WO2014049875A1 - Organic el panel and method for manufacturing same - Google Patents

Organic el panel and method for manufacturing same Download PDF

Info

Publication number
WO2014049875A1
WO2014049875A1 PCT/JP2012/075256 JP2012075256W WO2014049875A1 WO 2014049875 A1 WO2014049875 A1 WO 2014049875A1 JP 2012075256 W JP2012075256 W JP 2012075256W WO 2014049875 A1 WO2014049875 A1 WO 2014049875A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
electrode
wet film
layer
film
Prior art date
Application number
PCT/JP2012/075256
Other languages
French (fr)
Japanese (ja)
Inventor
一弘 竹田
永山 健一
渡辺 輝一
緒方 朋行
Original Assignee
パイオニア株式会社
東北パイオニア株式会社
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 東北パイオニア株式会社, 三菱化学株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/075256 priority Critical patent/WO2014049875A1/en
Publication of WO2014049875A1 publication Critical patent/WO2014049875A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks

Definitions

  • the present invention relates to an organic EL panel and a manufacturing method thereof.
  • An organic EL element has a structure in which an organic layer including a light emitting layer is laminated between a pair of electrodes, and an organic EL panel in which one or a plurality of organic EL elements are arranged on a substrate is structurally or It has an insulating structure that partitions electrically.
  • the insulating structure include an insulating film that partitions an electrode formed on a substrate for each pixel, a partition for separating an electrode formed on an organic layer, and the like.
  • FIG. 1 is an explanatory diagram showing an example of forming a conventional organic EL panel (a cross-sectional view cut in a direction orthogonal to the cathode barrier rib), and includes a cathode barrier for separating the cathode formed on the organic layer.
  • An example provided is shown (see Patent Document 1 below).
  • a first electrode 2 is formed in a stripe shape on a transparent glass substrate 1.
  • the first electrode 2 is made of ITO as a transparent material having a relatively high work function, and is patterned by using general photolithography. Then, for example, polymer polyimide is applied so as to have a predetermined film thickness, and exposure and development are performed, whereby the insulating layer 3 is formed in a matrix.
  • a cathode partition 4 is formed on the insulating layer 3.
  • a negative photoresist for lift-off whose UV light transmission is intentionally lowered is applied and prebaked. And it exposes by irradiating UV light through the hard chrome mask provided with the light transmission slit.
  • the cathode partition 4 having the overhang portion 4a is formed to protrude from the substrate 1 as shown in FIG. 1B due to the difference in developability by spray showering the substrate with an alkaline developer.
  • each cathode partition 4 The cross-sectional shape orthogonal to the longitudinal direction of each cathode partition 4 is a substantially inverted isosceles trapezoid shape. With this shape of each cathode partition wall 4, when the second electrode (cathode) 6 described later is formed, the adjacent cathodes are separated by the cathode partition wall 4 to ensure sufficient electrical insulation.
  • the organic layer 5 is formed by, for example, a vacuum deposition method. Furthermore, as shown in FIG. 1D, a metal layer such as an aluminum alloy layer is formed by, for example, a heat deposition method, and is separated from each other in a region sandwiched between the cathode partition walls 4 to form striped second electrodes ( Cathode) 6 is formed. An opening of the insulating film 3 formed in a matrix is located at the intersection of the first electrode (anode) 2 and the second electrode (cathode) 6 that intersect each other, and this opening serves as a light emitting pixel by an organic EL element. .
  • the surface state of the first electrode serving as the surface on which the organic layer is to be formed has a great influence on the quality of the light emitting characteristics of the organic EL element. If the surface of the first electrode is uneven, the film thickness of the organic layer deposited thereon is not uniform, and light emission defects such as leakage are likely to occur in the organic EL element.
  • a technique has been developed in which the organic layer formed on the first electrode is formed by wet film formation instead of dry film formation such as vapor deposition. According to this, the wet material fills the unevenness of the electrode surface and flattens its surface, making it possible to homogenize the film laminated on it, improving leakage resistance, etc. Luminous performance and durability performance It becomes possible to improve.
  • an acceptor (dopant) to the wet material layer formed on the first electrode, the charge injection efficiency is improved and a low voltage can be realized.
  • the organic EL panel provided with the insulating structure such as the cathode barrier rib described above
  • the wet material when the wet material is applied after the insulating structure is formed on the substrate or the like, the side surface of the insulating structure is covered with the wet material.
  • the overhang portion 4a of the cathode barrier 4 is filled with the wet material W, and the cathode separation function of the cathode barrier 4 cannot be fully exhibited.
  • the wet material if a wet material is applied after an insulating structure is formed on a substrate or the like, the wet material swells at the interface with the insulating partition due to the surface tension of the wet material, and it is likely to cause a problem that a flat film cannot be obtained.
  • the wet material flows along the side surface of the insulating structure, and the wet material is applied to an unnecessary portion, so that problems such as short-circuiting of electrodes and poor adhesion of the sealing member are likely to occur.
  • the conventional wet material lacks alkali resistance. Therefore, the chemical processing is performed when the insulating structure is patterned by photolithography. There was a problem that the previously formed coating film was eroded and the effectiveness of wet film formation could not be obtained sufficiently.
  • the present invention is an example of a problem to deal with such a problem. That is, in an organic EL panel equipped with an insulating structure, the performance of the organic EL panel is improved by effectively applying a wet material to the film-forming surface of the organic layer while effectively ensuring the function of the insulating structure. It is an object of the present invention to achieve this.
  • the present invention includes at least the following configuration.
  • An organic EL panel in which an organic EL element in which an organic layer including a light emitting layer is laminated between a first electrode and a second electrode is formed on a substrate, the film being formed on the first electrode and covered with the organic layer.
  • a wet film that forms a film-forming surface; and an insulating structure that is formed on the wet film and partitions the constituent elements of the organic EL element, wherein the wet film receives charges injected from the first electrode.
  • An organic EL panel having a charge injecting and transporting function for transporting to and having alkali resistance.
  • FIG. 3 to 5 are explanatory diagrams showing an example of the organic EL panel according to the embodiment of the present invention.
  • FIG. 3 shows an organic EL panel provided with electrode separation barriers (cathode barriers)
  • FIG. 4 shows an organic EL panel in which light emitting pixels are partitioned by an insulating film
  • FIG. 5 shows an organic EL panel provided with a sealing substrate.
  • the organic EL panels 10, 20, 30 according to the embodiment of the present invention shown in FIGS. 3 to 5 are organic ELs in which an organic layer 13 including a light emitting layer is laminated between a first electrode 11 and a second electrode 12.
  • the element 10U is formed on the substrate 14.
  • the organic EL panels 10, 20, and 30 are formed on the first electrode 11 and form a film-forming surface of the organic layer 13, and a component of the organic EL element 10 ⁇ / b> U formed on the wet film 15.
  • Insulating structure 16 is provided.
  • the wet film 15 has a charge injecting and transporting function of transporting the charge injected from the first electrode 11 to the organic layer 13 and has alkali resistance.
  • the forms shown in FIGS. 3 to 5 are examples of the organic EL panel of the present invention, and the organic EL panel of the present invention is not limited to these.
  • the wet film 15 is formed by applying a liquid film forming material by a coating process at the time of film formation, and becomes a dry film after film formation.
  • the coating process for forming a film includes various wet film forming processes such as ink jet, spray coating, printing, spin coating, and dip coating.
  • Electrode separating partition 16A has an overhang portion 16A 1 described above on its side, the cross-sectional shape are substantially Gyakutoashi trapezoidal or T-shaped as shown.
  • the electrodes are formed separating partitions 16A on the wet film 15, there is no film forming material of the wet film is applied to the overhang portion 16A 1 of the electrode separating partitions 16A, electrode The electrode separation function of the separation partition 16A can be ensured appropriately. As a result, the conductive layer formed on the organic layer 13 is reliably divided at the upper edge of the electrode separation partition 16A, and it is possible to form the properly separated second electrode 12 between the electrode separation partitions 16A. Become.
  • the electrode separation partition 16A on the wet film 15, there is no obstacle to the flatness of the film formation when the wet film 15 is formed.
  • the wet film 15 can be formed flat with a uniform film thickness, and the film thickness of the organic layer 13 laminated thereon can be made uniform. Since the organic layer 13 having a uniform thickness can be formed, the cause of light emission failure such as leakage is reduced, and the organic EL panel 10 can obtain good light emission performance and durability performance.
  • the wet film 15 has alkali resistance
  • the wet film 15 has sufficient resistance to chemicals used in the photolithography process when the electrode separation partition 16A is formed on the wet film 15, and further has light resistance. Therefore, it has sufficient resistance to UV light irradiation in the photolithography process. Therefore, the formation of the electrode separation partition 16A does not cause a problem that the surface of the wet film 15 is roughened or the wet film 15 is eroded, and the effectiveness of the wet film 15 can be fully exhibited. Become. As a result, an organic EL panel can be obtained that realizes low voltage driving that exhibits the excellent charge injection and transport performance of the wet film 15, improves light emitting performance, and exhibits high temperature reliability.
  • an insulating film 16 ⁇ / b> B that partitions a light emitting pixel composed of the organic EL element 10 ⁇ / b> U is formed as the insulating structure 16.
  • Insulating film 16B, in the illustrated example form a matrix of openings 16B 1 on the wet film 15.
  • An organic layer 13 is formed on the wet film 15 in the opening 16B 1 , and a conductive material layer for the second electrode 12 is formed on the organic layer 13.
  • the organic EL panel 20 since the organic EL panel 20 has the insulating film 16B formed on the wet film 15, the film-forming material of the wet film is not applied to the side surface of the insulating film 16B, and the insulating film 16B. Thus, the aperture ratio of the light emitting pixels formed can be appropriately ensured.
  • the wet film 15 can be formed flat with a uniform film thickness, and the film thickness of the organic layer 13 laminated thereon can be made uniform. Since the organic layer 13 having a uniform thickness can be formed, the cause of light emission failure such as leakage is reduced, and the organic EL panel 10 can obtain good light emission performance and durability performance.
  • the wet film 15 has alkali resistance
  • the wet film 15 has sufficient resistance to chemicals used in the photolithography process when the insulating film 16B is formed on the wet film 15. Therefore, the formation of the insulating film 16B does not cause a problem that the surface of the wet film 15 is roughened or the wet film 15 is eroded, and the effectiveness of the wet film 15 can be fully exhibited. .
  • an organic EL panel can be obtained that realizes low voltage driving that exhibits the excellent charge injection and transport performance of the wet film 15, improves light emitting performance, and exhibits high temperature reliability.
  • the organic EL panel 30 shown in FIG. 5 is obtained by forming a support partition 16 ⁇ / b> C that supports the sealing substrate 17 as the insulating structure 16.
  • the organic EL panel 30 includes a sealing substrate 17 that is bonded to the substrate 14 via the adhesive layer 18, and the organic EL panel 30 is organic in an airtight sealing space S formed between the substrate 14 and the sealing substrate 17.
  • the components of the EL element 10U (the first electrode 11, the second electrode 12, the organic layer 13, and the wet film 15) are arranged.
  • the support partition 16C is formed so that its end surface (upper end surface in the drawing) and the inner surface of the sealing substrate 17 are in contact with each other.
  • the support partition 16C also has the electrode separation function described above.
  • the wet film 15 is not applied to the side surface of the support partition 16C, and the electrode separation of the support partition 16C is performed. Function can be secured. Further, similarly to the example described above, by forming the support partition 16C on the wet film 15, there is no obstacle that prevents the flatness of the film formation when the wet film 15 is formed. As a result, the wet film 15 can be formed flat with a uniform film thickness, and the film thickness of the organic layer 13 laminated thereon can be made uniform.
  • the wet film 15 has alkali resistance, it is sufficient for the chemical solution and UV light used in the photolithography process when forming the support partition 16C on the wet film 15 as in the above-described example. It has a good tolerance. Therefore, the formation of the support partition 16C does not cause a problem that the surface of the wet film 15 is roughened or the wet film 15 is eroded, and the effectiveness of the wet film 15 can be fully exhibited. .
  • a method for manufacturing an organic EL panel according to an embodiment of the present invention will be described.
  • the substrate 14 is light transmissive and is formed of a base material that can support the organic EL element 10U, such as glass or plastic.
  • the transparent conductive film layer forming the first electrode 11 is transparent such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), zinc oxide-based transparent conductive film, SnO 2 -based transparent conductive film, titanium dioxide-based transparent conductive film, etc. Metal oxides can be used.
  • the above-described transparent conductive film layer is formed on the substrate 14 directly or via another layer. For film formation, a film formation method such as vacuum evaporation or sputtering is used. Thereafter, the transparent conductive film layer formed on the substrate 14 is patterned by a photolithography process or the like to form a pattern of the first electrode 11 and the lead wiring.
  • an insulating film can be provided to ensure insulation between the electrodes.
  • materials such as polyimide resin, acrylic resin, silicon oxide, and silicon nitride are used.
  • the insulating film is formed by depositing a material of the insulating film on the substrate 14 on which the first electrode 11 is patterned, and then patterning an opening for forming a light emitting region for each organic EL element 10U on the first electrode 11. .
  • a film is formed on the substrate 14 on which the first electrode 11 is formed to have a predetermined film thickness by spin coating, and an insulating film having an opening pattern shape of the organic EL element 10U is formed by a photolithography process.
  • a layer is formed.
  • This insulating film is formed so as to fill the space between the patterns of the first electrode 11 and partially cover the side end portion thereof, and is formed in a lattice shape when the organic EL elements 10U are arranged in a dot matrix. Note that this insulating film formation may be performed after the wet film is formed.
  • ⁇ Wet film material application / wet film surface treatment S3> A wet film material is dropped on the substrate 14 on which the first electrode 11 is formed, and uniformly applied by spin coating or the like. Thereafter, the wet film material applied to unnecessary portions is removed by wiping or the like, and after the drying process, the surface is heated (baked) with a hot plate or the like. By this heat treatment, moisture can be removed from the surface of the wet film 15 which is the film formation surface of the organic layer 13.
  • Electrode separation partition formation S4>
  • the electrode separation partition 16 ⁇ / b> A crosses the first electrode 11. It is formed in a stripe shape. Specifically, a photomask having a stripe pattern intersecting the first electrode 11 on the photosensitive resin film after applying an insulating material such as a photosensitive resin on the wet film by spin coating or the like.
  • the electrode separation partition 16A having a downward tapered surface is formed by utilizing the difference in the developing speed caused by the difference in the exposure amount in the thickness direction of the layer.
  • the thickness of the electrode separation partition 16A is formed to be thicker than the total thickness of at least the organic layer 13 forming the organic EL element 10U and the second electrode 12 in order to completely insulate the second electrode. .
  • the organic layer 13 has a laminated structure of light emitting functional layers including a light emitting layer.
  • the hole injection layer, the positive electrode, and the positive electrode are sequentially formed from the anode side.
  • a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like are selectively formed.
  • a vacuum deposition method or the like is used as a dry film formation, and as a wet film formation, coating or various printing methods are used.
  • NPB N, N-di (naphtalence) -N, N-dipheneyl-benzidene
  • This hole transport layer has a function of transporting holes injected from the anode to the light emitting layer.
  • the hole transport layer may be a single layer or a stack of two or more layers.
  • the hole transport layer is not formed by a single material, but a single layer may be formed by a plurality of materials, and a guest material having a high charge donating (accepting) property may be formed on a host material having a high charge transport capability Doping may be performed.
  • red (R), green (G), and blue (B) light-emitting layers are formed in respective film formation regions by using a resistance heating vapor deposition method using a coating mask.
  • red (R) an organic material that emits red light such as a styryl dye such as DCM1 (4- (dicyanomethylene) -2-methyl-6- (4'-dimethylaminostyryl) -4H-pyran) is used.
  • An organic material that emits green light such as aluminum quinolinol complex (Alq3), is used as green (G).
  • Alq3 aluminum quinolinol complex
  • blue (B) an organic material emitting blue light such as a distyryl derivative or a triazole derivative is used.
  • the emission form may be a fluorescent light emitting material or a phosphorescent light emitting material.
  • the electron transport layer formed on the light emitting layer is formed by using various materials such as an aluminum quinolinol complex (Alq3) by various film forming methods such as resistance heating vapor deposition.
  • the electron transport layer has a function of transporting electrons injected from the cathode to the light emitting layer.
  • This electron transport layer may have a multilayer structure in which only one layer is stacked or two or more layers are stacked.
  • the electron transport layer may be formed of a plurality of materials instead of a single material, and a guest material having a high charge donating (accepting) property may be formed on a host material having a high charge transport capability. It may be formed by doping.
  • ⁇ Second electrode formation S6>
  • a material metal, metal oxide, metal fluoride, alloy, or the like having a work function smaller than that of the anode (for example, 4 eV or less) is used.
  • metal films such as aluminum (Al), indium (In), magnesium (Mg), amorphous semiconductors such as doped polyaniline and doped polyphenylene vinylene, Cr 2 O 3 , An oxide such as NiO or Mn 2 O 5 can be used.
  • a single layer structure made of a metal material, a laminated structure such as LiO 2 / Al, or the like can be adopted.
  • a glass substrate or a metal substrate is used when performing hollow sealing.
  • a single layer or a multilayer of metal, silicon oxide, nitride, or oxynitride formed by an atomic layer growth method can be used.
  • an aluminum oxide film for example, Al 2 O
  • an alkyl metal such as TMA (trimethylaluminum), TEA (triethylaluminum), DMAH (dimethylaluminum hydride) and water, oxygen, or alcohols.
  • a silicon oxide film for example, SiO 2 film obtained by a reaction between a vaporized gas of a silicon-based material and a vaporized gas of water can be used.
  • the wet film 15 contains a hole transport material with respect to the base material.
  • the wet film 15 exhibits alkali resistance.
  • MPF1001 manufactured by Mitsubishi Chemical Corporation can be used.
  • the wet film 15 has a hole injecting and transporting function by including the above-described hole transporting material. As a result, efficient light emission luminance can be obtained with low voltage driving.
  • the organic EL panel in which the organic layer 13 is laminated on the wet film 15 can exhibit good light emission characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention enables, in an organic EL panel (10) provided with an insulating structure, the performance of the organic EL panel (10) is improved by coating a wet material on the deposition surface of an organic layer (13) whilst the functionality of the insulating structure (16) is effectively maintained. An organic EL panel (10) has an organic EL element (10U) formed upon a substrate (14), the element (10U) being obtained by laminating the organic layer (13), which contains a light-emitting layer, between a first electrode (11) and a second electrode (12). The organic EL panel (10) is provided with: a wet film (15) that is deposited upon the first electrode (11); and the insulating structure (16) that is formed upon the wet film (15) and partitions off the constituent elements of the organic EL element (10U). The wet film (15) exhibits alkali resistance and has a charge injection/transport function for transporting the charge injected from the first electrode (11) to the organic layer (13).

Description

有機ELパネル及びその製造方法Organic EL panel and manufacturing method thereof
 本発明は、有機ELパネル及びその製造方法に関するものである。 The present invention relates to an organic EL panel and a manufacturing method thereof.
 有機EL素子は一対の電極間に発光層を含む有機層を積層した構造を有しており、この有機EL素子を基板上に単数又は複数配置した有機ELパネルは、有機EL素子を構造的又は電気的に区画する絶縁構造物を備えている。絶縁構造物としては、基板上に形成された電極を画素毎に区画する絶縁膜や、有機層上に成膜される電極を分離するための隔壁等がある。 An organic EL element has a structure in which an organic layer including a light emitting layer is laminated between a pair of electrodes, and an organic EL panel in which one or a plurality of organic EL elements are arranged on a substrate is structurally or It has an insulating structure that partitions electrically. Examples of the insulating structure include an insulating film that partitions an electrode formed on a substrate for each pixel, a partition for separating an electrode formed on an organic layer, and the like.
 図1は、従来の有機ELパネルの形成例を示した説明図(陰極隔壁に直交する方向に切断した断面図)であって、有機層上に形成される陰極を分離するための陰極隔壁を備えた例を示している(下記特許文献1参照)。 FIG. 1 is an explanatory diagram showing an example of forming a conventional organic EL panel (a cross-sectional view cut in a direction orthogonal to the cathode barrier rib), and includes a cathode barrier for separating the cathode formed on the organic layer. An example provided is shown (see Patent Document 1 below).
 まず、図1(A)に示すように透明のガラス基板1上に第1電極2がストライプ状に形成される。この第1電極2としては、仕事関数が比較的高く透明な素材としてITOが用いられ、一般的なフォトリソグラフィを用いることで、パターニングされる。そして、例えば高分子ポリイミドを所定の膜厚となるように塗布し、露光および現像することにより、絶縁層3がマトリクス状に形成される。 First, as shown in FIG. 1A, a first electrode 2 is formed in a stripe shape on a transparent glass substrate 1. The first electrode 2 is made of ITO as a transparent material having a relatively high work function, and is patterned by using general photolithography. Then, for example, polymer polyimide is applied so as to have a predetermined film thickness, and exposure and development are performed, whereby the insulating layer 3 is formed in a matrix.
 続いて、図1(B)に示すように、絶縁層3上に陰極隔壁4を形成する。ここでは、故意にUV光の透過性を低くしたリフトオフ用ネガ形フォトレジストを塗布し、プリベークする。そして、光透過スリットを備えたハードクロムマスクを介してUV光を照射し露光する。この際、前記したフォトレジストはUV光の透過率が低いため、深さ方向で現像液に対する溶解性の差が生ずる。したがって、基板にアルカリ現像液をスプレーシャワーすることにより現像性の差によって、図1(B)に示すようにオーバーハング部4aを有する陰極隔壁4が基板1に突出して形成される。各陰極隔壁4における長手方向に直交する断面形状は、ほぼ逆等脚台形の形状になる。各陰極隔壁4のこの形状により、後述する第2電極(陰極)6を成膜する場合において、陰極隔壁4により隣接する各陰極間が分離されて十分な電気絶縁性を確保することができる。 Subsequently, as shown in FIG. 1B, a cathode partition 4 is formed on the insulating layer 3. In this case, a negative photoresist for lift-off whose UV light transmission is intentionally lowered is applied and prebaked. And it exposes by irradiating UV light through the hard chrome mask provided with the light transmission slit. At this time, since the above-described photoresist has a low transmittance of UV light, a difference in solubility in a developing solution occurs in the depth direction. Therefore, the cathode partition 4 having the overhang portion 4a is formed to protrude from the substrate 1 as shown in FIG. 1B due to the difference in developability by spray showering the substrate with an alkaline developer. The cross-sectional shape orthogonal to the longitudinal direction of each cathode partition 4 is a substantially inverted isosceles trapezoid shape. With this shape of each cathode partition wall 4, when the second electrode (cathode) 6 described later is formed, the adjacent cathodes are separated by the cathode partition wall 4 to ensure sufficient electrical insulation.
 前記した各陰極隔壁の形成後において、図1(C)に示すように有機層5が、例えば真空蒸着法によって成膜される。さらに、図1(D)に示すように、アルミ合金層等の金属層が例えば加熱蒸着法によって成膜され、陰極隔壁4に挟まれた領域にそれぞれ互いに分離されてストライプ状の第2電極(陰極)6が形成される。互いに交差する第1電極(陽極)2と第2電極(陰極)6の交差部分にマトリクス状に形成された絶縁膜3の開口部が位置し、この開口部が有機EL素子による発光画素となる。 After the formation of each cathode partition described above, as shown in FIG. 1C, the organic layer 5 is formed by, for example, a vacuum deposition method. Furthermore, as shown in FIG. 1D, a metal layer such as an aluminum alloy layer is formed by, for example, a heat deposition method, and is separated from each other in a region sandwiched between the cathode partition walls 4 to form striped second electrodes ( Cathode) 6 is formed. An opening of the insulating film 3 formed in a matrix is located at the intersection of the first electrode (anode) 2 and the second electrode (cathode) 6 that intersect each other, and this opening serves as a light emitting pixel by an organic EL element. .
特許第3713463号公報Japanese Patent No. 3713463
 有機層の被成膜面になる第1電極の表面状態は有機EL素子の発光特性の良否に大きな影響を及ぼす。第1電極の表面に凹凸があると、その上に蒸着される有機層の膜厚が均一にならず、有機EL素子にリーク等の発光不良が生じやすくなる。これを解消するために、第1電極上に成膜される有機層を、蒸着等の乾式成膜ではなく、湿式成膜によって行う技術が開発されている。これによると湿式材が電極表面の凹凸を埋めて自身の表面を平坦化するので、その上に積層される膜の均一化が可能になり、耐リーク性を向上させる等、発光性能や耐久性能を向上させることが可能になる。また、第1電極上に成膜される湿式材層にアクセプタ(ドーパント)を添加させることによって、電荷注入効率が向上して、低電圧化の実現が可能になる。 The surface state of the first electrode serving as the surface on which the organic layer is to be formed has a great influence on the quality of the light emitting characteristics of the organic EL element. If the surface of the first electrode is uneven, the film thickness of the organic layer deposited thereon is not uniform, and light emission defects such as leakage are likely to occur in the organic EL element. In order to solve this problem, a technique has been developed in which the organic layer formed on the first electrode is formed by wet film formation instead of dry film formation such as vapor deposition. According to this, the wet material fills the unevenness of the electrode surface and flattens its surface, making it possible to homogenize the film laminated on it, improving leakage resistance, etc. Luminous performance and durability performance It becomes possible to improve. In addition, by adding an acceptor (dopant) to the wet material layer formed on the first electrode, the charge injection efficiency is improved and a low voltage can be realized.
 しかしながら、前述した陰極隔壁などの絶縁構造物を備えた有機ELパネルでは、絶縁構造物を基板等の上に形成した後に湿式材を塗布すると、絶縁構造物の側面を湿式材が覆い、図2に示すように、陰極隔壁4のオーバーハング部4aが湿式材Wによって埋められてしまい、陰極隔壁4の陰極分離機能を十分に発揮できなくなる問題が生じる。 However, in the organic EL panel provided with the insulating structure such as the cathode barrier rib described above, when the wet material is applied after the insulating structure is formed on the substrate or the like, the side surface of the insulating structure is covered with the wet material. As shown in FIG. 3, the overhang portion 4a of the cathode barrier 4 is filled with the wet material W, and the cathode separation function of the cathode barrier 4 cannot be fully exhibited.
 また、絶縁構造物を基板等の上に形成した後に湿式材を塗布すると、湿式材の表面張力で絶縁隔壁との界面で湿式材が盛り上がり、平坦な成膜を得ることができない不具合が生じやすく、また、絶縁構造物の側面に沿って湿式材が流動して湿式材が不要な部分に塗布され、電極の短絡や封止部材の接着不良等の不具合が生じやすくなる問題が生じる。 In addition, if a wet material is applied after an insulating structure is formed on a substrate or the like, the wet material swells at the interface with the insulating partition due to the surface tension of the wet material, and it is likely to cause a problem that a flat film cannot be obtained. In addition, the wet material flows along the side surface of the insulating structure, and the wet material is applied to an unnecessary portion, so that problems such as short-circuiting of electrodes and poor adhesion of the sealing member are likely to occur.
 これに対して、前述した湿式材を塗布した後に絶縁構造物を形成しようとすると、従来の湿式材は耐アルカリ性に欠けるので、絶縁構造物をフォトリソグラフィ法でパターン形成する際に行う薬液処理で先に形成している塗膜が浸食され、湿式成膜の有効性が十分に得られなくなる問題があった。 On the other hand, when an insulating structure is formed after applying the above-described wet material, the conventional wet material lacks alkali resistance. Therefore, the chemical processing is performed when the insulating structure is patterned by photolithography. There was a problem that the previously formed coating film was eroded and the effectiveness of wet film formation could not be obtained sufficiently.
 本発明は、このような問題に対処することを課題の一例とするものである。すなわち、絶縁構造物を備えた有機ELパネルにおいて、絶縁構造物の機能を有効に確保しながら、有機層の被成膜面に湿式材を効果的に塗布することで、有機ELパネルの性能向上を図ることが本発明の目的である。 The present invention is an example of a problem to deal with such a problem. That is, in an organic EL panel equipped with an insulating structure, the performance of the organic EL panel is improved by effectively applying a wet material to the film-forming surface of the organic layer while effectively ensuring the function of the insulating structure. It is an object of the present invention to achieve this.
 このような目的を達成するために、本発明は、以下の構成を少なくとも具備するものである。 In order to achieve such an object, the present invention includes at least the following configuration.
 第1電極と第2電極との間に発光層を含む有機層を積層した有機EL素子を基板上に形成した有機ELパネルであって、前記第1電極上に成膜され前記有機層の被成膜面を形成する湿式膜と、前記湿式膜上に形成され前記有機EL素子の構成要素を区画する絶縁構造物を備え、前記湿式膜は、前記第1電極から注入した電荷を前記有機層に輸送する電荷注入輸送機能を備えると共に、耐アルカリ性を備えることを特徴とする有機ELパネル。 An organic EL panel in which an organic EL element in which an organic layer including a light emitting layer is laminated between a first electrode and a second electrode is formed on a substrate, the film being formed on the first electrode and covered with the organic layer. A wet film that forms a film-forming surface; and an insulating structure that is formed on the wet film and partitions the constituent elements of the organic EL element, wherein the wet film receives charges injected from the first electrode. An organic EL panel having a charge injecting and transporting function for transporting to and having alkali resistance.
 第1電極と第2電極との間に発光層を含む有機層を積層した有機EL素子を基板上に形成した有機ELパネルの製造方法であって、前記基板上に直接又は他の層を介して成膜された導電膜をパターン形成して第1電極を形成する工程と、前記第1電極上に塗布された湿式膜をパターン形成する工程と、前記湿式膜上に前記有機EL素子の構成要素を区画する絶縁構造物を形成する工程と、前記湿式膜上に有機層を成膜する工程と、前記有機層上に前記第2電極を形成する工程とを有し、前記湿式膜は、前記第1電極から注入した電荷を前記有機層に輸送する電荷注入輸送機能を備えると共に、耐アルカリ性を備えることを特徴とする有機ELパネルの製造方法。 A method of manufacturing an organic EL panel in which an organic EL element in which an organic layer including a light emitting layer is laminated between a first electrode and a second electrode is formed on a substrate, directly on the substrate or via another layer Forming a first electrode by patterning a conductive film formed by patterning, forming a wet film applied on the first electrode, and configuring the organic EL element on the wet film Forming an insulating structure that divides elements, forming an organic layer on the wet film, and forming the second electrode on the organic layer, the wet film comprising: A method for producing an organic EL panel, comprising a charge injection transport function for transporting charges injected from the first electrode to the organic layer and having alkali resistance.
従来技術の説明図である。It is explanatory drawing of a prior art. 従来技術の問題点を説明する説明図である。It is explanatory drawing explaining the problem of a prior art. 本発明の実施形態に係る有機ELパネルの一例を示した説明図である。It is explanatory drawing which showed an example of the organic electroluminescent panel which concerns on embodiment of this invention. 本発明の実施形態に係る有機ELパネルの一例を示した説明図である。It is explanatory drawing which showed an example of the organic electroluminescent panel which concerns on embodiment of this invention. 本発明の実施形態に係る有機ELパネルの一例を示した説明図である。It is explanatory drawing which showed an example of the organic electroluminescent panel which concerns on embodiment of this invention. 本発明の実施形態に係る有機ELパネルの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the organic electroluminescent panel which concerns on embodiment of this invention.
 以下、図面を参照しながら本発明の実施形態を説明する。本発明の実施形態は図示の内容を含むがこれのみに限定されるものではない。図3~図5は、本発明の実施形態に係る有機ELパネルの一例を示した説明図である。図3が電極分離隔壁(陰極隔壁)を備えた有機ELパネル、図4が絶縁膜で発光画素を区画した有機ELパネル、図5が封止基板を備えた有機ELパネルをそれぞれ示している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment of the present invention includes the contents shown in the drawings, but is not limited thereto. 3 to 5 are explanatory diagrams showing an example of the organic EL panel according to the embodiment of the present invention. FIG. 3 shows an organic EL panel provided with electrode separation barriers (cathode barriers), FIG. 4 shows an organic EL panel in which light emitting pixels are partitioned by an insulating film, and FIG. 5 shows an organic EL panel provided with a sealing substrate.
 図3~図5に示した本発明の実施形態に係る有機ELパネル10,20,30は、第1電極11と第2電極12との間に発光層を含む有機層13を積層した有機EL素子10Uを基板14上に形成している。この有機ELパネル10,20,30は、第1電極11上に成膜され有機層13の被成膜面を形成する湿式膜15と、湿式膜15上に形成され有機EL素子10Uの構成要素を区画する絶縁構造物16を備えている。湿式膜15は、第1電極11から注入した電荷を有機層13に輸送する電荷注入輸送機能を備えると共に、耐アルカリ性を備えている。図3~図5に示す形態は本発明の有機ELパネルの一例であって、本発明の有機ELパネルはこれらに限定されるものではない。 The organic EL panels 10, 20, 30 according to the embodiment of the present invention shown in FIGS. 3 to 5 are organic ELs in which an organic layer 13 including a light emitting layer is laminated between a first electrode 11 and a second electrode 12. The element 10U is formed on the substrate 14. The organic EL panels 10, 20, and 30 are formed on the first electrode 11 and form a film-forming surface of the organic layer 13, and a component of the organic EL element 10 </ b> U formed on the wet film 15. Insulating structure 16 is provided. The wet film 15 has a charge injecting and transporting function of transporting the charge injected from the first electrode 11 to the organic layer 13 and has alkali resistance. The forms shown in FIGS. 3 to 5 are examples of the organic EL panel of the present invention, and the organic EL panel of the present invention is not limited to these.
 ここで、湿式膜15とは、成膜時に液状の成膜材料を塗布工程によって成膜したものであって、成膜後は乾燥した膜になる。成膜のための塗布工程としては、インクジェット,スプレー塗布,印刷,スピンコート,ディップコート等の各種湿式成膜工程を含んでいる。 Here, the wet film 15 is formed by applying a liquid film forming material by a coating process at the time of film formation, and becomes a dry film after film formation. The coating process for forming a film includes various wet film forming processes such as ink jet, spray coating, printing, spin coating, and dip coating.
 図3に示した例は、絶縁構造物16として、有機層13上に形成される第2電極12を分離する機能を有する電極分離隔壁16A(陰極隔壁を含む)を形成したものである。電極分離隔壁16Aは、その側面に前述したオーバーハング部16A1を有しており、断面形状が図示のようにほぼ逆等脚台形またはT字形状になっている。 In the example shown in FIG. 3, an electrode separation partition 16 </ b> A (including a cathode partition) having a function of separating the second electrode 12 formed on the organic layer 13 is formed as the insulating structure 16. Electrode separating partitions 16A has an overhang portion 16A 1 described above on its side, the cross-sectional shape are substantially Gyakutoashi trapezoidal or T-shaped as shown.
 この有機ELパネル10では、湿式膜15の上に電極分離隔壁16Aを形成しているので、電極分離隔壁16Aのオーバーハング部16A1に湿式膜の成膜材料が塗布されることが無く、電極分離隔壁16Aの電極分離機能を適正に確保することができる。これによって、有機層13上に成膜される導電層は電極分離隔壁16Aの上部エッジで確実に分断され、電極分離隔壁16A間には適正に分離した第2電極12を形成することが可能になる。 In the organic EL panel 10, since the electrodes are formed separating partitions 16A on the wet film 15, there is no film forming material of the wet film is applied to the overhang portion 16A 1 of the electrode separating partitions 16A, electrode The electrode separation function of the separation partition 16A can be ensured appropriately. As a result, the conductive layer formed on the organic layer 13 is reliably divided at the upper edge of the electrode separation partition 16A, and it is possible to form the properly separated second electrode 12 between the electrode separation partitions 16A. Become.
 また、湿式膜15の上に電極分離隔壁16Aを形成することで、湿式膜15の成膜時には、成膜の平坦性を妨げる障害物が存在しない。これによって、湿式膜15を均一な膜厚で平坦に形成することが可能になり、その上に積層される有機層13の膜厚を均一化することが可能になる。均一膜厚の有機層13を形成できることで、リーク等の発光不良の発生要因が少なくなり、有機ELパネル10は良好な発光性能及び耐久性能を得ることができる。 In addition, by forming the electrode separation partition 16A on the wet film 15, there is no obstacle to the flatness of the film formation when the wet film 15 is formed. As a result, the wet film 15 can be formed flat with a uniform film thickness, and the film thickness of the organic layer 13 laminated thereon can be made uniform. Since the organic layer 13 having a uniform thickness can be formed, the cause of light emission failure such as leakage is reduced, and the organic EL panel 10 can obtain good light emission performance and durability performance.
 また、湿式膜15は耐アルカリ性を有しているので、湿式膜15上に電極分離隔壁16Aを形成する際のフォトリソグラフィ工程で使用する薬液に対しても十分な耐性を備えており、さらに耐光性を有しているため、フォトリソグラフィ工程におけるUV光照射に対しても十分な耐性を備えている。したがって、電極分離隔壁16Aを形成することで湿式膜15の表面が荒れたり、湿式膜15が浸食されたりする不具合が生じることは無く、湿式膜15の有効性を十分に発揮することが可能になる。これによって、湿式膜15が備える優れた電荷注入輸送性能を発揮した低電圧駆動の実現や発光性能の改善、高温信頼性等を十分に発揮した有機ELパネルを得ることができる。 In addition, since the wet film 15 has alkali resistance, the wet film 15 has sufficient resistance to chemicals used in the photolithography process when the electrode separation partition 16A is formed on the wet film 15, and further has light resistance. Therefore, it has sufficient resistance to UV light irradiation in the photolithography process. Therefore, the formation of the electrode separation partition 16A does not cause a problem that the surface of the wet film 15 is roughened or the wet film 15 is eroded, and the effectiveness of the wet film 15 can be fully exhibited. Become. As a result, an organic EL panel can be obtained that realizes low voltage driving that exhibits the excellent charge injection and transport performance of the wet film 15, improves light emitting performance, and exhibits high temperature reliability.
 図4に示した有機ELパネル20は、絶縁構造物16として、有機EL素子10Uからなる発光画素を区画する絶縁膜16Bを形成したものである。絶縁膜16Bは、図示の例では湿式膜15上にマトリクス状の開口部16B1を形成している。そしてこの開口部16B1内の湿式膜15上に有機層13が成膜され、その有機層13上に第2電極12の導電材料層が形成されている。 In the organic EL panel 20 shown in FIG. 4, an insulating film 16 </ b> B that partitions a light emitting pixel composed of the organic EL element 10 </ b> U is formed as the insulating structure 16. Insulating film 16B, in the illustrated example form a matrix of openings 16B 1 on the wet film 15. An organic layer 13 is formed on the wet film 15 in the opening 16B 1 , and a conductive material layer for the second electrode 12 is formed on the organic layer 13.
 この例においても、有機ELパネル20は、湿式膜15の上に絶縁膜16Bを形成しているので、絶縁膜16Bの側面に湿式膜の成膜材料が塗布されることが無く、絶縁膜16Bによって形成される発光画素の開口率を適正に確保することができる。 Also in this example, since the organic EL panel 20 has the insulating film 16B formed on the wet film 15, the film-forming material of the wet film is not applied to the side surface of the insulating film 16B, and the insulating film 16B. Thus, the aperture ratio of the light emitting pixels formed can be appropriately ensured.
 また、前述した例と同様に、湿式膜15の上に絶縁膜16Bを形成することで、湿式膜15の成膜時には、成膜の平坦性を妨げる障害物が存在しない。これによって、湿式膜15を均一な膜厚で平坦に形成することが可能になり、その上に積層される有機層13の膜厚を均一化することが可能になる。均一膜厚の有機層13を形成できることで、リーク等の発光不良の発生要因が少なくなり、有機ELパネル10は良好な発光性能及び耐久性能を得ることができる。 Also, as in the example described above, by forming the insulating film 16B on the wet film 15, there is no obstacle to the flatness of the film formation when the wet film 15 is formed. As a result, the wet film 15 can be formed flat with a uniform film thickness, and the film thickness of the organic layer 13 laminated thereon can be made uniform. Since the organic layer 13 having a uniform thickness can be formed, the cause of light emission failure such as leakage is reduced, and the organic EL panel 10 can obtain good light emission performance and durability performance.
 また、湿式膜15は耐アルカリ性を有しているので、湿式膜15上に絶縁膜16Bを形成する際のフォトリソグラフィ工程で使用する薬液に対しても十分な耐性を備えている。したがって、絶縁膜16Bを形成することで湿式膜15の表面が荒れたり、湿式膜15が浸食されたりする不具合が生じることは無く、湿式膜15の有効性を十分に発揮することが可能になる。これによって、湿式膜15が備える優れた電荷注入輸送性能を発揮した低電圧駆動の実現や発光性能の改善、高温信頼性等を十分に発揮した有機ELパネルを得ることができる。 In addition, since the wet film 15 has alkali resistance, the wet film 15 has sufficient resistance to chemicals used in the photolithography process when the insulating film 16B is formed on the wet film 15. Therefore, the formation of the insulating film 16B does not cause a problem that the surface of the wet film 15 is roughened or the wet film 15 is eroded, and the effectiveness of the wet film 15 can be fully exhibited. . As a result, an organic EL panel can be obtained that realizes low voltage driving that exhibits the excellent charge injection and transport performance of the wet film 15, improves light emitting performance, and exhibits high temperature reliability.
 図5に示した有機ELパネル30は、絶縁構造物16として、封止基板17を支える支持隔壁16Cを形成したものである。有機ELパネル30は、基板14に接着層18を介して貼り合わせられる封止基板17を備えており、基板14と封止基板17との間に形成される気密な封止空間S内に有機EL素子10Uの構成要素(第1電極11,第2電極12,有機層13,湿式膜15)が配置されている。そして、支持隔壁16Cは、図示の例では、その端面(図示の上部端面)と封止基板17の内面とが当接するように形成されている。また、この支持隔壁16Cは前述した電極分離機能を兼ね備えるものである。 The organic EL panel 30 shown in FIG. 5 is obtained by forming a support partition 16 </ b> C that supports the sealing substrate 17 as the insulating structure 16. The organic EL panel 30 includes a sealing substrate 17 that is bonded to the substrate 14 via the adhesive layer 18, and the organic EL panel 30 is organic in an airtight sealing space S formed between the substrate 14 and the sealing substrate 17. The components of the EL element 10U (the first electrode 11, the second electrode 12, the organic layer 13, and the wet film 15) are arranged. In the illustrated example, the support partition 16C is formed so that its end surface (upper end surface in the drawing) and the inner surface of the sealing substrate 17 are in contact with each other. The support partition 16C also has the electrode separation function described above.
 この例においても、有機ELパネル30は、湿式膜15の上に支持隔壁16Cを形成しているので、支持隔壁16Cの側面に湿式膜15が塗布されることが無く、支持隔壁16Cの電極分離機能を確保することができる。また、前述した例と同様に、湿式膜15の上に支持隔壁16Cを形成することで、湿式膜15の成膜時には、成膜の平坦性を妨げる障害物が存在しない。これによって、湿式膜15を均一な膜厚で平坦に形成することが可能になり、その上に積層される有機層13の膜厚を均一化することが可能になる。さらに、湿式膜15のパターン形成時にもそれを妨げる障害物が存在しないので、精度の高いパターン形成が可能になり、湿式膜材料が塗布時に流れて接着層18の形成領域に干渉するような不具合が生じない。これによって、封止基板17と基板14とを貼り合わせる際の封止性能を適正に確保することが可能になる。 Also in this example, since the organic EL panel 30 has the support partition 16C formed on the wet film 15, the wet film 15 is not applied to the side surface of the support partition 16C, and the electrode separation of the support partition 16C is performed. Function can be secured. Further, similarly to the example described above, by forming the support partition 16C on the wet film 15, there is no obstacle that prevents the flatness of the film formation when the wet film 15 is formed. As a result, the wet film 15 can be formed flat with a uniform film thickness, and the film thickness of the organic layer 13 laminated thereon can be made uniform. Further, since there are no obstacles that obstruct the patterning of the wet film 15, it is possible to form a pattern with high accuracy, and the wet film material flows during application and interferes with the formation region of the adhesive layer 18. Does not occur. Accordingly, it is possible to appropriately ensure the sealing performance when the sealing substrate 17 and the substrate 14 are bonded together.
 また、湿式膜15は耐アルカリ性を有しているので、前述した例と同様に、湿式膜15上に支持隔壁16Cを形成する際のフォトリソグラフィ工程で使用する薬液及びUV光に対しても十分な耐性を備えている。したがって、支持隔壁16Cを形成することで湿式膜15の表面が荒れたり、湿式膜15が浸食されたりする不具合が生じることは無く、湿式膜15の有効性を十分に発揮することが可能になる。 Further, since the wet film 15 has alkali resistance, it is sufficient for the chemical solution and UV light used in the photolithography process when forming the support partition 16C on the wet film 15 as in the above-described example. It has a good tolerance. Therefore, the formation of the support partition 16C does not cause a problem that the surface of the wet film 15 is roughened or the wet film 15 is eroded, and the effectiveness of the wet film 15 can be fully exhibited. .
 本発明の実施形態に係る有機ELパネルの製造方法を説明する。基本的な構成としては、基板14上に直接又は他の層を介して成膜された導電膜をパターン形成して第1電極11を形成する工程、第1電極11上に塗布された湿式膜15をパターン形成する工程、湿式膜15上に有機EL素子10Uの構成要素を区画する絶縁構造物16を形成する工程、湿式膜15上に有機層13を成膜する工程、有機層13上に第2電極12を形成する工程を有している。 A method for manufacturing an organic EL panel according to an embodiment of the present invention will be described. As a basic configuration, a step of forming a first electrode 11 by patterning a conductive film formed directly or via another layer on the substrate 14, a wet film applied on the first electrode 11 15, a step of forming an insulating structure 16 that partitions the constituent elements of the organic EL element 10 U on the wet film 15, a step of forming the organic layer 13 on the wet film 15, A step of forming the second electrode 12;
 図3に示した電極分離隔壁16Aを備える有機ELパネル10について、図6を参照しながら製造方法の各工程をより具体的に説明する。 For the organic EL panel 10 including the electrode separation partition 16A shown in FIG. 3, each step of the manufacturing method will be described more specifically with reference to FIG.
 <第1電極及び引出配線形成:S1>
 基板14は、光透過性であり、ガラスやプラスチックなど、有機EL素子10Uを支持することができる基材によって形成される。第1電極11を形成する透明導電膜層は、ITO(Indium Tin Oxide),IZO(Indium Zinc Oxide),酸化亜鉛系透明導電膜,SnO2系透明導電膜,二酸化チタン系透明導電膜などの透明金属酸化物を用いることができる。基板14上に直接又は他の層を介して、前述した透明導電膜層を成膜する。成膜には真空蒸着やスパッタリングなどの成膜方法が用いられる。その後、基板14上に成膜された透明導電膜層をフォトリソグラフィ工程などによってパターン形成して第1電極11と引出配線のパターンを形成する。
<First electrode and lead wiring formation: S1>
The substrate 14 is light transmissive and is formed of a base material that can support the organic EL element 10U, such as glass or plastic. The transparent conductive film layer forming the first electrode 11 is transparent such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), zinc oxide-based transparent conductive film, SnO 2 -based transparent conductive film, titanium dioxide-based transparent conductive film, etc. Metal oxides can be used. The above-described transparent conductive film layer is formed on the substrate 14 directly or via another layer. For film formation, a film formation method such as vacuum evaporation or sputtering is used. Thereafter, the transparent conductive film layer formed on the substrate 14 is patterned by a photolithography process or the like to form a pattern of the first electrode 11 and the lead wiring.
 <絶縁膜形成:S2>
 第1電極11が複数の電極にパターン形成されている場合は、各電極間の絶縁性を確保するために絶縁膜を設けることができる。この絶縁膜には,ポリイミド樹脂,アクリル系樹脂,酸化シリコン,窒化シリコンなどの材料が用いられる。絶縁膜の形成は、絶縁膜の材料を第1電極11がパターン形成された基板14上に成膜した後、第1電極11上に有機EL素子10U毎の発光領域を形成する開口をパターニングする。具体的には、第1電極11が形成された基板14にスピンコーティングにより所定の膜厚となるように膜を形成し、フォトリソグラフィ工程により、有機EL素子10Uの開口パターン形状を有する絶縁膜の層が形成される。この絶縁膜は、第1電極11のパターン間を埋めると共にその側端部分を一部覆うように形成され、有機EL素子10Uをドットマトリクス状に配置する場合には格子状に形成される。なお、この絶縁膜形成は、湿式膜が形成されて後に行っても良い。
<Insulating film formation: S2>
In the case where the first electrode 11 is patterned on a plurality of electrodes, an insulating film can be provided to ensure insulation between the electrodes. For this insulating film, materials such as polyimide resin, acrylic resin, silicon oxide, and silicon nitride are used. The insulating film is formed by depositing a material of the insulating film on the substrate 14 on which the first electrode 11 is patterned, and then patterning an opening for forming a light emitting region for each organic EL element 10U on the first electrode 11. . Specifically, a film is formed on the substrate 14 on which the first electrode 11 is formed to have a predetermined film thickness by spin coating, and an insulating film having an opening pattern shape of the organic EL element 10U is formed by a photolithography process. A layer is formed. This insulating film is formed so as to fill the space between the patterns of the first electrode 11 and partially cover the side end portion thereof, and is formed in a lattice shape when the organic EL elements 10U are arranged in a dot matrix. Note that this insulating film formation may be performed after the wet film is formed.
 <湿式膜材料塗布/湿式膜表面処理:S3>
 第1電極11が形成された基板14上に湿式膜材料を滴下してスピンコーティングなどによって一様に塗布する。その後、不要な箇所に塗布された湿式膜材料を拭き取りなどによって除去し、乾燥処理後、ホットプレートなどで表面を加熱処理(ベーク処理)する。この加熱処理によって有機層13の被成膜面となる湿式膜15の表面から水分を除去することができる。
<Wet film material application / wet film surface treatment: S3>
A wet film material is dropped on the substrate 14 on which the first electrode 11 is formed, and uniformly applied by spin coating or the like. Thereafter, the wet film material applied to unnecessary portions is removed by wiping or the like, and after the drying process, the surface is heated (baked) with a hot plate or the like. By this heat treatment, moisture can be removed from the surface of the wet film 15 which is the film formation surface of the organic layer 13.
 <電極分離隔壁形成:S4>
 電極分離隔壁16Aが、マスクなどを用いることなく第2電極12のパターンを形成するため、或いは隣り合う第2電極12を完全に電気的に絶縁するために、第1電極11と交差する方向にストライプ状に形成される。具体的には、前述した湿式膜の上に感光性樹脂等の絶縁材料を、スピンコーティングなどで塗布した後、この感光性樹脂膜上に第1電極11に交差するストライプ状パターンを有するフォトマスクを介して紫外線等を照射し、層の厚さ方向の露光量の違いから生じる現像速度の差を利用して、側部が下向きのテーパ面を有する電極分離隔壁16Aを形成する。この電極分離隔壁16Aの厚さは、第2電極を完全に絶縁するために、少なくとも有機EL素子10Uを形成する有機層13と第2電極12の膜厚の総和より厚い厚さに形成される。
<Electrode separation partition formation: S4>
In order to form the pattern of the second electrode 12 without using a mask or the like, or to completely electrically insulate the adjacent second electrode 12, the electrode separation partition 16 </ b> A crosses the first electrode 11. It is formed in a stripe shape. Specifically, a photomask having a stripe pattern intersecting the first electrode 11 on the photosensitive resin film after applying an insulating material such as a photosensitive resin on the wet film by spin coating or the like. The electrode separation partition 16A having a downward tapered surface is formed by utilizing the difference in the developing speed caused by the difference in the exposure amount in the thickness direction of the layer. The thickness of the electrode separation partition 16A is formed to be thicker than the total thickness of at least the organic layer 13 forming the organic EL element 10U and the second electrode 12 in order to completely insulate the second electrode. .
 <有機層形成:S5>
 有機層13は、発光層を含む発光機能層の積層構造を有し、第1電極11と第2電極12の一方を陽極とし他方を陰極とすると、陽極側から順次、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層などが選択的に形成される。有機層13の成膜は乾式の成膜として真空蒸着法などが用いられ、湿式の成膜としては塗布や各種の印刷法が用いられる。
<Organic layer formation: S5>
The organic layer 13 has a laminated structure of light emitting functional layers including a light emitting layer. When one of the first electrode 11 and the second electrode 12 is an anode and the other is a cathode, the hole injection layer, the positive electrode, and the positive electrode are sequentially formed from the anode side. A hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like are selectively formed. As the film formation of the organic layer 13, a vacuum deposition method or the like is used as a dry film formation, and as a wet film formation, coating or various printing methods are used.
 有機層13の形成例を以下に説明する。例えば先ず、NPB(N,N-di(naphtalence)-N,N-dipheneyl-benzidene)を正孔輸送層として成膜する。この正孔輸送層は、陽極から注入される正孔を発光層に輸送する機能を有する。この正孔輸送層は、1層だけ積層したものでも2層以上積層したものであってもよい。また正孔輸送層は、単一の材料による成膜ではなく、複数の材料により一つの層を形成しても良く、電荷輸送能力の高いホスト材料に電荷供与(受容)性の高いゲスト材料をドーピングしてもよい。 An example of forming the organic layer 13 will be described below. For example, first, NPB (N, N-di (naphtalence) -N, N-dipheneyl-benzidene) is formed as a hole transport layer. This hole transport layer has a function of transporting holes injected from the anode to the light emitting layer. The hole transport layer may be a single layer or a stack of two or more layers. In addition, the hole transport layer is not formed by a single material, but a single layer may be formed by a plurality of materials, and a guest material having a high charge donating (accepting) property may be formed on a host material having a high charge transport capability Doping may be performed.
 次に、正孔輸送層の上に発光層を成膜する。一例としては、抵抗加熱蒸着法により、赤(R)、緑(G)、青(B)の発光層を、塗分け用マスクを利用してそれぞれの成膜領域に成膜する。赤(R)としてDCM1(4-(ジシアノメチレン)-2-メチル-6-(4’-ジメチルアミノスチリル)-4H-ピラン)等のスチリル色素等の赤色を発光する有機材料を用いる。緑(G)としてアルミキノリノール錯体(Alq3) 等の緑色を発光する有機材料を用いる。青(B)としてジスチリル誘導体、トリアゾール誘導体等の青色を発光する有機材料を用いる。勿論、他の材料でも、ホスト-ゲスト系の層構成でも良く、発光形態も蛍光発光材料を用いてもりん光発光材料を用いたものであってもよい。 Next, a light emitting layer is formed on the hole transport layer. As an example, red (R), green (G), and blue (B) light-emitting layers are formed in respective film formation regions by using a resistance heating vapor deposition method using a coating mask. As the red (R), an organic material that emits red light such as a styryl dye such as DCM1 (4- (dicyanomethylene) -2-methyl-6- (4'-dimethylaminostyryl) -4H-pyran) is used. An organic material that emits green light, such as aluminum quinolinol complex (Alq3), is used as green (G). As the blue (B), an organic material emitting blue light such as a distyryl derivative or a triazole derivative is used. Of course, other materials or a host-guest layer structure may be used, and the emission form may be a fluorescent light emitting material or a phosphorescent light emitting material.
 発光層の上に成膜される電子輸送層は、抵抗加熱蒸着法等の各種成膜方法により、例えばアルミキノリノール錯体(Alq3 )等の各種材料を用いて成膜する。電子輸送層は、陰極から注入される電子を発光層に輸送する機能を有する。この電子輸送層は、1層だけ積層したものでも2層以上積層した多層構造を有してもよい。また、電子輸送層は、単一の材料による成膜ではなく、複数の材料により一つの層を形成しても良く、電荷輸送能力の高いホスト材料に電荷供与(受容)性の高いゲスト材料をドーピングして形成してもよい。 The electron transport layer formed on the light emitting layer is formed by using various materials such as an aluminum quinolinol complex (Alq3) by various film forming methods such as resistance heating vapor deposition. The electron transport layer has a function of transporting electrons injected from the cathode to the light emitting layer. This electron transport layer may have a multilayer structure in which only one layer is stacked or two or more layers are stacked. In addition, the electron transport layer may be formed of a plurality of materials instead of a single material, and a guest material having a high charge donating (accepting) property may be formed on a host material having a high charge transport capability. It may be formed by doping.
 <第2電極形成:S6>
 有機層13上に形成される第2電極12は、こちらが陰極の場合には、陽極より仕事関数の小さい(例えば4eV以下)材料(金属,金属酸化物,金属フッ化物,合金等)を用いることができ、具体的には、アルミニウム(Al),インジウム(In),マグネシウム(Mg)等の金属膜、ドープされたポリアニリンやドープされたポリフェニレンビニレン等の非晶質半導体、Cr23,NiO,Mn25等の酸化物を使用できる。構造としては、金属材料による単層構造、LiO2/Al等の積層構造等が採用できる。
<Second electrode formation: S6>
When the second electrode 12 formed on the organic layer 13 is a cathode, a material (metal, metal oxide, metal fluoride, alloy, or the like) having a work function smaller than that of the anode (for example, 4 eV or less) is used. Specifically, metal films such as aluminum (Al), indium (In), magnesium (Mg), amorphous semiconductors such as doped polyaniline and doped polyphenylene vinylene, Cr 2 O 3 , An oxide such as NiO or Mn 2 O 5 can be used. As the structure, a single layer structure made of a metal material, a laminated structure such as LiO 2 / Al, or the like can be adopted.
 <封止工程:S7>
 有機EL素子10Uを封止する封止部材は、中空封止を行う場合はガラス基板や金属基板が用いられる。また、固体封止を行う場合には、一例としては、原子層成長法によって成膜される金属やケイ素の酸化物,窒化物,酸窒化物の単層又は多層膜を用いることができる。例えば、TMA(トリメチルアルミニウム)やTEA(トリエチルアルミニウム)、DMAH(ジメチルアルミニウム水素化物)等のアルキル系金属と、水や酸素、アルコール類との反応で得られるアルミニウム酸化物膜(例えば、Al22,Al23膜)、ケイ素系材料の気化ガスと水の気化ガスとの反応で得られるケイ素酸化物膜(例えば、SiO2膜)などを用いることができる。
<Sealing process: S7>
As the sealing member for sealing the organic EL element 10U, a glass substrate or a metal substrate is used when performing hollow sealing. In the case of performing solid sealing, as an example, a single layer or a multilayer of metal, silicon oxide, nitride, or oxynitride formed by an atomic layer growth method can be used. For example, an aluminum oxide film (for example, Al 2 O) obtained by a reaction between an alkyl metal such as TMA (trimethylaluminum), TEA (triethylaluminum), DMAH (dimethylaluminum hydride) and water, oxygen, or alcohols. 2 , Al 2 O 3 film), a silicon oxide film (for example, SiO 2 film) obtained by a reaction between a vaporized gas of a silicon-based material and a vaporized gas of water can be used.
 湿式膜15は、ベースとなる材料に対して、正孔輸送材料を含有している。この湿式膜15は、耐アルカリ性を示す。例として、三菱化学社製MPF1001を利用することができる。これによって電極分離隔壁16Aを形成する前に第1電極11上に形成した場合であっても、電極分離隔壁16Aを形成する際のフォトリソグラフィ工程によって湿式膜15が悪影響を受けることがない。湿式膜15は、前述した正孔輸送材料を含むことで、正孔注入輸送機能を有している。これによって、低電圧駆動で効率的な発光輝度を得ることができる。この湿式膜15上に有機層13を積層した有機ELパネルは、良好な発光特性を示すことができる。 The wet film 15 contains a hole transport material with respect to the base material. The wet film 15 exhibits alkali resistance. As an example, MPF1001 manufactured by Mitsubishi Chemical Corporation can be used. As a result, even when the electrode separation barrier 16A is formed on the first electrode 11 before the electrode separation barrier 16A is formed, the wet film 15 is not adversely affected by the photolithography process in forming the electrode separation barrier 16A. The wet film 15 has a hole injecting and transporting function by including the above-described hole transporting material. As a result, efficient light emission luminance can be obtained with low voltage driving. The organic EL panel in which the organic layer 13 is laminated on the wet film 15 can exhibit good light emission characteristics.
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the design can be changed without departing from the scope of the present invention. Is included in the present invention. In addition, the above-described embodiments can be combined by utilizing each other's technology as long as there is no particular contradiction or problem in the purpose and configuration.

Claims (11)

  1.  第1電極と第2電極との間に発光層を含む有機層を積層した有機EL素子を、基板上に形成した有機ELパネルであって、
     前記第1電極上に成膜された湿式膜と、
     前記湿式膜上に形成され前記有機EL素子の構成要素を区画する絶縁構造物を備え、
     前記湿式膜は、前記第1電極から注入した電荷を前記有機層に輸送する電荷注入輸送機能を備えると共に、耐アルカリ性を備えることを特徴とする有機ELパネル。
    An organic EL panel in which an organic EL element in which an organic layer including a light emitting layer is stacked between a first electrode and a second electrode is formed on a substrate,
    A wet film formed on the first electrode;
    An insulating structure that is formed on the wet film and partitions the components of the organic EL element;
    2. The organic EL panel according to claim 1, wherein the wet film has a charge injection / transport function for transporting a charge injected from the first electrode to the organic layer and has alkali resistance.
  2.  前記湿式膜は、耐光性を併せて備えることを特徴とする請求項1記載の有機ELパネル。 The organic EL panel according to claim 1, wherein the wet film has light resistance.
  3.  前記湿式膜は、前記第1電極上に塗布された後に乾燥処理された層であることを特徴とする請求項1又は2に記載の有機ELパネル。 3. The organic EL panel according to claim 1, wherein the wet film is a layer that is applied on the first electrode and then dried.
  4.  前記絶縁構造物は、前記有機層上に形成される前記第2電極を分離する機能を有する隔壁であることを特徴とする請求項1又は2に記載の有機ELパネル。 3. The organic EL panel according to claim 1, wherein the insulating structure is a partition wall having a function of separating the second electrode formed on the organic layer.
  5.  前記絶縁構造物は、前記有機EL素子からなる発光画素を区画する絶縁膜であることを特徴とする請求項1又は2に記載の有機ELパネル。 3. The organic EL panel according to claim 1, wherein the insulating structure is an insulating film that partitions a light emitting pixel made of the organic EL element.
  6.  前記基板に貼り合わせられ、前記有機EL素子を封止する封止基板を備え、
     前記絶縁構造物の端面が前記封止基板の内面に当接していることを特徴とする請求項1又は2に記載された有機ELパネル。
    A sealing substrate that is bonded to the substrate and seals the organic EL element;
    The organic EL panel according to claim 1, wherein an end surface of the insulating structure is in contact with an inner surface of the sealing substrate.
  7.  第1電極と第2電極との間に発光層を含む有機層を積層した有機EL素子を、基板上に形成した有機ELパネルの製造方法であって、
     前記基板上に直接又は他の層を介して成膜された導電膜をパターン形成して第1電極を形成する工程と、
     前記第1電極上に塗布された湿式膜を形成する工程と、
     前記湿式膜上に前記有機EL素子の構成要素を区画する絶縁構造物を形成する工程と、
     前記湿式膜上に有機層を成膜する工程と、
     前記有機層上に前記第2電極を形成する工程とを有し、
     前記湿式膜は、前記第1電極から注入した電荷を前記有機層に輸送する電荷注入輸送機能を備えると共に、耐アルカリ性を備えることを特徴とする有機ELパネルの製造方法。
    An organic EL panel manufacturing method in which an organic EL element in which an organic layer including a light emitting layer is stacked between a first electrode and a second electrode is formed on a substrate,
    Forming a first electrode by patterning a conductive film formed on the substrate directly or via another layer;
    Forming a wet film coated on the first electrode;
    Forming an insulating structure for partitioning the constituent elements of the organic EL element on the wet film;
    Forming an organic layer on the wet film;
    Forming the second electrode on the organic layer,
    The wet film has a charge injecting and transporting function for transporting charges injected from the first electrode to the organic layer, and has an alkali resistance, and a method for manufacturing an organic EL panel.
  8.  前記湿式膜は、耐光性を併せて備えることを特徴とする請求項7に記載された有機ELパネルの製造方法。 The method for manufacturing an organic EL panel according to claim 7, wherein the wet film has light resistance.
  9.  前記絶縁構造物は、フォトリソグラフィ法によってパターン形成されることを特徴とする請求項7又は8に記載された有機ELパネルの製造方法。 The method of manufacturing an organic EL panel according to claim 7 or 8, wherein the insulating structure is patterned by a photolithography method.
  10.  前記有機層を成膜する前に、前記湿式膜上を表面処理することを特徴とする請求項8に記載された有機ELパネルの製造方法。 9. The method of manufacturing an organic EL panel according to claim 8, wherein the wet film is subjected to a surface treatment before forming the organic layer.
  11.  前記表面処理は、加熱処理であることを特徴とする請求項10に記載された有機ELパネルの製造方法。 The method for manufacturing an organic EL panel according to claim 10, wherein the surface treatment is a heat treatment.
PCT/JP2012/075256 2012-09-28 2012-09-28 Organic el panel and method for manufacturing same WO2014049875A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/075256 WO2014049875A1 (en) 2012-09-28 2012-09-28 Organic el panel and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/075256 WO2014049875A1 (en) 2012-09-28 2012-09-28 Organic el panel and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2014049875A1 true WO2014049875A1 (en) 2014-04-03

Family

ID=50387333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075256 WO2014049875A1 (en) 2012-09-28 2012-09-28 Organic el panel and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2014049875A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242272A (en) * 2006-03-06 2007-09-20 Dainippon Printing Co Ltd Manufacturing method of electroluminescent element
JP2009026506A (en) * 2007-07-17 2009-02-05 Toshiba Matsushita Display Technology Co Ltd Organic el display device
JP2010098301A (en) * 2008-09-19 2010-04-30 Mitsubishi Chemicals Corp Substrate for patterning organic thin film, organic electroluminescent element, organic el display device using the same, and organic el illumination
JP2010192475A (en) * 2009-02-13 2010-09-02 Mitsubishi Chemicals Corp Organic electric-field light-emitting device, organic el display apparatus, and organic el illumination

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242272A (en) * 2006-03-06 2007-09-20 Dainippon Printing Co Ltd Manufacturing method of electroluminescent element
JP2009026506A (en) * 2007-07-17 2009-02-05 Toshiba Matsushita Display Technology Co Ltd Organic el display device
JP2010098301A (en) * 2008-09-19 2010-04-30 Mitsubishi Chemicals Corp Substrate for patterning organic thin film, organic electroluminescent element, organic el display device using the same, and organic el illumination
JP2010192475A (en) * 2009-02-13 2010-09-02 Mitsubishi Chemicals Corp Organic electric-field light-emitting device, organic el display apparatus, and organic el illumination

Similar Documents

Publication Publication Date Title
KR100804921B1 (en) Organic electroluminescent display panel and method of manufacturing the same
JP6519933B2 (en) Organic light emitting device and method of manufacturing the same
US10826027B2 (en) Organic light-emitting diode component and manufacturing method thereof
CN108417600B (en) Organic EL display panel and method for manufacturing organic EL display panel
KR100813833B1 (en) Electro luminescence device and method of manufacturing the same
JP2009266803A (en) Organic el display panel and its manufacturing method
JP2009230956A (en) Manufacturing method of organic electroluminescent display device
JP2005174726A (en) Organic el element and its forming method
WO2011070681A1 (en) Organic el panel and method for manufacturing same
US9722213B2 (en) Method for manufacturing electronic device
WO2013190636A1 (en) Organic el panel
JP4457697B2 (en) Manufacturing method of organic EL element
JP2020140940A (en) Organic el display panel, organic el display device, and manufacturing method therefor
JP6083122B2 (en) Organic electroluminescence device and method for manufacturing the same
WO2014049875A1 (en) Organic el panel and method for manufacturing same
US7652420B2 (en) Organic electroluminescent device and method for fabricating the same
WO2014041614A1 (en) Organic el device
US20110284889A1 (en) Organic el panel and method for manufacturing the same
KR101347164B1 (en) Flat panel display and manufacturing method thereof
JP2009070859A (en) Organic electroluminescence display and its fabrication process
KR100612118B1 (en) Organic electroluminescence device having multiple partition structures and fabricating method thereof
KR100565745B1 (en) Organic electroluminescence device and method for manufacturing thereof
JP5672682B2 (en) Organic EL device and manufacturing method thereof
JP2005093280A (en) Organic el display
WO2011070680A1 (en) Organic el panel and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP