WO2011086683A1 - 車両空調システムおよびその運転制御方法 - Google Patents

車両空調システムおよびその運転制御方法 Download PDF

Info

Publication number
WO2011086683A1
WO2011086683A1 PCT/JP2010/050400 JP2010050400W WO2011086683A1 WO 2011086683 A1 WO2011086683 A1 WO 2011086683A1 JP 2010050400 W JP2010050400 W JP 2010050400W WO 2011086683 A1 WO2011086683 A1 WO 2011086683A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
refrigerant
battery
motor
temperature
Prior art date
Application number
PCT/JP2010/050400
Other languages
English (en)
French (fr)
Inventor
昌俊 森下
秀樹 末武
敏久 近藤
片山 彰
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/502,456 priority Critical patent/US8997503B2/en
Priority to EP10843042.2A priority patent/EP2524829B1/en
Priority to PCT/JP2010/050400 priority patent/WO2011086683A1/ja
Publication of WO2011086683A1 publication Critical patent/WO2011086683A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • B60H1/039Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant from air leaving the interior of the vehicle, i.e. heat recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/18Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the air being heated from the plant exhaust gases
    • B60H1/20Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the air being heated from the plant exhaust gases using an intermediate heat-transferring medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/46Heat pumps, e.g. for cabin heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a vehicle air conditioning system suitable for application to an electric vehicle or the like and an operation control method thereof.
  • the present invention has been made in view of such circumstances, and is a vehicle air-conditioning system capable of stably ensuring a high-efficiency and necessary air-conditioning capacity, and efficient cooling using the air-conditioning system.
  • An object of the present invention is to provide an automatic operation control method capable of performing control, ventilation mode control, motor / battery cooling control, heating control, and dehumidifying heating control.
  • the vehicle air-conditioning system is an HVAC unit that blows out the temperature-adjusted air into the vehicle compartment by the refrigerant evaporator and the second refrigerant condenser disposed in the air flow path of the blower.
  • a refrigerant compressor, a refrigerant switching unit that switches a refrigerant circulation direction, a first refrigerant condenser that condenses the refrigerant by heat exchange with outside air, a first expansion valve, and the refrigerant evaporator are connected in this order, and A second expansion valve and a refrigerant / coolant heat exchanger are connected in parallel to the first expansion valve and the refrigerant evaporator, and the second refrigerant condensation is performed via the refrigerant switching unit with respect to the first refrigerant condenser.
  • a heat pump cycle in which the heaters are connected in parallel, a coolant circulation pump, a ventilated exhaust heat recovery device that recovers heat from the exhaust air in the passenger compartment, a motor / battery, an electric heater, and the refrigerant / Zealand heat exchanger are sequentially connected, the ventilation exhaust heat recovery device, the motor / battery and the electric heater and a coolant cycle which is selectively available as a heat source.
  • a ventilation exhaust heat recovery unit that recovers heat from exhaust air in the vehicle interior is incorporated in the coolant cycle, and in addition to exhaust heat from the motor / battery and heat from the electric heater, ventilation is performed. Since the exhaust heat recovered by the exhaust heat recovery device can be selectively used as a heat source, the exhaust heat recovered from the exhaust air in the passenger compartment is used for heating during heat pump heating and dehumidification heating by the heat pump cycle. It can be effectively used as a heat source. Accordingly, when the outside air temperature is low or when heating is started, the necessary capacity can be ensured by using heat from the electric heater, and stable heating or dehumidifying heating can be performed.
  • the motor / battery means a traveling motor and / or its power supply battery, and the motor includes both a case where an inverter is included and a case where an inverter is not included. The same applies hereinafter.
  • the vehicle air conditioning system is the vehicle air conditioning system, wherein the coolant cycle includes a first bypass circuit for the ventilation exhaust heat recovery unit and the motor / battery, and a ventilation exhaust heat recovery unit.
  • a second bypass circuit may be provided.
  • the first bypass circuit and the second bypass circuit are provided, by selectively flowing the coolant to the first bypass circuit or the second bypass circuit in response to the selection of the heat source, By bypassing the ventilation exhaust heat recovery device and the motor / battery or the ventilation exhaust heat recovery device, the coolant can be efficiently heated and circulated. Therefore, power consumption by the coolant circulation pump and the electric heater can be reduced.
  • the vehicle air conditioning system according to the first aspect is any one of the vehicle air conditioning systems described above, wherein the coolant cycle includes a motor / battery cooling circuit that circulates coolant to a radiator and air-cools the motor / battery. It is good to be.
  • the coolant cycle includes the air-cooled motor / battery cooling circuit using the radiator, the motor / motor via the coolant cycle using the cooling function of the heat pump cycle as necessary.
  • the cooling of the refrigerant of the battery and the air cooling of the motor / battery via the radiator can be used in combination. Therefore, the motor / battery can be efficiently and reliably cooled by either refrigerant cooling or air cooling while monitoring the coolant inlet temperature of the motor / battery.
  • the heat pump cycle and the coolant cycle include cooling control and motor / battery refrigerant cooling by switching between the cycles. Any one of the operation modes of blower mode control, motor / battery cooling control for cooling the motor / battery with refrigerant, heating control, and dehumidifying heating control may be selectable.
  • the heat pump cycle is connected in parallel to the refrigerant compressor, the refrigerant switching unit, the first refrigerant condenser, the first expansion valve and the refrigerant evaporator, and the first expansion valve and the refrigerant evaporator.
  • the second expansion valve and the refrigerant / coolant heat exchanger, and the second refrigerant condenser connected in parallel to the first refrigerant condenser via the refrigerant switching unit, the coolant cycle is the coolant circulation pump, the ventilation exhaust.
  • the refrigerant evaporator of the heat pump cycle arranged in the HVAC unit is made to function by switching these cycles.
  • the cooling / coolant heat exchanger of the heat pump cycle is also operated while operating the cooling control and the HVAC unit blower. Blower mode control including coolant cooling of the motor / battery that cools the runt and cools the motor / battery with the coolant, cools the coolant by operating the coolant / coolant heat exchanger of the heat pump cycle, and cools the motor / battery with the coolant
  • Blower mode control including coolant cooling of the motor / battery that cools the runt and cools the motor / battery with the coolant, cools the coolant by operating the coolant / coolant heat exchanger of the heat pump cycle, and cools the motor / battery with the coolant
  • Motor / battery cooling control to perform, coolant cycle ventilation exhaust heat recovery unit, coolant heated by motor / battery, electric heater, etc.
  • the coolant cycle includes the ventilation exhaust heat recovery unit, the motor / battery, the electric heater, the ventilation exhaust heat recovery unit, the motor / battery, and the motor / battery.
  • Heat from the electric heater, the motor / battery or the electric heater is selectively recovered in the refrigerant / coolant heat exchanger, and the heat pump cycle is recovered in the refrigerant / coolant heat exchanger. It is good also as being able to drive
  • the coolant cycle includes a ventilation exhaust heat recovery unit, a motor / battery, and a combination of three heat sources, a ventilation exhaust heat recovery unit, a motor / battery, and an electric heater connected during the cycle.
  • electric heater, ventilation exhaust heat recovery device and motor / battery, motor / battery and electric heater, motor / battery, electric heater, one of five types of heat source is selected, and the heat is refrigerant / coolant heat exchanger And can be used as a heat source for heating of the heat pump cycle.
  • the ventilation exhaust heat the heating heat source can be further diversified, and accordingly, the use of the electric heater can be suppressed and the power consumption in the air conditioning system can be reduced.
  • the refrigerant from the refrigerant compressor is circulated in the order of the first refrigerant condenser, the first expansion valve, and the refrigerant evaporator.
  • the motor / battery may be cooled through the coolant cycle.
  • the refrigerant evaporator disposed in the HVAC unit can be While the refrigerant is flown and operated in the cooling control mode, the refrigerant can be flowed in parallel to the refrigerant / coolant heat exchanger connected in parallel to the refrigerant / coolant heat exchanger, and the motor / battery can be cooled through the coolant cycle. Therefore, under a high temperature environment, the motor / battery can be forcibly cooled by the refrigerant while the vehicle interior is cooled, and the traveling motor can be operated efficiently.
  • the HVAC unit is driven by the blower mode control by driving only the blower, and at the same time, the heat pump cycle is supplied with the refrigerant from the refrigerant compressor, the first refrigerant condenser,
  • the motor / battery may be cooled through the coolant cycle by circulating the second expansion valve and the refrigerant / coolant heat exchanger in order and performing a cooling operation.
  • the coolant can be cooled by operating the heat pump cycle and flowing the refrigerant only to the second expansion valve and the refrigerant / coolant heat exchanger side while blowing the HVAC unit. .
  • the motor / battery can be cooled with the refrigerant through the coolant cycle. Therefore, the motor / battery is forcibly cooled with the refrigerant while only the air blowing effect is obtained even when the air conditioning in the passenger compartment is unnecessary.
  • the motor can be operated efficiently.
  • the vehicle air conditioning system causes the heat pump cycle to circulate the refrigerant from the refrigerant compressor in the order of the first refrigerant condenser, the second expansion valve, and the refrigerant / coolant heat exchanger.
  • the motor / battery may be cooled through the coolant cycle.
  • the heat pump cycle is operated only on the second expansion valve and the refrigerant / coolant heat exchanger side while stopping all the functions of the HVAC unit, that is, the air-conditioning function including the ventilation in the vehicle interior.
  • the coolant By flowing the coolant, the coolant can be cooled.
  • the motor / battery can be forcibly cooled by the refrigerant through the coolant cycle. Therefore, even when the air conditioning function in the passenger compartment is stopped, the motor / battery can be forcibly cooled by the refrigerant and the traveling motor can be operated efficiently.
  • the operation control method for the vehicle air conditioning system is the operation control method for automatically operating any one of the vehicle air conditioning systems described above.
  • the detected value from each sensor for detecting the temperature and pressure provided at a predetermined location, and the setting of the control panel are read, and when the blower is off, the motor / battery is cooled with refrigerant. Motor / battery cooling control is performed.
  • the blower is on, it is further determined whether the air conditioner switch is on / off.
  • the switch is off, and when the temperature control dial is Max Cool, the motor / battery refrigerant is cooled.
  • temperature control dial is other than Max School, heating control is performed, and if the air conditioner switch is on, the temperature control When Max Cool is on, cooling control is performed.
  • the temperature control dial is other than Max Cool, it is further determined whether or not the evaporator needs to be prevented from frosting. If necessary, heating control is performed. If not, dehumidification is performed. Perform heating control.
  • the second aspect of the present invention when starting the operation, for example, preset evaporator frost temperature Taef, motor / battery air cooling switching temperature Tcmi1, motor / battery refrigerant cooling switching temperature Tcmi2, Set values of the coolant / coolant heat exchanger required coolant inlet temperature Tcni1, the second refrigerant condenser air-side required discharge temperature Taso1, the second refrigerant condenser inlet required coolant pressure Prsi1, and the like, for example, motor / battery coolant inlet Temperature Tcmi, motor / battery coolant outlet temperature Tcmo, refrigerant / coolant heat exchanger coolant inlet temperature Tcni, refrigerant / coolant heat exchanger coolant outlet temperature Tcno, ventilation exhaust heat recovery device coolant outlet temperature Tcho, outside air temperature Taot , Required air side discharge temperature of the second refrigerant condenser Based on the data, the detected value from each sensor for detecting the refrigerant
  • the vehicle air conditioning system is automatically operated by any one of a motor / battery cooling control for cooling a motor / battery refrigerant, a ventilation mode control including refrigerant cooling for the motor / battery, a heating control, a cooling control, and a dehumidifying heating control. Yes. For this reason, in an electric vehicle, a comfortable air-conditioning operation that effectively uses exhaust heat and an efficient cooling operation of a motor / battery can be realized.
  • an operation control method for a vehicle air conditioning system is the operation control method for performing cooling control operation on any one of the vehicle air conditioning systems described above, wherein the motor / battery of the coolant cycle is used during cooling control. It is determined whether or not the relationship between the coolant inlet temperature Tcmi and the preset air cooling switching temperature Tcmi1 is Tcmi> Tcmi1, and if Tcmi is less than Tcmi1, the refrigerant from the refrigerant compressor is caused by the heat pump cycle. May be circulated in the order of the first refrigerant condenser, the first expansion valve, and the refrigerant evaporator, and the cooling operation may be performed without cooling the motor / battery.
  • the cooling control it is determined whether or not the coolant inlet temperature Tcmi of the motor / battery is equal to or higher than a preset air cooling switching temperature Tcmi1, and if Tcmi is less than Tcmi1, the first refrigerant The refrigerant condensed in the condenser is caused to flow to a refrigerant evaporator disposed in the HVAC unit so that the cooling operation is performed without cooling the motor / battery. Therefore, the cooling operation can be performed while confirming whether or not the motor / battery needs to be cooled based on the coolant inlet temperature of the motor / battery.
  • the operation control method for the vehicle air conditioning system is the operation control method for the vehicle air conditioning system, wherein when the coolant inlet temperature Tcmi is equal to or higher than the air cooling switching temperature Tcmi1, the coolant inlet temperature Tcmi is further increased. And the preset refrigerant cooling switching temperature Tcmi2 is determined whether or not Tcmi> Tcmi2, and if Tcmi is equal to or higher than Tcmi2, the refrigerant from the refrigerant compressor is removed from the refrigerant compressor by the heat pump cycle.
  • the refrigerant condenser, the first expansion valve, and the refrigerant evaporator are circulated in this order to perform a cooling operation, and the refrigerant is circulated in parallel with the second expansion valve and the refrigerant / coolant heat exchanger. Cooling operation is performed, and the motor / battery is cooled with the refrigerant through the coolant cycle. If the coolant inlet temperature Tcmi is less than Tcmi2 may be possible to air-cooling operation the motor / battery together with the cooling operation.
  • the coolant inlet temperature Tcmi when the coolant inlet temperature Tcmi is equal to or higher than the air cooling switching temperature Tcmi1, it is determined whether the coolant inlet temperature Tcmi is equal to or higher than the preset refrigerant cooling switching temperature Tcmi2, and Tcmi is equal to Tcmi2.
  • the refrigerant condensed by the first refrigerant condenser is caused to flow in parallel with the refrigerant evaporator and the refrigerant / coolant heat exchanger disposed in the HVAC unit, and the motor is operated through the coolant cycle together with the cooling operation.
  • the coolant inlet temperature Tcmi is lower than Tcmi2
  • the coolant is allowed to flow only through the refrigerant evaporator, the circulation of refrigerant to the refrigerant / coolant heat exchanger is stopped, and the motor / battery is cooled by air. I try to drive. For this reason, the motor / battery can be appropriately cooled according to the coolant inlet temperature of the motor / battery while performing the cooling operation.
  • the operation control method for the vehicle air conditioning system is the operation control method for performing the air blow mode control operation on any one of the above vehicle air conditioning systems. / It is determined whether the relationship between the coolant inlet temperature Tcmi of the battery and the preset air cooling switching temperature Tcmi1 is Tcmi> Tcmi1, and if Tcmi is less than Tcmi1, the cooling of the motor / battery is unnecessary. Regardless, only the blower may be operated to perform the blowing operation.
  • the motor / battery coolant inlet temperature Tcmi is equal to or higher than a preset air cooling switching temperature Tcmi1, and if Tcmi is less than Tcmi1, / Battery cooling is regarded as unnecessary and only the blower of the HVAC unit is operated to perform the air blowing operation. For this reason, it is possible to perform the air blowing operation while confirming whether or not the motor / battery needs to be cooled based on the coolant inlet temperature of the motor / battery.
  • the operation control method for the vehicle air conditioning system according to the second aspect is the operation control method for the vehicle air conditioning system, wherein when the coolant inlet temperature Tcmi is equal to or higher than the air cooling switching temperature Tcmi1, the coolant inlet temperature Tcmi is further increased.
  • the refrigerant cooling switching temperature Tcmi2 set in advance, it is determined whether or not Tcmi> Tcmi2, and if Tcmi is equal to or higher than Tcmi2, the blower is operated to perform the blowing operation, and the heat pump cycle
  • the refrigerant from the refrigerant compressor is circulated in the order of the first refrigerant condenser, the second expansion valve, and the refrigerant / coolant heat exchanger to perform a cooling operation of the coolant, and the motor / Cooling the battery with coolant, the coolant inlet temperature Tcmi is Tc If less than i2 may be possible to air-cooling operation the motor / battery together with the blowing operation.
  • the coolant inlet temperature Tcmi when the coolant inlet temperature Tcmi is equal to or higher than the air cooling switching temperature Tcmi1, it is determined whether the coolant inlet temperature Tcmi is equal to or higher than the preset refrigerant cooling switching temperature Tcmi2, and Tcmi is equal to Tcmi2.
  • the refrigerant condensed in the first refrigerant condenser by the heat pump cycle is caused to flow to the second expansion valve and the refrigerant / coolant heat exchanger, and the motor / battery is cooled with the refrigerant through the coolant cycle together with the blowing operation.
  • the vehicle air conditioning system operation control method is the operation control method for performing motor / battery cooling control operation on any one of the vehicle air conditioning systems described above. It is determined whether the relationship between the coolant inlet temperature Tcmi of the motor / battery of the cycle and the preset air cooling switching temperature Tcmi1 is Tcmi> Tcmi1, and if Tcmi is less than Tcmi1, the motor / battery temperature It may be considered that cooling is unnecessary and the motor / battery cooling operation is postponed.
  • the motor / battery coolant inlet temperature Tcmi is equal to or higher than a preset air cooling switching temperature Tcmi1, and if Tcmi is less than Tcmi1
  • Tcmi is less than Tcmi1
  • the motor / battery cooling is regarded as unnecessary and the motor / battery cooling operation is postponed. Therefore, the motor / battery cooling operation can be postponed while confirming whether or not the motor / battery needs to be cooled based on the coolant inlet temperature of the motor / battery.
  • the operation control method for the vehicle air conditioning system is the operation control method for the vehicle air conditioning system, wherein when the coolant inlet temperature Tcmi is equal to or higher than the air cooling switching temperature Tcmi1, the coolant inlet temperature Tcmi is further increased. And the preset refrigerant cooling switching temperature Tcmi2 is determined whether or not Tcmi> Tcmi2, and if Tcmi is equal to or higher than Tcmi2, the refrigerant from the refrigerant compressor is removed from the refrigerant compressor by the heat pump cycle.
  • a coolant condenser, the second expansion valve, and the coolant / coolant heat exchanger are circulated in this order to perform a coolant cooling operation, the motor / battery is cooled with coolant through the coolant cycle, and the coolant inlet temperature Tcmi is If less than Tcmi2, empty the motor / battery It is also possible to drive.
  • the coolant inlet temperature Tcmi when the coolant inlet temperature Tcmi is equal to or higher than the air cooling switching temperature Tcmi1, it is determined whether the coolant inlet temperature Tcmi is equal to or higher than the preset refrigerant cooling switching temperature Tcmi2, and Tcmi is equal to Tcmi2.
  • the refrigerant condensed in the first refrigerant condenser by the heat pump cycle is caused to flow to the second expansion valve and the refrigerant / coolant heat exchanger to cool the motor / battery through the coolant cycle, and
  • the coolant inlet temperature Tcmi is lower than Tcmi2
  • the heat pump cycle is stopped, and the motor / battery is air-cooled. For this reason, the motor / battery can be appropriately cooled according to the coolant inlet temperature of the motor / battery.
  • an operation control method for a vehicle air conditioning system is the operation control method for performing heating control operation on any of the above-described vehicle air conditioning systems.
  • the coolant outlet temperature Tcmo of the refrigerant / coolant heat exchanger coolant outlet temperature Tcno is determined as to whether Tcmo> Tcno. If Tcmo is less than Tcno, the electric heater is energized, The coolant of the coolant cycle is heated by the electric heater, and the refrigerant from the refrigerant compressor is circulated by the heat pump cycle in the order of the second refrigerant condenser, the second expansion valve, and the refrigerant / coolant heat exchanger. Heat pump heating operation may be performed using the coolant as a heat source. .
  • the coolant outlet temperature Tcmo of the motor / battery is equal to or higher than the coolant outlet temperature Tcno of the refrigerant / coolant heat exchanger, and if Tcmo is less than Tcno, The electric heater is energized to heat the coolant, and the refrigerant condensed by the second refrigerant condenser disposed in the HVAC unit by the heat pump cycle is caused to flow to the second expansion valve and the refrigerant / coolant heat exchanger.
  • Heat pump heating operation is performed using the coolant heated by the heat source as a heat source.
  • the exhaust heat from the motor / battery cannot be used, and the coolant heated by the electric heater is used as the heat source even at low outside temperatures (eg, -10 ° C) or when the heating is started, which is usually difficult to heat pump.
  • efficient heating operation can be performed while ensuring the necessary heating capacity.
  • the vehicle air conditioning system operation control method is the vehicle air conditioning system operation control method described above, wherein the motor / battery coolant outlet temperature Tcmo is the coolant / coolant heat exchanger coolant outlet.
  • Tcno the coolant / coolant heat exchanger coolant outlet.
  • the relationship between the coolant / coolant heat exchanger coolant inlet temperature Tcni and the preset coolant / coolant heat exchanger coolant inlet temperature Tcni1 is Tcni ⁇ Tcni1.
  • the air-side discharge temperature Taso of the second refrigerant condenser is preset. Whether the relationship with the air side required discharge temperature Taso1 of the second refrigerant condenser is Taso ⁇ Taso1, the inlet refrigerant pressure Prsi of the second refrigerant condenser and the preset second refrigerant condenser of the second refrigerant condenser.
  • the coolant outlet temperature Tcho of the ventilation exhaust heat recovery device is It is determined whether or not the coolant outlet temperature Tcno of the heat exchanger is greater than or equal to Tcno. If Tcho is less than Tcno, the coolant / coolant heat exchanger coolant inlet temperature Tcni is further set to a preset refrigerant / coolant heat exchanger.
  • the coolant inlet required temperature Tcni1 is lower, whether or not the second refrigerant condenser air side discharge temperature Taso is lower than a preset second air refrigerant discharge temperature Taso1, second refrigerant condenser
  • the inlet refrigerant pressure Prsi of the second refrigerant condenser that has been set in advance is not yet required. If each of the conditions is not satisfied, the coolant is heated by the exhaust heat of the motor / battery and condensed by the second refrigerant condenser provided in the HVAC unit by the heat pump cycle.
  • the refrigerant is passed through the second expansion valve and the refrigerant / coolant heat exchanger, and heat pump heating operation is performed using the coolant as a heat source.
  • the coolant inlet temperature Tcni, the air-side discharge temperature Taso, and the inlet refrigerant pressure Prsi satisfy the respective conditions. If it is, the electric heater is energized to heat the coolant by both the electric heater and the motor / battery, and the heat pump heating operation is performed using the coolant as a heat source.
  • the exhaust heat of the motor / battery it is determined whether or not the exhaust ventilation heat can be used. If the exhaust ventilation heat cannot be used, whether or not the electric heater needs to be used further is determined.
  • the vehicle air conditioning system operation control method is the vehicle air conditioning system operation control method described above, wherein the motor / battery coolant outlet temperature Tcmo is the coolant / coolant heat exchanger coolant.
  • Tcno the coolant / coolant heat exchanger coolant.
  • the temperature is equal to or higher than Tcno, whether or not the relationship between the coolant inlet temperature Tcni of the refrigerant / coolant heat exchanger and the preset coolant inlet temperature Tcni1 of the refrigerant / coolant heat exchanger is Tcni ⁇ Tcni1.
  • the air-side discharge temperature Taso of the second refrigerant condenser is set in advance. Whether the relationship between the air-side required discharge temperature Taso1 of the second refrigerant condenser is Taso ⁇ Taso1, the inlet refrigerant pressure Prsi of the second refrigerant condenser, and the preset second refrigerant condenser.
  • the coolant of the coolant cycle is exhausted from the motor / battery and the ventilation exhaust heat. Heat is recovered by the recovery device, and the heat pump cycle causes the refrigerant from the refrigerant compressor to circulate in the order of the second refrigerant condenser, the second expansion valve, and the refrigerant / coolant heat exchanger, and the heat pump is used as the heat source.
  • a heating operation is performed, and the coolant inlet temperature Tcni, the air-side discharge temperature Taso, and the inlet
  • the electric heater is energized, and the coolant of the coolant cycle is heated by the electric heater, the exhaust heat of the motor / battery and the ventilation exhaust heat recovery unit.
  • the heat pump heating operation may be performed using the coolant as a heat source.
  • the coolant / outlet temperature Tcho of the ventilation / exhaust heat recovery unit is refrigerant / coolant heat exchange. It is determined whether or not the coolant outlet temperature Tcno is higher than Tcno. If Tcho is equal to or higher than Tcno, the coolant inlet temperature Tcni of the refrigerant / coolant heat exchanger is further set to the coolant inlet of the refrigerant / coolant heat exchanger that is set in advance.
  • the inlet refrigerant pressure Prsi is lower than the preset refrigerant pressure Prsi1 required for the second refrigerant condenser.
  • the coolant is heated by the motor / battery exhaust heat and ventilation exhaust heat recovery unit, and the second refrigerant condensing disposed in the HVAC unit by the heat pump cycle
  • the refrigerant condensed in the cooler is passed through the second expansion valve and the refrigerant / coolant heat exchanger, and heat pump heating operation is performed using the coolant as a heat source.
  • the coolant inlet temperature Tcni, the air-side discharge temperature Taso, and the inlet refrigerant pressure Prsi are If the condition is satisfied, the electric heater is energized to heat the coolant by the electric heater, motor / battery exhaust heat and ventilation exhaust heat recovery device, and heat pump heating operation is performed using the coolant as a heat source. .
  • ventilation exhaust heat it is determined whether ventilation exhaust heat can be used. If ventilation exhaust heat is available, it is determined whether further use of an electric heater is necessary. However, only when the electric heater is really necessary, the electric heater is energized to heat the coolant. For this reason, in each state, the necessary heating capacity can be secured and efficient heating operation can be performed, and at the same time, the use of electric heaters can be suppressed as much as possible to reduce power consumption on the air conditioning system side. Thus, it is possible to contribute to extending the mileage of the vehicle.
  • the operation control method of the vehicle air conditioning system is the operation control method of performing the dehumidifying heating control operation on any of the above-described vehicle air conditioning systems. It is determined whether the relationship between the coolant outlet temperature TCmo of the battery and the coolant outlet temperature Tcno of the refrigerant / coolant heat exchanger is Tcmo> Tcno. If Tcmo is less than Tcno, the electric heater is energized.
  • the coolant of the coolant cycle is heated by the electric heater, and the refrigerant from the refrigerant compressor is condensed by the second refrigerant condenser by the heat pump cycle, and then the first expansion valve, the refrigerant evaporator, and the Flowing in parallel with both the second expansion valve and the refrigerant / coolant heat exchanger; Serial coolant may be possible to perform the heat pump dehumidification heating operation as a heat source.
  • the coolant outlet temperature TCmo of the motor / battery is equal to or higher than the coolant outlet temperature Tcno of the refrigerant / coolant heat exchanger. If TCmo is less than Tcno, the refrigerant condensed in the second refrigerant condenser arranged in the HVAC by the heat pump cycle is exchanged with the refrigerant evaporator arranged in the HVAC for refrigerant / coolant heat exchange.
  • the heat pump dehumidifying and heating operation is performed using the coolant heated by the electric heater as a heat source.
  • the vehicle air conditioning system operation control method is the vehicle air conditioning system operation control method described above, wherein the motor / battery coolant outlet temperature Tcmo is the coolant / coolant heat exchanger coolant outlet temperature Tcno.
  • Tcmo coolant / coolant heat exchanger coolant outlet temperature
  • the relationship between the coolant inlet temperature Tcni of the refrigerant / coolant heat exchanger and the preset coolant inlet temperature Tcni1 of the refrigerant / coolant heat exchanger is Tcni ⁇ Tcni1 or not.
  • the electric heater is energized and the coolant in the coolant cycle is heated by both the electric heater and the motor / battery. It is good also as performing the said heat pump dehumidification heating operation by using as a heat source.
  • the coolant / outlet temperature Tcmo of the motor / battery is equal to or higher than the coolant / outlet temperature Tcno of the refrigerant / coolant heat exchanger
  • the coolant / outlet temperature Tcho of the ventilation / exhaust heat recovery unit is refrigerant / coolant heat exchange. It is determined whether or not the coolant outlet temperature Tcno is higher than Tcno. If Tcho is lower than Tcno, the coolant inlet temperature Tcni of the refrigerant / coolant heat exchanger is further set to the coolant inlet of the coolant / coolant heat exchanger that is set in advance.
  • the coolant is heated by the exhaust heat of the motor / battery and the refrigerant condensed by the second refrigerant condenser disposed in the HVAC unit by the heat pump cycle is used.
  • heat pump dehumidification heating operation is performed using the coolant as a heat source, coolant inlet temperature Tcni, air-side discharge temperature Taso, and inlet refrigerant pressure
  • the electric heater is energized to heat the coolant by both the electric heater and the motor / battery, and the heat pump dehumidifying and heating operation is performed using the coolant as a heat source.
  • ventilation exhaust heat cannot be used, it is determined whether further use of an electric heater is necessary.
  • the electric heater is energized to heat the coolant. For this reason, in each state, the necessary heating capacity can be secured and efficient heating operation can be performed, and at the same time, the use of electric heaters can be suppressed as much as possible to reduce power consumption on the air conditioning system side. Thus, it is possible to contribute to extending the mileage of the vehicle.
  • the vehicle air conditioning system operation control method is the operation control method for any one of the vehicle air conditioning systems described above, wherein the motor / battery coolant outlet temperature Tcmo is the coolant / coolant heat exchanger coolant.
  • Tcno the coolant / coolant heat exchanger coolant.
  • the temperature is equal to or higher than Tcno, whether or not the relationship between the coolant inlet temperature Tcni of the refrigerant / coolant heat exchanger and the preset coolant inlet temperature Tcni1 of the refrigerant / coolant heat exchanger is Tcni ⁇ Tcni1
  • the air-side discharge temperature Taso of the second refrigerant condenser is set in advance. Whether the relationship between the air-side required discharge temperature Taso1 of the second refrigerant condenser is Taso ⁇ Taso1, the inlet refrigerant pressure Prsi of the second refrigerant condenser, and the preset second refrigerant condenser.
  • the coolant of the coolant cycle is exhausted from the motor / battery and the ventilation exhaust heat. After being heated by the recovery device and condensing the refrigerant from the refrigerant compressor by the second refrigerant condenser by the heat pump cycle, the first expansion valve, the refrigerant evaporator, the second expansion valve, and the refrigerant / The coolant flows in parallel with both of the coolant heat exchangers and performs heat pump dehumidification heating operation using the coolant as a heat source.
  • the electric heater When the inlet inlet temperature Tcni, the air-side discharge temperature Taso, and the inlet refrigerant pressure Prsi each satisfy the above conditions, the electric heater is energized, and the coolant in the coolant cycle is discharged from the electric heater and the motor / battery. While heating with the heat and the ventilation exhaust heat recovery device, the heat pump dehumidifying heating operation may be performed using the coolant as a heat source.
  • the coolant / outlet temperature Tcmo of the motor / battery is equal to or higher than the coolant / outlet temperature Tcno of the refrigerant / coolant heat exchanger
  • the coolant / outlet temperature Tcho of the ventilation / exhaust heat recovery unit is refrigerant / coolant heat exchange. It is determined whether or not the coolant outlet temperature Tcno is higher than Tcno.
  • the coolant inlet temperature Tcni of the refrigerant / coolant heat exchanger is further set to the coolant inlet of the refrigerant / coolant heat exchanger that is set in advance.
  • the inlet refrigerant pressure Prsi is set to a preset refrigerant pressure Prsi1 not yet required for the second refrigerant condenser. Each of them determines whether or not the conditions are satisfied, and the coolant is heated by the motor / battery exhaust heat and ventilation exhaust heat recovery device, and is also disposed in the HVAC unit by the heat pump cycle.
  • the refrigerant condensed in the refrigerant condenser is passed through the refrigerant evaporator and the refrigerant / coolant heat exchanger installed in the HVAC, and the heat pump dehumidifying and heating operation is performed using the coolant as a heat source, the coolant inlet temperature Tcni, the air-side discharge temperature
  • the electric heater is energized and the coolant is heated by the electric heater, the exhaust heat of the motor / battery and the ventilation exhaust heat recovery device, and the coolant is used as a heat source.
  • Heat pump dehumidification heating operation is performed.
  • ventilation exhaust heat it is determined whether ventilation exhaust heat can be used. If ventilation exhaust heat is available, it is determined whether further use of an electric heater is necessary. However, only when an electric heater is really necessary, the electric heater is energized to heat the coolant. For this reason, in each state, the necessary heating capacity can be ensured and efficient dehumidifying heating operation can be performed, and at the same time, the use of the electric heater can be suppressed as much as possible to reduce the power consumption on the air conditioning system side. It can reduce and contribute to extension of the mileage of vehicles.
  • the exhaust heat recovered from the exhaust air in the passenger compartment can be effectively used as a heat source for heating during heat pump heating and dehumidification heating by a heat pump cycle.
  • the necessary capacity can be ensured by using heat from the electric heater, and stable heating or dehumidifying heating can be performed.
  • the exhaust heat is preferentially used and By suppressing the use of the heater as much as possible, it is possible to perform efficient driving with reduced power consumption, and to contribute to the extension of the travel distance of the vehicle.
  • preset values such as temperature and pressure, and detection values from sensors that detect temperature and pressure provided at predetermined locations
  • motor / battery cooling control for cooling the motor / battery in the vehicle air conditioning system
  • blowing mode control including refrigerant cooling of the motor / battery
  • heating control cooling control
  • FIG. 1 is a system configuration diagram of a vehicle air conditioning system according to a first embodiment of the present invention.
  • FIG. 2 is a control flow diagram for automatically operating the vehicle air conditioning system shown in FIG. 1.
  • FIG. 3 is a control flow diagram during cooling control operation in the control flow shown in FIG. 2. It is a control flow figure at the time of the ventilation mode control driving
  • FIG. 3 is a control flow diagram during motor / battery cooling control operation in the control flow shown in FIG. 2. It is a control flow figure at the time of the heating control driving
  • FIG. 8 is a table listing the operation mode patterns shown in FIGS. 3 to 7.
  • FIG. 4 is a cycle diagram of cooling 1 (motor / battery refrigerant cooling) in the cooling control operation shown in FIG. 3.
  • FIG. 4 is a cycle diagram of cooling time 2 (motor / battery air cooling) in the cooling control operation shown in FIG. 3.
  • FIG. 4 is a cycle diagram at the time of cooling 3 (no motor / battery cooling) in the cooling control operation shown in FIG. 3.
  • FIG. 5 is a cycle diagram of a blow mode 1 (motor / battery refrigerant cooling) in the blow mode control operation shown in FIG. 4.
  • FIG. 6 is a cycle diagram of a blow mode 2 (motor / battery air cooling) in the blow mode control operation shown in FIG. 4.
  • FIG. 4 is a cycle diagram of cooling 1 (motor / battery refrigerant cooling) in the cooling control operation shown in FIG. 3.
  • FIG. 4 is a cycle diagram of cooling time 2 (motor / battery air cooling) in the blow mode
  • FIG. 6 is a cycle diagram of a blow mode 3 in the blow mode control operation shown in FIG. 4 (no motor / battery cooling).
  • FIG. 6 is a cycle diagram of motor 1 / battery cooling 1 (motor / battery refrigerant cooling) in the motor / battery cooling control operation shown in FIG. 5;
  • FIG. 6 is a cycle diagram of motor / battery cooling 2 (motor / battery air cooling) in the motor / battery cooling control operation shown in FIG. 5.
  • FIG. 6 is a cycle diagram of motor / battery cooling 3 (no motor / battery cooling) in the motor / battery cooling control operation shown in FIG. 5.
  • FIG. 7 is a cycle diagram of heating 1 (PTC + motor / battery + ventilation exhaust heat utilization) in the heating control operation shown in FIG. 6.
  • FIG. 6 is a cycle diagram of motor 1 / battery cooling 1 (motor / battery refrigerant cooling) in the motor / battery cooling control operation shown in FIG. 5;
  • FIG. 6 is a cycle diagram of motor / battery cooling
  • FIG. 7 is a cycle diagram of heating 2 (motor / battery + ventilation exhaust heat utilization) in the heating control operation shown in FIG. 6.
  • FIG. 7 is a cycle diagram of heating 3 (PTC + motor / battery exhaust heat utilization) in the heating control operation shown in FIG. 6.
  • FIG. 7 is a cycle diagram at the time of heating 4 (use of motor / battery exhaust heat) in the heating control operation shown in FIG. 6.
  • FIG. 7 is a cycle diagram at the time of heating 5 (using PTC) in the heating control operation shown in FIG. 6.
  • FIG. 8 is a cycle diagram of dehumidifying heating 1 (PTC + motor / battery + ventilation exhaust heat utilization) in the dehumidifying heating control operation shown in FIG. 7.
  • FIG. 7 is a cycle diagram of heating 2 (motor / battery + ventilation exhaust heat utilization) in the heating control operation shown in FIG. 6.
  • FIG. 7 is a cycle diagram of heating 3 (PTC + motor / battery exhaust heat utilization) in the heating control operation shown in FIG. 6.
  • FIG. 8 is a cycle diagram of dehumidifying heating 2 (motor / battery + ventilation exhaust heat utilization) in the dehumidifying heating control operation shown in FIG. 7.
  • FIG. 8 is a cycle diagram of dehumidifying heating 3 (PTC + motor / battery exhaust heat utilization) in the dehumidifying heating control operation shown in FIG. 7.
  • FIG. 8 is a cycle diagram of dehumidifying heating 4 (using motor / battery exhaust heat) in the dehumidifying heating control operation shown in FIG. 7.
  • FIG. 8 is a cycle diagram of dehumidifying heating 5 (using PTC) in the dehumidifying heating control operation shown in FIG. 7.
  • FIG. 1 shows a system configuration diagram of a vehicle air conditioning system 1 according to the first embodiment of the present invention.
  • the vehicle air-conditioning system 1 includes an HVAC unit (Heating Ventilation and Air Conditioning Unit) 2, a heat pump cycle 3, and a coolant cycle 4.
  • HVAC unit Heating Ventilation and Air Conditioning Unit
  • the HVAC unit 2 is also referred to as a blower (blower) 5 for blowing air and a refrigerant evaporator 6 and a sub-capacitor constituting a heat pump cycle 3 that are sequentially arranged from the upstream side to the downstream side in the blower passage of the blower 5.
  • the second refrigerant condenser 7 is installed in the instrument panel of the vehicle, and the air temperature-controlled by the refrigerant evaporator 6 and the second refrigerant condenser 7 is blown into the vehicle interior. It is configured to perform air conditioning.
  • the heat pump cycle 3 includes a refrigerant compressor 8 incorporating an electric motor for compressing refrigerant, and a first electromagnetic valve 9 and a second electromagnetic valve 10 provided in a bifurcated discharge-side refrigerant pipe of the refrigerant compressor 8.
  • a refrigerant switching unit 11 that switches the refrigerant circulation direction, a first refrigerant condenser 12 and a check valve 13 that exchange heat between the refrigerant and the outside air that are sequentially provided in the refrigerant pipe on the first electromagnetic valve 9 side,
  • the refrigerant evaporator 6 provided on the downstream refrigerant pipe of the stop valve 13 via a first expansion valve (EEV; electronic expansion valve) 14 and the suction side refrigerant pipe downstream of the refrigerant evaporator 6 are provided.
  • the accumulator 15 is connected in this order, and a closed cycle refrigerant circuit 16 is provided.
  • the heat pump cycle 3 is connected in parallel to the first refrigerant condenser 12 and the check valve 13 in the refrigerant pipe 17 extending from the second electromagnetic valve 10 to the inlet side of the first expansion valve 14.
  • the coolant heat exchanger 20 is provided.
  • the refrigerant / coolant heat exchanger 20 is a heat exchanger for exchanging heat between the refrigerant circulated in the heat pump cycle 3 and the coolant circulated in the coolant cycle 4.
  • the coolant cycle 4 includes the refrigerant / coolant heat exchanger 20, the coolant circulation pump 21, the ventilation exhaust heat recovery device 22 that recovers heat from the air exhausted from the vehicle interior to the outside, the traveling motor and / or its power source.
  • a battery 23 hereinafter simply referred to as a motor / battery, which includes a case where an inverter for driving the motor is included and a case where the inverter is not included) and an electric heater (PTC heater) such as a PTC heater. ) 24 and a closed cycle coolant circuit 25.
  • the electric heater 24 is disposed on the upstream side of the refrigerant / coolant heat exchanger 20, and the ventilation exhaust heat recovery unit 22 is disposed on the downstream side of the refrigerant / coolant heat exchanger 20.
  • a pressure relief valve (PRV) 26 is provided in the exhaust path for the air in the passenger compartment where the ventilation exhaust heat recovery device 22 is disposed.
  • the third electromagnetic valve 27 is provided on the inlet side of the ventilation exhaust heat recovery unit 22, the fourth electromagnetic valve 28 is provided on the outlet side of the motor / battery 23, and the ventilation exhaust heat recovery unit 22 is provided.
  • a first bypass circuit 30 having a fifth electromagnetic valve 29 is connected to the motor / battery 23, and a second bypass circuit 32 having a sixth electromagnetic valve 31 is connected to the ventilation exhaust heat recovery unit 22. It has been configured.
  • the coolant cycle 4 includes a motor / battery provided with a radiator 35 that air-cools the coolant via a seventh electromagnetic valve 33 and a second coolant circulation pump 34 between the outlet side and the inlet side of the motor / battery 23.
  • a cooling circuit 36 is provided.
  • a reserve tank 37 is connected to the motor / battery cooling circuit 36, and a cooling fan 38 that circulates outside air facing the radiator 35 is disposed.
  • the radiator 35 and the cooling fan 38 and the first refrigerant condenser 12 may be a condenser / radiator / fan module (CRFM) which is integrated into a module.
  • CRFM condenser / radiator / fan module
  • the refrigerant compressed in the refrigerant compressor 8 of the heat pump cycle 3 is transferred from the first electromagnetic valve 9 of the refrigerant switching unit 11 to the first refrigerant.
  • the air is cooled by exchanging heat with the air and blown out into the passenger compartment so that it can be used for cooling the passenger compartment.
  • the refrigerant is guided to the refrigerant / coolant heat exchanger 20 through the second expansion valve 19, the coolant on the coolant cycle 4 side is cooled by this refrigerant, and the coolant is circulated to the motor / battery 23 by the coolant circulation pump 21.
  • the coolant circulation pump 21 it is possible to cool the motor / battery 23 with the refrigerant while cooling the passenger compartment.
  • the refrigerant condensed in the first refrigerant condenser 12 is guided only to the refrigerant / coolant heat exchanger 20 side via the second expansion valve 19, whereby the coolant cycle. It is also possible to cool the motor / battery 23 with the refrigerant in a state in which the coolant on the four side is cooled and cooling of the vehicle interior is stopped or in a blowing mode state in which only the blower 5 is operated.
  • the motor / battery 23 circulates coolant to the motor / battery cooling circuit 36 side via the seventh solenoid valve 33 and the second coolant circulation pump 34 with the heat pump cycle 3 stopped, and causes the radiator 35 to function. Can be cooled by air.
  • the refrigerant compressed by the refrigerant compressor 8 of the heat pump cycle 3 passes through the second electromagnetic valve 10 and the refrigerant pipe 17 of the refrigerant switching unit 11 to the second refrigerant condenser 7 side disposed in the HVAC unit 2. Then, heat is exchanged with the air blown from the blower 5 to heat the air, and the air is blown into the vehicle interior to be used for heating the vehicle interior.
  • the refrigerant that has dissipated heat and is condensed in the second refrigerant condenser 7 is introduced into the refrigerant / coolant heat exchanger 20 via the second expansion valve 19 and absorbs heat from the coolant on the coolant cycle 4 side to be evaporated. After that, the refrigerant is sucked into the refrigerant compressor 8 through the accumulator 15.
  • the refrigerant condensed in the second refrigerant condenser 7 is supplied to both the first expansion valve 14 and the refrigerant evaporator 6, the second expansion valve 19 and the refrigerant / coolant heat exchanger 20. Can be run in parallel.
  • the air blown from the blower 5 in the HVAC unit 2 is once cooled and dehumidified by the refrigerant evaporator 6 and then heated by the second refrigerant condenser 7. Dehumidification heating can be performed.
  • the heat pump cycle 3 side performs heating and dehumidifying heating using the coolant as a heat source by absorbing heat from the coolant by the refrigerant / coolant heat exchanger 20 and evaporating the refrigerant. While this coolant is circulated in the coolant cycle 25 via the coolant circulation pump 21, the following five types of coolant are combined from the combination of the three heat sources of the motor / battery 23, the electric heater 24 and the ventilation exhaust heat recovery device 22. Any one of the heat sources is selected, and the heat is recovered by the refrigerant / coolant heat exchanger 20 to be a heat source for heating in the heat pump cycle 3.
  • A Combination of ventilation exhaust heat recovery unit 22, motor / battery 23 and electric heater 24.
  • B Combination of ventilation exhaust heat recovery device 22 and motor / battery 23.
  • C A combination of the motor / battery 23 and the electric heater 24.
  • D Motor / battery 23 alone.
  • E Electric heater 24 alone. In this way, the heat source for heating is diversified by utilizing the ventilation exhaust heat of the vehicle interior air recovered by the ventilation exhaust heat recovery device 22 in addition to the exhaust heat of the motor / battery 23 and the heat of the electric heater 24. can do.
  • the third electromagnetic valve 27 and the fourth electromagnetic valve 28 are opened and the fifth electromagnetic valve is opened.
  • the valve 29 and the sixth electromagnetic valve 31 are closed, and the coolant may be circulated in the order of the ventilation / exhaust heat recovery unit 22, the motor / battery 23, and the electric heater 24.
  • the motor / battery 23 and the electric heater 24 of FIG. In order to do so, the sixth solenoid valve 31 and the fourth solenoid valve 28 are opened, the fifth solenoid valve 29 and the third solenoid valve 27 are closed, the ventilation exhaust heat recovery unit 22 is bypassed, and the second bypass circuit 32 is passed through.
  • the coolant may be circulated through the motor / battery 23 and the electric heater 24, and when only the electric heater 24 of (E) is used, the third electromagnetic valve 27, the fourth electromagnetic valve 28, and the sixth electromagnetic valve 31 are used.
  • the , A fifth solenoid valve 29 is opened, it is sufficient to circulate the coolant to the electric heater 24 the ventilation exhaust heat recovery device 22 and the motor / battery 23 by bypassing.
  • energization to the electric heater 24 may be turned off while the electromagnetic valves are in the open / closed state similar to (A) and (C).
  • the exhaust heat recovered from the exhaust air in the passenger compartment via the ventilation exhaust heat recovery device 22 is effectively used as a heat source for heating. can do.
  • the necessary capacity can be secured by using the heat from the electric heater 24, stable heating or dehumidifying heating can be performed, and exhaust from the motor / battery 23 can be performed.
  • the exhaust heat is preferentially used and the electric heater 24 can be used as much as possible.
  • the coolant cycle 4 is provided with the first bypass circuit 30 and the second bypass circuit 32, the coolant is selectively supplied to the first bypass circuit 30 or the second bypass circuit 32 in accordance with the selection of the heat source.
  • the coolant can be efficiently heated and circulated by bypassing the ventilation exhaust heat recovery unit 22 and the motor / battery 23 or the ventilation exhaust heat recovery unit 22. Therefore, power consumption in the coolant circulation pump 21 and the electric heater (PTC) 24 can be reduced.
  • the coolant cycle 4 includes an air-cooled motor / battery cooling circuit 36 using the radiator 35, the motor / battery 23 via the coolant cycle 4 using the cooling function of the heat pump cycle 3 as necessary.
  • the cooling of the refrigerant and the air cooling of the motor / battery 23 via the radiator 35 can be used in combination.
  • the motor / battery 23 can be efficiently and reliably cooled by either refrigerant cooling or air cooling while monitoring the coolant inlet temperature of the motor / battery 23 or the like.
  • any one of the following operation modes can be selected by switching between the heat pump cycle 3 and the coolant cycle 4.
  • Control operation While operating the blower 5 of the HVAC unit 2, the coolant is cooled by causing the first refrigerant condenser 12 of the heat pump cycle 3 to function as a condenser and the refrigerant / coolant heat exchanger 20 as an evaporator.
  • a ventilation mode control operation including refrigerant cooling of the motor / battery 23 that cools the motor / battery 23 with the refrigerant through the cycle 4.
  • 4 is a motor / battery cooling control operation in which the motor / battery 23 is cooled by the refrigerant.
  • a fan operation including refrigerant cooling of the motor / battery 23, a refrigerant cooling operation of the motor / battery 23, and the like in addition to efficient cooling, heating, dehumidifying heating, and the like, a fan operation including refrigerant cooling of the motor / battery 23, a refrigerant cooling operation of the motor / battery 23, and the like.
  • the vehicle air conditioning system 1 can be used widely.
  • the five heat sources (A) to (E) described above are combined by combining the three heat sources of the ventilation exhaust heat recovery unit 22, the motor / battery 23, and the electric heater 24 connected during the cycle. ) Can be selected and the heat can be recovered by the refrigerant / coolant heat exchanger 20 to be used as a heat source for heating of the heat pump cycle 3. In this way, by using the ventilation exhaust heat of the vehicle interior air collected by the ventilation exhaust heat recovery device 22, it is possible to diversify the heat source for heating, and accordingly, the use of the electric heater 24 is suppressed accordingly. Thus, power consumption in the air conditioning system 1 can be reduced.
  • the first refrigerant The refrigerant condensed in the condenser 12 is caused to flow to the refrigerant evaporator 6 disposed in the HVAC unit 2 and is operated in the cooling control mode, while the refrigerant / coolant heat exchanger 20 connected in parallel to the refrigerant / coolant heat exchanger 20 is also operated.
  • the motor / battery 23 can be cooled by the coolant through the coolant cycle 4 by flowing the coolant in parallel and cooling the coolant. Therefore, under a high temperature environment, the motor / battery 23 can be forcibly cooled by the refrigerant while cooling the vehicle interior, and the traveling motor can be operated efficiently.
  • the heat pump cycle 3 is operated, and the refrigerant condensed in the first refrigerant condenser 12 is supplied to the second expansion valve 19 and the refrigerant / coolant heat exchanger 20 side.
  • the coolant can be cooled by flowing only through the coolant.
  • the motor / battery 23 can be cooled by the refrigerant through the cooled coolant and the coolant cycle 4, and therefore the motor / battery can be obtained while obtaining only the air blowing effect even when air conditioning in the passenger compartment is unnecessary.
  • the battery 23 is forcibly cooled by the refrigerant, and the traveling motor can be operated efficiently.
  • the heat pump cycle 3 is operated in the same manner as described above while the function of the HVAC unit 2, that is, the air conditioning function including the air blowing in the vehicle interior is stopped, and the first refrigerant condenser 12 condenses.
  • the coolant can be cooled by flowing the made refrigerant only to the second expansion valve 19 and the refrigerant / coolant heat exchanger 20 side.
  • the motor / battery 23 can be forcibly cooled by the refrigerant through the cooled coolant and the coolant cycle 4. Therefore, even when the air conditioning function in the passenger compartment is stopped, the motor / battery 23 is forcibly cooled by the refrigerant, and the traveling motor can be operated efficiently.
  • FIGS. 2 to 7 show the control flow, and FIG. The figure which listed the pattern of the operation mode is shown, and the cycle diagram which shows the flow of the refrigerant
  • step S1 when the operation is started (started), first, in step S1, the frost temperature Taef of the refrigerant evaporator 6 set in advance and the air cooling of the motor / battery 23 are performed.
  • the switching temperature Tcmi1, the refrigerant cooling switching temperature Tcmi2 of the motor / battery 23, the coolant inlet required temperature Tcni1 of the refrigerant / coolant heat exchanger 20, the air side required discharge temperature Taso1 of the second refrigerant condenser 7, and the second refrigerant condenser 7 A set value such as the inlet required refrigerant pressure Prsi1 is read.
  • step S2 the coolant inlet temperature Tcmi of the motor / battery 23 is detected by the sensor 40 whose arrangement position is shown in FIG. 1, the coolant outlet temperature Tcmo of the motor / battery 23 is detected by the sensor 41, and the refrigerant / coolant is detected by the sensor 42.
  • the air-side required discharge temperature Taso of the second refrigerant condenser 7 and the sensor 47 detect the refrigerant pressure Prsi required for the inlet of the second refrigerant condenser 7 and the detected value is read.
  • step S3 panel settings such as a blower switch, an air conditioner switch, and a temperature control dial provided on a control panel (not shown) are read. Based on these data, in step S4, it is first determined whether the blower switch is on or off. If the blower switch is turned on, the process proceeds to step S5. If the blower 5 is turned off, the process proceeds to step S6. In step S6, the motor / battery cooling control operation is executed as described later.
  • step S5 it is determined whether the air conditioner switch is on / off. If the air conditioner switch is turned on, the process proceeds to step S7. If the air conditioner switch is turned off, the process proceeds to step S8. In step S8, it is determined whether or not the temperature adjustment dial is max cool (maximum cooling). If “YES”, the process proceeds to step S9, and in step S9, air blowing mode control is performed as described later. If “NO” is determined in the step S8, the process proceeds to a step S10, and the heating control operation is executed in the step S10 as described later.
  • step S7 it is similarly determined whether or not the temperature adjustment dial is max cool (maximum cooling). If “YES”, the process proceeds to step S11, and in step S11, the cooling control operation is performed as described later. Executed. If “NO” is determined in the step S7, the process proceeds to a step S12, and here, the relationship between the outside air temperature Taot detected by the sensor 45 and the frost temperature Taef of the refrigerant evaporator 6 set in advance. Is determined whether or not Taot ⁇ Taef. As a result, if “YES”, the process proceeds to step S10 and the heating control operation is executed as described later. If “NO”, the process proceeds to step S13 and the dehumidifying heating control operation is performed as described later.
  • the vehicle air conditioning system 1 has the above-described cooling control operation (1), the ventilation mode control operation (2) including refrigerant cooling of the motor / battery 23, and the motor / battery cooling control operation for cooling the motor / battery 23 with refrigerant.
  • (3) Automatic operation can be performed in any one of the heating control operation (4) and the dehumidifying heating control operation (5). Therefore, in the electric vehicle, a comfortable air-conditioning operation that effectively uses the exhaust heat and ventilation exhaust heat of the motor / battery 23 and an efficient cooling operation of the motor / battery 23 can be realized.
  • step S21 it is first determined in step S21 whether or not the motor / battery 23 is air-cooled. This is determined by whether or not the relationship between the coolant inlet temperature Tcmi of the motor / battery 23 detected by the sensor 40 and the preset air cooling switching temperature Tcmi1 is Tcmi> Tcmi1. As a result, when Tcmi is less than Tcmi1 and is determined to be “NO”, the process proceeds to cooling time 3 in step S22, and the refrigerant discharged from the refrigerant compressor 8 is removed in the heat pump cycle 3 as shown in FIG.
  • the refrigerant switching unit 11 circulates the first refrigerant condenser 12, the first expansion valve 14, and the refrigerant evaporator 6 in this order, and cools the air from the blower 5 with the refrigerant evaporator 6 disposed in the HVAC unit 2, Cooling operation can be performed by blowing into the passenger compartment. In this case, cooling of the motor / battery 23 is considered unnecessary, and the cooling operation of the motor / battery 23 is offset.
  • step S21 determines whether the motor / battery 23 is used for refrigerant cooling. This is determined based on whether or not the relationship between the coolant inlet temperature Tcmi detected by the sensor 40 and the preset refrigerant cooling switching temperature Tcmi2 is Tcmi> Tcmi2.
  • Tcmi is equal to or higher than Tcmi2 and “YES” is determined, the process proceeds to the cooling time 1 of step S24, and as shown in FIG.
  • the refrigerant is led to the condenser 12 to be condensed, and this refrigerant is circulated in parallel with the first expansion valve 14 and the refrigerant evaporator 6, the second expansion valve 19 and the refrigerant / coolant heat exchanger 20.
  • the refrigerant evaporator 6 disposed in the HVAC unit 2 can cool the air from the blower 5 and blow it out into the passenger compartment, and the refrigerant / coolant heat exchanger 20 can perform the cooling operation. Coolant cooling operation is performed, and the motor / battery 23 can be cooled with the refrigerant through the coolant and the coolant cycle 4. Furthermore, when it is determined that the coolant inlet temperature Tcmi is less than Tcmi2 and “NO” in step S23, the process proceeds to cooling 2 in step S25, and the first refrigerant condensing is performed by the heat pump cycle 3 as shown in FIG.
  • the refrigerant condensed in the vessel 12 is circulated only to the refrigerant evaporator 6 through the first expansion valve 14, and the air from the blower 5 is cooled by the refrigerant evaporator 6 disposed in the HVAC unit 2.
  • the cooling operation can be performed by blowing into the room, and the motor / battery 23 can be air-cooled by circulating coolant through the motor / battery cooling circuit 36 in the radiator 35.
  • the coolant inlet temperature Tcmi of the motor / battery 23 is equal to or higher than the preset air cooling switching temperature Tcmi1, and if Tcmi is less than Tcmi1, the first refrigerant condensation is performed.
  • the refrigerant condensed in the cooler 12 is allowed to flow to the refrigerant evaporator 6 disposed in the HVAC unit 2 so that the cooling operation is performed without cooling the motor / battery 23. Therefore, the cooling operation can be performed while confirming whether or not the motor / battery 23 needs to be cooled by the coolant inlet temperature of the motor / battery 23.
  • the coolant inlet temperature Tcmi is equal to or higher than the air cooling switching temperature Tcmi1
  • Tcmi is equal to or higher than Tcmi2
  • the refrigerant condensed in the refrigerant condenser 12 is caused to flow in parallel with the refrigerant evaporator 6 and the refrigerant / coolant heat exchanger 20 provided in the HVAC unit 2, and the motor / battery is passed through the coolant cycle 4 together with the cooling operation. 23 is cooled by the refrigerant.
  • the refrigerant is allowed to flow only to the refrigerant evaporator 6 and the refrigerant circulation to the refrigerant / coolant heat exchanger 20 is stopped, so that the motor / battery 23 is air-cooled. .
  • the motor / battery 23 can be appropriately cooled according to the coolant inlet temperature of the motor / battery 23 while performing the cooling operation.
  • step S31 it is determined whether or not the motor / battery 23 is air-cooled. This is determined by whether or not the relationship between the coolant inlet temperature Tcmi of the motor / battery 23 detected by the sensor 40 and the preset air cooling switching temperature Tcmi1 is Tcmi> Tcmi1. As a result, when Tcmi is less than Tcmi1 and is determined as “NO”, the process proceeds to the air blowing mode 3 in step S32, and only the blower 5 of the HVAC unit 2 is operated as shown in FIG. A blowing operation is performed. In this case, cooling of the motor / battery 23 is considered unnecessary, and the cooling operation of the motor / battery 23 is offset.
  • step S31 determines whether or not the motor / battery 23 is used for refrigerant cooling. This is determined based on whether or not the relationship between the coolant inlet temperature Tcmi detected by the sensor 40 and the preset refrigerant cooling switching temperature Tcmi2 is Tcmi> Tcmi2.
  • Tcmi is equal to or higher than Tcmi2 and “YES” is determined, the process proceeds to the air blowing mode 1 in step S34, and as shown in FIG. 12, the air blowing operation is performed by the operation of the blower 5 and the heat pump cycle 3 is operated. Is done.
  • the second expansion valve 19 and the refrigerant / coolant heat exchanger 20 are circulated in this order. Then, the coolant cooling operation is performed, and the motor / battery 23 can be cooled with the refrigerant through the coolant and the coolant cycle 4.
  • step S33 when the coolant inlet temperature Tcmi is less than Tcmi2 and is set to “NO”, the process proceeds to the air blowing mode 2 in step S35, and as shown in FIG. And the heat pump cycle 3 is stopped.
  • the motor / battery 23 is air-cooled by circulating the coolant through the radiator 35 via the motor / battery cooling circuit 36.
  • the coolant inlet temperature Tcmi of the motor / battery 23 is equal to or higher than the preset air cooling switching temperature Tcmi1, and if Tcmi is less than Tcmi1,
  • the cooling of the battery 23 is regarded as unnecessary, and only the blower 5 of the HVAC unit 2 is operated to perform the air blowing operation. Therefore, the air blowing operation can be performed while confirming whether or not the motor / battery 23 needs to be cooled based on the coolant inlet temperature of the motor / battery 23.
  • the coolant inlet temperature Tcmi is equal to or higher than the air cooling switching temperature Tcmi1
  • Tcmi is equal to or higher than Tcmi2
  • the refrigerant condensed in the first refrigerant condenser 12 is caused to flow to the second expansion valve 19 and the refrigerant / coolant heat exchanger 20, and the motor / battery 23 is cooled with the refrigerant through the coolant cycle 4 together with the blowing operation.
  • the heat pump cycle 3 is stopped and the motor / battery 23 is air-cooled. For this reason, the motor / battery 23 can be appropriately cooled according to the coolant inlet temperature of the motor / battery 23 while performing the air blowing operation.
  • step S41 it is first determined in step S41 whether or not the motor / battery 23 is used for air cooling. This is determined by whether or not the relationship between the coolant inlet temperature Tcmi of the motor / battery 23 detected by the sensor 40 and the preset air cooling switching temperature Tcmi1 is Tcmi> Tcmi1. As a result, if Tcmi is less than Tcmi1 and “NO” is determined, the routine proceeds to step S42 when the motor / battery is cooled, and cooling of the motor / battery 23 is considered unnecessary as shown in FIG. The cooling operation of the motor / battery 23 is compensated. In this case, the HVAC unit 2 is in a stopped state.
  • step S41 determines whether or not the coolant inlet temperature Tcmi is equal to or higher than the air cooling switching temperature Tcmi1 and “YES”.
  • step S43 determines whether or not the motor / battery 23 is used for refrigerant cooling. This is determined based on whether or not the relationship between the coolant inlet temperature Tcmi detected by the sensor 40 and the preset refrigerant cooling switching temperature Tcmi2 is Tcmi> Tcmi2.
  • the process proceeds to the motor / battery cooling 1 in step S44, and the refrigerant from the refrigerant compressor 8 is switched to the refrigerant in the heat pump cycle 3 as shown in FIG.
  • the first refrigerant condenser 12, the second expansion valve 19 and the refrigerant / coolant heat exchanger 20 are circulated in this order by the unit 11 to perform a cooling operation of the coolant, and the motor / battery 23 is cooled with the refrigerant through the coolant cycle 4.
  • the HVAC unit 2 is kept stopped.
  • step S43 when it is determined in step S43 that the coolant inlet temperature Tcmi is less than Tcmi2 and "NO”, the process proceeds to step S45 when the motor / battery is cooled, and the heat pump cycle 3 is stopped as shown in FIG. Like to do. In this case, the motor / battery 23 is air-cooled by circulating the coolant through the radiator 35 via the motor / battery cooling circuit 36.
  • the coolant inlet temperature Tcmi of the motor / battery 23 is equal to or higher than the preset air cooling switching temperature Tcmi1, and when Tcmi is less than Tcmi1, The cooling of the motor / battery 23 is regarded as unnecessary and the cooling operation of the motor / battery 23 is postponed. For this reason, the cooling operation of the motor / battery 23 can be postponed while confirming whether or not the motor / battery 23 needs to be cooled based on the coolant inlet temperature of the motor / battery 23.
  • the heat pump cycle. 3 causes the refrigerant condensed in the first refrigerant condenser 12 to flow to the second expansion valve 19 and the refrigerant / coolant heat exchanger 20 to cool the motor / battery 23 through the coolant cycle 4.
  • the heat pump cycle 3 is stopped, and the motor / battery 23 is air-cooled. For this reason, the motor / battery 23 can be appropriately cooled according to the coolant inlet temperature of the motor / battery 23.
  • step S51 it is first determined in step S51 whether or not the motor / battery 23 is using exhaust heat. This depends on whether or not the relationship between the coolant outlet temperature Tcmo of the motor / battery 23 detected by the sensor 41 and the coolant outlet temperature Tcno of the refrigerant / coolant heat exchanger 20 detected by the sensor 43 is Tcmo> Tcno. To be judged.
  • the process proceeds to heating time 5 in step S52, and the electric heater 24 is energized and the fifth solenoid valve 29 is opened as shown in FIG.
  • the third solenoid valve 27, the fourth solenoid valve 28, and the sixth solenoid valve 31 are closed.
  • the coolant of the coolant cycle 4 is circulated to the first bypass circuit 30 and heated by the electric heater 24.
  • the refrigerant discharged from the refrigerant compressor 8 is arranged in the HVAC unit 2 by the refrigerant switching unit 11, the second refrigerant condenser 7, the second expansion valve 19, and the refrigerant / coolant heat exchanger.
  • the heat pump heating operation can be performed using the coolant circulated in the order of 20 and heated by the electric heater 24 as a heat source.
  • step S53 it is determined whether or not the ventilation exhaust heat recovery unit 22 uses exhaust heat. This is because whether the relationship between the coolant outlet temperature Tcho of the ventilation exhaust heat recovery unit detected by the sensor 44 and the coolant outlet temperature Tcno of the refrigerant / coolant heat exchanger 20 detected by the sensor 43 is Tcho> Tcno. Is judged by.
  • step S55 the process proceeds to heating time 4 in step S55, and the electric heater 24 is turned off as shown in FIG.
  • the fourth solenoid valve 28 and the sixth solenoid valve 31 are opened, the third solenoid valve 27 and the fifth solenoid valve 29 are closed, and the coolant in the coolant cycle 4 is circulated only to the motor / battery 23 and the exhaust heat thereof. Is heated by.
  • the refrigerant discharged from the refrigerant compressor 8 is disposed in the HVAC unit 2 via the refrigerant switching unit 11, the second refrigerant condenser 7, the second expansion valve 19, and the refrigerant / coolant heat exchange.
  • Heat pump heating operation can be performed using the coolant that is circulated in the order of the vessel 20 and heated by the exhaust heat of the motor / battery 23 as a heat source.
  • step S54 If it is determined in step S54 that the conditions (a) to (c) satisfy the respective conditions and “YES”, the process proceeds to heating time 3 in step S56, and as shown in FIG.
  • the electric heater 24 is energized.
  • the coolant in the coolant cycle 4 is heated by both the electric heater 24 and the motor / battery 23, and the heat pump cycle 3 uses the coolant heated by the electric heater 24 and the motor / battery 23 as a heat source. Heating operation can be performed.
  • step S53 when it is determined that the coolant outlet temperature Tcho of the ventilation exhaust heat recovery unit 22 is equal to or higher than the coolant outlet temperature Tcno of the refrigerant / coolant heat exchanger 20, the process proceeds to step S57.
  • the heater (PTC) 24 is used is determined by whether or not the conditions (a) to (c) are satisfied, as described above.
  • the process proceeds to heating time 2 in step S58.
  • the electric heater 24 is turned off, the third electromagnetic valve 27 and the fourth electromagnetic valve 28 are opened, and the fifth electromagnetic valve 29 and the sixth electromagnetic valve 31 are closed.
  • the coolant of the coolant cycle 4 is circulated to the ventilation exhaust heat recovery unit 22 and the motor / battery 23 and heated by the exhaust heat.
  • the refrigerant from the refrigerant compressor 8 is disposed in the HVAC unit 2 via the refrigerant switching unit 11, the second refrigerant condenser 7, the second expansion valve 19, and the refrigerant / coolant heat exchange.
  • the heat pump cycle 3 can perform the heat pump heating operation in the same manner as described above using the coolant heated by the exhaust heat of the ventilation exhaust heat recovery device 22 and the motor / battery 23 as a heat source.
  • step S57 if the conditions of (a) to (c) above, that is, the conditions of Tcni ⁇ Tcni1, Taso ⁇ Taso1, Prsi ⁇ Prsi1 are satisfied and “YES” is determined, “YES” is set in step S59 during heating.
  • the electric heater 24 is energized in addition to the case of heating 2.
  • the coolant in the coolant cycle 4 is heated by the ventilation exhaust heat recovery unit 22, the motor / battery 23, and the electric heater 24, and the heat pump cycle 3 includes the ventilation exhaust heat recovery unit 22, the motor / battery 23, and
  • the heat pump heating operation can be performed in the same manner as described above using the coolant heated by the electric heater 24 as a heat source.
  • the coolant outlet temperature Tcmo of the motor / battery 23 is equal to or higher than the coolant outlet temperature Tcno of the refrigerant / coolant heat exchanger 20, and when Tcmo is less than Tcno,
  • the electric heater 24 is energized to heat the coolant, and the refrigerant condensed in the second refrigerant condenser 7 disposed in the HVAC unit 2 by the heat pump cycle 3 is converted into the second expansion valve 19 and the refrigerant / coolant heat exchanger.
  • the heat pump heating operation is performed using the coolant heated by the electric heater 24 as a heat source.
  • the exhaust heat of the motor / battery 23 cannot be used, and the coolant heated by the electric heater 24 is used as a heat source even at a low outside temperature (for example, ⁇ 10 ° C.) or when the heating is started, which is usually difficult to heat pump. By doing so, a required heating capability can be ensured and efficient heating operation can be performed.
  • the coolant outlet temperature Tcmo of the motor / battery 23 is equal to or higher than the coolant outlet temperature Tcno of the refrigerant / coolant heat exchanger 20
  • the coolant outlet temperature Tcho of the ventilation exhaust heat recovery unit 22 is the coolant of the refrigerant / coolant heat exchanger 20. It is determined whether or not the outlet temperature is equal to or higher than Tcno.
  • the relationship between the coolant inlet temperature Tcni of the refrigerant / coolant heat exchanger 20 and the preset coolant inlet temperature Tcni1 of the refrigerant / coolant heat exchanger 20, the second refrigerant condensation The relationship between the air-side discharge temperature Taso of the condenser 7 and the preset required air-side discharge temperature Taso1 of the second refrigerant condenser 7 and the inlet refrigerant pressure Prsi of the second refrigerant condenser 7 are preset.
  • the refrigerant condensed in the second refrigerant condenser 7 disposed in the HVAC unit 2 is caused to flow to the second expansion valve 19 and the refrigerant / coolant heat exchanger 20, and the motor / battery 23 is discharged.
  • Heat pump heating operation is performed using the coolant heated by heat as a heat source.
  • the electric heater 24 is energized to heat the coolant by both the electric heater 24 and the motor / battery 23.
  • the heat pump heating operation is performed by the heat pump cycle 3 using this coolant as a heat source.
  • the coolant outlet temperature Tcho of the ventilation exhaust heat recovery unit 22 is equal to or higher than the coolant outlet temperature Tcno of the refrigerant / coolant heat exchanger 20
  • the refrigerant inlet temperature Tcni set in advance as the refrigerant / coolant heat exchanger 20 is set.
  • the relationship between the inlet refrigerant pressure Prsi of the second refrigerant condenser 7 and the preset inlet refrigerant pressure Prsi1 of the second refrigerant condenser 7 is Tcni ⁇ Tcni1, Taso ⁇ Taso1, Prsi ⁇ Prsi1, respectively. If each does not meet the conditions, the coolant is removed from the ventilation exhaust heat recovery unit 2 It is to be heated by and exhaust heat of the motor / battery 23.
  • the refrigerant condensed by the second refrigerant condenser 7 disposed in the HVAC unit 2 is caused to flow to the second expansion valve 19 and the refrigerant / coolant heat exchanger 20, and the ventilation exhaust heat recovery unit 22.
  • the heat pump heating operation is performed using the coolant heated by the exhaust heat of the motor / battery 23 as a heat source.
  • the electric heater 24 is energized to remove the coolant from the ventilation exhaust heat recovery device 22 and the motor / battery 23. Heat and electric heater 24 are used, and heat pump heating operation is performed using this coolant as a heat source.
  • the ventilation exhaust heat generator 22 determines whether or not the ventilation exhaust heat generator 22 can be used. Whether or not the use of the electric heater 24 is necessary is determined, and only when the electric heater 24 is really necessary, the electric heater 24 is energized to heat the coolant. Therefore, in each state, the necessary heating capacity can be ensured and efficient heating operation can be performed, and at the same time, the use of the electric heater 24 is suppressed as much as possible, and the power consumption on the air conditioning system 1 side is reduced. This can contribute to extending the mileage of the vehicle.
  • step S61 it is determined whether or not the motor / battery 23 is using exhaust heat. This depends on whether or not the relationship between the coolant outlet temperature Tcmo of the motor / battery 23 detected by the sensor 41 and the coolant outlet temperature Tcno of the refrigerant / coolant heat exchanger 20 detected by the sensor 43 is Tcmo> Tcno. To be judged.
  • step S62 the process proceeds to dehumidifying and heating 5 in step S62, and the electric heater 24 is energized as shown in FIG.
  • the third electromagnetic valve 27, the fourth electromagnetic valve 28, and the sixth electromagnetic valve 31 are closed. Thereby, the coolant of the coolant cycle 4 is circulated to the first bypass circuit 30 and heated by the electric heater 24.
  • the refrigerant discharged from the refrigerant compressor 8 is led to the second refrigerant condenser 7 disposed in the HVAC unit 2 by the refrigerant switching unit 11 and condensed here,
  • the refrigerant is circulated in parallel with the refrigerant evaporator 6 disposed in the expansion valve 14 and the HVAC unit 2, the second expansion valve 19, and the refrigerant / coolant heat exchanger 20.
  • the air blown from the blower 5 can be cooled and dehumidified by the refrigerant evaporator 6 and then heated by the second refrigerant condenser 7.
  • the heat pump cycle 3 can perform a heat pump dehumidifying heating operation using the coolant heated by the electric heater 24 as a heat source.
  • step S61 when the coolant outlet temperature Tcmo of the motor / battery 23 is equal to or higher than the coolant outlet temperature Tcno of the refrigerant / coolant heat exchanger 20 in step S61, the process proceeds to step S63.
  • the ventilation exhaust heat recovery unit 22 uses exhaust heat. This is because whether the relationship between the coolant outlet temperature Tcho of the ventilation exhaust heat recovery unit detected by the sensor 44 and the coolant outlet temperature Tcno of the refrigerant / coolant heat exchanger 20 detected by the sensor 43 is Tcho> Tcno. Is judged by.
  • step S64 whether or not the electric heater (PTC) 24 is used satisfies the above conditions (a) to (c). It is judged by whether or not.
  • PTC electric heater
  • the electric heater 24 is turned off, the fourth electromagnetic valve 28 and the sixth electromagnetic valve 31 are opened, the third electromagnetic valve 27 and the fifth electromagnetic valve 29 are closed, and the coolant in the coolant cycle 4 is supplied to the motor / It circulates only in the battery 23 and is heated by the exhaust heat.
  • the refrigerant discharged from the refrigerant compressor 8 is led to the second refrigerant condenser 7 disposed in the HVAC unit 2 via the refrigerant switching unit 11, and is condensed here.
  • the refrigerant is circulated in parallel with the refrigerant evaporator 6 disposed in the first expansion valve 14 and the HVAC unit 2, the second expansion valve 19 and the refrigerant / coolant heat exchanger 20.
  • the air from the blower 5 is cooled and dehumidified by the refrigerant evaporator 6, then heated by the refrigerant condenser 7 and blown into the vehicle interior.
  • the motor / battery 23 The heat pump dehumidifying and heating operation can be performed using the coolant heated by the exhaust heat as a heat source.
  • step S64 If it is determined in step S64 that the conditions (a) to (c) above satisfy each condition and “YES”, the process proceeds to dehumidifying and heating 3 in step S66, and as shown in FIG. In addition to the case 4, the electric heater 24 is energized. As a result, the coolant in the coolant cycle 4 is circulated to and heated by both the motor / battery 23 and the electric heater 24, and the heat pump cycle 3 has the coolant heated by the motor / battery 23 and the electric heater 24. As a heat source, the heat pump heating operation can be performed in the same manner as described above.
  • step S63 if it is determined that the coolant outlet temperature Tcho of the ventilation exhaust heat recovery unit 22 is equal to or higher than the coolant outlet temperature Tcno of the refrigerant / coolant heat exchanger 20, the process proceeds to step S67. Whether or not the heater (PTC) 24 is used is determined based on whether or not the conditions (a) to (c) are satisfied, as described above. As a result, when the conditions of Tcni ⁇ Tcni1, Taso ⁇ Taso1, Prsi ⁇ Prsi1 are not satisfied and it is determined “NO”, the process proceeds to dehumidifying and heating 2 in step S68.
  • PTC heater
  • the electric heater 24 is turned off, the third electromagnetic valve 27 and the fourth electromagnetic valve 28 are opened, and the fifth electromagnetic valve 29 and the sixth electromagnetic valve 31 are closed.
  • the coolant in the coolant cycle 4 is circulated to the ventilation exhaust heat recovery unit 22 and the motor / battery 23 and heated by the exhaust heat.
  • the refrigerant from the refrigerant compressor is circulated to the second refrigerant condenser 7 disposed in the HVAC unit 2 via the refrigerant switching unit 11 and the refrigerant pipe 17 and condensed there. Thereafter, the refrigerant is circulated in parallel with the refrigerant evaporator 6 disposed in the first expansion valve 14 and the HVAC unit 2, the second expansion valve 19 and the refrigerant / coolant heat exchanger 20, and the heat pump cycle 3 is ventilated.
  • the heat pump dehumidifying and heating operation can be performed in the same manner as described above using the coolant heated by the exhaust heat of the exhaust heat recovery unit 22 and the motor / battery 23 as a heat source.
  • step S67 if the conditions of (a) to (c), that is, the conditions of Tcni ⁇ Tcni1, Taso ⁇ Tazo1, Prsi ⁇ Prsi1 are satisfied and it is determined “YES”, the dehumidifying heating in step S69 is performed.
  • the electric heater 24 is energized in addition to the case of dehumidifying heating 2.
  • the coolant in the coolant cycle 4 is heated by the ventilation exhaust heat recovery unit 22, the motor / battery 23 and the electric heater 24, and the heat pump cycle 3 is heated by the ventilation exhaust heat recovery unit 22, the motor / battery 23.
  • the heat pump dehumidifying and heating operation can be performed in the same manner as described above using the coolant heated by the electric heater 24 as a heat source.
  • the coolant outlet temperature Tcmo of the motor / battery 23 is equal to or higher than the coolant outlet temperature Tcno of the refrigerant / coolant heat exchanger 20, and if Tcmo is less than Tcno
  • the electric heater 24 is energized to heat the coolant, and the refrigerant condensed by the second refrigerant condenser 7 disposed in the HVAC unit 2 by the heat pump cycle 3 is distributed to the first expansion valve 14 and the HVAC unit 2.
  • the refrigerant evaporator 6, the second expansion valve 19 and the refrigerant / coolant heat exchanger 20 are made to flow in parallel, and the heat pump dehumidifying and heating operation is performed using the coolant heated by the electric heater 24 as a heat source. Yes.
  • the exhaust heat of the motor / battery 23 cannot be used, and the coolant heated by the electric heater 24 is used as a heat source even at low outside temperatures (eg, ⁇ 10 ° C.) or when the heating is started, which is normally difficult to perform heat pump dehumidification heating. By doing this, the necessary heating capacity can be ensured and efficient dehumidifying heating operation can be performed.
  • the coolant outlet temperature Tcmo of the motor / battery 23 is equal to or higher than the coolant outlet temperature Tcno of the refrigerant / coolant heat exchanger 20
  • the coolant outlet temperature Tcho of the ventilation exhaust heat recovery unit 22 is the coolant of the refrigerant / coolant heat exchanger 20. It is determined whether or not the outlet temperature is equal to or higher than Tcno.
  • the refrigerant condensed in the second refrigerant condenser 7 disposed in the HVAC unit 2 and the refrigerant evaporator 6 disposed in the first expansion valve 14 and the HVAC unit 2 The heat pump dehumidifying and heating operation is performed using the coolant heated by the exhaust heat of the motor / battery 23 as a heat source, flowing in parallel with the two expansion valve 19 and the refrigerant / coolant heat exchanger 20.
  • the electric heater 24 is energized to heat the coolant by both the motor / battery 23 and the electric heater 24.
  • the heat pump dehumidifying and heating operation is performed by the heat pump cycle 3 using this coolant as a heat source.
  • the coolant outlet temperature Tcho of the ventilation exhaust heat recovery unit 22 is equal to or higher than the coolant outlet temperature Tcno of the refrigerant / coolant heat exchanger 20
  • the coolant inlet temperature Tcni of the refrigerant / coolant heat exchanger 20 is set in advance.
  • the relationship between the coolant inlet required temperature Tcni1 of the refrigerant / coolant heat exchanger 20, the air side discharge temperature Taso of the second refrigerant condenser 7 and the preset air side discharge temperature Taso1 of the second refrigerant condenser 7 The relationship between the inlet refrigerant pressure Prsi of the second refrigerant condenser 7 and the preset inlet refrigerant pressure Prsi1 of the second refrigerant condenser 7 is Tcni ⁇ Tcni1, Taso ⁇ Taso1, Prsi ⁇ Prsi1, respectively. If each does not meet the requirements, remove the coolant from the ventilation exhaust heat recovery unit. It is to be heated by both of the exhaust heat of the 2 and the motor / battery 23.
  • the refrigerant condensed in the second refrigerant condenser 7 disposed in the HVAC unit 2 and the refrigerant evaporator 6 disposed in the first expansion valve 14 and the HVAC unit 2, 2 The heat pump dehumidifying and heating operation is performed using the coolant heated in parallel with the expansion valve 19 and the refrigerant / coolant heat exchanger 20 and heated by the exhaust heat of the ventilation exhaust heat recovery unit 22 and the motor / battery 23 as a heat source.
  • the electric heater 24 is energized to remove the coolant from the ventilation exhaust heat recovery device 22 and the motor / battery 23. Heat and electric heater 24 are used, and heat pump dehumidification heating operation is performed using this coolant as a heat source.
  • the ventilation exhaust heat recovery unit 22 determines whether or not the ventilation exhaust heat recovery unit 22 can be used. Further, it is determined whether or not the electric heater 24 should be used, and the electric heater 24 is energized to heat the coolant only when the electric heater 24 is really necessary. For this reason, in each state, the necessary heating capacity can be ensured and efficient dehumidifying heating operation can be performed, and at the same time, the use of the electric heater 24 is suppressed as much as possible, and the vehicle air conditioning system 1 side It is possible to reduce power consumption and contribute to extending the mileage of the vehicle.
  • the HVAC unit 2 may be configured to include a temperature adjusting air mix damper on the downstream side of the refrigerant evaporator 6.
  • the first electromagnetic valve 9 and the second electromagnetic valve 10 constituting the refrigerant switching unit 11 may be replaced by a three-way switching valve, a four-way switching valve, or the like.
  • the fourth solenoid valve 28 and the seventh solenoid valve 33, the third solenoid valve 27, the fifth solenoid valve 29, and the sixth solenoid valve 31 are replaced by other three-way switching valves, four-way switching valves, or the like. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 高効率でかつ必要な冷暖房能力を確保できる車両空調システムと、その自動運転制御方法を提供する。冷媒蒸発器(6)、第2冷媒凝縮器(7)で温調された空気を吹き出すHVACユニット(2)と、冷媒圧縮機(8)、冷媒切替え部(11)、第1冷媒凝縮器(12)、第1膨張弁(14)および冷媒蒸発器(6)が順次接続され、第1膨張弁(14)および冷媒蒸発器(6)と並列に第2膨張弁(19)および冷媒/クーラント熱交換器(20)が、第1冷媒凝縮器(12)と並列に第2冷媒凝縮器(7)が各々接続されたヒートポンプサイクル(3)と、クーラント循環ポンプ(21)、換気排熱回収器(22)、モータ/バッテリ(23)、電気ヒータ(24)および冷媒/クーラント熱交換器(20)が順次接続され、換気排熱回収器(22)、モータ/バッテリ(23)および電気ヒータ(24)が熱源として選択的に利用可能なクーラントサイクル(4)とを備えている。

Description

車両空調システムおよびその運転制御方法
 本発明は、電気自動車等に適用に好適な車両空調システムおよびその運転制御方法に関するものである。
 電気自動車に搭載される車両空調システムにおいては、内燃機関が搭載されていないことから、その冷却水や燃焼排熱を利用した暖房を行うことはできない。そこで、電気自動車用の空調システムとしては、一般に電動圧縮機を用いたヒートポンプサイクルが採用されている。ヒートポンプサイクルの最大の課題は、低外気温時や運転開始時(暖房立ち上がり時)において、暖房が困難あるいは暖房能力が不足気味になるという点であり、このことは周知である。
 このため、従来から様々な改善案が提案されており、暖房時の熱源として、インバータを含む走行用モータからの排熱やバッテリからの排熱の利用はもちろんのこと、これらの排熱だけでは能力不足、あるいは排熱利用までに時間がかかることから、電気式ヒータや燃焼式ヒータを併用することが考えられている(例えば、特許文献1,2参照)。
特開平7-329544号公報 特許第3477868号公報
 しかしながら、電気自動車の場合は、空調システム側においてバッテリ電力を消費することは、1回のバッテリ充電で走行できる車両の走行距離に対して直接影響を及ぼすことになる。このことから、電気ヒータを暖房用の熱源として使用することは、低外気温時や暖房立ち上がり時等、他の熱源が利用できない場合に限ることとし、極力抑制することが効率面からも望ましいとされている。また、燃焼式ヒータは、燃料の燃焼熱によってクーラント(熱媒)等を加熱する構成とされるため、新たに燃焼装置やその付帯設備を追加設置する必要がある等、使い勝手や経済面からも多くの課題を有している。
 以上のような状況から、低外気温時や暖房立ち上がり時等の運転においても必要な能力を安定的に確保して暖房できるとともに、新たな熱源の確保によって電気ヒータの使用を可及的に抑制することが可能な効率のよい車両空調システムとそれを高効率で自動運転することが可能な運転制御方法の提供が求められている。
 本発明は、このような事情に鑑みてなされたものであって、高効率でかつ必要な冷暖房能力を安定的に確保することができる車両空調システムと、該空調システムを用いて効率のよい冷房制御、送風モード制御、モータ/バッテリ冷却制御、暖房制御および除湿暖房制御を行うことができる自動運転制御方法を提供することを目的とする。
 上記課題を解決するために、本発明の車両空調システムおよびその運転制御方法は以下の手段を採用する。
 すなわち、本発明の第1の態様にかかる車両空調システムは、送風機の送風流路中に配設されている冷媒蒸発器および第2冷媒凝縮器により温調された空気を車室内に吹き出すHVACユニットと、冷媒圧縮機、冷媒の循環方向を切替える冷媒切替え部、外気との熱交換により冷媒を凝縮する第1冷媒凝縮器、第1膨張弁および前記冷媒蒸発器がこの順に接続されるとともに、前記第1膨張弁および前記冷媒蒸発器に対して第2膨張弁および冷媒/クーラント熱交換器が並列に接続され、前記第1冷媒凝縮器に対して前記冷媒切替え部を介して前記第2冷媒凝縮器が並列に接続されているヒートポンプサイクルと、クーラント循環ポンプ、車室内の排出空気から熱を回収する換気排熱回収器、モータ/バッテリ、電気ヒータおよび前記冷媒/クーラント熱交換器が順次接続され、前記換気排熱回収器、前記モータ/バッテリおよび前記電気ヒータが熱源として選択的に利用可能とされているクーラントサイクルとを備えている。
 本発明の第1の態様によれば、クーラントサイクルに車室内の排出空気から熱を回収する換気排熱回収器が組み込まれ、モータ/バッテリからの排熱および電気ヒータによる熱の他に、換気排熱回収器により回収される排熱が熱源として選択的に利用可能とされているため、ヒートポンプサイクルによるヒートポンプ暖房および除湿暖房時において、車室内の排出空気から回収された排熱を暖房用の熱源として有効利用することができる。従って、低外気温時や暖房立ち上がり時には、電気ヒータによる熱を利用することによって必要な能力を確保し、安定した暖房あるいは除湿暖房を行うことができる。また、モータ/バッテリからの排熱が利用できる場合や、車室内温度が目標温度に到達し換気排熱回収器からの排熱を利用できる場合には、優先的に排熱を利用し、電気ヒータの使用を可及的に抑制することにより、電力消費を抑えた効率のよい運転を行うことができ、車両の走行距離の延長に貢献することができる。なお、本発明において、モータ/バッテリとは、走行モータおよび/またはその電源バッテリを意味するものとし、モータには、インバータを含む場合と含まない場合の双方が含まれるものとする。以下、同様である。
 また、上記第1の態様の車両空調システムは、上記の車両空調システムにおいて、前記クーラントサイクルは、前記換気排熱回収器および前記モータ/バッテリに対する第1バイパス回路と、前記換気排熱回収器に対する第2バイパス回路とを備えていることとしてもよい。
 上記第1の態様によれば、第1バイパス回路および第2バイパス回路を設けているため、熱源の選択に対応してクーラントを第1バイパス回路あるいは第2バイパス回路に選択的に流すことにより、換気排熱回収器とモータ/バッテリ、あるいは換気排熱回収器をバイパスしてクーラントを効率よく加熱し、循環することができる。従って、クーラント循環ポンプや電気ヒータでの消費動力を低減することができる。
 さらに、上記第1の態様の車両空調システムは、上述のいずれかの車両空調システムにおいて、前記クーラントサイクルは、クーラントをラジエータに循環し、前記モータ/バッテリを空冷するモータ/バッテリ冷却回路を備えていることとしてもよい。
 上記第1の態様によれば、クーラントサイクルが、ラジエータを用いた空冷のモータ/バッテリ冷却回路を備えているため、必要に応じてヒートポンプサイクルの冷却機能を利用したクーラントサイクルを介してのモータ/バッテリの冷媒冷却と、ラジエータを介してのモータ/バッテリの空冷冷却を併用することができる。従って、モータ/バッテリのクーラント入り口温度等を見張りながら、冷媒冷却または空冷冷却のいずれかでモータ/バッテリを効率よくかつ確実に冷却することができる。
 さらに、上記第1の態様の車両空調システムは、上述のいずれかの車両空調システムにおいて、前記ヒートポンプサイクルおよび前記クーラントサイクルは、各々のサイクルの切替えによって、冷房制御、モータ/バッテリの冷媒冷却を含む送風モード制御、モータ/バッテリを冷媒冷却するモータ/バッテリ冷却制御、暖房制御、除湿暖房制御のいずれかの運転モードが選択可能とされていることとしてもよい。
 上記第1の態様によれば、ヒートポンプサイクルが冷媒圧縮機、冷媒切替え部、第1冷媒凝縮器、第1膨張弁および冷媒蒸発器と、第1膨張弁および冷媒蒸発器に並列に接続された第2膨張弁および冷媒/クーラント熱交換器と、第1冷媒凝縮器に対して冷媒切替え部を介して並列に接続された第2冷媒凝縮器により構成され、クーラントサイクルがクーラント循環ポンプ、換気排熱回収器、モータ/バッテリ、電気ヒータおよび冷媒/クーラント熱交換器により構成されているため、これらのサイクルの切替えによって、HVACユニットに配設されているヒートポンプサイクルの冷媒蒸発器を機能させて行う冷房制御、HVACユニットの送風機を運転しながら併せてヒートポンプサイクルの冷媒/クーラント熱交換器を機能させてクーラントを冷却し、モータ/バッテリを冷媒により冷却するモータ/バッテリの冷媒冷却を含む送風モード制御、ヒートポンプサイクルの冷媒/クーラント熱交換器を機能させてクーラントを冷却し、モータ/バッテリを冷媒により冷却するモータ/バッテリ冷却制御、クーラントサイクルの換気排熱回収器、モータ/バッテリ、電気ヒータ等により加熱されたクーラントを熱源とし、HVACユニットに配設されているヒートポンプサイクルの第2冷媒凝縮器を機能させて行う暖房制御、同様にして加熱されたクーラントを熱源とし、HVACユニットに配設されているヒートポンプサイクルの冷媒蒸発器および第2冷媒凝縮器を機能させて行う除湿暖房制御等のいずれかの運転モードを選択することができる。従って、効率のよい冷房、暖房、除湿暖房等の運転の他に、モータ/バッテリの冷媒冷却を含む送風運転やモータ/バッテリの冷媒冷却運転等の多様な運転を行うことができ、空調システムを幅広く利用することができる。
 さらに、上記第1の態様の車両空調システムは、前記クーラントサイクルは、前記換気排熱回収器と前記モータ/バッテリと前記電気ヒータ、前記換気排熱回収器と前記モータ/バッテリ、前記モータ/バッテリと前記電気ヒータ、前記モータ/バッテリまたは前記電気ヒータのいずれかから選択的に熱を前記冷媒/クーラント熱交換器に回収し、前記ヒートポンプサイクルは、前記冷媒/クーラント熱交換器で回収された前記熱を熱源として暖房制御または除湿暖房制御のいずれかの運転モードで運転可能とされていることとしてもよい。
 上記第1の態様によれば、クーラントサイクルは、該サイクル中に接続されている換気排熱回収器、モータ/バッテリおよび電気ヒータの3つ熱源の組み合わせから、換気排熱回収器とモータ/バッテリと電気ヒータ、換気排熱回収器とモータ/バッテリ、モータ/バッテリと電気ヒータ、モータ/バッテリ、電気ヒータの5種の熱源のいずれか1つを選択し、その熱を冷媒/クーラント熱交換器で回収してヒートポンプサイクルの暖房用熱源とすることができる。このように、換気排熱を利用することによって暖房用熱源の更なる多様化が可能となり、従って、その分電気ヒータの使用を抑制し、空調システムでの消費電力を低減することができる。
 さらに、上記第1の態様の車両空調システムは、前記ヒートポンプサイクルは、前記冷媒圧縮機からの冷媒を前記第1冷媒凝縮器、前記第1膨張弁および前記冷媒蒸発器の順に循環することにより冷房制御モードで運転されると同時に、前記第1膨張弁および前記冷媒蒸発器に並列に接続されている前記第2膨張弁および前記冷媒/クーラント熱交換器に並行して冷媒を循環することにより、前記クーラントサイクルを介して前記モータ/バッテリが冷却可能とされていることとしてもよい。
 上記第1の態様によれば、第1膨張弁および冷媒蒸発器と並列に第2膨張弁および冷媒/クーラント熱交換器を接続しているため、HVACユニットに配設されている冷媒蒸発器に冷媒を流し、冷房制御モードで運転しながら、これに並列に接続されている冷媒/クーラント熱交換器に並行して冷媒を流し、クーラントサイクルを介してモータ/バッテリを冷媒冷却することができる。従って、高温環境下では、車室内の冷房を行いながら、モータ/バッテリを冷媒によって強制冷却し、走行モータを効率よく運転することができる。
 さらに、上記第1の態様の車両空調システムは、前記HVACユニットを送風機のみを駆動して送風モード制御で運転すると同時に、前記ヒートポンプサイクルを前記冷媒圧縮機からの冷媒を前記第1冷媒凝縮器、前記第2膨張弁および前記冷媒/クーラント熱交換器の順に循環させて冷却運転することにより、前記クーラントサイクルを介して前記モータ/バッテリが冷却可能とされていることとしてもよい。
 上記第1の態様によれば、HVACユニットを送風運転しながら、ヒートポンプサイクルを運転して第2膨張弁および冷媒/クーラント熱交換器側のみに冷媒を流すことにより、クーラントを冷却することができる。これによって、クーラントサイクルを介してモータ/バッテリを冷媒冷却することができ、従って、車室内の冷暖房等が不要時においても、送風効果のみを得ながら、モータ/バッテリを冷媒により強制冷却し、走行モータを効率よく運転することができる。
 さらに、上記第1の態様の車両空調システムは、前記ヒートポンプサイクルを前記冷媒圧縮機からの冷媒を前記第1冷媒凝縮器、前記第2膨張弁および前記冷媒/クーラント熱交換器の順に循環させてモータ/バッテリ冷却制御モードで運転することにより、前記クーラントサイクルを介して前記モータ/バッテリが冷却可能とされていることとしてもよい。
 上記第1の態様によれば、HVACユニットの機能、すなわち車室内の送風を含む空調機能の一切を停止しながら、ヒートポンプサイクルを運転して第2膨張弁および冷媒/クーラント熱交換器側のみに冷媒を流すことにより、クーラントを冷却することができる。これによって、クーラントサイクルを介してモータ/バッテリを冷媒により強制冷却することができる。従って、車室内の空調機能を停止した状態においても、モータ/バッテリを冷媒により強制冷却し、走行モータを効率よく運転することができる。
 さらに、本発明の第2の態様にかかる車両空調システムの運転制御方法は、上述のいずれかの車両空調システムを自動運転する運転制御方法において、運転開始時、予め設定されている温度や圧力等の設定値と、所定箇所に設けられている温度や圧力等を検出する各センサからの検出値と、制御パネルの設定とを読み込み、前記送風機がオフのときは、モータ/バッテリを冷媒冷却するモータ/バッテリ冷却制御を行い、前記送風機がオンのときは、更にエアコンスイッチのオン/オフを判断し、該スイッチがオフの場合、温調ダイヤルがマックスクールのときは、モータ/バッテリの冷媒冷却を含む送風モード制御を行い、温調ダイヤルがマックスクール以外のときは、暖房制御を行い、前記エアコンスイッチがオンの場合、温調ダイヤルがマックスクールのときは、冷房制御を行い、温調ダイヤルがマックスクール以外のときは、更に前記蒸発器のフロスト防止要否を判断し、要の場合、暖房制御を行い、否の場合、除湿暖房制御を行う。
 本発明の第2の態様によれば、運転を開始する際に、予め設定されている、例えば蒸発器フロスト温度Taef、モータ/バッテリの空冷切替え温度Tcmi1、モータ/バッテリの冷媒冷却切替え温度Tcmi2、冷媒/クーラント熱交換器のクーラント入り口必要温度Tcni1、第2冷媒凝縮器の空気側必要吐出温度Taso1、第2冷媒凝縮器の入り口必要冷媒圧力Prsi1等の設定値と、例えばモータ/バッテリのクーラント入り口温度Tcmi、モータ/バッテリのクーラント出口温度Tcmo、冷媒/クーラント熱交換器のクーラント入り口温度Tcni、冷媒/クーラント熱交換器のクーラント出口温度Tcno、換気排熱回収器のクーラント出口温度Tcho、外気温度Taot、第2冷媒凝縮器の空気側必要吐出温度Taso、第2冷媒凝縮器の入り口必要冷媒圧力Prsi等を検出する各センサからの検出値と、例えば送風スイッチ、エアコンスイッチ、温調ダイヤル等の制御パネルの設定とを読み込み、該データに基づいて、車両空調システムをモータ/バッテリを冷媒冷却するモータ/バッテリ冷却制御、モータ/バッテリの冷媒冷却を含む送風モード制御、暖房制御、冷房制御、および除湿暖房制御のいずれかで自動運転するようにしている。このため、電気自動車にあって、排熱を有効利用した快適な空調運転、ならびにモータ/バッテリの効率のよい冷却運転を実現することができる。
 さらに、本発明の第2の態様にかかる車両空調システムの運転制御方法は、上述のいずれかの車両空調システムを冷房制御運転する運転制御方法において、冷房制御時、前記クーラントサイクルの前記モータ/バッテリのクーラント入り口温度Tcmiと、予め設定されている空冷切替え温度Tcmi1との関係が、Tcmi>Tcmi1か否かを判断し、TcmiがTcmi1未満の場合は、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第1冷媒凝縮器、前記第1膨張弁および前記冷媒蒸発器の順に循環させ、前記モータ/バッテリの冷却なしで冷房運転を行うこととしてもよい。
 上記第2の態様によれば、冷房制御時、モータ/バッテリのクーラント入り口温度Tcmiが予め設定されている空冷切替え温度Tcmi1以上か否かを判断し、TcmiがTcmi1未満の場合は、第1冷媒凝縮器で凝縮された冷媒をHVACユニットに配設されている冷媒蒸発器に流し、モータ/バッテリの冷却なしで冷房運転を行うようにしている。このため、モータ/バッテリのクーラント入り口温度によりモータ/バッテリに対する冷却の要否を確認しながら、冷房運転することができる。
 さらに、上記第2の態様の車両空調システムの運転制御方法は、上記の車両空調システムの運転制御方法において、前記クーラント入り口温度Tcmiが前記空冷切替え温度Tcmi1以上のときは、さらに前記クーラント入り口温度Tcmiと、予め設定されている冷媒冷却切替え温度Tcmi2との関係が、Tcmi>Tcmi2か否かを判断し、TcmiがTcmi2以上の場合は、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第1冷媒凝縮器、前記第1膨張弁および前記冷媒蒸発器の順に循環させて冷房運転を行うとともに、前記第2膨張弁および前記冷媒/クーラント熱交換器にも並行して冷媒を循環させてクーラントの冷却運転を行い、前記クーラントサイクルを介して前記モータ/バッテリを冷媒冷却し、前記クーラント入り口温度TcmiがTcmi2未満の場合は、前記冷房運転と共に前記モータ/バッテリを空冷運転することとしてもよい。
 上記第2の態様によれば、クーラント入り口温度Tcmiが空冷切替え温度Tcmi1以上のときは、クーラント入り口温度Tcmiが、予め設定されている冷媒冷却切替え温度Tcmi2以上か否かを判断し、TcmiがTcmi2以上の場合は、第1冷媒凝縮器で凝縮された冷媒をHVACユニットに配設されている冷媒蒸発器と冷媒/クーラント熱交換器とに並行して流し、冷房運転と共にクーラントサイクルを介してモータ/バッテリを冷媒冷却するようにし、また、クーラント入り口温度TcmiがTcmi2未満の場合は、冷媒を冷媒蒸発器のみに流し冷媒/クーラント熱交換器への冷媒循環を中止して、モータ/バッテリを空冷運転するようにしている。このため、冷房運転を行いながら、モータ/バッテリのクーラント入り口温度に応じてモータ/バッテリを適切に冷却することができる。
 さらに、本発明の第2の態様にかかる車両空調システムの運転制御方法は、上述のいずれかの車両空調システムを送風モード制御運転する運転制御方法において、送風モード制御時、前記クーラントサイクルの前記モータ/バッテリのクーラント入り口温度Tcmiと、予め設定されている空冷切替え温度Tcmi1との関係が、Tcmi>Tcmi1か否かを判断し、TcmiがTcmi1未満の場合は、前記モータ/バッテリの冷却は不要とみなし、前記送風機のみを運転して送風運転を行うこととしてもよい。
 上記第2の態様によれば、送風モード制御時、モータ/バッテリのクーラント入り口温度Tcmiが、予め設定されている空冷切替え温度Tcmi1以上か否かを判断し、TcmiがTcmi1未満の場合は、モータ/バッテリの冷却は不要とみなし、HVACユニットの送風機のみを運転して送風運転を行うようにしている。このため、モータ/バッテリのクーラント入り口温度によりモータ/バッテリに対する冷却の要否を確認しながら、送風運転することができる。
 さらに、上記第2の態様の車両空調システムの運転制御方法は、上記の車両空調システムの運転制御方法において、前記クーラント入り口温度Tcmiが前記空冷切替え温度Tcmi1以上のときは、さらに前記クーラント入り口温度Tcmiと、予め設定されている冷媒冷却切替え温度Tcmi2との関係が、Tcmi>Tcmi2か否かを判断し、TcmiがTcmi2以上の場合は、前記送風機を運転して送風運転を行うとともに、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第1冷媒凝縮器、前記第2膨張弁および前記冷媒/クーラント熱交換器の順に循環させてクーラントの冷却運転を行い、前記クーラントサイクルを介して前記モータ/バッテリを冷媒冷却し、前記クーラント入り口温度TcmiがTcmi2未満の場合は、前記送風運転と共に前記モータ/バッテリを空冷運転することとしてもよい。
 上記第2の態様によれば、クーラント入り口温度Tcmiが空冷切替え温度Tcmi1以上のときは、クーラント入り口温度Tcmiが、予め設定されている冷媒冷却切替え温度Tcmi2以上か否かを判断し、TcmiがTcmi2以上の場合は、ヒートポンプサイクルにより第1冷媒凝縮器で凝縮された冷媒を第2膨張弁および冷媒/クーラント熱交換器に流し、送風運転と共にクーラントサイクルを介してモータ/バッテリを冷媒冷却するようにし、また、クーラント入り口温度TcmiがTcmi2未満の場合は、ヒートポンプサイクルを停止し、モータ/バッテリを空冷運転するようにしている。このため、送風運転を行いながら、モータ/バッテリのクーラント入り口温度に応じてモータ/バッテリを適切に冷却することが可能となる。
 さらに、本発明の第2の態様にかかる車両空調システムの運転制御方法は、上述のいずれかの車両空調システムをモータ/バッテリ冷却制御運転する運転制御方法において、モータ/バッテリ冷却制御時、前記クーラントサイクルの前記モータ/バッテリのクーラント入り口温度Tcmiと、予め設定されている空冷切替え温度Tcmi1との関係が、Tcmi>Tcmi1か否かを判断し、TcmiがTcmi1未満の場合は、前記モータ/バッテリの冷却は不要とみなし、前記モータ/バッテリの冷却運転を見合わせることとしてもよい。
 上記第2の態様によれば、モータ/バッテリ冷却制御時、モータ/バッテリのクーラント入り口温度Tcmiが、予め設定されている空冷切替え温度Tcmi1以上か否かを判断し、TcmiがTcmi1未満の場合は、モータ/バッテリの冷却は不要とみなし、モータ/バッテリの冷却運転を見合わせるようにしている。このため、モータ/バッテリのクーラント入り口温度によりモータ/バッテリに対する冷却の要否を確認しながら、モータ/バッテリの冷却運転を見合わせることができる。
 さらに、上記第2の態様の車両空調システムの運転制御方法は、上記の車両空調システムの運転制御方法において、前記クーラント入り口温度Tcmiが前記空冷切替え温度Tcmi1以上のときは、さらに前記クーラント入り口温度Tcmiと、予め設定されている冷媒冷却切替え温度Tcmi2との関係が、Tcmi>Tcmi2か否かを判断し、TcmiがTcmi2以上の場合は、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第1冷媒凝縮器、前記第2膨張弁および前記冷媒/クーラント熱交換器の順に循環させてクーラントの冷却運転を行い、前記クーラントサイクルを介して前記モータ/バッテリを冷媒冷却し、前記クーラント入り口温度TcmiがTcmi2未満の場合は、前記モータ/バッテリを空冷運転することとしてもよい。
 上記第2の態様によれば、クーラント入り口温度Tcmiが空冷切替え温度Tcmi1以上のときは、クーラント入り口温度Tcmiが、予め設定されている冷媒冷却切替え温度Tcmi2以上か否かを判断し、TcmiがTcmi2以上の場合は、ヒートポンプサイクルにより第1冷媒凝縮器で凝縮された冷媒を第2膨張弁および冷媒/クーラント熱交換器に流し、クーラントサイクルを介してモータ/バッテリを冷媒冷却するようにし、また、クーラント入り口温度TcmiがTcmi2未満の場合は、ヒートポンプサイクルを停止し、モータ/バッテリを空冷運転するようにしている。このため、モータ/バッテリのクーラント入り口温度に応じてモータ/バッテリを適切に冷却することができる。
 さらに、本発明の第2の態様にかかる車両空調システムの運転制御方法は、上述のいずれかの車両空調システムを暖房制御運転する運転制御方法において、暖房制御時、前記クーラントサイクルの前記モータ/バッテリのクーラント出口温度Tcmoと、前記冷媒/クーラント熱交換器のクーラント出口温度Tcnoとの関係が、Tcmo>Tcnoか否かを判断し、TcmoがTcno未満の場合は、前記電気ヒータに通電し、前記クーラントサイクルのクーラントを該電気ヒータにより加熱するとともに、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第2冷媒凝縮器、前記第2膨張弁および前記冷媒/クーラント熱交換器の順に循環させ、前記クーラントを熱源としてヒートポンプ暖房運転を行うこととしてもよい。
 上記第2の態様によれば、暖房制御時、モータ/バッテリのクーラント出口温度Tcmoが、冷媒/クーラント熱交換器のクーラント出口温度Tcno以上か否かを判断し、TcmoがTcno未満の場合は、電気ヒータに通電してクーラントを加熱するとともに、ヒートポンプサイクルによりHVACユニットに配設されている第2冷媒凝縮器で凝縮された冷媒を第2膨張弁および冷媒/クーラント熱交換器に流し、電気ヒータにより加熱されたクーラントを熱源としてヒートポンプ暖房運転を行うようにしている。従って、モータ/バッテリの排熱が利用できず、通常ではヒートポンプ暖房が困難な低外気温時(例えば、-10℃)や暖房立ち上がり時にも、電気ヒータにより加熱されたクーラントを熱源とすることにより、必要な暖房能力を確保して効率のよい暖房運転を行うことができる。
 また、本発明の第2の態様の車両空調システムの運転制御方法は、上記の車両空調システムの運転制御方法において、前記モータ/バッテリのクーラント出口温度Tcmoが前記冷媒/クーラント熱交換器のクーラント出口温度Tcno以上のときは、前記換気排熱回収器のクーラント出口温度Tchoと、前記冷媒/クーラント熱交換器のクーラント出口温度Tcnoとの関係が、Tcho>Tcnoか否かを判断し、TchoがTcno未満の場合は、さらに前記冷媒/クーラント熱交換器のクーラント入り口温度Tcniと、予め設定されている前記冷媒/クーラント熱交換器のクーラント入り口必要温度Tcni1との関係が、Tcni<Tcni1か否か、前記第2冷媒凝縮器の空気側吐出温度Tasoと、予め設定されている前記第2冷媒凝縮器の空気側必要吐出温度Taso1との関係が、Taso<Taso1か否か、前記第2冷媒凝縮器の入り口冷媒圧力Prsiと、予め設定されている前記第2冷媒凝縮器の入り口必要冷媒圧力Prsi1との関係が、Prsi<Prsi1か否かを各々判断し、各々が条件を満たしていない場合は、前記クーラントサイクルのクーラントを前記モータ/バッテリの排熱により加熱するとともに、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第2冷媒凝縮器、前記第2膨張弁および前記冷媒/クーラント熱交換器の順に循環させ、前記クーラントを熱源としてヒートポンプ暖房運転を行い、前記クーラント入り口温度Tcni、前記空気側吐出温度Tasoおよび前記入り口冷媒圧力Prsiが各々前記条件を満たしている場合は、前記電気ヒータに通電し、前記クーラントサイクルのクーラントを該電気ヒータおよび前記モータ/バッテリの双方により加熱するとともに、該クーラントを熱源として前記ヒートポンプ暖房運転を行うこととしてもよい。
 本発明の第2の態様によれば、モータ/バッテリのクーラント出口温度Tcmoが冷媒/クーラント熱交換器のクーラント出口温度Tcno以上のときは、換気排熱回収器のクーラント出口温度Tchoが冷媒/クーラント熱交換器のクーラント出口温度Tcno以上か否かを判断し、TchoがTcno未満の場合は、さらに冷媒/クーラント熱交換器のクーラント入り口温度Tcniが、予め設定されている冷媒/クーラント熱交換器のクーラント入り口必要温度Tcni1未満か否か、第2冷媒凝縮器の空気側吐出温度Tasoが、予め設定されている第2冷媒凝縮器の空気側必要吐出温度Taso1未満か否か、第2冷媒凝縮器の入り口冷媒圧力Prsiが、予め設定されている第2冷媒凝縮器の入り口必要冷媒圧力Prsi1未満か否かを各々判断し、各々が条件を満たしていない場合は、クーラントをモータ/バッテリの排熱により加熱するとともに、ヒートポンプサイクルによりHVACユニットに配設されている第2冷媒凝縮器で凝縮された冷媒を第2膨張弁および冷媒/クーラント熱交換器に流し、該クーラントを熱源としてヒートポンプ暖房運転を行い、クーラント入り口温度Tcni、空気側吐出温度Tasoおよび入り口冷媒圧力Prsiが各々の条件を満たしている場合は、電気ヒータに通電してクーラントを電気ヒータおよびモータ/バッテリの双方により加熱するとともに、該クーラントを熱源としてヒートポンプ暖房運転を行うようにしている。このように、モータ/バッテリの排熱が利用できる場合は、更に換気排熱が利用できるか否かを判断し、換気排熱が利用できない場合は、更に電気ヒータの利用が必要か否かを判断し、本当に電気ヒータが必要な場合に限り電気ヒータに通電してクーラントを加熱するようにしている。このため、各々の状態において、必要な暖房能力を確保して効率のよい暖房運転を行うことができると同時に、電気ヒータの使用を可及的に抑制し、空調システム側での消費電力を低減して車両の走行距離延長に貢献することができる。
 また、上記第2の態様の車両空調システムの運転制御方法は、上述のいずれかの車両空調システムの運転制御方法において、前記モータ/バッテリのクーラント出口温度Tcmoが前記冷媒/クーラント熱交換器のクーラント出口温度Tcno以上のときは、前記換気排熱回収器のクーラント出口温度Tchoと、前記冷媒/クーラント熱交換器のクーラント出口温度Tcnoとの関係が、Tcho>Tcnoか否かを判断し、TchoがTcno以上の場合は、更に前記冷媒/クーラント熱交換器のクーラント入り口温度Tcniと、予め設定されている前記冷媒/クーラント熱交換器のクーラント入り口必要温度Tcni1との関係が、Tcni<Tcni1か否か、前記第2冷媒凝縮器の空気側吐出温度Tasoと、予め設定されている前記第2冷媒凝縮器の空気側必要吐出温度Taso1との関係が、Taso<Taso1か否か、前記第2冷媒凝縮器の入り口冷媒圧力Prsiと、予め設定されている前記第2冷媒凝縮器の入り口必要冷媒圧力Prsi1との関係が、Prsi<Prsi1か否かを各々判断し、各々が条件を満たしていない場合は、前記クーラントサイクルのクーラントを前記モータ/バッテリの排熱および前記換気排熱回収器により加熱するとともに、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第2冷媒凝縮器、前記第2膨張弁および前記冷媒/クーラント熱交換器の順に循環させ、前記クーラントを熱源としてヒートポンプ暖房運転を行い、前記クーラント入り口温度Tcni、前記空気側吐出温度Tasoおよび前記入り口冷媒圧力Prsiが各々前記条件を満たしている場合は、前記電気ヒータに通電し、前記クーラントサイクルのクーラントを該電気ヒータ、前記モータ/バッテリの排熱および前記換気排熱回収器により加熱するとともに、該クーラントを熱源として前記ヒートポンプ暖房運転を行うこととしてもよい。
 上記第2の態様によれば、モータ/バッテリのクーラント出口温度Tcmoが冷媒/クーラント熱交換器のクーラント出口温度Tcno以上のときは、換気排熱回収器のクーラント出口温度Tchoが冷媒/クーラント熱交換器のクーラント出口温度Tcno以上か否かを判断し、TchoがTcno以上の場合は、更に冷媒/クーラント熱交換器のクーラント入り口温度Tcniが、予め設定されている冷媒/クーラント熱交換器のクーラント入り口必要温度Tcni1未満か否か、第2冷媒凝縮器の空気側吐出温度Tasoが、予め設定されている前記第2冷媒凝縮器の空気側必要吐出温度Taso1未満か否か、第2冷媒凝縮器の入り口冷媒圧力Prsiが、予め設定されている第2冷媒凝縮器の入り口必要冷媒圧力Prsi1未満か否かを各々判断し、各々が条件を満たしていない場合、クーラントをモータ/バッテリの排熱および換気排熱回収器により加熱するとともに、ヒートポンプサイクルによりHVACユニットに配設されている第2冷媒凝縮器で凝縮された冷媒を第2膨張弁および冷媒/クーラント熱交換器に流し、該クーラントを熱源としてヒートポンプ暖房運転を行い、クーラント入り口温度Tcni、空気側吐出温度Tasoおよび入り口冷媒圧力Prsiが各々の条件を満たしている場合は、電気ヒータに通電してクーラントを電気ヒータ、モータ/バッテリの排熱および換気排熱回収器により加熱するとともに、該クーラントを熱源としてヒートポンプ暖房運転を行うようにしている。このように、モータ/バッテリの排熱が利用できる場合は、換気排熱が利用できるか否かを判断し、換気排熱が利用できる場合は、更に電気ヒータの利用が必要か否かを判断し、本当に電気ヒータが必要な場合に限り電気ヒータに通電してクーラントを加熱するようにしている。このため、各々の状態において、必要な暖房能力を確保して効率のよい暖房運転を行うことができると同時に、電気ヒータの使用を可及的に抑制し、空調システム側での消費電力を低減して車両の走行距離延長に貢献することができる。
 さらに、本発明の第2の態様にかかる車両空調システムの運転制御方法は、上述のいずれかの車両空調システムを除湿暖房制御運転する運転制御方法において、除湿暖房制御時、前記クーラントサイクルの前記モータ/バッテリのクーラント出口温度Tcmoと、前記冷媒/クーラント熱交換器のクーラント出口温度Tcnoとの関係が、Tcmo>Tcnoか否かを判断し、TcmoがTcno未満の場合は、前記電気ヒータに通電し、前記クーラントサイクルのクーラントを該電気ヒータによって加熱するとともに、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第2冷媒凝縮器で凝縮した後、前記第1膨張弁および前記冷媒蒸発器と前記第2膨張弁および前記冷媒/クーラント熱交換器との双方に並行して流し、前記クーラントを熱源としてヒートポンプ除湿暖房運転を行うこととしてもよい。
 上記第2の態様によれば、除湿暖房制御時に、モータ/バッテリのクーラント出口温度Tcmoが、冷媒/クーラント熱交換器のクーラント出口温度Tcno以上か否かを判断し、TcmoがTcno未満の場合は、電気ヒータに通電してクーラントを加熱するとともに、ヒートポンプサイクルによりHVACに配設されている第2冷媒凝縮器で凝縮された冷媒をHVACに配設されている冷媒蒸発器と冷媒/クーラント熱交換器とに並行に流し、電気ヒータで加熱されたクーラントを熱源としてヒートポンプ除湿暖房運転を行うようにしている。従って、モータ/バッテリの排熱が利用できず、通常ではヒートポンプ暖房が困難な低外気温時(例えば、-10℃)や暖房立ち上がり時にも、電気ヒータにより加熱されたクーラントを熱源とすることにより、必要な暖房能力を確保して効率のよい除湿暖房運転を行うことができる。
 さらに、上記第2の態様の車両空調システムの運転制御方法は、上記の車両空調システムの運転制御方法において、前記モータ/バッテリのクーラント出口温度Tcmoが記冷媒/クーラント熱交換器のクーラント出口温度Tcno以上のときは、前記換気排熱回収器のクーラント出口温度Tchoと、前記冷媒/クーラント熱交換器のクーラント出口温度Tcnoとの関係が、Tcho>Tcnoか否かを判断し、TchoがTcno未満の場合は、さらに前記冷媒/クーラント熱交換器のクーラント入り口温度Tcniと、予め設定されている前記冷媒/クーラント熱交換器のクーラント入り口必要温度Tcni1との関係が、Tcni<Tcni1か否か、前記第2冷媒凝縮器の空気側吐出温度Tasoと、予め設定されている前記第2冷媒凝縮器の空気側必要吐出温度Taso1との関係が、Taso<Taso1か否か、前記第2冷媒凝縮器の入り口冷媒圧力Prsiと、予め設定されている前記第2冷媒凝縮器の入り口必要冷媒圧力Prsi1との関係が、Prsi<Prsi1か否かを各々判断し、各々が条件を満たしていない場合は、前記クーラントサイクルのクーラントを前記モータ/バッテリの排熱により加熱するとともに、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第2冷媒凝縮器で凝縮した後、前記第1膨張弁および前記冷媒蒸発器と前記第2膨張弁および前記冷媒/クーラント熱交換器との双方に並行して流し、前記クーラントを熱源としてヒートポンプ除湿暖房運転を行い、前記クーラント入り口温度Tcni、前記空気側吐出温度Tasoおよび前記入り口冷媒圧力Prsiが各々前記条件を満たしている場合は、前記電気ヒータに通電し、前記クーラントサイクルのクーラントを該電気ヒータおよび前記モータ/バッテリの双方により加熱するとともに、該クーラントを熱源として前記ヒートポンプ除湿暖房運転を行うこととしてもよい。
 上記第2の態様によれば、モータ/バッテリのクーラント出口温度Tcmoが冷媒/クーラント熱交換器のクーラント出口温度Tcno以上のときは、換気排熱回収器のクーラント出口温度Tchoが冷媒/クーラント熱交換器のクーラント出口温度Tcno以上か否かを判断し、TchoがTcno未満の場合は、さらに冷媒/クーラント熱交換器のクーラント入り口温度Tcniが、予め設定されている冷媒/クーラント熱交換器のクーラント入り口必要温度Tcni1未満か否か、第2冷媒凝縮器の空気側吐出温度Tasoが、予め設定されている第2冷媒凝縮器の空気側必要吐出温度Taso1未満か否か、第2冷媒凝縮器の入り口冷媒圧力Prsiが、予め設定されている第2冷媒凝縮器の入り口必要冷媒圧力Prsi1未満か否かを各々判断し、各々が条件を満たしていない場合、クーラントをモータ/バッテリの排熱により加熱するとともに、ヒートポンプサイクルによりHVACユニットに配設されている第2冷媒凝縮器で凝縮された冷媒をHVACに配設されている冷媒蒸発器と冷媒/クーラント熱交換器とに並行して流し、該クーラントを熱源としてヒートポンプ除湿暖房運転を行い、クーラント入り口温度Tcni、空気側吐出温度Tasoおよび入り口冷媒圧力Prsiが各々の条件を満たしている場合、電気ヒータに通電してクーラントを電気ヒータおよびモータ/バッテリの双方により加熱するとともに、該クーラントを熱源としてヒートポンプ除湿暖房運転を行うようにしている。このように、モータ/バッテリの排熱が利用できる場合は、換気排熱が利用できるか否かを判断し、換気排熱が利用できない場合は、更に電気ヒータの利用が必要か否かを判断し、本当に電気ヒータが必要な場合に限り電気ヒータに通電してクーラントを加熱するようにしている。このため、各々の状態において、必要な暖房能力を確保して効率のよい暖房運転を行うことができると同時に、電気ヒータの使用を可及的に抑制し、空調システム側での消費電力を低減して車両の走行距離延長に貢献することができる。
 さらに、上記第2の態様の車両空調システムの運転制御方法は、上述のいずれかの車両空調システムの運転制御方法において、前記モータ/バッテリのクーラント出口温度Tcmoが記冷媒/クーラント熱交換器のクーラント出口温度Tcno以上のときは、前記換気排熱回収器のクーラント出口温度Tchoと、前記冷媒/クーラント熱交換器のクーラント出口温度Tcnoとの関係が、Tcho>Tcnoか否かを判断し、TchoがTcno以上の場合は、さらに前記冷媒/クーラント熱交換器のクーラント入り口温度Tcniと、予め設定されている前記冷媒/クーラント熱交換器のクーラント入り口必要温度Tcni1との関係が、Tcni<Tcni1か否か、前記第2冷媒凝縮器の空気側吐出温度Tasoと、予め設定されている前記第2冷媒凝縮器の空気側必要吐出温度Taso1との関係が、Taso<Taso1か否か、前記第2冷媒凝縮器の入り口冷媒圧力Prsiと、予め設定されている前記第2冷媒凝縮器の入り口必要冷媒圧力Prsi1との関係が、Prsi<Prsi1か否かを各々判断し、各々が条件を満たしていない場合は、前記クーラントサイクルのクーラントを前記モータ/バッテリの排熱および前記換気排熱回収器によって加熱するとともに、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第2冷媒凝縮器で凝縮した後、前記第1膨張弁および前記冷媒蒸発器と前記第2膨張弁および前記冷媒/クーラント熱交換器との双方に並行して流し、前記クーラントを熱源としてヒートポンプ除湿暖房運転を行い、前記クーラント入り口温度Tcni、前記空気側吐出温度Tasoおよび前記入り口冷媒圧力Prsiが各々前記条件を満たしている場合、前記電気ヒータに通電し、前記クーラントサイクルのクーラントを該電気ヒータ、前記モータ/バッテリの排熱および前記換気排熱回収器により加熱するとともに、該クーラントを熱源として前記ヒートポンプ除湿暖房運転を行うこととしてもよい。
 上記第2の態様によれば、モータ/バッテリのクーラント出口温度Tcmoが冷媒/クーラント熱交換器のクーラント出口温度Tcno以上のときは、換気排熱回収器のクーラント出口温度Tchoが冷媒/クーラント熱交換器のクーラント出口温度Tcno以上か否かを判断し、TchoがTcno以上のときは、さらに冷媒/クーラント熱交換器のクーラント入り口温度Tcniが、予め設定されている冷媒/クーラント熱交換器のクーラント入り口必要温度Tcni1未満か否か、第2冷媒凝縮器の空気側吐出温度Tasoが、予め設定されている前記第2冷媒凝縮器の空気側必要吐出温度Taso1未満か否か、第2冷媒凝縮器の入り口冷媒圧力Prsiが、予め設定されている第2冷媒凝縮器の入り口必要冷媒圧力Prsi1未満か否かを各々判断し、各々が条件を満たしていない場合は、クーラントをモータ/バッテリの排熱および換気排熱回収器により加熱するとともに、ヒートポンプサイクルによりHVACユニットに配設されている第2冷媒凝縮器で凝縮された冷媒をHVACに配設されている冷媒蒸発器と冷媒/クーラント熱交換器に流し、該クーラントを熱源としてヒートポンプ除湿暖房運転を行い、クーラント入り口温度Tcni、空気側吐出温度Tasoおよび入り口冷媒圧力Prsiが各々の条件を満たしている場合は、電気ヒータに通電してクーラントを電気ヒータ、モータ/バッテリの排熱および換気排熱回収器によって加熱するとともに、該クーラントを熱源としてヒートポンプ除湿暖房運転を行うようにしている。このように、モータ/バッテリの排熱が利用できる場合は、換気排熱が利用できるか否かを判断し、換気排熱が利用できる場合は、更に電気ヒータの利用が必要か否かを判断し、本当に電気ヒータが必要な場合に限って電気ヒータに通電してクーラントを加熱するようにしている。このため、各々の状態において、必要な暖房能力を確保して効率のよい除湿暖房運転を行うことができると同時に、電気ヒータの使用を可及的に抑制し、空調システム側での消費電力を低減して車両の走行距離延長に貢献することができる。
 本発明の車両空調システムによると、ヒートポンプサイクルによるヒートポンプ暖房および除湿暖房時において、車室内の排出空気から回収された排熱を暖房用の熱源として有効利用することができるため、低外気温時や暖房立ち上がり時には、電気ヒータによる熱を利用することによって必要な能力を確保し、安定した暖房あるいは除湿暖房を行うことができる。また、モータ/バッテリからの排熱が利用できる場合や、車室内温度が目標温度に到達し換気排熱回収器からの排熱を利用できる場合には、優先的に排熱を利用し、電気ヒータの使用を可及的に抑制することにより、電力消費を抑えた効率のよい運転を行うことができ、車両の走行距離の延長に貢献することができる。
 また、本発明の車両空調システムの運転制御方法によると、予め設定されている温度や圧力等の設定値と、所定箇所に設けられている温度や圧力等を検出する各センサからの検出値と、制御パネルの設定とに基づいて、上記の車両空調システムをモータ/バッテリを冷媒冷却するモータ/バッテリ冷却制御、モータ/バッテリの冷媒冷却を含む送風モード制御、暖房制御、冷房制御、および除湿暖房制御のいずれかで自動運転できるようにしているため、電気自動車にあって、排熱を有効利用した快適な空調運転、ならびにモータ/バッテリの効率のよい冷却運転を実現することができる。
本発明の第1実施形態に係る車両空調システムのシステム構成図である。 図1に示す車両空調システムを自動運転するための制御フロー図である。 図2に示す制御フロー中の冷房制御運転時の制御フロー図である。 図2に示す制御フロー中の送風モード制御運転時の制御フロー図である。 図2に示す制御フロー中のモータ/バッテリ冷却制御運転時の制御フロー図である。 図2に示す制御フロー中の暖房制御運転時の制御フロー図である。 図2に示す制御フロー中の除湿暖房制御運転時の制御フロー図である。 図3ないし図7に示す運転モードのパターンを一覧表にした図である。 図3に示す冷房制御運転における冷房時1(モータ/バッテリ冷媒冷却)のサイクル図である。 図3に示す冷房制御運転における冷房時2(モータ/バッテリ空冷)のサイクル図である。 図3に示す冷房制御運転における冷房時3(モータ/バッテリ冷却なし)のサイクル図である。 図4に示す送風モード制御運転における送風モード時1(モータ/バッテリ冷媒冷却)のサイクル図である。 図4に示す送風モード制御運転における送風モード時2(モータ/バッテリ空冷)のサイクル図である。 図4に示す送風モード制御運転における送風モード時3(モータ/バッテリ冷却なし)のサイクル図である。 図5に示すモータ/バッテリ冷却制御運転におけるモータ/バッテリ冷却時1(モータ/バッテリ冷媒冷却)のサイクル図である。 図5に示すモータ/バッテリ冷却制御運転におけるモータ/バッテリ冷却時2(モータ/バッテリ空冷)のサイクル図である。 図5に示すモータ/バッテリ冷却制御運転におけるモータ/バッテリ冷却時3(モータ/バッテリ冷却なし)のサイクル図である。 図6に示す暖房制御運転における暖房時1(PTC+モータ/バッテリ+換気排熱利用)のサイクル図である。 図6に示す暖房制御運転における暖房時2(モータ/バッテリ+換気排熱利用)のサイクル図である。 図6に示す暖房制御運転における暖房時3(PTC+モータ/バッテリ排熱利用)のサイクル図である。 図6に示す暖房制御運転における暖房時4(モータ/バッテリ排熱利用)のサイクル図である。 図6に示す暖房制御運転における暖房時5(PTC利用)のサイクル図である。 図7に示す除湿暖房制御運転における除湿暖房時1(PTC+モータ/バッテリ+換気排熱利用)のサイクル図である。 図7に示す除湿暖房制御運転における除湿暖房時2(モータ/バッテリ+換気排熱利用)のサイクル図である。 図7に示す除湿暖房制御運転における除湿暖房時3(PTC+モータ/バッテリ排熱利用)のサイクル図である。 図7に示す除湿暖房制御運転における除湿暖房時4(モータ/バッテリ排熱利用)のサイクル図である。 図7に示す除湿暖房制御運転における除湿暖房時5(PTC利用)のサイクル図である。
 以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
 以下、本発明の第1実施形態について、図1ないし図27を用いて説明する。
 図1には、本発明の第1実施形態に係る車両空調システム1のシステム構成図が示されている。車両空調システム1は、HVACユニット(Heating Ventilation and Air Conditioning Unit;HVACユニット)2と、ヒートポンプサイクル3と、クーラントサイクル4とから構成されている。
 HVACユニット2は、送風用のブロア(送風機)5と、該ブロア5の送風路中に上流側から下流側に順次配設されているヒートポンプサイクル3を構成する冷媒蒸発器6およびサブコンデンサとも称される第2冷媒凝縮器7とを備えており、車両のインストルメントパネル内に設置され、冷媒蒸発器6および第2冷媒凝縮器7によって温調された空気を車室内に吹出し、車室内の空調を行うように構成されている。
 ヒートポンプサイクル3は、冷媒を圧縮する電動モータを内蔵した冷媒圧縮機8と、該冷媒圧縮機8の2分岐された吐出側冷媒配管に設けられた第1電磁弁9および第2電磁弁10からなる冷媒循環方向を切替える冷媒切替え部11と、第1電磁弁9側の冷媒配管中に順次設けられている冷媒と外気とを熱交換する第1冷媒凝縮器12および逆止弁13と、逆止弁13の下流側冷媒配管に第1膨張弁(EEV;電子膨張弁)14を介して設けられている上記冷媒蒸発器6と、該冷媒蒸発器6の下流側の吸入側冷媒配管に設けられているアキュームレータ15と、をこの順に接続して構成された閉サイクルの冷媒回路16を有している。
 また、ヒートポンプサイクル3は、第2電磁弁10から第1膨張弁14の入り口側に至る冷媒配管17中に第1冷媒凝縮器12および逆止弁13に対して並列に接続されている上記第2冷媒凝縮器7と、第1膨張弁14および冷媒蒸発器6に対して並列に接続されている冷媒配管18中に設けられている第2膨張弁(EEV;電子膨張弁)19および冷媒/クーラント熱交換器20と、を備えた構成とされている。なお、冷媒/クーラント熱交換器20は、ヒートポンプサイクル3内を循環される冷媒と、クーラントサイクル4内を循環されるクーラントとを熱交換するための熱交換器である。
 クーラントサイクル4は、上記冷媒/クーラント熱交換器20と、クーラント循環ポンプ21と、車室内から外部に排出される空気から熱を回収する換気排熱回収器22と、走行モータおよび/またはその電源バッテリ23(以下、単にモータ/バッテリと称するものとし、該モータには、モータを駆動するインバータを含む場合と含まない場合とが含まれるものとする。)と、PTCヒータ等の電気ヒータ(PTC)24とを順次接続して構成されている閉サイクルのクーラント回路25を有している。このクーラント回路25において、電気ヒータ24は、冷媒/クーラント熱交換器20の上流側に、また換気排熱回収器22は、冷媒/クーラント熱交換器20の下流側にそれぞれ配設されている。なお、換気排熱回収器22が配設されている車室内空気の排出路には、圧力リリーフ弁(PRV)26が設けられている。
 また、クーラントサイクル4は、換気排熱回収器22の入り口側に第3電磁弁27が設けられ、モータ/バッテリ23の出口側に第4電磁弁28が設けられるとともに、換気排熱回収器22およびモータ/バッテリ23に対して第5電磁弁29を備えた第1バイパス回路30が接続され、換気排熱回収器22に対して第6電磁弁31を備えた第2バイパス回路32が接続された構成とされている。
 さらに、クーラントサイクル4には、モータ/バッテリ23の出口側と入り口側との間に、第7電磁弁33および第2クーラント循環ポンプ34を介してクーラントを空冷するラジエータ35を備えたモータ/バッテリ冷却回路36が設けられている。なお、モータ/バッテリ冷却回路36には、リザーブタンク37が接続されているとともに、ラジエータ35に対面して外気を流通する冷却ファン38が配設されている。また、このラジエータ35および冷却ファン38と、上記第1冷媒凝縮器12とは、一体にモジュール化されたコンデンサ/ラジエータ/ファンモジュール(CRFM)としてもよい。
 本実施形態に係る車両空調システム1は、以上のように構成されているため、ヒートポンプサイクル3の冷媒圧縮機8において圧縮された冷媒を、冷媒切替え部11の第1電磁弁9から第1冷媒凝縮器12に導入して凝縮し、この冷媒を逆止弁13、第1膨張弁14を介してHVACユニット2に配設されている冷媒蒸発器6に流通させ、ブロア5から送風される空気と熱交換させて該空気を冷却し、車室内に吹出すことによって車室内の冷房に供することができる。同時に、第2膨張弁19を介して冷媒/クーラント熱交換器20に冷媒を導き、この冷媒でクーラントサイクル4側のクーラントを冷却し、該クーラントをクーラント循環ポンプ21でモータ/バッテリ23に循環することにより、車室内を冷房しながらモータ/バッテリ23を冷媒冷却することができる。
 また、ヒートポンプサイクル3を上記のように運転しながら、第1冷媒凝縮器12で凝縮された冷媒を、第2膨張弁19を介して冷媒/クーラント熱交換器20側のみに導くことによりクーラントサイクル4側のクーラントを冷却し、車室内の冷房を停止した状態あるいはブロア5のみを運転した送風モード状態で、モータ/バッテリ23を冷媒によって冷却することもできる。なお、モータ/バッテリ23は、ヒートポンプサイクル3を停止した状態で、クーラントを第7電磁弁33および第2クーラント循環ポンプ34を介してモータ/バッテリ冷却回路36側に循環し、ラジエータ35を機能させることにより空冷することができる。
 一方、ヒートポンプサイクル3の冷媒圧縮機8で圧縮された冷媒を、冷媒切替え部11の第2電磁弁10および冷媒配管17を経てHVACユニット2に配設されている第2冷媒凝縮器7側に導き、ブロア5から送風される空気と熱交換させて該空気を加熱し、この空気を車室内に吹出すことによって車室内の暖房に供することができる。この場合、第2冷媒凝縮器7で放熱して凝縮された冷媒は、第2膨張弁19を介して冷媒/クーラント熱交換器20に導入され、クーラントサイクル4側のクーラントから吸熱して蒸発された後、アキュームレータ15を経て冷媒圧縮機8に吸入されることになる。
 同様に、ヒートポンプサイクル3では、第2冷媒凝縮器7で凝縮された冷媒を、第1膨張弁14および冷媒蒸発器6と、第2膨張弁19および冷媒/クーラント熱交換器20との双方に並行して流すことができる。これによって、クーラントサイクル4側のクーラントから吸熱しながら、HVACユニット2においてブロア5から送風される空気を冷媒蒸発器6でいったん冷却除湿した後、これを第2冷媒凝縮器7で加熱することにより、除湿暖房を行うことができる。
 そして、上記暖房および除湿暖房の際、ヒートポンプサイクル3側では、冷媒/クーラント熱交換器20でクーラントから吸熱して冷媒を蒸発させることにより、クーラントを熱源として暖房および除湿暖房を行っている。このクーラントは、クーラント循環ポンプ21を介してクーラントサイクル25内を循環される間に、モータ/バッテリ23、電気ヒータ24および換気排熱回収器22の3つ熱源の組み合わせから、以下の5種の熱源のいずれか1つを選択し、その熱を冷媒/クーラント熱交換器20で回収してヒートポンプサイクル3での暖房用熱源としている。
 (A)換気排熱回収器22とモータ/バッテリ23と電気ヒータ24との組み合わせ。
 (B)換気排熱回収器22とモータ/バッテリ23との組み合わせ。
 (C)モータ/バッテリ23と電気ヒータ24との組み合わせ。
 (D)モータ/バッテリ23単独。
 (E)電気ヒータ24単独。
 このように、モータ/バッテリ23の排熱および電気ヒータ24の熱の他に、換気排熱回収器22により回収される車室内空気の換気排熱を利用することによって、暖房用熱源を多様化することができる。
 上記5種の熱源のうち、(A)の換気排熱回収器22とモータ/バッテリ23と電気ヒータ24を利用する場合は、第3電磁弁27および第4電磁弁28を開、第5電磁弁29および第6電磁弁31を閉として、クーラントを換気排熱回収器22、モータ/バッテリ23および電気ヒータ24の順に循環すればよく、(C)のモータ/バッテリ23と電気ヒータ24を利用する場合は、第6電磁弁31および第4電磁弁28を開、第5電磁弁29および第3電磁弁27を閉とし、換気排熱回収器22をバイパスして第2バイパス回路32を介してモータ/バッテリ23および電気ヒータ24にクーラントを循環すればよく、さらに、(E)の電気ヒータ24のみを利用する場合は、第3電磁弁27、第4電磁弁28および第6電磁弁31を閉、第5電磁弁29を開とし、換気排熱回収器22およびモータ/バッテリ23をバイパスして電気ヒータ24にクーラントを循環すればよい。なお、(B)および(D)では、各電磁弁を(A)および(C)と同様の開閉状態としたまま、電気ヒータ24への通電をオフにすればよい。
 しかして、本実施形態によれば、ヒートポンプサイクル3によるヒートポンプ暖房および除湿暖房時において、換気排熱回収器22を介して車室内の排出空気から回収された排熱を暖房用の熱源として有効利用することができる。このため、低外気温時や暖房立ち上がり時には、電気ヒータ24による熱を利用することによって必要な能力を確保し、安定した暖房あるいは除湿暖房を行うことができ、また、モータ/バッテリ23からの排熱が利用できる場合や車室内温度が目標温度に到達し換気排熱回収器22からの排熱が利用できる場合には、優先的に排熱を利用し、電気ヒータ24の使用を可及的に抑制することにより、電力消費を抑えた効率のよい運転を行うことができる。従って、車両の走行距離の延長にも貢献することができる。
 また、クーラントサイクル4には、第1バイパス回路30および第2バイパス回路32が設けられているため、熱源の選択に対応してクーラントを第1バイパス回路30あるいは第2バイパス回路32に選択的に流すことによって、換気排熱回収器22およびモータ/バッテリ23、あるいは換気排熱回収器22をバイパスしてクーラントを効率よく加熱し、循環することができる。従って、クーラント循環ポンプ21や電気ヒータ(PTC)24での消費動力を低減することができる。
 また、クーラントサイクル4が、ラジエータ35を用いた空冷のモータ/バッテリ冷却回路36を備えているため、必要に応じてヒートポンプサイクル3の冷却機能を利用したクーラントサイクル4を介してのモータ/バッテリ23の冷媒冷却と、ラジエータ35を介してのモータ/バッテリ23の空冷冷却とを併用することができる。これによって、モータ/バッテリ23のクーラント入り口温度等を見張りながら、冷媒冷却または空冷冷却のいずれかでモータ/バッテリ23を効率よくかつ確実に冷却することができる。
 さらに、本実施形態によれば、ヒートポンプサイクル3およびクーラントサイクル4のサイクルの切替えによって、以下のいずれかの運転モードを選択することができる。
 (1)HVACユニット2のブロア5を運転しながら、HVACユニット2に配設されているヒートポンプサイクル3の冷媒蒸発器6を蒸発器、第1冷媒凝縮器12を凝縮器として機能させて行う冷房制御運転。
 (2)HVACユニット2のブロア5を運転しながら、併せてヒートポンプサイクル3の第1冷媒凝縮器12を凝縮器、冷媒/クーラント熱交換器20を蒸発器として機能させてクーラントを冷却し、クーラントサイクル4を介してモータ/バッテリ23を冷媒により冷却するモータ/バッテリ23の冷媒冷却を含む送風モード制御運転。
 (3)HVACユニット2のブロア5を停止した状態で、ヒートポンプサイクル3の第1冷媒凝縮器12を凝縮器、冷媒/クーラント熱交換器20を蒸発器として機能させてクーラントを冷却し、クーラントサイクル4を介してモータ/バッテリ23を冷媒により冷却するモータ/バッテリ冷却制御運転。
 (4)HVACユニット2のブロア5を運転しながら、クーラントサイクル4の換気排熱回収器22、モータ/バッテリ23、電気ヒータ24等によって加熱されたクーラントを熱源とし、HVACユニット2に配設されているヒートポンプサイクル3の第2冷媒凝縮器7を凝縮器、冷媒/クーラント熱交換器20を蒸発器として機能させて行う暖房制御運転。
 (5)HVACユニット2のブロア5を運転しながら、上記(4)と同様にして加熱されたクーラントを熱源とし、HVACユニット2に配設されているヒートポンプサイクル3の第2冷媒凝縮器7を凝縮器、冷媒蒸発器6および冷媒/クーラント熱交換器20を蒸発器として機能させて行う除湿暖房制御運転。
 従って、本実施形態の車両空調システム1によると、効率のよい冷房、暖房、除湿暖房等の運転の他に、モータ/バッテリ23の冷媒冷却を含む送風運転やモータ/バッテリ23の冷媒冷却運転等の多様な運転を行うことができ、車両空調システム1を幅広く利用することができる。
 また、クーラントサイクル4では、そのサイクル中に接続されている換気排熱回収器22、モータ/バッテリ23および電気ヒータ24の3つ熱源の組み合わせにより、上記した5種の熱源(A)ないし(E)のいずれか1つを選択し、その熱を冷媒/クーラント熱交換器20で回収してヒートポンプサイクル3の暖房用熱源とすることができる。このように、換気排熱回収器22により回収された車室内空気の換気排熱を利用することによって、暖房用熱源の多様化が可能となり、従って、その分電気ヒータ24の使用を抑制することができ、空調システム1での消費電力を低減することができる。
 また、本実施形態では、ヒートポンプサイクル3において、第1膨張弁14および冷媒蒸発器6に対して並列に第2膨張弁19および冷媒/クーラント熱交換器20を接続しているため、第1冷媒凝縮器12で凝縮された冷媒をHVACユニット2に配設されている冷媒蒸発器6に流し、冷房制御モードで運転しながら、これに並列に接続されている冷媒/クーラント熱交換器20にも並行して冷媒を流しクーラントを冷却することにより、クーラントサイクル4を介してモータ/バッテリ23を冷媒により冷却することができる。従って、高温環境下では、車室内の冷房を行いながら、モータ/バッテリ23を冷媒によって強制冷却し、走行モータを効率よく運転することができる。
 同様に、ブロア5を駆動しHVACユニット2を送風運転しながら、ヒートポンプサイクル3を運転し、第1冷媒凝縮器12で凝縮された冷媒を第2膨張弁19および冷媒/クーラント熱交換器20側のみに流すことにより、クーラントを冷却することができる。これによって、冷却されたクーラントおよびクーラントサイクル4を介してモータ/バッテリ23を冷媒により冷却することができ、従って、車室内の冷暖房等が不要な場合においても、送風効果のみを得ながら、モータ/バッテリ23を冷媒により強制冷却し、走行モータを効率よく運転することができる。
 さらに、本実施形態によれば、HVACユニット2の機能、すなわち車室内の送風を含む空調機能の一切を停止しながら、上記と同様にヒートポンプサイクル3を運転し、第1冷媒凝縮器12で凝縮された冷媒を第2膨張弁19および冷媒/クーラント熱交換器20側のみに流すことにより、クーラントを冷却することができる。これによって、冷却されたクーラントおよびクーラントサイクル4を介してモータ/バッテリ23を冷媒により強制冷却することができる。従って、車室内の空調機能を停止した状態においても、モータ/バッテリ23を冷媒により強制冷却し、走行モータを効率よく運転することができる。
[第2実施形態]
 次に、本発明の第2実施形態について、図2ないし図27を用いて説明する。
 本実施形態は、上記した第1実施形態に係る車両空調システムを自動運転する運転制御方法に係るものであり、図2ないし図7には、その制御フローが示され、図8には、その運転モードのパターンを一覧表にした図が示され、図9ないし図27には、各運転モードでの冷媒およびクーラントの流れを示す(図中に矢印表示)サイクル図が示されている。
 本実施形態によれば、図2に示されるように、運転が開始(スタート)されると、まずステップS1において、予め設定されている冷媒蒸発器6のフロスト温度Taef、モータ/バッテリ23の空冷切替え温度Tcmi1、モータ/バッテリ23の冷媒冷却切替え温度Tcmi2、冷媒/クーラント熱交換器20のクーラント入り口必要温度Tcni1、第2冷媒凝縮器7の空気側必要吐出温度Taso1、第2冷媒凝縮器7の入り口必要冷媒圧力Prsi1等の設定値が読み込まれる。
 続いて、ステップS2において、図1に配設位置が図示されているセンサ40によりモータ/バッテリ23のクーラント入り口温度Tcmi、センサ41によりモータ/バッテリ23のクーラント出口温度Tcmo、センサ42により冷媒/クーラント熱交換器20のクーラント入り口温度Tcni、センサ43により冷媒/クーラント熱交換器20のクーラント出口温度Tcno、センサ44により換気排熱回収器のクーラント出口温度Tcho、センサ45により外気温度Taot、センサ46により第2冷媒凝縮器7の空気側必要吐出温度Taso、センサ47により第2冷媒凝縮器7の入り口必要冷媒圧力Prsi等が検出され、その検出値が読み込まれる。
 さらに、ステップS3において、制御パネル(図示省略)に設けられている送風スイッチ、エアコンスイッチ、温調ダイヤル等のパネル設定が読み込まれる。
 これらのデータに基づいて、ステップS4において、まず送風スイッチのオン/オフが判断される。送風スイッチがオンされておれば、ステップS5に移行し、また、ブロア5がオフされておれば、ステップS6に移行し、ステップS6では、後述の通りモータ/バッテリ冷却制御運転が実行される。
 一方、ステップS5においては、エアコンスイッチのオン/オフが判断され、エアコンスイッチがオンされておれば、ステップS7に移行し、エアコンスイッチがオフされておれば、ステップS8に移行する。ステップS8では、温調ダイヤルがマックスクール(最大冷房)か否かが判断され、「YES」であれば、ステップS9に移行し、ステップS9において、後述の通り送風モード制御運が実行される。また、ステップS8で「NO」と判断されると、ステップS10に移行し、ステップS10において、後述の通り暖房制御運転が実行される。
 さらに、ステップS7においては、同様に温調ダイヤルがマックスクール(最大冷房)か否かが判断され、「YES」であれば、ステップS11に移行し、ステップS11において、後述の通り冷房制御運転が実行される。また、ステップS7で「NO」と判断されると、ステップS12に移行し、ここでは、センサ45により検出された外気温度Taotと、予め設定されている冷媒蒸発器6のフロスト温度Taefとの関係が、Taot<Taefか否かが判断される。その結果、「YES」であれば、上記ステップS10に移行し、後述の通り暖房制御運転が実行され、「NO」であれば、ステップS13に移行し、後述の通り除湿暖房制御運転が実行される。
 このようにして、車両空調システム1を上記した冷房制御運転(1)、モータ/バッテリ23の冷媒冷却を含む送風モード制御運転(2)、モータ/バッテリ23を冷媒冷却するモータ/バッテリ冷却制御運転(3)、暖房制御運転(4)、および除湿暖房制御運転(5)のいずれかで自動運転することができる。従って、電気自動車にあって、モータ/バッテリ23の排熱および換気排熱を有効利用した快適な空調運転、ならびにモータ/バッテリ23の効率のよい冷却運転を実現することができる。
 以下に、冷房制御運転(1)、送風モード制御運転(2)、モータ/バッテリ冷却制御運転(3)、暖房制御運転(4)、および除湿暖房制御運転(5)の具体的な運転制御方法を図3ないし図7に示す制御フローと図9ないし図27のサイクル図を用いて説明する。
[冷房制御]
 冷房制御時は、図3に示されるように、まずステップS21において、モータ/バッテリ23が空冷利用か否かが判断される。これは、センサ40により検出されたモータ/バッテリ23のクーラント入り口温度Tcmiと、予め設定されている空冷切替え温度Tcmi1との関係が、Tcmi>Tcmi1か否かによって判断される。この結果、TcmiがTcmi1未満で「NO」と判断された場合、ステップS22の冷房時3に移行し、図11に示されるように、ヒートポンプサイクル3において、冷媒圧縮機8から吐出された冷媒を冷媒切替え部11により第1冷媒凝縮器12、第1膨張弁14および冷媒蒸発器6の順に循環させ、HVACユニット2に配設されている冷媒蒸発器6でブロア5からの空気を冷却し、車室内に吹出すことによって冷房運転を行うことができる。この場合、モータ/バッテリ23の冷却は不要と見做され、モータ/バッテリ23の冷却運転は見合わされる。
 一方、ステップS21において、TcmiがTcmi1以上で「YES」と判断された場合、引き続きステップS23において、モータ/バッテリ23が冷媒冷却利用か否かが判断される。これは、センサ40により検出されたクーラント入り口温度Tcmiと、予め設定されている冷媒冷却切替え温度Tcmi2との関係が、Tcmi>Tcmi2か否かによって判断される。TcmiがTcmi2以上で「YES」と判断された場合、ステップS24の冷房時1に移行し、図9に示されるように、ヒートポンプサイクル3において、冷媒圧縮機8から吐出された冷媒を第1冷媒凝縮器12に導いて凝縮させ、この冷媒を第1膨張弁14および冷媒蒸発器6と、第2膨張弁19および冷媒/クーラント熱交換器20とに並行して循環させるようにしている。
 このため、HVACユニット2に配設されている冷媒蒸発器6でブロア5からの空気を冷却し、車室内に吹出すことによって冷房運転を行うことができるとともに、冷媒/クーラント熱交換器20でクーラントの冷却運転を行い、このクーラントおよびクーラントサイクル4を介してモータ/バッテリ23を冷媒冷却することができる。さらに、ステップS23において、クーラント入り口温度TcmiがTcmi2未満で「NO」と判断された場合は、ステップS25の冷房時2に移行し、図10に示されるように、ヒートポンプサイクル3により第1冷媒凝縮器12で凝縮された冷媒を、第1膨張弁14を介して冷媒蒸発器6のみに循環させ、HVACユニット2に配設されている冷媒蒸発器6でブロア5からの空気を冷却し、車室内に吹出すことによって冷房運転を行うことができ、また、モータ/バッテリ23については、ラジエータ35にモータ/バッテリ冷却回路36を介してクーラントを循環させることによって空冷することができる。
 以上のように、冷房制御時においては、モータ/バッテリ23のクーラント入り口温度Tcmiが予め設定されている空冷切替え温度Tcmi1以上か否かを判断し、TcmiがTcmi1未満の場合は、第1冷媒凝縮器12で凝縮された冷媒をHVACユニット2に配設されている冷媒蒸発器6に流し、モータ/バッテリ23の冷却なしで冷房運転を行うようにしている。このため、モータ/バッテリ23のクーラント入り口温度によりモータ/バッテリ23に対する冷却の要否を確認しながら、冷房運転することができる。
 また、クーラント入り口温度Tcmiが空冷切替え温度Tcmi1以上のときは、クーラント入り口温度Tcmiが、予め設定されている冷媒冷却切替え温度Tcmi2以上か否かを判断し、TcmiがTcmi2以上の場合は、第1冷媒凝縮器12で凝縮された冷媒をHVACユニット2に配設されている冷媒蒸発器6と冷媒/クーラント熱交換器20とに並行して流し、冷房運転と共にクーラントサイクル4を介してモータ/バッテリ23を冷媒冷却するようにしている。さらに、クーラント入り口温度TcmiがTcmi2未満の場合は、冷媒蒸発器6のみに冷媒を流し冷媒/クーラント熱交換器20への冷媒循環を中止して、モータ/バッテリ23を空冷運転するようにしている。このため、冷房運転を行いながら、モータ/バッテリ23のクーラント入り口温度に応じてモータ/バッテリ23を適切に冷却することが可能となる。
[送風モード制御]
 送風モード制御時は、図4に示されるように、まずステップS31において、モータ/バッテリ23が空冷利用か否かが判断される。これは、センサ40により検出されたモータ/バッテリ23のクーラント入り口温度Tcmiと、予め設定されている空冷切替え温度Tcmi1との関係が、Tcmi>Tcmi1か否かによって判断される。この結果、TcmiがTcmi1未満で「NO」と判断された場合、ステップS32の送風モード時3に移行し、図14に示されるように、HVACユニット2のブロア5のみが運転されることにより、送風運転が行われる。この場合、モータ/バッテリ23の冷却は不要と見做され、モータ/バッテリ23の冷却運転は見合わされる。
 一方、ステップS31において、TcmiがTcmi1以上で「YES」と判断された場合、引き続きステップS33において、モータ/バッテリ23が冷媒冷却利用か否かが判断される。これは、センサ40により検出されたクーラント入り口温度Tcmiと、予め設定されている冷媒冷却切替え温度Tcmi2との関係が、Tcmi>Tcmi2か否かによって判断される。TcmiがTcmi2以上で「YES」と判断された場合、ステップS34の送風モード時1に移行し、図12に示されるように、ブロア5の運転により送風運転が行われるとともに、ヒートポンプサイクル3が運転される。これにより、冷媒圧縮機8から吐出された冷媒が冷媒切替え部11により第1冷媒凝縮器12に導かれて凝縮された後、第2膨張弁19および冷媒/クーラント熱交換器20の順に循環されてクーラントの冷却運転が行われ、該クーラントおよびクーラントサイクル4を介してモータ/バッテリ23を冷媒冷却することができる。
 さらに、ステップS33において、クーラント入り口温度TcmiがTcmi2未満で「NO」とされた場合は、ステップS35の送風モード時2に移行し、図13に示されるように、ブロア5を運転して送風運転を行い、ヒートポンプサイクル3を停止するようにしている。この場合、モータ/バッテリ23は、ラジエータ35にモータ/バッテリ冷却回路36を介してクーラントを循環させることによって空冷運転されることになる。
 以上のように、送風モード制御時においては、モータ/バッテリ23のクーラント入り口温度Tcmiが、予め設定されている空冷切替え温度Tcmi1以上か否かを判断し、TcmiがTcmi1未満の場合は、モータ/バッテリ23の冷却は不要とみなし、HVACユニット2のブロア5のみを運転して送風運転を行うようにしている。このため、モータ/バッテリ23のクーラント入り口温度によりモータ/バッテリ23に対する冷却の要否を確認しながら、送風運転することができる。
 また、クーラント入り口温度Tcmiが空冷切替え温度Tcmi1以上のときは、クーラント入り口温度Tcmiが、予め設定されている冷媒冷却切替え温度Tcmi2以上か否かを判断し、TcmiがTcmi2以上の場合は、ヒートポンプサイクル3により第1冷媒凝縮器12で凝縮された冷媒を第2膨張弁19および冷媒/クーラント熱交換器20に流し、送風運転と共にクーラントサイクル4を介してモータ/バッテリ23を冷媒冷却するようにし、また、クーラント入り口温度TcmiがTcmi2未満の場合は、ヒートポンプサイクル3を停止し、モータ/バッテリ23を空冷運転するようにしている。このため、送風運転を行いながら、モータ/バッテリ23のクーラント入り口温度に応じてモータ/バッテリ23を適切に冷却することが可能となる。
[モータ/バッテリ冷却制御]
 モータ/バッテリ冷却制御時は、図5に示されているように、まずステップS41において、モータ/バッテリ23が空冷利用か否かが判断される。これは、センサ40により検出されたモータ/バッテリ23のクーラント入り口温度Tcmiと、予め設定されている空冷切替え温度Tcmi1との関係が、Tcmi>Tcmi1か否かによって判断される。この結果、TcmiがTcmi1未満で「NO」と判断された場合、ステップS42のモータ/バッテリ冷却時3に移行し、図17に示されるように、モータ/バッテリ23の冷却は不要と見做され、モータ/バッテリ23の冷却運転は見合わされる。なお、この場合、HVACユニット2は停止状態とされている。
 一方、ステップS41において、クーラント入り口温度Tcmiが空冷切替え温度Tcmi1以上で「YES」と判断された場合は、続いてステップS43において、モータ/バッテリ23が冷媒冷却利用か否かが判断される。これは、センサ40により検出されたクーラント入り口温度Tcmiと、予め設定されている冷媒冷却切替え温度Tcmi2との関係が、Tcmi>Tcmi2か否かにより判断される。TcmiがTcmi2以上で「YES」と判断された場合、ステップS44のモータ/バッテリ冷却時1に移行し、図15に示されるように、ヒートポンプサイクル3において、冷媒圧縮機8からの冷媒を冷媒切替え部11により第1冷媒凝縮器12、第2膨張弁19および冷媒/クーラント熱交換器20の順に循環させてクーラントの冷却運転を行い、クーラントサイクル4を介してモータ/バッテリ23を冷媒冷却することができる。HVACユニット2は停止状態が維持される。
 さらに、ステップS43において、クーラント入り口温度TcmiがTcmi2未満で「NO」と判断された場合は、ステップS45のモータ/バッテリ冷却時2に移行し、図16に示されるように、ヒートポンプサイクル3を停止するようにしている。この場合、モータ/バッテリ23は、ラジエータ35にモータ/バッテリ冷却回路36を介してクーラントを循環させることによって空冷運転されることになる。
 以上のように、モータ/バッテリ冷却制御時においては、モータ/バッテリ23のクーラント入り口温度Tcmiが、予め設定されている空冷切替え温度Tcmi1以上か否かを判断し、TcmiがTcmi1未満の場合は、モータ/バッテリ23の冷却は不要とみなし、モータ/バッテリ23の冷却運転を見合わせるようにしている。このため、モータ/バッテリ23のクーラント入り口温度によりモータ/バッテリ23に対する冷却の要否を確認しながら、モータ/バッテリ23の冷却運転を見合わせることができる。
 また、クーラント入り口温度Tcmiが空冷切替え温度Tcmi1以上のときは、クーラント入り口温度Tcmiが、予め設定されている冷媒冷却切替え温度Tcmi2以上か否かを判断し、TcmiがTcmi2以上の場合は、ヒートポンプサイクル3により第1冷媒凝縮器12において凝縮された冷媒を第2膨張弁19および冷媒/クーラント熱交換器20に流し、クーラントサイクル4を介してモータ/バッテリ23を冷媒冷却するようにし、また、クーラント入り口温度TcmiがTcmi2未満の場合は、ヒートポンプサイクル3を停止し、モータ/バッテリ23を空冷運転するようにしている。このため、モータ/バッテリ23のクーラント入り口温度に応じてモータ/バッテリ23を適切に冷却することができる。
[暖房制御]
 暖房制御時は、図6に示されるように、まずステップS51において、モータ/バッテリ23が排熱利用か否かが判断される。これは、センサ41により検出されたモータ/バッテリ23のクーラント出口温度Tcmoと、センサ43により検出された冷媒/クーラント熱交換器20のクーラント出口温度Tcnoとの関係が、Tcmo>Tcnoか否かによって判断される。
 この結果、TcmiがTcmi1未満で「NO」と判断された場合は、ステップS52の暖房時5に移行し、図22に示されるように、電気ヒータ24に通電され、第5電磁弁29が開、第3電磁弁27、第4電磁弁28および第6電磁弁31が閉とされる。これにより、クーラントサイクル4のクーラントは第1バイパス回路30に循環され電気ヒータ24によって加熱される。同時にヒートポンプサイクル3においては、冷媒圧縮機8から吐出された冷媒が冷媒切替え部11によりHVACユニット2に配設されている第2冷媒凝縮器7、第2膨張弁19および冷媒/クーラント熱交換器20の順に循環され、電気ヒータ24により加熱されたクーラントを熱源としてヒートポンプ暖房運転を行うことができる。
 一方、ステップS51において、モータ/バッテリ23のクーラント出口温度Tcmoが冷媒/クーラント熱交換器20のクーラント出口温度Tcno以上で「YES」と判断された場合は、ステップS53に移行する。ここでは、換気排熱回収器22が排熱利用か否かが判断される。これは、センサ44により検出された換気排熱回収器のクーラント出口温度Tchoと、センサ43により検出された冷媒/クーラント熱交換器20のクーラント出口温度Tcnoとの関係が、Tcho>Tcnoか否かによって判断される。
 この結果、TchoがTcno未満で「NO」と判断された場合は、ステップS54に移行し、更に電気ヒータ(PTC)24が利用か否かが以下の条件を満たしているか否かによって判断される。
 (a)センサ42により検出された冷媒/クーラント熱交換器20のクーラント入り口温度Tcniと、予め設定されている冷媒/クーラント熱交換器20のクーラント入り口必要温度Tcni1との関係が、Tcni<Tcni1か否か。
 (b)センサ46により検出された第2冷媒凝縮器7の空気側吐出温度Tasoと、予め設定されている第2冷媒凝縮器7の空気側必要吐出温度Taso1との関係が、Taso<Taso1か否か。
 (c)センサ47により検出された第2冷媒凝縮器7の入り口冷媒圧力Prsiと、予め設定されている第2冷媒凝縮器7の入り口必要冷媒圧力Prsi1との関係が、Prsi<Prsi1か否か。
 上記(a)ないし(c)が各々条件を満たさず「NO」と判断された場合は、ステップS55の暖房時4に移行し、図21に示されるように、電気ヒータ24はオフとされるとともに、第4電磁弁28および第6電磁弁31が開、第3電磁弁27および第5電磁弁29が閉とされ、クーラントサイクル4のクーラントは、モータ/バッテリ23のみに循環されその排熱により加熱される。同時にヒートポンプサイクル3では、冷媒圧縮機8から吐出された冷媒が冷媒切替え部11を介してHVACユニット2に配設されている第2冷媒凝縮器7、第2膨張弁19および冷媒/クーラント熱交換器20の順に循環され、モータ/バッテリ23の排熱により加熱されたクーラントを熱源としてヒートポンプ暖房運転を行うことができる。
 また、上記ステップS54において、上記(a)ないし(c)が各々条件を満たし「YES」と判断された場合は、ステップS56の暖房時3に移行され、図20に示されるように、暖房時4の場合に加えて電気ヒータ24が通電状態とされる。これによって、クーラントサイクル4のクーラントが電気ヒータ24およびモータ/バッテリ23の双方により加熱されることになり、ヒートポンプサイクル3は、この電気ヒータ24およびモータ/バッテリ23により加熱されたクーラントを熱源としてヒートポンプ暖房運転を行うことができる。
 さらに、上記ステップS53において、換気排熱回収器22のクーラント出口温度Tchoが冷媒/クーラント熱交換器20のクーラント出口温度Tcno以上で「YES」と判断された場合は、ステップS57に移行し、電気ヒータ(PTC)24が利用か否かが上記と同様、(a)ないし(c)の条件を満たしているか否かによって判断される。この結果、上記のTcni<Tcni1、Taso<Taso1、Prsi<Prsi1の条件が満たされず「NO」と判断された場合は、ステップS58の暖房時2に移行される。ここでは、図19に示されるように、電気ヒータ24はオフとされるとともに、第3電磁弁27および第4電磁弁28が開、第5電磁弁29および第6電磁弁31が閉とされ、クーラントサイクル4のクーラントは、換気排熱回収器22およびモータ/バッテリ23に循環されその排熱によって加熱される。
 同時に、ヒートポンプサイクル3においては、冷媒圧縮機8からの冷媒が冷媒切替え部11を介してHVACユニット2に配設されている第2冷媒凝縮器7、第2膨張弁19および冷媒/クーラント熱交換器20の順に循環され、ヒートポンプサイクル3は、換気排熱回収器22およびモータ/バッテリ23の排熱により加熱されたクーラントを熱源として上記と同様ヒートポンプ暖房運転を行うことができる。
 上記ステップS57において、上記(a)ないし(c)の条件、すなわちTcni<Tcni1、Taso<Taso1、Prsi<Prsi1の条件が満たされ「YES」と判断された場合は、ステップS59の暖房時1に移行され、図18に示されるように、暖房時2の場合に加えて電気ヒータ24が通電状態とされる。これによって、クーラントサイクル4のクーラントは、換気排熱回収器22、モータ/バッテリ23および電気ヒータ24により加熱されることになり、ヒートポンプサイクル3は、換気排熱回収器22、モータ/バッテリ23および電気ヒータ24により加熱されたクーラントを熱源として上記と同様ヒートポンプ暖房運転を行うことができる。
 以上のように、暖房制御時においては、モータ/バッテリ23のクーラント出口温度Tcmoが、冷媒/クーラント熱交換器20のクーラント出口温度Tcno以上か否かを判断し、TcmoがTcno未満の場合は、電気ヒータ24に通電してクーラントを加熱するとともに、ヒートポンプサイクル3によりHVACユニット2に配設されている第2冷媒凝縮器7で凝縮された冷媒を第2膨張弁19および冷媒/クーラント熱交換器20に流し、電気ヒータ24により加熱されたクーラントを熱源としてヒートポンプ暖房運転を行うようにしている。このため、モータ/バッテリ23の排熱が利用できず、通常ではヒートポンプ暖房が困難な低外気温時(例えば、-10℃)や暖房立ち上がり時にも、電気ヒータ24により加熱されたクーラントを熱源とすることにより、必要な暖房能力を確保して効率のよい暖房運転を行うことができる。
 また、モータ/バッテリ23のクーラント出口温度Tcmoが冷媒/クーラント熱交換器20のクーラント出口温度Tcno以上のときは、換気排熱回収器22のクーラント出口温度Tchoが冷媒/クーラント熱交換器20のクーラント出口温度Tcno以上か否かを判断している。そして、TchoがTcno未満の場合は、更に冷媒/クーラント熱交換器20のクーラント入り口温度Tcniと予め設定されている冷媒/クーラント熱交換器20のクーラント入り口必要温度Tcni1との関係、第2冷媒凝縮器7の空気側吐出温度Tasoと予め設定されている第2冷媒凝縮器7の空気側必要吐出温度Taso1との関係、および第2冷媒凝縮器7の入り口冷媒圧力Prsiと予め設定されている第2冷媒凝縮器7の入り口必要冷媒圧力Prsi1との関係が、各々Tcni<Tcni1、Taso<Taso1、Prsi<Prsi1か否かを判断し、各々が条件を満たしていない場合は、クーラントをモータ/バッテリ23の排熱により加熱するようにしている。
 同時に、ヒートポンプサイクル3において、HVACユニット2に配設されている第2冷媒凝縮器7で凝縮された冷媒を第2膨張弁19および冷媒/クーラント熱交換器20に流し、モータ/バッテリ23の排熱により加熱されたクーラントを熱源としてヒートポンプ暖房運転を行うようにしている。また、クーラント入り口温度Tcni、空気側吐出温度Tasoおよび入り口冷媒圧力Prsiが各々の条件を満たしている場合は、電気ヒータ24に通電してクーラントを電気ヒータ24およびモータ/バッテリ23の双方により加熱するとともに、ヒートポンプサイクル3により、このクーラントを熱源としてヒートポンプ暖房運転を行うようにしている。
 さらに、換気排熱回収器22のクーラント出口温度Tchoが冷媒/クーラント熱交換器20のクーラント出口温度Tcno以上のときは、冷媒/クーラント熱交換器20のクーラント入り口温度Tcniと予め設定されている冷媒/クーラント熱交換器20のクーラント入り口必要温度Tcni1との関係、第2冷媒凝縮器7の空気側吐出温度Tasoと予め設定されている第2冷媒凝縮器7の空気側必要吐出温度Taso1との関係、および第2冷媒凝縮器7の入り口冷媒圧力Prsiと予め設定されている第2冷媒凝縮器7の入り口必要冷媒圧力Prsi1との関係が、各々Tcni<Tcni1、Taso<Taso1、Prsi<Prsi1か否かを判断し、各々が条件を満たしていない場合は、クーラントを換気排熱回収器22およびモータ/バッテリ23の排熱により加熱するようにしている。
 同時に、ヒートポンプサイクル3において、HVACユニット2に配設されている第2冷媒凝縮器7で凝縮された冷媒を第2膨張弁19および冷媒/クーラント熱交換器20に流し、換気排熱回収器22およびモータ/バッテリ23の排熱により加熱されたクーラントを熱源としてヒートポンプ暖房運転を行うようにしている。また、クーラント入り口温度Tcni、空気側吐出温度Tasoおよび入り口冷媒圧力Prsiが各々の条件を満たしている場合は、電気ヒータ24に通電してクーラントを換気排熱回収器22、モータ/バッテリ23の排熱および電気ヒータ24により加熱し、このクーラントを熱源としてヒートポンプ暖房運転を行うようにしている。
 このように、暖房制御時、モータ/バッテリ23の排熱が利用できる場合は、換気排熱器22が利用できるか否かを判断し、換気排熱器22が利用できる場合は、さらに電気ヒータ24の利用が必要か否かを判断し、本当に電気ヒータ24が必要な場合に限って電気ヒータ24に通電してクーラントを加熱するようにしている。このため、各々の状態において、必要な暖房能力を確保して効率のよい暖房運転を行うことができると同時に、電気ヒータ24の使用を可及的に抑制し、空調システム1側での消費電力を低減して車両の走行距離延長に貢献することができる。
[除湿暖房制御]
 除湿暖房制御は、暖房制御とほぼ同様であり、図7に示されるように、まずステップS61において、モータ/バッテリ23が排熱利用か否かが判断される。これは、センサ41により検出されたモータ/バッテリ23のクーラント出口温度Tcmoと、センサ43により検出された冷媒/クーラント熱交換器20のクーラント出口温度Tcnoとの関係が、Tcmo>Tcnoか否かによって判断される。
 この結果、TcmiがTcmi1未満で「NO」と判断された場合は、ステップS62の除湿暖房時5に移行し、図27に示されるように、電気ヒータ24に通電され、第5電磁弁29が開、第3電磁弁27、第4電磁弁28および第6電磁弁31が閉とされる。これにより、クーラントサイクル4のクーラントは第1バイパス回路30に循環され電気ヒータ24により加熱される。同時にヒートポンプサイクル3においては、冷媒圧縮機8から吐出された冷媒が冷媒切替え部11によりHVACユニット2に配設されている第2冷媒凝縮器7に導かれ、ここで凝縮された後、第1膨張弁14およびHVACユニット2に配設されている冷媒蒸発器6と、第2膨張弁19および冷媒/クーラント熱交換器20とに並行して循環される。
 これによって、HVACユニット2においては、ブロア5からの送風空気を冷媒蒸発器6で冷却除湿した後、第2冷媒凝縮器7で加熱することができ、この空気を車室内に吹出すことにより車室内を除湿暖房することができる。この間、ヒートポンプサイクル3は、電気ヒータ24により加熱されたクーラントを熱源としてヒートポンプ除湿暖房運転を行うことができる。
 一方、ステップS61において、モータ/バッテリ23のクーラント出口温度Tcmoが冷媒/クーラント熱交換器20のクーラント出口温度Tcno以上で「YES」と判断された場合は、ステップS63に移行する。ここでは、換気排熱回収器22が排熱利用か否かが判断される。これは、センサ44により検出された換気排熱回収器のクーラント出口温度Tchoと、センサ43により検出された冷媒/クーラント熱交換器20のクーラント出口温度Tcnoとの関係が、Tcho>Tcnoか否かによって判断される。
 この結果、TchoがTcno未満で「NO」と判断された場合は、ステップS64に移行し、更に電気ヒータ(PTC)24が利用か否かが上記した(a)ないし(c)の条件を満たしているか否かにより判断される。ここで、上記のTcni<Tcni1、Taso<Taso1、Prsi<Prsi1が条件を満たさず「NO」と判断された場合には、ステップS65の除湿暖房時4に移行し、図26に示されるように、電気ヒータ24はオフとされるとともに、第4電磁弁28および第6電磁弁31が開、第3電磁弁27および第5電磁弁29が閉とされ、クーラントサイクル4のクーラントは、モータ/バッテリ23のみに循環されその排熱によって加熱される。
 同時にヒートポンプサイクル3では、冷媒圧縮機8から吐出された冷媒が冷媒切替え部11を介してHVACユニット2に配設されている第2冷媒凝縮器7に導かれ、ここで凝縮された後、第1膨張弁14およびHVACユニット2に配設されている冷媒蒸発器6と、第2膨張弁19および冷媒/クーラント熱交換器20とに並行して循環される。これにより、HVACユニット2においては、ブロア5からの空気が冷媒蒸発器6で冷却除湿された後、冷媒凝縮器7で加熱されて車室内に吹出され、ヒートポンプサイクル3においては、モータ/バッテリ23の排熱により加熱されたクーラントを熱源としてヒートポンプ除湿暖房運転を行うことができる。
 上記ステップS64において、上記(a)ないし(c)が各々条件を満たし「YES」と判断された場合は、ステップS66の除湿暖房時3に移行され、図25に示されるように、除湿暖房時4の場合に加えて電気ヒータ24が通電された状態とされる。これによって、クーラントサイクル4のクーラントは、モータ/バッテリ23および電気ヒータ24に循環されその双方により加熱されることになり、ヒートポンプサイクル3は、このモータ/バッテリ23および電気ヒータ24により加熱されたクーラントを熱源として上記と同様ヒートポンプ暖房運転を行うことができる。
 また、上記ステップS63において、換気排熱回収器22のクーラント出口温度Tchoが冷媒/クーラント熱交換器20のクーラント出口温度Tcno以上で「YES」と判断された場合は、ステップS67に移行し、電気ヒータ(PTC)24が利用か否かが上記と同様、上記(a)ないし(c)の条件を満たしているか否かにより判断される。この結果、Tcni<Tcni1、Taso<Taso1、Prsi<Prsi1の条件が満たされず「NO」と判断された場合、ステップS68の除湿暖房時2に移行される。ここでは、図24に示されるように、電気ヒータ24はオフとされるとともに、第3電磁弁27および第4電磁弁28が開、第5電磁弁29および第6電磁弁31が閉とされ、クーラントサイクル4のクーラントは、換気排熱回収器22およびモータ/バッテリ23に循環されその排熱によって加熱される。
 同時に、ヒートポンプサイクル3においては、冷媒圧縮機からの冷媒が冷媒切替え部11、冷媒配管17を介してHVACユニット2に配設されている第2冷媒凝縮器7に循環され、ここで凝縮された後、第1膨張弁14およびHVACユニット2に配設されている冷媒蒸発器6と、第2膨張弁19および冷媒/クーラント熱交換器20とに並行して循環され、ヒートポンプサイクル3は、換気排熱回収器22およびモータ/バッテリ23の排熱により加熱されたクーラントを熱源として上記と同様ヒートポンプ除湿暖房運転を行うことができる。
 さらに、上記ステップS67において、上記(a)ないし(c)の条件、すなわちTcni<Tcni1、Taso<Taso1、Prsi<Prsi1の条件が満たされ「YES」と判断された場合は、ステップS69の除湿暖房時1に移行され、図23に示されるように、除湿暖房時2の場合に加えて電気ヒータ24が通電された状態とされる。これにより、クーラントサイクル4のクーラントは、換気排熱回収器22、モータ/バッテリ23および電気ヒータ24により加熱されることになり、ヒートポンプサイクル3は、この換気排熱回収器22、モータ/バッテリ23および電気ヒータ24により加熱されたクーラントを熱源として上記と同様ヒートポンプ除湿暖房運転を行うことができる。
 以上のように、除湿暖房制御時においては、モータ/バッテリ23のクーラント出口温度Tcmoが、冷媒/クーラント熱交換器20のクーラント出口温度Tcno以上か否かを判断し、TcmoがTcno未満の場合は、電気ヒータ24に通電してクーラントを加熱するとともに、ヒートポンプサイクル3によりHVACユニット2に配設されている第2冷媒凝縮器7で凝縮された冷媒を第1膨張弁14およびHVACユニット2に配設されている冷媒蒸発器6と、第2膨張弁19および冷媒/クーラント熱交換器20とに並行して流し、電気ヒータ24により加熱されたクーラントを熱源としてヒートポンプ除湿暖房運転を行うようにしている。このため、モータ/バッテリ23の排熱が利用できず、通常ではヒートポンプ除湿暖房が困難な低外気温時(例えば、-10℃)や暖房立ち上がり時にも、電気ヒータ24により加熱されたクーラントを熱源とすることにより、必要な暖房能力を確保して効率のよい除湿暖房運転を行うことができる。
 また、モータ/バッテリ23のクーラント出口温度Tcmoが冷媒/クーラント熱交換器20のクーラント出口温度Tcno以上のときは、換気排熱回収器22のクーラント出口温度Tchoが冷媒/クーラント熱交換器20のクーラント出口温度Tcno以上か否かを判断している。そして、TchoがTcno未満の場合は、更に冷媒/クーラント熱交換器20のクーラント入り口温度Tcniと予め設定されている冷媒/クーラント熱交換器20のクーラント入り口必要温度Tcni1との関係、第2冷媒凝縮器7の空気側吐出温度Tasoと予め設定されている第2冷媒凝縮器7の空気側必要吐出温度Taso1との関係、第2冷媒凝縮器7の入り口冷媒圧力Prsiと予め設定されている第2冷媒凝縮器7の入り口必要冷媒圧力Prsi1との関係が、それぞれTcni<Tcni1、Taso<Taso1、Prsi<Prsi1か否かを判断し、各々が条件を満たしていない場合は、クーラントをモータ/バッテリ23の排熱により加熱するようにしている。
 同時に、ヒートポンプサイクル3において、HVACユニット2に配設されている第2冷媒凝縮器7で凝縮された冷媒を第1膨張弁14およびHVACユニット2に配設されている冷媒蒸発器6と、第2膨張弁19および冷媒/クーラント熱交換器20とに並行して流し、モータ/バッテリ23の排熱により加熱されたクーラントを熱源としてヒートポンプ除湿暖房運転を行うようにしている。また、クーラント入り口温度Tcni、空気側吐出温度Tasoおよび入り口冷媒圧力Prsiが各々の条件を満たしている場合は、電気ヒータ24に通電してクーラントをモータ/バッテリ23および電気ヒータ24の双方により加熱するとともに、ヒートポンプサイクル3により、このクーラントを熱源としてヒートポンプ除湿暖房運転を行うようにしている。
 また、換気排熱回収器22のクーラント出口温度Tchoが冷媒/クーラント熱交換器20のクーラント出口温度Tcno以上のときは、さらに冷媒/クーラント熱交換器20のクーラント入り口温度Tcniと予め設定されている冷媒/クーラント熱交換器20のクーラント入り口必要温度Tcni1との関係、第2冷媒凝縮器7の空気側吐出温度Tasoと予め設定されている第2冷媒凝縮器7の空気側必要吐出温度Taso1との関係、第2冷媒凝縮器7の入り口冷媒圧力Prsiと予め設定されている第2冷媒凝縮器7の入り口必要冷媒圧力Prsi1との関係が、それぞれTcni<Tcni1、Taso<Taso1、Prsi<Prsi1か否かを判断し、各々が条件を満たしていない場合は、クーラントを換気排熱回収器22およびモータ/バッテリ23の排熱の双方により加熱するようにしている。
 同時に、ヒートポンプサイクル3において、HVACユニット2に配設されている第2冷媒凝縮器7で凝縮された冷媒を第1膨張弁14およびHVACユニット2に配設されている冷媒蒸発器6と、第2膨張弁19および冷媒/クーラント熱交換器20とに並行して流し、換気排熱回収器22およびモータ/バッテリ23の排熱により加熱されたクーラントを熱源としてヒートポンプ除湿暖房運転を行うようにしている。また、クーラント入り口温度Tcni、空気側吐出温度Tasoおよび入り口冷媒圧力Prsiが各々の条件を満たしている場合は、電気ヒータ24に通電してクーラントを換気排熱回収器22、モータ/バッテリ23の排熱および電気ヒータ24により加熱し、このクーラントを熱源としてヒートポンプ除湿暖房運転を行うようにしている。
 このように、除湿暖房制御時、モータ/バッテリ23の排熱が利用できる場合は、換気排熱回収器22が利用できるか否かを判断し、換気排熱回収器22が利用できる場合は、さらに電気ヒータ24の利用が必要か否かを判断し、本当に電気ヒータ24が必要な場合に限って電気ヒータ24に通電してクーラントを加熱するようにしている。このため、各々の状態において、必要な暖房能力を確保して効率のよい除湿暖房運転を行うことができると同時に、電気ヒータ24の使用を可及的に抑制し、車両空調システム1側での消費電力を低減して車両の走行距離延長に貢献することができる。
 なお、本発明は、上記実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。例えば、HVACユニット2は、冷媒蒸発器6の下流側に温調用のエアミックスダンパを備えた構成としてもよい。また、ヒートポンプサイクル3において、冷媒切替え部11を構成する第1電磁弁9および第2電磁弁10は、三方切替え弁あるいは四方切替え弁等によって代替してもよい。さらに、クーラントサイクル4において、第4電磁弁28と第7電磁弁33、第3電磁弁27と第5電磁弁29および第6電磁弁31は、他の三方切替え弁や四方切替え弁等によって代替してもよい。
1 車両空調システム
2 HVACユニット
3 ヒートポンプサイクル
4 クーラントサイクル
5 ブロア(送風機)
6 冷媒蒸発器
7 第2冷媒凝縮器
8 冷媒圧縮機
11 冷媒切替え部
12 第1冷媒凝縮器
14 第1膨張弁(EEV;電子膨張弁)
19 第2膨張弁(EEV;電子膨張弁)
20 冷媒/クーラント熱交換器
21 クーラント循環ポンプ
22 換気排熱回収器
23 モータ/バッテリ
24 電気ヒータ(PTC)
30 第1バイパス回路
32 第2バイパス回路
35 ラジエータ
36 モータ/バッテリ冷却回路
40,41,42,43,44,45,46,47 センサ

Claims (21)

  1.  送風機の送風流路中に配設されている冷媒蒸発器および第2冷媒凝縮器により温調された空気を車室内に吹き出すHVACユニットと、
     冷媒圧縮機、冷媒の循環方向を切替える冷媒切替え部、外気との熱交換により冷媒を凝縮する第1冷媒凝縮器、第1膨張弁および前記冷媒蒸発器がこの順に接続されるとともに、前記第1膨張弁および前記冷媒蒸発器に対して第2膨張弁および冷媒/クーラント熱交換器が並列に接続され、前記第1冷媒凝縮器に対して前記冷媒切替え部を介して前記第2冷媒凝縮器が並列に接続されているヒートポンプサイクルと、
     クーラント循環ポンプ、車室内の排出空気から熱を回収する換気排熱回収器、モータ/バッテリ、電気ヒータおよび前記冷媒/クーラント熱交換器が順次接続され、前記換気排熱回収器、前記モータ/バッテリおよび前記電気ヒータが熱源として選択的に利用可能とされているクーラントサイクルとを備えている車両空調システム。
  2.  前記クーラントサイクルは、前記換気排熱回収器および前記モータ/バッテリに対する第1バイパス回路と、前記換気排熱回収器に対する第2バイパス回路とを備えている請求項1に記載の車両空調システム。
  3.  前記クーラントサイクルは、クーラントをラジエータに循環し、前記モータ/バッテリを空冷するモータ/バッテリ冷却回路を備えている請求項1または2に記載の車両空調システム。
  4.  前記ヒートポンプサイクルおよび前記クーラントサイクルは、各々のサイクルの切替えによって、冷房制御、モータ/バッテリの冷媒冷却を含む送風モード制御、モータ/バッテリを冷媒冷却するモータ/バッテリ冷却制御、暖房制御、除湿暖房制御のいずれかの運転モードが選択可能とされている請求項1ないし3のいずれかに記載の車両空調システム。
  5.  前記クーラントサイクルは、前記換気排熱回収器と前記モータ/バッテリと前記電気ヒータ、前記換気排熱回収器と前記モータ/バッテリ、前記モータ/バッテリと前記電気ヒータ、前記モータ/バッテリまたは前記電気ヒータのいずれかから選択的に熱を前記冷媒/クーラント熱交換器に回収し、前記ヒートポンプサイクルは、前記冷媒/クーラント熱交換器で回収された前記熱を熱源として暖房制御または除湿暖房制御のいずれかの運転モードで運転可能とされている請求項1ないし4のいずれかに記載の車両空調システム。
  6.  前記ヒートポンプサイクルは、前記冷媒圧縮機からの冷媒を前記第1冷媒凝縮器、前記第1膨張弁および前記冷媒蒸発器の順に循環することにより冷房制御モードで運転されると同時に、前記第1膨張弁および前記冷媒蒸発器に並列に接続されている前記第2膨張弁および前記冷媒/クーラント熱交換器に並行して冷媒を循環することにより、前記クーラントサイクルを介して前記モータ/バッテリが冷却可能とされている請求項1ないし5のいずれかに記載の車両空調システム。
  7.  前記HVACユニットを送風機のみを駆動して送風モード制御で運転すると同時に、前記ヒートポンプサイクルを前記冷媒圧縮機からの冷媒を前記第1冷媒凝縮器、前記第2膨張弁および前記冷媒/クーラント熱交換器の順に循環させて冷却運転することにより、前記クーラントサイクルを介して前記モータ/バッテリが冷却可能とされている請求項1ないし6のいずれかに記載の車両空調システム。
  8.  前記ヒートポンプサイクルを前記冷媒圧縮機からの冷媒を前記第1冷媒凝縮器、前記第2膨張弁および前記冷媒/クーラント熱交換器の順に循環させてモータ/バッテリ冷却制御モードで運転することにより、前記クーラントサイクルを介して前記モータ/バッテリが冷却可能とされている請求項1ないし7のいずれかに記載の車両空調システム。
  9.  請求項1ないし8のいずれかに記載されている車両空調システムを自動運転する運転制御方法において、
     運転開始時、予め設定されている温度や圧力等の設定値と、所定箇所に設けられている温度や圧力等を検出する各センサからの検出値と、制御パネルの設定とを読み込み、前記送風機がオフのときは、モータ/バッテリを冷媒冷却するモータ/バッテリ冷却制御を行い、前記送風機がオンのときは、更にエアコンスイッチのオン/オフを判断し、該スイッチがオフの場合、温調ダイヤルがマックスクールのときは、モータ/バッテリの冷媒冷却を含む送風モード制御を行い、温調ダイヤルがマックスクール以外のときは、暖房制御を行い、前記エアコンスイッチがオンの場合、温調ダイヤルがマックスクールのときは、冷房制御を行い、温調ダイヤルがマックスクール以外のときは、更に前記蒸発器のフロスト防止要否を判断し、要の場合、暖房制御を行い、否の場合、除湿暖房制御を行う車両空調システムの運転制御方法。
  10.  請求項1ないし8のいずれかに記載されている車両空調システムを冷房制御運転する運転制御方法において、
     冷房制御時、前記クーラントサイクルの前記モータ/バッテリのクーラント入り口温度Tcmiと、予め設定されている空冷切替え温度Tcmi1との関係が、Tcmi>Tcmi1か否かを判断し、TcmiがTcmi1未満の場合は、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第1冷媒凝縮器、前記第1膨張弁および前記冷媒蒸発器の順に循環させ、前記モータ/バッテリの冷却なしで冷房運転を行う車両空調システムの運転制御方法。
  11.  前記クーラント入り口温度Tcmiが前記空冷切替え温度Tcmi1以上のときは、さらに前記クーラント入り口温度Tcmiと、予め設定されている冷媒冷却切替え温度Tcmi2との関係が、Tcmi>Tcmi2か否かを判断し、TcmiがTcmi2以上の場合は、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第1冷媒凝縮器、前記第1膨張弁および前記冷媒蒸発器の順に循環させて冷房運転を行うとともに、前記第2膨張弁および前記冷媒/クーラント熱交換器にも並行して冷媒を循環させてクーラントの冷却運転を行い、前記クーラントサイクルを介して前記モータ/バッテリを冷媒冷却し、前記クーラント入り口温度TcmiがTcmi2未満の場合は、前記冷房運転と共に前記モータ/バッテリを空冷運転する請求項10に記載の車両空調システムの運転制御方法。
  12.  請求項1ないし8のいずれかに記載されている車両空調システムを送風モード制御運転する運転制御方法において、
     送風モード制御時、前記クーラントサイクルの前記モータ/バッテリのクーラント入り口温度Tcmiと、予め設定されている空冷切替え温度Tcmi1との関係が、Tcmi>Tcmi1か否かを判断し、TcmiがTcmi1未満の場合は、前記モータ/バッテリの冷却は不要とみなし、前記送風機のみを運転して送風運転を行う車両空調システムの運転制御方法。
  13.  前記クーラント入り口温度Tcmiが前記空冷切替え温度Tcmi1以上のときは、さらに前記クーラント入り口温度Tcmiと、予め設定されている冷媒冷却切替え温度Tcmi2との関係が、Tcmi>Tcmi2か否かを判断し、TcmiがTcmi2以上の場合は、前記送風機を運転して送風運転を行うとともに、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第1冷媒凝縮器、前記第2膨張弁および前記冷媒/クーラント熱交換器の順に循環させてクーラントの冷却運転を行い、前記クーラントサイクルを介して前記モータ/バッテリを冷媒冷却し、前記クーラント入り口温度TcmiがTcmi2未満の場合は、前記送風運転と共に前記モータ/バッテリを空冷運転する請求項12に記載の車両空調システムの運転制御方法。
  14.  請求項1ないし8のいずれかに記載されている車両空調システムをモータ/バッテリ冷却制御運転する運転制御方法において、
     モータ/バッテリ冷却制御時、前記クーラントサイクルの前記モータ/バッテリのクーラント入り口温度Tcmiと、予め設定されている空冷切替え温度Tcmi1との関係が、Tcmi>Tcmi1か否かを判断し、TcmiがTcmi1未満の場合は、前記モータ/バッテリの冷却は不要とみなし、前記モータ/バッテリの冷却運転を見合わせる車両空調システムの運転制御方法。
  15.  前記クーラント入り口温度Tcmiが前記空冷切替え温度Tcmi1以上のときは、さらに前記クーラント入り口温度Tcmiと、予め設定されている冷媒冷却切替え温度Tcmi2との関係が、Tcmi>Tcmi2か否かを判断し、TcmiがTcmi2以上の場合は、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第1冷媒凝縮器、前記第2膨張弁および前記冷媒/クーラント熱交換器の順に循環させてクーラントの冷却運転を行い、前記クーラントサイクルを介して前記モータ/バッテリを冷媒冷却し、前記クーラント入り口温度TcmiがTcmi2未満の場合は、前記モータ/バッテリを空冷運転する請求項14に記載の車両空調システムの運転制御方法。
  16.  請求項1ないし8のいずれかに記載されている車両空調システムを暖房制御運転する運転制御方法において、
     暖房制御時、前記クーラントサイクルの前記モータ/バッテリのクーラント出口温度Tcmoと、前記冷媒/クーラント熱交換器のクーラント出口温度Tcnoとの関係が、Tcmo>Tcnoか否かを判断し、TcmoがTcno未満の場合は、前記電気ヒータに通電し、前記クーラントサイクルのクーラントを該電気ヒータにより加熱するとともに、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第2冷媒凝縮器、前記第2膨張弁および前記冷媒/クーラント熱交換器の順に循環させ、前記クーラントを熱源としてヒートポンプ暖房運転を行う車両空調システムの運転制御方法。
  17.  前記モータ/バッテリのクーラント出口温度Tcmoが前記冷媒/クーラント熱交換器のクーラント出口温度Tcno以上のときは、前記換気排熱回収器のクーラント出口温度Tchoと、前記冷媒/クーラント熱交換器のクーラント出口温度Tcnoとの関係が、Tcho>Tcnoか否かを判断し、TchoがTcno未満の場合は、さらに前記冷媒/クーラント熱交換器のクーラント入り口温度Tcniと、予め設定されている前記冷媒/クーラント熱交換器のクーラント入り口必要温度Tcni1との関係が、Tcni<Tcni1か否か、前記第2冷媒凝縮器の空気側吐出温度Tasoと、予め設定されている前記第2冷媒凝縮器の空気側必要吐出温度Taso1との関係が、Taso<Taso1か否か、前記第2冷媒凝縮器の入り口冷媒圧力Prsiと、予め設定されている前記第2冷媒凝縮器の入り口必要冷媒圧力Prsi1との関係が、Prsi<Prsi1か否かを各々判断し、各々が条件を満たしていない場合は、前記クーラントサイクルのクーラントを前記モータ/バッテリの排熱により加熱するとともに、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第2冷媒凝縮器、前記第2膨張弁および前記冷媒/クーラント熱交換器の順に循環させ、前記クーラントを熱源としてヒートポンプ暖房運転を行い、前記クーラント入り口温度Tcni、前記空気側吐出温度Tasoおよび前記入り口冷媒圧力Prsiが各々前記条件を満たしている場合は、前記電気ヒータに通電し、前記クーラントサイクルのクーラントを該電気ヒータおよび前記モータ/バッテリの双方により加熱するとともに、該クーラントを熱源として前記ヒートポンプ暖房運転を行う請求項16に記載の車両空調システムの運転制御方法。
  18.  前記モータ/バッテリのクーラント出口温度Tcmoが前記冷媒/クーラント熱交換器のクーラント出口温度Tcno以上のときは、前記換気排熱回収器のクーラント出口温度Tchoと、前記冷媒/クーラント熱交換器のクーラント出口温度Tcnoとの関係が、Tcho>Tcnoか否かを判断し、TchoがTcno以上の場合は、更に前記冷媒/クーラント熱交換器のクーラント入り口温度Tcniと、予め設定されている前記冷媒/クーラント熱交換器のクーラント入り口必要温度Tcni1との関係が、Tcni<Tcni1か否か、前記第2冷媒凝縮器の空気側吐出温度Tasoと、予め設定されている前記第2冷媒凝縮器の空気側必要吐出温度Taso1との関係が、Taso<Taso1か否か、前記第2冷媒凝縮器の入り口冷媒圧力Prsiと、予め設定されている前記第2冷媒凝縮器の入り口必要冷媒圧力Prsi1との関係が、Prsi<Prsi1か否かを各々判断し、各々が条件を満たしていない場合は、前記クーラントサイクルのクーラントを前記モータ/バッテリの排熱および前記換気排熱回収器により加熱するとともに、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第2冷媒凝縮器、前記第2膨張弁および前記冷媒/クーラント熱交換器の順に循環させ、前記クーラントを熱源としてヒートポンプ暖房運転を行い、前記クーラント入り口温度Tcni、前記空気側吐出温度Tasoおよび前記入り口冷媒圧力Prsiが各々前記条件を満たしている場合は、前記電気ヒータに通電し、前記クーラントサイクルのクーラントを該電気ヒータ、前記モータ/バッテリの排熱および前記換気排熱回収器により加熱するとともに、該クーラントを熱源として前記ヒートポンプ暖房運転を行う請求項16または17に記載の車両空調システムの運転制御方法。
  19.  請求項1ないし8のいずれかに記載されている車両空調システムを除湿暖房制御運転する運転制御方法において、
     除湿暖房制御時、前記クーラントサイクルの前記モータ/バッテリのクーラント出口温度Tcmoと、前記冷媒/クーラント熱交換器のクーラント出口温度Tcnoとの関係が、Tcmo>Tcnoか否かを判断し、TcmoがTcno未満の場合は、前記電気ヒータに通電し、前記クーラントサイクルのクーラントを該電気ヒータによって加熱するとともに、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第2冷媒凝縮器で凝縮した後、前記第1膨張弁および前記冷媒蒸発器と前記第2膨張弁および前記冷媒/クーラント熱交換器との双方に並行して流し、前記クーラントを熱源としてヒートポンプ除湿暖房運転を行う車両空調システムの運転制御方法。
  20.  前記モータ/バッテリのクーラント出口温度Tcmoが記冷媒/クーラント熱交換器のクーラント出口温度Tcno以上のときは、前記換気排熱回収器のクーラント出口温度Tchoと、前記冷媒/クーラント熱交換器のクーラント出口温度Tcnoとの関係が、Tcho>Tcnoか否かを判断し、TchoがTcno未満の場合は、さらに前記冷媒/クーラント熱交換器のクーラント入り口温度Tcniと、予め設定されている前記冷媒/クーラント熱交換器のクーラント入り口必要温度Tcni1との関係が、Tcni<Tcni1か否か、前記第2冷媒凝縮器の空気側吐出温度Tasoと、予め設定されている前記第2冷媒凝縮器の空気側必要吐出温度Taso1との関係が、Taso<Taso1か否か、前記第2冷媒凝縮器の入り口冷媒圧力Prsiと、予め設定されている前記第2冷媒凝縮器の入り口必要冷媒圧力Prsi1との関係が、Prsi<Prsi1か否かを各々判断し、各々が条件を満たしていない場合は、前記クーラントサイクルのクーラントを前記モータ/バッテリの排熱により加熱するとともに、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第2冷媒凝縮器で凝縮した後、前記第1膨張弁および前記冷媒蒸発器と前記第2膨張弁および前記冷媒/クーラント熱交換器との双方に並行して流し、前記クーラントを熱源としてヒートポンプ除湿暖房運転を行い、前記クーラント入り口温度Tcni、前記空気側吐出温度Tasoおよび前記入り口冷媒圧力Prsiが各々前記条件を満たしている場合は、前記電気ヒータに通電し、前記クーラントサイクルのクーラントを該電気ヒータおよび前記モータ/バッテリの双方により加熱するとともに、該クーラントを熱源として前記ヒートポンプ除湿暖房運転を行う請求項19に記載の車両空調システムの運転制御方法。
  21.  前記モータ/バッテリのクーラント出口温度Tcmoが記冷媒/クーラント熱交換器のクーラント出口温度Tcno以上のときは、前記換気排熱回収器のクーラント出口温度Tchoと、前記冷媒/クーラント熱交換器のクーラント出口温度Tcnoとの関係が、Tcho>Tcnoか否かを判断し、TchoがTcno以上の場合は、さらに前記冷媒/クーラント熱交換器のクーラント入り口温度Tcniと、予め設定されている前記冷媒/クーラント熱交換器のクーラント入り口必要温度Tcni1との関係が、Tcni<Tcni1か否か、前記第2冷媒凝縮器の空気側吐出温度Tasoと、予め設定されている前記第2冷媒凝縮器の空気側必要吐出温度Taso1との関係が、Taso<Taso1か否か、前記第2冷媒凝縮器の入り口冷媒圧力Prsiと、予め設定されている前記第2冷媒凝縮器の入り口必要冷媒圧力Prsi1との関係が、Prsi<Prsi1か否かを各々判断し、各々が条件を満たしていない場合は、前記クーラントサイクルのクーラントを前記モータ/バッテリの排熱および前記換気排熱回収器によって加熱するとともに、前記ヒートポンプサイクルにより前記冷媒圧縮機からの冷媒を前記第2冷媒凝縮器で凝縮した後、前記第1膨張弁および前記冷媒蒸発器と前記第2膨張弁および前記冷媒/クーラント熱交換器との双方に並行して流し、前記クーラントを熱源としてヒートポンプ除湿暖房運転を行い、前記クーラント入り口温度Tcni、前記空気側吐出温度Tasoおよび前記入り口冷媒圧力Prsiが各々前記条件を満たしている場合、前記電気ヒータに通電し、前記クーラントサイクルのクーラントを該電気ヒータ、前記モータ/バッテリの排熱および前記換気排熱回収器により加熱するとともに、該クーラントを熱源として前記ヒートポンプ除湿暖房運転を行う請求項19または20に記載の車両空調システムの運転制御方法。
PCT/JP2010/050400 2010-01-15 2010-01-15 車両空調システムおよびその運転制御方法 WO2011086683A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/502,456 US8997503B2 (en) 2010-01-15 2010-01-15 Vehicle air-conditioning system and operation control method therefor
EP10843042.2A EP2524829B1 (en) 2010-01-15 2010-01-15 Vehicle air-conditioning system and driving control method therefor
PCT/JP2010/050400 WO2011086683A1 (ja) 2010-01-15 2010-01-15 車両空調システムおよびその運転制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/050400 WO2011086683A1 (ja) 2010-01-15 2010-01-15 車両空調システムおよびその運転制御方法

Publications (1)

Publication Number Publication Date
WO2011086683A1 true WO2011086683A1 (ja) 2011-07-21

Family

ID=44303987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050400 WO2011086683A1 (ja) 2010-01-15 2010-01-15 車両空調システムおよびその運転制御方法

Country Status (3)

Country Link
US (1) US8997503B2 (ja)
EP (1) EP2524829B1 (ja)
WO (1) WO2011086683A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897002A (zh) * 2011-07-28 2013-01-30 威斯通全球技术公司 具有制冷***回路和热泵回路的机动车辆制冷剂回路
WO2013083914A1 (fr) 2011-12-07 2013-06-13 Peugeot Citroen Automobiles Sa Installation de chauffage/climatisation à compresseur constituant un moyen de chauffage en cas de difficulté pour produire suffisamment de calories
CN103158486A (zh) * 2011-12-19 2013-06-19 杭州三花研究院有限公司 一种汽车空调***
CN103158489A (zh) * 2011-12-19 2013-06-19 杭州三花研究院有限公司 一种汽车空调***
CN103158488A (zh) * 2011-12-19 2013-06-19 杭州三花研究院有限公司 一种汽车空调***
WO2013087425A1 (fr) * 2011-12-15 2013-06-20 Valeo Systemes Thermiques Dispositif de conditionnement thermique d'une chaîne de traction et d'un habitacle de véhicule
CN103192681A (zh) * 2012-01-05 2013-07-10 杭州三花研究院有限公司 一种汽车空调***
FR2993642A1 (fr) * 2012-07-20 2014-01-24 Valeo Systemes Thermiques Procede de pilotage d'un systeme de conditionnement thermique pour vehicule automobile et systeme correspondant
WO2014136446A1 (ja) * 2013-03-06 2014-09-12 パナソニック株式会社 車両用空調装置
CN104648078A (zh) * 2013-11-20 2015-05-27 法雷奥空调***有限责任公司 车辆的前端部模块
US9242528B2 (en) 2012-09-20 2016-01-26 Hanon Systems Heat exchanger arrangement and air conditioning system of a motor vehicle
JP2018043741A (ja) * 2016-09-13 2018-03-22 現代自動車株式会社Hyundai Motor Company 車両用ヒートポンプシステム
CN107914544A (zh) * 2017-12-15 2018-04-17 惠州市惠丰汽车空调有限公司 一种电动汽车的空调电池换热***及其换热方法
CN108128118A (zh) * 2017-12-25 2018-06-08 上海加冷松芝汽车空调股份有限公司 一种电动汽车热控制***
CN108382164A (zh) * 2017-01-25 2018-08-10 马勒国际有限公司 用于电动车辆的废热利用***
WO2018159142A1 (ja) * 2017-02-28 2018-09-07 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
WO2019039153A1 (ja) * 2017-08-24 2019-02-28 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN109955713A (zh) * 2017-12-22 2019-07-02 本田技研工业株式会社 车辆用旋转电机的冷却***
CN110356195A (zh) * 2019-08-08 2019-10-22 宜宾凯翼汽车有限公司 一种电动车热管理***及方法
CN111788437A (zh) * 2017-11-28 2020-10-16 法雷奥热***公司 用于混合动力车辆或电动车辆的热管理的回路
CN112440660A (zh) * 2019-09-02 2021-03-05 现代自动车株式会社 车辆的热泵***
CN113547888A (zh) * 2020-04-26 2021-10-26 华为技术有限公司 冷媒热管理模块、热管理***及车辆
CN113784859A (zh) * 2021-06-28 2021-12-10 华为数字能源技术有限公司 一种车辆的热管理***和车辆
CN114407604A (zh) * 2021-12-08 2022-04-29 重庆长安汽车股份有限公司 一种集成式电动汽车热管理***、控制方法及电动汽车

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230655A (ja) * 2010-04-28 2011-11-17 Sanden Corp 車室内熱交換器
DE102011108729A1 (de) * 2011-07-28 2013-01-31 Volkswagen Aktiengesellschaft Klimatisierung zum Temperieren von Komponenten sowie eines Innenraums eines Kraftfahrzeugs
JP5880863B2 (ja) * 2012-02-02 2016-03-09 株式会社デンソー 車両用熱管理システム
FR2987315B1 (fr) * 2012-02-24 2014-03-07 Valeo Systemes Thermiques Dispositif de conditionnement thermique d'un habitacle et d'une chaine de traction d'un vehicule.
JP6155907B2 (ja) 2012-08-28 2017-07-05 株式会社デンソー 車両用熱管理システム
JP5983187B2 (ja) * 2012-08-28 2016-08-31 株式会社デンソー 車両用熱管理システム
US20140060102A1 (en) * 2012-09-04 2014-03-06 GM Global Technology Operations LLC Mild ambient vehicular heat pump system
DE102012215971A1 (de) * 2012-09-10 2014-05-28 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum thermischen Konditionieren eines Verbrennungsmotors und/oder eines Fahrgastraums eines Fahrzeugs sowie Fahrzeug
EP2903854B1 (en) * 2012-10-04 2018-07-04 Magna E-car Systems Of America, Inc. Control of compressor outlet pressure based on temperature of thermal load cooled by coolant in electric vehicle
US20140144160A1 (en) * 2012-11-25 2014-05-29 Kenneth J. Jackson Hv battery thermal control system and method
JP5743109B2 (ja) * 2012-12-18 2015-07-01 三菱自動車工業株式会社 冷媒循環装置
FR3008930B1 (fr) * 2013-07-26 2017-04-07 Valeo Systemes Thermiques Dispositif de conditionnement thermique pour vehicule automobile comprenant une machine electrique servant a l'entrainement dudit vehicule
US10131205B2 (en) * 2013-08-26 2018-11-20 Ford Global Technologies, Llc Climate control system
JP6015607B2 (ja) * 2013-09-18 2016-10-26 株式会社デンソー 車両用空調ユニット
US10336158B2 (en) 2013-12-30 2019-07-02 Ford Global Technologies, Llc Method and system for heating a vehicle
US9823009B2 (en) * 2014-03-14 2017-11-21 Ford Global Technologies, Llc Method and system for de-icing a heat exchanger
DE102014205030A1 (de) * 2014-03-18 2015-09-24 MAHLE Behr GmbH & Co. KG Klimaanlage
KR101551097B1 (ko) * 2014-06-11 2015-09-08 현대자동차주식회사 하이브리드 차량의 난방 시스템
FR3024766A1 (fr) * 2014-08-11 2016-02-12 Valeo Systemes Thermiques Dispositif de conditionnement thermique, en particulier pour le conditionnement thermique d'un habitacle
DE102014226346A1 (de) 2014-12-18 2016-06-23 Bayerische Motoren Werke Aktiengesellschaft Wärmesystem für ein Elektro- oder Hybridfahrzeug
US10549599B2 (en) * 2015-07-06 2020-02-04 Korea Institute Of Energy Research Hybrid type heating system capable of supplying heat and hot water
CN104999890A (zh) * 2015-07-24 2015-10-28 苏州工业园区驿力机车科技有限公司 电动汽车的电机电池温度集成控制***
GB2541920A (en) * 2015-09-04 2017-03-08 Jaguar Land Rover Ltd System and method for cooling an electric vehicle
CN105365526B (zh) * 2015-10-21 2017-10-24 成都雅骏新能源汽车科技股份有限公司 一种电动车辆冷藏空调的控制电路
US9855816B2 (en) * 2015-12-22 2018-01-02 Uber Technologies, Inc. Thermal reduction system for an automated vehicle
JP6414087B2 (ja) * 2016-01-07 2018-10-31 株式会社デンソー 車両の空調装置
WO2017175014A1 (en) * 2016-04-07 2017-10-12 ELIE KFOURY ASWAD, Emilie Refrigeration system control and protection device
CN109154461A (zh) * 2016-05-25 2019-01-04 开利公司 用于自由冷却应用的气冷和水冷式冷冻器
US10403946B2 (en) * 2016-06-14 2019-09-03 Ford Global Technologies, Llc Battery chiller control with electronic expansion device
FR3057494B1 (fr) * 2016-10-13 2019-07-26 Hutchinson Installation de conditionnement thermique d'un habitacle et/ou d'au moins un organe d'un vehicule automobile
KR101846911B1 (ko) * 2016-10-31 2018-05-28 현대자동차 주식회사 차량용 히트 펌프 시스템
GB2555475B (en) * 2016-10-31 2019-12-18 Williams Advanced Engineering Ltd A heating and cooling system for an electric vehicle
KR101846923B1 (ko) * 2016-11-01 2018-04-09 현대자동차 주식회사 차량용 히트 펌프 시스템
CN108116222A (zh) * 2016-11-29 2018-06-05 长城汽车股份有限公司 冷却***及车辆
JP6624107B2 (ja) * 2017-02-10 2019-12-25 株式会社豊田中央研究所 車両の熱管理制御装置、熱管理制御プログラム
CN106610070B (zh) * 2017-02-16 2022-02-08 湖南大学 一种可多联的新风独立调节复合式空调机组
DE102017109309A1 (de) * 2017-05-02 2018-11-08 Hanon Systems Klimatisierungssystem eines Kraftfahrzeugs und Verfahren zum Betreiben des Klimatisierungssystems
KR20180130044A (ko) * 2017-05-25 2018-12-06 현대자동차주식회사 차량의 공조시스템
KR20190006135A (ko) * 2017-07-07 2019-01-17 현대자동차주식회사 차량의 공조시스템
JP6948183B2 (ja) * 2017-08-09 2021-10-13 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
DE102017120615A1 (de) * 2017-09-07 2019-03-07 Volkswagen Aktiengesellschaft Kraftfahrzeug mit einem Kühlsystem
US11430331B2 (en) * 2017-09-08 2022-08-30 Uatc, Llc Power and thermal management systems and methods for autonomous vehicles
CN107453008B (zh) * 2017-09-14 2023-08-04 一汽-大众汽车有限公司 一种纯电动车用电池包加热***及其控制方法
CN107599782A (zh) * 2017-09-18 2018-01-19 江西爱驰亿维实业有限公司 基于整车热管理的汽车水源式热泵空调***
CN107791783A (zh) * 2017-11-01 2018-03-13 山东朗进科技股份有限公司 一种新能源电动车热管理***和热管理方法
KR102518184B1 (ko) * 2017-11-21 2023-04-07 현대자동차주식회사 차량용 고전압배터리의 냉난방시스템
CN107867200A (zh) * 2017-12-08 2018-04-03 珠海长欣汽车智能***有限公司 一种带油分的汽车温控***
FR3077236B1 (fr) * 2018-01-30 2020-05-22 Valeo Systemes Thermiques Dispositif de traitement thermique d'un habitacle et d'une chaine de traction d'un vehicule
GB2571263B (en) * 2018-02-16 2020-05-27 Jaguar Land Rover Ltd Apparatus and method for low grade heat recovery in an electric vehicle
US10816244B2 (en) 2018-03-01 2020-10-27 Laird Thermal Systems, Inc. Compressor chiller systems including thermoelectric modules, and corresponding control methods
CN108973591B (zh) * 2018-08-02 2024-04-16 威马智慧出行科技(上海)有限公司 电动汽车温度调控***及其控制方法
CN110843452A (zh) * 2018-08-02 2020-02-28 威马智慧出行科技(上海)有限公司 集成式电动汽车热泵空调***及其控制方法
CN108749518A (zh) * 2018-08-02 2018-11-06 威马智慧出行科技(上海)有限公司 一种电动车辆的热管理***
KR20200072595A (ko) * 2018-12-06 2020-06-23 현대자동차주식회사 친환경 차량의 냉각 시스템
CN111347832B (zh) * 2018-12-24 2022-12-02 长城汽车股份有限公司 车辆换热***和具有其的车辆
DE102019203303B4 (de) * 2019-03-12 2024-05-16 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Temperierung eines in einem Fahrzeug angeordneten elektrochemischen Speichers sowie Fahrzeug
FR3097472A1 (fr) * 2019-06-19 2020-12-25 Valeo Systemes Thermiques Procédé de contrôle d’un circuit de conditionnement thermique d’un véhicule automobile
KR102378618B1 (ko) * 2019-08-05 2022-03-25 현대자동차주식회사 차량의 통합 열관리 회로
KR20210021728A (ko) * 2019-08-19 2021-03-02 현대자동차주식회사 차량용 히트펌프 시스템
JP7115452B2 (ja) * 2019-09-30 2022-08-09 トヨタ自動車株式会社 冷却システム
KR20210057313A (ko) * 2019-11-12 2021-05-21 현대자동차주식회사 차량용 히트펌프 시스템
CN110949182A (zh) * 2019-12-09 2020-04-03 中国第一汽车股份有限公司 一种电动汽车热管理***及电动汽车
JP7354856B2 (ja) * 2020-01-30 2023-10-03 トヨタ自動車株式会社 車両用空調装置
US11287806B2 (en) 2020-02-11 2022-03-29 Uatc, Llc Vehicle computing system cooling systems
KR20220007758A (ko) * 2020-07-09 2022-01-19 현대자동차주식회사 차량 전력계통의 열관리 시스템
CN112319183B (zh) * 2020-11-12 2022-05-20 安徽江淮汽车集团股份有限公司 Ptc循环加热模块、控制方法、装置及存储介质
JP2022180153A (ja) * 2021-05-24 2022-12-06 トヨタ自動車株式会社 電気自動車用の熱管理システム
EP4269168A4 (en) * 2021-12-27 2024-03-06 Contemporary Amperex Technology Co Ltd THERMAL MANAGEMENT SYSTEM USED FOR AN ELECTRIC VEHICLE, AND ELECTRIC VEHICLE
CN114571949A (zh) * 2022-01-25 2022-06-03 江苏开沃汽车有限公司 一种混合动力汽车带乘员舱加热串联控制的热管理***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08276716A (ja) * 1995-04-06 1996-10-22 Sanden Corp 車両用空気調和装置
JPH11245655A (ja) * 1998-03-05 1999-09-14 Calsonic Corp 電気自動車用空調装置
JP2006290254A (ja) * 2005-04-13 2006-10-26 Calsonic Kansei Corp 蒸気圧縮式冷凍機
JP2008308080A (ja) * 2007-06-15 2008-12-25 Hitachi Ltd 自動車の吸放熱システムおよびその制御方法
JP2009274517A (ja) * 2008-05-13 2009-11-26 Calsonic Kansei Corp 空気調和システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3112043B2 (ja) 1992-03-23 2000-11-27 株式会社デンソー 電気自動車用暖房装置
JP2961196B2 (ja) 1993-06-28 1999-10-12 三菱自動車工業株式会社 車両用空調装置
JP3477868B2 (ja) 1993-12-27 2003-12-10 株式会社デンソー 車両用空気調和装置
JPH07329544A (ja) 1994-06-07 1995-12-19 Nippondenso Co Ltd 車両用空気調和装置
JP4019734B2 (ja) * 2001-03-28 2007-12-12 株式会社ジーエス・ユアサコーポレーション 二次電池の運用方法及び二次電池装置
JP3659213B2 (ja) 2001-10-30 2005-06-15 日産自動車株式会社 車両用冷却装置
JP2005053325A (ja) 2003-08-04 2005-03-03 Calsonic Kansei Corp 車両用空調装置
US7287581B2 (en) * 2003-12-18 2007-10-30 General Motors Corporation Full function vehicle HVAC/PTC thermal system
US8241097B2 (en) * 2004-07-30 2012-08-14 Ford Global Technologies, Llc Environmental control system and method for a battery in a vehicle
JP2006321389A (ja) 2005-05-19 2006-11-30 Denso Corp 車両用廃熱利用装置
EP1961593B1 (de) 2007-02-23 2013-04-17 Behr GmbH & Co. KG Klimaanlage für ein Fahrzeug
JP4597180B2 (ja) * 2007-11-06 2010-12-15 本田技研工業株式会社 車両用空調システム
JP2009154698A (ja) * 2007-12-26 2009-07-16 Calsonic Kansei Corp バッテリ温度管理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08276716A (ja) * 1995-04-06 1996-10-22 Sanden Corp 車両用空気調和装置
JPH11245655A (ja) * 1998-03-05 1999-09-14 Calsonic Corp 電気自動車用空調装置
JP2006290254A (ja) * 2005-04-13 2006-10-26 Calsonic Kansei Corp 蒸気圧縮式冷凍機
JP2008308080A (ja) * 2007-06-15 2008-12-25 Hitachi Ltd 自動車の吸放熱システムおよびその制御方法
JP2009274517A (ja) * 2008-05-13 2009-11-26 Calsonic Kansei Corp 空気調和システム

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897002A (zh) * 2011-07-28 2013-01-30 威斯通全球技术公司 具有制冷***回路和热泵回路的机动车辆制冷剂回路
JP2013029306A (ja) * 2011-07-28 2013-02-07 Visteon Global Technologies Inc 冷却システム回路及びヒートポンプ回路を備えた自動車の冷媒回路
WO2013083914A1 (fr) 2011-12-07 2013-06-13 Peugeot Citroen Automobiles Sa Installation de chauffage/climatisation à compresseur constituant un moyen de chauffage en cas de difficulté pour produire suffisamment de calories
US10099531B2 (en) 2011-12-15 2018-10-16 Valeo Systemes Thermiques Device for air conditioning a drive train and a passenger compartment of a vehicle
WO2013087425A1 (fr) * 2011-12-15 2013-06-20 Valeo Systemes Thermiques Dispositif de conditionnement thermique d'une chaîne de traction et d'un habitacle de véhicule
FR2984471A1 (fr) * 2011-12-15 2013-06-21 Valeo Systemes Thermiques Dispositif de conditionnement thermique d'une chaine de traction et d'un habitacle de vehicule
CN103158486A (zh) * 2011-12-19 2013-06-19 杭州三花研究院有限公司 一种汽车空调***
CN103158488A (zh) * 2011-12-19 2013-06-19 杭州三花研究院有限公司 一种汽车空调***
CN103158489A (zh) * 2011-12-19 2013-06-19 杭州三花研究院有限公司 一种汽车空调***
CN103158486B (zh) * 2011-12-19 2016-06-15 杭州三花研究院有限公司 一种汽车空调***
CN103158489B (zh) * 2011-12-19 2016-06-15 杭州三花研究院有限公司 一种汽车空调***
CN103192681B (zh) * 2012-01-05 2016-05-04 杭州三花研究院有限公司 一种汽车空调***
CN103192681A (zh) * 2012-01-05 2013-07-10 杭州三花研究院有限公司 一种汽车空调***
FR2993642A1 (fr) * 2012-07-20 2014-01-24 Valeo Systemes Thermiques Procede de pilotage d'un systeme de conditionnement thermique pour vehicule automobile et systeme correspondant
US9242528B2 (en) 2012-09-20 2016-01-26 Hanon Systems Heat exchanger arrangement and air conditioning system of a motor vehicle
WO2014136446A1 (ja) * 2013-03-06 2014-09-12 パナソニック株式会社 車両用空調装置
CN104648078A (zh) * 2013-11-20 2015-05-27 法雷奥空调***有限责任公司 车辆的前端部模块
JP2018043741A (ja) * 2016-09-13 2018-03-22 現代自動車株式会社Hyundai Motor Company 車両用ヒートポンプシステム
CN108382164A (zh) * 2017-01-25 2018-08-10 马勒国际有限公司 用于电动车辆的废热利用***
CN108382164B (zh) * 2017-01-25 2022-07-08 马勒国际有限公司 用于电动车辆的废热利用***
WO2018159142A1 (ja) * 2017-02-28 2018-09-07 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6997558B2 (ja) 2017-08-24 2022-01-17 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
WO2019039153A1 (ja) * 2017-08-24 2019-02-28 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2019038352A (ja) * 2017-08-24 2019-03-14 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
US11104205B2 (en) 2017-08-24 2021-08-31 Sanden Automotive Climate Systems Corporation Vehicle air-conditioning device
CN111788437A (zh) * 2017-11-28 2020-10-16 法雷奥热***公司 用于混合动力车辆或电动车辆的热管理的回路
CN111788437B (zh) * 2017-11-28 2022-04-08 法雷奥热***公司 用于混合动力车辆或电动车辆的热管理的回路
CN107914544A (zh) * 2017-12-15 2018-04-17 惠州市惠丰汽车空调有限公司 一种电动汽车的空调电池换热***及其换热方法
CN109955713A (zh) * 2017-12-22 2019-07-02 本田技研工业株式会社 车辆用旋转电机的冷却***
CN108128118A (zh) * 2017-12-25 2018-06-08 上海加冷松芝汽车空调股份有限公司 一种电动汽车热控制***
CN108128118B (zh) * 2017-12-25 2023-07-14 上海加冷松芝汽车空调股份有限公司 一种电动汽车热控制***
CN110356195A (zh) * 2019-08-08 2019-10-22 宜宾凯翼汽车有限公司 一种电动车热管理***及方法
CN112440660A (zh) * 2019-09-02 2021-03-05 现代自动车株式会社 车辆的热泵***
CN113547888A (zh) * 2020-04-26 2021-10-26 华为技术有限公司 冷媒热管理模块、热管理***及车辆
CN113547888B (zh) * 2020-04-26 2023-11-10 华为数字能源技术有限公司 冷媒热管理模块、热管理***及车辆
CN113784859A (zh) * 2021-06-28 2021-12-10 华为数字能源技术有限公司 一种车辆的热管理***和车辆
CN113784859B (zh) * 2021-06-28 2024-03-01 华为数字能源技术有限公司 一种车辆的热管理***和车辆
CN114407604A (zh) * 2021-12-08 2022-04-29 重庆长安汽车股份有限公司 一种集成式电动汽车热管理***、控制方法及电动汽车
CN114407604B (zh) * 2021-12-08 2024-04-19 重庆长安汽车股份有限公司 一种集成式电动汽车热管理***、控制方法及电动汽车

Also Published As

Publication number Publication date
EP2524829B1 (en) 2017-09-13
US20120205088A1 (en) 2012-08-16
EP2524829A1 (en) 2012-11-21
US8997503B2 (en) 2015-04-07
EP2524829A4 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5297154B2 (ja) 車両空調システムおよびその運転制御方法
WO2011086683A1 (ja) 車両空調システムおよびその運転制御方法
CN109228824B (zh) 一种基于热泵空调的集成电池、电机、电控的综合热管理***及其方法
JP6041423B2 (ja) 車両用ヒートポンプシステム及びその制御方法
KR101283592B1 (ko) 차량용 히트펌프 시스템 및 그 제어방법
KR101241223B1 (ko) 차량용 히트펌프 시스템 및 그 제어방법
JP5611072B2 (ja) ヒートポンプ式車両用空調装置およびその除霜方法
EP3534090B1 (en) Heat pump cycle apparatus
WO2012114447A1 (ja) 車両用熱システム
JP5640485B2 (ja) 車両用空調装置
KR20180065311A (ko) 차량용 열관리 시스템
JP2008308080A (ja) 自動車の吸放熱システムおよびその制御方法
JP4285292B2 (ja) 車両用冷却システム
JP2020142789A (ja) 熱管理システム
JP6203490B2 (ja) 電気自動車用空調装置およびその運転方法
JP5186422B2 (ja) 車両用空気調和装置
JP5640484B2 (ja) 車両用空調装置
CN111989233A (zh) 车辆用热交换***以及车辆用空调***
JP6831209B2 (ja) 車両用空気調和装置
KR101927153B1 (ko) 차량용 히트펌프 시스템
CN116215186A (zh) 车载热循环***和车辆
CN110062708A (zh) 车用空调装置
CN219856733U (zh) 车载热循环***和车辆
WO2021020163A1 (ja) 車両用空気調和装置
WO2023248714A1 (ja) 車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843042

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13502456

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010843042

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010843042

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP