WO2011062204A1 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
WO2011062204A1
WO2011062204A1 PCT/JP2010/070511 JP2010070511W WO2011062204A1 WO 2011062204 A1 WO2011062204 A1 WO 2011062204A1 JP 2010070511 W JP2010070511 W JP 2010070511W WO 2011062204 A1 WO2011062204 A1 WO 2011062204A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
oil pump
electric oil
control device
speed
Prior art date
Application number
PCT/JP2010/070511
Other languages
English (en)
French (fr)
Inventor
宏平 酒井
大平 手嶋
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to DE112010004461T priority Critical patent/DE112010004461T5/de
Priority to JP2011541939A priority patent/JP5548697B2/ja
Priority to CN201080043583.6A priority patent/CN102549311B/zh
Priority to US13/501,429 priority patent/US9180769B2/en
Publication of WO2011062204A1 publication Critical patent/WO2011062204A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18018Start-stop drive, e.g. in a traffic jam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2312/00Driving activities
    • F16H2312/14Going to, or coming from standby operation, e.g. for engine start-stop operation at traffic lights
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a vehicle control device that starts an electric oil pump before an idle stop is performed.
  • the vehicle engine control device disclosed in Patent Document 1 includes an electric oil pump in addition to a drive system oil pump that supplies control hydraulic pressure to a drive force transmission system such as a continuously variable transmission.
  • the engine control device drives the electric oil pump after performing the engine stop control process. For this reason, even if the oil pump stops to stop the engine, the hydraulic oil is supplied to the driving force transmission system by driving the electric oil pump. As a result, a malfunction of the driving force transmission system can be prevented when the engine is stopped, and a driving force transmission defect when restarting can be prevented.
  • the engine control device executes an idle stop control routine shown in FIG.
  • vehicle operation information data
  • step s1 vehicle operation information
  • step s2 the engine speed Ne is a predetermined value that is a start determination value. It is determined whether or not the driving is higher than Ne1, and the process proceeds to step s3 when driving and to step s4 when stopping.
  • step s4 is reached at the time of stop, it is determined whether or not the key-on signal or the engine start condition is satisfied and the start signals Ss and Ssk are input. If No, the process directly returns to the main routine.
  • step s2 If it is determined in step s2 that the engine is being driven and the process proceeds to step s3, an engine stop permission vehicle speed setting process is performed.
  • the corresponding engine stop permission vehicle speed Vo is calculated by the permission vehicle speed setting map mp1, and the process proceeds to step s6.
  • step s6 engine stop control processing is executed.
  • step b1 it is determined whether the deceleration - ⁇ is equal to or less than a preset stoppable determination value - ⁇ 1, and a braking mode in which a steady discomfort does not occur in Yes. If the current vehicle speed Vcn is less than or equal to the engine stop permission vehicle speed Vo, it is determined whether or not the vehicle is in the braking mode in which the automatic stop control can be permitted. If it is determined that there is, in step b3, the operation returns to the main routine as it is in the operating range where the automatic stop control should be canceled.
  • step b3 it is determined whether or not the brake pedal is depressed (depression signal Sb is on). If it is on, the process proceeds to step b4. If it is off, the automatic stop condition is not satisfied, and the process returns to the main routine. In step b4, since the automatic stop condition is satisfied, the fuel supply device and the ignition device are stopped, the engine is stopped as it is even if the vehicle speed Vc is not zero, and the process returns to the idle stop control routine.
  • step s7 the electric oil pump that supplies the control hydraulic pressure to the driving force transmission system such as a continuously variable transmission is driven, and the process returns to the main routine. With this process, even if the drive system oil pump is stopped by the engine stop by driving the electric oil pump, the operating hydraulic pressure can be supplied to the hydraulic pressure switching mechanism when the engine is stopped.
  • the engine control apparatus of Patent Document 1 drives the electric oil pump in step s7 after executing the engine stop control process in step s6.
  • the electric oil pump is driven immediately after the engine is stopped, it is not always possible to supply a sufficient control hydraulic pressure to the driving force transmission system. For this reason, when performing an idle stop immediately after a vehicle stop, it is desirable to drive an electric oil pump before an engine stop.
  • the electric oil pump is driven before the vehicle stops, electric power is consumed compared to the case where the electric oil pump is driven after the vehicle stops. Therefore, in order to reduce power consumption, it is necessary to start the electric oil pump at a timing according to the traveling state of the vehicle.
  • An object of the present invention is to provide a vehicle control device that can start an electric oil pump at an optimal timing before an idle stop is performed.
  • a control device includes a driving force generator including at least an internal combustion engine (for example, the internal combustion engine 103 in the embodiment) as a driving source.
  • a driving force generator including at least an internal combustion engine (for example, the internal combustion engine 103 in the embodiment) as a driving source.
  • an internal combustion engine for example, the internal combustion engine 103 in the embodiment
  • an automatic transmission that changes the ratio between the rotational speed of the input shaft and the rotational speed of the output shaft to which the driving force is input from the driving force generator
  • the continuously variable transmission 105 in the embodiment and an electric oil pump (for example, the electric oil pump 109 in the embodiment) that is driven by power supply from a capacitor and supplies the hydraulic pressure to the automatic transmission.
  • a vehicle speed detection unit for example, the rotation speed sensors 111a and 111b and the management ECU 117 in the embodiment
  • a vehicle control device e.g., a management ECU 117 in the embodiment
  • the electric oil pump is controlled to start before the idling stop is performed when a condition regarding the vehicle speed set according to the amount of change in speed is satisfied.
  • the vehicle speed indicated by the condition set when the vehicle is decelerating is set low when the amount of change in travel speed of the vehicle is small, and the amount of change is large. It is sometimes set high, and the control device controls the start of the electric oil pump when the traveling speed of the vehicle decreases to the vehicle speed indicated by the condition.
  • the vehicle speed indicated by the condition set when the vehicle is accelerated before the idling stop is performed in a state where the electric oil pump is driven is the vehicle
  • the control device controls the stop of the electric oil pump. It is characterized by doing.
  • the vehicle speed indicated by the condition set when the vehicle turns to acceleration is higher than the vehicle speed indicated by the condition set when the vehicle decelerates. It is characterized by.
  • the vehicle detects an oil temperature detecting unit (for example, the oil in the embodiment) that detects the temperature of hydraulic oil supplied to the automatic transmission by the electric oil pump.
  • a temperature sensor 119 detects the temperature of hydraulic oil supplied to the automatic transmission by the electric oil pump.
  • the vehicle speed condition is set according to the amount of change in the travel speed of the vehicle and the temperature of the hydraulic oil, and the vehicle speed indicated by the condition is a constant amount of change in the travel speed of the vehicle. If so, the temperature is set lower as the temperature of the hydraulic oil is higher.
  • the electric oil pump when the electric oil pump is driven before the idling stop is performed, the electric oil pump is controlled to start at an optimum timing according to the amount of change in the vehicle traveling speed. Therefore, the power consumption can be suppressed.
  • the electric oil pump when the electric oil pump is stopped when the vehicle is accelerated before the idling stop is performed with the electric oil pump being driven,
  • the drive of the electric oil pump can be stopped at an optimal timing according to the amount of change in the.
  • the time required for the electric oil pump to supply a desired hydraulic pressure to the automatic transmission varies depending on the oil temperature. For this reason, even when a response delay occurs in the actual hydraulic pressure supplied by the electric oil pump due to low oil temperature, the electric oil pump supplies the desired hydraulic pressure to the automatic transmission before the idle stop. It can be.
  • Graph showing vehicle speed threshold value VthL with respect to deceleration according to oil temperature A graph showing the vehicle speed threshold value VthH with respect to the acceleration according to the oil temperature and capable of relative comparison with the vehicle speed threshold value VthL
  • Time chart showing an example of start timing of start control of the electric oil pump 109 performed when the vehicle decelerates Time chart showing an example of start timing of start control of the electric oil pump 109 performed when the vehicle decelerates
  • Time chart showing an example of the start timing of stop control of the electric oil pump 109 performed when the vehicle turns to acceleration The block diagram which shows the internal structure of the vehicle of other embodiment. Flowchart of an idle stop control routine executed by the engine control device of Patent Document 1 Flowchart of engine stop control processing routine executed by the engine control device of Patent Document 1
  • HEV Hybrid Electric Vehicle
  • the drive shaft of the electric motor is directly connected to the drive shaft of the internal combustion engine.
  • FIG. 1 is a block diagram showing an internal configuration of an HEV according to an embodiment.
  • the HEV shown in FIG. 1 (hereinafter simply referred to as “vehicle”) includes a motor (MOT) 101, an internal combustion engine (ENG) 103, and a belt type continuously variable transmission (CVT: Continuously Variable Transmission) including a torque converter.
  • 105 mechanical oil pump (OP) 107, electric oil pump (EOP) 109, rotation speed sensors 111a and 111b, motor ECU (MOT ECU) 113, engine ECU (ENG ECU) 115, and management ECU (MG ECU) 117.
  • the vehicle includes an oil temperature sensor 119.
  • the electric motor 101 is a three-phase AC motor, for example, and generates a driving force for the vehicle to travel.
  • the electric motor 101 is supplied with high voltage (for example, 100 to 200 V) electric power from a capacitor through an inverter (not shown).
  • the internal combustion engine 103 generates a driving force for the vehicle to travel.
  • the driving force from the electric motor 101 and the internal combustion engine 103 is transmitted to the drive wheels 123L and 123R via the CVT 105 and the drive shaft 121.
  • the CVT 105 converts the driving force from the electric motor 101 and / or the internal combustion engine 103 into a rotation speed and torque at a desired gear ratio, and transmits them to the driving shaft 121.
  • FIG. 2 is a diagram showing the internal configuration of the CVT 105 and the relationship between the CVT 105 and each of the electric motor 101, the internal combustion engine 103, the mechanical oil pump 107, the electric oil pump 109, the management ECU 117, and the drive wheels 123L and 123R.
  • the mechanical oil pump 107 is driven as the internal combustion engine 103 is operated, and supplies a predetermined hydraulic pressure to the CVT 105.
  • the electric oil pump 109 is driven by power supply from a capacitor (not shown) and supplies a predetermined hydraulic pressure to the CVT 105.
  • the drive shaft of the electric motor 101 is directly connected to the drive shaft of the internal combustion engine 103. For this reason, even if the internal combustion engine 103 is in a stopped state, if the electric motor 101 is driven, the drive shaft of the internal combustion engine 103 rotates and the mechanical oil pump 107 is also driven.
  • the oil temperature sensor 119 detects the temperature of hydraulic oil used by the mechanical oil pump 107 and the electric oil pump 109 (hereinafter referred to as “oil temperature”). A signal indicating the oil temperature detected by the oil temperature sensor 119 is sent to the management ECU 117.
  • the rotation speed sensors 111a and 111b detect the rotation speeds of the drive wheels 123L and 123R. Signals indicating the rotational speeds of the drive wheels 123L and 123R detected by the rotational speed sensors 111a and 111b are sent to the management ECU 117.
  • the motor ECU 113 controls the operation of the electric motor 101.
  • the engine ECU 115 controls the operation of the internal combustion engine 103.
  • the management ECU 117 controls the electric motor 101, the internal combustion engine 103, and the like. Further, the management ECU 117 receives signals from the rotation speed sensors 111a and 111b, information on the brake pedal depression state (brake pedal state information), and information on the accelerator pedal depression state (accelerator pedal state information). . In addition, the management ECU 117 calculates a traveling speed (hereinafter referred to as “vehicle speed”) Vp of the vehicle based on signals sent from the rotation speed sensors 111a and 111b. Furthermore, the management ECU 117 calculates deceleration or acceleration from the vehicle speed Vp.
  • vehicle speed traveling speed
  • the management ECU 117 determines whether or not the pre-starting condition of the electric oil pump 109 before idling stop is satisfied based on the state of the brake pedal and the state of the accelerator pedal, and each state of the vacuum booster (not shown).
  • the vacuum booster assists the driver's braking force by using negative pressure generated by intake air of the internal combustion engine 103.
  • the management ECU 117 is in a state where the brake pedal is depressed, the negative pressure in the vacuum booster is equal to or greater than a predetermined value, and the accelerator ECU is not depressed, the management ECU 117 satisfies the pre-start condition. Judge that it was done.
  • the management ECU 117 derives a vehicle speed threshold value Vth for determining the timing for starting the electric oil pump 109 after the pre-start condition is satisfied.
  • the vehicle speed threshold VthL varies depending on the deceleration of the vehicle and the oil temperature.
  • FIG. 3 is a graph showing the vehicle speed threshold value VthL with respect to the deceleration according to the oil temperature. The graph is stored as a map in a memory (not shown).
  • the vehicle speed threshold value VthL for a predetermined oil temperature varies stepwise with respect to the deceleration. When the deceleration is small, the vehicle speed threshold VthL is set low, and when the deceleration is large. The vehicle speed threshold value VthL is set high.
  • the vehicle speed threshold value VthL for a predetermined deceleration is set higher as the oil temperature is lower. This is because when the oil temperature is low, the viscosity of the hydraulic oil is high, and a response delay occurs in the control hydraulic pressure by driving the electric oil pump 109.
  • the management ECU 117 determines that the pre-start condition described above is satisfied, the management ECU 117 controls the electric oil pump 109 to start when the vehicle speed Vp decreases to the vehicle speed threshold value Vth. Thereafter, when the vehicle stops, the management ECU 117 instructs the engine ECU 115 to idle stop.
  • the management ECU 117 starts acceleration before the idling stop is performed in the state where the electric oil pump 109 is driven, and the vehicle speed Vp, which is equal to or less than the vehicle speed threshold Vth, increases to the vehicle speed threshold VthH.
  • the electric oil pump 109 is controlled to stop.
  • the vehicle speed threshold value VthH also varies depending on the acceleration of the vehicle and the oil temperature of the electric oil pump 109.
  • FIG. 4 is a graph showing the vehicle speed threshold value VthH with respect to the acceleration according to the oil temperature and capable of relative comparison with the vehicle speed threshold value VthL. The graph is stored as a map in a memory (not shown). As shown in FIG.
  • the vehicle speed threshold value VthH for a predetermined oil temperature varies stepwise with respect to the acceleration, the vehicle speed threshold value VthH when the acceleration is small is set high, and the vehicle speed threshold value when the acceleration is large.
  • the threshold value VthH is set low.
  • the vehicle speed threshold value VthH for a predetermined acceleration is set to be lower as the oil temperature is higher. Note that the vehicle speed threshold value VthH is set higher than the vehicle speed threshold value VthL regardless of the acceleration and the oil temperature.
  • FIG. 5 is a flowchart showing an operation performed by the management ECU 117 when the vehicle decelerates. As shown in FIG. 5, the management ECU 117 determines whether or not a pre-start condition for the electric oil pump 109 before the idle stop is satisfied (step S ⁇ b> 101).
  • FIG. 6 is a flowchart showing a subroutine performed in step S101 shown in FIG. As shown in FIG. 6, the management ECU 117 determines whether or not the brake pedal is being depressed based on the brake pedal state information (step S201). As a result of the determination, if the brake pedal is depressed, the process proceeds to step S203, and if the brake pedal is not depressed, the process proceeds to step S205. In step S205, the management ECU 117 determines that the pre-start condition is not satisfied (the pre-start condition is not satisfied) and returns to the main routine.
  • step S203 the management ECU 117 determines whether or not the negative pressure in the vacuum booster is a predetermined value or more. As a result of the determination, if the negative pressure is greater than or equal to a predetermined value, the process proceeds to step S207, and if the negative pressure is less than the predetermined value, the process proceeds to step S205.
  • step S207 the management ECU 117 determines whether or not the accelerator pedal is not depressed based on the accelerator pedal state information. If it is determined that the accelerator pedal is not depressed, the process proceeds to step S209. If the accelerator pedal is depressed, the process proceeds to step S205. In step S209, the management ECU 117 determines that the pre-start condition is satisfied (the pre-start condition is satisfied), and returns to the main routine.
  • step S103 the management ECU 117 proceeds to step S105 if the pre-start condition determined in step S101 is satisfied, and ends the process if not satisfied.
  • step S105 the management ECU 117 derives a vehicle speed threshold value VthL corresponding to the deceleration and the oil temperature by performing a map search or the like.
  • step S107 the management ECU 117 compares the vehicle speed Vp with the vehicle speed threshold value VthL (step S107), and when the vehicle speed Vp becomes equal to or lower than the vehicle speed threshold value VthL (Vp ⁇ VthL), the process proceeds to step S109.
  • step S109 the management ECU 117 starts the start control of the electric oil pump 109.
  • FIG. 7 is a time chart showing an example of the start timing of the start control of the electric oil pump 109 performed when the vehicle decelerates.
  • the accelerator pedal is not depressed and the brake pedal is depressed, the oil temperature is constant, and when the deceleration is large, the electric oil pump 109 is operated at the vehicle speed Va.
  • the start control is started, and when the deceleration is small, the start control of the electric oil pump 109 is started at a vehicle speed Vb lower than the vehicle speed Va. Note that it takes time for the start-up control of the electric oil pump 109 to start and the electric oil pump 109 to actually supply the desired hydraulic pressure to the CVT 105.
  • the command value of the hydraulic pressure (hydraulic pressure by EOP) supplied from the electric oil pump 109 to the CVT 105 is indicated by a one-dot chain line, and the actual value is indicated by a solid line.
  • the timing at which the start control of the electric oil pump 109 before the idling stop is started when the vehicle is decelerating takes into account the time required for the electric oil pump 109 to supply a desired hydraulic pressure to the CVT 105.
  • the speed is set fast, and when the deceleration is small, the speed is set slowly. As a result, even if the electric oil pump 109 is driven before the idle stop is performed, the power consumption can be suppressed.
  • FIG. 8 is a time chart showing an example of the start timing of the start control of the electric oil pump 109 performed when the vehicle is decelerated.
  • the electric oil pump 109 is operated at the vehicle speed Va.
  • the start control of the electric oil pump 109 is started when the vehicle speed Vb is lower than the vehicle speed Va. Note that it takes time for the start-up control of the electric oil pump 109 to start and the electric oil pump 109 to actually supply the desired hydraulic pressure to the CVT 105.
  • the viscosity of the hydraulic oil is high when the oil temperature is low, it takes more time from when the electric oil pump 109 starts until the hydraulic pressure reaches a desired value than when the oil temperature is high.
  • the command value of the hydraulic pressure (hydraulic pressure by EOP) supplied from the electric oil pump 109 to the CVT 105 is indicated by a one-dot chain line, and the actual value is indicated by a solid line.
  • the timing at which the start control of the electric oil pump 109 before the idling stop is started is the time required for the electric oil pump 109 to supply the desired hydraulic pressure to the CVT 105.
  • the electric oil pump 109 supplies the desired oil pressure to the CVT 105 before the idle stop. Can do.
  • FIG. 9 is a flowchart showing an operation performed by the management ECU 117 when the vehicle turns to acceleration before the idling stop is performed in a state where the electric oil pump 109 is driven.
  • the management ECU 117 determines whether or not the electric oil pump 109 is being driven (step S301). As a result of the determination, if the electric oil pump 109 is being driven, the process proceeds to step S303, and if the electric oil pump 109 is not being driven, the process is terminated.
  • the management ECU 117 derives a vehicle speed threshold value VthH corresponding to the acceleration and the oil temperature by performing a map search or the like.
  • step S305 the management ECU 117 compares the vehicle speed Vp with the vehicle speed threshold value VthH (step S305), and if the vehicle speed Vp exceeds the vehicle speed threshold value VthH (Vp> VthH), the process proceeds to step S307.
  • step S307 the management ECU 117 starts stop control of the electric oil pump 109.
  • FIG. 10 is a time chart showing an example of the start timing of stop control of the electric oil pump 109 performed when the vehicle turns to acceleration.
  • the stop control of the electric oil pump 109 starts at the vehicle speed Vc when the acceleration is large.
  • stop control of the electric oil pump 109 is started at a vehicle speed Vd higher than the vehicle speed Vc.
  • Vd vehicle speed
  • the hydraulic oil pump 109 it takes time for the hydraulic oil pump 109 to start the stop control and the hydraulic pressure supplied from the electric oil pump 109 to the CVT 105 actually becomes zero.
  • the command value of the hydraulic pressure (hydraulic pressure by EOP) supplied from the electric oil pump 109 to the CVT 105 is indicated by a one-dot chain line, and the actual value is indicated by a solid line.
  • the timing at which the stop control of the electric oil pump 109 is performed when the vehicle turns to acceleration before the idling stop is performed in the state where the electric oil pump 109 is driven is early when the acceleration is large, and the acceleration is increased. When it is small, it is set late. When the acceleration is large, the driver's intention to accelerate is large, and the possibility of stopping the vehicle immediately is low. In this way, the drive of the electric oil pump 109 can be stopped at an optimal timing according to the driver's intention to travel.
  • HEV has been described as an example.
  • a vehicle including only the internal combustion engine 103 may be used as a drive source.
  • the internal combustion engine 103 is started by the electric motor 101, but in the case of a vehicle having only the internal combustion engine 103 as a drive source, the internal combustion engine 103 is started by the cell motor 201 shown in FIG.
  • CVT continuously variable transmission
  • AT automatic stepped transmission
  • Electric motor 101 Electric motor (MOT) 103 Internal combustion engine (ENG) 105 Continuously variable transmission (CVT) 107 Mechanical oil pump (OP) 109 Electric oil pump (EOP) 111a, 111b Speed sensor 113 Motor ECU (MOT ECU) 115 Engine ECU (ENG ECU) 117 Management ECU (MG ECU) 119 Oil temperature sensor 201 Cell motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Transmission Device (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 駆動源として少なくとも内燃機関を含む駆動力発生部と、駆動力発生部から駆動力が入力される入力軸の回転速度と出力軸の回転速度との比を変化させる自動変速機と、蓄電器からの電力供給によって駆動して、自動変速機に作動油圧を供給する電動オイルポンプと、車両の走行速度を検出する車速検出部と、を備え、駆動力発生部のアイドルストップを行う車両の制御装置は、駆動力発生部が発生した駆動力によって車両が走行中に、当該車両の走行速度の変化量に応じて設定された車速に関する条件が満たされると、アイドルストップが行われる前に電動オイルポンプを始動制御する。したがって、アイドルストップが行われる前に電動オイルポンプを最適のタイミングで始動できる。

Description

車両の制御装置
 本発明は、アイドルストップが行われる前に電動オイルポンプを始動する車両の制御装置に関する。
 特許文献1に開示された車両のエンジン制御装置は、無段変速機等の駆動力伝達系に制御油圧を供給する駆動系のオイルポンプに加えて、電動オイルポンプを備える。当該エンジン制御装置は、エンジン停止制御処理を行った後に電動オイルポンプを駆動する。このため、エンジン停止のためにオイルポンプが停止しても、電動オイルポンプの駆動により駆動力伝達系に作動油が供給される。その結果、エンジン停止時に駆動力伝達系の作動不良を防止でき、再発進時の駆動力伝達不良を防止できる。
 上記エンジン制御装置は、図12に示すアイドルストップ制御ルーチンを実行する。当該アイドルストップ制御ルーチンでは、図12に示すように、ステップs1で車両の運転情報(データ)が各センサから入力され、記憶処理され、ステップs2ではエンジン回転数Neが始動判定値である所定値Ne1を上回る駆動時か否か判断し、駆動時にはステップs3、停止時にはステップs4に進む。停止時にステップs4に達すると、キーオン信号あるいはエンジンの始動条件が満たされて始動信号Ss、Sskが入力されているか否か判断し、Noではそのままメインルーチンにリターンする。
 ステップs2でエンジン駆動時であるとしてステップs3に進むと、エンジン停止許可車速設定処理を行なう。エンジン停止許可車速設定処理では、現在の車両の速度Vcnおよび一定時間前の車両Vcn-1の速度からその減算値δVを求め、減速度-α=δV/δtを算出し、減速度-αに応じたエンジン停止許可車速Voを許可車速設定マップmp1で演算し、ステップs6に進む。
 ステップs6ではエンジン停止制御処理を実行する。図13に示すように、エンジン停止制御処理ルーチンでは、ステップb1で減速度-αが予め設定されている停止可能判定値-α1以下であるか判断し、Yesで定常の違和感を生じない制動モード内にあると見做すと、ステップb2に達し、ここでは現在の車速Vcnがエンジン停止許可車速Vo以下であるか否か判断し、これにより、Yesで、自動停止制御を許可できる制動モードにあると判断すると、ステップb3に、自動停止制御をキャンセルすべき運転域ではそのままメインルーチンにリターンする。
 ステップb3ではブレーキペダルが踏込み状態(踏込み信号Sbオン)であるか否か判断し、オンではステップb4に進み、オフでは自動停止条件が満足されず、そのままメインルーチンにリターンする。ステップb4では自動停止条件が成立することより、燃料供給装置や点火装置を停止させ車速Vcがゼロでなくてもそのままエンジン停止を実行し、アイドルストップ制御ルーチンにリターンする。
 ステップs6の後で、ステップs7に進む。ステップs7では、無段変速機等の駆動力伝達系に制御油圧を供給する電動オイルポンプを駆動させ、メインルーチンにリターンする。この処理により電動オイルポンプの駆動により駆動系のオイルポンプがエンジンストップで停止していても、エンジン停止時に作動油圧を油圧切換え機構に供給できる。
日本国特開2005-147048号公報
 上記説明したように、特許文献1のエンジン制御装置は、ステップs6でエンジン停止制御処理を実行した後に、ステップs7で電動オイルポンプを駆動する。しかし、エンジン停止直後に電動オイルポンプを駆動しても、駆動力伝達系に十分な制御油圧を供給できるとは限らない。このため、車両停止直後にアイドルストップを行う際には、エンジン停止前に電動オイルポンプを駆動しておくことが望ましい。但し、車両が停止する前に電動オイルポンプを駆動すると、車両停止後に電動オイルポンプを駆動する場合と比べて電力が消費される。したがって、消費電力を低減するためには、車両の走行状態に応じたタイミングで電動オイルポンプを始動する必要がある。
 本発明の目的は、アイドルストップが行われる前に電動オイルポンプを最適のタイミングで始動可能な車両の制御装置を提供することである。
 上記課題を解決して係る目的を達成するために、請求項1に記載の発明の制御装置は、駆動源として少なくとも内燃機関(例えば、実施の形態での内燃機関103)を含む駆動力発生部(例えば、実施の形態での電動機101及び内燃機関103)と、前記駆動力発生部から駆動力が入力される入力軸の回転速度と出力軸の回転速度との比を変化させる自動変速機(例えば、実施の形態での無段変速機105)と、蓄電器からの電力供給によって駆動して、前記自動変速機に作動油圧を供給する電動オイルポンプ(例えば、実施の形態での電動オイルポンプ109)と、車両の走行速度を検出する車速検出部(例えば、実施の形態での回転数センサ111a,111b及びマネジメントECU117)と、を備え、前記駆動力発生部のアイドルストップを行う車両の制御装置(例えば、実施の形態でのマネジメントECU117)であって、当該制御装置は、前記駆動力発生部が発生した駆動力によって前記車両が走行中に、当該車両の走行速度の変化量に応じて設定された車速に関する条件が満たされると、前記アイドルストップが行われる前に前記電動オイルポンプを始動制御することを特徴としている。
 さらに、請求項2に記載の発明の制御装置では、前記車両が減速走行時に設定される前記条件が示す車速は、当該車両の走行速度の変化量が小さいときには低く設定され、前記変化量が大きいときには高く設定され、当該制御装置は、前記条件が示す車速まで前記車両の走行速度が低下すると、前記電動オイルポンプを始動制御することを特徴としている。
 さらに、請求項3に記載の発明の制御装置では、前記電動オイルポンプが駆動した状態でアイドルストップが行われる前に前記車両が加速に転じた時に設定される前記条件が示す車速は、当該車両の走行速度の変化量が小さいときには高く設定され、前記変化量が大きいときには低く設定され、当該制御装置は、前記条件が示す車速に前記車両の走行速度が到達すると、前記電動オイルポンプを停止制御することを特徴としている。
 さらに、請求項4に記載の発明の制御装置では、前記車両が加速に転じた時に設定される前記条件が示す車速は、前記車両が減速走行時に設定される前記条件が示す車速よりも高いことを特徴としている。
 さらに、請求項5に記載の発明の制御装置では、前記車両は、前記電動オイルポンプが前記自動変速機に供給する作動油の温度を検出する油温検出部(例えば、実施の形態での油温センサ119)を備え、前記車速に関する条件は、前記車両の走行速度の変化量及び前記作動油の温度に応じて設定され、前記条件が示す車速は、前記車両の走行速度の変化量が一定であれば、前記作動油の温度が高いほど低く設定されていることを特徴としている。
 請求項1~2に記載の発明の制御装置によれば、アイドルストップが行われる前に電動オイルポンプを駆動するにあたり、車両走行速度の変化量に応じた最適のタイミングで電動オイルポンプを始動制御するため、その消費電力を抑えることができる。
 請求項3~4に記載の発明の制御装置によれば、電動オイルポンプが駆動した状態でアイドルストップが行われる前に車両が加速に転じたときに電動オイルポンプを停止するにあたり、車両走行速度の変化量に応じた最適なタイミングで電動オイルポンプの駆動を停止することができる。
 請求項5に記載の発明の制御装置によれば、電動オイルポンプが自動変速機に所望の作動油圧を供給するまでに要する時間が油温によって異なることが考慮されている。このため、油温が低く電動オイルポンプが供給する実際の作動油圧に応答遅れが生じる場合であっても、アイドルストップ前に電動オイルポンプが所望の作動油圧を自動変速機に供給している状態とすることができる。
一実施形態のHEVの内部構成を示すブロック図 CVT105の内部構成、並びに、電動機101、内燃機関103、機械式オイルポンプ107、電動オイルポンプ109、マネジメントECU117及び駆動輪123L,123Rの各々とCVT105との関係を示す図 油温に応じた減速度に対する車速しきい値VthLを示すグラフ 油温に応じた加速度に対する車速しきい値VthHを示す、車速しきい値VthLとの相対比較が可能なグラフ 車両が減速時にマネジメントECU117が行う動作を示すフローチャート 図5に示したステップS101で行われるサブルーチンを示すフローチャート 車両が減速時に行われる電動オイルポンプ109の始動制御の開始タイミング等の例を示すタイムチャート 車両が減速時に行われる電動オイルポンプ109の始動制御の開始タイミング等の例を示すタイムチャート 電動オイルポンプ109が駆動した状態でアイドルストップが行われる前に車両が加速に転じた際にマネジメントECU117が行う動作を示すフローチャート 車両が加速に転じた際に行われる電動オイルポンプ109の停止制御の開始タイミング等の例を示すタイムチャート 他の実施形態の車両の内部構成を示すブロック図 特許文献1のエンジン制御装置が実行するアイドルストップ制御ルーチンのフローチャート 特許文献1のエンジン制御装置が実行するエンジン停止制御処理ルーチンのフローチャート
 以下、本発明の実施形態について、図面を参照して説明する。
 HEV(Hybrid Electrical Vehicle:ハイブリッド電気自動車)は、電動機及び/又は内燃機関の駆動力によって走行する。以下説明するHEVでは、電動機の駆動軸は、内燃機関の駆動軸に直結されている。
 図1は、一実施形態のHEVの内部構成を示すブロック図である。図1に示すHEV(以下、単に「車両」という。)は、電動機(MOT)101と、内燃機関(ENG)103と、トルクコンバータを含むベルト式の無段変速機(CVT:Continuously Variable Transmission)105と、機械式オイルポンプ(OP)107と、電動オイルポンプ(EOP)109と、回転数センサ111a,111bと、モータECU(MOT ECU)113と、エンジンECU(ENG ECU)115と、マネジメントECU(MG ECU)117とを備える。さらに、図1には図示していないが、車両は、油温センサ119を備える。
 電動機101は、例えば3相交流モータであり、車両が走行するための駆動力を発生する。電動機101には、図示しないインバータを介して蓄電器から高電圧(例えば100~200V)の電力が供給される。内燃機関103は、車両が走行するための駆動力を発生する。電動機101及び内燃機関103からの駆動力は、CVT105及び駆動軸121を介して駆動輪123L,123Rに伝達される。
 CVT105は、電動機101及び/又は内燃機関103からの駆動力を、所望の変速比での回転数及びトルクに変換して、駆動軸121に伝達する。図2は、CVT105の内部構成、並びに、電動機101、内燃機関103、機械式オイルポンプ107、電動オイルポンプ109、マネジメントECU117及び駆動輪123L,123Rの各々とCVT105との関係を示す図である。機械式オイルポンプ107は、内燃機関103の運転に伴って駆動し、CVT105に所定の油圧を供給する。電動オイルポンプ109は、図示しない蓄電器からの電力供給によって駆動し、CVT105に所定の油圧を供給する。
 なお、上述したように、電動機101の駆動軸は内燃機関103の駆動軸に直結されている。このため、内燃機関103が停止状態であっても、電動機101が駆動すれば、内燃機関103の駆動軸が回転して機械式オイルポンプ107も駆動される。
 油温センサ119は、機械式オイルポンプ107及び電動オイルポンプ109が用いる作動油の温度(以下「油温」という)を検出する。油温センサ119によって検出された油温を示す信号は、マネジメントECU117に送られる。回転数センサ111a,111bは、駆動輪123L,123Rの各回転数を検出する。回転数センサ111a,111bによって検出された駆動輪123L,123Rの各回転数を示す信号は、マネジメントECU117に送られる。
 モータECU113は、電動機101の運転を制御する。エンジンECU115は、内燃機関103の運転を制御する。マネジメントECU117は、電動機101及び内燃機関103等の制御を行う。また、マネジメントECU117には、回転数センサ111a,111bからの信号、並びに、ブレーキペダルの踏み込み状態に関する情報(ブレーキペダル状態情報)及びアクセルペダルの踏み込み状態に関する情報(アクセルペダル状態情報)が入力される。また、マネジメントECU117は、回転数センサ111a,111bから送られた信号に基づいて、車両の走行速度(以下「車速」という)Vpを算出する。さらに、マネジメントECU117は、車速Vpから減速度又は加速度を算出する。
 マネジメントECU117は、ブレーキペダルの状態及びアクセルペダルの状態、並びに、図示しない真空倍力装置の各状態に基づいて、アイドルストップ前における電動オイルポンプ109の始動前条件を満たすか否かを判断する。なお、真空倍力装置は、内燃機関103の吸気による負圧を利用して、ドライバのブレーキ踏力をアシストするものである。マネジメントECU117は、ブレーキペダルが踏まれた状態であり、真空倍力装置における負圧が所定値以上であり、かつ、アクセルペダルが踏まれていない状態のとき、マネジメントECU117は、始動前条件が満たされたと判断する。
 マネジメントECU117は、始動前条件が満たされた後、電動オイルポンプ109を始動するタイミングを決定するための車速しきい値Vthを導出する。車速しきい値VthLは、車両の減速度及び油温に応じて異なる。図3は、油温に応じた減速度に対する車速しきい値VthLを示すグラフである。当該グラフは、図示しないメモリにマップとして格納されている。図3に示すように、所定の油温に対する車速しきい値VthLは、減速度に対して段階的に異なり、減速度が小さいときの車速しきい値VthLは低く設定され、減速度が大きいときの車速しきい値VthLは高く設定されている。減速度が大きいとき、ドライバによる車両を停止させようとする意思は強いと考えられ、車両が停止してアイドルストップを行う可能性が高いためである。また、所定の減速度に対する車速しきい値VthLは、油温が低いほど高く設定されている。油温が低いときは作動油の粘性が高いため、電動オイルポンプ109の駆動による制御油圧に応答遅れが生じるためである。
 マネジメントECU117は、上記説明した始動前条件が満たされたと判断したとき、車速Vpが車速しきい値Vthまで低下した時点で電動オイルポンプ109を始動制御する。その後、車両が停止すると、マネジメントECU117は、アイドルストップするようエンジンECU115に指示する。
 一方、マネジメントECU117は、電動オイルポンプ109が駆動した状態でアイドルストップが行われる前に車両が加速に転じて、車速しきい値Vth以下であった車速Vpが上昇して車速しきい値VthHに到達すると、電動オイルポンプ109を停止制御する。車速しきい値VthHも、車両の加速度及び電動オイルポンプ109の油温に応じて異なる。図4は、油温に応じた加速度に対する車速しきい値VthHを示す、車速しきい値VthLとの相対比較が可能なグラフである。当該グラフは、図示しないメモリにマップとして格納されている。図4に示すように、所定の油温に対する車速しきい値VthHは、加速度に対して段階的に異なり、加速度が小さいときの車速しきい値VthHは高く設定され、加速度が大きいときの車速しきい値VthHは低く設定されている。また、所定の加速度に対する車速しきい値VthHは、油温が高いほど低く設定されている。なお、加速度及び油温にかかわらず、車速しきい値VthHは、車速しきい値VthLよりも高く設定されている。
 図5は、車両が減速時にマネジメントECU117が行う動作を示すフローチャートである。図5に示すように、マネジメントECU117は、アイドルストップ前における電動オイルポンプ109の始動前条件を満たすか否かを判断する(ステップS101)。図6は、図5に示したステップS101で行われるサブルーチンを示すフローチャートである。図6に示すように、マネジメントECU117は、ブレーキペダル状態情報に基づいて、ブレーキペダルが踏まれている状態か否かを判断する(ステップS201)。当該判断の結果、ブレーキペダルが踏まれている状態であればステップS203に進み、ブレーキペダルが踏まれていない状態であればステップS205に進む。ステップS205では、マネジメントECU117は、始動前条件を満たさない(始動前条件が不成立)と判断してメインルーチンに戻る。
 ステップS203では、マネジメントECU117は、真空倍力装置における負圧が所定値以上であるか否かを判断する。当該判断の結果、負圧が所定値以上であればステップS207に進み、負圧が所定値未満であればステップS205に進む。ステップS207では、マネジメントECU117は、アクセルペダル状態情報に基づいて、アクセルペダルが踏まれていない状態か否かを判断する。当該判断の結果、アクセルペダルが踏まれていない状態であればステップS209に進み、アクセルペダルが踏まれている状態であればステップS205に進む。ステップS209では、マネジメントECU117は、始動前条件を満たす(始動前条件が成立)と判断してメインルーチンに戻る。
 次に、マネジメントECU117は、ステップS103において、ステップS101で判断した始動前条件が成立の場合はステップS105に進み、不成立の場合は処理を終了する。ステップS105では、マネジメントECU117は、マップ検索等を行うことによって、減速度及び油温に応じた車速しきい値VthLを導出する。次に、マネジメントECU117は、車速Vpと車速しきい値VthLとを比較し(ステップS107)、車速Vpが車速しきい値VthL以下(Vp≦VthL)になるとステップS109に進む。ステップS109では、マネジメントECU117は、電動オイルポンプ109の始動制御を開始する。
 図7は、車両が減速時に行われる電動オイルポンプ109の始動制御の開始タイミング等の例を示すタイムチャートである。図7に示すように、アクセルペダルが踏まれておらず、かつ、ブレーキペダルが踏まれた状態で、油温が一定の場合、減速度が大きいときは車速Vaのときに電動オイルポンプ109の始動制御が開始され、減速度が小さいときは車速Vaよりも低い車速Vbのときに電動オイルポンプ109の始動制御が開始される。なお、電動オイルポンプ109の始動制御が開始され、電動オイルポンプ109がCVT105に所望の油圧を実際に供給するまでには時間を要する。図7のタイムチャートでは、電動オイルポンプ109がCVT105に供給する油圧(EOPによる油圧)の指令値を一点鎖線で示し、実値を実線で示した。
 このように、車両が減速走行時、アイドルストップが行われる前における電動オイルポンプ109の始動制御が開始されるタイミングは、電動オイルポンプ109がCVT105に所望の油圧を供給するまでに要する時間を考慮して、減速度が大きいときは早く、減速度が小さいときは遅く設定される。その結果、アイドルストップが行われる前に電動オイルポンプ109を駆動しても、その消費電力を抑えることができる。
 図8は、車両が減速時に行われる電動オイルポンプ109の始動制御の開始タイミング等の例を示すタイムチャートである。図8に示すように、アクセルペダルが踏まれておらず、かつ、ブレーキペダルが踏まれた状態で、減速度が略一定の場合、油温が低いときは車速Vaのときに電動オイルポンプ109の始動制御が開始され、油温が高いときは車速Vaよりも低い車速Vbのときに電動オイルポンプ109の始動制御が開始される。なお、電動オイルポンプ109の始動制御が開始され、電動オイルポンプ109がCVT105に所望の油圧を実際に供給するまでには時間を要する。さらに、油温が低いときは作動油の粘性が高いため、電動オイルポンプ109の始動から油圧が所望値となるまでには、油温が高いときと比べてさらに時間を要する。図8のタイムチャートでは、電動オイルポンプ109がCVT105に供給する油圧(EOPによる油圧)の指令値を一点鎖線で示し、実値を実線で示した。
 このように、車両が減速走行時、アイドルストップが行われる前における電動オイルポンプ109の始動制御が開始されるタイミングは、電動オイルポンプ109がCVT105に所望の油圧を供給するまでに要する時間が油温によって異なることを考慮して、油温が低いときは早く、油温が高いときは遅く設定される。したがって、油温が低く電動オイルポンプ109が供給する実際の油圧に応答遅れが生じる場合であっても、アイドルストップ前に電動オイルポンプ109が所望の油圧をCVT105に供給している状態とすることができる。
 図9は、電動オイルポンプ109が駆動した状態でアイドルストップが行われる前に車両が加速に転じた際にマネジメントECU117が行う動作を示すフローチャートである。図9に示すように、マネジメントECU117は、電動オイルポンプ109が駆動中か否かを判断する(ステップS301)。当該判断の結果、電動オイルポンプ109が駆動中であればステップS303に進み、電動オイルポンプ109が駆動中でなければ処理を終了する。ステップS303では、マネジメントECU117は、マップ検索等を行うことによって、加速度及び油温に応じた車速しきい値VthHを導出する。次に、マネジメントECU117は、車速Vpと車速しきい値VthHとを比較し(ステップS305)、車速Vpが車速しきい値VthHを超える(Vp>VthH)とステップS307に進む。ステップS307では、マネジメントECU117は、電動オイルポンプ109の停止制御を開始する。
 図10は、車両が加速に転じた際に行われる電動オイルポンプ109の停止制御の開始タイミング等の例を示すタイムチャートである。図10に示すように、電動オイルポンプ109が駆動した状態でアイドルストップが行われる前に車両が加速に転じた際、加速度が大きいときは車速Vcのときに電動オイルポンプ109の停止制御が開始され、加速度が小さいときは車速Vcよりも高い車速Vdのときに電動オイルポンプ109の停止制御が開始される。なお、電動オイルポンプ109の停止制御が開始され、電動オイルポンプ109がCVT105に供給する油圧が実際に0になるまでには時間を要する。図10のタイムチャートでは、電動オイルポンプ109がCVT105に供給する油圧(EOPによる油圧)の指令値を一点鎖線で示し、実値を実線で示した。
 このように、電動オイルポンプ109が駆動した状態でアイドルストップが行われる前に車両が加速に転じたときに電動オイルポンプ109の停止制御が行われるタイミングは、加速度が大きいときは早く、加速度が小さいときは遅く設定される。加速度が大きいときはドライバの加速意思が大きく、車両をすぐに停止する可能性は低いと考えられる。このように、ドライバの走行意思に応じた最適なタイミングで電動オイルポンプ109の駆動を停止することができる。
 なお、本実施形態ではHEVを例に説明したが、図11に示すように、駆動源としては内燃機関103のみを備えた車両であっても良い。HEVの場合、内燃機関103は電動機101によって始動されるが、駆動源として内燃機関103のみを備える車両の場合、内燃機関103は図11に示したセルモータ201によって始動される。また、無段変速機(CVT)105の代わりに自動有段変速機(AT:Automatic Transmission)が設けられても良い。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年11月18日出願の日本特許出願(特願2009-262910)に基づくものであり、その内容はここに参照として取り込まれる。
101 電動機(MOT)
103 内燃機関(ENG)
105 無段変速機(CVT)
107 機械式オイルポンプ(OP)
109 電動オイルポンプ(EOP)
111a,111b 回転数センサ
113 モータECU(MOT ECU)
115 エンジンECU(ENG ECU)
117 マネジメントECU(MG ECU)
119 油温センサ
201 セルモータ

Claims (5)

  1.  駆動源として少なくとも内燃機関を含む駆動力発生部と、
     前記駆動力発生部から駆動力が入力される入力軸の回転速度と出力軸の回転速度との比を変化させる自動変速機と、
     蓄電器からの電力供給によって駆動して、前記自動変速機に作動油圧を供給する電動オイルポンプと、
     車両の走行速度を検出する車速検出部と、を備え、前記駆動力発生部のアイドルストップを行う車両の制御装置であって、
     当該制御装置は、前記駆動力発生部が発生した駆動力によって前記車両が走行中に、当該車両の走行速度の変化量に応じて設定された車速に関する条件が満たされると、前記アイドルストップが行われる前に前記電動オイルポンプを始動制御することを特徴とする制御装置。
  2.  請求項1に記載の制御装置であって、
     前記車両が減速走行時に設定される前記条件が示す車速は、当該車両の走行速度の変化量が小さいときには低く設定され、前記変化量が大きいときには高く設定され、
     当該制御装置は、前記条件が示す車速まで前記車両の走行速度が低下すると、前記電動オイルポンプを始動制御することを特徴とする制御装置。
  3.  請求項1又は2に記載の制御装置であって、
     前記電動オイルポンプが駆動した状態でアイドルストップが行われる前に前記車両が加速に転じた時に設定される前記条件が示す車速は、当該車両の走行速度の変化量が小さいときには高く設定され、前記変化量が大きいときには低く設定され、
     当該制御装置は、前記条件が示す車速に前記車両の走行速度が到達すると、前記電動オイルポンプを停止制御することを特徴とする制御装置。
  4.  請求項3に記載の制御装置であって、
     前記車両が加速に転じた時に設定される前記条件が示す車速は、前記車両が減速走行時に設定される前記条件が示す車速よりも高いことを特徴とする制御装置。
  5.  請求項1~4のいずれか一項に記載の制御装置であって、
     前記車両は、前記電動オイルポンプが前記自動変速機に供給する作動油の温度を検出する油温検出部を備え、
     前記車速に関する条件は、前記車両の走行速度の変化量及び前記作動油の温度に応じて設定され、
     前記条件が示す車速は、前記車両の走行速度の変化量が一定であれば、前記作動油の温度が高いほど低く設定されていることを特徴とする制御装置。
PCT/JP2010/070511 2009-11-18 2010-11-17 車両の制御装置 WO2011062204A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112010004461T DE112010004461T5 (de) 2009-11-18 2010-11-17 Fahrzeugsteuersystem
JP2011541939A JP5548697B2 (ja) 2009-11-18 2010-11-17 車両の制御装置
CN201080043583.6A CN102549311B (zh) 2009-11-18 2010-11-17 车辆的控制装置
US13/501,429 US9180769B2 (en) 2009-11-18 2010-11-17 Vehicle control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-262910 2009-11-18
JP2009262910 2009-11-18

Publications (1)

Publication Number Publication Date
WO2011062204A1 true WO2011062204A1 (ja) 2011-05-26

Family

ID=44059681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070511 WO2011062204A1 (ja) 2009-11-18 2010-11-17 車両の制御装置

Country Status (5)

Country Link
US (1) US9180769B2 (ja)
JP (1) JP5548697B2 (ja)
CN (1) CN102549311B (ja)
DE (1) DE112010004461T5 (ja)
WO (1) WO2011062204A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129244A (ja) * 2011-12-20 2013-07-04 Daimler Ag パワーステアリング装置
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
JP2014034984A (ja) * 2012-08-07 2014-02-24 Fuji Heavy Ind Ltd 作動油供給装置
JP2014034983A (ja) * 2012-08-07 2014-02-24 Fuji Heavy Ind Ltd 作動油供給装置
US9115605B2 (en) 2009-09-17 2015-08-25 Echogen Power Systems, Llc Thermal energy conversion device
EP2722563A4 (en) * 2011-06-14 2016-08-03 Jatco Ltd COAST STOP VEHICLE
JP2018071450A (ja) * 2016-10-31 2018-05-10 ダイハツ工業株式会社 車両用制御装置
WO2023276752A1 (ja) * 2021-07-02 2023-01-05 ジヤトコ株式会社 車両の制御装置、車両の制御方法及びプログラム

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102691650B (zh) * 2011-03-22 2015-07-01 日立汽车***株式会社 电动油泵的控制装置和控制方法
US9366328B2 (en) * 2012-05-23 2016-06-14 Toyota Jidosha Kabushiki Kaisha Power transmission unit for vehicle
CN104334923B (zh) * 2012-05-23 2017-02-22 丰田自动车株式会社 车辆用传动装置
JP5362936B1 (ja) * 2012-07-16 2013-12-11 本田技研工業株式会社 車両の制御装置
US9541013B2 (en) * 2012-12-21 2017-01-10 Bombardier Recreational Products Inc. Method and system for limiting belt slip in a continuously variable transmission
US9482199B2 (en) * 2013-03-08 2016-11-01 Honda Motor Co., Ltd. Hydraulic pressure supply system
KR101526382B1 (ko) * 2013-04-01 2015-06-05 현대자동차 주식회사 자동변속기용 전동식 오일펌프 제어장치 및 방법
US9174628B2 (en) * 2013-10-31 2015-11-03 GM Global Technology Operations LLC Method and apparatus for controlling an electrically powered hydraulic pump in a powertrain system
KR101601448B1 (ko) * 2014-07-04 2016-03-22 현대자동차주식회사 전동식 오일펌프의 구동제어 방법 및 그 제어시스템
CN104085393B (zh) * 2014-07-04 2016-08-24 重庆长安汽车股份有限公司 一种强混车纯电动起步控制方法
US9546719B2 (en) * 2014-11-05 2017-01-17 GM Global Technology Operations LLC Multi-mode transmission for vehicle powertrain system
JP6451667B2 (ja) * 2016-03-02 2019-01-16 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP6496366B2 (ja) * 2017-08-10 2019-04-03 本田技研工業株式会社 油圧制御装置
JP6681447B2 (ja) * 2018-08-21 2020-04-15 本田技研工業株式会社 車両制御装置、及び車両制御装置を備える車両

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161565A (ja) * 2004-12-02 2006-06-22 Honda Motor Co Ltd 車両のエンジン自動停止装置
JP2007232115A (ja) * 2006-03-02 2007-09-13 Honda Motor Co Ltd 車両用制御装置
JP2010149630A (ja) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd 車両の急減速制御装置及び急減速制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3842150B2 (ja) 2002-03-08 2006-11-08 本田技研工業株式会社 車両制御装置
JP3588091B2 (ja) * 2002-08-22 2004-11-10 本田技研工業株式会社 ハイブリッド車両の油圧制御装置
JP4557528B2 (ja) 2003-11-18 2010-10-06 三菱自動車工業株式会社 車両のエンジン制御装置
JP5219659B2 (ja) 2008-04-03 2013-06-26 智之 岡村 フック掛け可能な自動車のヘッドレスト装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161565A (ja) * 2004-12-02 2006-06-22 Honda Motor Co Ltd 車両のエンジン自動停止装置
JP2007232115A (ja) * 2006-03-02 2007-09-13 Honda Motor Co Ltd 車両用制御装置
JP2010149630A (ja) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd 車両の急減速制御装置及び急減速制御方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US9115605B2 (en) 2009-09-17 2015-08-25 Echogen Power Systems, Llc Thermal energy conversion device
EP2722563A4 (en) * 2011-06-14 2016-08-03 Jatco Ltd COAST STOP VEHICLE
JP2013129244A (ja) * 2011-12-20 2013-07-04 Daimler Ag パワーステアリング装置
JP2014034984A (ja) * 2012-08-07 2014-02-24 Fuji Heavy Ind Ltd 作動油供給装置
JP2014034983A (ja) * 2012-08-07 2014-02-24 Fuji Heavy Ind Ltd 作動油供給装置
JP2018071450A (ja) * 2016-10-31 2018-05-10 ダイハツ工業株式会社 車両用制御装置
JP7016608B2 (ja) 2016-10-31 2022-02-07 ダイハツ工業株式会社 車両用制御装置
WO2023276752A1 (ja) * 2021-07-02 2023-01-05 ジヤトコ株式会社 車両の制御装置、車両の制御方法及びプログラム

Also Published As

Publication number Publication date
DE112010004461T5 (de) 2012-09-13
CN102549311B (zh) 2014-11-05
JPWO2011062204A1 (ja) 2013-04-04
CN102549311A (zh) 2012-07-04
JP5548697B2 (ja) 2014-07-16
US20120209495A1 (en) 2012-08-16
US9180769B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
JP5548697B2 (ja) 車両の制御装置
US7351182B2 (en) Drive apparatus for hybrid vehicle and control method thereof
JP4066616B2 (ja) 内燃機関の自動始動制御装置及び動力伝達状態検出装置
US9604623B2 (en) Drive control system for electric motor and method of controlling electric motor
JP3514142B2 (ja) 車両制御装置
JP5925079B2 (ja) モータ制御装置
JP2002047963A (ja) 車両の制御装置
JP5050826B2 (ja) 内燃機関装置およびその制御方法並びに動力出力装置
JP2009029314A (ja) 車両の駆動力制御装置
WO2006046351A1 (ja) ハイブリッド車用駆動装置、その制御方法及び制御装置
JPH10325346A (ja) 車両用内燃機関の自動停止始動装置
JP2010179882A (ja) 車両の再始動制御装置及び再始動制御方法
JP2011063089A (ja) ハイブリッド電気自動車の制御装置
CN108327708B (zh) 车辆的控制装置
JP4100104B2 (ja) アイドルストップ車両の制御装置
JP3454172B2 (ja) ハイブリッド車両の制御方法
JP2009143306A (ja) 内燃機関装置およびその制御方法並びに動力出力装置
US6634447B1 (en) Control device for hybrid vehicle
JP3721718B2 (ja) 車両用複合駆動システムの制御装置
JP6829770B2 (ja) 車両の制御装置及び制御方法
JPH1014010A (ja) ハイブリッド車の発電制御装置
JP2009293490A (ja) 車両用制御装置
US11208095B2 (en) Control device and control method for vehicle
JP4604687B2 (ja) 車両の制御装置
JP2005132181A (ja) パラレルハイブリッド車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043583.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831598

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541939

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13501429

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010004461

Country of ref document: DE

Ref document number: 1120100044619

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831598

Country of ref document: EP

Kind code of ref document: A1