WO2011092758A1 - スパークプラグ - Google Patents

スパークプラグ Download PDF

Info

Publication number
WO2011092758A1
WO2011092758A1 PCT/JP2010/005160 JP2010005160W WO2011092758A1 WO 2011092758 A1 WO2011092758 A1 WO 2011092758A1 JP 2010005160 W JP2010005160 W JP 2010005160W WO 2011092758 A1 WO2011092758 A1 WO 2011092758A1
Authority
WO
WIPO (PCT)
Prior art keywords
noble metal
ground electrode
metal tip
tip
hole
Prior art date
Application number
PCT/JP2010/005160
Other languages
English (en)
French (fr)
Inventor
伸彰 坂柳
勝稔 中山
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to US13/143,220 priority Critical patent/US8264131B2/en
Priority to CN2010800050316A priority patent/CN102292886B/zh
Priority to KR1020117017005A priority patent/KR101515262B1/ko
Priority to EP10841788.2A priority patent/EP2385594B1/en
Publication of WO2011092758A1 publication Critical patent/WO2011092758A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines

Definitions

  • the present invention relates to a spark plug used for an internal combustion engine or the like.
  • a spark plug used in a combustion apparatus such as an internal combustion engine includes, for example, a center electrode extending in the axial direction, an insulator provided on the outer periphery of the center electrode, and a cylindrical metal shell assembled on the outside of the insulator And a ground electrode whose base end is joined to the tip of the metal shell.
  • the ground electrode has a substantially intermediate portion bent so that the tip of the ground electrode is opposed to the tip of the center electrode, whereby a spark discharge gap is formed between the tip of the center electrode and the tip of the ground electrode. Is formed. *
  • a technique for joining a noble metal tip to a portion where the spark discharge gap is formed in the tip portion of the ground electrode is known.
  • a technique for joining the noble metal tip for example, a technique is proposed in which a melted portion is formed by melting the noble metal tip and the ground electrode by laser welding, and the noble metal tip and the ground electrode are joined via the melted portion.
  • melting part is inferior in terms of wear resistance compared with a noble metal chip
  • spark discharge may occur between the irregularities having a relatively large electric field strength and the center electrode, which may reduce ignitability. . Therefore, from the viewpoint of preventing a decrease in ignitability and wear resistance, it is desirable to prevent the melting portion from being exposed as much as possible to the spark discharge gap side. Therefore, a concave portion is formed in the ground electrode, and a noble metal tip is embedded in the concave portion, and then a laser beam is irradiated from the side surface side of the ground electrode toward the embedded portion of the noble metal tip, thereby moving toward the spark discharge gap side.
  • melting part of this is proposed (for example, refer patent document 2 etc.).
  • the present invention has been made in view of the above circumstances, and its purpose is to improve the peel resistance of the noble metal tip by reducing the thermal stress difference generated between the noble metal tip and the ground electrode. It is to provide a spark plug that can be used.
  • the spark plug of this configuration includes a cylindrical insulator having an axial hole penetrating in the axial direction, a center electrode inserted on the tip side of the axial hole, and a cylindrical electrode provided on the outer periphery of the insulator.
  • the ground electrode includes a hole-corresponding portion in which a concave hole is provided on at least one of a tip surface and a side surface of the tip portion of the ground electrode, and the noble metal tip is formed from a side surface of the spark plug.
  • the configuration 1 has a noble metal tip that generates a relatively large thermal stress difference with the ground electrode, in other words, a relatively large surface area for forming the gap (for example, 1.0 mm 2 or more). This is particularly significant for precious metal tips.
  • the spark plug of this configuration is the above configuration 1, wherein the ground electrode includes a main body portion that is a portion other than the hole corresponding portion, and the melting portion is an irradiation position of the laser beam or the electron beam, An exposed surface that is exposed on the surface of the ground electrode, and is located on the opposite side of the exposed surface of the noble metal tip from the end of the noble metal tip along a direction orthogonal to the exposed surface of the melted portion. At least a part of the portion to be inserted enters the main body.
  • the spark plug of this configuration is the surface on the gap side of the surface of the main body part and the edge of the part that has entered the main body part of the melted part along the central axis of the noble metal tip in the above configuration 2
  • the maximum value of the distance between is set to 0.05 mm or more.
  • the spark plug of this configuration is the above-described configuration 2 or 3, wherein an edge of a portion of the melted portion that has entered the main body portion and an inner wall surface of the hole portion along the direction orthogonal to the central axis of the noble metal tip The maximum value of the distance between is set to 0.05 mm or more.
  • the spark plug of this configuration is the surface of any one of the above configurations 1 to 5, wherein the surface of the ground electrode is irradiated with the laser beam or the electron beam and the surface where the hole is formed. The melted portion is not exposed on the surface excluding.
  • the spark plug of this configuration is the surface of the surface connected to the surface of the main body while forming the gap with the noble metal tip in the inner wall surface of the hole in any of the above configurations 1 to 7. At least in part, a tapered portion that gradually approaches the noble metal tip as it goes toward the bottom surface of the hole portion is provided, and in the cross section including the central axis of the noble metal tip, the outline of the tapered portion and the main body portion Among the angles formed with the outer shape line, the angle on the ground electrode side is an obtuse angle. *
  • the angle formed by the outline of the tapered portion and the outline of the main body in the cross section including the central axis of the noble metal tip is preferably 95 degrees or more, and more preferably 100 degrees or more.
  • the spark plug of this configuration is any one of the above configurations 1 to 8, wherein the ground electrode includes a main body portion that is a part other than the hole corresponding portion, and is between the noble metal tip on the inner wall surface of the hole portion. Then, at least a part of the surface forming the gap is connected to the surface of the main body part via a convex curved surface part.
  • the radius of curvature of the curved surface portion is preferably 0.1 mm or more, and more preferably 0.2 mm or more.
  • Configuration 10 10. The spark plug according to claim 1, wherein the laser beam is a fiber laser in any one of the configurations 1 to 9.
  • the ground electrode has a concave hole portion, and the noble metal tip passes through the melted portion formed by irradiating a laser beam or the like from its side surface. It is joined to the hole part. Therefore, it is possible to suppress the melted portion from being exposed to the gap (spark discharge gap) side, and it is possible to more reliably prevent the deterioration of wear resistance and ignition performance.
  • the spark plug of configuration 1 70% or more of the bottom surface of the noble metal tip is bonded to the ground electrode. That is, a sufficiently wide melting portion is interposed between the bottom surface of the noble metal tip and the ground electrode. Therefore, the thermal stress difference between the noble metal tip and the ground electrode, which is caused by thermal expansion, can be more reliably absorbed by the melted portion.
  • a gap is provided between at least a part of the inner wall surface of the hole and the noble metal tip, and the noble metal tip can be thermally expanded to the side surface during use (heating). Yes. Thereby, the thermal stress difference which arises between a noble metal tip and a ground electrode can be reduced more reliably.
  • the size of the gap is set so as not to be excessively large as 1.0 mm or less along the direction orthogonal to the central axis of the noble metal tip, heat is more efficiently transferred from the noble metal tip to the ground electrode. Can be drawn. As a result, the thermal stress difference generated between the noble metal tip and the ground electrode can be further reduced.
  • the spark plug of configuration 1 by allowing the thermal expansion of the noble metal tip to the side surface thereof by providing a gap, while preventing the excess of the gap and efficiently drawing the heat of the noble metal tip, the thermal stress difference between the noble metal tip and the ground electrode can be sufficiently reduced, and the thermal stress difference can be effectively absorbed by a relatively wide melting portion. As a result, the progress of oxide scale at the boundary portion between the noble metal tip and the ground electrode can be more reliably prevented, and the peel resistance of the noble metal tip can be greatly improved.
  • the spark plug of configuration 2 at least a part of a portion located on the opposite side to the exposed surface in the melting portion is configured to enter the main body portion of the ground electrode. That is, the end edge part of the melting part is held by the main body part. For this reason, the thermal expansion of the fusion
  • the maximum value of the distance along the central axis of the noble metal tip between the edge of the portion of the melted portion that has entered the main body and the surface on the gap side of the main body is 0.05 mm. That's it. That is, it is configured such that the end edge of the melting part is located sufficiently inside the surface of the main body part. Therefore, the edge part of a fusion
  • the maximum value of the distance along the direction perpendicular to the central axis of the noble metal tip between the edge of the portion of the melted portion that has entered the main body and the inner wall surface of the hole is 0. .05 mm or more. That is, it is configured such that the edge of the melted portion sufficiently enters inside from the inner wall surface of the hole portion. Therefore, from the boundary portion between the inner wall surface of the hole and the melting portion (in other words, the oxygen intrusion location), the portion located on the opposite side of the noble metal tip in the boundary portion between the melting portion and the ground electrode (for example, In FIGS.
  • the distance to the thick-lined part which is an important part in securing the peel resistance of the noble metal tip, can be made sufficiently large. Thereby, the progress of the oxide scale to the boundary portion can be effectively prevented, and the peel resistance can be further improved.
  • the melted portion is formed so as to be positioned closer to the distal end side of the ground electrode than the bent portion, that is, the melted portion does not reach the bent portion. For this reason, it is possible to more reliably prevent the breakage resistance of the ground electrode from decreasing.
  • the melted part which is inferior in wear resistance compared with the noble metal tip, is not exposed on the discharge surface. Therefore, the effect of improving wear resistance due to the provision of the noble metal tip can be more reliably exhibited.
  • the tapered portion is provided on the inner wall surface of the hole portion, and the angle formed by the connecting portion of the tapered portion and the main body portion is an obtuse angle. Therefore, the electric field strength of the connection portion can be reduced, and abnormal spark discharge between the connection portion and the center electrode can be more reliably prevented. As a result, ignitability can be improved.
  • the spark plug of configuration 9 since the inner wall surface of the hole portion and the main body portion are connected via the curved surface portion, abnormal spark discharge between the ground electrode and the center electrode can be prevented more reliably. can do. As a result, ignitability can be improved.
  • the molten portion can be further brought to the inner side of the ground electrode while maintaining the relatively thin state of the molten portion. Therefore, even if the melted part is formed over a relatively large area as described above, the volume of the melted part can be made relatively small. Therefore, the portion of the noble metal tip that melts at the time of joining can be further reduced. Even if a relatively thin tip is used as the noble metal tip, the noble metal tip has a sufficient thickness (volume) after joining. It can have. That is, according to the present configuration 10, it is possible to improve wear resistance while reducing the manufacturing cost by using a relatively thin (for example, 0.5 mm or less) noble metal tip.
  • (A) is a partial enlarged plan view which shows the structure of the front-end
  • (A), (b) is an expanded sectional schematic diagram for demonstrating the part located in the opposite side to a noble metal tip among the boundary parts of a fusion
  • (A), (b) is an expanded sectional schematic diagram for showing an example of the fusion
  • FIG. 1 is a partially cutaway front view showing a spark plug 1.
  • the direction of the axis CL ⁇ b> 1 of the spark plug 1 is the vertical direction in the drawing, the lower side is the front end side of the spark plug 1, and the upper side is the rear end side.
  • the spark plug 1 includes an insulator 2 as a cylindrical insulator, a cylindrical metal shell 3 that holds the insulator 2, and the like. *
  • the insulator 2 is formed by firing alumina or the like, and in its outer portion, a rear end side body portion 10 formed on the rear end side, and a front end than the rear end side body portion 10.
  • a large-diameter portion 11 that protrudes radially outward on the side, a middle body portion 12 that is smaller in diameter than the large-diameter portion 11, and a tip portion that is more distal than the middle body portion 12.
  • a leg length part 13 formed with a smaller diameter than this is provided.
  • the large diameter portion 11, the middle trunk portion 12, and most of the leg long portions 13 are accommodated inside the metal shell 3.
  • a tapered step portion 14 is formed at the connecting portion between the middle body portion 12 and the long leg portion 13, and the insulator 2 is locked to the metal shell 3 at the step portion 14.
  • the insulator 2 is formed with a shaft hole 4 penetrating along the axis CL1, and a center electrode 5 is inserted and fixed to the tip end side of the shaft hole 4.
  • the center electrode 5 includes an inner layer 5A made of copper or a copper alloy having excellent thermal conductivity, and an outer layer 5B made of a Ni alloy containing nickel (Ni) as a main component.
  • the center electrode 5 has a rod shape (cylindrical shape) as a whole, and its tip end surface is formed flat and protrudes from the tip of the insulator 2.
  • a noble metal portion 31 made of a predetermined noble metal alloy (for example, a platinum alloy or an iridium alloy) is provided at the tip of the center electrode 5. *
  • a terminal electrode 6 is inserted and fixed on the rear end side of the shaft hole 4 in a state of protruding from the rear end of the insulator 2.
  • a cylindrical resistor 7 is disposed between the center electrode 5 and the terminal electrode 6 of the shaft hole 4. Both ends of the resistor 7 are electrically connected to the center electrode 5 and the terminal electrode 6 through conductive glass seal layers 8 and 9, respectively.
  • the metal shell 3 is formed in a cylindrical shape from a metal such as low carbon steel, and a spark plug 1 is attached to the outer peripheral surface of the metal shell 3 such as an internal combustion engine or a fuel cell reformer.
  • a threaded portion (male threaded portion) 15 for attachment to the hole is formed.
  • a seat portion 16 is formed on the outer peripheral surface on the rear end side of the screw portion 15, and a ring-shaped gasket 18 is fitted on the screw neck 17 on the rear end of the screw portion 15.
  • a tool engaging portion 19 having a hexagonal cross section for engaging a tool such as a wrench when the metal shell 3 is attached to the combustion device is provided.
  • 1 is provided with a caulking portion 20 for holding the insulator 2.
  • a tapered step portion 21 for locking the insulator 2 is provided on the inner peripheral surface of the metal shell 3.
  • the insulator 2 is inserted from the rear end side to the front end side of the metal shell 3, and the rear end of the metal shell 3 is engaged with the step portion 14 of the metal shell 3. It is fixed by caulking the opening on the side radially inward, that is, by forming the caulking portion 20.
  • An annular plate packing 22 is interposed between the step portions 14 and 21 of both the insulator 2 and the metal shell 3. Thereby, the airtightness in the combustion chamber is maintained, and the fuel gas that enters the gap between the leg long portion 13 of the insulator 2 exposed to the combustion chamber and the inner peripheral surface of the metal shell 3 does not leak to the outside.
  • annular ring members 23 and 24 are interposed between the metal shell 3 and the insulator 2 on the rear end side of the metal shell 3, and the ring member 23. , 24 is filled with powder of talc (talc) 25. That is, the metal shell 3 holds the insulator 2 via the plate packing 22, the ring members 23 and 24, and the talc 25.
  • the distal end portion 26 of the metal shell 3 is bent back by a bent portion 27 ⁇ / b> B located at a substantially intermediate portion, and the distal end side surface is the distal end portion (noble metal portion 31) of the center electrode 5.
  • the ground electrode 27 is made of an alloy containing Ni as a main component and containing at least one of silicon, aluminum, and a rare earth element.
  • a columnar noble metal tip 41 is joined to a portion of the ground electrode 27 facing the noble metal portion 31.
  • the noble metal tip 41 is made of a noble metal alloy containing at least one of iridium, platinum, rhodium, ruthenium, palladium, and rhenium. *
  • a spark discharge gap 33 as a gap is formed between the tip surface (discharge surface) of the noble metal tip 41 and the noble metal portion 31, and the spark discharge gap 33 extends in a direction along the axis CL ⁇ b> 1. Spark discharge is performed.
  • the noble metal tip 41 is relatively thin (for example, 0.5 mm or less) in order to reduce the manufacturing cost, while the tip surface is used in order to improve wear resistance.
  • the area of (discharge surface) is relatively large (for example, 1.0 mm 2 or more).
  • the noble metal tip 41 is bonded to the bottom surface of the hole 43 provided on the side surface of the ground electrode 27. And the noble metal tip 41 is joined via a melting part 35 in which itself and the ground electrode 27 are melted, and more than 70% of the bottom surface (the back surface of the discharge surface) of the noble metal tip 41 (in this embodiment, 10%) is bonded to the ground electrode 27.
  • the ground electrode 27 includes a hole corresponding part 27H corresponding to the hole 43 and a main body part 27M which is a part other than the hole corresponding part 27H.
  • the hole corresponding part 27H is a part of the ground electrode 27 that is located closest to the bottom surface side of the hole 43 among the inner wall surfaces 43S of the hole 43 along the central axis CL2 of the noble metal tip 41.
  • a gap 45 is provided between at least a part of the inner wall surface 43 ⁇ / b> S of the hole 43 and the noble metal tip 41.
  • the size A1 of the gap 45 along the direction orthogonal to the central axis CL2 of the noble metal tip 41 is more than 0 mm and 1.0 mm or less (for example, 0.01 mm or more and 0.5 mm or less).
  • the melting portion 35 is formed by irradiating a laser beam (in this embodiment, a fiber laser) or an electron beam from the side surface side of the noble metal tip 41 to the tip surface of the ground electrode 27.
  • the melting portion 35 is a position to be irradiated with a laser beam or the like, and its thickness decreases relatively abruptly at the outer portion from the exposed surface 35E exposed at the tip surface of the ground electrode 27 toward the inside.
  • the inner portion is formed so that the thickness reduction amount is relatively small.
  • at least a part of the part with the dotted pattern] enters the main body part 27M of the ground electrode 27.
  • the maximum value of the distance B1 is 0.05 mm or more.
  • the maximum value of the distance C1 along the direction orthogonal to the central axis CL2 of the noble metal tip 41 between the edge of the portion of the melted portion 35 that has entered the main body portion 27M and the inner wall surface 43S of the hole 43 is equal to. It is 0.05 mm or more.
  • the melting portion 35 is formed so that the maximum value of the distance C1 is relatively small (for example, 1.0 mm or less). Therefore, the melting part 35 is formed closer to the distal end side of the ground electrode 27 than the bending part 27B of the ground electrode 27 (in other words, the melting part 35 does not reach the bending part 27B). In addition, the melting portion 35 is not exposed to the surface excluding the surface irradiated with the laser beam and the surface where the hole 43 is formed, among the front end surface and the side surface of the ground electrode 27. ing. *
  • the melting portion 35 is formed thin in the portion located inside, so that the melting portion 35 is the discharge surface of the noble metal tip 41 even though it is a relatively thin noble metal tip 41. It is supposed not to be exposed.
  • the manufacturing method of the spark plug 1 comprised as mentioned above is demonstrated.
  • the metal shell 3 is processed in advance. That is, a rough shape is formed on a cylindrical metal material (for example, an iron-based material or a stainless steel material) by cold forging or the like, and a through hole is formed. Thereafter, the outer shape is trimmed by cutting to obtain a metal shell intermediate.
  • a cylindrical metal material for example, an iron-based material or a stainless steel material
  • a straight bar-shaped ground electrode 27 made of an Ni alloy is resistance-welded to the front end surface of the metal shell intermediate.
  • so-called “sag” is generated.
  • the threaded portion 15 is formed by rolling at a predetermined portion of the metal shell intermediate body.
  • the metal shell 3 to which the ground electrode 27 is welded is galvanized or nickel plated.
  • the surface may be further subjected to chromate treatment.
  • the insulator 2 is formed separately from the metal shell 3.
  • a raw material powder mainly composed of alumina and containing a binder or the like a green compact for molding is prepared, and a rubber-molded product is used to form a cylindrical molded body. Is obtained.
  • the obtained molded body is ground and shaped, and the shaped product is fired in a firing furnace, whereby the insulator 2 is obtained.
  • the center electrode 5 is manufactured. That is, the center electrode 5 is produced by forging a Ni alloy in which a copper alloy or the like for improving heat dissipation is arranged at the center. Next, a noble metal portion 31 made of a noble metal alloy is joined to the tip portion of the center electrode 5 by laser welding or the like.
  • the glass seal layers 8 and 9 are generally prepared by mixing borosilicate glass and metal powder, and the prepared material is injected into the shaft hole 4 of the insulator 2 with the resistor 7 interposed therebetween. Then, it is baked and hardened by heating in the baking furnace while pressing with the terminal electrode 6 from the rear. At this time, the glaze layer may be fired simultaneously on the surface of the rear end side body portion 10 of the insulator 2 or the glaze layer may be formed in advance.
  • the insulator 2 including the center electrode 5 and the terminal electrode 6 and the metal shell 3 including the ground electrode 27, which are respectively produced as described above, are assembled. More specifically, it is fixed by caulking the opening on the rear end side of the metal shell 3 formed relatively thin inward in the radial direction, that is, by forming the caulking portion 20.
  • the noble metal tip 41 is joined to the ground electrode 27 by laser beam or electron beam welding.
  • the depth of the hole 43 is adjusted so that the distance B1 is not less than a predetermined size.
  • the welding of the noble metal tip 41 to the ground electrode 27 will be described in detail.
  • the noble metal tip 41 placed on the bottom surface of the hole 43 of the ground electrode 27, the noble metal tip 41 is supported by a predetermined pressing pin. Then, while moving the laser irradiation position along the width direction of the ground electrode 27, a fiber laser, an electron beam or the like is applied to the contact surface of the ground electrode 27 and the noble metal tip 41 from the tip surface side of the ground electrode 27. Irradiate a high energy laser beam. Thereby, the melting part 35 is formed, and the noble metal tip 41 is joined to the ground electrode 27. *
  • a laser beam is used so that 70% or more of the bottom surface of the noble metal tip 41 is bonded to the ground electrode 27 and the edge of the melting portion 35 enters the main body portion 27M of the ground electrode 27.
  • Irradiation conditions such as are set. Further, when the outer diameter of the noble metal tip 41 and the material constituting the noble metal tip 41 are different, the output of the laser beam or the like, the irradiation time, how to hit the laser beam or the like [the laser is a continuous wave or an intermittent wave ( Etc.] and the like are appropriately adjusted, 70% or more of the bottom surface of the noble metal tip 41 can be bonded to the ground electrode 27.
  • the noble metal tip 41 is placed in the hole 43 of the ground electrode 27 via the melting portion 35 formed by irradiating a laser beam or the like from its side surface side. It is joined. Therefore, it is possible to suppress the fusion part 35 from being exposed to the spark discharge gap 33 side, and it is possible to more reliably prevent the wear resistance and the ignition quality from being lowered.
  • a gap 45 is provided between at least a part of the inner wall surface 43S of the hole 43 and the noble metal tip 41, and the noble metal tip 41 can be thermally expanded to the side surface during use (heating). It has become. Thereby, the thermal stress difference produced between the noble metal tip 41 and the ground electrode 27 can be reduced more reliably.
  • the size of the gap 45 is set so as not to be excessively large as 1.0 mm or less along the direction orthogonal to the central axis CL2 of the noble metal tip 41, the noble metal tip 41 to the ground electrode 27 is set. And can draw heat more efficiently. As a result, the thermal stress difference generated between the noble metal tip 41 and the ground electrode 27 can be further reduced during use.
  • the gap 45 by providing the gap 45, while allowing the thermal expansion of the noble metal tip 41 to the side surface thereof, the excess of the gap 45 is prevented and the heat of the noble metal tip 41 is efficiently drawn.
  • the thermal stress difference between the noble metal tip 41 and the ground electrode 27 can be sufficiently reduced, and the thermal stress difference can be effectively absorbed by the relatively wide melting portion 35.
  • the progress of oxide scale at the boundary portion between the noble metal tip 41 and the ground electrode 27 can be more reliably prevented, and the peel resistance of the noble metal tip 41 can be greatly improved.
  • the portion located on the opposite side to the exposed surface 35E in the melting portion 35 is configured to enter the main body portion 27M of the ground electrode 27, and the end portion of the melting portion 35 is the main body.
  • the shape is held by the portion 27M.
  • the maximum value of the distance B1 is 0.05 mm or more, and the maximum value of the distance C1 is 0.05 mm or more.
  • the melted part 35 is formed so as to be positioned closer to the distal end side of the ground electrode 27 than the bent part 27B, it is possible to more reliably prevent the breakage resistance of the ground electrode 27 from being lowered.
  • the melting portion 35 is configured not to be exposed to the surface except the surface irradiated with the laser beam and the surface where the hole 43 is formed, among the front end surface and the side surface of the ground electrode 27. ing. Thereby, the fall of ignitability and wear resistance can be prevented more reliably.
  • the portion of the noble metal tip 41 that melts during bonding can be further reduced, and a relatively thin one is used as the noble metal tip 41 as in this embodiment. Even if it exists, the noble metal tip 41 can have a sufficient thickness (volume) after joining. That is, by using a fiber laser as the laser beam, it is possible to improve wear resistance while suppressing the manufacturing cost by using the relatively thin noble metal tip 41.
  • the spark plug 1 ⁇ / b> A is configured such that the tip surface of the ground electrode 57 faces the side surface of the center electrode 5 (the noble metal portion 31).
  • a concave hole 73 is formed in the tip surface of the ground electrode 57, and the noble metal tip 71 is joined to the hole 73 via the melting part 65.
  • the melting portion 65 is formed by irradiating a laser beam or an electron beam from the side surface side of the noble metal tip 71 to the side surface of the ground electrode 27.
  • a spark discharge gap 77 is formed between the side surface of the center electrode 5 (the noble metal portion 31) and the noble metal tip 71, and the spark discharge along the direction substantially orthogonal to the axis CL1 is generated in the spark discharge gap 77.
  • the spark plug 1A in the second embodiment is a so-called lateral discharge type.
  • a gap 75 is provided between at least a part of the inner wall surface 73 ⁇ / b> S of the hole 73 and the noble metal tip 71.
  • the gap 75 has a size A2 along a direction orthogonal to the central axis CL3 of the noble metal tip 71, more than 0 mm and 1.0 mm or less (for example, 0.01 mm or more and 0.5 mm or less).
  • the ground electrode 57 includes a hole corresponding portion 57H corresponding to the hole 73 and a main body portion 57M other than the hole corresponding portion 57H. Then, along the direction orthogonal to the exposed surface 65E of the melted portion 65, at least one of the melted portions 65 located on the opposite side of the exposed surface 65E from the end portion of the noble metal tip 71 located on the exposed surface 65E side. The portion enters the main body portion 57M of the ground electrode 57.
  • the maximum of the distance B2 between the edge of the portion of the melting portion 65 that has entered the main body portion 57M and the surface of the main body portion 57M on the spark discharge gap 77 side is 0.05 mm or more.
  • the maximum value of the distance C2 between the edge of the portion of the melted portion 65 that has entered the main body portion 57M and the inner wall surface 73S of the hole portion 73 along the direction orthogonal to the central axis CL3 of the noble metal tip 71. Is 0.05 mm or more.
  • the same operational effects as those of the first embodiment are basically obtained. That is, in the so-called lateral discharge type spark plug 1A, the peel resistance of the noble metal tip 71 can be remarkably improved.
  • the melting ratio of the bottom surface of the noble metal tip with respect to the ground electrode is set to 50%, and the gap A (mm) between the noble metal tip and the inner wall surface of the hole is determined.
  • a desktop cooling test was performed on each sample.
  • the outline of the desk cooling test is as follows. That is, the sample was subjected to 1000 cycles, with one cycle consisting of heating with a burner for 2 minutes and then gradually cooling for 1 minute so that the temperature of the noble metal tip was 900 ° C. in an air atmosphere.
  • the clearance A of 0.0 mm means that the inner wall surface of the hole is in close contact with the side surface of the noble metal tip.
  • each sample used a noble metal tip having an outer diameter of 1.0 mm and a thickness of 0.4 mm, a ground electrode having a thickness of 1.5 mm, and a surface facing the center electrode. What used the width
  • the sample having the melting ratio of 70% and the gap A of 0.0 mm would have insufficient peel resistance. This is because the noble metal tip and the inner wall surface of the hole are in close contact with each other, so that thermal expansion to the side surface of the noble metal tip is restricted, and as a result, a large boundary portion between the bottom surface of the noble metal tip and the ground electrode is large. This is thought to be because a thermal stress difference has occurred.
  • the sample in which the gap A is more than 0.0 mm and 1.0 mm or less while the melting ratio is 70% has an oxide scale ratio of 50% or less and can realize excellent peeling resistance. became. This is because a gap was provided between the noble metal tip and the inner wall surface of the hole, and in addition to allowing thermal expansion to the side surface of the noble metal tip, the gap was set to 1.0 mm or less. Since the heat is efficiently transferred from the noble metal tip to the ground electrode, the thermal stress difference generated between the two can be sufficiently reduced, and further, the thermal stress difference can be sufficiently reduced by a relatively wide melting portion. This is thought to be due to absorption. *
  • a sample having a gap A of 0.01 mm or more and 0.5 mm or less has an oxide scale ratio of 30% or less, and it was confirmed that the sample has very excellent peel resistance. This is considered to be because heat transfer from the noble metal tip to the ground electrode was performed more effectively.
  • the melting rate of the bottom surface of the noble metal tip with respect to the ground electrode is set to 70% or more, and the gap between the noble metal tip and the inner wall surface of the hole exceeds 0.0 mm. It can be said that it is preferable to provide a gap of 1.0 mm or less. From the viewpoint of further improving the peel resistance, it can be said that the size of the gap is more preferably 0.01 mm or more and 0.5 mm or less.
  • FIG. 7 shows the relationship between the distance B and the oxide scale ratio.
  • each sample had sufficient peel resistance, but the sample with the distance B set to 0.05 mm or more had an oxide scale ratio of 30% or less, and very excellent peel resistance. It became clear to have. This is because the distance B is sufficiently increased to 0.05 mm or more, so that the edge of the melted portion is more reliably held by the main body, and as a result, the thermal expansion of the melted portion is effectively suppressed. This is probably because *
  • the exposed surface is opposite to the exposed surface along the direction perpendicular to the exposed surface of the melted portion than the end portion of the noble metal tip located on the exposed surface side. It can be said that it is preferable that at least a part of the melted part located in the main body part enters the main body part and the distance B is 0.05 mm or more. In particular, in order to further improve the peel resistance, it can be said that the distance B is more preferably 0.2 mm or more.
  • the cross section of the sample is observed, and the oxide scale (oxide film) exceeds the edge of the melted portion, and the portion located on the opposite side of the noble metal tip in the boundary portion between the melted portion and the ground electrode [FIG.
  • Samples that have reached the part indicated by the thick lines in a) and (b) and have developed to the point where peeling of the noble metal tip is a concern due to the progress of the oxide scale are considered to have insufficient peel resistance.
  • An evaluation of “x” was made.
  • the oxide scale did not reach the portion, the sample that reached the edge of the melted part was evaluated as “ ⁇ ” because the peel resistance was slightly inferior.
  • the sample in which the distance C is sufficiently large as 0.05 mm or more can effectively suppress peeling of the noble metal tip without the oxide scale reaching the edge of the melted portion. This is considered to be because the distance C is sufficiently large, so that a sufficient distance can be secured from the location where oxygen enters (the boundary between the inner wall surface of the hole and the melted portion) to the edge of the melted portion. It is done.
  • the distance C is excessively increased, and the portion other than the exposed surface that is the irradiated position of the laser beam or the like in the melted portion is exposed on the surface of the ground electrode. In that case, it was found that the oxide scale progresses from the exposed portion, and the peel resistance is lowered.
  • the exposed surface is more than the end portion located on the exposed surface side of the noble metal tip. It can be said that it is preferable that at least a part of the melted portion located on the opposite side enters the main body portion and the distance C is 0.05 mm or more.
  • Example A a sample in which the melted part is exposed on the surface (discharge surface) of the noble metal tip forming the spark discharge gap, and the melted part on the discharge surface A sample (Sample B) that was not exposed was prepared, and a desktop spark test was performed on both samples.
  • the outline of the desktop spark test is as follows. That is, after setting the frequency of the voltage applied to the sample to 100 Hz (that is, after 6000 discharges per minute are performed), each sample is set to 100 hours in an atmospheric atmosphere of 0.4 MPa. It was discharged over. And after 100 hours passed, the consumption volume of the noble metal tip (molten part) accompanying spark discharge was measured. Table 3 shows the test results of the test. *
  • the melting portion 35 is formed by irradiating the tip surface of the ground electrode 27 with a laser beam or the like.
  • the melted portion 85 may be formed by irradiating a beam or the like, and the noble metal tip 41 may be bonded to the ground electrode 27.
  • the size A1 of the gap 45 is maximum on the proximal end side of the ground electrode 27, but the noble metal tip 41 can be thermally expanded to the side surface side during heating.
  • the location where the size of the gap 45 is maximized is not particularly limited. Therefore, for example, as shown in FIG. 11, the relative positional relationship of the noble metal tip 41 with respect to the hole 43 may be set so that the size of the gap 105 is maximized on the side surface side of the ground electrode 27.
  • the noble metal tip 41 has a cylindrical shape, but the shape of the noble metal tip is not limited to this. Therefore, as shown in FIG. 12, the noble metal tip 91 may have a prismatic shape. Further, by forming the hole portion 93 so as to form a rectangular space so as to correspond to the noble metal tip 91 having such a shape, a gap 95 is formed between the noble metal tip 91 and the inner wall surface 93S of the hole portion 93. It is good also as providing. *
  • the noble metal tip 121 may be provided so as to protrude from the tip surface of the ground electrode 117.
  • the ignitability can be improved.
  • the side surface of the noble metal tip 41 and the inner wall surface 43S of the hole 43 are substantially parallel, and the inner wall surface 43S and the surface of the main body portion 27M are configured to be substantially orthogonal.
  • the inner wall surface 133 ⁇ / b> S of the hole 133 connected to the surface of the main body 127 ⁇ / b> M of the ground electrode 127 toward the bottom surface of the hole 133.
  • a taper portion 133T that gradually approaches the noble metal tip 41 is provided, and in the cross section including the central axis CL2 of the noble metal tip 41, the ground electrode 27 out of the angle formed by the outer shape line of the taper portion 133T and the outer shape line of the main body portion 127M. You may comprise so that the angle on the side may become an obtuse angle. Further, as shown in FIG. 15, between at least a part of a surface of the inner wall surface 143 ⁇ / b> S of the hole portion 143 that forms the gap 45 with the noble metal tip 41 and the surface of the ground electrode 137 (main body portion 137 ⁇ / b> M). May be connected via a convex curved surface portion 143W.
  • the electric field strength at a portion between the inner wall surface 133S (143S) and the surface of the main body 127M (137M) can be reduced.
  • the occurrence of abnormal spark discharge between the part and the center electrode 5 (the noble metal portion 31) can be effectively suppressed, and the ignitability can be improved.
  • the ground electrode 27 is made of a single alloy. However, the ground electrode 27 is provided with an inner layer made of copper, a copper alloy or the like having excellent good thermal conductivity. It is good also as comprising in the multilayer structure which consists of an outer layer and an inner layer.
  • the type of spark plug 1A to be performed is described, the technical idea of the present invention may be applied to a type of spark plug in which spark discharge is performed obliquely with respect to the axis CL1.
  • the tool engagement portion 19 has a hexagonal cross section, but the shape of the tool engagement portion 19 is not limited to such a shape.
  • it may be a Bi-HEX (deformed 12-angle) shape [ISO 22777: 2005 (E)].

Abstract

 貴金属チップと接地電極との間で生じる熱応力差の低減等を図ることで、貴金属チップの耐剥離性を向上させる。スパークプラグ(1)は、絶縁碍子(2)と、中心電極(5)と、主体金具(3)と、接地電極(27)とを備え、接地電極(27)に接合された貴金属チップ(41)及び中心電極(5)の間に火花放電間隙(33)が形成されている。接地電極(27)には、凹状の穴部(43)が形成されており、貴金属チップ(41)は、その側面側からレーザービーム等が照射されることで形成された自身と接地電極(27)とが溶け合ってなる溶融部(35)を介して、自身の底面の7割以上が接地電極(27)の穴部(43)に接合されている。穴部(43)の内壁面(43S)の少なくとも一部と貴金属チップ(41)との間には、貴金属チップ(41)の中心軸(CL2)と直交する方向に沿って0mm超1.0mm以下の隙間(45)が設けられている。

Description

スパークプラグ
本発明は、内燃機関等に使用されるスパークプラグに関する。
内燃機関等の燃焼装置に使用されるスパークプラグは、例えば、軸線方向に延びる中心電極と、当該中心電極の外周に設けられる絶縁体と、当該絶縁体の外側に組付けられる円筒状の主体金具と、基端部が前記主体金具の先端部に接合される接地電極とを備える。接地電極は、その先端部が前記中心電極の先端部と対向するように、自身の略中間部分が屈曲されており、これにより中心電極の先端部及び接地電極の先端部の間に火花放電間隙が形成される。 
また近年では、耐消耗性の向上を図るべく、接地電極の先端部のうち、前記火花放電間隙を形成する部位に貴金属チップを接合する技術が知られている。貴金属チップを接合する手法としては、例えば、レーザー溶接により貴金属チップと接地電極とが溶融されてなる溶融部を形成し、当該溶融部を介して貴金属チップと接地電極とを接合する手法が提案されている(例えば、特許文献1等参照)。 
ところで、前記溶融部は、貴金属チップと比較して耐消耗性の面で劣る。また、溶融部の表面には微細な凹凸が形成され得るため、電界強度の比較的大きな当該凹凸部分と中心電極との間で火花放電が生じてしまい、着火性が低下してしまうおそれがある。従って、着火性や耐消耗性の低下を防止するという観点からは、火花放電間隙側に前記溶融部を極力表出させないことが望ましい。そこで、接地電極に凹部を形成するとともに、当該凹部に貴金属チップを埋め込み配置した上で、接地電極の側面側から貴金属チップの埋設部分に向けてレーザービームを照射することにより、火花放電間隙側への溶融部の表出を抑制する技術が提案されている(例えば、特許文献2等参照)。
特開2005-158323号公報 特開2004-95214号公報
しかしながら、上記特許文献2の技術においては、貴金属チップ基端部の側面全域が凹部の内壁面に囲まれて密着する構成となっている。そのため、使用(加熱)時において、凹部の内壁面の存在により、貴金属チップは自身の側面側への熱膨張が規制されることとなってしまう。その結果、貴金属チップと接地電極との熱膨張の程度が大きく異なることとなってしまい、貴金属チップと接地電極との間で生じる熱応力差が増大してしまうおそれがある。熱応力差が増大してしまうと、貴金属チップと接地電極との境界部分におけるクラック(酸化スケール)の進展を招いてしまい、ひいては貴金属チップが剥離してしまうおそれがある。 
本発明は、上記事情を鑑みてなされたものであり、その目的は、貴金属チップと接地電極との間で生じる熱応力差の低減等を図ることで、貴金属チップの耐剥離性を向上させることができるスパークプラグを提供することにある。
以下、上記目的を解決するのに適した各構成につき、項分けして説明する。なお、必要に応じて対応する構成に特有の作用効果を付記する。 
構成1.本構成のスパークプラグは、軸線方向に貫通する軸孔を有する筒状の絶縁体と、 前記軸孔の先端側に挿設された中心電極と、 前記絶縁体の外周に設けられた筒状の主体金具と、 前記主体金具の先端部に配置された接地電極と、 前記接地電極の先端部に接合され、前記中心電極の先端部との間に間隙を形成する柱体の貴金属チップとを備えるスパークプラグであって、 前記接地電極は、 自身の先端部の先端面及び側面の少なくともいずれかに凹状の穴部が設けられてなる穴対応部を備え、 前記貴金属チップは、自身の側面側からレーザービーム又は電子ビームが照射されることで形成された自身と前記接地電極とが溶け合ってなる溶融部を介して、自身の底面の7割以上が前記接地電極の穴部に対して接合されており、 前記穴部の内壁面の少なくとも一部と前記貴金属チップとの間に、前記貴金属チップの中心軸と直交する方向に沿って0mm超1.0mm以下の隙間が設けられていることを特徴とする。 
尚、上記構成1は、接地電極との間で比較的大きな熱応力差が生じる貴金属チップ、換言すれば、前記間隙を形成する面の面積が比較的大きな(例えば、1.0mm2以上の)貴金属チップにおいて特に有意である。 
構成2.本構成のスパークプラグは、上記構成1において、前記接地電極は、前記穴対応部以外の部位である本体部を備え、 前記溶融部は、前記レーザービーム又は電子ビームの被照射位置であり、前記接地電極の表面に露出する露出面を備え、 前記溶融部のうち、前記露出面と直交する方向に沿って前記貴金属チップの前記露出面側の端部よりも前記露出面とは反対側に位置する部位の少なくとも一部が、前記本体部に入り込んでいることを特徴とする。 
構成3.本構成のスパークプラグは、上記構成2において、前記貴金属チップの中心軸に沿った、前記溶融部のうち前記本体部に入り込んだ部位の端縁と前記本体部の表面のうち前記間隙側の表面との間の距離の最大値が0.05mm以上とされることを特徴とする。 
構成4.本構成のスパークプラグは、上記構成2又は3において、前記貴金属チップの中心軸と直交する方向に沿った、前記溶融部のうち前記本体部に入り込んだ部位の端縁と前記穴部の内壁面との間の距離の最大値が0.05mm以上とされることを特徴とする。 
構成5.本構成のスパークプラグは、上記構成1乃至4のいずれかにおいて、前記接地電極は、屈曲部にて前記中心電極側へと屈曲されており、 前記溶融部は、前記屈曲部よりも前記接地電極の先端側に形成されることを特徴とする。 
構成6.本構成のスパークプラグは、上記構成1乃至5のいずれかにおいて、前記接地電極の先端面及び側面のうち、前記レーザービーム又は電子ビームが照射された面、及び、前記穴部が形成された面を除いた面に、前記溶融部が露出していないことを特徴とする。 
構成7.本構成のスパークプラグは、上記構成1乃至6のいずれかにおいて、前記貴金属チップのうち前記間隙を形成する面に、前記溶融部が露出していないことを特徴とする。 
構成8.本構成のスパークプラグは、上記構成1乃至7のいずれかにおいて、前記穴部の内壁面のうち前記貴金属チップとの間で前記隙間を形成するとともに、前記本体部の表面に連接される面の少なくとも一部に、前記穴部の底面側に向かうにつれて前記貴金属チップに対して徐々に接近するテーパ部を設け、 前記貴金属チップの中心軸を含む断面において、前記テーパ部の外形線と前記本体部の外形線とのなす角度のうち前記接地電極側の角度を鈍角としたことを特徴とする。 
尚、着火性のより一層の向上を図るという観点からは、貴金属チップの中心軸を含む断面において、テーパ部の外形線と本体部の外形線とのなす角度を大きくすることが好ましい。従って、前記角度を95度以上とすることが好ましく、前記角度を100度以上とすることがより好ましい。 
構成9.本構成のスパークプラグは、上記構成1乃至8のいずれかにおいて、前記接地電極は、前記穴対応部以外の部位である本体部を備え、 前記穴部の内壁面のうち前記貴金属チップとの間で前記隙間を形成する面の少なくとも一部と前記本体部の表面との間が、凸状の湾曲面部を介して連接されていることを特徴とする。 
尚、着火性を一層向上させるためには、前記湾曲面部の曲率半径を大きくすることが好ましい。従って、貴金属チップの中心軸を含む断面において、前記湾曲面部の曲率半径を0.1mm以上とすることが好ましく、0.2mm以上とすることがより好ましい。 
構成10.本構成のスパークプラグは、上記構成1乃至9のいずれかにおいて、前記レーザービームは、ファイバーレーザーであることを特徴とする請求項1乃至9のいずれか1項に記載のスパークプラグ。
構成1のスパークプラグによれば、接地電極は凹状の穴部を備えており、貴金属チップは、自身の側面側からレーザービーム等が照射されることで形成された溶融部を介して前記接地電極の穴部に対して接合されている。従って、間隙(火花放電間隙)側への溶融部の表出を抑制することができ、耐消耗性や着火性の低下をより確実に防止することができる。 
また、構成1のスパークプラグによれば、貴金属チップの底面の7割以上が接地電極に対して接合されている。すなわち、貴金属チップの底面と接地電極との間に十分に広い溶融部が介在している。従って、熱膨張に伴い生じる、貴金属チップと接地電極との間における熱応力差を溶融部によってより確実に吸収することができる。 
さらに、穴部の内壁面の少なくとも一部と貴金属チップとの間に隙間(空間)が設けられており、使用(加熱)時において、貴金属チップはその側面側への熱膨張が可能となっている。これにより、貴金属チップと接地電極との間で生じる熱応力差をより確実に低減させることができる。 
一方で、前記隙間の大きさが、貴金属チップの中心軸と直交する方向に沿って1.0mm以下と過度に大きくならないように設定されているため、貴金属チップから接地電極へとより効率よく熱を引くことができる。その結果、貴金属チップと接地電極との間で生じる熱応力差を一層低減させることができる。 
すなわち、構成1のスパークプラグによれば、隙間を設けることによって貴金属チップのその側面側への熱膨張を許容しつつ、前記隙間の過大を防止して貴金属チップの熱を効率よく引くことで、貴金属チップと接地電極との間における熱応力差を十分に低減させることができ、さらに、比較的広い溶融部によって前記熱応力差を効果的に吸収することができる。その結果、貴金属チップと接地電極との境界部分における酸化スケールの進展をより確実に防止することができ、貴金属チップの耐剥離性を飛躍的に向上させることができる。
構成2のスパークプラグによれば、溶融部のうち露出面とは反対側に位置する部位の少なくとも一部が、接地電極の本体部に入り込むように構成されている。つまり、溶融部の端縁部が本体部によって保持される形となっている。このため、使用時における溶融部の熱膨張を効果的に抑制することができ、溶融部と接地電極との間で生じる熱応力差を低減させることができる。その結果、溶融部と接地電極との間における酸化スケールを抑制することができ、耐剥離性の更なる向上を図ることができる。
構成3のスパークプラグによれば、溶融部のうち本体部に入り込んだ部位の端縁と本体部の間隙側の表面との間の貴金属チップの中心軸に沿った距離の最大値が0.05mm以上とされている。すなわち、溶融部の端縁が本体部の表面よりも十分に内側に位置するように構成されている。そのため、本体部によって溶融部の端縁部をより確実に保持することができ、溶融部の熱膨張を一層確実に抑制することができる。その結果、耐剥離性の一層の向上を図ることができる。
構成4のスパークプラグによれば、溶融部のうち本体部に入り込んだ部位の端縁と穴部の内壁面との間の貴金属チップの中心軸と直交する方向に沿った距離の最大値が0.05mm以上とされている。すなわち、溶融部の端縁が穴部の内壁面から十分に内側へと入り込むように構成されている。従って、穴部の内壁面と溶融部との境界部分(換言すれば、酸素の侵入箇所)から、溶融部と接地電極との境界部分のうち貴金属チップとは反対側に位置する部分〔例えば、図8(a),(b)において、太線を付した部分であり、貴金属チップの耐剥離性を確保する点で重要な部分〕までの距離を十分に大きなものとすることができる。これにより、前記境界部分への酸化スケールの進展を効果的に防止することができ、耐剥離性のより一層の向上を図ることができる。
上記構成4
のスパークプラグによる耐剥離性の向上効果を更に高めるためには、溶融部の端縁と穴部の内壁面との間の距離の最大値を大きくすることが望ましい。ところが、前記距離を増大させるべく、溶融部を過度に大きく形成した結果、溶融部が接地電極の屈曲部まで至ってしまうと、振動等に対する接地電極の耐折損性が低下してしまうおそれがある。
この点、構成5のスパークプラグによれば、溶融部が屈曲部よりも接地電極の先端側に位置するように、つまり、溶融部は屈曲部に至ることなく形成されている。このため、接地電極における耐折損性の低下をより確実に防止することができる。
構成6のスパークプラグによれば、接地電極表面への溶融部の表出(露出)部分がより小さくされるため、着火性や耐消耗性の低下を一層確実に防止することができる。
構成7のスパークプラグによれば、貴金属チップと比較して耐消耗性に劣る溶融部が放電面に露出していない。そのため、貴金属チップを設けたことによる耐消耗性の向上効果をより確実に発揮させることができる。 
構成8のスパークプラグによれば、穴部の内壁面にテーパ部が設けられており、テーパ部及び本体部の連接部分のなす角度が鈍角とされている。そのため、当該連接部分の電界強度を低減させることができ、当該連接部分と中心電極との間における異常な火花放電をより確実に防止することができる。その結果、着火性の向上を図ることができる。
構成9のスパークプラグによれば、穴部の内壁面と本体部との間が湾曲面部を介して連接されているため、接地電極と中心電極との間における異常な火花放電をより確実に防止することができる。その結果、着火性の向上を図ることができる。
構成10のスパークプラグによれば、レーザービームとしてファイバーレーザーが用いられるため、溶融部について比較的薄い状態を維持したまま、溶融部をより接地電極の内部側へと至らせることができる。そのため、上述のように比較的大きな領域に亘って溶融部を形成したとしても、溶融部のボリュームを比較的小さなものとすることができる。従って、貴金属チップのうち接合時に溶融してしまう部分を一層減少させることができ、貴金属チップとして比較的薄肉なものを用いたとしても、接合後において、貴金属チップが十分な厚さ(体積)を有するものとすることができる。つまり、本構成10によれば、比較的薄肉(例えば、厚さ0.5mm以下)の貴金属チップを用いることによる製造コストの抑制を図りながら、耐消耗性の向上を図ることができる。
スパークプラグの構成を示す一部破断正面図である。 スパークプラグの先端部の構成を示す一部破断拡大正面図である。 貴金属チップや接地電極等の構成を示す部分拡大断面図である。 (a)は、接地電極の先端部の構成を示す部分拡大平面図であり、(b)は、接地電極の先端部の断面形状を示す部分拡大断面図である。 第2実施形態におけるスパークプラグの先端部の構成を示す一部破断拡大正面図である。 第2実施形態における貴金属チップや接地電極等の構成を示す部分拡大断面図である。 距離Bを種々変更したサンプルについての机上冷熱試験の結果を示すグラフである。 (a),(b)は、溶融部と接地電極との境界部分のうち貴金属チップとは反対側に位置する部分を説明するための拡大断面模式図である。 (a),(b)は、露出面以外の部位が接地電極の表面に露出した溶融部の一例を示すための拡大断面模式図である。 別の実施形態における溶融部の構成を示す部分拡大平面図である。 別の実施形態における隙間の構成を示す部分拡大平面図である。 別の実施形態における貴金属チップ等の構成を示す部分拡大平面図である。 別の実施形態における貴金属チップ等の構成を示す部分拡大断面図である。 別の実施形態における穴部等の構成を示す部分拡大断面図である。 別の実施形態における穴部等の構成を示す部分拡大断面図である。
〔第1実施形態〕 以下に、実施形態について図面を参照しつつ説明する。図1は、スパークプラグ1を示す一部破断正面図である。尚、図1では、スパークプラグ1の軸線CL1方向を図面における上下方向とし、下側をスパークプラグ1の先端側、上側を後端側として説明する。 
スパークプラグ1は、筒状をなす絶縁体としての絶縁碍子2、これを保持する筒状の主体金具3などから構成されるものである。 
絶縁碍子2は、周知のようにアルミナ等を焼成して形成されており、その外形部において、後端側に形成された後端側胴部10と、当該後端側胴部10よりも先端側において径方向外向きに突出形成された大径部11と、当該大径部11よりも先端側においてこれよりも細径に形成された中胴部12と、当該中胴部12よりも先端側においてこれより細径に形成された脚長部13とを備えている。加えて、絶縁碍子2のうち、大径部11、中胴部12、及び、大部分の脚長部13は、主体金具3の内部に収容されている。そして、中胴部12と脚長部13との連接部にはテーパ状の段部14が形成されており、当該段部14にて絶縁碍子2が主体金具3に係止されている。 
さらに、絶縁碍子2には、軸線CL1に沿って軸孔4が貫通形成されており、当該軸孔4の先端側には中心電極5が挿入、固定されている。当該中心電極5は、熱伝導性に優れる銅又は銅合金からなる内層5A、及び、ニッケル(Ni)を主成分とするNi合金からなる外層5Bにより構成されている。さらに、中心電極5は、全体として棒状(円柱状)をなし、その先端面が平坦に形成されるとともに、絶縁碍子2の先端から突出している。また、中心電極5の先端部には、所定の貴金属合金(例えば、白金合金やイリジウム合金)からなる貴金属部31が設けられている。 
また、軸孔4の後端側には、絶縁碍子2の後端から突出した状態で端子電極6が挿入、固定されている。 
さらに、軸孔4の中心電極5と端子電極6との間には、円柱状の抵抗体7が配設されている。当該抵抗体7の両端部は、導電性のガラスシール層8,9を介して、中心電極5と端子電極6とにそれぞれ電気的に接続されている。 
加えて、前記主体金具3は、低炭素鋼等の金属により筒状に形成されており、その外周面にはスパークプラグ1を燃焼装置(例えば、内燃機関や燃料電池改質器等)の取付孔に取付けるためのねじ部(雄ねじ部)15が形成されている。また、ねじ部15の後端側の外周面には座部16が形成され、ねじ部15後端のねじ首17にはリング状のガスケット18が嵌め込まれている。さらに、主体金具3の後端側には、主体金具3を前記燃焼装置に取付ける際にレンチ等の工具を係合させるための断面六角形状の工具係合部19が設けられるとともに、後端部において絶縁碍子2を保持するための加締め部20が設けられている。 
また、主体金具3の内周面には、絶縁碍子2を係止するためのテーパ状の段部21が設けられている。そして、絶縁碍子2は、主体金具3の後端側から先端側に向かって挿入され、自身の段部14が主体金具3の段部21に係止された状態で、主体金具3の後端側の開口部を径方向内側に加締めること、つまり上記加締め部20を形成することによって固定されている。尚、絶縁碍子2及び主体金具3双方の段部14,21間には、円環状の板パッキン22が介在されている。これにより、燃焼室内の気密性を保持し、燃焼室内に晒される絶縁碍子2の脚長部13と主体金具3の内周面との隙間に入り込む燃料ガスが外部に漏れないようになっている。 
さらに、加締めによる密閉をより完全なものとするため、主体金具3の後端側においては、主体金具3と絶縁碍子2との間に環状のリング部材23,24が介在され、リング部材23,24間にはタルク(滑石)25の粉末が充填されている。すなわち、主体金具3は、板パッキン22、リング部材23,24及びタルク25を介して絶縁碍子2を保持している。 
また、図2に示すように、主体金具3の先端部26には、略中間部分に位置する屈曲部27Bにて曲げ返されて、その先端側側面が中心電極5の先端部(貴金属部31)と対向する接地電極27が接合されている。当該接地電極27は、Niを主成分とし、ケイ素、アルミニウム、及び、希土類元素の少なくとも1種を含有する合金によって構成されている。また、接地電極27のうち前記貴金属部31と対向する部位に、円柱状の貴金属チップ41が接合されている。当該貴金属チップ41は、イリジウム、白金、ロジウム、ルテニウム、パラジウム、及び、レニウムのうち少なくとも1種を含有する貴金属合金によって構成されている。 
加えて、貴金属チップ41の先端面(放電面)と前記貴金属部31との間には、間隙としての火花放電間隙33が形成されており、当該火花放電間隙33において軸線CL1に沿った方向で火花放電が行われるようになっている。尚、本実施形態において、前記貴金属チップ41は、製造コストの抑制を図るべく、比較的薄肉(例えば、0.5mm以下)とされている一方で、耐消耗性の向上を図るべく、先端面(放電面)の面積が比較的大きく(例えば、1.0mm2以上と)されている。 
さらに、本実施形態においては、図3及び図4に示すように、前記貴金属チップ41が、接地電極27の側面に設けられた穴部43の底面に対して接合されている。そして、貴金属チップ41は、自身と接地電極27とが溶け合ってなる溶融部35を介して接合されており、貴金属チップ41の底面(前記放電面の背面)の7割以上(本実施形態では、10割)が接地電極27に対して接合されている。 
尚、接地電極27は、前記穴部43に対応する穴対応部27Hと、当該穴対応部27H以外の部位である本体部27Mとから構成されている。ここで、穴対応部27Hとあるのは、接地電極27のうち、貴金属チップ41の中心軸CL2に沿って穴部43の内壁面43Sのうち最も穴部43の底面側に位置する部位を移動させることで形成された略円柱状の領域内に位置する部位をいう。 
加えて、前記穴部43の内壁面43Sの少なくとも一部と貴金属チップ41との間には、隙間45が設けられている。また、貴金属チップ41の中心軸CL2と直交する方向に沿った、前記隙間45の大きさA1は0mm超1.0mm以下(例えば、0.01mm以上0.5mm以下)とされている。 
また、前記溶融部35は、貴金属チップ41の側面側から接地電極27の先端面に対してレーザービーム(本実施形態では、ファイバーレーザー)又は電子ビームが照射されることにより形成されている。そして、溶融部35は、レーザービーム等の被照射位置であり、接地電極27の先端面に露出する露出面35Eから内側に向かって、外側の部分において比較的急激に厚さが減少する一方で、内側に位置する部分では厚さの減少量が比較的小さくなるように形成されている。 
さらに、本実施形態では、貴金属チップ41のうち露出面35E側に位置する端部よりも前記露出面35Eと直交する方向に沿って露出面35Eとは反対側に位置する溶融部35〔図4(a)中、散点模様を付した部位〕の少なくとも一部(本実施形態では、当該溶融部35の端縁部全域)が、接地電極27の本体部27Mに入り込んでいる。 
加えて、前記溶融部35のうち本体部27Mに入り込んだ部位の端縁と本体部27Mの表面のうち前記火花放電間隙33側に位置する表面との間の貴金属チップ41の中心軸CL2に沿った距離B1の最大値が0.05mm以上とされている。 
また、前記溶融部35のうち本体部27Mに入り込んだ部位の端縁と穴部43の内壁面43Sとの間の貴金属チップ41の中心軸CL2と直交する方向に沿った距離C1の最
大値が0.05mm以上とされている。 
但し、本実施形態では、前記距離C1の最大値が比較的小さなもの(例えば、1.0mm以下)となるように溶融部35が形成されている。そのため、溶融部35は、接地電極27の屈曲部27Bよりも接地電極27の先端側に(換言すれば、溶融部35が屈曲部27Bに至らないように)形成されている。また、接地電極27の先端面及び側面のうち、前記レーザービーム等が照射された面、及び、前記穴部43が形成された面を除いた面に、溶融部35が露出しないように構成されている。 
さらに、上述の通り、溶融部35は、特に内側に位置する部分において薄肉に形成されているため、比較的薄肉の貴金属チップ41であるにも関わらず、溶融部35が貴金属チップ41の放電面に露出しないものとされている。 
次に、上記のように構成されてなるスパークプラグ1の製造方法について説明する。まず、主体金具3を予め加工しておく。すなわち、円柱状の金属素材(例えば、鉄系素材やステンレス素材)に対して冷間鍛造加工等により概形を形成するとともに、貫通孔を形成する。その後、切削加工を施すことで外形を整え、主体金具中間体を得る。 
続いて、主体金具中間体の先端面に、Ni合金からなる直棒状の接地電極27が抵抗溶接される。当該溶接に際してはいわゆる「ダレ」が生じるので、その「ダレ」を除去した後、主体金具中間体の所定部位にねじ部15が転造によって形成される。これにより、接地電極27の溶接された主体金具3が得られる。また、接地電極27の溶接された主体金具3には、亜鉛メッキ或いはニッケルメッキが施される。尚、耐食性向上を図るべく、その表面に、さらにクロメート処理が施されることとしてもよい。 
一方、前記主体金具3とは別に、絶縁碍子2を成形加工しておく。例えば、アルミナを主体としバインダ等を含む原料粉末を用いて、成形用素地造粒物を調製するとともに、当該成形用素地造粒物を用いてラバープレス成形を行うことで、筒状の成形体が得られる。そして、得られた成形体に対し、研削加工が施され整形されるとともに、整形されたものが焼成炉で焼成されることにより、絶縁碍子2が得られる。 
また、前記主体金具3、絶縁碍子2とは別に、中心電極5を製造しておく。すなわち、中央部に放熱性向上を図るための銅合金等を配置したNi合金を鍛造加工して中心電極5を作製する。次いで、中心電極5の先端部に対して貴金属合金からなる貴金属部31がレーザー溶接等により接合される。 
次に、上記のようにして得られた絶縁碍子2及び中心電極5と、抵抗体7と、端子電極6とが、ガラスシール層8,9によって封着固定される。ガラスシール層8,9としては、一般的にホウ珪酸ガラスと金属粉末とが混合されて調製されており、当該調製されたものが抵抗体7を挟むようにして絶縁碍子2の軸孔4内に注入された後、後方から前記端子電極6で押圧しつつ、焼成炉内にて加熱することにより焼き固められる。尚、このとき、絶縁碍子2の後端側胴部10表面には釉薬層が同時に焼成されることとしてもよいし、事前に釉薬層が形成されることとしてもよい。 
その後、上記のようにそれぞれ作製された中心電極5及び端子電極6を備える絶縁碍子2と、接地電極27を備える主体金具3とが組付けられる。より詳しくは、比較的薄肉に形成された主体金具3の後端側の開口部を径方向内側に加締めること、つまり上記加締め部20を形成することによって固定される。 
次いで、接地電極27の先端部に穴部43を形成した上で、接地電極27に貴金属チップ41がレーザービーム又は電子ビーム溶接により接合される。尚、前記穴部43の深さは、前記距離B1が所定の大きさ以上となるように調節される。 
接地電極27に対する貴金属チップ41の溶接について詳述すると、接地電極27の穴部43の底面上に貴金属チップ41を載置した状態で、所定の押さえピンにより貴金属チップ41を支持する。その上で、接地電極27の幅方向に沿ってレーザーの照射位置を移動させながら、接地電極27の先端面側から接地電極27及び貴金属チップ41の接触面に対してファイバーレーザー又は電子ビーム等の高エネルギーレーザービームを照射する。これにより、溶融部35が形成され、貴金属チップ41が接地電極27に接合される。 
尚、本実施形態においては、貴金属チップ41の底面の7割以上が接地電極27に対して接合されるとともに、溶融部35の端縁が接地電極27の本体部27Mに入り込むように、レーザービーム等の照射条件が設定されている。また、貴金属チップ41の外径や貴金属チップ41等を構成する材料が異なる場合には、レーザービーム等の出力や照射時間、レーザービーム等の打ち方〔レーザーを連続波とするか、断続波(パルス)とするか等〕等を適宜調整することにより、貴金属チップ41の底面の7割以上を接地電極27に対して接合することができる。 
貴金属チップ41の接合後、接地電極27の略中間部分を中心電極5側に屈曲させる。そして、貴金属部31及び貴金属チップ41間の火花放電間隙33の大きさを調整することで、上述したスパークプラグ1が得られる。 
以上詳述したように、本実施形態によれば、貴金属チップ41は、自身の側面側からレーザービーム等が照射されることで形成された溶融部35を介して接地電極27の穴部43に接合されている。従って、火花放電間隙33側への溶融部35の表出を抑制することができ、耐消耗性や着火性の低下をより確実に防止することができる。 
また、貴金属チップ41の底面の7割以上が接地電極27に対して接合されているため、熱膨張に伴い生じる、貴金属チップ41と接地電極27との間における熱応力差を溶融部35によってより確実に吸収することができる。 
さらに、穴部43の内壁面43Sの少なくとも一部と貴金属チップ41との間に、隙間45が設けられており、使用(加熱)時において、貴金属チップ41はその側面側への熱膨張が可能となっている。これにより、貴金属チップ41と接地電極27との間で生じる熱応力差をより確実に低減させることができる。 
一方で、前記隙間45の大きさが、貴金属チップ41の中心軸CL2と直交する方向に沿って1.0mm以下と過度に大きくならないように設定されているため、貴金属チップ41から接地電極27へとより効率よく熱を引くことができる。その結果、使用時において、貴金属チップ41と接地電極27との間で生じる熱応力差を一層低減させることができる。 
すなわち、本実施形態によれば、隙間45を設けることによって貴金属チップ41のその側面側への熱膨張を許容しつつ、前記隙間45の過大を防止して貴金属チップ41の熱を効率よく引くことで、貴金属チップ41と接地電極27との間における熱応力差を十分に低減させることができ、さらに、比較的広い溶融部35によって前記熱応力差を効果的に吸収することができる。その結果、貴金属チップ41と接地電極27との境界部分における酸化スケールの進展をより確実に防止することができ、貴金属チップ41の耐剥離性を飛躍的に向上させることができる。 
加えて、溶融部35のうち露出面35Eとは反対側に位置する部位の少なくとも一部が、接地電極27の本体部27Mに入り込むように構成されており、溶融部35の端縁部が本体部27Mによって保持される形となっている。また、前記距離B1の最大値が0.05mm以上とされるとともに、前記距離C1の最大値が0.05mm以上とされている。このため、使用時における溶融部35の熱膨張を極めて効果的に抑制することができ、溶融部35と接地電極27との間で生じる熱応力差を効果的に低減させることができる。その結果、溶融部35と接地電極27との間における酸化スケールをより一層抑制することができ、耐剥離性の更なる向上を図ることができる。 
さらに、溶融部35が屈曲部27Bよりも接地電極27の先端側に位置するように形成されているため、接地電極27における耐折損性の低下をより確実に防止できる。 
併せて、前記溶融部35は、接地電極27の先端面及び側面のうち、レーザービーム等が照射された面、及び、穴部43が形成された面を除いた面に露出しないように構成されている。これにより、着火性や耐消耗性の低下を一層確実に防止することができる。 
また、溶融部35が貴金属チップ41の放電面に露出していないため、貴金属チップ41を設けたことによる耐消耗性の向上効果をより確実に発揮させることができる。 
さらに、レーザービームとしてファイバーレーザーが用いられるため、貴金属チップ41のうち接合時に溶融してしまう部分を一層減少させることができ、本実施形態のように、貴金属チップ41として比較的薄肉なものを用いたとしても、接合後において、貴金属チップ41が十分な厚さ(体積)を有するものとすることができる。つまり、レーザービームとしてファイバーレーザーを用いることで、比較的薄肉の貴金属チップ41を用いることによる製造コストの抑制を図りながら、耐消耗性の向上を図ることができる。〔第2実施形態〕 次に、第2実施形態について、上記第1実施形態との相違点を中心に説明する。 
本第2実施形態におけるスパークプラグ1Aは、図5に示すように、中心電極5(貴金属部31)の側面に対して、接地電極57の先端面が対向する構成となっている。そして、接地電極57の先端面に凹状の穴部73が形成されており、当該穴部73に対して溶融部65を介して貴金属チップ71が接合されている。溶融部65は、貴金属チップ71の側面側から接地電極27の側面に対してレーザービーム又は電子ビームが照射されることにより形成されている。また、中心電極5(貴金属部31)の側面と貴金属チップ71との間には火花放電間隙77が形成されており、当該火花放電間隙77において軸線CL1と略直交する方向に沿った火花放電が行われるようになっている。すなわち、本第2実施形態におけるスパークプラグ1Aは、いわゆる横放電タイプのものとされている。 
加えて、図6に示すように、前記穴部73の内壁面73Sの少なくとも一部と貴金属チップ71との間には、隙間75が設けられている。当該隙間75は、貴金属チップ71の中心軸CL3と直交する方向に沿った大きさA2が、0mm超1.0mm以下(例えば、0.01mm以上0.5mm以下)とされている。 
さらに、接地電極57は、上記第1実施形態と同様に、前記穴部73に対応する穴対応部57Hと、当該穴対応部57H以外の本体部57Mとから構成されている。そして、溶融部65の露出面65Eと直交する方向に沿って、貴金属チップ71のうち露出面65E側に位置する端部よりも前記露出面65Eとは反対側に位置する溶融部65の少なくとも一部が、接地電極57の本体部57Mに入り込んでいる。 
そして、貴金属チップ71の中心軸CL3に沿った、前記溶融部65のうち本体部57Mに入り込んだ部位の端縁と本体部57Mの前記火花放電間隙77側の表面との間の距離B2の最大値が0.05mm以上とされている。 
加えて、貴金属チップ71の中心軸CL3と直交する方向に沿った、溶融部65のうち本体部57Mに入り込んだ部位の端縁と穴部73の内壁面73Sとの間の距離C2の最大値が0.05mm以上とされている。 
以上、本第2実施形態によれば、基本的には上記第1実施形態と同様の作用効果が奏されることとなる。すなわち、いわゆる横放電タイプのスパークプラグ1Aにおいて、貴金属チップ71の耐剥離性等を飛躍的に向上させることができる。 
次いで、上記実施形態によって奏される作用効果を確認すべく、接地電極に対する貴金属チップの底面の溶融割合を5割とした上で、貴金属チップと穴部の内壁面との隙間A(mm)の大きさを種々変更したスパー
クプラグのサンプル(比較例に相当する)と、前記溶融割合を7割とした上で、前記隙間Aの大きさを種々変更したスパークプラグのサンプル(実施例に相当する)とを作製し、各サンプルについて机上冷熱試験を行った。机上冷熱試験の概要は次の通りである。すなわち、サンプルに対して、大気雰囲気下にて貴金属チップの温度が900℃となるようバーナーで2分間加熱後、1分間徐冷することを1サイクルとして1000サイクル実施した。そして、1000サイクル終了後にサンプル断面を観察することで、貴金属チップと溶融部及び接地電極との境界面の長さに対する、当該境界面において形成された酸化スケールの長さの割合(酸化スケール割合)を計測した。ここで、酸化スケール割合が30%以下となったサンプルは、貴金属チップの耐剥離性に非常に優れるとして「◎」の評価を下し、酸化スケール割合が30%超50%以下となったサンプルは、耐剥離性に優れるとして「○」の評価を下すこととした。一方で、酸化スケール割合が50%を超えたサンプルは、耐剥離性に劣るとして「×」の評価を下すこととした。表1に、各サンプルについての机上冷熱試験の試験結果を示す。尚、表1において隙間Aが0.0mmとあるのは、穴部の内壁面と貴金属チップの側面とを密着させたことを意味する。また、以下の試験においては、各サンプルともに、貴金属チップとして外径を1.0mm、厚さを0.4mmとしたものを用い、接地電極として厚さを1.5mm、中心電極に対向する面の幅を2.8mmとしたものを用いた。 
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、接地電極に対する貴金属チップの底面の溶融割合を5割としたサンプルは、酸化スケール割合が50%を超えてしまい、貴金属チップの耐剥離性に劣ることが明らかとなった。これは、溶融部が比較的狭かったため、貴金属チップと接地電極との間で生じる熱応力差を十分に吸収することができず、その結果、酸化スケールの進展を十分に防止できなかったためであると考えられる。 
また、前記溶融割合を7割としたサンプルであって、隙間Aを0.0mmとしたものも、耐剥離性が不十分となってしまうことが分かった。これは、貴金属チップと穴部の内壁面とが密着していたため、貴金属チップの側面側への熱膨張が規制されてしまい、その結果、貴金属チップの底面と接地電極等との境界部分に大きな熱応力差が生じてしまったことによると考えられる。 
さらに、前記溶融割合を7割としたサンプルであって、隙間Aを1.0mmよりも大きくしたものも、耐剥離性に劣ることが分かった。これは、貴金属チップと穴部の内壁面との隙間が過度に大きかったため、貴金属チップの熱が接地電極側へと効率よく伝達されず、ひいては両者の間で生じる熱応力差が非常に大きくなってしまったためであると考えられる。 
これに対して、前記溶融割合を7割としつつ、隙間Aを0.0mm超1.0mm以下としたサンプルは、酸化スケール割合が50%以下となり、優れた耐剥離性を実現できることが明らかとなった。これは、貴金属チップと穴部の内壁面との間に隙間を設けたことで、貴金属チップのその側面側への熱膨張が許容されたことに加えて、隙間を1.0mm以下としたことで、貴金属チップから接地電極へと効率よく熱が伝達されたため、両者の間に生じる熱応力差を十分に低減することができ、さらには、比較的広い溶融部によってその熱応力差を十分に吸収できたためであると考えられる。 
また特に、隙間Aを0.01mm以上0.5mm以下としたサンプルは、酸化スケール割合が30%以下となり、非常に優れた耐剥離性を有することが確認された。これは、貴金属チップから接地電極に対する熱伝達がより効果的に行われたためであると考えられる。 
以上の試験結果より、貴金属チップの耐剥離性を向上させるべく、接地電極に対する貴金属チップの底面の溶融割合を7割以上としつつ、貴金属チップと穴部の内壁面との間に0.0mm超1.0mm以下の隙間を設けることが好ましいといえる。また、耐剥離性の更なる向上を図るという観点からは、隙間の大きさを0.01mm以上0.5mm以下とすることがより好ましいといえる。 
次に、隙間Aを0.1mm、又は、0.3mmとした上で、貴金属チップの中心軸に沿った、溶融部(貴金属チップのうち前記露出面側に位置する端部よりも溶融部の露出面と直交する方向に沿って露出面とは反対側に位置する溶融部をいう)のうち本体部に入り込んだ部位の端縁と火花放電間隙側に位置する本体部の表面との間の最大の距離B(mm)を種々変更したスパークプラグのサンプルを作製し、各サンプルについて上述の机上冷熱試験を行った。図7に、前記距離Bと酸化スケール割合との関係を示す。尚、図7においては、隙間Aを0.1mmとしたサンプルの試験結果を丸でプロットし、隙間Aを0.3mmとしたサンプルの試験結果を三角でプロットした。また、以下の試験においては、各サンプルともに接地電極に対する貴金属チップの底面の溶融割合を7割以上とした。 
図7に示すように、各サンプルともに十分な耐剥離性を有していたが、距離Bを0.05mm以上としたサンプルは、酸化スケール割合が30%以下となり、非常に優れた耐剥離性を有することが明らかとなった。これは、距離Bを0.05mm以上と十分に大きくしたことで、溶融部の端縁が本体部によってより確実に保持される状態となり、その結果、溶融部の熱膨張が効果的に抑制されたためであると考えられる。 
以上の試験結果より、耐剥離性の一層の向上を図るべく、貴金属チップのうち前記露出面側に位置する端部よりも溶融部の露出面と直交する方向に沿って露出面とは反対側に位置する溶融部の少なくとも一部を本体部に入り込ませるとともに、前記距離Bを0.05mm以上とすることが好ましいといえる。また特に、耐剥離性をより一層向上させるためには、距離Bを0.2mm以上とすることがより好ましいといえる。 
次いで、貴金属チップの中心軸と直交する方向に沿った、溶融部(貴金属チップのうち前記露出面側に位置する端部よりも溶融部の露出面と直交する方向に沿って露出面とは反対側に位置する溶融部をいう)のうち本体部に入り込んだ部位の端縁と穴部の内壁面との間の最大の距離C(mm)を種々変更したサンプルを作製し、各サンプルについて、加熱温度を1050℃として(つまり、より厳しい条件として)上述の机上冷熱試験を行った。ここで、サンプル断面を観察し、酸化スケール(酸化膜)が溶融部の端縁を超えて、溶融部と接地電極との境界部分のうち貴金属チップとは反対側に位置する部分〔図8(a),(b)にて太線で示した部位であり、酸化スケールが進展することで、貴金属チップの剥離が懸念される部位〕まで至っていたサンプルは、耐剥離性が不十分であるとして「×」の評価を下すこととした。また、酸化スケールが前記部位にまでは至っていないものの、溶融部の端縁に到達していたサンプルは、耐剥離性が若干劣るとして「△」の評価を下すこととした。一方で、酸化スケールが溶融部の端縁に至っていないサンプルは、耐剥離性に極めて優れるとして「○」の評価を下すこととした。表2に、当該試験の結果を示す。尚、各サンプルについて、前記隙間Aは0.1mmとした。 
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、距離Cを0.05mm未満としたサンプルは、酸化スケールが溶融部の端縁に到達してしまい、十分な耐剥離性が確保されないことが分かった。 
これに対して、距離Cを0.05mm以上と十分に大きくしたサンプルは、酸化スケールが溶融部の端縁に至ることなく、貴金属チップの剥離を効果的に抑制できることが明らかとなった。これは、距離Cを十分に大きくしたことで、酸素が侵入する箇所(穴部の内壁面と溶融部との境界部分)から溶融部の端縁まで距離を十分に確保できたためであると考えられる。 
但し、図9(a),(b)に示すように、距離Cを過度に大きくし、溶融部のうちレーザービーム等の被照射位置である露出面以外の部位が接地電極の表面に露出していた場合には、当該露出部位から酸化スケールが進展してしまい、耐剥離性が低下してしまうことが分かった。 
また、接地電極の先端面側からレーザービーム等を照射して、溶融部が、前記接地電極の屈曲部にまで至るようにして形成した場合には、接地電極の強度が低下してしまい、振動に対する耐折損性が低下してしまうことが確認された。 
以上の試験結果より、貴金属チップの耐剥離性を向上させるべく、前記溶融部の露出面と直交する方向に沿って、貴金属チップのうち前記露出面側に位置する端部よりも露出面とは反対側に位置する前記溶融部の少なくとも一部を本体部に入り込ませるとともに、前記距離Cを0.05mm以上とすることが好ましいといえる。 
但し、溶融部の前記露出面以外の部位が接地電極の表面に露出していたり、溶融部が接地電極の屈曲部に至っていたりすると、耐剥離性の向上効果が十分に発揮されなかったり、耐折損性の低下を招いてしまったりするおそれがある。従って、この点を考慮しつつ、前記距離Cを設定することが好ましいといえる。 
次いで、レーザービームの照射エネルギーや照射位置などを変更することで、貴金属チップのうち火花放電間隙を形成する面(放電面)に溶融部が露出したサンプル(サンプルA)と、放電面に溶融部が露出していないサンプル(サンプルB)とをそれぞれ作製し、両サンプルについて机上火花試験を行った。尚、机上火花試験の概要は次の通りである。すなわち、サンプルへの印加電圧の周波数を100Hzとした上で(つまり、1分当たり6000回の放電が行われるようにした上で)、0.4MPaの大気雰囲気下にて各サンプルを100時間に亘って放電させた。そして、100時間経過後に、火花放電に伴う貴金属チップ(溶融部)の消耗体積を測定した。表3に、当該試験の試験結果を示す。 
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、放電面に溶融部が露出していないサンプル(サンプルA)は、消耗体積が比較的少なく、耐消耗性に優れることが明らかとなった。従って、耐消耗性の向上を図るべく、溶融部が放電面に露出しないように構成することが好ましいといえる。 
尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。 
(a)上記第1実施形態においては、接地電極27の先端面にレーザービーム等を照射することで溶融部35が形成されているが、図10に示すように、接地電極27の側面にレーザービーム等を照射することで溶融部85を形成し、接地電極27に貴金属チップ41を接合することとしてもよい。また、接地電極27の1つの面に対してだけでなく、複数の面(例えば、相対向する側面)に対してレーザービーム等を照射することで、溶融部を形成することとしてもよい。 
(b)上記第1実施形態では、接地電極27の基端側において、隙間45の大きさA1が最大とな
っているが、加熱時に貴金属チップ41が側面側へと熱膨張可能な構成となっていればよく、隙間45の大きさが最大となる箇所は特に限定されるものではない。従って、例えば、図11に示すように、接地電極27の側面側において隙間105の大きさが最大となるように、穴部43に対する貴金属チップ41の相対位置関係を設定することとしてもよい。 
(c)上記第1実施形態において、貴金属チップ41は円柱状をなしているが、貴金属チップの形状はこれに限定されるものではない。従って、図12に示すように、貴金属チップ91が角柱状をなしていてもよい。また、このような形状の貴金属チップ91に対応すべく、矩形状の空間をなすように穴部93を形成することで、貴金属チップ91と穴部93の内壁面93Sとの間に隙間95を設けることとしてもよい。 
(d)上記実施形態では特に記載していないが、図13に示すように、接地電極117の先端面から突出するように貴金属チップ121を設けることとしてもよい。この場合には、接地電極117による火炎の成長阻害が抑制されるため、着火性の向上を図ることができる。但し、この場合、貴金属チップ121の熱を接地電極117側へと伝達することが難しくなり得る。このため、貴金属チップ121の熱を接地電極117側へと効率よく伝達可能とすべく、貴金属チップ121の側面と穴部123の内壁面123Sとの間に形成された隙間125を比較的小さくすることが好ましい。従って、例えば、貴金属チップ121の中心軸CL4と直交する方向に沿った前記隙間125の大きさの最大値を0.5mm以下とすることが好ましい。 
(e)上記実施形態において、貴金属チップ41の側面と穴部43の内壁面43Sとは略平行であり、内壁面43Sと本体部27Mの表面とは略直交するように構成されている。これに対して、図14に示すように、穴部133の内壁面133Sのうち接地電極127の本体部127Mの表面に連接される面の少なくとも一部に、穴部133の底面側に向かうにつれて貴金属チップ41に対して徐々に接近するテーパ部133Tを設け、貴金属チップ41の中心軸CL2を含む断面において、テーパ部133Tの外形線と本体部127Mの外形線とのなす角度のうち接地電極27側の角度が鈍角となるように構成してもよい。また、図15に示すように、穴部143の内壁面143Sのうち貴金属チップ41との間で前記隙間45を形成する面の少なくとも一部と接地電極137(本体部137M)の表面との間を、凸状の湾曲面部143Wを介して連接することとしてもよい。この場合には、内壁面133S(143S)と本体部127M(137M)の表面との間の部位の電界強度を低下させることができる。その結果、前記部位と中心電極5(貴金属部31)との間における異常な火花放電の発生を効果的に抑制することができ、着火性の向上を図ることができる。 
(f)上記実施形態において、接地電極27は単一の合金により構成されているが、接地電極27の内部に良熱伝導性に優れる銅や銅合金等からなる内層を設け、接地電極27を外層及び内層からなる多層構造に構成することとしてもよい。 
(g)上記実施形態では、火花放電間隙33において軸線CL1にほぼ沿った方向で火花放電が行われるタイプのスパークプラグ1、及び、火花放電間隙77において軸線CL1と略直交した方向で火花放電が行われるタイプのスパークプラグ1Aが記載されているが、軸線CL1に対して斜め方向に火花放電が行われるタイプのスパークプラグにおいて、本発明の技術思想を適用することとしてもよい。 
(h)上記実施形態では、主体金具3の先端部26に、接地電極27が接合される場合について具体化しているが、主体金具の一部(又は、主体金具に予め溶接してある先端金具の一部)を削り出すようにして接地電極を形成する場合についても適用可能である(例えば、特開2006-236906号公報等)。 
(i)上記実施形態では、工具係合部19は断面六角形状とされているが、工具係合部19の形状に関しては、このような形状に限定されるものではない。例えば、Bi-HEX(変形12角)形状〔ISO22977:2005(E)〕等とされていてもよい。
1…スパークプラグ 2…絶縁碍子(絶縁体) 3…主体金具 4…軸孔 5…中心電極 27…接地電極 27B…屈曲部 27H…穴対応部 27M…本体部 33…火花放電間隙(間隙) 35…溶融部 35E…露出面 41…貴金属チップ 43…穴部 45…隙間 CL1…軸線 CL2…(貴金属チップの)中心軸

Claims (10)

  1. 軸線方向に貫通する軸孔を有する筒状の絶縁体と、 前記軸孔の先端側に挿設された中心電極と、 前記絶縁体の外周に設けられた筒状の主体金具と、 前記主体金具の先端部に配置された接地電極と、 前記接地電極の先端部に接合され、前記中心電極の先端部との間に間隙を形成する柱体の貴金属チップとを備えるスパークプラグであって、 前記接地電極は、 自身の先端部の先端面及び側面の少なくともいずれかに凹状の穴部が設けられてなる穴対応部を備え、 前記貴金属チップは、自身の側面側からレーザービーム又は電子ビームが照射されることで形成された自身と前記接地電極とが溶け合ってなる溶融部を介して、自身の底面の7割以上が前記接地電極の穴部に対して接合されており、 前記穴部の内壁面の少なくとも一部と前記貴金属チップとの間に、前記貴金属チップの中心軸と直交する方向に沿って0mm超1.0mm以下の隙間が設けられていることを特徴とするスパークプラグ。
  2. 前記接地電極は、前記穴対応部以外の部位である本体部を備え、 前記溶融部は、前記レーザービーム又は電子ビームの被照射位置であり、前記接地電極の表面に露出する露出面を備え、 前記溶融部のうち、前記露出面と直交する方向に沿って前記貴金属チップの前記露出面側の端部よりも前記露出面とは反対側に位置する部位の少なくとも一部が、前記本体部に入り込んでいることを特徴とする請求項1に記載のスパークプラグ。
  3. 前記貴金属チップの中心軸に沿った、前記溶融部のうち前記本体部に入り込んだ部位の端縁と前記本体部の表面のうち前記間隙側の表面との間の距離の最大値が0.05mm以上とされることを特徴とする請求項2に記載のスパークプラグ。
  4. 前記貴金属チップの中心軸と直交する方向に沿った、前記溶融部のうち前記本体部に入り込んだ部位の端縁と前記穴部の内壁面との間の距離の最大値が0.05mm以上とされることを特徴とする請求項2又は3に記載のスパークプラグ。
  5. 前記接地電極は、屈曲部にて前記中心電極側へと屈曲されており、 前記溶融部は、前記屈曲部よりも前記接地電極の先端側に形成されることを特徴とする請求項1乃至4のいずれか1項に記載のスパークプラグ。
  6. 前記接地電極の先端面及び側面のうち、前記レーザービーム又は電子ビームが照射された面、及び、前記穴部が形成された面を除いた面に、前記溶融部が露出していないことを特徴とする請求項1乃至5のいずれか1項に記載のスパークプラグ。
  7. 前記貴金属チップのうち前記間隙を形成する面に、前記溶融部が露出していないことを特徴とする請求項1乃至6のいずれか1項に記載のスパークプラグ。
  8. 前記穴部の内壁面のうち前記貴金属チップとの間で前記隙間を形成するとともに、前記本体部の表面に連接される面の少なくとも一部に、前記穴部の底面側に向かうにつれて前記貴金属チップに対して徐々に接近するテーパ部を設け、 前記貴金属チップの中心軸を含む断面において、前記テーパ部の外形線と前記本体部の外形線とのなす角度のうち前記接地電極側の角度を鈍角としたことを特徴とする請求項1乃至7のいずれか1項に記載のスパークプラグ。
  9. 前記接地電極は、前記穴対応部以外の部位である本体部を備え、 前記穴部の内壁面のうち前記貴金属チップとの間で前記隙間を形成する面の少なくとも一部と前記本体部の表面との間が、凸状の湾曲面部を介して連接されていることを特徴とする請求項1乃至8のいずれか1項に記載のスパークプラグ。
  10. 前記レーザービームは、ファイバーレーザーであることを特徴とする請求項1乃至9のいずれか1項に記載のスパークプラグ。
PCT/JP2010/005160 2010-01-26 2010-08-23 スパークプラグ WO2011092758A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/143,220 US8264131B2 (en) 2010-01-26 2010-08-23 Spark plug
CN2010800050316A CN102292886B (zh) 2010-01-26 2010-08-23 火花塞
KR1020117017005A KR101515262B1 (ko) 2010-01-26 2010-08-23 스파크 플러그
EP10841788.2A EP2385594B1 (en) 2010-01-26 2010-08-23 Sparkplug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-014121 2010-01-26
JP2010014121A JP5044665B2 (ja) 2010-01-26 2010-01-26 スパークプラグ

Publications (1)

Publication Number Publication Date
WO2011092758A1 true WO2011092758A1 (ja) 2011-08-04

Family

ID=44318774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005160 WO2011092758A1 (ja) 2010-01-26 2010-08-23 スパークプラグ

Country Status (6)

Country Link
US (1) US8264131B2 (ja)
EP (1) EP2385594B1 (ja)
JP (1) JP5044665B2 (ja)
KR (1) KR101515262B1 (ja)
CN (1) CN102292886B (ja)
WO (1) WO2011092758A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022791A (ja) * 2013-07-16 2015-02-02 日本特殊陶業株式会社 スパークプラグ及びその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942473B2 (ja) * 2012-02-28 2016-06-29 株式会社デンソー 内燃機関用のスパークプラグ及びその製造方法
JP5639675B2 (ja) * 2012-05-07 2014-12-10 日本特殊陶業株式会社 スパークプラグ
US9130356B2 (en) 2012-06-01 2015-09-08 Federal-Mogul Ignition Company Spark plug having a thin noble metal firing pad
US9673593B2 (en) 2012-08-09 2017-06-06 Federal-Mogul Ignition Company Spark plug having firing pad
US9318879B2 (en) * 2012-10-19 2016-04-19 Federal-Mogul Ignition Company Spark plug having firing pad
US9231379B2 (en) 2013-01-31 2016-01-05 Federal-Mogul Ignition Company Spark plug having firing pad
US9041274B2 (en) 2013-01-31 2015-05-26 Federal-Mogul Ignition Company Spark plug having firing pad
JP6347818B2 (ja) * 2016-03-16 2018-06-27 日本特殊陶業株式会社 点火プラグ
US9837797B2 (en) * 2016-03-16 2017-12-05 Ngk Spark Plug Co., Ltd. Ignition plug
JP6780381B2 (ja) * 2016-08-31 2020-11-04 株式会社デンソー スパークプラグ及びその製造方法
JP7266541B2 (ja) * 2020-01-31 2023-04-28 日本特殊陶業株式会社 スパークプラグの製造方法及びスパークプラグ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093547A (ja) * 2000-07-10 2002-03-29 Denso Corp スパークプラグ
JP2002237365A (ja) * 2001-02-08 2002-08-23 Denso Corp スパークプラグおよびその製造方法
JP2004095214A (ja) 2002-08-29 2004-03-25 Ngk Spark Plug Co Ltd スパークプラグ及びスパークプラグの製造方法
JP2005158323A (ja) 2003-11-21 2005-06-16 Ngk Spark Plug Co Ltd スパークプラグの製造方法
JP2006236906A (ja) 2005-02-28 2006-09-07 Ngk Spark Plug Co Ltd スパークプラグの製造方法
JP2009158437A (ja) * 2007-12-28 2009-07-16 Ngk Spark Plug Co Ltd 内燃機関用スパークプラグ
JP2009541946A (ja) * 2006-06-19 2009-11-26 フェデラル−モーグル コーポレイション 極細ワイヤ接地電極を備える火花プラグ
JP2009295569A (ja) * 2007-12-28 2009-12-17 Ngk Spark Plug Co Ltd 内燃機関用スパークプラグ及びスパークプラグの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2575752A1 (en) * 2004-08-03 2006-02-16 Federal-Mogul Corporation Ignition device having a reflowed firing tip and method of making
JP4402731B2 (ja) * 2007-08-01 2010-01-20 日本特殊陶業株式会社 内燃機関用スパークプラグ及びスパークプラグの製造方法
US8013504B2 (en) 2007-11-20 2011-09-06 Ngk Spark Plug Co., Ltd. Spark plug for internal combustion engine and method for producing the spark plug
EP2063506B1 (en) * 2007-11-20 2014-02-12 NGK Spark Plug Co., Ltd. Spark plug for internal combustion engine and method for producing the spark plug

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093547A (ja) * 2000-07-10 2002-03-29 Denso Corp スパークプラグ
JP2002237365A (ja) * 2001-02-08 2002-08-23 Denso Corp スパークプラグおよびその製造方法
JP2004095214A (ja) 2002-08-29 2004-03-25 Ngk Spark Plug Co Ltd スパークプラグ及びスパークプラグの製造方法
JP2005158323A (ja) 2003-11-21 2005-06-16 Ngk Spark Plug Co Ltd スパークプラグの製造方法
JP2006236906A (ja) 2005-02-28 2006-09-07 Ngk Spark Plug Co Ltd スパークプラグの製造方法
JP2009541946A (ja) * 2006-06-19 2009-11-26 フェデラル−モーグル コーポレイション 極細ワイヤ接地電極を備える火花プラグ
JP2009158437A (ja) * 2007-12-28 2009-07-16 Ngk Spark Plug Co Ltd 内燃機関用スパークプラグ
JP2009295569A (ja) * 2007-12-28 2009-12-17 Ngk Spark Plug Co Ltd 内燃機関用スパークプラグ及びスパークプラグの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2385594A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022791A (ja) * 2013-07-16 2015-02-02 日本特殊陶業株式会社 スパークプラグ及びその製造方法

Also Published As

Publication number Publication date
EP2385594A1 (en) 2011-11-09
KR101515262B1 (ko) 2015-04-24
CN102292886B (zh) 2013-11-27
JP5044665B2 (ja) 2012-10-10
US8264131B2 (en) 2012-09-11
EP2385594A4 (en) 2013-05-29
US20120025691A1 (en) 2012-02-02
KR20120119977A (ko) 2012-11-01
JP2011154810A (ja) 2011-08-11
CN102292886A (zh) 2011-12-21
EP2385594B1 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
JP5044665B2 (ja) スパークプラグ
JP4996723B2 (ja) スパークプラグ及びその製造方法
EP2211433B1 (en) Spark plug
KR101123501B1 (ko) 내연기관용 스파크 플러그 및 스파크 플러그의 제조방법
WO2011016181A1 (ja) スパークプラグ
WO2010058835A1 (ja) 内燃機関用スパークプラグ
EP2858185A1 (en) Gasket and production method for same, and spark plug and production method for same
WO2011027500A1 (ja) スパークプラグ
EP2560255A1 (en) Spark plug for internal combustion engine and method of manufacturing spark plug
JP4956579B2 (ja) 内燃機関用スパークプラグ及びその製造方法
JP5022465B2 (ja) 内燃機関用スパークプラグ及びその製造方法
JP2008053018A (ja) 内燃機関用スパークプラグ
JP2008053017A (ja) 内燃機関用スパークプラグ
CN108352680B (zh) 火花塞
JP2009134968A (ja) 内燃機関用スパークプラグ
EP2579401B1 (en) Spark plug
EP2933887B1 (en) Spark plug
JP5337311B2 (ja) スパークプラグ
JP4746707B1 (ja) スパークプラグ
JP5054633B2 (ja) 内燃機関用スパークプラグ
JP5816126B2 (ja) スパークプラグ
JP5449114B2 (ja) スパークプラグ及びその製造方法
JP6169475B2 (ja) スパークプラグ
JP5337057B2 (ja) スパークプラグ
JP2012134084A (ja) スパークプラグ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005031.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 4952/DELNP/2011

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010841788

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010841788

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13143220

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117017005

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE