WO2011067988A1 - 電力計測システム、電力計測方法および情報処理装置 - Google Patents

電力計測システム、電力計測方法および情報処理装置 Download PDF

Info

Publication number
WO2011067988A1
WO2011067988A1 PCT/JP2010/068149 JP2010068149W WO2011067988A1 WO 2011067988 A1 WO2011067988 A1 WO 2011067988A1 JP 2010068149 W JP2010068149 W JP 2010068149W WO 2011067988 A1 WO2011067988 A1 WO 2011067988A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
measurement
value
measured
meter
Prior art date
Application number
PCT/JP2010/068149
Other languages
English (en)
French (fr)
Inventor
耕治 工藤
森岡 由紀子
本郷 廣生
寿人 佐久間
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/513,584 priority Critical patent/US9513141B2/en
Priority to EP10834441.7A priority patent/EP2511716B1/en
Priority to JP2011544217A priority patent/JP5644774B2/ja
Publication of WO2011067988A1 publication Critical patent/WO2011067988A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D4/00Tariff metering apparatus
    • G01D4/002Remote reading of utility meters
    • G01D4/004Remote reading of utility meters to a fixed location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D4/00Tariff metering apparatus
    • G01D4/002Remote reading of utility meters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2204/00Indexing scheme relating to details of tariff-metering apparatus
    • G01D2204/40Networks; Topology
    • G01D2204/45Utility meters networked together within a single building
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • H02J13/00026Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission involving a local wireless network, e.g. Wi-Fi, ZigBee or Bluetooth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/30Smart metering, e.g. specially adapted for remote reading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Definitions

  • the present invention relates to a power measurement system, a power measurement method, and an information processing apparatus for individually measuring power consumption of various electric devices used in a home.
  • air conditioners air-conditioners
  • TVs television receivers
  • IH Induction Heating
  • the only way to measure the power consumption of electrical equipment with an accuracy that can be converted into an economic value that can be charged or taxed is to use a watt-hour meter (power meter) in accordance with the Measurement Law.
  • the only way to know the measurement result of the power consumption is to check the bill sent from the power company or the website of the power company.
  • Non-intrusive method Install a current sensor or power sensor in the branch circuit of the residential distribution board, and measure the total power consumption of the electrical equipment connected to each branch circuit from the measured data.
  • Intrusive method Insert the current sensor or power sensor directly into the electrical equipment or between the electrical equipment plug and the household power outlet (or clamp the power cord if it is a clamp-type sensor) A method of measuring the power consumption of each electrical device (see, for example, Patent Document 2).
  • Patent Document 1 power factor information and rated voltage information for each electrical device are stored in a storage unit, a current sensor is provided for each branch circuit of the distribution board, and the current sensor information and the current sensor are provided. A method for estimating the power consumption for each branch circuit based on information on each electrical device connected to the branch circuit is described.
  • Patent Document 2 describes a method of providing each electric device with a device adapter for acquiring power consumption and device information.
  • the power consumption for each electrical device cannot be measured with an accuracy that can be converted into an economic value like a watt-hour meter according to the measurement law.
  • the method also has a problem that measurement accuracy is low.
  • an object of the present invention is to provide a power measurement system, a power measurement method, and an information processing apparatus capable of measuring power related to each device with accuracy capable of converting an economic value easily and in real time.
  • an electric power measurement system includes an electric power measuring device including a power detection unit that measures power consumption and an information communication unit that transmits a measurement value by the power detection unit; A power meter provided with information communication means for measuring the total power consumption in the house with a predetermined accuracy and transmitting the measured value; A measurement value transmitted from the power measurement device by the power detection unit and a measurement value of the total power consumption transmitted from the power meter are stored every predetermined sampling period, and two measurement values by the power detection unit are stored.
  • the difference ⁇ is a finite value
  • the difference ⁇ between the two measured values by the power meter corresponding to the two measured values, and ⁇ / ⁇ are calculated and stored, and a plurality of values obtained in a predetermined measurement period are obtained.
  • a power information processing apparatus that calibrates a value of power consumption of the electrical device measured by the power detection means, using a median value of ⁇ / ⁇ or a predetermined median value of ⁇ / ⁇ ; Have
  • the power measurement method of the present invention includes a power detection unit that measures power consumption of the electrical device and an information communication unit that transmits a measurement value by the power detection unit to an electrical device that is a power measurement target.
  • An information communication means for transmitting the measured value is provided in a power meter that measures the total power consumption in the home with a predetermined accuracy, Computer Saving the measurement value by the power detection means transmitted from the power measurement device and the measurement value of the total power consumption transmitted from the power meter for each predetermined sampling period,
  • the difference ⁇ between the two measured values by the power detection means is a finite value
  • the difference ⁇ between the two measured values by the power meter corresponding to the two measured values, and ⁇ / ⁇ are calculated and stored
  • Using a plurality of ⁇ / ⁇ medians obtained in a predetermined measurement period, or a predetermined number of ⁇ / ⁇ medians the power consumption of the electrical device measured by the power detector is calculated. This is a calibration method.
  • the information processing apparatus of the present invention is a power detection unit that is transmitted from an electrical device including a power detection unit that measures power consumption and an information communication unit that transmits a measurement value by the power detection unit.
  • An information processing apparatus for calibrating a measurement value by means Information communication means for receiving the measurement value transmitted from the power measurement device and the measurement value of the total power consumption transmitted from the power meter that measures the total power consumption in the home with a predetermined accuracy;
  • the difference ⁇ between the two measurement values by the power detection means is a finite value, it corresponds to the two measurement values
  • the difference ⁇ between the two measured values by the power meter and ⁇ / ⁇ are calculated, and the median of a plurality of ⁇ / ⁇ obtained in a predetermined measurement period or a predetermined number of ⁇ / ⁇
  • a processing device that calibrates the value of power consumption of the electrical equipment measured by the power detection means using a median value;
  • FIG. 1 is a block diagram illustrating a configuration example of the power measurement system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a configuration example of the power information processing apparatus illustrated in FIG.
  • FIG. 3 is a graph illustrating an example of a change in power consumption for each electrical device.
  • FIG. 4 is a graph showing how the measured value (total power consumption) of the power meter obtained simultaneously with the power measurement of each electrical device shown in FIG. 3 changes.
  • FIG. 5A is a graph showing how the calibration coefficient ⁇ obtained from the measured power consumption value of the air conditioner shown in FIG. 4 changes.
  • FIG. 5B is a graph showing how the calibration coefficient ⁇ obtained from the measured power consumption value of the air conditioner shown in FIG. 4 changes.
  • FIG. 5A is a graph showing how the calibration coefficient ⁇ obtained from the measured power consumption value of the air conditioner shown in FIG. 4 changes.
  • FIG. 5B is a graph showing how the calibration coefficient ⁇ obtained from the measured power consumption value of the air conditioner shown in FIG
  • FIG. 6 is a graph showing a change in the calibration coefficient ⁇ with respect to the measured power of the power detection means obtained from the measured value of the power consumption of the air conditioner shown in FIG.
  • FIG. 7 is a graph showing how the calibration coefficient ⁇ obtained from the measured value of the power consumption of the TV shown in FIG. 4 changes.
  • FIG. 8 is a graph showing how the power consumption of each electrical device changes when the operation timing of each electrical device shown in FIG. 3 is changed.
  • FIG. 9 is a graph showing how the calibration coefficient ⁇ obtained from the measured value of the power consumption of the TV shown in FIG. 7 changes.
  • FIG. 10 is a block diagram illustrating a configuration example of the power measurement system according to the third embodiment.
  • FIG. 11 is a block diagram illustrating another configuration example of the power measurement system according to the third embodiment.
  • the power measurement system of the present invention is provided with an electric energy sensor in each electric device in the house that is an electric power measurement target, and the electric energy according to the measurement value of the electric energy sensor included in each electric device and the measurement method installed outdoors.
  • a calibration coefficient ⁇ for calibrating the measured value for each electric energy sensor included in the electric device is obtained using the measured value (total power consumption in the house) by the meter.
  • the power consumption of each electric device in the house is detected with high accuracy capable of converting the economic value.
  • the power measurement system includes a power meter 4 installed outdoors, a power information processing device 5 installed in a house, a power distribution device 6, a power display device 7, and This is a configuration having a plurality of electrical devices 8 (8 1 to 8 4 in FIG. 1).
  • the electric device 8 is an electric device that consumes a relatively large amount of power that is a power measurement target.
  • an in-vehicle storage battery that can be charged from a household power outlet or the like is also considered as the electric device 8 for power measurement.
  • the electric equipment 8 is equipped with a power measuring device 3 having a power detecting unit 1 for measuring each power consumption and an information communication unit 2 for transmitting a measured value of the power detecting unit 1 to the power information processing device 5.
  • the power detection means 1 for example, a known electronic electric energy sensor including a current transformer and a transformer is used.
  • the information communication means 2 for example, a Zigbee wireless terminal using a radio frequency of 950 MHz band is used.
  • the power meter 4 is a watt-hour meter that has passed the verification by the measurement method, and measures the total power consumption in the house that is installed outdoors and includes the power measurement system of the present embodiment.
  • the power meter 4 includes the information communication means 2 for transmitting the measured value of the total power consumption to the power information processing device 5, as with the electric device 8.
  • a PLC (Power Line Communication) terminal using wired communication may be used as the information communication means 2 provided in the power meter 4.
  • the power information processing apparatus 5 may be provided with a PLC terminal.
  • the power meter 4 since it is assumed that the power measurement system shown in FIG. 1 is used in Japan, the total power consumption in the house is measured by the power meter 4 with accuracy in accordance with the Japanese Measurement Law. An example using a watt-hour meter is shown.
  • the power meter 4 When the power measurement system according to the present embodiment is used in other countries, the power meter 4 has an accuracy in accordance with the laws and standards of the country or an accuracy that can be converted into an economic value installed by an electric power company or the like. What is necessary is just to use the watt-hour meter which measures total power consumption.
  • a smart meter or the like installed by a utility company in the United States may be used as the power meter 4.
  • the power distribution device 6 is a distribution board that distributes, for example, power distributed from a power company to the home, and includes the power measurement device 3 for each branch circuit.
  • the power display device 7 is a display device that includes information communication means 2 for transmitting / receiving information to / from the power information processing device 5 and is also used as an interphone, for example.
  • the power display device 7 displays the power consumption and the like for each electrical device 8 transmitted from the power information processing device 5.
  • any display device may be used as the power display device 7 as long as it includes the information communication means 2.
  • a display device included in a TV, a mobile phone, a personal computer, or the like, a solar cell power reception state monitoring indicator, and the like can also be used for the power display device 7.
  • the measured value of the power meter 4 does not include the power consumption of the power display device 7. This can be realized, for example, by using a battery-operated mobile phone or a portable terminal device (personal computer) as the power display device 7.
  • the power information processing device 5 includes the information communication unit 2 and can transmit and receive information to and from each other using the power meter 4, the power distribution device 6, the power display device 7, and the electric device 8, and the information communication unit 2.
  • the power information processing device 5 includes a measured value (power consumption) of each power detection means 1 transmitted from the power distribution device 6, the power display device 7 and the electric device 8 and a measured value transmitted from the power meter 4 (total in the house). Power consumption) is collected and stored at predetermined timings, a calibration coefficient ⁇ for calibrating the measurement value of the power detection means 1 is obtained using those measurement values, and the electrical device 8 is obtained using the calibration coefficient ⁇ . The power consumption for each is calculated. The calculated power consumption for each electrical device 8 is transmitted to the power display device 7 using, for example, the information communication means 2 and displayed on the power display device 7.
  • the power information processing apparatus 5 can be realized by a computer as shown in FIG.
  • FIG. 2 is a block diagram showing a configuration example of the power information processing apparatus shown in FIG.
  • the computer shown in FIG. 2 outputs a processing device 10 that executes predetermined processing according to a program, an input device 20 for inputting commands and information to the processing device 10, and a processing result of the processing device 10.
  • Output device 30 outputs a processing device 10 that executes predetermined processing according to a program, an input device 20 for inputting commands and information to the processing device 10, and a processing result of the processing device 10.
  • the processing device 10 includes a CPU 11, a main storage device 12 that temporarily holds information necessary for the processing of the CPU 11, a recording medium 13 on which a program for causing the CPU 11 to execute the processing of the present invention is recorded, and a power meter 4.
  • Data stored in the data storage device 14 for storing the measured values (power consumption or total power consumption) transmitted from the power distribution device 6 and the electrical device 8, and the data stored in the main storage device 12, the recording medium 13, and the data storage device 14, respectively.
  • Memory control interface unit 15 that controls transfer, I / O interface unit 17 that is an interface device between input device 20 and output device 30, power meter 4, power distribution device 6, power display device 7, and a plurality of electrical devices 8 and information communication means 2 for transmitting and receiving information, and these are connected via a bus 18.
  • the processing device 10 executes a process for obtaining a calibration coefficient ⁇ for each electrical device 8 to be described later, a process for calculating power consumption for each electrical device 8 using the calibration coefficient, and the like according to a program recorded in the recording medium 13.
  • the recording medium 13 may be a magnetic disk, a semiconductor memory, an optical disk, or other recording medium.
  • the data storage device 14 need not be limited to the configuration provided in the processing device 10, and may be an independent device.
  • the power information processing apparatus 5 uses the power measurement unit 1 so that the measurement value (power consumption) received from each power detection unit 1 and the measurement value (total power consumption) received from the power meter 4 correspond accurately. It is desirable to synchronize the measurement timing by the power meter 4.
  • the power information processing device 5 includes the information communication unit 2 and any device can be used as long as the measurement value of each power detection unit 1 and the measurement value of the power meter 4 can be stored and processed, such as a home gateway, It is also possible to use a solar cell power reception state monitoring device, a server device capable of communicating via a network such as the Internet, and the like. However, when using a server device connected to the network, it is necessary to accurately correspond the measurement value of the power meter 4 and the measurement value of each power detection means 1 as described above. It is necessary to match the measurement timing and the like.
  • the measured value of the power meter 4 does not include the power consumption of the power information processing device 5.
  • This can be realized by using, for example, a portable terminal device (personal computer) operated by a battery for the power information processing apparatus 5.
  • a Zigbee wireless terminal is used as the information communication means 2 included in each electrical device 8.
  • the communication standard, radio frequency, communication speed, etc. are not limited.
  • wireless communication for the information communication means 2 not only Zigbee but also WiFi (Wireless Fidelity), UWB (Ultra Wide Band), Bluetooth, etc. may be used, and when using wired communication, Ethernet ( Ethernet: registered trademark), PLC, etc. may be used.
  • the measured value of the power meter 4 does not include the power consumption of the power measuring device 3 itself. Therefore, it is desirable to use a Zigbee wireless terminal for the information communication means 2 that consumes less power and can be operated with a battery.
  • the power information processing device 5 collects measurement values transmitted from the power meter 4, the power distribution device 6, and each electrical device 8 every predetermined sampling period T. Then, a calibration coefficient ⁇ for calibrating the measurement value of the power detection means 1 included in each electrical device 8 is obtained using these measurement values.
  • the measured value (power consumption) of the power detection means 1 at an arbitrary time for a plurality of electric devices (x units: x is a positive integer) that is a power measurement target is Pa, 1 (x), and the corresponding power
  • the measured value (total power consumption) of the meter 4 is Ps, 1, Ps, 1 can be expressed by the following equation (1).
  • Ps, 1 ⁇ x ⁇ ( x) Pa, 1 (x) + Pb ...
  • Pb indicates power consumption by an electrical device that is not a power measurement target, such as a lighting device or a built-in type electrical device.
  • ⁇ (x) is a calibration coefficient of the measured value Pa, 1 (x) in the electric device (x).
  • the measured value (When the power consumption) is Pa, 2 (x) and the corresponding measurement value (total power consumption) of the power meter 4 is Ps, 2, Ps, 2 can be expressed by the following equation (2).
  • the calibration coefficient ⁇ for each power detection unit 1 provided in each electrical device 8 is obtained, and the measurement value of the power detection unit 1 is calibrated, so that Obtain power consumption with an accuracy that enables economic value conversion.
  • the power information processing apparatus 5 of the present embodiment electrical device 8 each measured value (consumption) a n, for example, save acquired for each predetermined sampling period T, obtained before and after the two measurements
  • FIG. 4 shows how the measured value (total power consumption) of the power meter 4 obtained simultaneously with the power measurement of each electrical device shown in FIG. 3 changes. 3 and 4 show the case where all the power sources of non-measurement electric devices such as lighting devices and built-in type electric devices are turned off and only the air conditioner, microwave oven, TV, and refrigerator are operating. An example of how the measured value for each electrical device and the measured value of the power meter 4 change is shown.
  • the calibration coefficient ⁇ of the power detection means 1 provided in the corresponding electric device 8 can be obtained by ⁇ / ⁇ as described above.
  • the values of the plurality of calibration coefficients ⁇ obtained within a predetermined measurement period vary, it is necessary to obtain an accurate calibration coefficient ⁇ by statistically processing these values.
  • FIG. 5B shows a state in which the value on the vertical axis of the graph shown in FIG. 5A is expanded to ⁇ 10 to +10.
  • the power consumption for each electrical device 8 shown in FIG. 3 is measured using a power amount sensor having good linearity, so that the calibration coefficient ⁇ does not change depending on the measured power.
  • a calibration coefficient ⁇ (a n ) for each measurement power range is obtained and stored in association with, for example, the absolute value (a n ) of the measurement value (power consumption) Good.
  • FIG. 6 shows a change in the calibration coefficient ⁇ with respect to the measured power of the power detection means 1 obtained from the measured value of the power consumption of the air conditioner shown in FIG.
  • the measurement period is set sufficiently long, it is possible to secure the number of effective data necessary to obtain the calibration coefficient ⁇ (a n ) for each of the plurality of measurement power ranges.
  • the measurement period may be determined according to a preset policy, such as a period until the number of calibration coefficients ⁇ (a n ) calculated for each measurement power range reaches 10,000. Since the characteristics of the electric energy sensor change according to the type, usage environment, electric device or the like to be measured, the above policy is based on the accuracy required for the calibration coefficient ⁇ (a n ). It may be determined in consideration of the characteristic change.
  • the power information processing apparatus 5 can be realized by an information processing apparatus having a relatively low processing capability such as a mobile phone.
  • the power consumption Z for each electrical device 8 by the power information processing apparatus 5 may be calculated at a timing that is basically useful for some purpose, such as the provision of eco points.
  • a measurement period for example, one month
  • an accurate calibration coefficient ⁇ (or ⁇ (a n )) cannot be obtained.
  • the power information processing apparatus 5 can use an accurate calibration coefficient ⁇ (or ⁇ ) instead of displaying the power consumption value for each electrical device 8 when the power measurement system is initially operated or when a new electrical device 8 is introduced. A warning or the like indicating that (a n )) is not obtained is displayed on the power display device 7 or the like. After the accurate calibration coefficient ⁇ (a n ) is obtained for each electric device 8 to be measured for power, if the power consumption Z is calculated at a required timing such as monthly, daily, hourly, minutely, etc. Good.
  • the value of the calibration coefficient ⁇ (a n ) obtained according to an appropriate policy is unlikely to change greatly in a short period of time except for changes over time. Therefore, the power information processing apparatus 5 needs to update the calibration coefficient ⁇ (a n ) even if the value of the calibration coefficient ⁇ (a n ) obtained for each predetermined measurement period is different, if the difference is small. There is no. However, when it is desired to obtain a calibration coefficient ⁇ (a n ) with higher accuracy, it is also possible to use an average value of each calibration coefficient ⁇ (a n ) obtained every predetermined measurement period.
  • the value of the calibration coefficient ⁇ (a n ) derived by the policy that the measurement period is until the number of data reaches 10,000 is 1.003323, and the calibration is derived when the number of data reaches 10,000 next.
  • the power information processing device 5 may display a warning indicating the occurrence of a failure on the power display device 7 or the like.
  • FIG. 8 shows a change in power consumption for each electric device when the operation timing of each electric device (air conditioner, microwave oven, TV, refrigerator) shown in FIG. 3 is changed. More specifically, the power consumption when the air conditioner, the microwave oven, and the refrigerator are turned on at the start of measurement, the TV is turned off, the air conditioner is turned off after 5 minutes, and then the TV is operated. It shows how the measured values change.
  • the electric device 8 with the electric power measurement device 3 that is a power measurement target monitors the measurement value of the electric power detection unit 1 so that the electric device 8 is not in operation or has a low power consumption. Can be determined.
  • a power fingerprint such as harmonics included in the total power waveform.
  • a method for identifying the type of device is known, and a method for determining the state of each electrical device using this electrical fingerprint is conceivable.
  • the total power consumption in a home has a section where instantaneous high power swoops, a section where a waveform of the same shape appears periodically, a section where fine vibrations appear, a section where a gentle curve is drawn instead of a straight line, etc. Transition to.
  • These include electrical devices that are controlled to be switched on and off frequently in the home, electrical devices that operate periodically, electrical devices that have vibrations inherent to power consumption, electrical devices that are equipped with inverters, etc. It shows that
  • step method is “Nonintrusive Appliance Monitoring” (IEEE, pp. 1870-1891, 1992.) by George W. Hart, or “Non-intrusive electrical load monitoring in commercial building based on steadystate and by Leslie K. Norford. It is proposed in “transient load-detection algorithms” (Energy and building 24, pp. 51-46, 1996.).
  • each electric device is determined using such a power fingerprint, it is possible to determine a period in which the electric power measurement device 3 is not provided and a period in which the power consumption is low even for the electric device that does not include the power measuring device 3.
  • the calibration coefficient ⁇ is calculated from the above differences ⁇ and ⁇ obtained from the measured values of the power detection means 1 for each sampling period T within a predetermined measurement period. Considering the state of many electrical devices by using a power fingerprint or the like, it may be difficult to set a measurement period necessary for obtaining the calibration coefficient ⁇ for each electrical device 8 to be measured for power.
  • the values of the differences ⁇ and ⁇ do not need to be calculated using the measurement values obtained continuously from the power detection means 1 and the power meter 4, but if the value of the difference ⁇ is a finite value (must be 0). And can be calculated using any measured value at any time.
  • n ⁇ a n ⁇ 1 is a finite value
  • the median value thereof may be adopted as the calibration coefficient ⁇ n (a n , t n ) used for calculating the power consumption Z.
  • the power detection means 1 since the measurement value of the power detection means 1 provided for each electric device 8 is calibrated based on the measurement value of the power meter 4, the power detection means 1 is compliant with the measurement method. There is no need to use a meter.
  • the power measurement system of the second embodiment has a configuration in which the power measurement device 3 included in each electrical device of the first embodiment shown in FIG. 1 includes temperature detection means for measuring the ambient temperature. .
  • a temperature sensor such as a thermistor may be used as the temperature detecting means.
  • the detection characteristic of the electric energy sensor used as the electric power detection means 1 has not only the nonlinearity shown in the first embodiment but also temperature dependency. This temperature dependence also affects the measurement accuracy of the electric energy sensor.
  • the power measuring device 3 measures the power consumption of the electric device 8 to which the device is attached and also measures the environmental temperature by the temperature detecting means.
  • the information communication means 2 is used to measure the power consumption. transmitting the measured values T n measured values a n and the ambient temperature on the power information processor 5.
  • a n a predetermined sampling period T (e.g., 2 seconds) of the acquired each be stored in association with the value of a n, T n, a n .
  • the measurement temperature range for obtaining the calibration coefficient may be set as appropriate according to the temperature dependence of the power detection unit 1. If each measurement temperature range for obtaining the calibration coefficient ⁇ (a n , T n ) is set wide, the number of data required for the arithmetic processing can be reduced, so that the processing load on the power information processing apparatus 5 can be reduced.
  • the power information processing apparatus 5 can be realized by an information processing apparatus having a relatively low processing capability such as a mobile phone. Since other configurations and operations are the same as those of the power measurement system of the first embodiment, the description thereof is omitted.
  • the calibration coefficient ⁇ (a n , T n ) considering not only the nonlinearity of the power detection means 1 but also the temperature dependence is obtained, so that it is higher than that of the first embodiment.
  • the power consumption of each electrical device can be measured with accuracy.
  • the power measurement device 3 may be a power outlet in a house, You may prepare for a power strip.
  • the types and states of the electrical devices may be determined using, for example, the power fingerprint.
  • the measurement value of the power detection unit 1 and the measurement value of the power meter 4 are acquired at every constant sampling period T (1 second or 2 seconds).
  • the sampling period T is not limited to 1 second or 2 seconds, and may be shorter or longer.
  • the acquisition timing of the measured value of the power detection means 1 and the measured value of the power meter 4 does not have to be a constant period, and may be acquired irregularly.
  • the measurement value of the power detection means 1 included in each electrical device and the measurement value of the power meter 4 correspond accurately.
  • the method which synchronizes the measurement timing of the electric power detection means 1 or the electric power meter 4 with the electric power information processing apparatus 5 was shown, for example, the electric power measurement apparatus 3 and the electric power meter 4 with which each electric equipment 8 is provided, May communicate with each other to match the measurement timings of the power detection means 1 and the power meter 4.
  • the power measurement system of the third embodiment is an example in which the amount of power generated by a power generation device such as a solar cell and the amount of charge / discharge power of a storage battery are measured with an accuracy that allows economic value conversion.
  • the power measurement system includes a power generation device 100 that can reversely flow power to a distribution system such as a solar cell in a customer's house, and further includes an amount of power in accordance with the measurement method.
  • a power generation device 100 that can reversely flow power to a distribution system such as a solar cell in a customer's house, and further includes an amount of power in accordance with the measurement method.
  • a power meter for power purchase shown in the first embodiment and the second embodiment
  • a power meter for measuring the amount of power sold to an electric power company hereinafter referred to as power meter) 9
  • power sales meter Since other configurations are the same as those of the power measurement system of the first embodiment or the second embodiment, description thereof is omitted.
  • the power selling meter 9 is a watt-hour meter that has passed the verification by the measurement method, like the power meter 4 for purchasing electricity, and is installed outdoors and is supplied from a consumer who has the power measuring system of this embodiment to a power company. Measure the amount of electricity sold to
  • the power sale meter 9 includes information communication means 2 for transmitting a measured value of power sale to the power information processing apparatus 5.
  • the information communication means 2 a Zigbee wireless terminal using a radio frequency in the 950 MHz band, for example, is used as in the first embodiment and the second embodiment.
  • a PLC (Power Line Communication) terminal using wired communication may be used as the information communication means 2 provided in the power sale meter 9.
  • the power information processing apparatus 5 may be provided with a PLC terminal.
  • the power sales meter 9 measures the power to be sold with accuracy in accordance with the Japanese Measurement Law.
  • An example using a watt-hour meter is shown.
  • the power sales meter 9 is sold with an accuracy according to the laws and standards of the country or an accuracy that can be converted into an economic value set by an electric power company. What is necessary is just to use the watt-hour meter which measures the electric power to electrify.
  • a smart meter or the like installed by a utility company in the United States may be used as the power sale meter 9.
  • the power generation device 100 includes a power conditioner 101 that converts DC power generated by a solar battery or the like into AC power that can flow backward to a distribution system, and controls the amount of power generated by the solar battery or the like, and the power conditioner 101 generates power.
  • a power generation measuring device 104 having a power generation detecting unit 102 for measuring power and an information communication unit 103 for transmitting a measurement value of the power generation detecting unit 102 to the power information processing device 5 is mounted.
  • a well-known electronic energy sensor including a current transformer and a transformer is used as in the first and second embodiments. That's fine.
  • a Zigbee wireless terminal using a radio frequency in the 950 MHz band may be used.
  • a solar cell is illustrated as the power generation device 100, but the power generation device 100 may be a wind power generation device, or any device that generates power using natural energy.
  • the power generated can be converted into an economic value. Can be measured.
  • the power information processing apparatus 5 of the present embodiment transmits the measurement value of the generated power by the power generation detection means 102 and the power sale meter 9 in addition to the measurement value of the total power consumption transmitted from the power meter 4 for power purchase.
  • the measured value is stored at every predetermined sampling period.
  • the difference ⁇ between the two measured values by the power generation detecting means 102 is a finite value, the two measured values by the power meter 4 or the power selling meter 9 at the measurement time corresponding to the two measured values.
  • the difference ⁇ between the finite measurement values and ⁇ / ⁇ are calculated and stored, and a plurality of ⁇ / ⁇ medians obtained in a predetermined measurement period, or a predetermined number Using the median value of ⁇ / ⁇ , the power generation amount of the power generation device 100 measured by the power generation detection means 102 is calibrated.
  • the power measurement system supplies the power generated by the power generation device 100 to each electrical device in the house and sells the surplus power to the power distribution system by flowing it back to the power distribution system.
  • the power sale meter 9 measures the value of surplus power that is not used in the house among the power generated by the power generation device 100.
  • the measured value of the power generation amount by the power generation detection means 102 using the measured value of the operating power meter. Can be calibrated.
  • the power generation amount of the power generation device 100 in a predetermined period is A
  • the total power consumption by each electric device in the home is B
  • the measurement value by the power sales meter 9 is C
  • the measured value by the power meter 4 is D
  • the measured value of the power consumption of each electrical device 8 in the house is calibrated using the method described in the first embodiment or the second embodiment. It is desirable to preferentially use the measurement value at night when the power generation amount A of the power generation device 100 is 0 (zero). Further, when it is desired to further improve the calibration accuracy of the measured value of the power consumption for each electric device 8, each electric device 8 is operated individually, or the power generation operation by the power generator is performed during the power consumption measurement period of the electric device 8. For example, a method of forcibly stopping may be adopted. On the other hand, in order to improve the calibration accuracy of the measurement value of the power generation amount by the power generation device 100, a method of forcibly stopping each electric device in the house may be adopted.
  • the carbon dioxide emission amount for each electric device As described above, in the power measurement system of the first embodiment or the second embodiment, it is possible to estimate the carbon dioxide emission amount for each electric device with an accuracy that can be converted into an economic value, and the carbon footprint, There is an effect that can be applied to various services such as eco-points, environmental tax, and carbon credits. Moreover, when participating in a demand reaction program, it is possible to grasp the contribution degree for each electric device with high accuracy, and there is an effect that it is possible to pay money consideration with respect to the contribution degree with high accuracy.
  • the power measurement system of the third embodiment in addition to these effects, it is possible to grasp the usage amount and utilization rate of green power, which is power generated by natural energy, on a per-customer basis. . That is, when there is surplus power, the value B or the value AC is the amount of green power used, and the utilization rate of green power at this time is 100%. On the other hand, when there is no surplus power, the value A is the amount of green power used, and the utilization rate of green power at this time is A / B ⁇ 100 or A / (A + D) ⁇ 100.
  • the power measurement system of the present embodiment it is possible to measure the total power consumption B with an accuracy that can be converted into an economic value by integrating the measured values (calibration values) of the power consumption for each electrical device 8.
  • the power generation amount A of the power generation device 100 can also be measured with an accuracy capable of economic value conversion.
  • the measured value C by the electric power selling meter 9 measured according to the measurement method and the measured value D by the electric power meter 4 for electric power purchase are acquired, the usage amount and utilization rate of the green electric power for each consumer can be obtained from the above formula. Can be sought.
  • a cap system will be set for CO 2 emission rights for each consumer in the future (the upper limit will be set for the CO 2 emissions for a certain period of time). Even if a system is introduced, each customer can respond.
  • the power measurement system of the present embodiment can be applied not only to the power generation device 100 as shown in FIG. 11 but also to a configuration including a storage battery 110 that stores the power generated by the power generation device 100.
  • the storage battery 110 is equipped with a power measurement device 113 having a power detection unit 111 that measures charge / discharge power and an information communication unit 112 that transmits the measurement value of the power detection unit 111 to the power information processing device 5.
  • a power detection means 111 provided in the power measuring device 113 as in the first embodiment and the second embodiment, for example, a well-known electronic electric energy sensor including a current transformer and a transformer may be used.
  • the information communication unit 112 for example, a Zigbee wireless terminal using a radio frequency of 950 MHz band may be used.
  • the charging power for the storage battery 110 can be regarded as the same category as the power consumption of the electric device 8, when charging the storage battery 110, the measured value of the power amount sensor (power detection means 111) provided in the storage battery 110 is the first value. What is necessary is just to calibrate by the method shown in the embodiment or the second embodiment.
  • each electrical device in the house is operated without selling power to the distribution system, and the measured value (calibration value) A of the total power consumption of each electrical device at that time and the measurement method
  • the measurement value of the power detection means 111 provided in the storage battery 110 is calibrated in this way, the power at the time of charging and the power at the time of discharging of the storage battery 110 can be measured with an accuracy that can be converted into an economic value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 電気機器にその消費電力を測定する電力検出手段及び電力検出手段の測定値を送信する情報通信手段を設ける。また、所要の精度で宅内の総消費電力を測定する電力メータに該測定値を送信する情報通信手段を設ける。情報処理装置は、電力検出手段及び電力メータの測定値を所定のサンプリング周期毎に保存し、電力検出手段による2つの測定値の差αが有限値のとき、それらに対応する電力メータによる2つの測定値の差β及びβ/αを算出して保存し、算出した複数のβ/αの中央値を用いて電力検出手段で測定された電気機器の消費電力の値を校正する。

Description

電力計測システム、電力計測方法および情報処理装置
 本発明は、宅内で使用される各種の電気機器の消費電力を個別に測定するための電力計測システム、電力計測方法および情報処理装置に関する。
 近年、地球温暖化問題が顕在化し、国や企業、消費者の環境に対する意識やエネルギー消費に伴うCOの排出削減の機運が高まりつつある。また、省エネルギー機器への買い換えを促進するためのエコポイント制度や地球温暖化対策税の導入等、低炭素社会の実現に向けた政策も実施されつつある。さらに、将来は、機器の購入時だけでなく機器の使用時でも、他製品との消費電力の差に応じたエコポイントの付与や電力効率が低い機器に対する炭素税の付与等、実消費電力に対する経済価値換算が実施されることも考えられる。
 このような実消費電力の低減促進は、特にエアー・コンディショナー(Air-conditioner:以下、エアコンと称す)、冷蔵庫、大型のテレビジョン受像機(以下、TVと称す)、IH(Induction Heating)クッキングヒータ等の大きな電力を消費する電気機器で実施することが重要であり、このような電気機器毎の消費電力を消費者や事業者等が容易に確認できれば、より一層の省エネルギー生活や電気機器の省エネルギー運転が実現されると考えられる。
 しかしながら、電気機器の消費電力を課金や課税等が可能な経済価値に換算できるような精度で測定するには、計量法に則った電力量計(電力メータ)を用いて測定する方法しかない。また、消費電力の測定結果を知るには、電力会社から送付される請求書や電力会社のWebサイトで確認する方法しかない。
 もちろん、計量法による検定に合格した電力量計を用いて電気機器毎の消費電力を測定することも可能である。しかしながら、そのような電力量計を電気機器毎に設けるのは機器の大型化やコストの増大を招くために採用し難い。仮に電力量計を用いる場合でも、各電力量計の測定結果を簡便にリアルタイムに知ることは困難である。
 但し、経済価値に換算できる精度ではないが、宅内の各電気機器の消費電力を測定する方法については、これまでにも多数の報告がなされている。これら背景技術の電力測定方法は概ね以下の2つに分類できる。
(1)非侵入型(Non-Intrusive)手法:宅内分電盤の分岐電路等に電流センサまたは電力センサを設置し、その測定データから各分岐電路に接続された電機機器の総消費電力を測定する手法(例えば、特許文献1参照)。
(2)侵入型(Intrusive)手法:電流センサまたは電力センサを、電気機器に直接、または電気機器のプラグと家庭内の電源コンセント間に挿入し(あるいはクランプ型センサであれば電源コードを挟み込み)、各電気機器の消費電力を測定する手法(例えば、特許文献2参照)。
 特許文献1には、電気機器毎の力率情報や定格電圧情報を記憶手段で保存しておき、分電盤の分岐電路毎に電流センサを設け、該電流センサの情報と該電流センサを備える分岐電路に接続された各電気機器の情報とに基づき、分岐電路毎の消費電力を見積もる方法が記載されている。また、特許文献2には、各電気機器に消費電力や機器情報を取得するための機器アダプタを設ける方法が記載されている。
 上述したように、背景技術の電力計測システムでは、電気機器毎の消費電力を、計量法に則った電力量計のように、経済価値に換算できるような精度で測定できるものではなく、いずれの方法も測定精度が低いという問題がある。
 また、計量法に則った電力量計を電気機器毎に設けても、簡便にリアルタイムに電気機器毎の消費電力を知ることは困難である。
 さらに、低炭素社会の実現へ向けて導入されつつある太陽電池等の発電機器による発電電力や蓄電池に対する充放電電力等についても簡便にリアルタイムに経済価値換算が可能な精度で知ることは困難である。
 すなわち、背景技術の電力計測システムでは、各需要家が備える各種の機器毎の消費電力、発電電力、充放電電力等の関連する電力を簡便にリアルタイムに経済価値換算が可能な精度で測定することが困難であるという問題がある。
特開2008-089435号公報 特開2005-032235号公報
 そこで本発明は、機器毎の関連する電力を、簡便にかつリアルタイムに経済価値換算が可能な精度で測定できる電力計測システム、電力計測方法および情報処理装置を提供することを目的とする。
 上記目的を達成するため本発明の電力計測システムは、消費電力を測定する電力検出手段及び前記電力検出手段による測定値を送信する情報通信手段を含む電力測定装置を備えた電気機器と、
 宅内の総消費電力を所定の精度で測定すると共に、該測定値を送信する情報通信手段を備えた電力メータと、
 前記電力測定装置から送信される前記電力検出手段による測定値及び前記電力メータから送信される前記総消費電力の測定値を所定のサンプリング周期毎に保存し、前記電力検出手段による2つの測定値の差αが有限値であるとき、該2つの測定値に対応する前記電力メータによる2つの測定値の差β、並びにβ/αを算出して保存し、所定の測定期間にて得られた複数のβ/αの中央値、または予め決められた数のβ/αの中央値を用いて、前記電力検出手段で測定された前記電気機器の消費電力の値を校正する電力情報処理装置と、
を有する。
 一方、本発明の電力計測方法は、電力測定対象である電気機器に、該電気機器の消費電力を測定する電力検出手段及び前記電力検出手段による測定値を送信する情報通信手段を含む電力測定装置を設け、
 宅内の総消費電力を所定の精度で測定する電力メータに、該測定値を送信する情報通信手段を設け、
 コンピュータが、
 前記電力測定装置から送信される前記電力検出手段による測定値及び前記電力メータから送信される前記総消費電力の測定値を所定のサンプリング周期毎に保存し、
 前記電力検出手段による2つの測定値の差αが有限値であるとき、該2つの測定値に対応する前記電力メータによる2つの測定値の差β、並びにβ/αを算出して保存し、
 所定の測定期間にて得られた複数のβ/αの中央値、または予め決められた数のβ/αの中央値を用いて、前記電力検出手段で測定された前記電気機器の消費電力を校正する方法である。
 また、本発明の情報処置装置は、消費電力を測定する電力検出手段及び前記電力検出手段による測定値を送信する情報通信手段を含む電力測定装置を備えた電気機器から送信される、前記電力検出手段による測定値を校正するための情報処理装置であって、
 前記電力測定装置から送信される前記電力検出手段による測定値及び宅内の総消費電力を所定の精度で測定する電力メータから送信される総消費電力の測定値を受信する情報通信手段と、
 前記電力検出手段による測定値及び前記電力メータの測定値を所定のサンプリング周期毎に取得し、前記電力検出手段による2つの測定値の差αが有限値であるとき、該2つの測定値に対応する前記電力メータによる2つの測定値の差β、並びにβ/αを算出し、所定の測定期間にて得られた複数のβ/αの中央値、または予め決められた数のβ/αの中央値を用いて、前記電力検出手段で測定された前記電気機器の消費電力の値を校正する処理装置と、
 前記サンプリング周期毎に取得された前記電力検出手段による測定値及び前記電力メータの測定値を保存すると共に、前記β/αの値を保存する記憶装置と、
を有する。
図1は、第1の実施の形態の電力計測システムの一構成例を示すブロック図である。 図2は、図1に示した電力情報処理装置の一構成例を示すブロック図である。 図3は、電気機器毎の消費電力が変化する様子の一例を示すグラフである。 図4は、図3に示した各電気機器の電力測定と同時に得られた電力メータの測定値(総消費電力)が変化する様子を示すグラフである。 図5Aは、図4に示したエアコンの消費電力の測定値から求めた校正係数γが変化する様子を示すグラフである。 図5Bは、図4に示したエアコンの消費電力の測定値から求めた校正係数γが変化する様子を示すグラフである。 図6は、図4に示したエアコンの消費電力の測定値から求めた電力検出手段の測定電力に対する校正係数γの変化の様子を示すグラフである。 図7は、図4に示したTVの消費電力の測定値から求めた校正係数γが変化する様子を示すグラフである。 図8は、図3に示した各電気機器の動作タイミングを変えたときの電気機器毎の消費電力が変化する様子を示すグラフである。 図9は、図7に示したTVの消費電力の測定値から求めた校正係数γが変化する様子を示すグラフである。 図10は、第3の実施の形態の電力計測システムの一構成例を示すブロック図である。 図11は、第3の実施の形態の電力計測システムの他の構成例を示すブロック図である。
 次に本発明について図面を用いて説明する。
 本発明の電力計測システムは、電力測定対象となる宅内の各電気機器に電力量センサを設け、各電気機器が備える電力量センサの測定値と、屋外に設置された計量法に則った電力量計による測定値(宅内の総消費電力)とを用いて、電気機器が備える電力量センサ毎の測定値を校正するための校正係数γをそれぞれ求める。この電力量センサ毎の校正係数γを用いて各電気機器の消費電力の測定値を校正することで、宅内の電気機器毎の消費電力を経済価値換算が可能な高い精度で検出する。
(第1の実施の形態)
 図1は第1の実施の形態の電力計測システムの一構成例を示すブロック図である。
 図1に示すように、第1の実施の形態の電力計測システムは、屋外に設置された電力メータ4と、宅内に設置された電力情報処理装置5、電力分配装置6、電力表示装置7及び複数の電気機器8(図1では8~8)とを有する構成である。
 電気機器8は、電力測定対象となる比較的大きな電力を消費する電気機器であり、例えばエアコン、電子レンジ、TV、冷蔵庫、洗濯機、IHクッキングヒータ、ヒートポンプ給湯器、床暖房装置、大型照明器具等である。また、家庭用の電源コンセント等から充電可能な車載用の蓄電池等も電力測定対象の電気機器8として考えられる。電気機器8には、各々の消費電力を計測する電力検出手段1と、電力検出手段1の測定値を電力情報処理装置5に送信する情報通信手段2とを有する電力測定装置3がそれぞれ搭載されている。電力検出手段1には、例えば変流器及び変圧器を備えた周知の電子式電力量センサが用いられる。情報通信手段2には、例えば950MHz帯の無線周波数を利用するZigbee無線端末が用いられる。
 電力メータ4は、計量法による検定に合格した電力量計であり、屋外に設置されて本実施形態の電力計測システムを備える宅内の総消費電力を測定する。また、電力メータ4は、電気機器8と同様に、総消費電力の測定値を電力情報処理装置5に送信するための情報通信手段2を備えている。屋外と宅内の無線通信環境が悪い場合、電力メータ4が備える情報通信手段2には有線通信を利用するPLC(Power Line Communication)端末等を用いてもよい。その場合、電力情報処理装置5にもPLC端末を備えていればよい。
 なお、本実施形態では、図1に示した電力計測システムを日本国内で使用することを想定しているため、電力メータ4に日本の計量法に則った精度で宅内の総消費電力を測定する電力量計を用いる例を示している。本実施形態の電力計測システムを他の国で使用する場合、電力メータ4には、その国の法律や標準規格に則った精度あるいは電力会社等が設置した経済価値換算が可能な精度で宅内の総消費電力を測定する電力量計を用いればよい。例えば、本実施形態の電力計測システムを米国で使用する場合は、電力メータ4に、米国のユーティリティー企業が設置したスマートメータ等を用いればよい。
 電力分配装置6は、例えば電力会社から配電された電力を宅内に分配する分電盤であり、分岐電路毎に上記電力測定装置3を備えている。
 電力表示装置7は、電力情報処理装置5と情報を送受信するための情報通信手段2を備えた、例えばインターホンとしても用いられる表示装置である。電力表示装置7は、電力情報処理装置5から送信される電気機器8毎の消費電力等を表示する。なお、電力表示装置7は、情報通信手段2を備えていればどのような表示装置を用いてもよい。例えば、TV、携帯電話機、パーソナルコンピュータ等が備える表示装置、太陽電池の受発電状態監視表示器なども電力表示装置7に用いることができる。但し、後述するように、電気機器8の校正係数γの精度をより向上させるためには、電力メータ4の測定値に電力表示装置7の消費電力が含まれていないことが好ましい。これは、例えば電力表示装置7に、電池で動作する携帯電話機や携帯型の端末装置(パーソナルコンピュータ)等を用いれば実現できる。
 電力情報処理装置5は、情報通信手段2を備え、電力メータ4、電力分配装置6、電力表示装置7及び電気機器8と、情報通信手段2を用いて互いに情報の送受信が可能である。
 電力情報処理装置5は、電力分配装置6、電力表示装置7及び電気機器8から送信される各電力検出手段1の測定値(消費電力)及び電力メータ4から送信される測定値(宅内の総消費電力)をそれぞれ所定のタイミングで収集して保存し、それらの測定値を用いて電力検出手段1の測定値を校正するための校正係数γを求め、該校正係数γを用いて電気機器8毎の消費電力を算出する。算出した電気機器8毎の消費電力は、例えば情報通信手段2を用いて電力表示装置7へ送信し、該電力表示装置7に表示させる。
 電力情報処理装置5は、例えば図2に示すようなコンピュータによって実現できる。
 図2は図1に示した電力情報処理装置の一構成例を示すブロック図である。
 図2に示すコンピュータは、プログラムにしたがって所定の処理を実行する処理装置10と、処理装置10に対してコマンドや情報等を入力するための入力装置20と、処理装置10の処理結果を出力するための出力装置30とを備えている。
 処理装置10は、CPU11と、CPU11の処理で必要な情報を一時的に保持する主記憶装置12と、CPU11に本発明の処理を実行させるためのプログラムが記録された記録媒体13と、電力メータ4、電力分配装置6及び電気機器8から送信される測定値(消費電力または総消費電力)をそれぞれ保存するデータ蓄積装置14と、主記憶装置12、記録媒体13およびデータ蓄積装置14とのデータ転送を制御するメモリ制御インタフェース部15と、入力装置20および出力装置30とのインタフェース装置であるI/Oインタフェース部17と、電力メータ4、電力分配装置6、電力表示装置7及び複数の電気機器8と情報を送受信するための情報通信手段2とを備え、それらがバス18を介して接続された構成である。
 処理装置10は、記録媒体13に記録されたプログラムにしたがって、後述する電気機器8毎の校正係数γを求める処理及び該校正係数を用いて電気機器8毎の消費電力を算出する処理等を実行する。記録媒体13は、磁気ディスク、半導体メモリ、光ディスクあるいはその他の記録媒体であってもよい。データ蓄積装置14は、処理装置10内に備える構成に限定する必要はなく、独立した装置であってもよい。
 なお、本実施形態では、各電気機器が備える電力検出手段1の測定値と電力メータ4の測定値とが正確に対応している必要がある。したがって、電力情報処理装置5は、各電力検出手段1から受信する測定値(消費電力)と電力メータ4から受信する測定値(総消費電力)とが正確に対応するように、電力測定手段1や電力メータ4による測定タイミングを同期させることが望ましい。
 電力情報処理装置5は、情報通信手段2を備え、各電力検出手段1の測定値や電力メータ4の測定値を保存して演算処理できればどのような装置を用いてもよく、例えばホームゲートウエイ、太陽電池の受発電状態監視装置、インターネット等のネットワークを介して通信可能なサーバ装置等も用いることができる。但し、ネットワークに接続されたサーバ装置を用いる場合、上述したように電力メータ4の測定値と各電力検出手段1の測定値とを正確に対応させる必要があるため、同期信号等を用いてこれらの測定タイミング等を一致させる必要がある。また、後述するように、電気機器8の校正係数γの精度をより向上させるためには、電力メータ4の測定値に電力情報処理装置5の消費電力が含まれていないことが好ましい。これは、例えば電力情報処理装置5に電池で動作する携帯型の端末装置(パーソナルコンピュータ)等を用いれば実現できる。
 また、本実施形態では、各電気機器8が備える情報通信手段2としてZigbee無線端末を用いる例を示しているが、情報の送受信が可能であれば、情報通信手段2の通信方式はどのようなものでもよく、その通信規格、無線周波数、通信速度等が限定されるものではない。例えば、情報通信手段2に無線通信を利用する場合は、Zigbeeに限らず、WiFi(Wireless Fidelity)、UWB(Ultra Wide Band)、Bluetooth等を用いてもよく、有線通信を利用する場合はイーサネット(Ethernet:登録商標)、PLC等を用いてもよい。但し、後述するように、電気機器8毎の校正係数γの精度をより向上させるためには、電力メータ4の測定値に電力測定装置3自身の消費電力が含まれていないことが望ましい。そのため、情報通信手段2には、消費電力が少なく電池で動作させることが可能なZigbee無線端末を用いることが望ましい。
 このような構成において、本実施形態の電力計測システムでは、電力情報処理装置5によって、電力メータ4、電力分配装置6及び各電気機器8から送信される測定値を所定のサンプリング周期T毎に収集して保存し、それらの測定値を用いて各電気機器8が備える電力検出手段1の測定値を校正するための校正係数γを求める。
 例えば、電力測定対象である複数の電気機器(x台:xは正の整数)の任意の時刻における電力検出手段1の測定値(消費電力)をPa,1(x)とし、それに対応する電力メータ4の測定値(総消費電力)をPs,1としたとき、Ps,1は以下の(1)式で表すことができる。
 Ps,1=Σxγ(x)Pa,1(x)+Pb …(1)
 ここで、Pbは、照明装置やビルトイン型の電気機器等のように電力測定対象ではない電気機器による消費電力を示している。また、γ(x)は、電気機器(x)における測定値Pa,1(x)の校正係数である。
 さらに、任意の時間が経過した時刻において、電力測定対象であるx台の電気機器8のうち、ある電気機器(x=3)の消費電力が変化した場合、各電力検出手段1の測定値(消費電力)をPa,2(x)とし、それに対応する電力メータ4の測定値(総消費電力)をPs,2としたとき、Ps,2は以下の(2)式で表すことができる。
 Ps,2=Σγ(x)Pa,2(x)+Pb …(2)
 但し、照明装置やビルトイン型の電気機器等の電力測定対象ではない電気機器は定常運転状態にあり、消費電力Pbは変化していないものとする。
 したがって、上記(2)式から(1)式を引くと、下記(3)式で示すように、例えば電気機器(x=3)の校正係数γ(3)を求めることができる。
 Ps,2-Ps,1=γ(3){Pa,2(3)-Pa,1(3)}
 γ(3)=(Ps,2-Ps,1)/{Pa,2(3)-Pa,1(3)} …(3)
 すなわち、任意の測定時刻に得られる電力検出手段1の測定値と次の測定時刻に得られる電力検出手段1の測定値の差、および電力メータ4によってそれらに対応する測定時刻で得られる測定値の差を算出すれば、電器機器毎の校正係数γを求めることができる。
 本実施形態では、以上説明した算出原理を用いて、各電気機器8が備える電力検出手段1毎の校正係数γを求め、電力検出手段1の測定値を校正することで、電気機器8毎の消費電力を経済価値換算が可能な精度で取得する。
 そのため、本実施形態の電力情報処理装置5は、電気機器8毎の測定値(消費電力)aを、例えば所定のサンプリング周期T毎に取得して保存し、取得した前後2つの測定値の差α(=a-an-1)をそれぞれ算出する。また、本実施形態の電力情報処理装置5は、電力メータ4の測定値(総消費電力)Aを所定のサンプリング周期T毎に取得して保存し、取得した前後2つの測定値の差β(=A-An-1)をそれぞれ算出する。
 図3は、例えばサンプリング周期T(=1秒)毎に10分間(600秒)測定したときの、複数の電気機器8の測定値(消費電力)が変化する様子を示している。また、図4は、図3に示した各電気機器の電力測定と同時に得られた電力メータ4の測定値(総消費電力)が変化する様子を示している。なお、図3及び図4は、照明装置やビルトイン型の電気機器等のように測定対象ではない電気機器の電源が全てオフされ、エアコン、電子レンジ、TV、冷蔵庫のみが動作しているときの電気機器毎の測定値及び電力メータ4の測定値が変化する様子の一例を示している。
 サンプリング周期T毎に得られる上記差αが有限値であるとき(0でないとき)、上述したように対応する電気機器8が備える電力検出手段1の校正係数γはβ/αで求めることができる。但し、所定の測定期間内で得られる複数の校正係数γの値には、ばらつきがあるため、それらの値を統計的に処理することで正確な校正係数γを求める必要がある。
 図5Aは、図4に示したエアコンの消費電力の測定値から求めた校正係数γ(=β/α)が変化する様子を示している。また、図5Bは、図5Aに示したグラフの縦軸の値を-10~+10に拡大した様子を示している。
 図5A及び図5Bから解るように、エアコンが備える電力検出手段1の校正係数γの値は1.0を中心にしてばらついている。これは、エアコンだけでなく他の電気機器も同時に動作しているため、βの値が擾乱されることに起因する。しかしながら、他の電気機器が動作していることによる影響は、β/αのデータ数を十分に確保すれば低減させることが可能であり、複数のβ/αの中央値(MEDIAN)を求めることで、正確な校正係数γ(γ=1.000109704)を得ることができる。
 なお、図3に示した電気機器8毎の消費電力は、良好な線形性を有する電力量センサを用いて測定しているため、校正係数γが測定電力に依存して変化することがない。しかしながら、そのような電力量センサを使用できるとは限らないため、電力量センサの感度が測定電力に依存して変化する場合、すなわち電力検出手段1の検出特性に非線形性を有する場合は、1つの電力検出手段1に対応して複数の校正係数γ(a)を備える必要がある
 その場合、電力情報処理装置5は、電力検出手段1の非線形性を考慮して校正係数を求める複数の測定電力範囲を決定し(例えば、1W毎)、該測定電力範囲毎の校正係数γ(a)を求めて、例えば測定値(消費電力)の絶対値(a)に関連付けて保存すればよい。電気機器8の消費電力Zは、Z=γ(a)Σaで求めることができる。
 図6は、図4に示したエアコンの消費電力の測定値から求めた電力検出手段1の測定電力に対する校正係数γの変化の様子を示している。
 一般に、エアコンの消費電力は、同様の電力波形が周期的に現れるように推移するため、図6からも解るように消費電力に対して校正係数γ(a)をプロットすると、有効データ数が少なくなってしまう。
 しかしながら、測定期間を十分に長く設定すれば、複数の測定電力範囲毎の校正係数γ(a)を得るのに必要な有効データ数を確保できる。測定期間は、例えば測定電力範囲毎の校正係数γ(a)の算出数が10000に達するまでの期間等、予め設定したポリシーにしたがって決定すればよい。電力量センサは、その種類や使用環境あるいは測定対象としている電気機器等に応じて特性が変化するため、上記ポリシーは、校正係数γ(a)に要求される精度を基に、電力量センサの特性変化も考慮して決定すればよい。なお、校正係数γ(a)を求める各測定電力範囲を広く設定すると、演算処理に要するデータ数を低減できるため、電力情報処理装置5の処理負荷を軽減できる。その場合、電力情報処理装置5は、例えば携帯電話機等の比較的処理能力が低い情報処理装置でも実現できる。
 本実施形態の電力計測システムでは、電力情報処理装置5による電気機器8毎の消費電力Zを、基本的に何らかの目的、例えばエコポイントの付与等に役立つタイミングで算出すればよい。しかしながら、初期稼働時や新たな電気機器8を導入したとき等では、校正係数γ(またはγ(a))を求めるための測定期間(例えば、1ヶ月間)が必要であり、該測定期間内では正確な校正係数γ(またはγ(a))が得られない。このとき、既に算出したβ/αを内挿または外挿することで、消費電力Zの算出に用いる校正係数γ(またはγ(a))を推定することも可能であるが、それでは算出後の消費電力Zに誤差が含まれる可能性が高い。したがって、電力情報処理装置5は、電力計測システムの初期稼働時や新たな電気機器8の導入時等では、電気機器8毎の消費電力値の表示に代わって、正確な校正係数γ(またはγ(a))が得られていないことを示す警告等を電力表示装置7等に表示させる。電力測定対象の電気機器8毎の正確な校正係数γ(a)が得られた後は、月毎、日毎、1時間毎、1分毎等の所要のタイミングで消費電力Zを算出すればよい。
 本実施形態の電力計測システムでは、適切なポリシーにしたがって得られた校正係数γ(a)の値は、経年変化等を除けば短期間で大きく変化する可能性は低い。したがって、電力情報処理装置5は、所定の測定期間毎に求めた校正係数γ(a)の値が異なっていても、その差異がわずかであれば校正係数γ(a)を更新する必要はない。しかしながら、より高い精度の校正係数γ(a)を得たい場合は、所定の測定期間毎に求めた各校正係数γ(a)の平均値を用いることも可能である。例えばデータ数が10000に到達するまでを測定期間とするポリシーで導出された校正係数γ(a)の値が1.00323であり、次にデータ数が10000に到達した時点で導出された校正係数γ(a)の値が1.00321である場合、その平均値(=1.00322)を消費電力の算出に用いる校正係数γとすればよい。
 一方、校正係数γ(a)の値が短期間で大きく変化した場合(例えば、γ(a)=1.12322になった場合)は、電力量センサが故障していることが考えられるため、電力情報処理装置5は故障発生を示す警告等を電力表示装置7等に表示させればよい。
 ところで、図3に示した測定期間(600秒)では、電力測定対象である複数の電気機器8の消費電力を同時に測定しているため、例えばTVのように比較的消費電力が少ない電気機器では求める校正係数γにその影響が現れてしまう。図7は、図4に示したTVの消費電力の測定値から求めた校正係数γ(=β/α)が変化する様子を示している。
 図7に示すように、図4に示したTVの消費電力の測定値から求めた校正係数γの値は大きく分散しているため、これらの中央値をTVが備える電力検出手段1の校正係数γとして採用することはできない。これは、上述したようにTVの消費電力の測定時に、該TVよりも消費電力が大きい複数の電気機器(ここでは、エアコン、冷蔵庫、電子レンジ)が同時に動作していることに起因する。
 このような場合は、例えば他の電気機器が備える電力検出手段1の測定結果を参照し、電力測定対象の電気機器(この場合はTV)以外の電気機器ができるだけ動作していない期間の電力検出手段1による測定値を用いて校正係数γを求めればよい。
 図8は、図3に示した各電気機器(エアコン、電子レンジ、TV、冷蔵庫)の動作タイミングを変えたときの電気機器毎の消費電力の変化の様子を示している。より具体的には、測定開始時にエアコン、電子レンジ及び冷蔵庫をオンにし、TVをオフにしておき、5分間が経過した時点でエアコンをオフにし、その後、TVを動作させたときの消費電力の測定値の変化の様子を示している。図9は、図7に示したTVの消費電力の測定値から求めた校正係数γ(=β/α)が変化する様子を示している。
 図7に示したグラフによれば各校正係数γの中央値は0.999832426であったが、図9に示したグラフによれば各校正係数γの中央値が1.000000000であり、より正確な校正係数γが得られた。
 なお、実際の宅内には、照明装置やビルトイン型の電気機器のように、電力測定対象の電気機器8以外にも電力分配装置6を介して電力が供給される多数の電気機器が存在する。そのため、これらの電気機器による消費電力の変化も電気機器8の校正係数γの測定精度を悪化させる擾乱要因となる。
 したがって、電力測定対象の電気機器8の校正係数γを精度よく求めるには、できるだけ他の電気機器が動作していないとき、あるいは他の電気機器が少ない消費電力で動作している期間(例えば、スタンバイ時)における電力検出手段1や電力メータ4の測定値を用いることが望ましい。
 電力測定装置3を備えた電力測定対象の電気機器8は、上述したように、その電力検出手段1の測定値を監視することで、電気機器8が動作していない期間や消費電力が少ない期間を判別できる。
 一方、電力測定装置3を備えていない電気機器については、例えば総電力波形に含まれる高調波等の特徴的な変化(以下、電力指紋と称す)に基づいて電気機器毎のオン/オフや電気機器の種類を特定する手法が知られており、この電気指紋を利用して電気機器毎の状態を判別する方法が考えられる。
 一般に、宅内の総消費電力は、瞬間的な高電力が群発する区間、同様形状の波形が周期的に現れる区間、細かい振動が現れる区間、直線ではなく緩やかなカーブを描く区間等を有して推移する。これらは、宅内にオン/オフが頻繁に切り替わるように制御される電気機器、周期的に動作する電気機器、消費電力に固有の振動が伴う電気機器、インバータ等が搭載された電気機器等が存在することを示している。
 このような電力波形の特徴的な変化(電力指紋)を利用して電気機器毎の状態を判別する方法については、例えば階段状の変化や瞬間的な高電力波形に着目して電気機器を特定する手法(ステップ法)がGeorge W. Hartによる “Nonintrusive Appliance Monitoring”(IEEE, pp. 1870-1891, 1992.)、あるいはLeslie K. Norfordによる “Non-intrusive electrical load monitoring in commercial building based on steadystate and transient load-detection algorithms”(Energy and building 24, pp. 51-46, 1996.)にて提案されている。
 また、測定電流に含まれる高調波成分と動作中の電気機器との対応関係に基づいて稼働中の電気機器とその消費電力を特定する手法が、特許第3403368号公報、特許第3602825号公報、特許第3877269号公報等で提案されている。
 このような電力指紋を利用して電気機器毎の状態を判別すれば、電力測定装置3を備えていない電気機器についても、動作していない期間や消費電力が少ない期間を判別できる。
 なお、上述した説明では、所定の測定期間内にて、サンプリング周期T毎に電力検出手段1の測定値から得られる上記差α及びβから校正係数γを算出する例を示しているが、それでは、電力指紋等を利用することで多くの電気機器の状態を考慮すると、電力測定対象の電気機器8毎の校正係数γを求めるのに必要な測定期間を設定することが困難な場合がある。
 但し、上記差α及びβの値は、電力検出手段1及び電力メータ4から連続して得られる測定値を用いて算出する必要はなく、差αの値が有限値であれば(0でなければ)、どの時点の測定値を用いても算出できる。
 すなわち、電力情報処理装置5は、電力測定対象の電気機器8以外の電気機器ができるだけ動作していない時間あるいは消費電力が少ない時間において、電力検出手段1による2つの測定値の差α(=a-an-1)が有限値であるときに、対応するβ(=A-An-1)の値を算出し、β/α(=校正係数γn(a、t))の値を保存しておく。そして、β/αのデータ数が十分に得られた段階でそれらの中央値を消費電力Zの算出に用いる校正係数γn(a、t)として採用すればよい。その場合、消費電力Zは、Z=γn(a、t)Σaで算出できる。
 以上説明したように本実施形態の電力計測システムによれば、電気機器8が備える電力検出手段1の2つの測定値の差α(=a-an-1)及び電力メータ4の2つの測定値の差β(=A-An-1)をそれぞれ算出し、β/αの値を保存すると共に、複数のβ/αの中央値を求めることで高い精度の校正係数γが得られる。したがって、該校正係数γを用いて電力検出手段1の測定値を校正すれば、電気機器8毎の消費電力を経済価値換算が可能な精度で得ることができる。校正後の各電気機器8の消費電力の値は、エコポイントの付与や課税等に用いることができるため、地球温暖化対策に寄与する電力計測システムが得られる。
 また、本実施形態の電力計測システムでは、電力メータ4の測定値に基づいて電気機器8毎に備える電力検出手段1の測定値を校正するため、電力検出手段1に計量法に則った電力量計を用いる必要がない。
 さらに、電力情報処理装置5で算出した電気機器8毎の消費電力を、例えばインターホンとしても用いる電力表示装置7に情報通信手段2を用いて送信し、表示させるため、宅内で使用される電気機器毎の消費電力を、簡便にリアルタイムに確認できる。
(第2の実施の形態)
 第2の実施の形態の電力計測システムは、図1に示した第1の実施の形態の各電気機器が備える電力測定装置3に、その環境温度を測定する温度検出手段を備えた構成である。温度検出手段には、例えばサーミスタ等の温度センサを用いればよい。
 一般に、電力検出手段1として用いる電力量センサの検出特性には、第1の実施の形態で示した非線形性だけでなく温度依存性も備えている。この温度依存性も電力量センサの測定精度に影響を与える。
 第2の実施の形態の電力測定装置3は、自装置が取り付けられた電気機器8の消費電力を測定すると共に温度検出手段によりその環境温度も測定し、情報通信手段2を用いて消費電力の測定値a及び環境温度の測定値Tを電力情報処理装置5に送信する。
 本実施形態の電力情報処理装置5は、電気機器8毎の消費電力の測定値a及び環境温度の測定値T、並びに電力メータ4の測定値(宅内の総消費電力)Aを所定のサンプリング周期T(例えば、2秒)毎に取得し、a、T、Aの値を関連付けて保存する。
 さらに、本実施形態の電力情報処理装置5では、第1の実施の形態で示した電力検出手段1の非線形性を考慮した手法を電力検出手段1の温度依存性にも適用する。すなわち、電力情報処理装置5は、電力検出手段1及び温度検出手段の測定値に基づき、校正係数を求める複数の測定電力範囲及び測定温度範囲を決定し(例えば、1W、±1K)、第1の実施の形態と同様に該測定電力範囲及び測定温度範囲毎の校正係数γ(a、T)を求め、電力の絶対値(a)及び環境温度Tに関連付けて保存する。電気機器8の消費電力Zは、Z=γ(a、T)Σaで求めることができる。
 ここでは、校正係数を求める複数の測定温度範囲を±1Kとする例を示したが、校正係数を求める測定温度範囲は、電力検出手段1の温度依存性に応じて適宜設定すればよい。校正係数γ(a、T)を求める各測定温度範囲を広く設定すると、演算処理に要するデータ数を低減できるため、電力情報処理装置5の処理負荷を軽減できる。その場合、電力情報処理装置5は、例えば携帯電話機等の比較的処理能力が低い情報処理装置でも実現できる。その他の構成及び動作は第1の実施の形態の電力計測システムと同様であるため、その説明は省略する。
 本実施形態の電力計測システムによれば、電力検出手段1の非線形性だけでなく温度依存性も考慮した校正係数γ(a、T)を求めるため、第1の実施の形態よりも高い精度で電気機器毎の消費電力を測定できる。
 なお、上述した第1の実施の形態及び第2の実施の形態では、電力測定装置3を電力測定対象である電気機器8に備える例を示したが、電力測定装置3は宅内の電源コンセントや電源タップ等に備えていてもよい。電源コンセントや電源タップに複数の電気機器が接続されている場合、それらの電気機器の種類や状態等は、例えば上記電力指紋を利用して判別すればよい。
 また、第1の実施の形態及び第2の実施の形態では、電力検出手段1の測定値や電力メータ4の測定値を一定のサンプリング周期T(1秒または2秒)毎に取得する例を示したが、サンプリング周期Tは1秒や2秒に限定されるものではなく、より短くてもよく、長くてもよい。また、電力検出手段1の測定値や電力メータ4の測定値の取得タイミングは一定周期である必要はなく、不定期に取得してもよい。
 上述したように、本発明では、各電気機器が備える電力検出手段1の測定値と電力メータ4の測定値とが正確に対応している必要がある。第1の実施の形態では、電力検出手段1や電力メータ4の測定タイミングを電力情報処理装置5によって同期させる手法を示したが、例えば各電気機器8が備える電力測定装置3と電力メータ4とが互いに通信することで、電力検出手段1と電力メータ4の測定タイミングを一致させてもよい。
(第3の実施の形態)
 上述した第1の実施の形態及び第2の実施の形態では、宅内で使用される電気機器毎の消費電力を経済価値換算が可能な精度で測定する例を示した。第3の実施の形態の電力計測システムは、太陽電池等の発電機器の発電電力量や蓄電池の充放電電力量を経済価値換算が可能な精度で測定する例である。
 図10に示すように、第3の実施の形態の電力計測システムは、需要家宅に太陽電池等の配電系統へ電力の逆潮流が可能な発電機器100を備え、さらに計量法に則った電力量計(電力メータ)として、第1の実施の形態及び第2の実施の形態で示した買電用の電力メータ4と、電力会社等へ売電する電力量を測定するための電力メータ(以下、売電力メータと称す)9とを備えている。その他の構成は第1の実施の形態または第2の実施の形態の電力計測システムと同様であるため、その説明は省略する。
 売電力メータ9は、買電用の電力メータ4と同様に、計量法による検定に合格した電力量計であり、屋外に設置されて本実施形態の電力計測システムを備えた需要家から電力会社へ販売する電力量を測定する。また、売電力メータ9は、売電力の測定値を電力情報処理装置5に送信するための情報通信手段2を備えている。情報通信手段2には、第1の実施の形態や第2の実施の形態と同様に、例えば950MHz帯の無線周波数を利用するZigbee無線端末が用いられる。屋外と宅内の無線通信環境が悪い場合、売電力メータ9が備える情報通信手段2には有線通信を利用するPLC(Power Line Communication)端末等を用いてもよい。その場合、電力情報処理装置5にもPLC端末を備えていればよい。
 なお、本実施形態では、図10に示した電力計測システムを日本国内で使用することを想定しているため、売電力メータ9に日本の計量法に則った精度で売電する電力を測定する電力量計を用いる例を示している。本実施形態の電力計測システムを他の国で使用する場合、売電力メータ9には、その国の法律や標準規格に則った精度あるいは電力会社等が設置した経済価値に換算可能な精度で売電する電力を測定する電力量計を用いればよい。例えば、本実施形態の電力計測システムを米国で使用する場合は、売電力メータ9に、米国のユーティリティー企業が設置したスマートメータ等を用いればよい。
 発電機器100は、太陽電池等によって発電された直流電力を配電系統へ逆潮流可能な交流電力へ変換すると共に、太陽電池等による発電量を制御するパワーコンディショナー101を備え、該パワーコンディショナー101に発電電力を測定する発電力検出手段102と、発電力検出手段102の測定値を電力情報処理装置5に送信する情報通信手段103とを有する発電力測定装置104が搭載されている。発電力測定装置104が備える電力検出手段1には、第1の実施の形態や第2の実施の形態と同様に、例えば変流器及び変圧器を備えた周知の電子式電力量センサを用いればよい。情報通信手段2には、例えば950MHz帯の無線周波数を利用するZigbee無線端末を用いればよい。なお、図10では、発電機器100として太陽電池を例示しているが、発電機器100は風力発電機器でもよく、自然エネルギーを利用して発電すればどのような機器でもよい。
 このような発電機器100による発電電力の測定値を、第1の実施の形態や第2の実施の形態で示した手法を用いて校正することで、該発電電力を経済価値換算が可能な精度で測定できる。
 本実施形態の電力情報処理装置5は、買電用の電力メータ4から送信される総消費電力の測定値に加えて、発電力検出手段102による発電電力の測定値及び売電力メータ9から送信される測定値を所定のサンプリング周期毎に保存する。そして、発電力検出手段102による2つの測定値の差γが有限値であるとき、該2つの測定値に対応する測定時刻における買電用の電力メータ4または売電力メータ9による2つの測定値のうち、有限である方の測定値の差β、並びにβ/γを算出して保存し、所定の測定期間にて得られた複数のβ/γの中央値、または予め決められた数のβ/γの中央値を用いて、発電力検出手段102で測定された発電機器100の発電電力量を校正する。
 本実施形態の電力計測システムは、発電機器100で発電した電力を宅内の各電気機器へ供給すると共にその余剰電力を配電系統へ逆潮流させることで電力会社へ販売し、発電機器100による発電電力量が不足する場合は電力会社の配電系統から電力の供給を受ける余剰電力売買システムに適用することを前提とする。このようなシステムでは、売電力メータ9は、発電機器100で発電した電力のうち、宅内で使用しない余剰電力の値を測定することになる。また、売電力メータ9及び買電用の電力メータ4は、いずれか一方が動作することになるため、動作している電力メータの測定値を用いて発電力検出手段102による発電量の測定値を校正すればよい。
 ところで、発電機器100を備えた需要家宅では、所定の期間における発電機器100の発電量をA、宅内の各電気機器による総消費電力量をB、売電力メータ9による測定値をC、買電用の電力メータ4による測定値をDとしたとき、次の式が成り立つ。
 余剰電力がある場合:A-B=C
 余剰電力が無い場合:B-A=D
 これらの式から解るように、第3の実施の形態の電力計測システムでは、発電機器100による発電電力が、電気機器8毎の校正係数γの測定精度を悪化させる擾乱要因となる。
 したがって、第3の実施の形態の電力計測システムでは、第1の実施の形態や第2の実施の形態で示した手法を用いて宅内の各電気機器8の消費電力の測定値を校正する場合、発電機器100の発電電力量Aが0(ゼロ)になる夜間の測定値を優先的に用いることが望ましい。また、電気機器8毎の消費電力の測定値の校正精度をより向上させたい場合は、各電気機器8を個別に運転させる、あるいは電気機器8の消費電力の測定期間では発電機器による発電動作を強制的に停止させる等の手法を採用してもよい。一方、発電機器100による発電量の測定値の校正精度を向上させる場合は、宅内の各電気機器を強制的に停止させる手法を採用してもよい。
 上述したように、第1の実施の形態や第2の実施の形態の電力計測システムでは、経済価値に換算可能な精度で電気機器毎の二酸化炭素排出量の見積もりが可能となり、カーボンフットプリント、エコポイント、環境税、カーボンクレジット等の各種サービスへの適用が可能となる効果がある。また、需要反応プログラムに参加する際、電気機器毎の寄与度を高精度に把握することが可能であり、貢献度に対する金銭対価の支払いを精度よく行うことができる効果がある。
 第3の実施の形態の電力計測システムによれば、これらの効果に加えて、自然エネルギーにより発電された電力であるグリーン電力の使用量や利用率を需要家単位で把握することが可能になる。すなわち、余剰電力がある場合は、上記Bの値またはA-Cの値がグリーン電力の使用量であり、このときのグリーン電力の利用率は100%になる。一方、余剰電力が無い場合は、上記Aの値がグリーン電力の使用量であり、このときのグリーン電力の利用率はA/B×100またはA/(A+D)×100になる。
 発電機器100を備えた需要家宅では、電力会社の配電系統及び発電機器100から宅内の各電気機器8へ電力が供給されるため、売電力メータ9による測定値Cと買電用の電力メータ4による測定値Dだけで、グリーン電力の使用量や利用率を経済価値に換算可能な精度で把握することは困難である。
 本実施形態の電力測定システムによれば、電気機器8毎の消費電力の測定値(校正値)を積算することで上記総消費電力Bを経済価値換算が可能な精度で測定することが可能であり、発電機器100の発電電力量Aも経済価値換算が可能な精度で測定できる。そして、計量法に則って測定した売電力メータ9による測定値C及び買電用の電力メータ4による測定値Dを取得すれば、上記式より需要家毎のグリーン電力の使用量及び利用率を求めることができる。
 このような需要家毎のグリーン電力の使用量及び利用率を取得できれば、例えば、将来、需要家毎のCOの排出権等にキャップ制(一定期間におけるCOの排出量に上限が設定される制度)が導入された場合でも、各需要家は対応することが可能になる。
 なお、本実施形態の電力測定システムは、図11に示すように発電機器100だけでなく、該発電機器100で発電された電力を蓄電する蓄電池110を備えた構成にも適用できる。その場合、蓄電池110に、充放電電力を測定する電力検出手段111と、電力検出手段111の測定値を電力情報処理装置5に送信する情報通信手段112とを有する電力測定装置113を搭載すればよい。電力測定装置113が備える電力検出手段111には、第1の実施の形態や第2の実施の形態と同様に、例えば変流器及び変圧器を備えた周知の電子式電力量センサを用いればよい。情報通信手段112には、例えば950MHz帯の無線周波数を利用するZigbee無線端末を用いればよい。
 蓄電池110に対する充電電力は、電気機器8の消費電力と同じカテゴリーと捉えることができるため、蓄電池110の充電時は、蓄電池110が備える電力量センサ(電力検出手段111)の測定値を、第1の実施の形態や第2の実施の形態で示した手法で校正すればよい。
 一方、蓄電池110の放電時は、例えば宅内の各電気機器を配電系統へ売電しない状態で動作させておき、そのときの各電気機器の総消費電力の測定値(校正値)Aと計量法に則って測定された買電用の電力メータ4の測定値Bとを用いて、放電時の蓄電池110の電力検出手段111の測定値Cを、C=A-Bで校正すればよい。
 このようにして蓄電池110が備える電力検出手段111の測定値を校正すれば、蓄電池110の充電時の電力及び放電時の電力をそれぞれ経済価値換算が可能な精度で測定できる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細は本願発明のスコープ内で当業者が理解し得る様々な変更が可能である。
 この出願は、2009年12月2日に出願された特願2009-274607号、並びに2010年3月10日に出願された特願2010-053117号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (15)

  1.  消費電力を測定する電力検出手段及び前記電力検出手段による測定値を送信する情報通信手段を含む電力測定装置を備えた電気機器と、
     宅内の総消費電力を所定の精度で測定すると共に、該測定値を送信する情報通信手段を備えた電力メータと、
     前記電力測定装置から送信される前記電力検出手段による測定値及び前記電力メータから送信される前記総消費電力の測定値を所定のサンプリング周期毎に保存し、前記電力検出手段による2つの測定値の差αが有限値であるとき、該2つの測定値に対応する前記電力メータによる2つの測定値の差β、並びにβ/αを算出して保存し、所定の測定期間にて得られた複数のβ/αの中央値、または予め決められた数のβ/αの中央値を用いて、前記電力検出手段で測定された前記電気機器の消費電力を校正する電力情報処理装置と、
    を有する電力計測システム。
  2.  発電電力を測定する発電力検出手段及び前記電力検出手段による測定値を送信する情報通信手段を含む発電力測定装置を備えた発電機器と、
     前記発電機器により発電された電力のうち、余剰電力を所定の精度で測定すると共に、該測定値を送信する情報通信手段を備えた売電力メータと、
    をさらに有し、
     前記電力情報処理装置は、
     前記発電力測定装置から送信される前記発電力検出手段による測定値及び前記売電力メータから送信される前記余剰電力の測定値を所定のサンプリング周期毎に保存し、前記発電力検出手段による2つの測定値の差γが有限値であるとき、該2つの測定値に対応する前記電力メータまたは前記売電力メータによる2つの測定値のうち、有限である方の2つの測定値の差β、並びにβ/γを算出して保存し、所定の測定期間にて得られた複数のβ/γの中央値、または予め決められた数のβ/γの中央値を用いて、前記発電力検出手段で測定された前記発電機器の発電電力を校正する請求項1に記載の電力計測システム。
  3.  前記電力情報処理装置は、
     前記電力検出手段の検出特性に非線形性を有する場合、
     前記電力検出手段による所定の測定電力範囲毎に前記β/αの中央値を算出して保存し、前記測定電力範囲毎に得られた前記β/αの中央値を用いて前記電力検出手段で測定された前記電気機器の消費電力を校正する請求項1または2記載の電力計測システム。
  4.  前記電力測定装置に前記電気機器の環境温度を測定する温度測定手段をさらに備え、
     前記電力情報処理装置は、
     前記温度測定手段による所定の測定温度範囲毎に前記β/αの中央値を算出して保存し、前記測定温度範囲毎に得られた前記β/αの中央値を用いて前記電力検出手段で測定された前記電気機器の消費電力を校正する請求項1から3のいずれか1項記載の電力計測システム。
  5.  前記電力メータは、
     前記宅内の総消費電力を計量法に則った精度で測定する請求項1から4のいずれか1項記載の電力計測システム。
  6.  電力測定対象である電気機器に、該電気機器の消費電力を測定する電力検出手段及び前記電力検出手段による測定値を送信する情報通信手段を含む電力測定装置を設け、
     宅内の総消費電力を所定の精度で測定する電力メータに、該測定値を送信する情報通信手段を設け、
     コンピュータが、
     前記電力測定装置から送信される前記電力検出手段による測定値及び前記電力メータから送信される前記総消費電力の測定値を所定のサンプリング周期毎に保存し、
     前記電力検出手段による2つの測定値の差αが有限値であるとき、該2つの測定値に対応する前記電力メータによる2つの測定値の差β、並びにβ/αを算出して保存し、
     所定の測定期間にて得られた複数のβ/αの中央値、または予め決められた数のβ/αの中央値を用いて、前記電力検出手段で測定された前記電気機器の消費電力の値を校正する電力計測方法。
  7.  発電機器に、発電電力を測定する発電力検出手段及び前記電力検出手段による測定値を送信する情報通信手段を含む発電力測定装置を設け、
     前記発電機器により発電された電力のうち、余剰電力を所定の精度で測定する売電力メータに、該測定値を送信する情報通信手段を設け、
     前記コンピュータが、
     前記発電力測定装置から送信される前記発電力検出手段による測定値及び前記売電力メータから送信される前記余剰電力の測定値を所定のサンプリング周期毎に保存し、
     前記発電力検出手段による2つの測定値の差γが有限値であるとき、該2つの測定値に対応する前記電力メータまたは前記売電力メータによる2つの測定値のうち、有限である方の2つの測定値の差β、並びにβ/γを算出して保存し、
     所定の測定期間にて得られた複数のβ/γの中央値、または予め決められた数のβ/γの中央値を用いて、前記発電力検出手段で測定された前記発電機器の発電電力の値を校正する請求項6記載の電力計測方法。
  8.  前記電力検出手段の検出特性に非線形性を有する場合、
     前記コンピュータが、
     前記電力検出手段による所定の測定電力範囲毎に前記β/αの中央値を算出して保存し、前記測定電力範囲毎に得られた前記β/αの中央値を用いて前記電力検出手段で測定された前記電気機器の消費電力を校正する請求項6または7記載の電力計測方法。
  9.  前記電力測定装置に前記電気機器の環境温度を測定する温度測定手段をさらに備え、
     前記コンピュータが、
     前記温度測定手段による所定の測定温度範囲毎に前記β/αの中央値を算出して保存し、前記測定温度範囲毎に得られた前記β/αの中央値を用いて前記電力検出手段で測定された前記電気機器の消費電力を校正する請求項6から8のいずれか1項記載の電力計測方法。
  10.  前記電力メータは、前記宅内の総消費電力を計量法に則った精度で測定する請求項6から9のいずれか1項記載の電力計測方法。
  11.  消費電力を測定する電力検出手段及び前記電力検出手段による測定値を送信する情報通信手段を含む電力測定装置を備えた電気機器から送信される、前記電力検出手段による測定値を校正するための情報処理装置であって、
     前記電力測定装置から送信される前記電力検出手段による測定値及び宅内の総消費電力を所定の精度で測定する電力メータから送信される総消費電力の測定値を受信する情報通信手段と、
     前記電力検出手段による測定値及び前記電力メータの測定値を所定のサンプリング周期毎に取得し、前記電力検出手段による2つの測定値の差αが有限値であるとき、該2つの測定値に対応する前記電力メータによる2つの測定値の差β、並びにβ/αを算出し、所定の測定期間にて得られた複数のβ/αの中央値、または予め決められた数のβ/αの中央値を用いて、前記電力検出手段で測定された前記電気機器の消費電力の値を校正する処理装置と、
     前記サンプリング周期毎に取得された前記電力検出手段による測定値及び前記電力メータの測定値を保存すると共に、前記β/αの値を保存する記憶装置と、
    を有する情報処理装置。
  12.  前記情報通信手段は、
     発電電力を測定する発電力検出手段及び前記電力検出手段による測定値を送信する情報通信手段を含む発電力測定装置から送信される、前記発電力検出手段による発電機器の発電電力の測定値と、
     前記発電機器により発電された電力のうち、余剰電力を所定の精度で測定する売電力メータから送信される、前記余剰電力の測定値と、
    を受信し、
     前記処理装置は、
     前記発電力測定装置から送信される前記発電力検出手段による測定値及び前記売電力メータから送信される前記余剰電力の測定値を所定のサンプリング周期毎に取得し、
     前記発電力検出手段による2つの測定値の差γが有限値であるとき、該2つの測定値に対応する前記電力メータまたは前記売電力メータによる2つの測定値のうち、有限である方の2つの測定値の差β、並びにβ/γを算出し、
     所定の測定期間にて得られた複数のβ/γの中央値、または予め決められた数のβ/γの中央値を用いて、前記発電力検出手段で測定された前記発電機器の発電電力の値を校正し、
     前記記憶装置は、
     サンプリング周期毎に取得された前記発電力検出手段による測定値及び前記売電力メータから送信される前記余剰電力の測定値を保存すると共に、前記β/γの値を保存する請求項11記載の情報処理装置。
  13.  前記処理装置は、
     前記電力検出手段の検出特性に非線形性を有する場合、
     前記電力検出手段による所定の測定電力範囲毎に前記β/αの中央値を算出して保存し、前記測定電力範囲毎に得られた前記β/αの中央値を用いて前記電力検出手段で測定された前記電気機器の消費電力を校正する請求項11または12記載の情報処理装置。
  14.  前記処理装置は、
     前記電力測定装置が備える温度測定手段で測定された前記電気機器の環境温度が送信されると、
     前記温度測定手段による所定の測定温度範囲毎に前記β/αの中央値を算出して保存し、前記測定温度範囲毎に得られた前記β/αの中央値を用いて前記電力検出手段で測定された前記電気機器の消費電力を校正する請求項11から13のいずれか1項記載の情報処理装置。
  15.  前記電力メータは、前記宅内の総消費電力を計量法に則った精度で測定する請求項11から14のいずれか1項記載の情報処理装置。
PCT/JP2010/068149 2009-12-02 2010-10-15 電力計測システム、電力計測方法および情報処理装置 WO2011067988A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/513,584 US9513141B2 (en) 2009-12-02 2010-10-15 Electric power measurement system, electric power measurement method, and information processing device
EP10834441.7A EP2511716B1 (en) 2009-12-02 2010-10-15 Power measurement system, power measurement method, and information processing device
JP2011544217A JP5644774B2 (ja) 2009-12-02 2010-10-15 電力計測システム、電力計測方法および情報処理装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-274607 2009-12-02
JP2009274607 2009-12-02
JP2010-053117 2010-03-10
JP2010053117 2010-03-10

Publications (1)

Publication Number Publication Date
WO2011067988A1 true WO2011067988A1 (ja) 2011-06-09

Family

ID=44114847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068149 WO2011067988A1 (ja) 2009-12-02 2010-10-15 電力計測システム、電力計測方法および情報処理装置

Country Status (4)

Country Link
US (1) US9513141B2 (ja)
EP (1) EP2511716B1 (ja)
JP (1) JP5644774B2 (ja)
WO (1) WO2011067988A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103532229A (zh) * 2013-09-13 2014-01-22 南方电网科学研究院有限责任公司 一种智能电网电力信息安全通信***及方法
CN103941207A (zh) * 2014-03-03 2014-07-23 广州供电局有限公司 电力计量自动化终端检测方法及其***
CN104793168A (zh) * 2015-04-28 2015-07-22 安徽华茂纺织股份有限公司 纤维比电阻仪的校验方法
EP2680014A3 (en) * 2012-06-28 2015-10-07 Electronic Systems Protection, Inc. Power quality diagnosis for power conditioning
WO2015182217A1 (ja) * 2014-05-29 2015-12-03 日本電気株式会社 監視システム、監視機器、サーバ、監視機器の動作方法、サーバの動作方法、及び、プログラム
CN106228098A (zh) * 2016-07-12 2016-12-14 华立科技股份有限公司 电能表射频模块低功耗检卡方法
JP2017138043A (ja) * 2016-02-03 2017-08-10 三菱電機株式会社 換気システムおよび換気制御ユニット
JP2018004331A (ja) * 2016-06-28 2018-01-11 トヨタホーム株式会社 電力管理装置の設置構造及び建物
JP2018023076A (ja) * 2016-08-05 2018-02-08 パナソニックIpマネジメント株式会社 通信装置、及び通信システム
EP2653796B1 (en) * 2012-04-19 2020-08-12 LG Electronics, Inc. System and method for controlling a plurality of points, each having an air conditioner, an illumination device and an electric device
WO2021241442A1 (ja) 2020-05-27 2021-12-02 京セラ株式会社 電力管理システム、電力変換装置及び電力管理方法
WO2024069851A1 (ja) * 2022-09-29 2024-04-04 住友電気工業株式会社 計測精度管理システム、管理装置、管理方法、管理プログラム、及び充放電装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9454217B1 (en) * 2011-03-03 2016-09-27 Hannext, LLC Monitoring, controlling and reducing vampire power using a central controller in a network of power switch routers
US10209729B2 (en) * 2014-04-28 2019-02-19 Nec Corporation Energy control system, energy control device, energy control method, and storage medium
JP6548105B2 (ja) * 2014-07-18 2019-07-24 パナソニックIpマネジメント株式会社 電力計測装置およびそれを用いた電力計測システム
CN104394020A (zh) * 2014-12-04 2015-03-04 国家电网公司 用电采集设备故障自动处理和安全控制***及方法
KR101727390B1 (ko) * 2015-07-28 2017-04-26 엘에스산전 주식회사 전력 측정 시스템 및 이를 이용한 부하 전력 모니터링 시스템 및 그 동작 방법
KR101707745B1 (ko) * 2015-09-02 2017-02-16 엘에스산전 주식회사 전력 모니터링 시스템 및 그의 전력 모니터링 방법
KR101717853B1 (ko) 2015-09-02 2017-03-27 엘에스산전 주식회사 전력 모니터링 시스템 및 그의 전력 모니터링 방법
KR101717854B1 (ko) 2015-09-03 2017-03-17 엘에스산전 주식회사 전력 모니터링 시스템 및 그의 전력 모니터링 방법
CN105449868B (zh) * 2015-12-29 2018-03-20 山东宇晟电气有限公司 智能用电服务平台
CN105547332B (zh) * 2016-01-27 2017-11-21 深圳市天创达科技有限公司 Vrv空调计费***
CN105720687B (zh) * 2016-02-02 2019-04-30 国家电网公司 电表串户监管***
CN107228993B (zh) * 2016-03-24 2020-07-31 佛山市顺德区美的电热电器制造有限公司 压力烹饪器具的能效测试方法和装置
US10886728B2 (en) 2018-07-12 2021-01-05 Ovh Circuit implementing an AC smart fuse for a power distribution unit
CN112015116B (zh) * 2020-08-20 2024-03-29 国网天津市电力公司 一种可在多环境下搜集电器指纹的负荷感知方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3403368B2 (ja) 1999-02-01 2003-05-06 財団法人電力中央研究所 電気機器モニタリングシステム及び動作異常警報システム
JP2004280618A (ja) * 2003-03-18 2004-10-07 Hitachi Ltd エネルギー管理システム
JP3602835B2 (ja) 2002-05-17 2004-12-15 任天堂株式会社 ビデオゲーム装置およびその制御方法ならびにゲームプログラム
JP2005032235A (ja) 2003-06-20 2005-02-03 Matsushita Electric Ind Co Ltd エネルギー管理システム、エネルギー管理方法及び省エネルギー推奨機器情報提供装置
JP3877269B2 (ja) 2000-05-18 2007-02-07 財団法人電力中央研究所 電気機器モニタリングシステム及びこれを利用した異常警告システム
JP2008089435A (ja) 2006-10-02 2008-04-17 Matsushita Electric Works Ltd 電力監視システム
JP2009159732A (ja) * 2007-12-26 2009-07-16 Panasonic Electric Works Co Ltd 直流配電システム
JP2009274607A (ja) 2008-05-15 2009-11-26 Suzuki Motor Corp 車両用縁取り部材の尖端部掛止構造
JP2010053117A (ja) 2008-08-29 2010-03-11 Dic Corp ナフタレン誘導体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4864512A (en) 1986-08-20 1989-09-05 John Fluke Mfg. Co., Inc. Measurement apparatus with plural displays of measured parameter and selectable function thereof
US7133568B2 (en) 2000-08-04 2006-11-07 Nikitin Alexei V Method and apparatus for analysis of variables
WO2002029952A1 (en) * 2000-09-29 2002-04-11 Matsushita Electric Industrial Co., Ltd. Power supply/demand control system
JP2003264880A (ja) 2002-03-12 2003-09-19 Toshiba Lighting & Technology Corp 住宅機器制御システム
AT502460B1 (de) * 2004-02-19 2009-01-15 Siemens Ag Oesterreich Einrichtung zur spitzenlast-abdeckung
JP2005250523A (ja) 2004-03-01 2005-09-15 Hitachi Ltd 電力使用量管理装置、電力使用量管理方法、電力使用量管理用プログラムおよびそのプログラムを記憶した記憶媒体
US7174260B2 (en) 2004-04-01 2007-02-06 Blue Line Innovations Inc. System and method for reading power meters
US7318206B2 (en) 2005-09-30 2008-01-08 International Business Machines Corporation Offset determination for measurement system matching
JP2008236680A (ja) 2007-03-23 2008-10-02 Ntt Docomo Inc 情報通信装置および機能制限方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3403368B2 (ja) 1999-02-01 2003-05-06 財団法人電力中央研究所 電気機器モニタリングシステム及び動作異常警報システム
JP3877269B2 (ja) 2000-05-18 2007-02-07 財団法人電力中央研究所 電気機器モニタリングシステム及びこれを利用した異常警告システム
JP3602835B2 (ja) 2002-05-17 2004-12-15 任天堂株式会社 ビデオゲーム装置およびその制御方法ならびにゲームプログラム
JP2004280618A (ja) * 2003-03-18 2004-10-07 Hitachi Ltd エネルギー管理システム
JP2005032235A (ja) 2003-06-20 2005-02-03 Matsushita Electric Ind Co Ltd エネルギー管理システム、エネルギー管理方法及び省エネルギー推奨機器情報提供装置
JP2008089435A (ja) 2006-10-02 2008-04-17 Matsushita Electric Works Ltd 電力監視システム
JP2009159732A (ja) * 2007-12-26 2009-07-16 Panasonic Electric Works Co Ltd 直流配電システム
JP2009274607A (ja) 2008-05-15 2009-11-26 Suzuki Motor Corp 車両用縁取り部材の尖端部掛止構造
JP2010053117A (ja) 2008-08-29 2010-03-11 Dic Corp ナフタレン誘導体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GEORGE W. HART: "Non-intrusive Appliance Monitoring", IEEE, 1992, pages 1870 - 1891
LESLIE K. NORFORD: "Non-intrusive electrical load monitoring in commercial building based on steady state and transient load-detection algorithms", ENERGY AND BUILDING, vol. 24, 1996, pages 51 - 46
See also references of EP2511716A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2653796B1 (en) * 2012-04-19 2020-08-12 LG Electronics, Inc. System and method for controlling a plurality of points, each having an air conditioner, an illumination device and an electric device
US10184963B2 (en) 2012-06-28 2019-01-22 Electronic Systems Protection, Inc. Power quality diagnosis for power conditioning
EP2680014A3 (en) * 2012-06-28 2015-10-07 Electronic Systems Protection, Inc. Power quality diagnosis for power conditioning
CN103532229A (zh) * 2013-09-13 2014-01-22 南方电网科学研究院有限责任公司 一种智能电网电力信息安全通信***及方法
CN103941207A (zh) * 2014-03-03 2014-07-23 广州供电局有限公司 电力计量自动化终端检测方法及其***
US10274573B2 (en) 2014-05-29 2019-04-30 Nec Corporation Monitoring system, monitoring device and method of operating the same, server and method of operating the same, and non-transitory storage medium
JPWO2015182217A1 (ja) * 2014-05-29 2017-04-20 日本電気株式会社 監視システム、監視機器、サーバ、監視機器の動作方法、サーバの動作方法、及び、プログラム
WO2015182217A1 (ja) * 2014-05-29 2015-12-03 日本電気株式会社 監視システム、監視機器、サーバ、監視機器の動作方法、サーバの動作方法、及び、プログラム
CN104793168A (zh) * 2015-04-28 2015-07-22 安徽华茂纺织股份有限公司 纤维比电阻仪的校验方法
JP2017138043A (ja) * 2016-02-03 2017-08-10 三菱電機株式会社 換気システムおよび換気制御ユニット
JP2018004331A (ja) * 2016-06-28 2018-01-11 トヨタホーム株式会社 電力管理装置の設置構造及び建物
CN106228098A (zh) * 2016-07-12 2016-12-14 华立科技股份有限公司 电能表射频模块低功耗检卡方法
JP2018023076A (ja) * 2016-08-05 2018-02-08 パナソニックIpマネジメント株式会社 通信装置、及び通信システム
WO2018025740A1 (ja) 2016-08-05 2018-02-08 パナソニックIpマネジメント株式会社 通信装置、及び通信システム
WO2021241442A1 (ja) 2020-05-27 2021-12-02 京セラ株式会社 電力管理システム、電力変換装置及び電力管理方法
JPWO2021241442A1 (ja) * 2020-05-27 2021-12-02
JP7414988B2 (ja) 2020-05-27 2024-01-16 京セラ株式会社 電力管理システム、電力変換装置及び電力管理方法
WO2024069851A1 (ja) * 2022-09-29 2024-04-04 住友電気工業株式会社 計測精度管理システム、管理装置、管理方法、管理プログラム、及び充放電装置

Also Published As

Publication number Publication date
JPWO2011067988A1 (ja) 2013-04-18
JP5644774B2 (ja) 2014-12-24
US9513141B2 (en) 2016-12-06
EP2511716B1 (en) 2016-04-27
EP2511716A1 (en) 2012-10-17
EP2511716A4 (en) 2014-07-30
US20120290232A1 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5644774B2 (ja) 電力計測システム、電力計測方法および情報処理装置
TWI493827B (zh) 使用頻率調節貸項數之反應式負載管理的方法、裝置與系統
US7606639B2 (en) Local power consumption load control
US10598705B2 (en) Method and apparatus for monitoring power transmission
US8396821B2 (en) Utility monitoring systems and methods of use
Thakare et al. Implementation of an energy monitoring and control device based on IoT
US10580048B2 (en) Synchronizing a cost estimate on an electronic device
US20060170409A1 (en) Test pulses for enabling revenue testable panel meters
US20170234698A1 (en) Intelligent Receptacle
US20120026007A1 (en) Utility Meter and Method of Operation
WO2011065497A1 (ja) 消費電力計測システム、コンセント装置、制御装置、計測装置、及び消費電力計測方法
US20170310161A1 (en) Energy planning system and energy planning method
JP2013505466A (ja) 壁ソケットを介して住居又は商業ビルの消費電力を測定するためのシステム及び方法
JP5484510B2 (ja) 省エネ支援装置、省エネ支援システム
JP6386064B2 (ja) 電力管理装置、電力管理方法及び電力管理システム
WO2016056248A1 (ja) 行動管理装置、行動管理システムおよび行動管理方法
JP5325604B2 (ja) エネルギーモニタリングシステム
CN113138362A (zh) 对电能表电能计量误差进行自动补偿的校准方法
JP2012196127A (ja) 電気デバイスのエネルギー使用量プロファイルを生成するシステムおよび方法
KR101254846B1 (ko) 발전 시스템에서의 발전량 및 부하량 측정 장치
CN112946559A (zh) 一种基于功率检测的智能电表检测方法
Jebroni et al. Home energy monitoring system towards smart control of energy consumption
JP2017107384A (ja) メーターシステム及び検針システム
WO2016056249A1 (ja) 行動管理装置、行動管理システムおよび行動管理方法
JP5947675B2 (ja) 電力制御装置、およびそれを用いた電力供給システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834441

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011544217

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13513584

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010834441

Country of ref document: EP