the resin mold F (+), and then reverse transfer is performed using the F ( ⁇ ) transfer body as a mold.
  • the pattern inversion / transfer can be repeated repeatedly to obtain an F (+) transfer body.
  • the surface of the resin mold is a structure obtained by transferring the shape of the master mold, and has a fine uneven structure.
  • a structure suitable for an optical member or a bio member is preferable, and a lattice shape, a pillar, a hole structure, or the like is more preferable, and the cross-sectional uneven shape thereof is a rectangle, a square, a trapezoid, a rhombus, a hexagon, a triangle, a circle, or a shape having a curvature.
  • the pattern arrangement may be either a random arrangement shape or a periodically arranged pattern shape.
  • the periodic pitch size is preferably 50 nm to 1000 nm, more preferably 80 nm to 700 nm, and even more preferably 100 nm to 250 nm.
  • the height of the uneven pattern is preferably 50 nm to 500 nm, and more preferably 100 nm to 250 nm.
  • the aspect ratio of the convex or concave sectional shape is preferably 0.5 to 10, and more preferably 1 to 5. The aspect ratio here is defined as a value (a / b) obtained by dividing the height (a) of the convex or concave cross-sectional shape by the half width (b) at the height position of a / 2.
  • FIG. 1 shows an example of the arrangement of the fine uneven structure of the resin mold.
  • the top view of the resin mold surface is shown typically, and the direction orthogonal to each other in the resin mold surface is shown as a first direction and a second direction.
  • the fine concavo-convex structure includes a plurality of projections (or recesses) in which a plurality of projections (or recesses) are arranged at a pitch P in the first direction.
  • column (or recessed part row
  • column (or recessed part row
  • the positional difference ⁇ is the number of the convex portions (or concave portions) belonging to the adjacent convex portion rows (or concave portion rows) between the closest convex portion central portions (or between the concave portion central portions).
  • the distance in one direction For example, as shown in FIG. 1, a line segment in the second direction passing through the center of each convex portion (or each concave portion) belonging to the (N) th convex portion row (or concave portion row), and the (N) th It means the distance between the line segment in the second direction passing through the center of each convex portion (or concave portion) belonging to the (N + 1) -th convex portion row (or concave portion row) adjacent to the row.
  • column may arrange
  • the pitch P and the pitch S can be appropriately designed according to the intended use.
  • the distance between adjacent convex portions is preferably 1 nm to 300 nm, and preferably 1 nm to 150 nm. More preferably.
  • the height of the convex portion is preferably 1 nm or more and 1000 nm or less, and more preferably 100 nm or more and 500 nm or less.
  • the height of the convex portion is preferably large, when the aspect ratio, which is the ratio of the adjacent distance to the height, is 3 or more, it is difficult to release the microstructure laminate when it is transferred to the inorganic substrate. For this reason, it is preferable that the fine concavo-convex structure is appropriately designed based on the above design concept so that the aspect ratio is less than 3.
  • the spectral sensitivity of crystalline silicon solar cells has a peak in the near infrared region (700 nm to 1000 nm), so the outermost surface member for solar cells is required to have excellent transmittance in this wavelength region. It is done.
  • the distance between adjacent convex portions is preferably 300 nm or more and 2000 nm or less, and more preferably 500 nm or more and 1000 nm or less.
  • the height of a convex part is 1 nm or more and 5000 nm or less, and it is more preferable that it is 1000 nm or more and 5000 nm or less. Also in this case, it is preferable that the fine concavo-convex structure is appropriately designed so that the aspect ratio is less than 3.
  • the distance is preferably 250 nm to 10000 nm, and more preferably 500 nm to 5000 nm because the light extraction efficiency by diffracted light is improved. Also in this case, it is preferable that the fine concavo-convex structure is appropriately designed so that the aspect ratio is less than 3.
  • Recessed cross-sectional area (S-recessed portion) of the transferred molded product (general-purpose photosensitive resin or resin mold) inverted with respect to the convex-portion cross-sectional area (S-convex portion) of the material to be transferred (master mold or resin mold) used as a mold ) Is preferably a mold or transfer material that can be transferred at a transfer accuracy of 80% or more with a cross-sectional area ratio (S concave / S convex ⁇ 100).
  • the transfer accuracy is more preferably 80% or more.
  • the transfer accuracy at one time is preferably 85% or more, and more preferably 90% or more.
  • the master mold has a fine concavo-convex pattern on the surface, and examples of the material include quartz glass, ultraviolet transmissive glass, sapphire, diamond, polydimethylsiloxane, and other silicone materials, fluororesin, silicon wafer, SiC substrate, mica substrate, and the like. It is done. In order to further improve the releasability at the time of nano pattern transfer, a release treatment may be performed.
  • the present invention is carried out so that the energy of the entire system composed of the master mold / photosensitive resin mixture / substrate is lowered by performing transfer while keeping the average fluorine element concentration (Eb) in the resin low. Since the fluorine-containing (meth) acrylate according to the above effectively segregates to the surface of the master mold, Es / Eb can be increased. Therefore, it is possible to produce a resin molded body having good repeatability.
  • the silane coupling release agent is preferable as the release treatment agent.
  • examples of commercially available mold release agents include OPTOOL DSX manufactured by Daikin Industries, Durasurf HD1101 and HD2101, Novec manufactured by Sumitomo 3M Limited, and the like.
  • Step 11 The process of apply
  • Step 12 A step of pressing the curable resin composition against the master mold in the above step 11 (step of pressing the resin against the mold).
  • Step 13 A step of radically polymerizing the curable resin composition in Step 12 to obtain a cured product (a step of photocuring the resin).
  • Step 14 A step of peeling the cured product from the master mold to obtain a resin mold (F) having an inverted shape of the pattern shape of the master mold (a step of peeling the cured product from the mold).
  • Step 21 A step of applying a curable resin composition on a substrate (a step of applying a resin).
  • Step 22 A step of pressing the curable resin composition against the master mold in the above step 21 (step of pressing the resin against the mold).
  • Step 23 a step of radically polymerizing the curable resin composition in Step 22 to obtain a cured product (a step of photocuring the resin).
  • Step 24 A step of peeling the cured product from the master mold in the step 23 to obtain a resin mold (F (+)) having a reverse shape of the master mold shape (a step of peeling the cured product from the mold).
  • Process 25 The process of apply
  • Step 26 A step of pressing the curable resin composition onto the resin mold in the above step 25 (step of pressing the resin against the mold).
  • Step 27 a step of radically polymerizing the curable resin composition in Step 26 to obtain a cured product (a step of photocuring the resin).
  • Step 28 A step of peeling the cured product from the resin mold (F (+)) in the step 27 to obtain a resin mold (F ( ⁇ )) having the same pattern shape as that of the master mold.
  • Process 31 The process of apply
  • Step 32 A step of pressing the photosensitive resin composition to the resin mold in the step 31 (step of pressing the resin against the mold).
  • Step 33 A step of radically polymerizing the photosensitive resin composition in Step 32 to obtain a cured product (a step of photocuring the resin).
  • Step 34 A step of peeling the cured product from the resin mold in the step 33 to obtain a transfer product having a pattern shape and an inverted shape of the resin mold (F) (step of peeling the cured product from the mold).
  • Step 41 A step of applying a curable resin composition on a substrate (step of applying a resin).
  • Step 42 A step of pressing the curable resin composition against the master mold in the above step 41 (step of pressing the resin against the mold).
  • Step 43 A step of radically polymerizing the curable resin composition in Step 42 to obtain a cured product (a step of photocuring the resin).
  • Step 44 A step of peeling the cured product from the master mold in the above step 43 to obtain a resin mold (F (+)) having an inverted shape of the master mold shape (step of peeling the cured product from the mold).
  • Step 45 A step of sandwiching the curable resin composition between the resin mold (F (+)) prepared in the above step 44 and the roll base (a step of pressing the resin against the mold).
  • Step 46 Step of photocuring the curable resin composition in the step 45 to obtain a cured product (step of photocuring the resin).
  • Step 47 Step of removing the cured product from the resin mold (F (+)) in the above step 47 to obtain a resin roll stamper (F ( ⁇ )) having the same pattern shape as the pattern shape of the master mold (cured product) Step of peeling off from the mold).
  • the roll-to-roll type of photosensitive resin composition is used as a transfer agent using the resin roll stamper molded body produced in the order of the above steps 41 to 47. Continuous transfer is possible.
  • a continuously transferred product can be used as a resin mold continuous molded body.
  • Process 51 The process of apply
  • Step 52 A step of pressing the photosensitive resin composition to the resin roll stamper in the above step 51 (step of pressing the resin against the mold).
  • Step 53 A step of radically polymerizing the photosensitive resin composition in Step 52 to obtain a cured product (a step of photocuring the resin).
  • Step 54 A step in which the cured product is peeled from the resin mold (F) in the above step 53, and a transfer product having a pattern shape and an inverted shape of the resin mold (F) can be continuously produced (the cured product is peeled from the mold). Process).
  • Process 61 The process of apply
  • Step 62 A step of pressing the photosensitive resin composition to the resin mold (F) continuous molded body in the above step 61 (step of pressing the resin against the mold).
  • Step 63 A step of obtaining a cured product by photoradical polymerization of the photosensitive resin composition in the step 62 (step of photocuring the resin).
  • Step 64 The step of peeling off the cured product from the resin mold (F) continuous molded body in the above-mentioned step 63 and continuously producing a transfer product having a reverse shape of the pattern shape of the resin mold (F). Step of peeling from the mold).
  • the coating thickness of the curable resin composition is preferably 50 nm to 5 mm, more preferably 100 nm to 200 ⁇ m, still more preferably 100 nm to 100 ⁇ m.
  • the resin composition may be applied to the entire surface of the substrate, or the resin composition is present only in a range where the master mold or the resin mold is embossed. May be applied to a part of the substrate.
  • the solvent By pre-baking after applying the resin composition to the substrate, when the solvent is contained, the solvent can be distilled off or the surface segregation of the internally added fluorine-containing polymerizable (meth) acrylate can be promoted.
  • the fluorine-containing polymerizable (meth) acrylate By segregating the internally added fluorine-containing polymerizable (meth) acrylate on the surface, when pressing the master mold or resin mold, the fluorine-containing polymerizable (meth) acrylate is efficient inside the microstructure of the master mold or resin mold.
  • Es / Eb obtained by dividing the surface fluorine element concentration (Es) of the resulting resin mold by the bulk fluorine element concentration (Eb) is greatly improved. And release properties can be improved.
  • the temperature is preferably 25 ° C to 120 ° C, more preferably 40 ° C to 105 ° C, further preferably 50 ° C to 105 ° C, and most preferably 60 ° C to 105 ° C.
  • the prebake time is preferably 30 seconds to 30 minutes, more preferably 1 minute to 15 minutes, and even more preferably 3 minutes to 10 minutes.
  • the material of the substrate there are no particular restrictions on the material of the substrate, and it can be used regardless of whether it is an inorganic material such as glass, ceramic or metal, or an organic material such as plastic.
  • an inorganic material such as glass, ceramic or metal
  • an organic material such as plastic.
  • plates, sheets, films, thin films, woven fabrics, non-woven fabrics, and other arbitrary shapes and composites thereof can be used, but they are flexible and have excellent continuous productivity. It is particularly preferable to include a thin film, a woven fabric, a non-woven fabric and the like.
  • Examples of flexible materials include polymethyl methacrylate resin, polycarbonate resin, polystyrene resin, cycloolefin resin (COP), cross-linked polyethylene resin, polyvinyl chloride resin, polyacrylate resin, polyphenylene ether resin, and modified polyphenylene ether resin.
  • COP cycloolefin resin
  • thermoplastic resins such as polyetherimide resin, polyether sulfone resin, polysulfone resin, polyether ketone resin, polyethylene terephthalate (PET) resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin, polybutylene terephthalate Crystalline thermoplastic resins such as resins, aromatic polyester resins, polyacetal resins, polyamide resins, and ultraviolet (UV) hard materials such as acrylic, epoxy, and urethane RESIN or thermosetting resins.
  • the base material can be configured by combining an ultraviolet curable resin or a thermosetting resin with an inorganic substrate such as glass, the above thermoplastic resin, or a triacetate resin, or using them alone.
  • a treatment for improving the adhesion between the substrate and the resin composition For example, on the surface to be bonded, chemical bonding with the resin composition, easy adhesion coating for physical bonding such as penetration, primer treatment, corona treatment, plasma treatment, UV / ozone treatment, high energy ray irradiation treatment It is preferable to perform surface roughening treatment, porosification treatment, and the like.
  • Step of pressing the resin composition against the substrate It is preferable that a highly flexible substrate is gently coated on a mold (a master mold, a resin mold, a resin roll stamper, etc.) from the end so as to prevent bubbles from entering and pressed under a certain pressure.
  • the pressing pressure at the time of pressing is preferably more than 0 MPa to 10 MPa, more preferably 0.01 MPa to 5 MPa, and further preferably 0.01 MPa to 1 MPa.
  • the exposure light source used is preferably a metal halide lamp, a high-pressure mercury lamp, a chemical lamp, or a UV-LED. From the viewpoint of suppressing heat generation during long-time exposure, it is preferable to use a filter (including a band-pass filter) that cuts a wavelength longer than the visible wavelength.
  • a filter including a band-pass filter
  • integrated light quantity is preferably 300 mJ / cm 2 or more at a wavelength of 365 nm, in order to obtain a high cured reactive rate (E), preferably 800 mJ / cm 2 or more, more preferably 800mJ / cm 2 ⁇ 6000mJ / cm 2 In order to prevent resin deterioration due to light, 800 mJ / cm 2 to 3000 mJ / cm 2 is particularly preferable.
  • the total light transmittance at 350 nm to 450 nm is preferably 50% or more, and more preferably 70% or more for efficient photoreaction.
  • the total light transmittance at 350 nm to 450 nm is preferably 50% or more, and more preferably 70% or more.
  • the peeling speed is preferably linear peeling at a constant speed from a specific direction at a speed of more than 0 m / min to 5 m / min from the viewpoint of reducing the risk of breakage of the cured product.
  • the temperature is preferably 50 ° C to 120 ° C, more preferably 50 ° C to 105 ° C, and further preferably 60 ° C to 105 ° C.
  • the heating time is preferably 30 seconds to 30 minutes, more preferably 30 seconds to 15 minutes, and even more preferably 1 minute to 10 minutes.
  • heat treatment may be performed after peeling.
  • the temperature is preferably 50 ° C to 120 ° C, more preferably 50 ° C to 105 ° C, and further preferably 60 ° C to 105 ° C.
  • the heating time is preferably 30 seconds to 30 minutes, more preferably 30 seconds to 15 minutes, and even more preferably 1 minute to 10 minutes.
  • thermoplastic resin having a fine pattern on its surface is a method comprising a step of thermocompression bonding a master mold to a thermoplastic resin to form a fine pattern of the master mold on the thermoplastic resin and a step of releasing the master mold from the thermoplastic resin.
  • Manufactured by In addition to the method of thermocompression bonding, it can also be produced by a method of applying a cast method followed by thermosetting.
  • thermocompression bonding it is preferable that the mold heated to a temperature higher than the softening temperature of the thermoplastic resin is bonded to the transfer layer, or the transfer layer is heated to a temperature higher than the softening temperature of the thermoplastic resin and then pressed to the mold.
  • the temperature in thermocompression bonding is more preferably (softening temperature of thermoplastic resin) to (softening temperature of thermoplastic resin + 60 ° C.), particularly preferably (softening temperature of thermoplastic resin + 5 ° C.) to (thermoplastic resin softening temperature). Softening temperature + 40 ° C.). Within this range, the fine pattern of the mold can be efficiently formed on the transfer layer.
  • the pressure for thermocompression bonding is preferably 0.5 MPa to 200 MPa (absolute pressure), more preferably 0.5 MPa to 10 MPa (absolute pressure), and even more preferably 0.5 MP to 5 MPa.
  • the transfer layer When releasing the mold, it is preferable to cool the transfer layer to a temperature lower than the softening temperature of the thermoplastic resin. More preferably, (softening temperature of thermoplastic resin ⁇ 10 ° C.) to (softening temperature of thermoplastic resin ⁇ 50 ° C.). In this range, the shape of the fine pattern formed on the transfer layer can be further retained.
  • the softening temperature of the thermoplastic resin means a glass transition temperature when the thermoplastic resin is non-crystalline, and means a melting temperature when the thermoplastic resin is crystalline.
  • Thermoplastic resins include polyethylene, polypropylene, polystyrene, acrylonitrile / styrene polymer, acrylonitrile / butadiene / styrene polymer, polyvinyl chloride, polyvinylidene chloride, poly (meth) acrylate, polyarylate, polyethylene terephthalate, polybutylene.
  • the resin mold according to the present invention is used in various applications for nanoimprints.
  • the resin mold is a light such as a microlens array, a wire grid type polarization, a moth-eye type non-reflective film, a diffraction grating, or a photonic crystal element. It is used for manufacturing nanoimprint applications such as devices and patterned media.
  • it can be used for production of biodevices such as cell culture sheets, fat culture chips, and biosensor electrodes.
  • it can be applied to electrodes of various batteries and capacitors, micro / nano channels, heat dissipation surfaces, heat insulation surfaces, and the like.
  • the resin mold according to the present invention makes it possible to obtain as many resin molds (A) as possible from, for example, a master mold having a fine concavo-convex structure on the surface produced by the above-described electron beam drawing or the like. Let me.
  • the resin mold according to the present invention makes it possible to obtain as many resin molds (B) as possible by transferring the fine concavo-convex structure of the resin mold (A) from the resin mold (A) by the nanoimprint method.
  • the resin mold of the present invention it is possible to dramatically improve the production efficiency.
  • the surface fluorine element concentration of the resin mold was measured by X-ray photoelectron spectroscopy (hereinafter referred to as XPS). Since the penetration length of X-rays into the sample surface in XPS is as shallow as several nm, the measured value of XPS was adopted as the fluorine element concentration (Es) on the resin mold surface in the present invention.
  • the resin mold was cut out as a small piece of about 2 mm square and covered with a 1 mm ⁇ 2 mm slot type mask and subjected to XPS measurement under the following conditions.
  • AlK ⁇ 15kV ⁇ 10mA Analysis size approx. 1 mm (shape is oval) Capture area Survey scan; 0 to 1, 100 eV Narrow scan; F 1s, C 1s, O 1s, N 1s Pass energy Survey scan; 100 eV Narrow scan; 20 eV
  • the physically peeled section is decomposed by a flask combustion method and subsequently subjected to ion chromatography analysis.
  • the average fluorine element concentration (Eb) in the resin was measured.
  • the transmittance of the resin mold produced on the PET film was measured using a spectrophotometer (SHIMADZU, UV-2550).
  • the transmittance of the single PET film was measured in advance, and the transmittance of the single resin mold was calculated using the measured value as the background.
  • the resin molds produced in Examples 1 to 3 all had a total light transmittance of 50% or more at wavelengths of 350 nm to 450 nm.
  • Example 1 Method 1 for producing fluorine-containing resin mold
  • a nickel flat plate mold having a fine concavo-convex structure with a fine concavo-convex size of 150 nm and a pitch of 145 nm on the surface was subjected to mold release treatment using Durasurf 2101Z manufactured by Harves.
  • OPTOOL DAC HP manufactured by Daikin Industries
  • trimethylolpropane triacrylate manufactured by Toagosei Co., Ltd., M350
  • Irgacure 184 manufactured by Ciba
  • the mixture was sandwiched between PET films and stretched simultaneously using a hand roller. After UV exposure from the PET film surface side, the mold and the PET film were peeled off to obtain a fluorine-containing resin mold.
  • the ratio Es / Eb between the fluorine element concentration Es on the surface and the average fluorine element concentration Eb in the resin was 69.
  • Example 2 Method 2 for producing fluorine-containing resin mold
  • a nickel cylindrical mold having a fine concavo-convex structure with a fine concavo-convex size of 150 nm and a pitch of 145 nm on the surface was subjected to a release treatment using Durasurf 2101Z made by Harves.
  • Durasurf 2101Z made by Harves.
  • OPTOOL DAC HP manufactured by Daikin Industries
  • trimethylolpropane triacrylate manufactured by Toagosei Co., Ltd., M350
  • Irgacure 184 manufactured by Ciba
  • the mixed solution was applied to a PET film using a micro gravure.
  • the fine concavo-convex structure surface of the nickel mold was bonded to the PET film through a drying process at 60 ° C. After UV exposure, the mold and the PET film were peeled off to obtain a fluorine-containing resin mold.
  • the ratio Es / Eb between the fluorine element concentration Es on the surface and the average fluorine element concentration Eb in the resin was 76.
  • Example 3 Method 3 for producing fluorine-containing resin mold
  • a nickel cylindrical mold having a fine concavo-convex structure with a fine concavo-convex size of 150 nm and a pitch of 145 nm on the surface was subjected to a release treatment using Durasurf 2101Z made by Harves.
  • CHEMINOX FAMAC-6 manufactured by Unimattech
  • trimethylolpropane triacrylate M350, manufactured by Toagosei Co., Ltd.
  • Irgacure 184 manufactured by Ciba
  • the ratio Es / Eb between the fluorine element concentration Es on the surface and the average fluorine element concentration Eb in the resin was 26.
  • Example 4 Production of Wire Grid Polarizing Film Using Fluorine-Containing Resin Mold Using the transfer product B, a wire grid polarizing film was produced according to the following procedure, and optical performance was evaluated.
  • a silicon dioxide film was formed as a dielectric layer on the concavo-convex shape transfer surface by a sputtering method.
  • the sputtering conditions were Ar gas pressure of 0.2 Pa, sputtering power of 770 W / cm 2 , coating speed of 0.1 nm / s, and film formation was performed so that the average dielectric thickness on the transfer film was 3 nm.
  • a glass substrate having a smooth surface was inserted into the apparatus together with the transfer film, and the dielectric thickness on the smooth glass substrate was defined as the dielectric average thickness.
  • Al aluminum
  • the deposition conditions for Al were normal temperature, a vacuum of 2.0 ⁇ 10 ⁇ 3 Pa, and a deposition rate of 40 nm / s.
  • a glass substrate having a smooth surface is inserted into the apparatus together with a transfer film, the Al thickness on the smooth glass substrate is defined as the Al average thickness, and the surface of the substrate surface is within a plane perpendicular to the longitudinal direction of the lattice.
  • the angle between the normal and the vapor deposition source was defined as the vapor deposition angle ⁇ .
  • the deposition angle ⁇ was 20 °
  • the Al average thickness was 133 nm.
  • the polarization degree and the light transmittance were measured using a polarizing film evaluation apparatus (manufactured by JASCO Corporation, V7000) under the conditions of 23 ° C and 65% RH. As a result, the degree of polarization was 99.90% and the light transmittance was 42.5%.
  • a wire grid polarizing film using a transfer product UV-transferred from a master mold was prepared. The production method was produced according to the above procedure. As a result, the degree of polarization was 99.90% and the light transmittance was 42.0%.
  • the degree of polarization and light transmittance were calculated from the following formulas. Imax is parallel Nicol with respect to linearly polarized light, and Imin is transmitted light intensity in a direct Nicol state.
  • the light transmittance T ( ⁇ ) indicates the light transmittance at the incident light angle ⁇ .
  • Polarization degree [(Imax ⁇ Imin) / (Imax + Imin)] ⁇ 100%
  • Nanoimprint using a fluorine-containing resin mold 3-ethyl-3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane and 3,4-epoxycyclohexenylmethyl-3 ′, 4 ′ - a cationically polymerizable resin comprises an epoxy cyclohexene carboxylate, was applied to a PET film with a deposit of SiO 2 using a micro gravure.
  • the PET film was bonded to the fluorine-containing resin molds produced in Example 1, Example 2, and Example 3, and simultaneously, pressure was applied by a rubber nip, and UV exposure was performed from the resin mold side in a state where the nip pressure disappeared. After UV exposure, the mold and the PET film were peeled off. When the transferred fine uneven structure was observed with an SEM, the remaining film thickness was 5 nm or less.
  • Comparative Example 1 As Comparative Example 1, a composition containing no fluororesin composition in the composition in Example 1 was prepared to prepare a resin mold. As a result, interfacial peeling from the cured transfer agent was not possible after UV curing.
  • Cationic polymerizable resin containing 3-ethyl-3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane and 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate It was applied to a PET film which was deposited on SiO 2 using a gravure. Subsequently, the PET film was bonded to the resin mold, and at the same time, pressure was applied by a rubber nip, and UV exposure was performed from the resin mold side in a state where the nip pressure disappeared.
  • Example 6 -Cylindrical mold preparation Quartz glass was used for the base material of the cylindrical mold. A fine concavo-convex structure was formed on the surface of quartz glass by a direct writing lithography method using a semiconductor laser. Durasurf HD-1101Z (manufactured by Daikin Chemical Industry Co., Ltd.) was applied to the surface of the quartz glass roll having the fine concavo-convex structure, heated at 60 ° C. for 1 hour, and then allowed to stand at room temperature for 24 hours to be fixed. Thereafter, it was washed three times with Durasurf HD-ZV (manufactured by Daikin Chemical Industries), and a mold release treatment was performed.
  • Durasurf HD-ZV manufactured by Daikin Chemical Industries
  • a resin mold (A) was obtained by the following operation.
  • a PET film: A4100 manufactured by Toyobo Co., Ltd .: width 300 mm, thickness 100 ⁇ m
  • microgravure coating manufactured by Yurai Seiki Co., Ltd.
  • a PET film coated with a photocurable resin is pressed against the cylindrical mold with a nip roll (0.1 MPa), and the integrated exposure amount under the center of the lamp at 25 ° C. and 60% humidity in the atmosphere.
  • a reel-shaped resin mold (A) (length 200 m, width 300 mm) was obtained.
  • the shape of the surface unevenness of the reel-shaped resin mold (A) was confirmed by observation with a scanning electron microscope.
  • the adjacent distance between the protrusions was 250 nm, and the height of the protrusions was 250 nm.
  • Sample No. D5 ′ and D4 ′ were transferred in the same manner as in the above method except that a cylindrical mold not subjected to mold release treatment was used.
  • the reel-shaped resin mold (A) is used as a mold, the resin used for the production of the reel-shaped resin mold (A) is used as a transfer material, and transfer is performed as follows to obtain the reel-shaped resin mold (B). It was.
  • a PET film coated with a photocurable resin is pressed against the fine concavo-convex structure surface of the resin mold (A) with a nip roll (0.1 MPa), at 25 ° C. in the air, 60% humidity, and at the center of the lamp.
  • the UV exposure device (Fusion UV Systems Japan Co., Ltd., H-bulb) is used to irradiate UV light continuously so that the integrated exposure amount below becomes 600 mJ / cm 2.
  • a reel-shaped resin mold (B) (length 200 m, width 300 mm) to which the fine concavo-convex structure was transferred was obtained.
  • the production of the resin mold (A) from the resin mold (A) was also performed in a batch manner as follows.
  • the reel-shaped resin mold (A) is cut into a 15 cm square, and a photo-curable resin is dropped on the resin mold (A), and the PET film: A4100 is bonded to the easy-adhesion surface and stretched with a hand roller. And irradiated with UV light. Then, it heated for 3 minutes in 105 degreeC oven, and the resin mold (A) was peeled after that and the resin mold (B) was obtained. This operation was repeated 20 times, and an attempt was made to obtain 20 resin molds (B) using the same resin mold (A).
  • the resin mold (C) is cut into a 12 cm square, a photocurable resin is dropped on the resin mold (C), and the PET film: A4100 is bonded to the easy-adhesion surface and simultaneously stretched with a hand roller. Subsequently, UV light was irradiated. Then, it heated for 3 minutes in 105 degreeC oven, and the resin mold (C) was peeled after that and the resin mold (D) was obtained. All of these operations were performed using the same resin as that constituting the resin mold.
  • Resin SH710 (manufactured by Dow Corning Toray), KBM5103 (manufactured by Shin-Etsu Chemical Co., Ltd.), titanium tetrabutoxide (manufactured by Wako Pure Chemical Industries, Ltd.), Irgacure 184 (manufactured by Ciba) and Irgacure 369 (manufactured by Ciba) in parts by weight , 1: 2: 2: 0.068: 0.032
  • a PET film: A4100 manufactured by Toyobo Co., Ltd .: width 300 mm, thickness 100 ⁇ m
  • microgravure coating manufactured by Rensui Seiki Co., Ltd.
  • a PET film coated with a photocurable inorganic resist is pressed against the cylindrical mold with a nip roll (0.1 MPa), and integrated exposure under the center of the lamp at 25 ° C. and 60% humidity in the air.
  • the resin mold (B) was peeled off to obtain a reel (length: 200 m, width: 300 mm) onto which a fine concavo-convex structure composed of an inorganic material was transferred.
  • the shape of the surface irregularities on the surface of the reel was confirmed by observation with a scanning electron microscope. As a result, the adjacent distance between the protrusions was 250 nm, and the height of the protrusions was 250 nm.
  • Es is the XPS described above The measured value by the method was used. Eb was calculated from the charged amount.
  • -Releasability evaluation 1 ... Transfer result when the mold release treatment was not performed on the cylindrical mold (mold) in the production of the resin mold (A).
  • X When pattern formation was not able to be performed. ⁇ indicates that transfer is possible but the pattern is partially destroyed. ⁇ indicates a good transfer result.
  • -Releasability evaluation 2 Transfer results when the resin mold (B) is produced in a batch mode from the resin mold (A). n is 20 sheets. X is when the resin mold (A) and the resin mold (B) are in close contact and cannot be peeled off. [Delta] indicates a case where partial peeling was not possible.
  • indicates that peeling is possible, but the pattern is partially destroyed.
  • -Releasability evaluation 3 ... Transfer results when resin molds (C) and (D) were produced from resin mold (A). X is when peeling was not able to be performed at all in the production process of the resin mold (C) or the resin mold (D). ⁇ indicates that the resin mold (D) can be produced but cannot be partially peeled off. ⁇ indicates that the resin mold (D) can be manufactured, but the pattern has been partially destroyed.
  • -Releasability evaluation 4 Transfer result when transferred to another resin by the resin mold (B) produced from the resin mold (A). X is when it adhered and it was not able to peel. [Delta] indicates a case where partial peeling was not possible. ⁇ is when the pattern is partially destroyed. A: When transfer is good.
  • the resin mold of the present invention can be suitably used in the field of nanoimprint.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 基材との密着性に優れ、転写材樹脂との離型性に優れ、且つ樹脂モールド自体の耐久性に優れた、転写材樹脂への繰り返し転写に耐えうる樹脂モールドを提供すること。本発明の樹脂モールドは、表面に微細凹凸構造を有する樹脂モールドであって、樹脂モールド表面部のフッ素元素濃度(Es)が、樹脂モールドを構成する樹脂中の平均フッ素元素濃度(Eb)以上であることを特徴とする。

Description

樹脂モールド
 本発明は、転写用の樹脂モールドに関し、特にフッ素を含有する樹脂モールドに関する。
 ナノ・マイクロメートルサイズ領域に制御対象を有する光学素子やバイオ材料を開発する上で、そのナノ・マイクロメートルサイズ領域において精密に加工制御された部材を用いることは、制御機能に大きく影響を与える。とりわけ民生用の光学素子の場合、主に数百nm域での波長制御が求められるため、数nm~数十nmの加工精度が重要である。さらに、量産性の観点から、加工精度の再現性、均一性、スループット性も兼ね備えた精密加工技術であることが望まれる。
 公知の微細加工技術としては、例えば、電子線を使って直接微細加工する方法や、干渉露光で大面積に一括描画する方法などがある。最近では、半導体技術でのステッパー装置を応用したステップ&リピート法での微細パタン加工も知られている。しかしながら、いずれも複数の加工工程を必要とし、且つ高額な設備投資が必要であり、製作時間やコスト面で生産性の良い技術とは言い難い。
 これらの課題を解決する上で提案されている加工方法の一つとして、ナノインプリント法がある。微細パタン加工された部材を鋳型として用いて、樹脂(転写材)に数nm~数十nmの加工精度で簡単に転写し複製できる技術である。簡易な工程で安価に実施できるため、産業上欠かせない精密複製加工技術として注目されている。転写材の物性や加工プロセスの違いから、熱ナノインプリント、光ナノインプリント、室温ナノインプリントやソフトリソグラフィー法等に区分されている。中でも、光硬化性樹脂を使った光ナノインプリント法は、迅速に繰り返し転写できるロールツーロール法プロセスに応用し易く、スループット性の点で魅力的とされる。プロセス上、転写材側からまたはモールド側からの露光を必須とするため、紫外・可視波長領域において高い光線透過率を有する材質を選択する必要がある。特に、モールド側の材質に関しては、主に石英やサファイア、ガラス製モールドに制限され、その剛性材質ゆえに連続製造技術や加工プロセスにおいて汎用性に欠ける課題がある。これらの剛性モールドが有する課題を解決するためには、剛性モールドの代替として透過性及びフレキシブル性を有す樹脂モールドが必要となる。近年、透過性とフレキシブル性を具備した樹脂モールドが報告されている(特許文献1)が、特許文献1に開示の熱可塑性の樹脂モールドには、基材との密着性については開示がない。
特開2006-198883号公報
 さらに、その後の本発明者等の検討によって、基材との密着性に加えて樹脂モールドを用いた繰り返し転写性に優れた樹脂モールドにおいては、樹脂モールドとそのモールドを用いて転写する転写材樹脂との間の離型性に優れ、且つ、樹脂モールド自体の耐久性に優れた樹脂モールドの提供があらたな課題であることが明確になった。
 本発明は、かかる点に鑑みて為されたものであり、基材との密着性に優れ、転写材樹脂との離型性に優れ、且つ樹脂モールド自体の耐久性に優れた、転写材樹脂への繰り返し転写に耐えうる樹脂モールドを提供することを目的とする。
 本発明者らは、上記課題を解決するため、樹脂モールド中の樹脂表面部(微細凹凸構造付近)のフッ素元素濃度(Es)を、樹脂モールドを構成する樹脂中の平均フッ素元素濃度(Eb)以上、より好適には樹脂表面部の平均フッ素元素濃度(Es)より大きく、且つ、樹脂中の平均フッ素元素濃度(Eb)を小さくすることで、ナノメートルサイズの凹凸形状を樹脂から樹脂へ繰り返し転写できる樹脂モールドが得られることを見出した。
 樹脂表面部のフッ素元素濃度(Es)を樹脂中の平均フッ素元素濃度(Eb)よりも大きくすることで、樹脂表面部は自由エネルギーの低さゆえ転写材樹脂との離型性が向上し、樹脂中における基材付近では自由エネルギーを高く保つことで基材との密着性が向上する。さらに、且つ樹脂中の平均フッ素元素濃度(Eb)を樹脂表面部に対して相対的に低くすることで樹脂自体の強度が向上するので、ナノメートルサイズの凹凸形状を有する樹脂モールドから樹脂へ繰り返し転写できる樹脂モールドを作製できる。また、樹脂モールド(A)から、樹脂へ転写することにより作製された樹脂モールド(B)からも、樹脂へ繰り返し転写できることから、生産効率が飛躍的に向上すると共に、一般的に高価なマスタースタンパーのコストを吸収することができる。このため、本発明に係る樹脂モールドは、環境面からも産業上有用である。
 すなわち、本発明は、以下のとおりである。
 本発明の樹脂モールドは、表面に微細凹凸構造を有する樹脂モールドであって、樹脂モールド表面部のフッ素元素濃度(Es)が、樹脂モールドを構成する樹脂中の平均フッ素元素濃度(Eb)以上であることを特徴とする。
 本発明の樹脂モールドにおいては、前記樹脂モールドを構成する樹脂中の平均フッ素元素濃度(Eb)と前記樹脂モールド表面部のフッ素元素濃度(Es)との比が下記式(1)を満たすことが好ましい。
式(1)
  1≦Es/Eb≦1500
 本発明の樹脂モールドにおいては、350nm~450nmにおける全光線透過率が50%以上であることが好ましい。
 本発明の樹脂モールドにおいては、光ナノインプリントにより形成された光重合性混合物の硬化物から成ることが好ましい。
 本発明の樹脂モールドにおいては、前記光重合性混合物が、(メタ)アクリレート、フッ素含有(メタ)アクリレート、及び光重合開始剤を含むことが好ましい。
 本発明の樹脂モールドにおいては、前記(メタ)アクリレート100重量部に対して、前記フッ素含有(メタ)アクリレートを0.1重量部~50重量部、前記光重合開始剤を0.01重量部~10重量部含有することが好ましい。
 本発明の樹脂モールドにおいては、前記微細凹凸構造の形状が、ピッチ50nm~1000nmであり、高さが50nm~500nmであることが好ましい。
 本発明の樹脂モールドにおいては、ナノインプリント用であることが好ましい。
 本発明の樹脂モールドにおいては、樹脂モールドを構成する樹脂中の平均フッ素元素濃度(Eb)と樹脂モールド表面部のフッ素元素濃度(Es)との比が下記式(2)を満たすことが好ましい。
式(2)
  20≦Es/Eb≦200
 本発明の樹脂モールドにおいては、フッ素含有(メタ)アクリレートと、非フッ素含有の(メタ)アクリレートと、からなる共重合体を含み、前記フッ素含有(メタ)アクリレートが、下記化学式(1)及び/又は下記化学式(2)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000004
(化学式(1)中、R1は、下記化学式(3)を表し、R2は、下記化学式(4)を表す。)
Figure JPOXMLDOC01-appb-C000005
(化学式(3)中、nは、1以上6以下の整数である。)
Figure JPOXMLDOC01-appb-C000006
(化学式(4)中、Rは、H又はCHである。)
 本発明の樹脂モールドにおいては、前記非フッ素含有の(メタ)アクリレート100重量部に対して、フッ素含有(メタ)アクリレートを0.8重量部~6重量部含有することが好ましい。
 本発明の樹脂モールドの製造方法は、上記樹脂モールドの製造方法であって、非フッ素含有(メタ)アクリレート100重量部、フッ素含有(メタ)アクリレートを0.8重量部~6重量部、及び光重合開始剤を含む光重合性混合物を基板又はマスターモールド上に塗布する工程と、前記光重合性混合物を前記基板と前記マスターモールドとの間で押圧する工程と、前記光重合性混合物を露光により硬化させて硬化物を得る工程と、前記マスターモールドから前記硬化物を剥離する工程とを有することを特徴とする。
 本発明によれば、基材との密着性に優れ、転写材樹脂との離型性に優れ、且つ樹脂モールド自体の耐久性に優れた、転写材樹脂への繰り返し転写に耐えうる樹脂モールドを提供することができる。
本実施の形態に係る樹脂モールドの微細凹凸構造の配列の一例を示す図である。
 本発明の実施の形態について、以下具体的に説明する。尚、(メタ)アクリレートはアクリレート又はメタアクリレートを意味する。
 本発明に係る樹脂モールドは、表面に微細凹凸構造を有する樹脂モールドであって、樹脂モールド表面部のフッ素元素濃度(Es)が、樹脂モールドを構成する樹脂中の平均フッ素元素濃度(Eb)以上であることを特徴とする。
 樹脂モールド中の樹脂表面(微細凹凸構造付近)のフッ素濃度を、樹脂モールドの平均フッ素濃度以上にすることで、樹脂表面は自由エネルギーの低さゆえに転写材樹脂との離型性に優れ、かつ、ナノメートルサイズの凹凸形状を繰り返し樹脂/樹脂転写できる離型性に優れる樹脂製モールドが得られると共に、基材付近では自由エネルギーを高く保つことで、接着性を向上することができる。
 さらに、樹脂モールド表面部のフッ素元素濃度(Es)が、樹脂モールドを構成する樹脂中の平均フッ素元素濃度(Eb)よりも大きければ、樹脂表面は自由エネルギーの低さゆえに転写材樹脂との離型性により優れ、かつ、ナノメートルサイズの凹凸形状を繰り返し樹脂/樹脂転写できる離型性により優れる樹脂製モールドが得られると共に、一方で基材付近では自由エネルギーを高く保つことで、より接着性を向上することができるため、好ましい。
 さらに、表面に微細凹凸構造を有する樹脂モールドであって、樹脂モールドを構成する樹脂中の平均フッ素元素濃度(Eb)とモールド表面部のフッ素元素濃度(Es)との比が下記式(1)を満たすことで、上記効果をより発揮するためより好ましい。
式(1)
 1≦Es/Eb≦1500 
 さらに、1<Es/Eb≦1500の範囲であればフッ素含有率の高い表面層を形成することができるため、離型が向上し好ましく、3≦Es/Eb≦1500、10≦Es/Eb≦100の範囲となるにしたがってより離型性が向上するため好ましい。
 尚、上記する最も広い範囲(1<Es/Eb≦1500)の中にあって、20≦Es/Eb≦200の範囲であれば、樹脂モールド表面部のフッ素元素濃度(Es)が、樹脂モールドの平均フッ素濃度(Eb)より十分高くなり、樹脂表面の自由エネルギーが効果的に減少するので、転写材樹脂との離型性が向上する。また、樹脂中の平均フッ素元素濃度(Eb)を樹脂モールド表面部のフッ素元素濃度(Es)に対して相対的に低くすることにより、樹脂自体の強度が向上すると共に、樹脂中における基材付近では、自由エネルギーを高く保つことができるので、基材との密着性が向上する。これにより、基材との密着性に優れ、転写材樹脂との離型性に優れ、しかも、ナノメートルサイズの凹凸形状を樹脂から樹脂へ繰り返し転写できる樹脂モールドを得ることができるので特に好ましい。また、26≦Es/Eb≦189の範囲であれば、樹脂表面の自由エネルギーをより低くすることができ、繰り返し転写性が良好になるため好ましい。さらに、30≦Es/Eb≦160の範囲であれば、樹脂表面の自由エネルギーを減少させると共に、樹脂の強度を維持することができ、より繰り返し転写性が向上するため好ましく、31≦Es/Eb≦155であればより好ましい。46≦Es/Eb≦155であれば、上記効果をより一層発現できるため好ましい。
 さらに、本発明に係る樹脂モールドは下記のごとく、光重合、熱重合により得ることができるが、樹脂モールドが、光ナノインプリントによって光重合性混合物より形成された硬化物から成ることが好ましい。また、上記光重合性混合物が、非フッ素含有の(メタ)アクリレート、フッ素含有(メタ)アクリレート、及び光重合開始剤を含むことが好ましく、非フッ素含有の(メタ)アクリレート100重量部に対して、フッ素含有(メタ)アクリレートを0.1重量部~50重量部、光重合開始剤を0.01重量部~10重量部含有することが好ましい。
 フッ素含有(メタ)アクリレートが、0.1重量部以上であれば離型性に優れ、50重量部以下であれば基材への密着性に優れるため好ましい。特に5重量部~10重量部であればフッ素含有(メタ)アクリレートの表面偏析に優れる。
 尚、上記範囲の中でもフッ素含有(メタ)アクリレートが、0.8重量部以上であることで、樹脂モールド表面部(微細凹凸構造表面)のフッ素元素濃度(Es)を高くすることができるためより好ましく、6重量部以下であることで、樹脂中における平均フッ素元素濃度(Eb)を低くし、バルク強度と基材界面の密着力を高くできるためより好ましい。さらに、1重量部~6重量部の範囲であれば、樹脂表面の自由エネルギーをより低くすることができ、繰り返し転写性が良好になるため好ましい。
 さらに、上記フッ素含有(メタ)アクリレートとしては、下記化学式(1)で示されるフッ素含有ウレタン(メタ)アクリレート、及び/又は下記化学式(2)で示されるフッ素含有(メタ)アクリレートであることで、表面自由エネルギーをより効果的に低くでき、基材との密着性をより向上させ、且つ樹脂中の平均フッ素元素濃度(Eb)を減少させ樹脂の強度を保つことができるため、繰り返し転写性がより向上するために、好ましい。
Figure JPOXMLDOC01-appb-C000007
(化学式(1)中、R1は、下記化学式(3)を表し、R2は、下記化学式(4)を表す。)
Figure JPOXMLDOC01-appb-C000008
(化学式(3)中、nは、1以上6以下の整数である。)
Figure JPOXMLDOC01-appb-C000009
(化学式(4)中、Rは、H又はCHである。)
 本明細書中、「樹脂モールドの表面部」とは、樹脂モールドの微細凹凸構造の表面部のことを示し、樹脂モールドの表面に直交する厚み方向において、樹脂モールドの表面側から略1%~10%の範囲の部分又は2nm~20nmの範囲の部分を意味する。また、本発明では、樹脂モールドの表面部のフッ素元素濃度(Es)は、後述するXPS法により求めた値を採用する。本発明では、XPS法におけるX線の侵入長である数nmの深さにおける測定値をもってフッ素元素濃度(Es)としている。
 一方、本明細書中、「樹脂モールドを構成する樹脂中の平均フッ素元素濃度(Eb)」とは、仕込み量から計算する値、あるいは、ガスクロマトグラフ質量分析計(GC/MS)から解析できる値を採用する。すなわち、樹脂モールドを構成する樹脂に含まれるフッ素元素濃度を意味する。例えば、フィルム状に形成された光重合性混合物の硬化物から構成される樹脂モールドの、樹脂部分を物理的に剥離した切片を、フラスコ燃焼法にて分解し、続いてイオンクロマトグラフ分析にかけることで樹脂中の平均フッ素元素濃度(Eb)を同定することができる。
 樹脂モールドの製造方法は特に限定されないが、樹脂を光重合または熱重合により製造する方法が一般的である。また、樹脂モールドから光ナノインプリントによる転写による樹脂成型体を得、この樹脂成型体を樹脂モールドと見立てて光ナノインプリントにより新たな樹脂成型体を得、得られた樹脂成型体を樹脂モールドとして使用することも可能である。以下、光重合により合成する場合と、熱重合により合成する場合にわけて記載する。
(光重合による合成)
 光重合性混合物としては、非フッ素含有の(メタ)アクリレート、フッ素含有(メタ)アクリレート、及び光重合開始剤を用いることが好ましい。(メタ)アクリレート、及びフッ素含有(メタ)アクリレートを光重合開始剤と共に混合した混合物を用いることで、表面自由エネルギーの低い疎水性界面などに該混合物を接触させた状態で上記混合物を硬化させると、樹脂モールド表面部のフッ素元素濃度(Es)を、樹脂モールドを構成する樹脂中の平均フッ素元素濃度(Eb)以上に、さらには樹脂中の平均フッ素元素濃度(Eb)をより小さくするように調整することができる。
 ナノパタン転写時の離型性、特に繰り返し転写性良好な樹脂モールドを作製するため、本発明においては、樹脂中の平均フッ素元素濃度(Eb)を低く保った状態で、光重合性混合物を表面自由エネルギーの低い界面などに接触させた状態で硬化させることが望ましい。これにより、系全体のエネルギーを低くするように、フッ素含有(メタ)アクリレートが表面自由エネルギーの低い界面へと効果的に偏析するため、Es/Ebがより大きくなり、繰り返し転写性の良好な樹脂モールドを作製することができる。以下に本発明に係る樹脂モールドの製造に用いるそれぞれの成分について、次に説明する。
(A)(メタ)アクリレート
 (メタ)アクリレートとしては、後述する(B)フッ素含有(メタ)アクリレート以外の重合性モノマーであれば制限はないが、アクリロイル基またはメタクリロイル基を有するモノマー、ビニル基を有するモノマー、アリル基を有するモノマーが好ましく、アクリロイル基またはメタクリロイル基を有するモノマーがより好ましい。そして、それらは非フッ素含有のモノマーであることが好ましい。
 また、重合性モノマーとしては、重合性基を複数具備した多官能性モノマーであることが好ましく、重合性基の数は、重合性に優れることから1~4の整数が好ましい。また、2種類以上の重合性モノマーを混合して用いる場合、重合性基の平均数は1~3が好ましい。単一モノマーを使用する場合は、重合反応後の架橋点を増やし、硬化物の物理的安定性(強度、耐熱性等)を得るため、重合性基の数が3以上のモノマーであることが好ましい。また、重合性基の数が1または2であるモノマーの場合、重合性数の異なるモノマーと併用して使用することが好ましい。
 (メタ)アクリレートモノマーの具体例としては、下記の化合物が挙げられる。アクリロイル基またはメタクリロイル基を有するモノマーとしては、(メタ)アクリル酸、芳香族系の(メタ)アクリレート[フェノキシエチルアクリレート、ベンジルアクリレート等。]、炭化水素系の(メタ)アクリレート[ステアリルアクリレート、ラウリルアクリレート、2-エチルヘキシルアクリレート、アリルアクリレート、1,3-ブタンジオールジアクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、トリメチロールプロパントリアクリレート、ペンタアエリスリトールトリアクリレート、ジペンタエリスリトールヘキサアクリレート等。]、エーテル性酸素原子を含む炭化水素系の(メタ)アクリレート[エトキシエチルアクリレート、メトキシエチルアクリレート、グリシジルアクリレート、テトラヒドロフルフリールアクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ポリオキシエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート等。]、官能基を含む炭化水素系の(メタ)アクリレート[2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルビニルエーテル、N,N-ジエチルアミノエチルアクリレート、N,N-ジメチルアミノエチルアクリレート、N-ビニルピロリドン、ジメチルアミノエチルメタクリレート等。]、シリコーン系のアクリレート等。他には、EO変性グリセロールトリ(メタ)アクリレート、ECH変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、EO変性リン酸トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、ジ(メタ)アクリル化イソシアヌレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、EO変性1,6-ヘキサンジオールジ(メタ)アクリレート、ECH変性1,6-ヘキサンジオールジ(メタ)アクリレート、アリロキシポリエチレングリコールアクリレート、1,9-ノナンジオールジ(メタ)アクリレート、EO変性ビスフェノールAジ(メタ)アクリレート、PO変性ビスフェノールAジ(メタ)アクリレート、変性ビスフェノールAジ(メタ)アクリレート、EO変性ビスフェノールFジ(メタ)アクリレート、ECH変性ヘキサヒドロフタル酸ジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、EO変性ネオペンチルグリコールジアクリレート、PO変性ネオペンチルグリコールジアクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコール、ステアリン酸変性ペンタエリスリトールジ(メタ)アクリレート、ECH変性プロピレングリコールジ(メタ)アクリレート、ECH変性フタル酸ジ(メタ)アクリレート、ポリ(エチレングリコール-テトラメチレングリコール)ジ(メタ)アクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)ジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、シリコーンジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエステル(ジ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリグリセロールジ(メタ)アクリレート、EO変性トリプロピレングリコールジ(メタ)アクリレート、ジビニルエチレン尿素、ジビニルプロピレン尿素、2-エチル-2-ブチルプロパンジオールアクリレート、2-エチルヘキシル(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、アクリル酸ダイマー、ベンジル(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート、EO変性クレゾール(メタ)アクリレート、エトキシ化フェニル(メタ)アクリレート、エチル(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、イソアミル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ラウリル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メチル(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、オクチル(メタ)アクリレート、パラクミルフェノキシエチレングリコール(メタ)アクリレート、ECH変性フェノキシアクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール-ポリプロピレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ステアリル(メタ)アクリレート、EO変性コハク酸(メタ)アクリレート、tert-ブチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、EO変性トリブロモフェニル(メタ)アクリレート、トリドデシル(メタ)アクリレート、等が挙げられる。アリル基を有するモノマーとしては、p-イソプロペニルフェノール、ビニル基を有するモノマーとしては、スチレン、α-メチルスチレン、アクリロニトリル、ビニルカルバゾール等が挙げられる。なお、EO変性とはエチレンオキシド変性をECH変性とはエピクロロヒドリン変性を、PO変性とはプロピレンオキシド変性を意味する。
(B)フッ素含有(メタ)アクリレート
 フッ素含有(メタ)アクリレートとしては、ポリフルオロアルキレン鎖及び/又はペルフルオロ(ポリオキシアルキレン)鎖と、重合性基とを有することが好ましく、直鎖状ペルフルオロアルキレン基、または炭素原子-炭素原子間にエーテル性酸素原子が挿入されかつトリフルオロメチル基を側鎖に有するペルフルオロオキシアルキレン基がさらに好ましい。また、トリフルオロメチル基を分子側鎖または分子構造末端に有する直鎖状のポリフルオロアルキレン鎖及び/又は直鎖状のペルフルオロ(ポリオキシアルキレン)鎖が特に好ましい。
 ポリフルオロアルキレン鎖は、炭素数2~炭素数24のポリフルオロアルキレン基が好ましい。また、ポリフルオロアルキレン基は、官能基を有していてもよい。
 ペルフルオロ(ポリオキシアルキレン)鎖は、(CFCFO)単位、(CFCF(CF)O)単位、(CFCFCFO)単位および(CFO)単位からなる群から選ばれた1種以上のペルフルオロ(オキシアルキレン)単位からなることが好ましく、(CFCFO)単位、(CFCF(CF)O)単位、又は(CFCFCFO)単位からなることがより好ましい。ペルフルオロ(ポリオキシアルキレン)鎖は、含フッ素重合体の物性(耐熱性、耐酸性等)が優れることから、(CFCFO)単位からなることが特に好ましい。ペルフルオロ(オキシアルキレン)単位の数は、含フッ素重合体の離型性と硬度が高いことから、2~200の整数が好ましく、2~50の整数がより好ましい。
 重合性基としては、ビニル基、アリル基、アクリロイル基、メタクリロイル基、エポキシ基、ジオキタセン基、シアノ基、イソシアネート基または式-(CH)aSi(M1)3-b(M2)で表される加水分解性シリル基が好ましく、アクリロイル基またはメタクリロイル基がより好ましい。ここで、M1は加水分解反応により水酸基に変換される置換基である。このような置換基としては、ハロゲン原子、アルコキシ基、アシロキシ基等が挙げられる。ハロゲン原子としては、塩素原子が好ましい。アルコキシ基としては、メトキシ基またはエトキシ基が好ましく、メトキシ基がより好ましい。M1としては、アルコキシ基が好ましく、メトキシ基がより好ましい。M2は、1価の炭化水素基である。M2としては、アルキル基、1以上のアリール基で置換されたアルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基等が挙げられ、アルキル基またはアルケニル基が好ましい。M2がアルキル基である場合、炭素数1~炭素数4のアルキル基が好ましく、メチル基またはエチル基がより好ましい。M2がアルケニル基である場合、炭素数2~炭素数4のアルケニル基が好ましく、ビニル基またはアリル基がより好ましい。aは1~3の整数であり、3が好ましい。bは0または1~3の整数であり、0が好ましい。加水分解性シリル基としては、(CHO)SiCH-、(CHCHO)SiCH-、(CHO)Si(CH-または(CHCHO)Si(CH-が好ましい。
 重合性基の数は、重合性に優れることから1~4の整数が好ましく、1~3の整数がより好ましい。2種以上の化合物を用いる場合、重合性基の平均数は1~3が好ましい。
 フッ素含有(メタ)アクリレートは、官能基を有すると透明基板との密着性に優れる。官能基としては、カルボキシル基、スルホン酸基、エステル結合を有する官能基、アミド結合を有する官能基、水酸基、アミノ基、シアノ基、ウレタン基、イソシアネート基、イソシアヌル酸誘導体を有する官能基等が挙げられる。特に、カルボキシル基、ウレタン基、イソシアヌル酸誘導体を有する官能基の少なくとも一つの官能基を含むことが好ましい。尚、イソシアヌル酸誘導体には、イソシアヌル酸骨格を有するもので、窒素原子に結合する少なくとも一つの水素原子が他の基で置換されている構造のものが包含される。フッ素含有(メタ)アクリレートとしては、フルオロ(メタ)アクリレート、フルオロジエン等を用いることができる。フッ素含有(メタ)アクリレートの具体例としては、下記の化合物が挙げられる。
 フルオロ(メタ)アクリレートとしては、CH=CHCOO(CH(CF10F、CH=CHCOO(CH(CFF、CH=CHCOO(CH(CFF、CH=C(CH)COO(CH(CF10F、CH=C(CH)COO(CH(CFF、CH=C(CH)COO(CH(CFF、CH=CHCOOCH(CFF、CH=C(CH)COOCH(CFF、CH=CHCOOCH(CFF、CH=C(CH)COOCH(CFF、CH=CHCOOCHCFCFH、CH=CHCOOCH(CFCFH、CH=CHCOOCH(CFCFH、CH=C(CH)COOCH(CFCF)H、CH=C(CH)COOCH(CFCFH、CH=C(CH)COOCH(CFCFH、CH=CHCOOCHCFOCFCFOCF、CH=CHCOOCHCFO(CFCFO)CF、CH=C(CH)COOCHCFOCFCFOCF、CH=C(CH)COOCHCFO(CFCFO)CF、CH=CHCOOCHCF(CF)OCFCF(CF)O(CFF、CH=CHCOOCHCF(CF)O(CFCF(CF)O)(CFF、CH=C(CH)COOCHCF(CF)OCFCF(CF)O(CFF、CH=C(CH)COOCHCF(CF)O(CFCF(CF)O)(CFF、CH=CFCOOCHCH(OH)CH(CFCF(CF、CH=CFCOOCHCH(CHOH)CH(CFCF(CF、CH=CFCOOCHCH(OH)CH(CF10F、CH=CFCOOCHCH(OH)CH(CF10F、CH=CHCOOCHCH(CFCFCHCHOCOCH=CH、CH=C(CH)COOCHCH(CFCFCHCHOCOC(CH)=CH、CH=CHCOOCHCyFCHOCOCH=CH、CH=C(CH)COOCHCyFCHOCOC(CH)=CH等のフルオロ(メタ)アクリレートが挙げられる(但し、CyFはペルフルオロ(1,4-シクロへキシレン基)を示す。)。
 フルオロジエンとしては、CF=CFCFCF=CF、CF=CFOCFCF=CF、CF=CFOCFCFCF=CF、CF=CFOCF(CF)CFCF=CF、CF=CFOCFCF(CF)CF=CF、CF=CFOCFOCF=CF、CF=CFOCFCF(CF)OCFCF=CF、CF=CFCFC(OH)(CF)CHCH=CH、CF=CFCFC(OH)(CF)CH=CH、CF=CFCFC(CF)(OCHOCH)CHCH=CH、CF=CFCHC(C(CFOH)(CF)CHCH=CH等のフルオロジエンが挙げられる。
 尚、本発明で用いるフッ素含有(メタ)アクリレートは、下記化学式(1)で示されるフッ素含有ウレタン(メタ)アクリレートであると、樹脂中の平均フッ素元素濃度(Eb)を低くした状態で、効果的に樹脂モールド表面部のフッ素元素濃度(Es)を高くでき、基材への接着性と離型性を一層効果的に発現できるため、より好ましい。このようなウレタン(メタ)アクリレートとしては、例えば、ダイキン工業社製の「オプツールDAC」を用いることができる。
Figure JPOXMLDOC01-appb-C000010
(化学式(1)中、R1は、下記化学式(3)を表し、R2は、下記化学式(4)を表す。)
Figure JPOXMLDOC01-appb-C000011
(化学式(3)中、nは、1以上6以下の整数である。)
Figure JPOXMLDOC01-appb-C000012
(化学式(4)中、Rは、H又はCHである。)
 フッ素含有(メタ)アクリレートは、1種を単独で用いてもよく、2種以上を併用してもよい。また、耐摩耗性、耐傷付き、指紋付着防止、防汚性、レベリング性や撥水撥油性等の表面改質剤との併用もできる。例えば、ネオス社製「フタージェント」(例えば、Mシリーズ:フタージェント251、フタージェント215M、フタージェント250、FTX-245M、FTX-290M;Sシリーズ:FTX-207S、FTX-211S、FTX-220S、FTX-230S;Fシリーズ:FTX-209F、FTX-213F、フタージェント222F、FTX-233F、フタージェント245F;Gシリーズ:フタージェント208G、FTX-218G、FTX-230G、FTS-240G;オリゴマーシリーズ:フタージェント730FM、フタージェント730LM;フタージェントPシリーズ:フタージェント710FL、FTX-710HL、等)、DIC社製「メガファック」(例えば、F-114、F-410、F-493、F-494、F-443、F-444、F-445、F-470、F-471、F-474、F-475、F-477、F-479、F-480SF、F-482、F-483、F-489、F-172D、F-178K、F-178RM、MCF-350SF、等)、ダイキン社製「オプツールTM」(例えば、DSX、DAC、AES)、「エフトーンTM」(例えば、AT-100)、「ゼッフルTM」(例えば、GH-701)、「ユニダインTM」、「ダイフリーTM」、「オプトエースTM」、住友スリーエム社製「ノベックEGC-1720」、フロロテクノロジー社製「フロロサーフ」、等が挙げられる。
 フッ素含有(メタ)アクリレートは、分子量Mwが50~50000であることが好ましく、相溶性の観点から分子量Mwが50~5000であることが好ましく、分子量Mwが100~5000であることがより好ましい。相溶性の低い高分子量を使用する際は希釈溶剤を使用しても良い。希釈溶剤としては、単一溶剤の沸点が40℃~180℃の溶剤が好ましく、60℃~180℃がより好ましく、60℃~140℃がさらに好ましい。希釈剤は2種類以上使用もよい。
 溶剤含量は、少なくとも硬化性樹脂組成物中で分散する量であればよく、硬化性組成物100重量部に対して0重量部超~50重量部が好ましい。乾燥後の残存溶剤量を限りなく除去することを配慮すると、0重量部超~10重量部がより好ましい。
 特に、レべリング性を向上させる為に溶剤を含有する場合は、(メタ)アクリレート100重量部に対して、溶剤含量が0.1重量部以上40重量部以下であれば好ましい。溶剤含量が0.5重量部以上20重量部以下であれば、光重合性混合物の硬化性を維持できるためより好ましく、1重量部以上15重量部以下であれば、さらに好ましい。光重合性混合物の膜厚を薄くする為に溶剤を含有する場合は、(メタ)アクリレート100重量部に対して、溶剤含量が300重量部以上10000重量部以下であれば、塗工後の乾燥工程での溶液安定性を維持できるため好ましく、300重量部以上1000重量部以下であればより好ましい。
(C)光重合開始剤
 光重合開始剤は、光によりラジカル反応またはイオン反応を引き起こすものであり、ラジカル反応を引き起こす光重合開始剤が好ましい。光重合開始剤としては、下記の光重合開始剤が挙げられる。
 アセトフェノン系の光重合開始剤:アセトフェノン、p-tert-ブチルトリクロロアセトフェノン、クロロアセトフェノン、2,2-ジエトキシアセトフェノン、ヒドロキシアセトフェノン、2,2-ジメトキシ-2’-フェニルアセトフェノン、2-アミノアセトフェノン、ジアルキルアミノアセトフェノン等。ベンゾイン系の光重合開始剤:ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-2-メチルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、ベンジルジメチルケタール等。ベンゾフェノン系の光重合開始剤:ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、メチル-o-ベンゾイルベンゾエート、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、ヒドロキシプロピルベンゾフェノン、アクリルベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、ペルフルオロベンゾフェノン等。チオキサントン系の光重合開始剤:チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、ジエチルチオキサントン、ジメチルチオキサントン等。アントラキノン系の光重合開始剤:2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン。ケタール系の光重合開始剤:アセトフェノンジメチルケタール、ベンジルジメチルケタール。その他の光重合開始剤:α-アシルオキシムエステル、ベンジル-(o-エトキシカルボニル)-α-モノオキシム、アシルホスフィンオキサイド、グリオキシエステル、3-ケトクマリン、2-エチルアンスラキノン、カンファーキノン、テトラメチルチウラムスルフィド、アゾビスイソブチロニトリル、ベンゾイルペルオキシド、ジアルキルペルオキシド、tert-ブチルペルオキシピバレート等。フッ素原子を有する光重合開始剤:ペルフルオロtert-ブチルペルオキシド、ペルフルオロベンゾイルペルオキシド等、などの公知慣用の光重合開始剤を単独で又は2種以上を組み合わせて用いることができる。
 光重合性混合物は、光増感剤を含んでいてもよい。光増感剤の具体例としては、n-ブチルアミン、ジ-n-ブチルアミン、トリ-n-ブチルホスフィン、アリルチオ尿素、s-ベンジスイソチウロニウム-p-トルエンスルフィネート、トリエチルアミン、ジエチルアミノエチルメタクリレート、トリエチレンテトラミン、4,4’-ビス(ジアルキルアミノ)ベンゾフェノン、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、ペンチル-4-ジメチルアミノベンゾエート、トリエチルアミン、トリエタノールアミンなどのアミン類のような公知慣用の光増感剤の1種あるいは2種以上と組み合わせて用いることができる。
 市販されている開始剤の例としては、Ciba社製の「IRGACURE」(例えば、IRGACURE651、184、500、2959、127、754、907、369、379、379EG、819、1800、784、OXE01、OXE02)や「DAROCUR」(例えば、DAROCUR1173、MBF、TPO、4265)等が挙げられる。
 光重合開始剤は、1種のみを単独で用いても、2種類以上を併用してもよい。2種類以上併用する場合には、フッ素含有(メタ)アクリレートの分散性、及び光重合性混合物の微細凹凸構造表面部及び内部の硬化性の観点から選択するとよい。例えば、αヒドロキシケトン系光重合開始剤とαアミノケトン系光重合開始剤とを併用することが挙げられる。また、2種類併用する場合の組み合わせとしては、例えば、Ciba社製の「Irgacure」同士、「Irgacure」と「Darocure」の組み合わせとして、Darocure1173とIrgacure819、Irgacure379とIrgacure127、Irgacure819とIrgacure127、Irgacure250とIrgacure127、Irgacure184とIrgacure369、Irgacure184とIrgacure379EG、Irgacure184とIrgacure907、Irgacure127とIrgacure379EG、Irgacure819とIrgacure184、DarocureTPOとIrgacure184などが挙げられる。
(D)光重合性混合物
 光重合性混合物は、(メタ)アクリレート100重量部に対して、フッ素含有(メタ)アクリレートを0.1重量部~50重量部、光重合開始剤を0.01重量部~10重量部含有する光重合性混合物である。特に上記の(メタ)アクリレートとしては、非フッ素含有の(メタ)アクリレートであることが好ましい。
 (メタ)アクリレート、特に、非フッ素含有の(メタ)アクリレート100重量部に対して、フッ素含有(メタ)アクリレートを、0.1重量部以上であれば離型性に優れ、50重量部以下であれば基材への密着性に優れるため好ましい。加えて、(メタ)アクリレートが、0.8重量部以上であることで、樹脂モールド表面部(微細凹凸構造表面)のフッ素元素濃度(Es)を高くすることができるためより好ましく、6重量部以下であることで、樹脂中の平均フッ素元素濃度(Eb)を低くし、バルク強度と基材界面の密着力を高くできるためより好ましい。更に、(メタ)アクリレートが、1重量部~6重量部の範囲であれば、樹脂表面の自由エネルギーをより低くすることができ、繰り返し転写性が良好になるため好ましい。
 また、光重合開始剤は、(メタ)アクリレート、特に非フッ素含有の(メタ)アクリレート100重量部に対して、0.01重量部以上であれば重合性に優れ、10重量部以下であれば、硬化後の未反応開始剤や分解物の樹脂表面へブリードアウトを低減できるため好ましい。光重合開始剤は、0.5重量部以上であることがより好ましく、1重量部以上であることが更に好ましい。一方、光硬化剤は、5重量部以下であることがより好ましい。特に、光重合開始剤が、0.5重量部~5重量部であれば、硬化後の樹脂透過率に優れる。
 レベリング性を向上させる為に溶剤を含有する場合は、(メタ)アクリレート100重量部に対して、溶剤含量が0.1重量部以上40重量部以下であれば好ましい。溶剤含量が0.5重量部以上20重量部以下であれば、光重合性混合物の硬化性を維持できるためより好ましく、1重量部以上15重量部以下であればさらに好ましい。光重合製混合物の膜厚を薄くするために溶剤を含有する場合は、(メタ)アクリレート100重量部に対して、300重量部以上10000重量部以下であれば、塗工後の乾燥工程での溶液安定性を維持できるため好ましく、300重量部以上1000重量部以下であれば、より好ましい。
(E)樹脂モールド(樹脂製スタンパ成形体)
 以下、樹脂モールドをFと表記する。パタン形状またはパタン形状の反転形状について説明する箇所では、凸凹や凹凸パタンと表記し、その中でも凸凹パタン形状を具備した本発明に係る樹脂モールドに関してはF(+)と表記し、F(+)から転写した凹凸パタン形状を具備した該樹脂モールドに関してはF(-)と表記する。
 本発明においては、光重合性混合物(以下、硬化性樹脂組成物という)の硬化物を用いることにより、樹脂モールドを成形することができる。樹脂モールドとは、微細パタン形状を表面に具備したマスターモールドから硬化性樹脂組成物を転写剤として光ナノインプリント転写して得た、樹脂表面に微細凹凸パタン形状(微細凹凸構造)を具備した樹脂成形体である。また、本発明においては、樹脂成形体を、本発明に係る硬化性樹脂組成物だけなく、ゾルゲル反応による硬化を含む無機材への転写や、公知感光性樹脂組成物への光ナノインプリント転写を繰り返し転写できる樹脂製鋳型として用いることができる。ここでの「繰り返し転写」とは次の2つの場合((1)、(2))のいずれかまたは双方を意味する。
 (1)凸凹パタン形状を具備したF(+)樹脂モールドから、転写した凹凸パタン転写物を複数製造すること。
 (2)硬化性樹脂組成物を転写剤として用いた場合、樹脂モールドF(+)から反転したF(-)転写体を得て、次にF(-)転写体をモールドとして、反転転写したF(+)転写体を得る、凸凹/凹凸/凸凹/凹凸/・・・/を繰り返しパタン反転転写ができること。
(微細凹凸パタン形状)
 樹脂モールドの表面は、マスターモールドの形状を転写して得られた構造であり、微細凹凸構造を具備している。光学部材やバイオ部材に適した構造が好ましく、格子状、ピラーやホール構造等がより好ましく、これらの断面凹凸形状が、長方形、正方形、台形、菱形、六角形、三角形、円形、曲率を有する形状等であってもよい。また、パタン配列は、ランダム配列した形状、周期的に配列したパタン形状のどちらでもよい。特に、パタンが周期的に配列した形状の場合、その周期ピッチサイズが50nm~1000nmであることが好ましく、80nm~700nmピッチであることがより好ましく、100nm~250nmピッチであることがさらに好ましい。凹凸パタン高さは、50nm~500nmであることが好ましく、100nm~250nmであることがより好ましい。さらに、凸部または凹部断面形状のアスペクト比が0.5~10であることが好ましく、アスペクト比が1~5であることがより好ましい。ここでのアスペクト比とは、凸部または凹部断面形状の高さ(a)をa/2の高さ位置での半値幅(b)で割った値(a/b)と規定する。
 図1に、樹脂モールドの微細凹凸構造の配列の一例を示す。なお、図1においては、樹脂モールド表面の平面図を模式的に示しており、樹脂モールド表面内において互いに直交する方向を第一方向及び第二方向として示している。
 図1に示す例においては、微細凹凸構造は、第一方向において複数の凸部(または凹部)がそれぞれピッチPで配列された複数の凸部列(または凹部列)を含む。各凸部列(または凹部列)は、第二方向においてピッチSで互いに離間して配列される。また、各凸部列(または凹部列)は、互いに隣接する凸部列に属する各凸部(または各凹部)が、第一方向において互いに位置差αが生じるように配列される。ここで、位置差αとは、互いに隣接する凸部列(または凹部列)に属する各凸部(または各凹部)のうち、最も近接する凸部中央部間(または凹部中央部間)の第一方向における距離をいう。例えば、図1に示されるように、第(N)列の凸部列(または凹部列)に属する各凸部(または各凹部)の中心を通る第二方向における線分と、第(N)列に隣接する第(N+1)列の凸部列(または凹部列)に属する各凸部(または凹部)の中心を通る第二方向における線分と、の間の距離を意味する。なお、各凸部列は、第二方向において隣接する各凸部列間において、第一方向における位置差αが周期的に配列されていてもよく、非周期的に配列されていてもよい。また、ピッチPおよびピッチSは、想定する用途に応じ、適宜設計することができる。
 例えば、ディスプレイ用途など、可視光領域(400nm~780nm)において反射率を抑え透過率を上げたい場合、隣接する凸部間の距離は、1nm以上300nm以下であることが好ましく、1nm以上150nm以下であることがより好ましい。このように、隣接する凸部間の距離が150nm以下であれば、可視光領域で回折光を生じることなく、反射率の角度依存性も抑制することができる。同様に、凸部の高さは1nm以上1000nm以下であることが好ましく、100nm以上500nm以下であることがより好ましい。凸部の高さは大きいことが好ましいが、隣接距離と高さの比であるアスペクト比が3以上になると、微細構造積層体を無機基板に転写する際に離型しにくくなる。このため、微細凹凸構造は、上記設計思想に基づき、アスペクト比が3未満となるように適宜設計することが好ましい。
 また、例えば、結晶系シリコン太陽電池の分光感度は近赤外領域(700nm~1000nm)にピークを持つため、太陽電池用最表面部材においては、この波長領域で優れた透過率を有することが求められる。このように、近赤外領域において反射率を抑え透過率を上げたい場合、隣接する凸部間の距離は、300nm以上2000nm以下であることが好ましく、500nm以上1000nm以下であることがより好ましい。また、凸部の高さは1nm以上5000nm以下であることが好ましく、1000nm以上5000nm以下であることがより好ましい。なお、この場合にも、微細凹凸構造は、アスペクト比が3未満となるように適宜設計することが好ましい。
 また、例えば、LEDの光取り出し効率を向上させるために、LEDを構成するTCOと封止剤界面や、フリップチップ型LEDのサファイア上に微細凹凸構造を形成する場合は、隣接する凸部間の距離は、250nm~10000nmであることが好ましく、回折光による光取り出し効率が向上するため、500nm~5000nmであることがより好ましい。なお、この場合にも、微細凹凸構造は、アスペクト比が3未満となるように適宜設計することが好ましい。
 鋳型とする被転写材(マスターモールドや樹脂モールド)の凸部断面積(S凸部)に対して、その反転した転写成形体(汎用性感光性樹脂や樹脂モールド)の凹部断面積(S凹部)が断面積比率(S凹/S凸×100)にして80%以上の転写精度で転写できる鋳型または転写材であることが好ましい。特に、樹脂モールドを鋳型としたときに、転写精度が80%以上であることがより好ましい。さらに、凹凸/凸凹/凹凸/凸凹・・・と繰り返し反転転写で高い転写精度を保持するためには、一回の転写精度は85%以上が好ましく、90%以上がより好ましい。
(マスターモールド)
 マスターモールドは、表面に微細凹凸パタンを具備し、材質としては、石英ガラス、紫外線透過ガラス、サファイヤ、ダイヤモンド、ポリジメチルシロキサン等のシリコーン材、フッ素樹脂、シリコンウエハ、SiC基板、マイカ基板等が挙げられる。ナノパタン転写時の離型性をより向上させるために、離型処理を行っても良い。
 特に、マスターモールドに離型処理を施すことで、マスターモールド表面の自由エネルギーが低下する。そのため、樹脂中の平均フッ素元素濃度(Eb)を低く保った状態で転写を行うことで、マスターモールド/感光性樹脂混合物/基材から構成される系全体のエネルギーを低くするように、本発明に係るフッ素含有(メタ)アクリレートがマスターモールド表面へと効果的に偏析するため、Es/Ebを大きくすることができる。そのため、繰り返し転写性良好な樹脂成型体を作製することができる。
 尚、マスターモールドへの離型処理の耐久性の観点から、離型処理剤としては、シランカップリング系離型剤が好ましい。市販されている離型剤の例としては、ダイキン工業社製のオプツールDSX、デュラサーフHD1101やHD2101、住友スリーエム社製のノベック等が挙げられる。
 以上、本発明に係る樹脂モールドの製造に用いる各成分を詳説した。次に、上記各成分を用いた樹脂モールドの製造方法について説明する。
(F)樹脂モールドの製造方法
 下記工程11~下記工程14を順に行うことで、本発明に係る硬化性樹脂組成物を転写剤として使って、マスターモールドから樹脂モールドを作製することができる。
 工程11:基板の上に硬化性樹脂組成物を塗布する工程(樹脂を塗工する工程)。
 工程12:上記工程11において硬化性樹脂組成物をマスターモールドに押圧する工程(樹脂を鋳型に押圧する工程)。
 工程13:上記工程12において硬化性樹脂組成物を光ラジカル重合させ硬化物を得る工程(樹脂を光硬化させる工程)。
 工程14:硬化物をマスターモールドから剥離し、マスターモールドのパタン形状の反転形状を具備した樹脂モールド(F)を得る工程(硬化物を鋳型から剥離する工程)。
 下記工程21~下記工程28を順に行うことにより、マスターモールドの凹凸パタン形状と同形状の凹凸パタン形状を具備した樹脂モールド(F)を製造できる。
 工程21:基板の上に硬化性樹脂組成物を塗布する工程(樹脂を塗工する工程)。
 工程22:上記工程21において硬化性樹脂組成物をマスターモールドに押圧する工程(樹脂を鋳型に押圧する工程)。
 工程23:上記工程22において硬化性樹脂組成物を光ラジカル重合させ硬化物を得る工程(樹脂を光硬化させる工程)。
 工程24:上記工程23において硬化物をマスターモールドから剥離し、マスターモールド形状の反転形状を具備した樹脂モールド(F(+))を得る工程(硬化物を鋳型から剥離する工程)。
 工程25:基板の上に硬化性樹脂組成物を塗布する工程(樹脂を塗工する工程)。
 工程26:上記工程25において硬化性樹脂組成物を樹脂モールドに押圧する工程(樹脂を鋳型に押圧する工程)。
 工程27:上記工程26において硬化性樹脂組成物を光ラジカル重合させ硬化物を得る工程(樹脂を光硬化させる工程)。
 工程28:上記工程27において硬化物を樹脂モールド(F(+))から剥離し、マスターモールドのパタン形状と同じパタン形状を具備した樹脂モールド(F(-))を得る工程。
(硬化物を鋳型から剥離する工程)
 下記工程31~下記工程34を順に行うことにより、公知慣用の感光性樹脂組成物を転写剤として使って、樹脂モールドから、上記反転形状を具備した樹脂転写物を製造できる。
 工程31:基板の上に公知慣用の感光性樹脂組成物を塗布する工程(樹脂を塗工する工程)。
 工程32:上記工程31において感光性樹脂組成物を樹脂モールドに押圧する工程(樹脂を鋳型に押圧する工程)。
 工程33:上記工程32において感光性樹脂組成物を光ラジカル重合させ硬化物を得る工程(樹脂を光硬化させる工程)。
 工程34:上記工程33において該硬化物を樹脂モールドから剥離し、樹脂モールド(F)のパタン形状と反転形状を具備した転写物を得る工程(硬化物を鋳型から剥離する工程)。
 下記工程41~下記工程47を順に行うことにより、樹脂モールド成形体をロール状に加工した樹脂製ロールスタンパを製造できる。
 工程41:基板の上に硬化性樹脂組成物を塗布する工程(樹脂を塗工する工程)。
 工程42:上記工程41において硬化性樹脂組成物をマスターモールドに押圧する工程(樹脂を鋳型に押圧する工程)。
 工程43:上記工程42において硬化性樹脂組成物を光ラジカル重合させ硬化物を得る工程(樹脂を光硬化させる工程)。
 工程44:上記工程43において硬化物をマスターモールドから剥離し、マスターモールド形状の反転形状を具備した樹脂モールド(F(+))を得る工程(硬化物を鋳型から剥離する工程)。
 工程45:上記工程44において作製した樹脂モールド(F(+))とロール基材との間に硬化性樹脂組成物を挟持させる工程(樹脂を鋳型に押圧する工程)。
 工程46:上記工程45において硬化性樹脂組成物を光ラジカル重合させ硬化物を得る工程(樹脂を光硬化させる工程)。
 工程47:上記工程47において硬化物を樹脂モールド(F(+))から剥離し、マスターモールドのパタン形状と同じパタン形状を具備した樹脂製ロールスタンパ(F(-))を得る工程(硬化物を鋳型から剥離する工程)。
 下記工程51~下記工程54を順に行うことにより、上記工程41~上記工程47の順で作製した樹脂製ロールスタンパ成形体を使って、感光性樹脂組成物を転写剤としたロールツーロール式の連続転写ができる。特に、本発明に係る硬化性樹脂組成物を転写剤として使った場合、連続転写された転写品は樹脂モールド連続成形体として使用できる。
 工程51:基板の上に感光性樹脂組成物を塗布する工程(樹脂を塗工する工程)。
 工程52:上記工程51において感光性樹脂組成物を樹脂製ロールスタンパに押圧する工程(樹脂を鋳型に押圧する工程)。
 工程53:上記工程52において感光性樹脂組成物を光ラジカル重合させ硬化物を得る工程(樹脂を光硬化させる工程)。
 工程54:上記工程53において該硬化物を樹脂モールド(F)から剥離し、樹脂モールド(F)のパタン形状と反転形状を具備した転写物を連続的に製造できる工程(硬化物を鋳型から剥離する工程)。
 下記工程61~下記工程64を順に行うことにより、上記工程51~上記工程54の順に作製した樹脂モールド連続成形体を使用して、パタン形状を連続体から連続体へ連続転写ができる。
 工程61:基板の上に感光性樹脂組成物を塗布する工程(樹脂を塗工する工程)。
 工程62:上記工程61において感光性樹脂組成物を樹脂モールド(F)連続成形体に押圧する工程(樹脂を鋳型に押圧する工程)。
 工程63:上記工程62において感光性樹脂組成物を光ラジカル重合させ硬化物を得る工程(樹脂を光硬化させる工程)。
 工程64:上記工程63において該硬化物を樹脂モールド(F)連続成形体から剥離し、樹脂モールド(F)のパタン形状の反転形状を具備した転写物を連続的に製造できる工程(硬化物を鋳型から剥離する工程)。
 以下、各工程の詳細について説明する。
(樹脂組成物を基材に塗工する工程)
 樹脂組成物の基板上に塗布する方法として、流延法、ポッティング法、スピンコート法、ローラーコート法、バーコート法、キャスト法、ディップコート法、ダイコート法、ラングミュアプロジェット法、噴霧コート法、エアーナイフコート法、フローコート法、カーテンコート法、等が挙げられる。硬化性樹脂組成物の塗工厚は、50nm~5mmが好ましく、100nm~200μmがより好ましく、100nm~100μmがさらに好ましい。
 基板がマスターモールドまたは樹脂モールドよりも大きい場合、樹脂組成物を基板全面に塗布しても良いし、マスターモールドまたは樹脂モールドを型押しする範囲にのみに樹脂組成物が存在するように樹脂組成物を基板の一部に塗布しても良い。
 基板に樹脂組成物を塗工後、プリベイクすることで、溶剤を含む場合は溶剤の留去や、または内添した含フッ素重合性(メタ)アクリレートの表面偏析を促進させることができる。内添した含フッ素重合性(メタ)アクリレートを表面に偏析させることで、マスターモールド又は樹脂モールドを押圧する際に、含フッ素重合性(メタ)アクリレートがマスターモールド或いは樹脂モールドの微細構造内部に効率的に充填され、マスターモールド或いは樹脂モールドの劣化を抑制するのみならず、得られる樹脂モールドの表面フッ素元素濃度(Es)をバルクのフッ素元素濃度(Eb)で除した値Es/Ebを大きく向上させ、離型性を向上させることができる。温度は、25℃~120℃が好ましく、40℃~105℃がより好ましく、50℃~105℃がさらに好ましく、60℃~105℃が最も好ましい。プリベイク時間は30秒~30分が好ましく、1分~15分がより好ましく、3分~10分がさらに好ましい。
 基板の材質に関しては特に制限はなく、ガラス、セラミック、金属等の無機材料、プラスチック等の有機材料を問わず使用できる。成形体の用途に応じて、板、シート、フィルム、薄膜、織物、不織布、その他任意の形状およびこれらを複合化したものを使用できるが、屈曲性を有し連続生産性に優れたシート、フィルム、薄膜、織物、不織布等を含むことが特に好ましい。屈曲性を有する材質としては、例えば、ポリメタクリル酸メチル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、シクロオレフィン樹脂(COP)、架橋ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリアクリレート樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、ポリサルフォン樹脂、ポリエーテルケトン樹脂などの非晶性熱可塑性樹脂や、ポリエチレンテレフタレート(PET)樹脂、ポリエチレンナフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブチレンテレフタレート樹脂、芳香族ポリエステル樹脂、ポリアセタール樹脂、ポリアミド樹脂などの結晶性熱可塑性樹脂や、アクリル系、エポキシ系、ウレタン系などの紫外線(UV)硬化性樹脂や熱硬化性樹脂が挙げられる。また、紫外線硬化性樹脂や熱硬化性樹脂と、ガラスなどの無機基板、上記熱可塑性樹脂、トリアセテート樹脂とを組み合わせたり、または単独で用いて基材を構成させることも出来る。
 基板と樹脂組成物との接着性を向上させる処理を施すことが好ましい。例えば基材の接着させる面に、樹脂組成物との化学結合や、浸透などの物理的結合のための易接着コーティング、プライマー処理、コロナ処理、プラズマ処理、UV/オゾン処理、高エネルギー線照射処理、表面粗化処理、多孔質化処理などを施すことが好ましい。
(樹脂組成物を基材に押圧する工程)
 気泡が入らないように柔軟性の高い基板を端から静かに鋳型(マスターモールドや樹脂モールドや樹脂製ロールスタンパなど)上に被膜し、一定圧力下にて押圧することが好ましい。押圧する際のプレス圧力は、0MPa超~10MPaが好ましく、0.01MPa~5MPaがより好ましく、0.01MPa~1MPaがさらに好ましい。
(樹脂を光硬化させる工程)
 マスターモールドの光透過性が低い場合、基板側から露光することが好ましい。一方、マスターモールドが紫外波長の光に対する透過率が高い場合、例えば合成石英材質の場合は、基材側またはマスターモールド側の少なくとも一側面から露光することが好ましく、基材側とマスターモールド側の両面から露光するとより好ましい。樹脂モールドを使用した場合、基板側または樹脂モールド(F)側の少なくとも一側面から露光することが好ましく、基板側と樹脂モールド(F)側の両面から露光するとより好ましい。基板を使用せず、硬化性樹脂組成物のみをマスターモールドに塗布して硬化させてもよい。その場合は、酸素による重合阻害を防ぐため、窒素雰囲気下またはアルゴン雰囲気下での露光する方法、または、接着性の低い基板で被覆し、硬化後、基板と樹脂モールドを剥がしとる方法等で硬化物を製造できる。
 使用する露光光源としては、メタルハライドランプ、高圧水銀ランプ、ケミカルランプ、UV-LEDが好ましい。長時間露光時の発熱を抑える観点から、可視波長以上の波長をカットするフィルター(バンドパスフィルターを含む)を利用することが好ましい。積算光量としては、波長365nmで300mJ/cm以上が好ましく、反応率の高い硬化物(E)を得る目的で、800mJ/cm以上が好ましく、800mJ/cm~6000mJ/cmがより好ましく、光による樹脂劣化性を防ぐため、800mJ/cm~3000mJ/cmが特に好ましい。
 硬化物の厚さに依存せず、350nm~450nmにおける全光線透過率が50%以上であることが好ましく、効率的な光反応を行う上で、70%以上であることがより好ましい。硬化物の厚さが0nm超~50μmのとき、350nm~450nmにおける全光線透過率が50%以上であることが好ましく、70%以上であることがより好ましい。
(硬化物を鋳型から剥離する工程)
 マスターモールドに柔軟性がある場合、モールド面側または基材面側の少なくとも一方から一定速度で剥離することが好ましい。剥離方法としては、線剥離が好ましい。例えば、マスターモールドの剛性が高い材質の場合、特に無機材質の場合、マスターモールド側から剥離すると部分的に面剥離による剥離面積が高くなり、硬化物の破損が懸念される。したがって、柔軟性のある基板側から剥がすことが好ましい。剥離速度は、特定方向から一定速度で0m/min超~5m/minの速度で線剥離することが、硬化物の破損リスクを低減できる点で好ましい。
 また、硬化後~剥離前の間に加熱処理を施すことが好ましい。この過程で加熱処理を施すことにより、未反応基を減少させることができ、離型が容易になる。また、加熱環境で安定な状態を取るため、得られた樹脂モールドを鋳型として使用する場合の、鋳型の耐久性が向上する。温度は、50℃~120℃が好ましく、50℃~105℃がより好ましく、60℃~105℃がさらに好ましい。加熱時間は30秒~30分が好ましく、30秒~15分がより好ましく、1分~10分がさらに好ましい。
 一方で、剥離後に加熱処理を行ってもよい。剥離後に加熱処理を行うことで、未反応基の反応が促進するのみならず、加熱温度にて安定な樹脂モールドが得られるため、樹脂モールドから樹脂へと転写する際の樹脂の浸透を抑制し、離型を向上することができる。温度は、50℃~120℃が好ましく、50℃~105℃がより好ましく、60℃~105℃がさらに好ましい。加熱時間は30秒~30分が好ましく、30秒~15分がより好ましく、1分~10分がさらに好ましい。
(熱重合による合成)
 表面に微細パタンを有する熱可塑性樹脂は、マスターモールドを熱可塑性樹脂に熱圧着させてマスターモールドの微細パタンを熱可塑性樹脂に形成する工程およびマスターモールドを熱可塑性樹脂から離脱させる工程を具備する方法で製造される。熱圧着させる方法以外に、キャスト法で塗布してから熱硬化させる方法でも作製することができる。
 熱圧着させる場合、熱可塑性樹脂の軟化温度以上に加熱したモールドを転写層に圧着させて行うか、転写層を熱可塑性樹脂の軟化温度以上に加熱してからモールドに圧着させて行うのが好ましい。熱圧着における温度は、より好ましくは(熱可塑性樹脂の軟化温度)~(熱可塑性樹脂の軟化温度+60℃)であり、特に好ましくは(熱可塑性樹脂の軟化温度+5℃)~(熱可塑性樹脂の軟化温度+40℃)である。この範囲においてモールドの微細パタンを転写層に効率的に形成できる。また熱圧着の圧力は、0.5MPa~200MPa(絶対圧)が好ましく、0.5MPa~10MPa(絶対圧)がより好ましく0.5MP~5MPaがさらに好ましい。
 モールドを離脱させる場合、転写層を熱可塑性樹脂の軟化温度以下に冷却してから行うのが好ましい。より好ましくは、(熱可塑性樹脂の軟化温度-10℃)~(熱可塑性樹脂の軟化温度-50℃)である。この範囲において、転写層に形成された微細パタンの形状をより保持できる。ただし、熱可塑性樹脂の軟化温度とは、熱可塑性樹脂が非結晶性である場合はガラス転移温度を意味し、熱可塑性樹脂が結晶性である場合は融解温度を意味する。
 熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリスチレン、アクリロニトリル/スチレン系重合体、アクリロニトリル/ブタジエン/スチレン系重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ(メタ)アクリレート、ポリアリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアミド、ポリイミド、ポリアセタール、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルホン、ポリフェニレンスルフィド、ポリフッ化ビニリデン、テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)系共重合体、テトラフルオロエチレン/エチレン系共重合体、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、テトラフルオロエチレン/プロピレン系共重合体、ポリフルオロ(メタ)アクリレート系重合体、主鎖に含フッ素脂肪族環構造を有する含フッ素重合体、ポリフッ化ビニル、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、クロロトリフルオロエチレン/エチレン系共重合体、クロロトリフルオロエチレン/炭化水素系アルケニルエーテル系共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン系共重合体等が挙げられる。
 熱重合により合成する場合、上述のフッ素含有(メタ)アクリレートと合わせて用いるが(メタ)アクリレート100重量部に対して、フッ素含有(メタ)アクリレートを0.1重量部~10重量部含有する熱重合性混合物として用いる。
(G)用途
 本発明に係る樹脂モールドは、ナノインプリント用途において様々に用いられ、具体的には、マイクロレンズアレーやワイヤグリッド型偏光、モスアイ型無反射膜や回折格子、フォトニック結晶素子などの光デバイスや、パターンドメディアなどのナノインプリント用途として製造する際に用いられる。他にも、細胞培養シートや脂肪培養チップ、バイオセンサー電極などのバイオデバイスへの製造に用いることができる。その他にも、各種電池やキャパシタの電極や、マイクロ・ナノ流路、放熱面、断熱面などへと応用できる。
 加えて、本発明に係る樹脂モールドは、例えば上述した電子線描画等で作製された、表面に微細凹凸構造を有すマスターモールドから、出来る限り多くの樹脂モールド(A)を得ることを可能にせしめる。しかも、本発明に係る樹脂モールドは、樹脂モールド(A)から、ナノインプリント法により、樹脂モールド(A)の微細凹凸構造を転写した樹脂モールド(B)を可能な限り多く得ることも可能にせしめる。これらにより、本発明に係る樹脂モールドによれば、生産効率を飛躍的に向上せしめることが可能となる。
(実施例)
 以下、本発明の効果を明確にするために行った実施例について説明する。
[残膜厚測定]
 樹脂モールドを使用しナノインプリント法により転写された微細凹凸構造の残膜厚は走査型電子顕微鏡(以下、SEM)観察より測定した。まず、試料を適当な大きさに切り出した後に、常温割断し、試料台に積載した。次に、観察面にOsを2nm程度コーティングし、検鏡用試料とした。使用装置及び検鏡条件は以下に示す。
 装置;HITACHI s-5500
 加速電圧;10kV
 MODE;Normal
[フッ素元素濃度測定]
 樹脂モールドの表面フッ素元素濃度はX線光電子分光法(以下、XPS)にて測定した。XPSにおける、X線のサンプル表面への侵入長は数nmと非常に浅いため、XPSの測定値を本発明における樹脂モールド表面のフッ素元素濃度(Es)として採用した。樹脂モールドを約2mm四方の小片として切り出し、1mm×2mmのスロット型のマスクを被せて下記条件でXPS測定に供した。
 XPS測定条件
  使用機器 ;サーモフィッシャーESCALAB250
  励起源  ;mono.AlKα 15kV×10mA
  分析サイズ;約1mm(形状は楕円)
  取込領域
   Survey scan;0~1, 100eV
   Narrow scan;F 1s,C 1s,O 1s,N 1s
  Pass energy
   Survey scan; 100eV
   Narrow scan; 20eV
 一方、樹脂モールドを構成する樹脂中の平均フッ素元素濃度(Eb)を測定するには、物理的に剥離した切片を、フラスコ燃焼法にて分解し、続いてイオンクロマトグラフ分析にかけることで、樹脂中の平均フッ素元素濃度(Eb)を測定した。
[透過率測定]
 PETフィルム上に作製した樹脂モールドの透過率は、分光光度計(SHIMADZU、UV-2550)を用いて測定した。あらかじめPETフィルム単体の透過率を測定し、その値をバックグランドとして、樹脂モールド単体の透過率を算出した。実施例1~実施例3で作製した樹脂モールドはいずれも波長350nm~450nmでの全光線透過率が50%以上であった。
 以下、代表的な樹脂モールドの作製方法と物性について説明する。
[実施例1]フッ素含有樹脂モールドの製造方法1
 微細凹凸の大きさが150nm且つピッチが145nmの微細凹凸構造を表面に有するニッケル製の平板状金型にハーベス社製のDurasurf 2101Zを用い離型処理を施した。OPTOOL DAC HP(ダイキン工業社製)とトリメチロールプロパントリアクリレート(東亞合成社製 M350)及びIrgacure 184(Ciba社製)を重量部で10:100:5の割合で混合し、金型の微細凹凸構造面上に滴下した。続いて、PETフィルムで混合液を挟み込むと同時にハンドローラーを使用し引き延ばした。PETフィルム面側からのUV露光後、金型とPETフィルムを剥離しフッ素含有樹脂モールドを得た。
 上記モールドをXPSにて測定したところ、表面のフッ素元素濃度Esと樹脂中の平均フッ素元素濃度Ebとの比Es/Ebは69であった。
[実施例2]フッ素含有樹脂モールドの製造方法2
 微細凹凸の大きさが150nm且つピッチが145nmの微細凹凸構造を表面に有するニッケル製の円筒状金型にハーベス社製のDurasurf 2101Zを用い離型処理を施した。OPTOOL DAC HP(ダイキン工業社製)とトリメチロールプロパントリアクリレート(東亞合成社製 M350)及びIrgacure 184(Ciba社製)を重量部で10:100:5の割合で混合した。続いて、混合液をマイクログラビアを用いてPETフィルムへと塗工した。続いて、PETフィルムに対する60℃の乾燥工程を経て、上記ニッケル製金型の微細凹凸構造面と張り合わせた。UV露光後、金型とPETフィルムを剥離しフッ素含有樹脂モールドを得た。
 上記樹脂モールドをXPSにて測定したところ、表面のフッ素元素濃度Esと樹脂中の平均フッ素元素濃度Ebとの比Es/Ebは76であった。
[実施例3]フッ素含有樹脂モールドの製造方法3
 微細凹凸の大きさが150nm且つピッチが145nmの微細凹凸構造を表面に有するニッケル製の円筒状金型にハーベス社製のDurasurf 2101Zを用い離型処理を施した。CHEMINOX FAMAC-6(ユニマッテク社製)とトリメチロールプロパントリアクリレート(東亞合成社製 M350)及びIrgacure 184(Ciba社製)を重量部で2:100:5の割合で混合した。続いて、混合液をマイクログラビアを用いてPETフィルムへと塗工した。続いて、PETフィルムに対する60℃の乾燥工程を経て、ニッケル製金型の微細凹凸構造面と張り合わせた。PET面側からのUV露光後、金型とPETフィルムを剥離しフッ素含有樹脂モールドを得た。
 上記樹脂モールドをXPSにて測定したところ、表面のフッ素元素濃度Esと樹脂中の平均フッ素元素濃度Ebとの比Es/Ebは26であった。
(フッ素含有樹脂モールドの繰り返し転写性)
 実施例1~実施例3で調合した樹脂組成物を転写剤として、実施例1~実施例3で作製した樹脂モールドの反転転写を行った。樹脂モールドをステンレス板の上に固定し、微細凹凸構造面上に転写剤を滴下した。続いて、PETフィルムで転写剤を挟み込むと同時にハンドローラーを使用して引き伸ばした。被覆したPETフィルム面側からUV露光後、樹脂モールドと被覆したPETフィルムを剥離し、樹脂モールドの転写品Aを得た。同手順にて、同一樹脂モールドから三回連続して転写品Aを作製した。三回とも一定の低剥離抵抗(平均10mN/mm)を示した。また、目視観察では、転写面の破断は確認されなかった。さらに詳細に転写性を確認するため、樹脂モールド及び転写品Aの断面SEM(走査型電子顕微鏡)観察を行った。樹脂モールド側の凹凸構造と転写品Aの凸凹構造が一致し転写性が良好であることが確認された。この結果から、転写品Aは、マスターモールドと同じパタン形状を具備した樹脂モールドであることが確認された。
 次に転写品Aを樹脂モールドとして用いて、上記転写方法と同様にして、TAC(トリアセチルセルロール樹脂)フィルムを基材としたアクリル系紫外線硬化性樹脂(屈折率1.52)への繰り返し10回UV転写し、転写品Bを作製した。目視による転写面の破断もなく、5mN/mm~10mN/mmの抵抗で剥離できた。1回目~10回目の転写品Bの形状を確認するために、表面反射スペクトル測定により評価した。表面反射スペクトル測定では、表面の微細凹凸構造が表面屈折率に反映されるため、微細凹凸構造に変化があれば、反射スペクトルの波形変化として観測される。その結果、1回目~10回目の転写品Bの反射スペクトル波形はいずれも一致し、連続繰り返し転写によるパタン変化はないことが確認された。さらに断面SEM観察より、10回目の転写品Bの凹凸構造と、マスターモールドから作製した転写品の凹凸構造が一致したことから、繰り返し転写時の転写性が保持されていることが明らかとなった。
[実施例4]フッ素含有樹脂モールドを使ったワイヤグリッド偏光フィルムの作製
 上記転写品Bを用いて、ワイヤグリッド偏光フィルムを下記手順により作製し、光学性能評価を行った。
(ワイヤグリッド偏光フィルムの作製)
・スパッタリング法を用いた誘電体層の形成
 凹凸形状転写表面に、スパッタリング法により誘電体層として二酸化珪素を成膜した。スパッタリング装置条件は、Arガス圧力0.2Pa、スパッタリングパワー770W/cm、被覆速度0.1nm/sとし、転写フィルム上の誘電体平均厚みが3nmとなるように成膜した。ここでは、誘電体の厚みを測定するため表面が平滑なガラス基板を転写フィルムと共に装置に挿入し、平滑ガラス基板上の誘電体厚みを誘電体平均厚みとした。
・真空蒸着法を用いた金属の蒸着
 次に誘電体層を成膜した凹凸形状転写表面に、真空蒸着によりアルミニウム(Al)を成膜した。Alの蒸着条件は、常温下、真空度2.0×10-3Pa、蒸着速度40nm/sとした。Alの厚みを測定するため表面が平滑なガラス基板を転写フィルムと共に装置に挿入し、平滑ガラス基板上のAl厚みをAl平均厚みとし、格子の長手方向と垂直に交わる平面内において基材面の法線と蒸着源のなす角度を蒸着角θとした。蒸着角θを20°、Al平均厚みを133nmとした。
・不要Alの除去
 次にアルカリ水溶液に浸漬し不要なAlを除去した。不要Alの除去としては、Al蒸着した転写フィルムを室温下で、0.1重量%水酸化ナトリウム水溶液に80秒間浸漬することで行った。
・分光光度計による光線透過率測定
 偏光度と光線透過率の測定には偏光フィルム評価装置(日本分光社製、V7000)を用い、23℃65%RHの条件で行った。結果、偏光度99.90%で光線透過率42.5%であった。比較対象として、マスターモールドからUV転写した転写品を使ったワイヤグリッド偏光フィルムを作製した。作製方法は上記手順に従って作製した。結果、偏光度99.90%で光線透過率42.0%であった。すなわち、マスターモールドまたは樹脂モールドを鋳型として作製したワイヤグリッド偏光フィルムの光学性能は同等であることが確認された。以上より、樹脂モールドがワイヤグリッド偏光フィルム用のモールドとして使用できることが証明された。
 尚、偏光度および光線透過率は下記式より算出した。Imaxは直線偏光に対する平行ニコル、Iminは直行ニコル状態での透過光強度である。尚、光線透過率T(θ)は、入射光角度θの光線透過率を示す。
 偏光度=[(Imax-Imin)/(Imax+Imin)]×100%
[実施例5]フッ素含有樹脂モールドを用いたナノインプリント
 3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン及び3,4-エポキシシクロヘキセニルメチル-3’,4‘-エポキシシクロヘキセンカルボキシレートを含むカチオン重合性樹脂を、マイクログラビアを用いSiOを蒸着したPETフィルムへと塗工した。続いて、PETフィルムを実施例1、実施例2及び実施例3で作製したフッ素含有樹脂モールドと貼り合わせると同時にゴムニップにより圧力を加え、ニップ圧がなくなった状態で樹脂モールド側からUV露光した。UV露光後、モールドと該PETフィルムとを剥離した。転写された微細凹凸構造をSEMにて観察したところ、残膜厚は5nm以下であった。
[比較例1]
 比較例1として、実施例1での組成においてフッ素樹脂組成を含まない組成物を調合し、樹脂モールドを作製した。結果、UV硬化後に転写剤硬化物との界面剥離ができなかった。
[比較例2]
 微細凹凸の大きさが150nm且つピッチが145nmの微細凹凸構造を表面に有するニッケル製の平板状金型にハーベス社製のDurasurf 2101Zを用い離型処理を施した。東洋合成工業社製のPAC01を金型の微細凹凸構造面上に滴下した。続いて、PETフィルムでUV硬化性樹脂を挟み込むと同時にハンドローラーを使用し引き延ばした。PETフィルム面側からのUV露光後、金型とPETフィルムを剥離し樹脂モールドを得た。
 3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン及び3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレートを含むカチオン重合性樹脂をマイクログラビアを用いSiOを蒸着したPETフィルムへと塗工した。続いて、PETフィルムを樹脂モールドと貼り合わせると同時にゴムニップにより圧力を加え、ニップ圧がなくなった状態で樹脂モールド側からUV露光した。UV露光後、モールドとPETフィルムとを剥離したところ、高密着し剥離できなかった。一方で、部分的に剥離できた部分をAFMで観察したところ、微細凹凸構造の転写は見られなかった。
[実施例6]
・円筒状金型作製
 円筒状金型の基材には石英ガラスを用いた。半導体レーザーを用いた直接描画リソグラフィー法により石英ガラス表面に微細凹凸構造を形成した。微細凹凸構造を形成した石英ガラスロール表面に対し、デュラサーフHD-1101Z(ダイキン化学工業社製)を塗布し、60℃で1時間加熱後、室温で24時間静置して固定化した。その後、デュラサーフHD-ZV(ダイキン化学工業社製)で3回洗浄し、離型処理を実施した。
・樹脂モールド(A)の作製
 下記表1に示すサンプルNo.に対応した原料を混合し、光硬化性樹脂を調合した。フッ素含有(メタ)アクリレートとして、下記表1中の、サンプルNo.D1~D7、D4’及びD5’においてはOPTOOL DAC HP(ダイキン工業社製)を使用した。また、サンプルNo.F1においては、CHEMINOX FAMAC-6(ユニマッテク社製)を使用した。サンプルNo.KKは、次のように合成した。トリフルオロエチルメタアクリレート45重量部、パーフルオロオクチルエチルアクリレート45重量部、グリシジルメタアクリレート10重量部、ドデシルメルカプタン0.5重量部、2-2’-アゾビス(2-メチルブチロニトリル)1.5重量部及び、メチルエチルケトン200重量を混合し、窒素雰囲気下、80度、7時間攪拌し、メチルエチルケトン溶液で希釈されたプレポリマーを得た。次に、プレポリマーのメチルエチルケトン溶液の26重量部と、フルオライトFE-16の4重量部と、サンエイドSI-100L(三新化学工業社製の商品名)の0.2重量部とを混合し、メチルエチルケトンで固形分が10%になるように希釈することにより、サンプルNo.KKを得た。
 サンプルNo.D1~D7、F1、及びKKを感光性樹脂混合物として用い、次の操作にて樹脂モールド(A)を得た。PETフィルム:A4100(東洋紡社製:幅300mm、厚さ100μm)の易接着面に、マイクログラビアコーティング(廉井精機社製)により、塗布膜厚6μmになるように塗布した。次いで、上記円筒状金型に対し、光硬化性樹脂が塗布されたPETフィルムをニップロール(0.1MPa)で押し付け、大気下、温度25℃、湿度60%で、ランプ中心下での積算露光量が600mJ/cmとなるように、UV露光装置(フュージョンUVシステムズ・ジャパン製、Hバルブ)を用いて紫外線を照射し、連続的に光硬化を実施し、表面に微細凹凸構造が転写されたリール状の樹脂モールド(A)(長さ200m、幅300mm)を得た。リール状樹脂モールド(A)の表面微細凹凸の形状は、走査型電子顕微鏡観察で確認した結果、凸部同士の隣接距離は250nm、凸部高さは250nmであった。サンプルNo.D5’及びD4’は、離型処理を施していない円筒状金型を用いたことを除いて、上記手法と同様に転写を行った。
・樹脂モールド(B)の作製
 得られた各サンプルNo.に対応するリール状樹脂モールド(A)を鋳型とし、転写材にリール状樹脂モールド(A)の作製に使用した樹脂を用い、次のように転写を行い、リール状樹脂モールド(B)を得た。PETフィルム:A4100(東洋紡社製:幅300mm、厚さ100μm)に、該PETフィルムの易接着面にマイクログラビアコーティング(廉井精機社製)により、塗布膜厚6μmになるように塗布した。次いで、上記樹脂モールド(A)の微細凹凸構造面に対し、光硬化性樹脂が塗布されたPETフィルムをニップロール(0.1MPa)で押し付け、大気下、温度25℃、湿度60%で、ランプ中心下での積算露光量が600mJ/cmとなるように、UV露光装置(フュージョンUVシステムズ・ジャパン社製、Hバルブ)を用いて紫外線を照射し、連続的に光硬化を実施し、表面に微細凹凸構造が転写されたリール状の樹脂モールド(B)(長さ200m、幅300mm)を得た。
 樹脂モールド(A)から樹脂モールド(B)の作製は、バッチ式で次のようにも行った。リール状樹脂モールド(A)を15cm四方にカットし、該樹脂モールド(A)上に光硬化性樹脂を滴下し、PETフィルム:A4100の易接着面と貼り合わせると同時に、ハンドローラで引き延ばし、続いてUV光を照射した。続いて、105度のオーブン中で3分加熱し、その後、樹脂モールド(A)を剥離し、樹脂モールド(B)を得た。本操作を20回繰り返し、同一の樹脂モールド(A)を用いて樹脂モールド(B)を20枚得ることを試みた。
・樹脂モールド(C)(D)の作製
 得られたリール状樹脂モールド(B)から樹脂モールド(C)の作製は、バッチ式で次のようにも行った。リール状樹脂モールド(B)を15cm四方にカットし、該樹脂モールド(B)上に光硬化性樹脂を滴下し、PETフィルム:A4100の易接着面と貼り合わせると同時に、ハンドローラで引き延ばし、続いてUV光を照射した。続いて、105度のオーブン中で3分加熱し、その後、樹脂モールド(B)を剥離し、樹脂モールド(C)を得た。続いて、樹脂モールド(C)を12cm四方にカットし、該樹脂モールド(C)上に光硬化性樹脂を滴下し、PETフィルム:A4100の易接着面と貼り合わせると同時に、ハンドローラで引き延ばし、続いてUV光を照射した。続いて、105度のオーブン中で3分加熱し、その後、樹脂モールド(C)を剥離し、樹脂モールド(D)を得た。これらの操作は、全て、樹脂モールドを構成する樹脂と同様の樹脂を用い行った。
・他の樹脂への転写
 得られたリール状樹脂モールド(B)を鋳型とし、転写材に次に示す樹脂を用い、次のように転写を行い、リール状樹脂成型体を得た。
 樹脂…SH710(東レ・ダウコーニング社製)とKBM5103(信越化学工業社製)とチタニウムテトラブトキシド(和光純薬工業社製)とIrgacure184(Ciba社製)及びIrgacure369(Ciba社製)を重量部で、1:2:2:0.068:0.032の割合で混合
 PETフィルム:A4100(東洋紡社製:幅300mm、厚さ100μm)に、該PETフィルムの易接着面にマイクログラビアコーティング(廉井精機社製)により、塗布膜厚6μmになるように塗布した。次いで、上記円筒状金型に対し、光硬化性無機レジストが塗布されたPETフィルムをニップロール(0.1MPa)で押し付け、大気下、温度25℃、湿度60%で、ランプ中心下での積算露光量が600mJ/cmとなるように、UV露光装置(フュージョンUVシステムズ・ジャパン社製、Hバルブ)を用いて紫外線を照射し、連続的に光硬化を実施し、105℃で加温した後に、樹脂モールド(B)を剥離し、表面に無機物から構成される微細凹凸構造が転写されたリール(長さ200m、幅300mm)を得た。リールの表面微細凹凸の形状は、走査型電子顕微鏡観察で確認した結果、凸部同士の隣接距離は250nm、凸部高さは250nmであった。
・各転写結果とEs/Eb
 上記転写結果と、リール状樹脂モールド(A)のEs/Eb値を下記表1に示す。下記表1における略語は次の意味を示す。
 ・OPTOOL DAC HP(ダイキン工業社製)又はFAMAC6…溶媒を含有したフッ素含有(メタ)アクリレート
 ・非フッ素含有(メタ)アクリレート…トリメチロールプロパントリアクリレート(東亞合成社製 M350)
 ・フッ素含有(メタ)アクリレート…非フッ素含有の(メタ)アクリレート(M350、グリシジルメタアクリレート)100重量部に対する溶媒を除いたフッ素含有(メタ)アクリレートの重量部
 ・Es/Eb…Esは上述したXPS法による測定値を使用した。Ebは、仕込み量から算出した。
 ・離形性評価1…樹脂モールド(A)の作製において、円筒状モールド(金型)に対する離型処理を施さなかった場合の転写結果。×はパタン形成ができなかった場合。△は、転写はできるが部分的にパタンが破壊されていた場合。○は、転写結果良好な場合。
 ・離形性評価2…樹脂モールド(A)から樹脂モールド(B)の作製をバッチ式で行った場合の転写結果。nは20枚。×は、樹脂モールド(A)と樹脂モールド(B)が密着し、剥離できなかった場合。△は、部分的に剥離出来なかった場合。○は、剥離可能だが、パタンが部分的に破壊されていた場合。◎は、20枚全て転写性が良好な場合。
 ・離形性評価3…樹脂モールド(A)から樹脂モールド(C)、(D)の作製を行った場合の転写結果。×は、樹脂モールド(C)或いは樹脂モールド(D)の作製過程で、剥離が全く出来なかった場合。△は、樹脂モールド(D)まで作製可能だが、部分的に剥離出来なかった場合。○は、樹脂モールド(D)まで作製可能だが、部分的にパタンが破壊されていた場合。◎は、樹脂モールド(D)まで、良好に転写された場合。
 ・離形性評価4…樹脂モールド(A)から作製した樹脂モールド(B)により、他の樹脂へ転写した場合の転写結果。×は、密着してしまい剥離できなかった場合。△は、部分的に剥離できなかった場合。○は、部分的にパタンが破壊されていた場合。◎は、転写が良好な場合。
Figure JPOXMLDOC01-appb-T000013
 表1から分かるように、樹脂モールド表面部のフッ素元素濃度(Es)が、樹脂モールドを構成する樹脂中の平均フッ素濃度(Eb)より大きい場合には、円筒状モールド(金型)に対する離型処理を施さなかった場合においてもパタン転写が可能であり、樹脂モールド(A)が形成できた(サンプルNo.D1~D7、F1、D5’、D4’及びKK)。さらに、2≦Es/Eb≦376の場合には、作製した樹脂モールド(A)からバッチ式で20枚の転写を行うことも可能であった(サンプルNo.D1~D7、F1、D5’、及びD4’)。
 特に、20≦Es/Eb≦200の場合には、樹脂表面の自由エネルギーが効果的に減少すると共に、樹脂中における基材付近では自由エネルギーを高く保つことができるので、離形性及び樹脂モールド(A)自体の耐久性が良好となり、26≦Es/Eb≦189の範囲の場合には、樹脂モールド(A)から樹脂モールド(C)、(D)の作製にまで良好に転写されていた(サンプルNo.D2~D7、及びF1)。さらに、31≦Es/Eb≦155の範囲の場合には、最も良好な転写結果が得られた((サンプルNo.D3~D7)。
 本発明の樹脂モールドは、ナノインプリントの分野で好適に利用できる。
 本願は、2010年3月10日出願の特願2010-053194に基づく。この内容は、全てここに含めておく。

Claims (12)

  1.  表面に微細凹凸構造を有する樹脂モールドであって、樹脂モールド表面部のフッ素元素濃度(Es)が、樹脂モールドを構成する樹脂中の平均フッ素元素濃度(Eb)以上であることを特徴とする樹脂モールド。
  2.  前記樹脂モールドを構成する樹脂中の平均フッ素元素濃度(Eb)と前記樹脂モールド表面部のフッ素元素濃度(Es)との比が下記式(1)を満たすことを特徴とする請求項1記載の樹脂モールド。
    式(1)
      1≦Es/Eb≦1500 
  3.  350nm~450nmにおける全光線透過率が50%以上であることを特徴とする請求項1又は請求項2に記載の樹脂モールド。
  4.  光ナノインプリントにより形成された光重合性混合物の硬化物から成ることを特徴とする請求項1から請求項3のいずれかに記載の樹脂モールド。
  5.  前記光重合性混合物が、(メタ)アクリレート、フッ素含有(メタ)アクリレート、及び光重合開始剤を含むことを特徴とする請求項4記載の樹脂モールド。
  6.  前記(メタ)アクリレート100重量部に対して、前記フッ素含有(メタ)アクリレートを0.1重量部~50重量部、前記光重合開始剤を0.01重量部~10重量部含有することを特徴とする請求項5記載の樹脂モールド。
  7.  前記微細凹凸構造の形状が、ピッチ50nm~1000nmであり、高さが50nm~500nmであることを特徴とする請求項1から請求項6のいずれかに記載の樹脂モールド。
  8.  ナノインプリント用であることを特徴とする請求項1から請求項7のいずれかに記載の樹脂モールド。
  9.  樹脂モールドを構成する樹脂中の平均フッ素元素濃度(Eb)と樹脂モールド表面部のフッ素元素濃度(Es)との比が下記式(2)を満たすことを特徴とする請求項1記載の樹脂モールド。
    式(2)
      20≦Es/Eb≦200 
  10.  フッ素含有(メタ)アクリレートと、非フッ素含有の(メタ)アクリレートと、からなる共重合体を含み、前記フッ素含有(メタ)アクリレートが、下記化学式(1)及び/又は下記化学式(2)で表されることを特徴とする請求項9に記載の樹脂モールド。
    Figure JPOXMLDOC01-appb-C000001
    (化学式(1)中、R1は、下記化学式(3)を表し、R2は、下記化学式(4)を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (化学式(3)中、nは、1以上6以下の整数である。)
    Figure JPOXMLDOC01-appb-C000003
    (化学式(4)中、Rは、H又はCHである。)
  11.  前記非フッ素含有の(メタ)アクリレート100重量部に対して、フッ素含有(メタ)アクリレートを0.8重量部~6重量部含有することを特徴とする請求項10に記載の樹脂モールド。
  12.  請求項10に記載の樹脂モールドの製造方法であって、非フッ素含有(メタ)アクリレート100重量部、フッ素含有(メタ)アクリレートを0.8重量部~6重量部、及び光重合開始剤を含む光重合性混合物を基板又はマスターモールド上に塗布する工程と、前記光重合性混合物を前記基板と前記マスターモールドとの間で押圧する工程と、前記光重合性混合物を露光により硬化させて硬化物を得る工程と、前記マスターモールドから前記硬化物を剥離する工程とを有することを特徴とする樹脂モールドの製造方法。
PCT/JP2011/055505 2010-03-10 2011-03-09 樹脂モールド WO2011111741A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11753399.2A EP2546041B1 (en) 2010-03-10 2011-03-09 Resin mold and method for manufacturing a resin mold
KR1020127022992A KR101381489B1 (ko) 2010-03-10 2011-03-09 수지 몰드
US13/583,171 US20130049255A1 (en) 2010-03-10 2011-03-09 Resin mold
CN201180012708.3A CN102791452B (zh) 2010-03-10 2011-03-09 树脂模具
US15/925,342 US10766169B2 (en) 2010-03-10 2018-03-19 Resin mold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-053194 2010-03-10
JP2010053194 2010-03-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/583,171 A-371-Of-International US20130049255A1 (en) 2010-03-10 2011-03-09 Resin mold
US15/925,342 Division US10766169B2 (en) 2010-03-10 2018-03-19 Resin mold

Publications (1)

Publication Number Publication Date
WO2011111741A1 true WO2011111741A1 (ja) 2011-09-15

Family

ID=44563542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055505 WO2011111741A1 (ja) 2010-03-10 2011-03-09 樹脂モールド

Country Status (7)

Country Link
US (2) US20130049255A1 (ja)
EP (1) EP2546041B1 (ja)
JP (2) JP5908214B2 (ja)
KR (1) KR101381489B1 (ja)
CN (1) CN102791452B (ja)
TW (1) TWI428225B (ja)
WO (1) WO2011111741A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5597263B2 (ja) * 2010-12-09 2014-10-01 旭化成イーマテリアルズ株式会社 微細構造積層体、微細構造積層体の作製方法及び微細構造体の製造方法
CN104220224A (zh) * 2012-04-10 2014-12-17 大金工业株式会社 压印用树脂模具材料组合物
US20150183942A1 (en) * 2012-09-19 2015-07-02 Canon Kabushiki Kaisha Photocurable composition and method of manufacturing film using the composition
WO2018012340A1 (ja) * 2016-07-12 2018-01-18 シャープ株式会社 防汚性フィルム
US10744738B2 (en) 2016-07-12 2020-08-18 Sharp Kabushiki Kaisha Antifouling film

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691717B2 (ja) * 2010-10-20 2015-04-01 ダイキン工業株式会社 インプリント用樹脂モールド材料組成物
JP5697407B2 (ja) * 2010-11-11 2015-04-08 旭化成株式会社 感光性樹脂積層体
JP5678728B2 (ja) * 2011-03-03 2015-03-04 大日本印刷株式会社 モールドおよびその製造方法
JP5839877B2 (ja) * 2011-07-27 2016-01-06 旭化成イーマテリアルズ株式会社 スピンコート用樹脂鋳型
JP6067290B2 (ja) * 2011-09-13 2017-01-25 旭化成株式会社 メタマテリアル転写用積層体及びメタマテリアル被転写基材の製造方法
WO2013099915A1 (ja) * 2011-12-28 2013-07-04 王子ホールディングス株式会社 有機発光ダイオード、有機発光ダイオードの製造方法、画像表示装置および照明装置
JP2013237157A (ja) * 2012-05-11 2013-11-28 Kuraray Co Ltd 樹脂成形体の製造方法、樹脂成形体、およびモールド
US20150147533A1 (en) 2012-05-25 2015-05-28 Soken Chemical & Engineering Co., Ltd. Photocurable Resin Composition for Imprinting, Production Method and Structure Thereof
JP5990411B2 (ja) * 2012-06-11 2016-09-14 旭化成株式会社 防塵膜の製造方法
EP3012097A3 (en) * 2012-06-13 2016-06-22 Asahi Kasei E-materials Corporation Function transfer product, functional layer transfer method, packed product, and function transfer film roll
CN104737272A (zh) 2012-10-22 2015-06-24 综研化学株式会社 压印用光固化性树脂组合物、压印用模具的制造方法以及压印用模具
JP2014168868A (ja) 2013-03-01 2014-09-18 Sony Corp 転写型および構造体の製造方法
TW201528449A (zh) * 2013-11-07 2015-07-16 Asahi Glass Co Ltd 脫模膜、及半導體封裝件之製造方法
JP6324049B2 (ja) * 2013-12-11 2018-05-16 旭化成株式会社 機能転写体及び機能層の転写方法
JP6371076B2 (ja) * 2014-02-24 2018-08-08 旭化成株式会社 フィルム状モールドの製造方法
JP6375135B2 (ja) * 2014-04-23 2018-08-15 東洋合成工業株式会社 樹脂モールド及び複数の部品の製造方法
TWI738819B (zh) * 2016-07-08 2021-09-11 日商大金工業股份有限公司 硬化性組成物、其製造方法,以及使用該硬化性組成物之物品
JP6881567B2 (ja) 2017-03-23 2021-06-02 Agc株式会社 インプリント用硬化性組成物、レプリカモールドおよびその製造方法
KR102452035B1 (ko) 2017-04-14 2022-10-11 삼성디스플레이 주식회사 소프트 몰드용 조성물, 이를 이용하여 제조된 소프트 몰드
JP6508405B1 (ja) 2017-11-21 2019-05-08 三菱マテリアル株式会社 絶縁導体および絶縁導体の製造方法
JP6734331B2 (ja) * 2018-08-22 2020-08-05 シャープ株式会社 防汚性フィルムの製造方法
JP2020152093A (ja) * 2019-03-15 2020-09-24 パナック株式会社 複合体の製造方法、及び複合体
CN110061079A (zh) * 2019-05-22 2019-07-26 深圳市欧椰华新能源有限公司 一种太阳能电池板的表面封装膜及其制作方法
CN114556211A (zh) 2019-12-02 2022-05-27 Ev 集团 E·索尔纳有限责任公司 用于脱离印模的方法和装置
JP7136831B2 (ja) * 2020-04-08 2022-09-13 エーファウ・グループ・エー・タルナー・ゲーエムベーハー スタンパ構造を備えたスタンパ並びにその製造方法
WO2022030482A1 (ja) 2020-08-07 2022-02-10 Agc株式会社 光学素子、及びその製造方法
US20220181165A1 (en) * 2020-12-08 2022-06-09 Compass Technology Company Limited Fabrication Method of Flexible Cyclo-Olefin Polymer (COP) Substrate for IC Packaging of Communication Devices and Biocompatible Sensors Devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005047080A (ja) * 2003-07-31 2005-02-24 Alps Electric Co Ltd 微細凹凸面を有する樹脂製光学部品成形用型及びこれを用いた樹脂製光学部品の製造方法
JP2006116896A (ja) * 2004-10-25 2006-05-11 Alps Electric Co Ltd 金型の製造方法
JP2006198883A (ja) 2005-01-20 2006-08-03 Asahi Glass Co Ltd モールドおよび表面に微細パターンを有する物品
JP2009045925A (ja) * 2007-07-23 2009-03-05 Asahi Glass Co Ltd ナノインプリント用モールドおよびその製造方法
JP2010053194A (ja) 2008-08-27 2010-03-11 Toyo Ink Mfg Co Ltd 印刷インキバインダーおよび該バインダーを用いた印刷インキ組成物ならびに該印刷インキを用いた被覆物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5907017A (en) * 1997-01-31 1999-05-25 Cornell Research Foundation, Inc. Semifluorinated side chain-containing polymers
DE10062203A1 (de) * 2000-12-13 2002-06-20 Creavis Tech & Innovation Gmbh Verfahren zur Abformung von hydrophoben Polymeren zur Erzeugung von Oberflächen mit beständig wasser- und ölabweisenden Eigenschaften
JP3963169B2 (ja) * 2001-06-27 2007-08-22 ダイキン工業株式会社 表面処理剤組成物
US20060108710A1 (en) * 2004-11-24 2006-05-25 Molecular Imprints, Inc. Method to reduce adhesion between a conformable region and a mold
US20050023433A1 (en) 2003-07-31 2005-02-03 Alps Electric Co., Ltd. Resin optical component mold having minute concavo-convex portions and method of manufacturing resin optical component using the same
JP2007503120A (ja) * 2003-08-19 2007-02-15 ナノオプト コーポレーション サブミクロンスケールのパターニングの方法およびシステム
US7365414B2 (en) * 2003-12-01 2008-04-29 Intel Corporation Component packaging apparatus, systems, and methods
EP2172433A4 (en) 2007-06-20 2012-12-19 Asahi Glass Co Ltd METHOD FOR TREATING THE SURFACE OF OXID GLASS WITH A FLUORIZING AGENT
CN102027026B (zh) * 2008-05-29 2013-06-19 旭硝子株式会社 光固化性组合物及表面具有精细图案的成形体的制造方法
KR101327605B1 (ko) * 2008-09-09 2013-11-12 다이킨 고교 가부시키가이샤 미끄럼 이동 부재, 불소 고무 성형품의 제조 방법 및 비점착성 부재
JP5611519B2 (ja) * 2008-10-29 2014-10-22 富士フイルム株式会社 ナノインプリント用組成物、パターンおよびその形成方法
EP2199855B1 (en) * 2008-12-19 2016-07-20 Obducat Methods and processes for modifying polymer material surface interactions
JP6067290B2 (ja) * 2011-09-13 2017-01-25 旭化成株式会社 メタマテリアル転写用積層体及びメタマテリアル被転写基材の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005047080A (ja) * 2003-07-31 2005-02-24 Alps Electric Co Ltd 微細凹凸面を有する樹脂製光学部品成形用型及びこれを用いた樹脂製光学部品の製造方法
JP2006116896A (ja) * 2004-10-25 2006-05-11 Alps Electric Co Ltd 金型の製造方法
JP2006198883A (ja) 2005-01-20 2006-08-03 Asahi Glass Co Ltd モールドおよび表面に微細パターンを有する物品
JP2009045925A (ja) * 2007-07-23 2009-03-05 Asahi Glass Co Ltd ナノインプリント用モールドおよびその製造方法
JP2010053194A (ja) 2008-08-27 2010-03-11 Toyo Ink Mfg Co Ltd 印刷インキバインダーおよび該バインダーを用いた印刷インキ組成物ならびに該印刷インキを用いた被覆物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2546041A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5597263B2 (ja) * 2010-12-09 2014-10-01 旭化成イーマテリアルズ株式会社 微細構造積層体、微細構造積層体の作製方法及び微細構造体の製造方法
CN104220224A (zh) * 2012-04-10 2014-12-17 大金工业株式会社 压印用树脂模具材料组合物
US9522998B2 (en) 2012-04-10 2016-12-20 Daikin Industries, Ltd. Resin mold material composition for imprinting
US20150183942A1 (en) * 2012-09-19 2015-07-02 Canon Kabushiki Kaisha Photocurable composition and method of manufacturing film using the composition
US9982102B2 (en) * 2012-09-19 2018-05-29 Canon Kabushiki Kaisha Photocurable composition and method of manufacturing film using the composition
WO2018012340A1 (ja) * 2016-07-12 2018-01-18 シャープ株式会社 防汚性フィルム
JPWO2018012340A1 (ja) * 2016-07-12 2018-10-25 シャープ株式会社 防汚性フィルム
US10744738B2 (en) 2016-07-12 2020-08-18 Sharp Kabushiki Kaisha Antifouling film
US10752788B2 (en) 2016-07-12 2020-08-25 Sharp Kabushiki Kaisha Antifouling film

Also Published As

Publication number Publication date
JP6038261B2 (ja) 2016-12-07
CN102791452A (zh) 2012-11-21
CN102791452B (zh) 2015-07-08
JP5908214B2 (ja) 2016-04-26
EP2546041B1 (en) 2018-10-03
JP2016026122A (ja) 2016-02-12
US10766169B2 (en) 2020-09-08
TWI428225B (zh) 2014-03-01
EP2546041A1 (en) 2013-01-16
EP2546041A4 (en) 2013-11-27
KR101381489B1 (ko) 2014-04-04
TW201144027A (en) 2011-12-16
KR20120128659A (ko) 2012-11-27
JP2011207221A (ja) 2011-10-20
US20130049255A1 (en) 2013-02-28
US20180207841A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP6038261B2 (ja) 樹脂モールド及びその製造方法
JP5597263B2 (ja) 微細構造積層体、微細構造積層体の作製方法及び微細構造体の製造方法
JP5658001B2 (ja) 樹脂モールド
KR101556836B1 (ko) 미세 요철 구조 전사용 주형
JP6177168B2 (ja) エッチング被加工材及びそれを用いたエッチング方法
JP6067290B2 (ja) メタマテリアル転写用積層体及びメタマテリアル被転写基材の製造方法
JP2013254026A (ja) 光学素子
JP6010481B2 (ja) フィルム状モールドの製造方法
JP5839877B2 (ja) スピンコート用樹脂鋳型
JP6371076B2 (ja) フィルム状モールドの製造方法
JP5813418B2 (ja) 微細パターンの製造方法
JP5956198B2 (ja) 集光型太陽電池用レンズ及び集光型太陽電池用レンズの製造方法
JP5990411B2 (ja) 防塵膜の製造方法
JP2012116108A (ja) 樹脂モールド
JP2012101483A (ja) 樹脂モールド製造方法
JP5820639B2 (ja) 微細マスク形成用積層体、及び加工対象物の加工方法
TW201622836A (zh) 圖案形成體的製造方法
JP2020032578A (ja) 樹脂製モールドの製造方法、凹凸パターンの形成方法、中間版モールドの製造方法、中間版モールド及び光学素子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012708.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127022992

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011753399

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13583171

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP