WO2011070680A1 - Organic el panel and method for manufacturing same - Google Patents

Organic el panel and method for manufacturing same Download PDF

Info

Publication number
WO2011070680A1
WO2011070680A1 PCT/JP2009/070773 JP2009070773W WO2011070680A1 WO 2011070680 A1 WO2011070680 A1 WO 2011070680A1 JP 2009070773 W JP2009070773 W JP 2009070773W WO 2011070680 A1 WO2011070680 A1 WO 2011070680A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
electrode
organic layer
layer
panel
Prior art date
Application number
PCT/JP2009/070773
Other languages
French (fr)
Japanese (ja)
Inventor
一弘 竹田
輝一 渡辺
正宣 赤木
竜一 佐藤
Original Assignee
パイオニア株式会社
東北パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 東北パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2009/070773 priority Critical patent/WO2011070680A1/en
Publication of WO2011070680A1 publication Critical patent/WO2011070680A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80523Multilayers, e.g. opaque multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers

Definitions

  • the present invention relates to an organic EL panel and a manufacturing method thereof.
  • An organic EL element has a structure in which an organic layer including a light emitting layer is laminated between a pair of electrodes, and an organic EL panel in which one or a plurality of organic EL elements are arranged on a substrate is structurally or It has an insulating structure that partitions electrically.
  • the insulating structure include an insulating film that partitions an electrode formed on a substrate for each pixel, a partition for separating an electrode formed on an organic layer, and the like.
  • FIG. 1 is an explanatory diagram showing an example of forming a conventional organic EL panel (a cross-sectional view cut in a direction orthogonal to the cathode barrier rib), and includes a cathode barrier for separating the cathode formed on the organic layer.
  • An example provided is shown (see Patent Document 1 below).
  • the first electrode J2 is formed in a stripe shape on the transparent glass substrate J1.
  • the first electrode J2 is made of ITO as a transparent material having a relatively high work function, and is patterned by using a general photolithography method.
  • the insulating layer J3 is formed in a matrix by spin-coating polymer polyimide so as to have a predetermined film thickness, exposing and developing, for example.
  • a cathode partition wall J4 is formed on the insulating layer J3.
  • a negative photoresist for lift-off whose UV light transmission is intentionally lowered is spin-coated and pre-baked.
  • each cathode partition J4 having an overhang portion J4a is formed so as to protrude from the substrate J1 due to the difference in developability by spray showering an alkali developer on the substrate, as shown in FIG.
  • the cross-sectional shape orthogonal to the longitudinal direction in each cathode partition J4 is a substantially inverted isosceles trapezoidal shape. With this shape of each cathode partition wall J4, when forming a second electrode (cathode) J6 described later, adjacent cathodes are separated by the cathode partition wall J4 and sufficient electrical insulation can be ensured.
  • an organic layer J5 is formed by, for example, a vacuum evaporation method as shown in FIG.
  • a metal layer such as an aluminum alloy layer is formed by, for example, a heat deposition method, and is separated from each other in a region sandwiched between the cathode barrier ribs J4 to form striped second electrodes ( Cathode) J6 is formed.
  • An opening of the insulating film J3 formed in a matrix is located at the intersection of the first electrode (anode) J2 and the second electrode (cathode) J6 that intersect each other, and this opening serves as a light emitting pixel by an organic EL element. .
  • the surface state of the first electrode serving as the surface on which the organic layer is to be formed has a great influence on the quality of the light emitting characteristics of the organic EL element. If the surface of the first electrode is uneven, the film thickness of the organic layer deposited thereon is not uniform, and light emission defects such as leakage are likely to occur in the organic EL element.
  • a technique has been developed in which a common organic layer is formed on the first electrode by coating or the like, and a light emitting layer or the like is formed on the planarized organic layer. According to this, since the common organic layer fills the unevenness of the electrode surface and flattens its surface, it becomes possible to make the film laminated thereon uniform, improve the leakage resistance, etc. Durability can be improved. Further, by adding an acceptor (dopant) to the common organic layer formed on the first electrode, the charge injection efficiency is improved, and a low voltage can be realized.
  • the organic EL panel provided with the insulating structure such as the cathode barrier rib described above when the common organic layer is formed after the insulating structure is formed on the substrate or the like, the side surface of the insulating structure becomes the common organic layer. As shown in FIG. 2, the overhang portion 4a of the cathode barrier rib J4 is filled with the common organic layer W, which causes a problem that the cathode separation function of the cathode barrier rib J4 cannot be fully exhibited.
  • a common organic layer may be formed and an insulating structure may be formed thereon before forming the above-described insulating structure.
  • the common organic layer extends to the wiring (lead-out wiring) region formed on the substrate outside the light emitting region.
  • the second electrode is formed on the organic layer, the first electrode and the second electrode can be conducted through the common organic layer applied to the wiring region. As a result, there is a problem that proper electric supply to the light emitting layer of the organic EL element cannot be performed.
  • the second electrode and the wiring region are formed when the second electrode is formed on the organic layer.
  • a connection portion with a certain wiring there is a problem that the second electrode formed at the edge of the wiring is easily disconnected, and a connection failure between the wiring and the second electrode is likely to occur.
  • the present invention is an example of a problem to deal with such a problem. That is, in an organic EL panel provided with an insulating structure, by effectively forming a common organic layer on the film formation surface of the organic layer while effectively ensuring the function of the insulating structure, It is an object of the present invention to improve performance, to make it possible to appropriately supply electricity to the light emitting layer of the organic EL element, and to solve the problem of poor connection between the wiring and the electrode. .
  • the organic EL panel and the manufacturing method thereof according to the present invention have at least the following configuration.
  • An organic EL panel in which an organic EL element in which an organic layer including a light emitting layer is stacked between a first electrode and a second electrode is formed on a substrate, wherein the organic EL element is a single or plural on the substrate.
  • the organic EL panel is characterized in that the common organic layer is divided into a first portion in contact with the first electrode and a second portion in contact with the second electrode.
  • the pattern so that the portion and the second portion in contact with the second electrode are separated.
  • FIG. 3 is an explanatory diagram (schematic diagram) showing a cross-sectional structure of an organic EL panel according to an embodiment of the present invention.
  • An organic EL panel 100 (100A, 100B, 100C) according to an embodiment of the present invention includes an organic EL in which an organic layer 13 including a light emitting layer is stacked between a first electrode 11 and a second electrode 12 on a substrate 10.
  • the element 1 is formed, and a light emitting region 10P in which one or more organic EL elements 1 are formed and a wiring 20 connected to the second electrode 12 of the organic EL element 1 are formed on the substrate 10. It has a wiring region 10Q.
  • the organic layer 13 includes a common organic layer 14 formed in the light emitting region 10P and the wiring region 10Q.
  • the common organic layer 14 is in contact with the first portion 14A in contact with the first electrode 11 and the second electrode 12.
  • the portion 14B is divided.
  • the first portion 14A and the second portion 14B are divided so that the electrical resistance between the first electrode 11 and the second electrode 12 is not smaller than the electrical resistance when the organic layer 13 is interposed.
  • the first portion 14A is covered with an organic layer 13A including a light emitting layer at a location where the first portion 14A and the second portion 14B are separated.
  • a space 15 is formed between the first portion 14A and the second portion 14B at a location where the first portion 14A and the second portion 14B are separated.
  • the insulating layer 16 is interposed between the first portion 14A and the second portion 14B at the location where the first portion 14A and the second portion 14B are separated. is doing.
  • the organic EL panel 100 (100A, 100B, 100C) having such characteristics has the organic EL even when the common organic layer 14 is formed not only in the light emitting region 10P on the substrate 10 but also in the wiring region 10Q. Since a portion having a low electrical resistance is not formed between the first electrode 11 and the second electrode 12 of the element 1, the organic EL element 1 is controlled by the voltage applied to the first electrode 11 and the second electrode 12. Light can be emitted effectively.
  • the edge portion 20E at the end of the wiring 20 can be covered with the common organic layer 14, and the second electrode 12 connected to the wiring 20 is connected to the wiring 20. It is possible to avoid the problem of being divided at the edge portion 20E at the end. Furthermore, by providing the common organic layer 14, an insulating structure portion can be formed on the surface of the layer flattened by the common organic layer 14.
  • the common organic layer 14 is formed on the first electrode 11 of the organic EL element 1, the unevenness on the first electrode can be planarized by the common organic layer 14, and a light emitting layer is formed on the common organic layer 14.
  • the thickness of the organic layer 13A can be made uniform, and the cause of light emission failure such as leakage can be eliminated.
  • an acceptor dopant
  • the charge injection efficiency is improved, and a low voltage can be realized.
  • FIG. 4 is an explanatory diagram for explaining a method of manufacturing an organic EL panel according to an embodiment of the present invention.
  • a conductive film formed directly or via another layer is patterned on the substrate 10 to form the first electrode 11 and the second electrode 12.
  • a wiring 20 connected to is formed.
  • the substrate 10 is made of glass, plastic, metal having an insulating film formed on the surface, and a conductive film is formed thereon by, for example, vapor deposition or sputtering, and the first electrode 11 and the wiring are formed by a pattern forming process such as a photolithography process. 20 patterns are formed.
  • the first electrode 11 and the wiring 20 may be formed at the same time, or may be formed in separate steps.
  • the pattern of the first electrode 11 forms the linear first electrode 11 in a stripe shape when a passively driven organic EL panel is formed.
  • a common organic layer that is one of the organic layers 13 of the organic EL element 1 is formed in the light emitting region 10P in which the first electrode 11 is formed and the wiring region 10Q in which the wiring 20 is formed. 14 is formed.
  • the common organic layer 14 may be a coating material or a vapor deposition material. When a vapor deposition material is used, the surface of the common organic layer 14 is flattened by heating to a glass transition temperature or higher after film formation.
  • the common organic layer 14 is patterned so that the first portion 14A in contact with the first electrode 11 and the second portion 14B in contact with the second electrode 12 are divided.
  • the common organic layer 14 may be divided by patterning by photoetching or mask film formation at the same time as the process 2 described above, or by partially removing the film formation by laser irradiation or the like after the process 2 is formed.
  • the first portion 14A and the second portion 14B may be divided.
  • a hole (contact hole) F for ensuring contact between the wiring 20 and the second electrode 12 may be formed in the second portion 14B.
  • step 4 shown in FIG. 4D an insulating structure (such as a partition that separates the second electrode) that partitions the components of the organic EL element 1 is formed on the common organic layer 14, and Then, another organic layer 13A is formed. At this time, in the example shown in FIG. 1A, the first portion 14A is covered with the organic layer 13A at the portion where the first portion 14A and the second portion 14B are divided.
  • an insulating structure such as a partition that separates the second electrode
  • the second electrode 12 is formed on the organic layer 13.
  • the second electrode 12 is separated by a partition formed in advance on the common organic layer 14, for example, is formed in a stripe shape in a direction intersecting the first electrode 11, and its end portion covers the wiring 20. Is done. Thereafter, an organic EL panel is obtained through a sealing process for sealing the organic EL element 1 in the light emitting region 10P.
  • the substrate 10 can be formed of glass, plastic, or the like, but a light-transmitting material is selected when the top emission method for extracting light from the substrate side is used.
  • One of the first electrode 11 and the second electrode 12 functions as an anode and the other functions as a cathode.
  • the first electrode 11 employs a transparent conductive film such as ITO when the above-described top emission method is used.
  • the cathode uses a material having a work function lower than that of the anode.
  • a magnesium alloy such as aluminum (Al) or Mg—Al can be used as the cathode.
  • a polymer material As the material of the common organic layer 14, a polymer material, a polymer material containing a low-molecular material is suitable, and a polyalkylthiophene derivative, a polyaniline derivative, triphenylamine, a sol-gel film of an inorganic compound, a Lewis acid, and the like.
  • An organic compound film, a conductive polymer, or the like can be used. Thereafter, when a partition having an electrode separation function is formed, a material that can withstand a photolithography process at the time of forming the partition is suitable.
  • NPB N, N-di (naphtalence) -N, N-dipheneyl-benzidene
  • the hole transport layer has a function of transporting holes injected from the lower electrode line 2 to the light emitting layer.
  • the hole transport layer may be a single layer or a stack of two or more layers.
  • the hole transport layer is not formed by a single material, but a single layer may be formed by a plurality of materials, and a guest material having a high charge donating (accepting) property may be formed on a host material having a high charge transport capability. Doping may be performed.
  • red (R), green (G), and blue (B) light-emitting layers are formed in respective film formation regions by using a resistance heating vapor deposition method using a coating mask.
  • red (R) an organic material that emits red light such as a styryl dye such as DCM1 (4- (dicyanomethylene) -2-methyl-6- (4′-dimethylaminostyryl) -4H-pyran) is used.
  • An organic material that emits green light such as an aluminum quinolinol complex (Alq 3 ) is used as green (G).
  • an organic material emitting blue light such as a distyryl derivative or a triazole derivative is used.
  • a distyryl derivative or a triazole derivative is used.
  • other materials or a host-guest layer structure may be used, and the light emission form may be a fluorescent light emitting material or a phosphorescent light emitting material.
  • the electron transport layer formed on the light emitting layer is formed by using various materials such as an aluminum quinolinol complex (Alq 3 ) by various film forming methods such as resistance heating vapor deposition.
  • the electron transport layer has a function of transporting electrons injected from the upper electrode line 3 to the light emitting layer.
  • This electron transport layer may have a multilayer structure in which only one layer is stacked or two or more layers are stacked.
  • the electron transport layer may be formed of a plurality of materials instead of a single material, and a guest material having a high charge donating (accepting) property may be formed on a host material having a high charge transport capability. It may be formed by doping.
  • FIG. 5 is a plan view (FIG. 5A) and a cross-sectional view (FIG. 5B) showing a more specific configuration example of the organic EL panel according to the embodiment of the present invention. -X sectional view).
  • the first portion 14 ⁇ / b> A is in contact with the first electrode 11
  • the second portion 14 ⁇ / b> B is in contact with the second electrode 12 and the wiring 20 connected to the second electrode 12.
  • the second electrode 12 is separated from the wiring 20 by the electrode separation partition 31.
  • the second portion 14B is formed so as to cover at least the edge portion 20E at the end portion of the wiring 20, and an open contact portion 14B1 is formed on the upper surface of the wiring 20.
  • the second portion 14 is formed such that a portion (14 B 2) in contact with the second electrode 12 is inclined with respect to the surface of the substrate 10.
  • the second electrode 12 formed so as to cover the second portion 14B comes into contact with the wiring 20 at the contact portion 14B1, the second electrode 12 and the wiring 20 can ensure good connection with each other.
  • the portion 14B2 where the second electrode 12 and the second portion 14B are in contact with each other is inclined with respect to the surface of the substrate 10, the second electrode 12 having a sufficient thickness is laminated on the second portion 14B. Disconnection of the two electrodes 12 can be avoided.
  • the first electrode 11 in contact with the first portion 14A and the second electrode 12 or wiring in contact with the second portion 14B 20 does not conduct in a state of low electrical resistance, and sufficient supply of electricity to the light emitting layer of the organic EL element 1 can be ensured.
  • FIG. 6 (a) to 6 (c) are explanatory views showing other embodiments of the present invention. These embodiments show an example in which an insulating structure (hereinafter referred to as an insulating structure) that partitions the components of the organic EL element 1 is formed on the common organic layer 14.
  • an insulating structure hereinafter referred to as an insulating structure
  • an electrode separation partition wall 31 (including a cathode partition wall) having a function of separating the second electrode 12 formed on the organic layer 13 is formed as the insulating structure 30. is there.
  • the electrode separation partition wall 31 has the above-described overhang portion 31A on its side surface, and the cross-sectional shape is substantially inverted isosceles trapezoidal or T-shaped as shown in the figure.
  • the electrode separation partition wall 31 is formed on the common organic layer 14, the film forming material for the common organic layer 14 is applied to the overhang portion 31A of the electrode separation partition wall 31.
  • the electrode separation function of the electrode separation partition 31 can be ensured appropriately.
  • the conductive layer formed on the organic layer 13 is surely divided at the upper edge of the electrode separation wall 31, and it is possible to form the properly separated second electrode 12 between the electrode separation partitions 31. Become.
  • the common organic layer 14 can be formed flat with a uniform film thickness, and the film thickness of the organic layer 13 stacked thereon can be made uniform. Since the organic layer 13 having a uniform thickness can be formed, the occurrence factor of light emission failure such as leakage is reduced, and the organic EL panel 100 (100a) can obtain good light emission performance and durability performance.
  • the common organic layer 14 preferably has alkali resistance, and has sufficient resistance to a chemical solution used in a photolithography process when forming the electrode separation partition 31 on the common organic layer 14.
  • the formation of the electrode separation partition 31 does not cause a problem that the surface of the common organic layer 14 is roughened or the common organic layer 14 is eroded, and the effectiveness of the common organic layer 14 is sufficiently exhibited. It becomes possible to do.
  • an organic EL panel 100 (100a) that sufficiently realizes low voltage driving that exhibits the excellent charge injection and transport performance of the common organic layer 14, improvement of light emitting performance, high temperature reliability, and the like. .
  • the organic EL panel 100 (100b) shown in FIG. 4B is obtained by forming an insulating film 32 as an insulating structure 30 that partitions a light emitting pixel made of the organic EL element 1.
  • the insulating film 32 has a matrix-shaped opening 32A formed on the common organic layer 14.
  • An organic layer 13 is formed on the common organic layer 14 in the opening 32 ⁇ / b> A, and a conductive material layer for the second electrode 12 is formed on the organic layer 13.
  • the organic EL panel 100 (100b) since the organic EL panel 100 (100b) has the insulating film 32 formed on the common organic layer 14, the film forming material of the common organic layer 14 is applied to the side surface of the insulating film 32. Therefore, the aperture ratio of the light-emitting pixel formed by the insulating film 32 can be appropriately ensured.
  • the insulating film 32 is formed on the common organic layer 14, so that no obstacles hinder the flatness of the film formation when the common organic layer 14 is formed. Accordingly, the common organic layer 14 can be formed flat with a uniform film thickness, and the film thickness of the organic layer 13 stacked thereon can be made uniform. Since the organic layer 13 having a uniform film thickness can be formed, the occurrence factor of light emission failure such as leakage is reduced, and the organic EL panel 100 (100b) can obtain good light emission performance and durability performance.
  • the common organic layer 14 has alkali resistance, the common organic layer 14 has sufficient resistance to chemicals used in the photolithography process when the insulating film 32 is formed on the common organic layer 14. Therefore, the formation of the insulating film 32 does not cause a problem that the surface of the common organic layer 14 is roughened or the common organic layer 14 is eroded, and the effectiveness of the common organic layer 14 can be sufficiently exhibited. It becomes possible. Accordingly, it is possible to obtain the organic EL panel 100 (100b) that sufficiently realizes the low voltage driving that exhibits the excellent charge injection and transport performance of the common organic layer 14, the improvement of the light emitting performance, the high temperature reliability, and the like. .
  • a support partition wall 33 that supports the sealing substrate 41 is formed as the insulating structure 30.
  • the organic EL panel 100 (100c) includes a sealing substrate 41 bonded to the substrate 10 via an adhesive layer 40, and an airtight sealing space S1 formed between the substrate 10 and the sealing substrate 41.
  • the components of the organic EL element 1 (the first electrode 11, the second electrode 12, the organic layer 13, and the common organic layer 14) are disposed therein.
  • the support partition wall 33 is formed such that its end face (upper end face in the figure) and the inner surface of the sealing substrate 41 come into contact with each other.
  • the support partition 33 also has the above-described electrode separation function.
  • the organic EL panel 100 (100c) since the organic EL panel 100 (100c) has the support partition 33 formed on the common organic layer 14, the common organic layer 14 is not applied to the side surface of the support partition 33, and the support is performed.
  • the electrode separation function of the partition wall 33 can be ensured.
  • the support partition wall 33 by forming the support partition wall 33 on the common organic layer 14, there is no obstacle that prevents the flatness of the film formation when the common organic layer 14 is formed. Accordingly, the common organic layer 14 can be formed flat with a uniform film thickness, and the film thickness of the organic layer 13 stacked thereon can be made uniform.
  • the common organic layer 14 has alkali resistance
  • the chemical solution used in the photolithography process when forming the support partition 33 on the common organic layer 14 is sufficient as in the above-described example. Has resistance. Therefore, the formation of the support partition 33 does not cause a problem that the surface of the common organic layer 14 is roughened or the common organic layer 14 is eroded, and the effectiveness of the common organic layer 14 can be sufficiently exhibited. It becomes possible.

Abstract

Disclosed is an organic EL panel having improved performance by effectively forming a common organic layer on surfaces, on which organic layers are to be formed. In the organic EL panel (100), an organic EL element (1), wherein the organic layer (13) that includes a light emitting layer between a first electrode (11) and a second electrode (12) is lamianted, is formed on a substrate (10). On the substrate (10), the organic EL panel has a light emitting region (10P) wherein one or a plurality of the organic elements (1) are formed, and a wiring region (10Q) wherein wiring (20) connected to the second electrode (12) of the organic EL element (1) is formed. The organic layer (13) is provided with the common organic layer (14), which is formed in the light emitting region (10P) and the wiring region (10Q), and in the common organic layer (14), a first portion (14A) in contact with the first electrode (11), and a second portion (14B) in contact with the second electrode (12) are separated from each other.

Description

有機ELパネル及びその製造方法Organic EL panel and manufacturing method thereof
 本発明は、有機ELパネル及びその製造方法に関するものである。 The present invention relates to an organic EL panel and a manufacturing method thereof.
 有機EL素子は一対の電極間に発光層を含む有機層を積層した構造を有しており、この有機EL素子を基板上に単数又は複数配置した有機ELパネルは、有機EL素子を構造的又は電気的に区画する絶縁構造物を備えている。絶縁構造物としては、基板上に形成された電極を画素毎に区画する絶縁膜や、有機層上に成膜される電極を分離するための隔壁等がある。 An organic EL element has a structure in which an organic layer including a light emitting layer is laminated between a pair of electrodes, and an organic EL panel in which one or a plurality of organic EL elements are arranged on a substrate is structurally or It has an insulating structure that partitions electrically. Examples of the insulating structure include an insulating film that partitions an electrode formed on a substrate for each pixel, a partition for separating an electrode formed on an organic layer, and the like.
 図1は、従来の有機ELパネルの形成例を示した説明図(陰極隔壁に直交する方向に切断した断面図)であって、有機層上に形成される陰極を分離するための陰極隔壁を備えた例を示している(下記特許文献1参照)。 FIG. 1 is an explanatory diagram showing an example of forming a conventional organic EL panel (a cross-sectional view cut in a direction orthogonal to the cathode barrier rib), and includes a cathode barrier for separating the cathode formed on the organic layer. An example provided is shown (see Patent Document 1 below).
 まず、同図(A)に示すように透明のガラス基板J1上に第1電極J2がストライプ状に形成される。この第1電極J2としては、仕事関数が比較的高く透明な素材としてITOが用いられ、一般的なフォトリソ法を用いることで、パターニングされる。そして、例えば高分子ポリイミドを所定の膜厚となるようにスピンコーティングし、露光および現像することにより、絶縁層J3がマトリクス状に形成される。続いて、絶縁層J3上に陰極隔壁J4を形成する。ここでは、故意にUV光の透過性を低くしたリフトオフ用ネガ形フォトレジストをスピンコーティングし、プリベークする。そして、光透過スリットを備えたハードクロムマスクを介してUV光を照射し露光する。この際、前記したフォトレジストはUV光の透過率が低いため、深さ方向で現像液に対する溶解性の差が生ずる。したがって、基板にアルカリ現像液をスプレーシャワーすることにより現像性の差によって、同図(B)に示すようにオーバーハング部J4aを有する陰極隔壁J4が基板J1に突出して形成される。各陰極隔壁J4における長手方向に直交する断面形状は、ほぼ逆等脚台形の形状になる。各陰極隔壁J4のこの形状により、後述する第2電極(陰極)J6を成膜する場合において、陰極隔壁J4により隣接する各陰極間が分離されて十分な電気絶縁性を確保することができる。 First, as shown in FIG. 2A, the first electrode J2 is formed in a stripe shape on the transparent glass substrate J1. The first electrode J2 is made of ITO as a transparent material having a relatively high work function, and is patterned by using a general photolithography method. Then, the insulating layer J3 is formed in a matrix by spin-coating polymer polyimide so as to have a predetermined film thickness, exposing and developing, for example. Subsequently, a cathode partition wall J4 is formed on the insulating layer J3. Here, a negative photoresist for lift-off whose UV light transmission is intentionally lowered is spin-coated and pre-baked. And it exposes by irradiating UV light through the hard chrome mask provided with the light transmission slit. At this time, since the above-described photoresist has a low transmittance of UV light, a difference in solubility in a developing solution occurs in the depth direction. Therefore, a cathode barrier J4 having an overhang portion J4a is formed so as to protrude from the substrate J1 due to the difference in developability by spray showering an alkali developer on the substrate, as shown in FIG. The cross-sectional shape orthogonal to the longitudinal direction in each cathode partition J4 is a substantially inverted isosceles trapezoidal shape. With this shape of each cathode partition wall J4, when forming a second electrode (cathode) J6 described later, adjacent cathodes are separated by the cathode partition wall J4 and sufficient electrical insulation can be ensured.
 前記した各陰極隔壁の形成後において、同図(C)に示すように有機層J5が、例えば真空蒸着法によって成膜される。さらに、同図(D)に示すように、アルミ合金層等の金属層が例えば加熱蒸着法によって成膜され、陰極隔壁J4に挟まれた領域にそれぞれ互いに分離されてストライプ状の第2電極(陰極)J6が形成される。互いに交差する第1電極(陽極)J2と第2電極(陰極)J6の交差部分にマトリクス状に形成された絶縁膜J3の開口部が位置し、この開口部が有機EL素子による発光画素となる。 After the above-described cathode barrier ribs are formed, an organic layer J5 is formed by, for example, a vacuum evaporation method as shown in FIG. Further, as shown in FIG. 4D, a metal layer such as an aluminum alloy layer is formed by, for example, a heat deposition method, and is separated from each other in a region sandwiched between the cathode barrier ribs J4 to form striped second electrodes ( Cathode) J6 is formed. An opening of the insulating film J3 formed in a matrix is located at the intersection of the first electrode (anode) J2 and the second electrode (cathode) J6 that intersect each other, and this opening serves as a light emitting pixel by an organic EL element. .
特許第3713463号公報Japanese Patent No. 3713463
 有機層の被成膜面になる第1電極の表面状態は有機EL素子の発光特性の良否に大きな影響を及ぼす。第1電極の表面に凹凸があると、その上に蒸着される有機層の膜厚が均一にならず、有機EL素子にリーク等の発光不良が生じやすくなる。これを解消するために、第1電極上に共通の有機層を塗布などによって形成し、平坦化された有機層の上に発光層等を成膜する技術が開発されている。これによると共通の有機層が電極表面の凹凸を埋めて自身の表面を平坦化するので、その上に積層される膜の均一化が可能になり、耐リーク性を向上させる等、発光性能や耐久性能を向上させることが可能になる。また、第1電極上に成膜される共通の有機層にアクセプタ(ドーパント)を添加させることによって、電荷注入効率が向上して、低電圧化の実現が可能になる。 The surface state of the first electrode serving as the surface on which the organic layer is to be formed has a great influence on the quality of the light emitting characteristics of the organic EL element. If the surface of the first electrode is uneven, the film thickness of the organic layer deposited thereon is not uniform, and light emission defects such as leakage are likely to occur in the organic EL element. In order to solve this problem, a technique has been developed in which a common organic layer is formed on the first electrode by coating or the like, and a light emitting layer or the like is formed on the planarized organic layer. According to this, since the common organic layer fills the unevenness of the electrode surface and flattens its surface, it becomes possible to make the film laminated thereon uniform, improve the leakage resistance, etc. Durability can be improved. Further, by adding an acceptor (dopant) to the common organic layer formed on the first electrode, the charge injection efficiency is improved, and a low voltage can be realized.
 しかしながら、前述した陰極隔壁などの絶縁構造物を備えた有機ELパネルでは、絶縁構造物を基板等の上に形成した後に共通の有機層を形成すると、絶縁構造物の側面を共通の有機層が覆、図2に示すように、陰極隔壁J4のオーバーハング部4aが共通の有機層Wによって埋められてしまい、陰極隔壁J4の陰極分離機能を十分に発揮できなくなる問題が生じる。 However, in the organic EL panel provided with the insulating structure such as the cathode barrier rib described above, when the common organic layer is formed after the insulating structure is formed on the substrate or the like, the side surface of the insulating structure becomes the common organic layer. As shown in FIG. 2, the overhang portion 4a of the cathode barrier rib J4 is filled with the common organic layer W, which causes a problem that the cathode separation function of the cathode barrier rib J4 cannot be fully exhibited.
 これに対処するには、前述した絶縁構造物を形成する前に、共通の有機層を形成し、その上に絶縁構造物を形成すればよい。しかしながら、共通の有機層を有機EL素子が存在する発光領域のみに精度良く形成することは困難であり、発光領域の外側の基板上に形成される配線(引出配線)領域にまで共通の有機層が塗布されることになって、有機層上に第2電極を成膜した際に、配線領域に塗布された共通の有機層を介して、第1電極と第2電極とが導通可能な状態になってしまい、有機EL素子の発光層への適正な電気供給ができなくなる問題があった。 In order to cope with this, a common organic layer may be formed and an insulating structure may be formed thereon before forming the above-described insulating structure. However, it is difficult to accurately form the common organic layer only in the light emitting region where the organic EL element exists, and the common organic layer extends to the wiring (lead-out wiring) region formed on the substrate outside the light emitting region. When the second electrode is formed on the organic layer, the first electrode and the second electrode can be conducted through the common organic layer applied to the wiring region. As a result, there is a problem that proper electric supply to the light emitting layer of the organic EL element cannot be performed.
 また、仮に有機EL素子が存在する発光領域の外縁内に精度良く共通の有機層を形成できたとしても、有機層上に第2電極を成膜する際に、この第2電極と配線領域にある配線との接続部において、配線の端部のエッジで成膜される第2電極が断線され易く、配線と第2電極との接続不良が生じやすくなる問題があった。 Even if the common organic layer can be formed with high precision in the outer edge of the light emitting region where the organic EL element exists, the second electrode and the wiring region are formed when the second electrode is formed on the organic layer. In a connection portion with a certain wiring, there is a problem that the second electrode formed at the edge of the wiring is easily disconnected, and a connection failure between the wiring and the second electrode is likely to occur.
 本発明は、このような問題に対処することを課題の一例とするものである。すなわち、絶縁構造物を備えた有機ELパネルにおいて、絶縁構造物の機能を有効に確保しながら、有機層の被成膜面に共通の有機層を効果的に形成することで、有機ELパネルの性能向上を図ること、その際に、有機EL素子の発光層への電気供給が適正に行えるようにすること、配線と電極との接続不良の不具合を解消できること、等が本発明の目的である。 The present invention is an example of a problem to deal with such a problem. That is, in an organic EL panel provided with an insulating structure, by effectively forming a common organic layer on the film formation surface of the organic layer while effectively ensuring the function of the insulating structure, It is an object of the present invention to improve performance, to make it possible to appropriately supply electricity to the light emitting layer of the organic EL element, and to solve the problem of poor connection between the wiring and the electrode. .
 このような目的を達成するために、本発明による有機ELパネル及びその製造方法は、以下の構成を少なくとも具備するものである。 In order to achieve such an object, the organic EL panel and the manufacturing method thereof according to the present invention have at least the following configuration.
 第1電極と第2電極との間に発光層を含む有機層を積層した有機EL素子を、基板上に形成した有機ELパネルであって、前記基板上に、前記有機EL素子が単数又は複数形成された発光領域と、前記有機EL素子の前記第2電極に接続される配線が形成された配線領域を有し、前記有機層は、前記発光領域と前記配線領域に形成される共通有機層を備え、該共通有機層は、前記第1電極と接する第1部分と前記第2電極に接する第2部分が分断されていることを特徴とする有機ELパネル。 An organic EL panel in which an organic EL element in which an organic layer including a light emitting layer is stacked between a first electrode and a second electrode is formed on a substrate, wherein the organic EL element is a single or plural on the substrate. A light emitting region formed and a wiring region in which a wiring connected to the second electrode of the organic EL element is formed, and the organic layer is a common organic layer formed in the light emitting region and the wiring region The organic EL panel is characterized in that the common organic layer is divided into a first portion in contact with the first electrode and a second portion in contact with the second electrode.
 第1電極と第2電極との間に発光層を含む有機層を積層した有機EL素子を、基板上に形成した有機ELパネルの製造方法であって、前記基板上に、直接又は他の層を介して成膜された導電膜をパターン形成して、前記第1電極を形成すると共に、前記第2電極に接続される配線を形成する工程と、前記第1電極が形成された発光領域と前記配線が形成された配線領域に前記有機層の一つである共通有機層を形成する工程と、前記共通有機層上に前記有機EL素子の構成要素を区画する絶縁構造物を形成する工程と、前記共通有機層上に他の前記有機層を形成する工程と、前記有機層上に前記第2電極を形成する工程とを有し、前記共通有機層は、前記第1電極と接する第1部分と前記第2電極に接する第2部分が分断されるようにパターン形成されることを特徴とする有機ELパネルの製造方法。 A method of manufacturing an organic EL panel in which an organic EL element in which an organic layer including a light emitting layer is stacked between a first electrode and a second electrode is formed on a substrate, directly or on another layer on the substrate Forming a conductive film formed through a pattern to form the first electrode and forming a wiring connected to the second electrode; and a light emitting region in which the first electrode is formed; Forming a common organic layer that is one of the organic layers in a wiring region in which the wiring is formed, and forming an insulating structure that partitions components of the organic EL element on the common organic layer; , Forming another organic layer on the common organic layer, and forming the second electrode on the organic layer, wherein the common organic layer is in contact with the first electrode. The pattern so that the portion and the second portion in contact with the second electrode are separated. Method of manufacturing an organic EL panel which is characterized by being formed.
従来の有機ELパネルの形成例を示した説明図である。It is explanatory drawing which showed the example of formation of the conventional organic EL panel. 従来技術の問題点を説明する説明図である。It is explanatory drawing explaining the problem of a prior art. 本発明の一実施形態に係る有機ELパネルの断面構造を示した説明図(概略図)である。It is explanatory drawing (schematic diagram) which showed the cross-section of the organic electroluminescent panel which concerns on one Embodiment of this invention. 本発明の実施形態に係る有機ELパネルの製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of the organic electroluminescent panel which concerns on embodiment of this invention. 本発明の実施形態に係る有機ELパネルのさらに具体的な構成例を示した平面図及び断面図である。It is the top view and sectional drawing which showed the more specific structural example of the organic electroluminescent panel which concerns on embodiment of this invention. 本発明の他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment of this invention.
 以下、図面を参照しながら本発明の実施形態を説明する。本発明の実施形態は図示の内容を含むがこれのみに限定されるものではない。図3は本発明の一実施形態に係る有機ELパネルの断面構造を示した説明図(概略図)である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment of the present invention includes the contents shown in the drawings, but is not limited thereto. FIG. 3 is an explanatory diagram (schematic diagram) showing a cross-sectional structure of an organic EL panel according to an embodiment of the present invention.
 本発明の実施形態に係る有機ELパネル100(100A,100B,100C)は、基板10上に、第1電極11と第2電極12との間に発光層を含む有機層13を積層した有機EL素子1を形成したものであって、基板10上に、有機EL素子1が単数又は多数形成された発光領域10Pと、有機EL素子1の第2電極12に接続される配線20が形成された配線領域10Qを有している。そして、有機層13は、発光領域10Pと配線領域10Qに形成される共通有機層14を備え、共通有機層14は、第1電極11と接する第1部分14Aと第2電極12に接する第2部分14Bが分断されている。 An organic EL panel 100 (100A, 100B, 100C) according to an embodiment of the present invention includes an organic EL in which an organic layer 13 including a light emitting layer is stacked between a first electrode 11 and a second electrode 12 on a substrate 10. The element 1 is formed, and a light emitting region 10P in which one or more organic EL elements 1 are formed and a wiring 20 connected to the second electrode 12 of the organic EL element 1 are formed on the substrate 10. It has a wiring region 10Q. The organic layer 13 includes a common organic layer 14 formed in the light emitting region 10P and the wiring region 10Q. The common organic layer 14 is in contact with the first portion 14A in contact with the first electrode 11 and the second electrode 12. The portion 14B is divided.
 第1部分14Aと第2部分14Bの分断は、第1電極11と第2電極12との間の電気抵抗が有機層13を介した場合の電気抵抗より小さくならないように分断状態が設定される。図3(a)に示す有機ELパネル100Aでは、第1部分14Aと第2部分14Bが分断されている箇所において、第1部分14Aが発光層を含む有機層13Aで覆われている。図3(b)に示す有機ELパネル100Bでは、第1部分14Aと第2部分14Bが分断されている箇所において、第1部分14Aと第2部分14Bとの間に空間15が形成されている。図3(c)に示す有機ELパネル100Cでは、第1部分14Aと第2部分14Bが分断されている箇所において、第1部分14Aと第2部分14Bとの間に絶縁性の層16が介在している。 The first portion 14A and the second portion 14B are divided so that the electrical resistance between the first electrode 11 and the second electrode 12 is not smaller than the electrical resistance when the organic layer 13 is interposed. . In the organic EL panel 100A shown in FIG. 3A, the first portion 14A is covered with an organic layer 13A including a light emitting layer at a location where the first portion 14A and the second portion 14B are separated. In the organic EL panel 100B shown in FIG. 3B, a space 15 is formed between the first portion 14A and the second portion 14B at a location where the first portion 14A and the second portion 14B are separated. . In the organic EL panel 100C shown in FIG. 3C, the insulating layer 16 is interposed between the first portion 14A and the second portion 14B at the location where the first portion 14A and the second portion 14B are separated. is doing.
 このような特徴を有する有機ELパネル100(100A,100B,100C)は、共通有機層14が基板10上の発光領域10Pだけでなく配線領域10Qに形成されている場合であっても、有機EL素子1の第1電極11と第2電極12との間に電気抵抗の低い箇所が形成されることがないので、第1電極11と第2電極12に印加される電圧によって有機EL素子1を効果的に発光させることができる。 The organic EL panel 100 (100A, 100B, 100C) having such characteristics has the organic EL even when the common organic layer 14 is formed not only in the light emitting region 10P on the substrate 10 but also in the wiring region 10Q. Since a portion having a low electrical resistance is not formed between the first electrode 11 and the second electrode 12 of the element 1, the organic EL element 1 is controlled by the voltage applied to the first electrode 11 and the second electrode 12. Light can be emitted effectively.
 また、配線領域10Qに共通有機層14を形成することで、配線20の端部のエッジ部20Eを共通有機層14で覆うことができ、配線20に接続される第2電極12が配線20の端部のエッジ部20Eで分断される不具合を回避することができる。更には、共通有機層14を設けることで、この共通有機層14によって平坦化された層表面上に絶縁性の構造部を形成することができる。 Further, by forming the common organic layer 14 in the wiring region 10Q, the edge portion 20E at the end of the wiring 20 can be covered with the common organic layer 14, and the second electrode 12 connected to the wiring 20 is connected to the wiring 20. It is possible to avoid the problem of being divided at the edge portion 20E at the end. Furthermore, by providing the common organic layer 14, an insulating structure portion can be formed on the surface of the layer flattened by the common organic layer 14.
 有機EL素子1の第1電極11上に共通有機層14が形成されるので、第1電極上の凹凸を共通有機層14で平坦化することができ、この共通有機層14上に発光層を含む有機層13Aを積層させることで、有機層13Aの層厚を均一化することができ、リーク等の発光不良の原因を排除することができる。また、第1電極11上に成膜される共通有機層14にアクセプタ(ドーパント)を添加させることによって、電荷注入効率が向上して、低電圧化の実現が可能になる。 Since the common organic layer 14 is formed on the first electrode 11 of the organic EL element 1, the unevenness on the first electrode can be planarized by the common organic layer 14, and a light emitting layer is formed on the common organic layer 14. By laminating the organic layer 13A including the organic layer 13A, the thickness of the organic layer 13A can be made uniform, and the cause of light emission failure such as leakage can be eliminated. In addition, by adding an acceptor (dopant) to the common organic layer 14 formed on the first electrode 11, the charge injection efficiency is improved, and a low voltage can be realized.
 図4は、本発明の実施形態に係る有機ELパネルの製造方法を説明する説明図である。同図(a)に示した工程1では、基板10上に、直接又は他の層を介して成膜された導電膜をパターン形成して、第1電極11を形成すると共に、第2電極12に接続される配線20を形成する。基板10は、ガラス、プラスチック、表面に絶縁膜を形成した金属などが用いられ、その上に例えば蒸着,スパッタリングなどで導電膜を形成し、フォトリソ工程などのパターン形成工程によって第1電極11と配線20のパターンを形成する。第1電極11と配線20は同時に形成しても良いし、別工程でそれぞれ形成しても良い。第1電極11のパターンは、パッシブ駆動の有機ELパネルを形成する際には、線状の第1電極11をストライプ状に形成する。 FIG. 4 is an explanatory diagram for explaining a method of manufacturing an organic EL panel according to an embodiment of the present invention. In step 1 shown in FIG. 1A, a conductive film formed directly or via another layer is patterned on the substrate 10 to form the first electrode 11 and the second electrode 12. A wiring 20 connected to is formed. The substrate 10 is made of glass, plastic, metal having an insulating film formed on the surface, and a conductive film is formed thereon by, for example, vapor deposition or sputtering, and the first electrode 11 and the wiring are formed by a pattern forming process such as a photolithography process. 20 patterns are formed. The first electrode 11 and the wiring 20 may be formed at the same time, or may be formed in separate steps. The pattern of the first electrode 11 forms the linear first electrode 11 in a stripe shape when a passively driven organic EL panel is formed.
 同図(b)に示した工程2では、第1電極11が形成された発光領域10Pと配線20が形成された配線領域10Qに有機EL素子1の有機層13の一つである共通有機層14を形成する。共通有機層14は塗布材料でも蒸着材料でも良く、蒸着材料を用いた場合には、成膜後にガラス転移温度以上に加熱することで表面の平坦化を図る。 In step 2 shown in FIG. 5B, a common organic layer that is one of the organic layers 13 of the organic EL element 1 is formed in the light emitting region 10P in which the first electrode 11 is formed and the wiring region 10Q in which the wiring 20 is formed. 14 is formed. The common organic layer 14 may be a coating material or a vapor deposition material. When a vapor deposition material is used, the surface of the common organic layer 14 is flattened by heating to a glass transition temperature or higher after film formation.
 同図(c)に示した工程3では、共通有機層14を第1電極11と接する第1部分14Aと第2電極12に接する第2部分14Bが分断されるようにパターン形成する。共通有機層14の分断は、前述した工程2と同時にフォトエッチングやマスク成膜などでパターン形成してもよいし、工程2の形成後に、レーザ照射などで部分的に成膜を除去することで第1部分14Aと第2部分14Bを分断しても良い。このとき、配線20と第2電極12との接触を確保するための孔部(コンタクトホール)Fを第2部分14Bに形成しても良い。 In step 3 shown in FIG. 5C, the common organic layer 14 is patterned so that the first portion 14A in contact with the first electrode 11 and the second portion 14B in contact with the second electrode 12 are divided. The common organic layer 14 may be divided by patterning by photoetching or mask film formation at the same time as the process 2 described above, or by partially removing the film formation by laser irradiation or the like after the process 2 is formed. The first portion 14A and the second portion 14B may be divided. At this time, a hole (contact hole) F for ensuring contact between the wiring 20 and the second electrode 12 may be formed in the second portion 14B.
 同図(d)に示した工程4では、共通有機層14上に有機EL素子1の構成要素を区画する絶縁構造物(第2電極を分離する隔壁など)を形成し、共通有機層14上に他の有機層13Aを形成する。この際、図1(a)に示した例では、第1部分14Aと第2部分14Bの分断箇所で第1部分14Aが有機層13Aに覆われるようにする。 In step 4 shown in FIG. 4D, an insulating structure (such as a partition that separates the second electrode) that partitions the components of the organic EL element 1 is formed on the common organic layer 14, and Then, another organic layer 13A is formed. At this time, in the example shown in FIG. 1A, the first portion 14A is covered with the organic layer 13A at the portion where the first portion 14A and the second portion 14B are divided.
 同図(e)に示した工程5では、有機層13上に第2電極12を形成する。第2電極12は予め共通有機層14の上に形成された隔壁によって分離され、例えば、第1電極11と交差する方向にストライプ状に形成されて、その端部が配線20を覆うように形成される。その後は、発光領域10P内の有機EL素子1を封止する封止工程などを経て有機ELパネルを得る。 In step 5 shown in FIG. 5E, the second electrode 12 is formed on the organic layer 13. The second electrode 12 is separated by a partition formed in advance on the common organic layer 14, for example, is formed in a stripe shape in a direction intersecting the first electrode 11, and its end portion covers the wiring 20. Is done. Thereafter, an organic EL panel is obtained through a sealing process for sealing the organic EL element 1 in the light emitting region 10P.
 基板10は、前述したようにガラス,プラスチックなどで形成できるが、基板側から光を取り出すトップエミッション方式にする際には光透過性の材料を選択する。第1電極11及び第2電極12は、一方が陽極として機能し他方が陰極として機能するものである。第1電極11は前述したトップエミッション方式にする場合にはITOなどの透明導電膜を採用する。陰極は陽極より仕事関数の低い材料を用いる、陽極としてITOを用いる場合には、陰極としてはアルミニウム(Al)やMg-Alなどのマグネシウム合金を用いることができる。配線20としては、電気抵抗の低いアルミニウム,銀,クロム,それらの合金などを用いることができる。 As described above, the substrate 10 can be formed of glass, plastic, or the like, but a light-transmitting material is selected when the top emission method for extracting light from the substrate side is used. One of the first electrode 11 and the second electrode 12 functions as an anode and the other functions as a cathode. The first electrode 11 employs a transparent conductive film such as ITO when the above-described top emission method is used. The cathode uses a material having a work function lower than that of the anode. When ITO is used as the anode, a magnesium alloy such as aluminum (Al) or Mg—Al can be used as the cathode. As the wiring 20, aluminum, silver, chromium, an alloy thereof, or the like having a low electric resistance can be used.
 共通有機層14の材料としては、高分子材料,高分子材料中に低分子材料を含んだものなどが適し、ポリアルキルチオフェン誘導体、ポリアニリン誘導体、トリフェニルアミン、無機化合物のゾルゲル膜、ルイス酸を含む有機化合物膜、導電性高分子などを利用することができる。その後に電極分離機能を有する隔壁を形成する際には、隔壁形成時のフォトリソ工程に耐えうる材料が適する。 As the material of the common organic layer 14, a polymer material, a polymer material containing a low-molecular material is suitable, and a polyalkylthiophene derivative, a polyaniline derivative, triphenylamine, a sol-gel film of an inorganic compound, a Lewis acid, and the like. An organic compound film, a conductive polymer, or the like can be used. Thereafter, when a partition having an electrode separation function is formed, a material that can withstand a photolithography process at the time of forming the partition is suitable.
 共通有機層14上に形成する発光層を含む有機層13Aの形成例を説明する。例えば先ず、NPB(N,N-di(naphtalence)-N,N-dipheneyl-benzidene)を正孔輸送層として成膜する。この正孔輸送層は、下部電極線2から注入される正孔を発光層に輸送する機能を有する。この正孔輸送層は、1層だけ積層したものでも2層以上積層したものであってもよい。また正孔輸送層は、単一の材料による成膜ではなく、複数の材料により一つの層を形成しても良く、電荷輸送能力の高いホスト材料に電荷供与(受容)性の高いゲスト材料をドーピングしてもよい。 An example of forming the organic layer 13A including the light emitting layer formed on the common organic layer 14 will be described. For example, first, NPB (N, N-di (naphtalence) -N, N-dipheneyl-benzidene) is formed as a hole transport layer. The hole transport layer has a function of transporting holes injected from the lower electrode line 2 to the light emitting layer. The hole transport layer may be a single layer or a stack of two or more layers. In addition, the hole transport layer is not formed by a single material, but a single layer may be formed by a plurality of materials, and a guest material having a high charge donating (accepting) property may be formed on a host material having a high charge transport capability. Doping may be performed.
 次に、正孔輸送層の上に発光層を成膜する。一例としては、抵抗加熱蒸着法により、赤(R)、緑(G)、青(B)の発光層を、塗分け用マスクを利用してそれぞれの成膜領域に成膜する。赤(R)としてDCM1(4-(ジシアノメチレン)-2-メチル-6-(4’-ジメチルアミノスチリル)-4H-ピラン)等のスチリル色素等の赤色を発光する有機材料を用いる。緑(G)としてアルミキノリノール錯体(Alq3) 等の緑色を発光する有機材料を用いる。青(B)としてジスチリル誘導体、トリアゾール誘導体等の青色を発光する有機材料を用いる。勿論、他の材料でも、ホスト‐ゲスト系の層構成でも良く、発光形態も蛍光発光材料を用いてもりん光発光材料を用いたものであってもよい。 Next, a light emitting layer is formed on the hole transport layer. As an example, red (R), green (G), and blue (B) light-emitting layers are formed in respective film formation regions by using a resistance heating vapor deposition method using a coating mask. As the red (R), an organic material that emits red light such as a styryl dye such as DCM1 (4- (dicyanomethylene) -2-methyl-6- (4′-dimethylaminostyryl) -4H-pyran) is used. An organic material that emits green light such as an aluminum quinolinol complex (Alq 3 ) is used as green (G). As the blue (B), an organic material emitting blue light such as a distyryl derivative or a triazole derivative is used. Of course, other materials or a host-guest layer structure may be used, and the light emission form may be a fluorescent light emitting material or a phosphorescent light emitting material.
 発光層の上に成膜される電子輸送層は、抵抗加熱蒸着法等の各種成膜方法により、例えばアルミキノリノール錯体(Alq3 )等の各種材料を用いて成膜する。電子輸送層は、上部電極線3から注入される電子を発光層に輸送する機能を有する。この電子輸送層は、1層だけ積層したものでも2層以上積層した多層構造を有してもよい。また、電子輸送層は、単一の材料による成膜ではなく、複数の材料により一つの層を形成しても良く、電荷輸送能力の高いホスト材料に電荷供与(受容)性の高いゲスト材料をドーピングして形成してもよい。 The electron transport layer formed on the light emitting layer is formed by using various materials such as an aluminum quinolinol complex (Alq 3 ) by various film forming methods such as resistance heating vapor deposition. The electron transport layer has a function of transporting electrons injected from the upper electrode line 3 to the light emitting layer. This electron transport layer may have a multilayer structure in which only one layer is stacked or two or more layers are stacked. In addition, the electron transport layer may be formed of a plurality of materials instead of a single material, and a guest material having a high charge donating (accepting) property may be formed on a host material having a high charge transport capability. It may be formed by doping.
 図5は、本発明の実施形態に係る有機ELパネルのさらに具体的な構成例を示した平面図(同図(a))及び断面図(同図(b);同図(a)におけるX-X断面図)である。ここで形成される共通有機層14は、第1部分14Aが第1電極11に接しており、第2部分14Bが第2電極12と第2電極12に接続される配線20に接している。第2電極12は電極分離隔壁31によって配線20に対応して分離されている。そして、第2部分14Bは、少なくとも配線20端部のエッジ部20Eを覆うように形成されており、配線20の上面には開口したコンタクト部14B1が形成されている。また、第2部分14は第2電極12と接する部分(14B2)が基板10の表面に対して傾斜して形成されている。 FIG. 5 is a plan view (FIG. 5A) and a cross-sectional view (FIG. 5B) showing a more specific configuration example of the organic EL panel according to the embodiment of the present invention. -X sectional view). In the common organic layer 14 formed here, the first portion 14 </ b> A is in contact with the first electrode 11, and the second portion 14 </ b> B is in contact with the second electrode 12 and the wiring 20 connected to the second electrode 12. The second electrode 12 is separated from the wiring 20 by the electrode separation partition 31. The second portion 14B is formed so as to cover at least the edge portion 20E at the end portion of the wiring 20, and an open contact portion 14B1 is formed on the upper surface of the wiring 20. The second portion 14 is formed such that a portion (14 B 2) in contact with the second electrode 12 is inclined with respect to the surface of the substrate 10.
 これによると、第2部分14B上を覆うように形成される第2電極12がコンタクト部14B1で配線20と接触するので、第2電極12と配線20は互いに良好な接続を確保することができる。また、第2電極12と第2部分14Bとが接する部分14B2が基板10の表面に対して傾斜しているので、第2部分14B上に十分な膜厚の第2電極12が積層され、第2電極12の断線を回避することができる。 According to this, since the second electrode 12 formed so as to cover the second portion 14B comes into contact with the wiring 20 at the contact portion 14B1, the second electrode 12 and the wiring 20 can ensure good connection with each other. . In addition, since the portion 14B2 where the second electrode 12 and the second portion 14B are in contact with each other is inclined with respect to the surface of the substrate 10, the second electrode 12 having a sufficient thickness is laminated on the second portion 14B. Disconnection of the two electrodes 12 can be avoided.
 この際には、共通有機層14の第1部分14Aと第2部分14Bは互いに分断されているので、第1部分14Aと接する第1電極11と第2部分14Bと接する第2電極12又は配線20が電気抵抗の低い状態で導通することは無く、有機EL素子1の発光層への電気供給を十分に確保することができる。 At this time, since the first portion 14A and the second portion 14B of the common organic layer 14 are separated from each other, the first electrode 11 in contact with the first portion 14A and the second electrode 12 or wiring in contact with the second portion 14B 20 does not conduct in a state of low electrical resistance, and sufficient supply of electricity to the light emitting layer of the organic EL element 1 can be ensured.
 図6(a)~(c)は、本発明の他の実施形態を示す説明図である。これらの実施形態は、共通有機層14上に、有機EL素子1の構成要素を区画する絶縁性の構造物(以下、絶縁構造物という)が形成されている例を示している。 6 (a) to 6 (c) are explanatory views showing other embodiments of the present invention. These embodiments show an example in which an insulating structure (hereinafter referred to as an insulating structure) that partitions the components of the organic EL element 1 is formed on the common organic layer 14.
 同図(a)に示した例は、絶縁構造物30として、有機層13上に形成される第2電極12を分離する機能を有する電極分離隔壁31(陰極隔壁を含む)を形成したものである。電極分離隔壁31は、その側面に前述したオーバーハング部31Aを有しており、断面形状が図示のようにほぼ逆等脚台形またはT字形状になっている。 In the example shown in FIG. 6A, an electrode separation partition wall 31 (including a cathode partition wall) having a function of separating the second electrode 12 formed on the organic layer 13 is formed as the insulating structure 30. is there. The electrode separation partition wall 31 has the above-described overhang portion 31A on its side surface, and the cross-sectional shape is substantially inverted isosceles trapezoidal or T-shaped as shown in the figure.
 この有機ELパネル100(100a)では、共通有機層14の上に電極分離隔壁31を形成しているので、電極分離隔壁31のオーバーハング部31Aに共通有機層14の成膜材料が塗布されることが無く、電極分離隔壁31の電極分離機能を適正に確保することができる。これによって、有機層13上に成膜される導電層は電極分離壁31の上部エッジで確実に分断され、電極分離隔壁31間には適正に分離した第2電極12を形成することが可能になる。 In the organic EL panel 100 (100a), since the electrode separation partition wall 31 is formed on the common organic layer 14, the film forming material for the common organic layer 14 is applied to the overhang portion 31A of the electrode separation partition wall 31. The electrode separation function of the electrode separation partition 31 can be ensured appropriately. As a result, the conductive layer formed on the organic layer 13 is surely divided at the upper edge of the electrode separation wall 31, and it is possible to form the properly separated second electrode 12 between the electrode separation partitions 31. Become.
 また、共通有機層14の上に電極分離隔壁31を形成することで、共通有機層14の成膜時には、成膜の平坦性を妨げる障害物が存在しない。これによって、共通有機層14を均一な膜厚で平坦に形成することが可能になり、その上に積層される有機層13の膜厚を均一化することが可能になる。均一膜厚の有機層13を形成できることで、リーク等の発光不良の発生要因が少なくなり、有機ELパネル100(100a)は良好な発光性能及び耐久性能を得ることができる。 Further, by forming the electrode separation partition wall 31 on the common organic layer 14, there is no obstacle that prevents the flatness of the film formation when the common organic layer 14 is formed. Accordingly, the common organic layer 14 can be formed flat with a uniform film thickness, and the film thickness of the organic layer 13 stacked thereon can be made uniform. Since the organic layer 13 having a uniform thickness can be formed, the occurrence factor of light emission failure such as leakage is reduced, and the organic EL panel 100 (100a) can obtain good light emission performance and durability performance.
 この際、共通有機層14は耐アルカリ性を有していることが好ましく、共通有機層14上に電極分離隔壁31を形成する際のフォトリソ工程で使用する薬液に対しても十分な耐性を備えていることが好ましい。これによると、電極分離隔壁31を形成することで共通有機層14の表面が荒れたり、共通有機層14が浸食されたりする不具合が生じることは無く、共通有機層14の有効性を十分に発揮することが可能になる。これによって、共通有機層14が備える優れた電荷注入輸送性能を発揮した低電圧駆動の実現や発光性能の改善、高温信頼性等を十分に発揮した有機ELパネル100(100a)を得ることができる。 At this time, the common organic layer 14 preferably has alkali resistance, and has sufficient resistance to a chemical solution used in a photolithography process when forming the electrode separation partition 31 on the common organic layer 14. Preferably it is. According to this, the formation of the electrode separation partition 31 does not cause a problem that the surface of the common organic layer 14 is roughened or the common organic layer 14 is eroded, and the effectiveness of the common organic layer 14 is sufficiently exhibited. It becomes possible to do. As a result, it is possible to obtain an organic EL panel 100 (100a) that sufficiently realizes low voltage driving that exhibits the excellent charge injection and transport performance of the common organic layer 14, improvement of light emitting performance, high temperature reliability, and the like. .
 同図(b)に示した有機ELパネル100(100b)は、絶縁構造物30として、有機EL素子1からなる発光画素を区画する絶縁膜32を形成したものである。絶縁膜32は、図示の例では共通有機層14上にマトリクス状の開口部32Aを形成している。そしてこの開口部32A内の共通有機層14上に有機層13が成膜され、その有機層13上に第2電極12の導電材料層が形成されている。 The organic EL panel 100 (100b) shown in FIG. 4B is obtained by forming an insulating film 32 as an insulating structure 30 that partitions a light emitting pixel made of the organic EL element 1. In the illustrated example, the insulating film 32 has a matrix-shaped opening 32A formed on the common organic layer 14. An organic layer 13 is formed on the common organic layer 14 in the opening 32 </ b> A, and a conductive material layer for the second electrode 12 is formed on the organic layer 13.
 この例においても、有機ELパネル100(100b)は、共通有機層14の上に絶縁膜32を形成しているので、絶縁膜32の側面に共通有機層14の成膜材料が塗布されることが無く、絶縁膜32によって形成される発光画素の開口率を適正に確保することができる。 Also in this example, since the organic EL panel 100 (100b) has the insulating film 32 formed on the common organic layer 14, the film forming material of the common organic layer 14 is applied to the side surface of the insulating film 32. Therefore, the aperture ratio of the light-emitting pixel formed by the insulating film 32 can be appropriately ensured.
 また、前述した例と同様に、共通有機層14の上に絶縁膜32を形成することで、共通有機層14の成膜時には、成膜の平坦性を妨げる障害物が存在しない。これによって、共通有機層14を均一な膜厚で平坦に形成することが可能になり、その上に積層される有機層13の膜厚を均一化することが可能になる。均一膜厚の有機層13を形成できることで、リーク等の発光不良の発生要因が少なくなり、有機ELパネル100(100b)は良好な発光性能及び耐久性能を得ることができる。 Further, as in the example described above, the insulating film 32 is formed on the common organic layer 14, so that no obstacles hinder the flatness of the film formation when the common organic layer 14 is formed. Accordingly, the common organic layer 14 can be formed flat with a uniform film thickness, and the film thickness of the organic layer 13 stacked thereon can be made uniform. Since the organic layer 13 having a uniform film thickness can be formed, the occurrence factor of light emission failure such as leakage is reduced, and the organic EL panel 100 (100b) can obtain good light emission performance and durability performance.
 また、共通有機層14が耐アルカリ性を有していることで、共通有機層14上に絶縁膜32を形成する際のフォトリソ工程で使用する薬液に対しても十分な耐性を備えている。したがって、絶縁膜32を形成することで共通有機層14の表面が荒れたり、共通有機層14が浸食されたりする不具合が生じることは無く、共通有機層14の有効性を十分に発揮することが可能になる。これによって、共通有機層14が備える優れた電荷注入輸送性能を発揮した低電圧駆動の実現や発光性能の改善、高温信頼性等を十分に発揮した有機ELパネル100(100b)を得ることができる。 In addition, since the common organic layer 14 has alkali resistance, the common organic layer 14 has sufficient resistance to chemicals used in the photolithography process when the insulating film 32 is formed on the common organic layer 14. Therefore, the formation of the insulating film 32 does not cause a problem that the surface of the common organic layer 14 is roughened or the common organic layer 14 is eroded, and the effectiveness of the common organic layer 14 can be sufficiently exhibited. It becomes possible. Accordingly, it is possible to obtain the organic EL panel 100 (100b) that sufficiently realizes the low voltage driving that exhibits the excellent charge injection and transport performance of the common organic layer 14, the improvement of the light emitting performance, the high temperature reliability, and the like. .
 同図(c)に示した有機ELパネル100(100c)は、絶縁構造物30として、封止基板41を支える支持隔壁33を形成したものである。有機ELパネル100(100c)は、基板10に接着層40を介して貼り合わせられる封止基板41を備えており、基板10と封止基板41との間に形成される気密な封止空間S1内に有機EL素子1の構成要素(第1電極11,第2電極12,有機層13,共通有機層14)が配置されている。そして、支持隔壁33は、図示の例では、その端面(図示の上部端面)と封止基板41の内面とが当接するように形成されている。また、この支持隔壁33は前述した電極分離機能を兼ねる備えるものである。 In the organic EL panel 100 (100c) shown in FIG. 10C, a support partition wall 33 that supports the sealing substrate 41 is formed as the insulating structure 30. The organic EL panel 100 (100c) includes a sealing substrate 41 bonded to the substrate 10 via an adhesive layer 40, and an airtight sealing space S1 formed between the substrate 10 and the sealing substrate 41. The components of the organic EL element 1 (the first electrode 11, the second electrode 12, the organic layer 13, and the common organic layer 14) are disposed therein. In the illustrated example, the support partition wall 33 is formed such that its end face (upper end face in the figure) and the inner surface of the sealing substrate 41 come into contact with each other. The support partition 33 also has the above-described electrode separation function.
 この例においても、有機ELパネル100(100c)は、共通有機層14の上に支持隔壁33を形成しているので、支持隔壁33の側面に共通有機層14が塗布されることが無く、支持隔壁33の電極分離機能を確保することができる。また、前述した例と同様に、共通有機層14の上に支持隔壁33を形成することで、共通有機層14の成膜時には、成膜の平坦性を妨げる障害物が存在しない。これによって、共通有機層14を均一な膜厚で平坦に形成することが可能になり、その上に積層される有機層13の膜厚を均一化することが可能になる。さらに、共通有機層14のパターン形成時にもそれを妨げる障害物が存在しないので、精度の高いパターン形成が可能になり、湿式膜材料が塗布時に流れて接着層40の形成領域に干渉するような不具合が生じない。これによって、封止基板41と基板10とを貼り合わせる際の封止性能を適正に確保することが可能になる。 Also in this example, since the organic EL panel 100 (100c) has the support partition 33 formed on the common organic layer 14, the common organic layer 14 is not applied to the side surface of the support partition 33, and the support is performed. The electrode separation function of the partition wall 33 can be ensured. Further, as in the example described above, by forming the support partition wall 33 on the common organic layer 14, there is no obstacle that prevents the flatness of the film formation when the common organic layer 14 is formed. Accordingly, the common organic layer 14 can be formed flat with a uniform film thickness, and the film thickness of the organic layer 13 stacked thereon can be made uniform. Furthermore, since there are no obstacles that obstruct the pattern formation of the common organic layer 14, it is possible to form a pattern with high accuracy, and the wet film material flows during application and interferes with the formation region of the adhesive layer 40. There is no problem. As a result, it is possible to appropriately ensure the sealing performance when the sealing substrate 41 and the substrate 10 are bonded together.
 また、共通有機層14が耐アルカリ性を有していることで、前述した例と同様に、共通有機層14上に支持隔壁33を形成する際のフォトリソ工程で使用する薬液に対しても十分な耐性を備えている。したがって、支持隔壁33を形成することで共通有機層14の表面が荒れたり、共通有機層14が浸食されたりする不具合が生じることは無く、共通有機層14の有効性を十分に発揮することが可能になる。 In addition, since the common organic layer 14 has alkali resistance, the chemical solution used in the photolithography process when forming the support partition 33 on the common organic layer 14 is sufficient as in the above-described example. Has resistance. Therefore, the formation of the support partition 33 does not cause a problem that the surface of the common organic layer 14 is roughened or the common organic layer 14 is eroded, and the effectiveness of the common organic layer 14 can be sufficiently exhibited. It becomes possible.
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the design can be changed without departing from the scope of the present invention. Is included in the present invention. In addition, the above-described embodiments can be combined by utilizing each other's technology as long as there is no particular contradiction or problem in the purpose and configuration.

Claims (11)

  1.  第1電極と第2電極との間に発光層を含む有機層を積層した有機EL素子を、基板上に形成した有機ELパネルであって、
     前記基板上に、前記有機EL素子が単数又は複数形成された発光領域と、前記有機EL素子の前記第2電極に接続される配線が形成された配線領域を有し、
     前記有機層は、前記発光領域と前記配線領域に形成される共通有機層を備え、該共通有機層は、前記第1電極と接する第1部分と前記第2電極に接する第2部分が分断されていることを特徴とする有機ELパネル。
    An organic EL panel in which an organic EL element in which an organic layer including a light emitting layer is stacked between a first electrode and a second electrode is formed on a substrate,
    On the substrate, a light emitting region in which one or a plurality of the organic EL elements are formed, and a wiring region in which a wiring connected to the second electrode of the organic EL element is formed,
    The organic layer includes a common organic layer formed in the light emitting region and the wiring region, and the common organic layer is divided into a first portion in contact with the first electrode and a second portion in contact with the second electrode. An organic EL panel characterized by having
  2.  前記第1部分と前記第2部分が分断されている箇所において、前記第1部分は前記発光層を含む有機層で覆われていることを特徴とする請求項1記載の有機ELパネル。 2. The organic EL panel according to claim 1, wherein the first portion is covered with an organic layer including the light emitting layer at a location where the first portion and the second portion are separated.
  3.  前記第1部分と前記第2部分が分断されている箇所において、前記第1部分と前記第2部分との間に絶縁性の層が介在していることを特徴とする請求項1記載の有機ELパネル。 2. The organic material according to claim 1, wherein an insulating layer is interposed between the first portion and the second portion at a location where the first portion and the second portion are separated. EL panel.
  4.  前記共通有機層は、前記第2部分が前記第2電極と当該第2電極に接続される配線に接していることを特徴とする請求項1記載の有機ELパネル。 2. The organic EL panel according to claim 1, wherein the second portion of the common organic layer is in contact with the second electrode and a wiring connected to the second electrode.
  5.  前記第2部分には、前記第2電極と前記第2配線を直接接触させる孔部が形成されている請求項4に記載の有機ELパネル。 5. The organic EL panel according to claim 4, wherein a hole for directly contacting the second electrode and the second wiring is formed in the second portion.
  6.  前記第2部分は前記第2電極と接する部分が前記基板の表面に対して傾斜していることを特徴とする請求項1~5のいずれかに記載された有機ELパネル。 6. The organic EL panel according to claim 1, wherein a portion of the second portion that contacts the second electrode is inclined with respect to the surface of the substrate.
  7.  前記共通有機層上に、前記有機EL素子の構成要素を区画する絶縁性の構造物が形成されていることを特徴とする請求項1~6のいずれかに記載された有機ELパネル。 The organic EL panel according to any one of claims 1 to 6, wherein an insulating structure for partitioning the constituent elements of the organic EL element is formed on the common organic layer.
  8.  前記絶縁性の構造物は、前記有機層上に形成される前記第2電極を分離する機能を有する隔壁であることを特徴とする請求項7に記載された有機ELパネル。 The organic EL panel according to claim 7, wherein the insulating structure is a partition having a function of separating the second electrode formed on the organic layer.
  9.  前記絶縁性の構造物は、前記有機EL素子からなる発光画素を区画する絶縁膜であることを特徴とする請求項7に記載された有機ELパネル。 The organic EL panel according to claim 7, wherein the insulating structure is an insulating film that partitions a light emitting pixel made of the organic EL element.
  10.  前記基板に貼り合わせられ、前記有機EL素子を封止する封止空間を形成する封止基板を備え、
     前記絶縁性の構造物は前記封止基板の内面に当接していることを特徴とする請求項7に記載された有機ELパネル。
    A sealing substrate which is bonded to the substrate and forms a sealing space for sealing the organic EL element;
    The organic EL panel according to claim 7, wherein the insulating structure is in contact with an inner surface of the sealing substrate.
  11.  第1電極と第2電極との間に発光層を含む有機層を積層した有機EL素子を、基板上に形成した有機ELパネルの製造方法であって、
     前記基板上に、直接又は他の層を介して成膜された導電膜をパターン形成して、前記第1電極を形成すると共に、前記第2電極に接続される配線を形成する工程と、
     前記第1電極が形成された発光領域と前記配線が形成された配線領域に前記有機層の一つである共通有機層を形成する工程と、
     前記共通有機層上に前記有機EL素子の構成要素を区画する絶縁構造物を形成する工程と、
     前記共通有機層上に他の前記有機層を形成する工程と、
     前記有機層上に前記第2電極を形成する工程とを有し、
     前記共通有機層は、前記第1電極と接する第1部分と前記第2電極に接する第2部分が分断されるようにパターン形成されることを特徴とする有機ELパネルの製造方法。
    An organic EL panel manufacturing method in which an organic EL element in which an organic layer including a light emitting layer is stacked between a first electrode and a second electrode is formed on a substrate,
    Patterning a conductive film formed directly or via another layer on the substrate to form the first electrode and forming a wiring connected to the second electrode;
    Forming a common organic layer that is one of the organic layers in a light emitting region in which the first electrode is formed and a wiring region in which the wiring is formed;
    Forming an insulating structure for partitioning components of the organic EL element on the common organic layer;
    Forming another organic layer on the common organic layer;
    Forming the second electrode on the organic layer,
    The method of manufacturing an organic EL panel, wherein the common organic layer is patterned so that a first portion in contact with the first electrode and a second portion in contact with the second electrode are divided.
PCT/JP2009/070773 2009-12-11 2009-12-11 Organic el panel and method for manufacturing same WO2011070680A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/070773 WO2011070680A1 (en) 2009-12-11 2009-12-11 Organic el panel and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/070773 WO2011070680A1 (en) 2009-12-11 2009-12-11 Organic el panel and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2011070680A1 true WO2011070680A1 (en) 2011-06-16

Family

ID=44145249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070773 WO2011070680A1 (en) 2009-12-11 2009-12-11 Organic el panel and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2011070680A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173781A (en) * 1998-12-09 2000-06-23 Sony Corp Organic electroluminescent display device and its manufacture
JP2000243558A (en) * 1999-02-16 2000-09-08 Tohoku Pioneer Corp Light emitting display panel and manufacture thereof
JP2000252063A (en) * 1999-03-01 2000-09-14 Toppan Printing Co Ltd Color switching light emitting element, substrate for the same, and color display device
JP2004311230A (en) * 2003-04-08 2004-11-04 Pioneer Electronic Corp Light emitting display panel and its manufacturing method
WO2008149498A1 (en) * 2007-05-31 2008-12-11 Panasonic Corporation Organic el device and method for manufacturing the same
WO2008149499A1 (en) * 2007-05-30 2008-12-11 Panasonic Corporation Organic el display panel and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173781A (en) * 1998-12-09 2000-06-23 Sony Corp Organic electroluminescent display device and its manufacture
JP2000243558A (en) * 1999-02-16 2000-09-08 Tohoku Pioneer Corp Light emitting display panel and manufacture thereof
JP2000252063A (en) * 1999-03-01 2000-09-14 Toppan Printing Co Ltd Color switching light emitting element, substrate for the same, and color display device
JP2004311230A (en) * 2003-04-08 2004-11-04 Pioneer Electronic Corp Light emitting display panel and its manufacturing method
WO2008149499A1 (en) * 2007-05-30 2008-12-11 Panasonic Corporation Organic el display panel and method for manufacturing the same
WO2008149498A1 (en) * 2007-05-31 2008-12-11 Panasonic Corporation Organic el device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR100804921B1 (en) Organic electroluminescent display panel and method of manufacturing the same
JP4356899B2 (en) Organic EL light emitting device and method for manufacturing the same
US20080108270A1 (en) Method of manufacturing a white light emitting organic el device
JP2000235894A (en) Organic el element and its manufacture
WO2014030367A1 (en) Organic el illumination panel substrate, method for manufacturing organic el illumination panel substrate, organic el illumination panel and organic el illumination device
KR100813833B1 (en) Electro luminescence device and method of manufacturing the same
JP3736179B2 (en) Organic thin film light emitting device
JP2007103164A (en) Self-luminous panel and method of manufacturing self-luminous panel
JP2008140735A (en) Organic electroluminescent display, and manufacturing method thereof
WO2011070681A1 (en) Organic el panel and method for manufacturing same
JP4457697B2 (en) Manufacturing method of organic EL element
WO2012032661A1 (en) Organic el panel
WO2010084586A1 (en) Organic el panel and method for manufacturing the same
WO2011070680A1 (en) Organic el panel and method for manufacturing same
JP4062237B2 (en) Organic EL display device
WO2014041614A1 (en) Organic el device
KR100416290B1 (en) Manufacturing Method of Organic Electroluminescence Device with Anode of Multi-Layer
KR100696591B1 (en) Organic electroluminescent device
JP3999606B2 (en) Organic EL display device and manufacturing method thereof
JP5536220B2 (en) Organic EL panel
JP2006294421A (en) Manufacturing method for light emitting display panel
WO2014049875A1 (en) Organic el panel and method for manufacturing same
JP2008130293A (en) Organic el display panel
JP2005093280A (en) Organic el display
JP6561290B2 (en) Display panel manufacturing method and display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09852076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

ENP Entry into the national phase

Ref document number: PI0910305

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100917