WO2011065135A1 - 微小金属粒子含有組成物 - Google Patents

微小金属粒子含有組成物 Download PDF

Info

Publication number
WO2011065135A1
WO2011065135A1 PCT/JP2010/067858 JP2010067858W WO2011065135A1 WO 2011065135 A1 WO2011065135 A1 WO 2011065135A1 JP 2010067858 W JP2010067858 W JP 2010067858W WO 2011065135 A1 WO2011065135 A1 WO 2011065135A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic compound
silver
particles
composition
silver particles
Prior art date
Application number
PCT/JP2010/067858
Other languages
English (en)
French (fr)
Inventor
インスー キム
チャン グン リー
寛貴 北藤
Original Assignee
トクセン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トクセン工業株式会社 filed Critical トクセン工業株式会社
Priority to US13/511,424 priority Critical patent/US9545668B2/en
Priority to CN201080053297.8A priority patent/CN102740997B/zh
Priority to KR1020127013400A priority patent/KR101747472B1/ko
Publication of WO2011065135A1 publication Critical patent/WO2011065135A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F9/26Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0551Flake form nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the present invention relates to a composition containing fine metal particles and a method for producing and using the composition.
  • the conductive paste contains fine metal particles, a binder, and a liquid organic compound (solvent).
  • the conductive paste needs excellent printing characteristics.
  • the conductive paste also needs excellent conductivity. In order to obtain these characteristics, extremely small particles (so-called nanoparticles) are used in the conductive paste.
  • Typical metal particles are silver particles.
  • Japanese Patent Laid-Open No. 2008-517153 discloses a production method for obtaining fine silver particles from silver oxalate.
  • the object of the present invention is to improve handling of fine metal particles. Another object of the present invention is to prevent aggregation of fine metal particles.
  • the composition containing fine metal particles according to the present invention includes a large number of fine metal particles and an organic compound coated on the surface of each particle.
  • the mass ratio of the organic compound to the total amount of the composition is 2% or more and 15% or less.
  • the particle material is silver.
  • the organic compound is bound to the surface of the particle.
  • the particles are scaly.
  • the method for producing a composition containing fine silver particles comprises: A step of dispersing a silver compound in a liquid carrier to obtain a dispersion; A step of precipitating fine silver particles in which the first organic compound is bonded to the surface of the dispersion, Separating the silver particles from a carrier; Introducing the silver particles into a liquid of a second organic compound, and attaching the second organic compound to the surface of the silver particles; And a step of separating the silver particles from the liquid of the second organic compound.
  • the method of using the fine particle-containing composition according to the present invention includes A step of preparing a microparticle-containing composition comprising a large number of microparticles and an organic compound coated on the surface of each particle, wherein the mass ratio of the organic compound to the total amount is 2% to 15%; It includes a step of mixing a solvent having a high affinity with an organic compound with the composition part to obtain a paste.
  • metal particles are dispersed in an organic compound matrix. Therefore, even though the metal particles are fine, the composition is excellent in handleability.
  • the organic compound further suppresses particle aggregation.
  • FIG. 1 is a cross-sectional view showing silver particles and an organic compound contained in a composition according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the silver particles of FIG.
  • FIG. 1 shows fine silver particles 2.
  • the silver particles 2 are scaly.
  • the size of the silver particles 2 is 200 nm or more and 10 ⁇ m or less.
  • the silver particles 2 are so-called nanoparticles.
  • FIG. 1 also shows the coating layer 4 together with the silver particles 2.
  • the silver particles 2 are covered with a coating layer 4.
  • the coating layer 4 is made of an organic compound. This organic compound is a liquid at room temperature and normal pressure as a simple substance.
  • the composition containing a large number of silver particles 2 and an organic compound preferably has a cake shape.
  • the cake form means a state between the paste and the powder. Therefore, the fluidity of this composition is lower than the fluidity of the paste.
  • This composition does not scatter like powder.
  • This composition is excellent in handleability even though the silver particles 2 are minute. In addition, this composition may exhibit the state of a paste.
  • An organic compound exists between the silver particles 2 and the other silver particles 2. This organic compound suppresses aggregation of the silver particles 2.
  • a typical use of this composition is as a material for conductive pastes.
  • a solvent, a binder, a dispersant and the like are added to this composition to obtain a conductive paste. Since the silver particles 2 are not aggregated in the composition, the silver particles 2 are sufficiently dispersed even in the conductive paste. Therefore, this paste is excellent in conductivity and printing characteristics. In the production of the conductive paste, a special apparatus for redispersing the aggregated particles is unnecessary.
  • the mass ratio of the organic compound to the total amount of this composition is 2% or more. In this composition, aggregation hardly occurs. In this respect, the ratio is more preferably 4% or more and particularly preferably 5% or more. When the organic compound is excessive, the degree of freedom in adjusting the components of the conductive paste is hindered. From this viewpoint, the ratio is preferably 15% or less.
  • a silver compound is dispersed in a liquid carrier.
  • a typical silver compound is silver oxalate.
  • Silver oxalate is obtained by reacting an aqueous solution of a silver compound with an oxalate compound.
  • a typical silver compound is silver nitrate (AgNO 3 ).
  • the oxalic acid compound include oxalic acid and sodium oxalate. Impurities are removed from the precipitate obtained by the reaction to obtain silver oxalate powder.
  • a hydrophilic liquid is used as a carrier.
  • the carrier include water and alcohol.
  • Preferred alcohols are ethyl alcohol, methyl alcohol and propyl alcohol. Two or more liquids may be used in combination with the carrier.
  • Silver oxalate is practically insoluble in the carrier. Silver oxalate is dispersed in a carrier. Dispersion can be promoted by sonication.
  • This dispersion is heated.
  • the reaction shown by the following formula occurs by heating.
  • silver oxalate decomposes with heat.
  • Ag 2 C 2 O 4 2Ag + 2CO 2
  • silver is precipitated as fine particles.
  • the surface of the silver particles 2 is attached with an organic compound derived from silver oxalate or a carrier (hereinafter referred to as “first organic compound”). This first organic compound is chemically bonded to the silver particles 2.
  • the silver particles 2 are put into a centrifuge.
  • the carrier is removed from the silver particles 2 by the centrifuge. If necessary, the silver particles 2 may be put into another liquid and then put into the centrifuge again. By using another liquid, the carrier can be almost completely removed from the silver particles 2.
  • the silver particles 2 are put into a liquid of another organic compound (hereinafter referred to as “second organic compound”).
  • second organic compound adheres to the first organic compound due to surface tension or the like.
  • the second organic compound adheres to the surface of the silver particle 2 via the first organic compound.
  • the second organic compound includes alcohols such as aliphatic alcohols, alicyclic alcohols, araliphatic alcohols and polyhydric alcohols; (poly) alkylene glycol monoalkyl ether and (poly) alkylene glycol monoaryl Glycol ethers such as ethers; glycol esters such as (poly) alkylene glycol acetates; glycol ether esters such as (poly) alkylene glycol monoalkyl ether acetates; such as aliphatic and aromatic hydrocarbons Hydrocarbons; esters; ethers such as tetrahydrofuran and diethyl ether; and amides such as dimethylformamide (DMF), dimethylacetamide (DMAC) and N-methyl-2-pyrrolidone (NMP) It is included. Two or more second organic compounds may be used in combination.
  • DMF dimethylformamide
  • DMAC dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • aliphatic alcohols include heptanol; octanol such as 1-octanol, 2-octanol and terpineol; decanol such as 1-decanol; lauryl alcohol; tetradecyl alcohol; cetyl alcohol; 2-ethyl-1-hexanol; Examples include alcohol; hexadecenol; and oleyl alcohol.
  • a saturated aliphatic alcohol or an unsaturated aliphatic alcohol having 6 to 30 carbon atoms is preferred.
  • a saturated aliphatic alcohol or an unsaturated aliphatic alcohol having 8 to 24 carbon atoms is particularly preferable.
  • alicyclic alcohols examples include cycloalkanols such as cyclohexanol; and terpene alcohols such as terpineol and dihydroterpineol.
  • aromatic fatty alcohols examples include benzyl alcohol and phenethyl alcohol.
  • polyhydric alcohols examples include glycols such as ethylene glycol, propylene glycol, diethylene glycol and dipropylene glycol.
  • glycols such as ethylene glycol, propylene glycol, diethylene glycol and dipropylene glycol.
  • An alkylene glycol having 2 to 4 carbon atoms is preferred.
  • alcohols having 3 or more hydroxyl groups such as glycerin.
  • (Poly) alkylene glycol monoalkyl ether includes ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, propylene glycol monomethyl ether And dipropylene glycol monomethyl ether and tripropylene glycol butyl ether.
  • As the (poly) alkylene glycol monoaryl ether 2-phenoxyethanol is exemplified.
  • Examples of (poly) alkylene glycol acetate include carbitol acetate.
  • Examples of (poly) alkylene glycol monoalkyl ether acetate include ethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate and propylene glycol monomethyl ether acetate.
  • saturated aliphatic hydrocarbons and unsaturated aliphatic hydrocarbons exemplified by tetradecane, octadecane, heptamethylnonane and tetramethylpentadecane can be used.
  • aromatic hydrocarbons examples include toluene and xylene.
  • esters examples include benzyl acetate, isoborneol acetate, methyl benzoate and ethyl benzoate.
  • the silver particles 2 are put into a centrifuge.
  • the excess second organic compound is removed from the silver particles 2 by the centrifuge.
  • the second organic compound that is not removed forms the coating layer 4 shown in FIG. After removal by centrifuge, no drying of the composition is necessary. By not drying, the wet state of the composition is maintained. If necessary, this composition may be appropriately dried.
  • a solvent or the like is added to this composition to obtain a conductive paste.
  • the aforementioned organic compounds exemplified for the second organic compound can be used as the solvent.
  • a solvent having a high affinity with the second organic compound By using a solvent having a high affinity with the second organic compound, a high-quality paste can be obtained. From the viewpoint of quality, it is preferable to select an appropriate second organic compound in consideration of the nature of the solvent that will be used for the conductive paste.
  • the same solvent as the second organic compound may be added.
  • particles of a metal other than silver can be used.
  • metals other than silver include gold, copper, zinc oxide, and titanium oxide.
  • Example 1 2.8 g of silver oxalate powder was put into 300 cm 3 of distilled water. Ultrasonic treatment was applied for 10 minutes, and silver oxalate powder was dispersed in distilled water. This dispersion was heated to 130 ° C. and reacted for 15 minutes to obtain a precipitate. The precipitate was taken out and water was removed with a centrifuge. This precipitate was put into methanol and stirred. The precipitate was taken out and methanol was removed with a centrifuge. This precipitate was put into ethylene glycol monoethyl ether acetate (ECA) and stirred. The precipitate was taken out and excess ethylene glycol monoethyl ether acetate was removed with a centrifuge.
  • ECA ethylene glycol monoethyl ether acetate
  • the precipitate was heat-dried for a predetermined time to obtain a composition containing fine silver particles shown in FIG.
  • This composition consists of silver particles and a coating layer. Silver particles are scaly. The particle diameter of the silver particles is about 1 ⁇ m.
  • This composition contains 97.9% by mass of silver particles and 2.04% by mass of ethylene glycol monoethyl ether acetate. The composition is in the form of a cake.
  • Example 2-3 and Comparative example 1-2 Except changing the time of centrifugation, it carried out similarly to Example 1, and obtained the composition containing the fine silver particle of Example 2-3 and Comparative Example 1-2.
  • the amount of 2-ethoxyethyl acetate in each composition is shown in Table 1 below.
  • Example 4-6 and Comparative Example 3-4 While changing ethylene glycol monoethyl ether acetate (ECA) to carbitol acetate (CA) and changing the time of centrifugation, the amount of carbitol acetate (CA) in each composition was as shown in Table 2 below.
  • the compositions containing fine silver particles of Example 4-6 and Comparative Example 3-4 were obtained in the same manner as Example 1.
  • Example 7-9 and Comparative Example 5-6 The ethylene glycol monoethyl ether acetate (ECA) was changed to methanol and the centrifugation time was changed so that the amount of methanol in each composition was as shown in Table 3 below. Thus, compositions containing fine silver particles of Example 7-9 and Comparative Example 5-6 were obtained.
  • ECA ethylene glycol monoethyl ether acetate
  • Example 10-12 and Comparative Examples 7-8 In addition to changing ethylene glycol monoethyl ether acetate (ECA) to dipropylene glycol methyl ether (DPGME) and changing the centrifugation time, the amount of dipropylene glycol methyl ether (DPGME) in each composition is shown in Table 4 below.
  • ECA ethylene glycol monoethyl ether acetate
  • DPGME dipropylene glycol methyl ether
  • Table 4 A composition containing fine silver particles of Examples 10-12 and Comparative Examples 7-8 was obtained in the same manner as in Example 1 except that it was as shown.
  • the compositions of Example 12 and Comparative Example 8 are pasty.
  • Examples 13-15 and Comparative Examples 9-10 While changing ethylene glycol monoethyl ether acetate (ECA) to N-methyl-2-pyrrolidone (NMP) and changing the time of centrifugation, the amount of N-methyl-2-pyrrolidone (NMP) in each composition was as follows: The compositions containing fine silver particles of Examples 13-15 and Comparative Examples 9-10 were obtained in the same manner as in Example 1 except that they were as shown in Table 5 below. Each composition of Examples 13-15 and Comparative Example 10 is in the form of a paste.
  • ECA ethylene glycol monoethyl ether acetate
  • NMP N-methyl-2-pyrrolidone
  • Examples 16-18 and Comparative Examples 11-12 The same procedure as in Example 1 was conducted except that ethylene glycol monoethyl ether acetate (ECA) was changed to terpineol and the amount of terpineol in each composition was changed as shown in Table 6 below by changing the centrifugation time. Thus, compositions containing fine silver particles of Examples 16-18 and Comparative Examples 11-12 were obtained.
  • ECA ethylene glycol monoethyl ether acetate
  • Example 19-21 and Comparative Examples 13-14 The ethylene glycol monoethyl ether acetate (ECA) was changed to isopropyl alcohol (IPA) and the centrifugation time was changed so that the amount of isopropyl alcohol (IPA) in each composition was as shown in Table 7 below. Others were the same as Example 1, and the compositions containing fine silver particles of Examples 19-21 and Comparative Examples 13-14 were obtained.
  • ECA ethylene glycol monoethyl ether acetate
  • IPA isopropyl alcohol
  • Examples 22-24 and Comparative Examples 15-16 While changing ethylene glycol monoethyl ether acetate (ECA) to ethylene glycol monophenyl ether and changing the time of centrifugation, the amount of ethylene glycol monophenyl ether in each composition was as shown in Table 8 below. Others were the same as Example 1, and the compositions containing fine silver particles of Examples 22-24 and Comparative Examples 15-16 were obtained.
  • ECA ethylene glycol monoethyl ether acetate
  • the wiring obtained from the composition containing fine silver particles of the examples is excellent in conductivity. This is because there is little aggregation of silver particles. From this evaluation result, the superiority of the present invention is clear.
  • the fine metal particle-containing composition according to the present invention can be used in applications such as a printed circuit paste, an electromagnetic shielding film paste, a conductive adhesive paste, and a die bonding paste.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Non-Insulated Conductors (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

 微小銀粒子含有組成物は、多数の微小銀粒子2と、それぞれの銀粒子2の表面を覆うコーティング層4とからなる。この銀粒子2は、いわゆるナノ粒子である。この銀粒子2は、鱗片状である。コーティング層4は、有機化合物からなる。この有機化合物は、銀粒子2に付着している。この有機化合物は、銀粒子2の凝集を抑制する。この組成物は、ケーキ状を呈する。組成物の全量に対する有機化合物の質量比率は、2%以上15%以下である。

Description

微小金属粒子含有組成物
 本発明は、微小金属粒子含有組成物並びにその製造方法及び使用方法に関する。
 電子機器のプリント基板の製造では、素子を連結するパターンが印刷される。この印刷には、導電性ペーストが用いられる。導電性ペーストは、微小金属粒子、バインダー及び液状有機化合物(溶剤)を含んでいる。導電性ペーストには、優れた印刷特性が必要である。導電性ペーストには、優れた導電性も必要である。これらの特性を得るべく、導電性ペーストには、極めて小さな粒子(いわゆるナノ粒子)が用いられている。
 典型的な金属粒子は、銀粒子である。特開2008-517153公報には、シュウ酸銀から微小銀粒子を得る製造方法が開示されている。
特開2008-517153公報
 金属粒子は、微小であるが故に、取り扱いが難しい。導電性ペーストの生産性は、十分ではない。
 微小金属粒子は、凝集しやすい。凝集後の金属粒子は、ペースト製造時に再分散させる必要がある。この再分散は、容易にはなされ得ない。凝集は、導電性ペーストの品質を損なう。
 本発明の目的は、微小金属粒子の取り扱い性の改善にある。本発明の他の目的は、微小金属粒子の凝集の防止にある。
 本発明に係る微小金属粒子含有組成物は、多数の微小金属粒子と、それぞれの粒子の表面にコートされた有機化合物とを含む。この組成物の全量に対する、有機化合物の質量比率は、2%以上15%以下である。
 好ましくは、粒子の材質は、銀である。好ましくは、有機化合物は、粒子の表面に結合している。好ましくは、粒子は鱗片状である。
 本発明に係る微小銀粒子含有組成物の製造方法は、
 液体であるキャリヤーに銀化合物を分散させて分散液を得る工程、
 上記分散液の中に、第一有機化合物がその表面に結合した微小な銀粒子を析出させる工程、
 上記銀粒子をキャリヤーと分離する工程、
 上記銀粒子を第二有機化合物の液に投入し、この第二有機化合物を銀粒子の表面に付着させる工程、
及び
 上記銀粒子を第二有機化合物の液と分離する工程
を含む。
 本発明に係る微小粒子含有組成物の使用方法は、
 多数の微小粒子と、それぞれの粒子の表面にコートされた有機化合物とを含んでおり、全量に対する有機化合物の質量比率が2%以上15%以下である微小粒子含有組成物を準備する工程
及び
 上記有機化合物との親和力が高い溶剤を上記組成部と混合し、ペーストを得る工程
を含む。
 本発明に係る組成物では、有機化合物のマトリクス中に金属粒子が分散している。従って、金属粒子が微小であるにも関わらず、その組成物は、取り扱い性に優れる。有機化合物はさらに、粒子の凝集を抑制する。
図1は、本発明の一実施形態に係る組成物に含まれる銀粒子と有機化合物とが示された断面図である。 図2は、図1の銀粒子が示された斜視図である。
 以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。
 図1には、微小銀粒子2が示されている。図2に示されるように、この銀粒子2は、鱗片状である。この銀粒子2のサイズは、200nm以上10μm以下である。この銀粒子2は、いわゆるナノ粒子である。
 図1には、銀粒子2とともに、コーティング層4も示されている。銀粒子2は、コーティング層4で覆われている。コーティング層4は、有機化合物からなる。この有機化合物は、単体では、常温常圧下にて液体である。
 多数の銀粒子2と有機化合物とを含む組成物は、好ましくは、ケーキ状を呈する。ここでケーキ状とは、ペーストとパウダーとの間の状態を意味する。従ってこの組成物の流動性は、ペーストの流動性よりも低い。この組成物は、パウダーのように飛散することがない。この組成物は、銀粒子2が微小であるにも関わらず、取り扱い性に優れる。なお、この組成物がペーストの状態を呈していてもよい。
 銀粒子2と他の銀粒子2との間には、有機化合物が存在する。この有機化合物は、銀粒子2の凝集を抑制する。
 この組成物の典型的な用途は、導電性ペーストの材料である。この組成物に、溶剤、バインダー、分散剤等が添加され、導電性ペーストが得られる。組成物において銀粒子2が凝集していないので、導電性ペーストにおいても、銀粒子2が十分に分散する。従って、このペーストは、導電性及び印刷特性に優れる。導電性ペーストの製造にあたり、凝集粒子を再分散させるための特殊な装置は、不要である。
 この組成物の全量に対する有機化合物の質量比率は、2%以上である。この組成物では、凝集が生じにくい。この観点から、この比率は4%以上がより好ましく、5%以上が特に好ましい。有機化合物が過剰であると、導電性ペーストの成分調整の自由度が阻害される。この観点から、この比率は15%以下が好ましい。
 以下、この組成物の製造方法の一例が説明される。この製造方法では、液体であるキャリヤーに、銀化合物が分散させられる。典型的な銀化合物は、シュウ酸銀である。シュウ酸銀は、銀化合物の水溶液と、シュウ酸化合物(oxalate compound)との反応によって得られる。典型的な銀化合物は、硝酸銀(AgNO)である。シュウ酸化合物としては、シュウ酸及びシュウ酸ナトリウムが例示される。反応によって得られた沈殿物から不純物が除去されて、シュウ酸銀の粉末が得られる。
 キャリヤーとして、親水性の液体が用いられる。キャリヤーの具体例としては、水及びアルコールが挙げられる。好ましいアルコールは、エチルアルコール、メチルアルコール及びプロピルアルコールである。キャリヤーに2種以上の液が併用されてもよい。
 シュウ酸銀は、実質的には、キャリヤーに溶解しない。シュウ酸銀は、キャリヤーに分散させられる。超音波処理により、分散が促進されうる。
 この分散液が、加熱される。加熱により、下記式に示された反応が起こる。換言すれば、シュウ酸銀が熱で分解する。
   Ag = 2Ag + 2CO
この分散液の中に、銀が微小粒子として析出する。
 この銀粒子2の表面には、シュウ酸銀又はキャリヤーに由来する有機化合物(以下「第一有機化合物」と称される)が付着する。この第一有機化合物は、化学的に銀粒子2と結合している。
 この銀粒子2が、遠心分離器に投入される。遠心分離器により、銀粒子2からキャリヤーが除去される。必要に応じ、他の液体に銀粒子2が投入され、再度遠心分離器に投入されてもよい。他の液体が用いられることで、銀粒子2からキャリヤーがほぼ完全に除去されうる。
 この銀粒子2が、他の有機化合物(以下「第二有機化合物」と称される)の液に投入される。投入により、第二有機化合物が、表面張力等によって第一有機化合物に付着する。換言すれば、第二有機化合物が、第一有機化合物を介して銀粒子2の表面に付着する。第二有機化合物には、脂肪族アルコール類、脂環族アルコール類、芳香脂肪族アルコール類及び多価アルコール類のようなアルコール類;(ポリ)アルキレングリコールモノアルキルエーテル及び(ポリ)アルキレングリコールモノアリールエーテルのようなグリコールエーテル類;(ポリ)アルキレングリコールアセテートのようなグリコールエステル類;(ポリ)アルキレングリコールモノアルキルエーテルアセテートのようなグリコールエーテルエステル類;脂肪族炭化水素及び芳香族炭化水素のような炭化水素類;エステル類;テトラヒドロフラン及びジエチルエーテルのようなエーテル類;並びにジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAC)及びN-メチル-2-ピロリドン(NMP)のようなアミド類が含まれる。2種以上の第二有機化合物が併用されてもよい。
 脂肪族アルコール類としては、ヘプタノール;1-オクタノール、2-オクタノール及びテルピネオールのようなオクタノール;1-デカノールのようなデカノール;ラウリルアルコール;テトラデシルアルコール;セチルアルコール;2-エチル-1-ヘキサノール;オクタデシルアルコール;ヘキサデセノール;並びにオレイルアルコールが例示される。炭素数が6以上30以下の、飽和脂肪族アルコール又は不飽和脂肪族アルコールが好ましい。炭素数が8以上24以下の、飽和脂肪族アルコール又は不飽和脂肪族アルコールが、特に好ましい。
 脂環族アルコール類としては、シクロヘキサノールのようなシクロアルカノール類;並びにテルピネオール及びジヒドロテルピネオールのようなテルペンアルコール類が例示される。
 芳香脂肪族アルコール類としては、ベンジルアルコール及びフェネチルアルコールが例示される。
 多価アルコール類としては、エチレングリコール、プロピレングリコール、ジエチレングリコール及びジプロピレングリコールのようなグリコール類が例示される。炭素数が2以上4以下のアルキレングリコールが好ましい。グリセリンのような、3以上のヒドロキシル基を有するアルコールも好ましい。
 (ポリ)アルキレングリコールモノアルキルエーテルとしては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル及びトリプロピレングリコールブチルエーテルが例示される。(ポリ)アルキレングリコールモノアリールエーテルとしては、2-フェノキシエタノールが例示される。
 (ポリ)アルキレングリコールアセテートとしては、酢酸カルビトールが例示される。
 (ポリ)アルキレングリコールモノアルキルエーテルアセテートとしては、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート及びプロピレングリコールモノメチルエーテルアセテートが例示される。
 脂肪族炭化水素としては、テトラデカン、オクタデカン、ヘプタメチルノナン及びテトラメチルペンタデカンが例示される、飽和脂肪族炭化水素及び不飽和脂肪族炭化水素が用いられうる。
 芳香族炭化水素としては、トルエン及びキシレンが例示される。
 エステル類としては、酢酸ベンジル、酢酸イソボルネオール、安息香酸メチル及び安息香酸エチルが例示される。
 この銀粒子2が、遠心分離器に投入される。遠心分離器により、銀粒子2から余剰の第二有機化合物が除去される。除去されない第二有機化合物は、図1に示されたコーティング層4を形成する。遠心分離器による除去の後、この組成物に対する乾燥は必要ない。乾燥がなされないことにより、組成物のウエット状態が保たれる。必要に応じ、この組成物に適度な乾燥がなされてもよい。
 前述の通り、この組成物に溶剤等が添加され、導電性ペーストが得られる。第二有機化合物に関して例示された前述の有機化合物が、溶剤として用いられうる。第二有機化合物との親和力が高い溶剤が用いられることで、高品質なペーストが得られる。品質の観点から、導電性ペーストに用いられるであろう溶剤の性質が考慮され、適切な第二有機化合物が選択されることが好ましい。第二有機化合物と同一の溶剤が添加されてもよい。
 この組成物には、銀以外の金属の粒子が用いられうる。銀以外の金属としては、金、銅、酸化亜鉛及び酸化チタンが例示される。
 以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。
  [実施例1]
 300cmの蒸留水に2.8gのシュウ酸銀粉末を投入した。超音波処理を10分間施し、シュウ酸銀粉末を蒸留水に分散させた。この分散液を130℃に加熱し、15分間反応させて沈殿物を得た。この沈殿物を取り出して、遠心分離器にて水を除去した。この沈殿物をメタノールに投入し、攪拌した。沈殿物を取り出して、遠心分離器にてメタノールを除去した。この沈殿物をエチレングリコールモノエチルエーテルアセテート(ECA)に投入し、攪拌した。沈殿物を取り出して、遠心分離器にて余剰のエチレングリコールモノエチルエーテルアセテートを除去した。この沈殿物に所定時間の熱乾燥を施し、図1に示される微小銀粒子含有組成物を得た。この組成物は、銀粒子とコーティング層とからなる。銀粒子は、鱗片状である。銀粒子の粒子径は、約1μmである。この組成物は、97.9質量%の銀粒子と、2.04質量%のエチレングリコールモノエチルエーテルアセテートとを含んでいる。組成物は、ケーキ状である。
  [実施例2-3及び比較例1-2]
 遠心分離の時間を変更した他は実施例1と同様にして、実施例2-3及び比較例1-2の微小銀粒子含有組成物を得た。各組成物における酢酸2-エトキシエチルの量が、下記の表1に示されている。
  [参考例]
 パウダー状の銀粒子を準備した。
  [実施例4-6及び比較例3-4]
 エチレングリコールモノエチルエーテルアセテート(ECA)をカルビトールアセテート(CA)に変更するとともに、遠心分離の時間を変更し各組成物におけるカルビトールアセテート(CA)の量を下記の表2に示された通りとした他は実施例1と同様にして、実施例4-6及び比較例3-4の微小銀粒子含有組成物を得た。
  [実施例7-9及び比較例5-6]
 エチレングリコールモノエチルエーテルアセテート(ECA)をメタノールに変更するとともに、遠心分離の時間を変更し各組成物におけるメタノールの量を下記の表3に示された通りとした他は実施例1と同様にして、実施例7-9及び比較例5-6の微小銀粒子含有組成物を得た。
  [実施例10-12及び比較例7-8]
 エチレングリコールモノエチルエーテルアセテート(ECA)をジプロピレングリコールメチルエーテル(DPGME)に変更するとともに、遠心分離の時間を変更し各組成物におけるジプロピレングリコールメチルエーテル(DPGME)の量を下記の表4に示された通りとした他は実施例1と同様にして、実施例10-12及び比較例7-8の微小銀粒子含有組成物を得た。実施例12及び比較例8の組成物は、ペースト状である。
  [実施例13-15及び比較例9-10]
 エチレングリコールモノエチルエーテルアセテート(ECA)をN-メチル-2-ピロリドン(NMP)に変更するとともに、遠心分離の時間を変更し各組成物におけるN-メチル-2-ピロリドン(NMP)の量を下記の表5に示された通りとした他は実施例1と同様にして、実施例13-15及び比較例9-10の微小銀粒子含有組成物を得た。実施例13-15及び比較例10の各組成物は、ペースト状である。
  [実施例16-18及び比較例11-12]
 エチレングリコールモノエチルエーテルアセテート(ECA)をテルピネオールに変更するとともに、遠心分離の時間を変更し各組成物におけるテルピネオールの量を下記の表6に示された通りとした他は実施例1と同様にして、実施例16-18及び比較例11-12の微小銀粒子含有組成物を得た。
  [実施例19-21及び比較例13-14]
 エチレングリコールモノエチルエーテルアセテート(ECA)をイソプロピルアルコール(IPA)に変更するとともに、遠心分離の時間を変更し各組成物におけるイソプロピルアルコール(IPA)の量を下記の表7に示された通りとした他は実施例1と同様にして、実施例19-21及び比較例13-14の微小銀粒子含有組成物を得た。
  [実施例22-24及び比較例15-16]
 エチレングリコールモノエチルエーテルアセテート(ECA)をエチレングリコールモノフェニルエーテルに変更するとともに、遠心分離の時間を変更し各組成物におけるエチレングリコールモノフェニルエーテルの量を下記の表8に示された通りとした他は実施例1と同様にして、実施例22-24及び比較例15-16の微小銀粒子含有組成物を得た。
  [導電性の評価]
 微小銀粒子含有組成物に溶剤、バインダー及び分散剤を添加し、攪拌して、導電性ペーストを得た。この導電性ペーストを用い、配線を印刷した。この配線を焼結させた。この配線の電気伝導度を測定した。この結果が、指数として、下記の表1から表8に示されている。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表1から表8に示されるように、実施例の微小銀粒子含有組成物から得られた配線は、導電性に優れる。これは、銀粒子の凝集が少ないからである。この評価結果から、本発明の優位性は明らかである。
 本発明に係る微小金属粒子含有組成物は、印刷回路用ペースト、電磁波シールドフィルム用ペースト、導電性接着剤用ペースト、ダイボンディング用ペースト等の用途に用いられうる。
 2・・・銀粒子
 4・・・コーティング層

Claims (6)

  1.  多数の微小金属粒子と、それぞれの粒子の表面にコートされた有機化合物とを含んでおり、全量に対する有機化合物の質量比率が2%以上15%以下である微小金属粒子含有組成物。
  2.  上記粒子の材質が銀である請求項1に記載の組成物。
  3.  上記有機化合物が上記粒子の表面に結合している請求項1に記載の組成物。
  4.  上記粒子が鱗片状である請求項1に記載の組成物。
  5.  液体であるキャリヤーに銀化合物を分散させて分散液を得る工程、
     上記分散液の中に、第一有機化合物がその表面に結合した微小な銀粒子を析出させる工程、
     上記銀粒子をキャリヤーと分離する工程、
     上記銀粒子を第二有機化合物の液に投入し、この第二有機化合物を銀粒子の表面に付着させる工程、
    及び
     上記銀粒子を第二有機化合物の液と分離する工程
    を含む、微小銀粒子含有組成物の製造方法。
  6.  多数の微小粒子と、それぞれの粒子の表面にコートされた有機化合物とを含んでおり、全量に対する有機化合物の質量比率が2%以上15%以下である微小粒子含有組成物を準備する工程
    及び
     上記有機化合物との親和力が高い溶剤を上記組成部と混合し、ペーストを得る工程
    を含む、微小粒子含有組成物の使用方法。
PCT/JP2010/067858 2009-11-27 2010-10-12 微小金属粒子含有組成物 WO2011065135A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/511,424 US9545668B2 (en) 2009-11-27 2010-10-12 Fine metal particle-containing composition
CN201080053297.8A CN102740997B (zh) 2009-11-27 2010-10-12 含有微小金属粒子的组合物
KR1020127013400A KR101747472B1 (ko) 2009-11-27 2010-10-12 미소 금속 입자 함유 조성물

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-269564 2009-11-27
JP2009269564 2009-11-27
JP2010-217236 2010-09-28
JP2010217236 2010-09-28

Publications (1)

Publication Number Publication Date
WO2011065135A1 true WO2011065135A1 (ja) 2011-06-03

Family

ID=44066239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067858 WO2011065135A1 (ja) 2009-11-27 2010-10-12 微小金属粒子含有組成物

Country Status (6)

Country Link
US (1) US9545668B2 (ja)
JP (2) JP2015038230A (ja)
KR (1) KR101747472B1 (ja)
CN (1) CN102740997B (ja)
TW (1) TWI462120B (ja)
WO (1) WO2011065135A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167378A (ja) * 2009-11-27 2012-09-06 Tokusen Kogyo Co Ltd 微小金属粒子含有組成物
EP2832472A4 (en) * 2012-03-30 2015-07-29 Applied Nanoparticle Lab Corp COMPOSITE NANOMETAL PASTE WITH A COPPER FILL AND COMPOUND PROCESS

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6180769B2 (ja) * 2013-03-29 2017-08-16 トクセン工業株式会社 フレーク状の微小粒子
CN103147072A (zh) * 2013-04-02 2013-06-12 北京印刷学院 一种利用草酸银分解放热低温制备银导电图文层的方法
CN105256274B (zh) * 2015-08-31 2018-02-09 南京航空航天大学 一种衬底加热共溅射法制备铜锌锡硫薄膜的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183207A (ja) * 1996-12-19 1998-07-14 Tomoe Seisakusho:Kk 超微粒子及びその製造方法
WO2001070435A1 (fr) * 2000-03-22 2001-09-27 Ebara Corporation Particules metalliques composites ultrafines
JP2004043892A (ja) * 2002-07-11 2004-02-12 Sumitomo Electric Ind Ltd 貴金属微粒子とその製造方法
JP2008517153A (ja) * 2004-10-14 2008-05-22 トクセン ユー.エス.エー.、インコーポレイテッド 高純度銀粒子の製造方法
JP2008190025A (ja) * 2007-01-09 2008-08-21 Dowa Electronics Materials Co Ltd 銀微粉およびその製法並びにインク
JP2009013443A (ja) * 2007-07-02 2009-01-22 Dowa Electronics Materials Co Ltd 銀微粉の製造法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492653A (en) * 1994-11-07 1996-02-20 Heraeus Incorporated Aqueous silver composition
US5922403A (en) * 1996-03-12 1999-07-13 Tecle; Berhan Method for isolating ultrafine and fine particles
KR100402154B1 (ko) * 1999-04-01 2003-10-17 미쯔이카가쿠 가부시기가이샤 이방 도전성 페이스트
JP4732645B2 (ja) * 1999-06-15 2011-07-27 丸山 稔 金属複合超微粒子の製造方法
US20030151030A1 (en) * 2000-11-22 2003-08-14 Gurin Michael H. Enhanced conductivity nanocomposites and method of use thereof
US6986943B1 (en) * 2002-06-12 2006-01-17 Tda Research, Inc. Surface modified particles by multi-step addition and process for the preparation thereof
JP4431085B2 (ja) * 2004-06-24 2010-03-10 シャープ株式会社 導電性インキ組成物、反射部材、回路基板、電子装置
JP4705347B2 (ja) * 2004-08-09 2011-06-22 三ツ星ベルト株式会社 非水溶性高分子顔料分散剤で保護された銀コア−金シェル微粒子の製造方法
US7419775B2 (en) * 2004-11-11 2008-09-02 Konica Minolta Medical & Graphic, Inc. Micro-particle dispersion having hydrophobic protective colloid and method of manufacture thereof, photosensitive emulsion and method of manufacturing thereof, and silver salt photohermographic dry imaging material utilizing the same
EP1825940B1 (en) * 2004-11-29 2012-06-13 DIC Corporation Method for producing surface-treated silver-containing powder
US7718741B2 (en) * 2005-03-18 2010-05-18 Dainippon Ink And Chemicals, Inc. Epoxy resin composition and cured article thereof, novel epoxy resin and production method thereof, and novel phenol resin
EP1947654B1 (en) * 2005-09-29 2013-07-10 Alpha Scientific, Corporation Conductive powder and process for producing the same, conductive powder paste, and process for producing the conductive powder paste
JP2007095527A (ja) 2005-09-29 2007-04-12 Tokai Rubber Ind Ltd 導電性ペーストおよびその製造方法
US7625637B2 (en) * 2006-05-31 2009-12-01 Cabot Corporation Production of metal nanoparticles from precursors having low reduction potentials
JP5085372B2 (ja) 2007-03-13 2012-11-28 東海ゴム工業株式会社 ペースト材料
JP4294705B2 (ja) * 2007-05-30 2009-07-15 Dowaエレクトロニクス株式会社 有機物質で被覆された銀微粉の製法および銀微粉
JP5688895B2 (ja) * 2008-12-26 2015-03-25 Dowaエレクトロニクス株式会社 微小銀粒子粉末と該粉末を使用した銀ペースト
KR101747472B1 (ko) * 2009-11-27 2017-06-27 토쿠센 코교 가부시키가이샤 미소 금속 입자 함유 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183207A (ja) * 1996-12-19 1998-07-14 Tomoe Seisakusho:Kk 超微粒子及びその製造方法
WO2001070435A1 (fr) * 2000-03-22 2001-09-27 Ebara Corporation Particules metalliques composites ultrafines
JP2004043892A (ja) * 2002-07-11 2004-02-12 Sumitomo Electric Ind Ltd 貴金属微粒子とその製造方法
JP2008517153A (ja) * 2004-10-14 2008-05-22 トクセン ユー.エス.エー.、インコーポレイテッド 高純度銀粒子の製造方法
JP2008190025A (ja) * 2007-01-09 2008-08-21 Dowa Electronics Materials Co Ltd 銀微粉およびその製法並びにインク
JP2009013443A (ja) * 2007-07-02 2009-01-22 Dowa Electronics Materials Co Ltd 銀微粉の製造法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167378A (ja) * 2009-11-27 2012-09-06 Tokusen Kogyo Co Ltd 微小金属粒子含有組成物
EP2832472A4 (en) * 2012-03-30 2015-07-29 Applied Nanoparticle Lab Corp COMPOSITE NANOMETAL PASTE WITH A COPPER FILL AND COMPOUND PROCESS

Also Published As

Publication number Publication date
JP2012167378A (ja) 2012-09-06
KR101747472B1 (ko) 2017-06-27
KR20120115967A (ko) 2012-10-19
JP2015038230A (ja) 2015-02-26
CN102740997B (zh) 2016-02-24
JP5588475B2 (ja) 2014-09-10
US9545668B2 (en) 2017-01-17
CN102740997A (zh) 2012-10-17
TW201120916A (en) 2011-06-16
US20120280187A1 (en) 2012-11-08
TWI462120B (zh) 2014-11-21

Similar Documents

Publication Publication Date Title
JP5826435B1 (ja) 銅粉
CN109789482B (zh) 接合材料及使用该接合材料的接合方法
KR101951452B1 (ko) 피복 금속 미립자와 그 제조 방법
JP6029719B2 (ja) 銀粉及びその製造方法、並びに導電性ペースト
WO2017033911A1 (ja) 低温焼結性に優れる金属ペースト及び該金属ペーストの製造方法
JP4496216B2 (ja) 導電性金属ペースト
JP5647650B2 (ja) 銀微粒子インクの製造方法
JP5588475B2 (ja) 微小金属粒子含有組成物
WO2014080662A1 (ja) 銅粉及びその製造方法
WO2012070262A1 (ja) 接合材料および接合体、並びに接合方法
JP2018523758A (ja) 高温焼結型導電性ペースト用銀粉末の製造方法
JPWO2018190246A1 (ja) 銅粒子混合物及びその製造方法、銅粒子混合物分散液、銅粒子混合物含有インク、銅粒子混合物の保存方法及び銅粒子混合物の焼結方法
JP7480947B2 (ja) 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子
CN106232267A (zh) 芯壳型金属微粒的制造方法、芯壳型金属微粒、导电性油墨以及基板的制造方法
KR20130060364A (ko) 은입자 함유 조성물, 분산액 및 페이스트, 및 이들 각각의 제조 방법
WO2016125355A1 (ja) 導電性の微小粒子
WO2016067599A1 (ja) 接合用組成物
US9902862B2 (en) Method of fabricating nano-silver paste having high bonding strength
JP6605848B2 (ja) 表面被覆金属微粒子の分散溶液、ならびにこの分散溶液の塗布および焼結する工程を含む、焼結導電体および導電接続部材の製造方法
JP6387794B2 (ja) 有機被覆金属ナノ粒子及びその製造方法
WO2019142633A1 (ja) 接合用組成物
JP7283703B2 (ja) 広分布な粒度分布を持つ銀ナノ粒子の製造方法及び銀ナノ粒子
WO2023210663A1 (ja) 球状銀粉、球状銀粉の製造方法、球状銀粉製造装置、及び導電性ペースト

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053297.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832982

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13511424

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127013400

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832982

Country of ref document: EP

Kind code of ref document: A1