WO2011058899A1 - 3次元空間の音源分布測定装置 - Google Patents

3次元空間の音源分布測定装置 Download PDF

Info

Publication number
WO2011058899A1
WO2011058899A1 PCT/JP2010/069406 JP2010069406W WO2011058899A1 WO 2011058899 A1 WO2011058899 A1 WO 2011058899A1 JP 2010069406 W JP2010069406 W JP 2010069406W WO 2011058899 A1 WO2011058899 A1 WO 2011058899A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound source
velocity
source distribution
laser sheet
dimensional
Prior art date
Application number
PCT/JP2010/069406
Other languages
English (en)
French (fr)
Inventor
寺村 実
有一 福地
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2011540470A priority Critical patent/JP5437389B2/ja
Priority to US13/505,869 priority patent/US8950262B2/en
Publication of WO2011058899A1 publication Critical patent/WO2011058899A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing
    • G01M9/065Measuring arrangements specially adapted for aerodynamic testing dealing with flow
    • G01M9/067Measuring arrangements specially adapted for aerodynamic testing dealing with flow visualisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/002Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means for representing acoustic field distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/80Devices characterised by the determination of the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means
    • G01P3/806Devices characterised by the determination of the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means in devices of the type to be classified in G01P3/68

Definitions

  • the present invention relates to a sound source distribution measuring apparatus in a three-dimensional space for accurately measuring a sound source distribution in a velocity field in a three-dimensional space around an object.
  • a predetermined finite calculation region is set as the range for calculating the velocity vector in the flow field by particle image velocimetry (PIV: ParticlePartImage Velocimetry).
  • PV particle image velocimetry
  • the velocity vector of the flow field is calculated by the particle image velocimetry based on the image of the measurement site, the sound pressure of the measurement site is measured with a microphone, and the cross correlation between the velocity vector and the sound pressure is calculated.
  • a device for calculating a sound source distribution map is known from Patent Document 2 below.
  • the present invention has been made in view of the above circumstances, and an object thereof is to accurately measure the sound source distribution of the velocity field in the three-dimensional space around the object.
  • the tracer particles contained in the flow field around the object are irradiated with laser light at two times separated by a minute time, and the tracer particles irradiated with the laser light are imaged.
  • a particle image velocimetry device that measures the velocity field of a three-speed component in a three-dimensional space from the two-time image obtained by imaging in, and the sound source distribution around the object from the velocity field of the three-dimensional three-velocity component
  • a sound source distribution measuring apparatus in a three-dimensional space characterized by comprising a sound source distribution measuring means for measuring is proposed.
  • the particle image flow velocity measuring device irradiates a tracer particle in the flow field with a two-dimensional laser sheet, and moves the laser sheet while moving the laser sheet.
  • a sound source distribution measuring apparatus having a second feature is characterized in that the three velocity components in a plurality of planes are acquired and the velocity field is measured by stacking the three velocity components in the plurality of planes as a steady flow.
  • the particle image flow velocity measuring device is a movable member movable along a guide member arranged in a direction parallel to the laser beam for generating the laser sheet.
  • 3D space sound source distribution measuring apparatus is proposed, which supports the laser sheet irradiating means and the imaging means, and moves the laser sheet irradiating means and the imaging means while maintaining a certain positional relationship. Is done.
  • the sound source distribution measuring means can detect the object around the object from the velocity field of the three-dimensional three-velocity component based on Proudman's theorem.
  • a sound source distribution measuring apparatus in a three-dimensional space is proposed, which has a fourth feature of measuring the sound source distribution.
  • the main guide rail 21 and the sub guide rail 22 of the embodiment correspond to the guide member of the present invention
  • the main traverser 23 and the first and second sub traversers 24A and 24B of the embodiment are the moving members of the present invention.
  • the first and second CCD cameras 32A and 32B of the embodiment correspond to the imaging means of the present invention
  • the out-of-plane velocity 1 component w and the in-plane velocity 2 components u and v of the embodiment are the velocity of the present invention.
  • the ingredient corresponds to the ingredient.
  • the particle image velocimetry apparatus irradiates the tracer particles contained in the flow field around the object with laser light at two times separated by a minute time, and the tracer irradiated with the laser light.
  • a sound source distribution measuring means determines a sound source around the object from the velocity field of the three-dimensional three-speed component. Since the distribution is measured, the sound source distribution in the three-dimensional space can be measured with high accuracy.
  • the three-speed components in a plurality of planes are acquired while moving the two-dimensional laser sheet that irradiates the tracer particles in the flow field around the object,
  • the three-velocity components in as a steady flow By stacking the three-velocity components in as a steady flow, the three-velocity component of the velocity field in the three-dimensional space around the object can be measured.
  • the laser sheet irradiating means and the imaging means are supported on a movable member movable along a guide member arranged in a direction parallel to the laser beam for generating the laser sheet, Since the sheet irradiation unit and the imaging unit are moved while maintaining a certain positional relationship, different calibrations are performed each time the position of the laser sheet is moved in order to measure the velocity field of the three-speed component in the three-dimensional space. The need for calibration can be reduced by eliminating the necessity.
  • the sound source distribution measuring means measures the sound source distribution around the object from the velocity field of the three-dimensional three-speed component based on the Proudman's theorem. It can measure with high accuracy.
  • FIG. 1 is an overall plan view of a particle image flow velocity measuring device provided in a wind tunnel.
  • FIG. 2 is an enlarged view of part 2 of FIG.
  • FIG. 3 is an enlarged sectional view taken along line 3-3 in FIG.
  • First embodiment 4 is a cross-sectional view taken along line 4-4 of FIG.
  • FIG. 5 is an explanatory view of the movement of the laser sheet and the CCD camera in the z-axis direction.
  • FIG. 6 is an explanatory diagram of the process of calculating the peak ratio from the images at the first and second times.
  • FIG. 7 is a diagram showing the relationship between the ratio of the first and second peaks and the number of erroneous vectors.
  • FIG. 8 is a block diagram showing the configuration of the sound source distribution measuring apparatus.
  • an object 12 such as a model of an automobile body is placed inside a wind tunnel 11 to which a uniform flow of air having a predetermined flow velocity is supplied, and tracer particles installed upstream thereof. Fine oil droplets (tracer particles) having a diameter of several ⁇ m are supplied from the supply means 13 into the uniform flow.
  • the uniform flow changes the direction of the flow along the surface of the object 12 and forms a three-dimensional velocity field.
  • a transparent observation window 14 is provided on at least a part of the wall surface of the wind tunnel 11, and a particle image flow velocity measuring device 15 is disposed at a position facing the object 12 with the observation window 14 interposed therebetween.
  • the particle image flow velocity measuring device 15 includes a main guide rail 21 arranged in parallel to the axis of the wind tunnel 11, a sub guide rail 22 arranged in parallel to the main guide rail 21, A main traverser 23 supported movably on the guide rail 21, a pair of first and second sub traversers 24A and 24B supported movably on the sub guide rail 22, and the main traverser 23 and the first sub traverser 24A are connected.
  • the first connecting rod 25A and the second connecting rod 25B for connecting the main traverser 23 and the second sub-traverser 24B are provided, and the first and second connecting rods 25A, 25B have the same length. .
  • An endless timing belt 28 is wound around a driving sprocket 26 and a driven sprocket 27 provided at both ends of the main guide rail 21, and one chord portion thereof is one through hole 23 a of the main traverser 23 (see FIG. 4).
  • the other string portion passes through the other through-hole 23b (see FIG. 4) of the main traverser 23 in a non-engagement manner.
  • the drive sprocket 26 is driven by a motor 29 (see FIGS. 3 and 4)
  • the timing belt 28 wound around the driven sprocket 27 rotates, and the main traverser 23 moves along the main guide rail 21.
  • the first and second sub-traversers 24A and 24B connected thereto via the first and second connecting rods 25A and 25B move along the sub-guide rail 22.
  • the laser head 30 is provided on the extended line of the main guide rail 21, and the laser head 30 irradiates the laser beam Lb along the main guide rail 21.
  • Laser sheet irradiation means 31 comprising a mirror and a cylindrical lens is provided on the upper surface of the main traverser 23, and the laser sheet irradiation means 31 converts the laser beam Lb into a laser sheet Ls that irradiates a plane orthogonal to the laser beam Lb.
  • the axes of the laser beam Lb and the wind tunnel 11 extend in the z-axis direction, and the laser sheet Ls extends in the x-axis and y-axis directions orthogonal to the z-axis direction.
  • First and second CCD cameras 32A and 32B are provided on the upper surfaces of the first and second sub-traversers 24A and 24B, respectively, and the first and second CCD cameras 32A and 32B are mirror-symmetrical with respect to the laser sheet Ls. Arranged and directed to one point on the laser sheet Ls.
  • the first and second CCD cameras 32A and 32B image a predetermined area of the laser sheet Ls in the vicinity of the object 12, and the first and second CCD cameras 32A and 32B have a focus on the entire imaging area.
  • a Shine Frog adapter is provided.
  • the main traverser 23 on which the laser sheet irradiation means 31 is mounted and the first and second sub-traversers 24A and 24B on which the first and second CCD cameras 32A and 32B are mounted move in the z-axis direction while maintaining a fixed positional relationship. Therefore, the laser sheet Ls and the first and second CCD cameras 32A and 32B move in the z-axis direction while maintaining a fixed positional relationship.
  • the main traverser 23 and the first and second sub-traversers 24A and 24B move intermittently by a predetermined distance in the z-axis direction, and each time they stop, the laser sheet Ls is irradiated twice with a short time interval ⁇ t.
  • the distance of 1 m in the z-axis direction is moved intermittently at intervals of 10 cm (see FIG. 5).
  • the time interval ⁇ t is set to be smaller as the flow velocity of the uniform flow in the wind tunnel 11 is larger, and is adjusted so that the movement distance of the tracer particles in the meantime in the z-axis direction becomes a size suitable for measurement.
  • the movement distance of the tracer particles in the z-axis direction at the time interval ⁇ t is set so as not to exceed the thickness of the laser sheet Ls in the z-axis direction.
  • the uniform flow that flows in the wind tunnel 11 changes its direction around the object 12 to become a three-dimensional flow, and the tracer particles contained therein also move along the air streamline.
  • the first and second CCD cameras 32A and 32B image the tracer particles irradiated on the laser sheet Ls in synchronization with the first irradiation at the time t1, so that 2 of the tracer particles distributed in the irradiation surface from two directions. Get the images.
  • an “image correlation method” is used in which the luminance patterns of two images acquired at two times t1 and t1 ′ are compared to obtain the movement vector of the tracer particle group.
  • FIG. 6 shows, for example, two images acquired at two times by the first CCD camera 32A. Since the axis of the first CCD camera 32A is inclined with respect to the irradiation surface of the laser sheet Ls, the xy plane of the image is inclined with respect to the xy coordinates of the irradiation surface of the laser sheet Ls.
  • the square frame is one of inspection areas obtained by dividing the image of the first CCD camera 32A into a grid pattern, and the movement vector in the xy plane of the tracer particle group is calculated in each inspection area.
  • the cross-correlation value C indicates which position in the predetermined inspection area of the second image acquired at time t1 ′ the luminance pattern of the tracer particle group in the predetermined inspection area of the first image acquired at time t1.
  • a detection is made using ( ⁇ x, ⁇ y), and the movement vector divided by time ⁇ t is set as a two-component velocity vector in the inspection region.
  • the process of calculating the two-component velocity vector will be described.
  • the initial values of the first peak value fp and the second peak value sp are both set to zero.
  • f (x, y) is a luminance function obtained from the luminance pattern of the first image
  • g (x, y) is a luminance function obtained from the luminance pattern of the second image. Therefore, g (x + ⁇ x, y + ⁇ y) corresponds to the luminance distribution of g (x, y) moved by ⁇ x in the x-axis direction and ⁇ y in the y-axis direction. Therefore, ⁇ x and ⁇ y correspond to the movement amount of the luminance pattern in the time interval ⁇ t.
  • Each inspection region is a set of n square pixels each having a length of p in the x-axis direction and n in the y-axis direction, sweeping ⁇ x from p to np, and ⁇ y from p to np
  • the cross-correlation value C ( ⁇ x, ⁇ y) is calculated while sweeping up to.
  • the cross-correlation value C ( ⁇ x, ⁇ y) exceeds the current first peak value fp
  • the cross-correlation value C ( ⁇ x, ⁇ y) becomes the new first peak value fp
  • the current first peak value fp becomes the new second peak value fp. Let it be the peak value sp.
  • the degree of correlation between the first image and the second image is high, the first peak value fp is prominently large and the second peak value sp is much smaller than the first peak value fp.
  • the degree of correlation between the first image and the second image is low, the difference between the first peak value fp and the second peak value sp becomes small. In such a case, 2 obtained based on ⁇ x and ⁇ y. The reliability of the component velocity vector is lowered.
  • the peak ratio fp / sp that is the ratio of the first peak value fp and the second peak value sp is calculated, and when the peak ratio fp / sp is greater than or equal to the threshold value 1.2, that is, the first peak value. If fp is 1.2 times or more of the second peak value sp, it is determined that the reliability of the two-component velocity vector is high, and conversely, the first peak value fp is 1. If it is less than twice, it is determined that the reliability of the two-component velocity vector is low, and the two-component velocity vector is deleted as an erroneous vector.
  • the horizontal axis is the peak ratio
  • the vertical axis is the number of erroneous vectors. From this graph, it can be seen that the number of erroneous vectors is extremely small in the region where the peak ratio is 1.2 or more, and the number of erroneous vectors increases rapidly in the region where the peak ratio is less than 1.2.
  • the two CCD cameras 32B can calculate the two component velocity vectors at the two times t1 and t1.
  • a three-component velocity vector in each inspection region can be calculated.
  • the two-component velocity vector of the inspection area obtained from the image of the first CCD camera 32A and the two-component velocity vector of the inspection area obtained from the image of the second CCD camera 32B are the same as those of the first and second CCD cameras 32A and 32B.
  • the imaging direction differs, that is, the actual three-component velocity vector differs depending on the parallax as seen from different directions.
  • the in-plane velocity (in the x-axis direction) of the laser sheet Ls is obtained by calibration.
  • a three-component velocity vector composed of velocity u and velocity v) in the y-axis direction and out-of-plane velocity (velocity w in the z-axis direction) can be calculated corresponding to each position on the irradiation surface.
  • the main traverser 23 and the first and second sub-traversers 24A and 24B are moved in the z-axis direction while maintaining a fixed positional relationship.
  • the irradiation surface shifted in the z-axis direction is irradiated by the laser sheet Ls.
  • a three-component velocity vector at each position on the new irradiation surface is calculated.
  • a state in which the irradiation surface of the particle image flow velocity measuring device 15 is at a position on the front end (upstream end) side of the object 12 is indicated by a solid line, and a state at a position on the rear end (downstream end) side of the object 12. Is indicated by a chain line.
  • the time at which each image is acquired is different, but the flow around the object Is measured as a steady flow, the time lag is not a problem.
  • the first and second CCD cameras 32A and 32B are fixed and only the laser sheet irradiation means 31 is moved in the z-axis direction, the first and second CCD cameras are moved along with the movement of the laser sheet irradiation means 31. Since the relative positional relationship with 32A and 32B changes, the calibration for calculating the three-component velocity vector from the two two-component velocity vectors obtained from the images of the first and second CCD cameras 32A and 32B is laser. Each time the position of the sheet Ls is moved, there is a problem that the number of calibration steps increases.
  • the laser sheet irradiation means 31 and the first and second CCD cameras 32A and 32B move in the z-axis direction while maintaining a certain positional relationship, every time the position of the laser sheet Ls moves. Calibration man-hours can be reduced by eliminating the need to perform calibration.
  • the particle image flow velocity measuring device 15 measures a three-component velocity vector in a three-dimensional space based on images taken by the first and second CCD cameras 32A and 32B
  • the sound source distribution measuring means 16 is three-dimensional. Measure the spatial sound source distribution. The measurement procedure will be described below.
  • the average value of the x-axis direction flow velocity u (x, y, z) of the flow measured by the particle image flow velocity measuring device 15 the average value of the y-axis direction flow velocity v (x, y, z), and the z-axis direction.
  • the turbulent energy k of the flow is calculated based on the following equation.
  • u ′ is the deviation of the x-axis direction flow velocity u with respect to the average value of the x-axis direction flow velocity u
  • v ′ is the deviation of the y-axis direction flow velocity v with respect to the average value of the y-axis direction flow velocity v
  • w ′ is It is the deviation of the z-axis direction flow velocity w from the average value of the z-axis direction flow velocity w.
  • the average value of the turbulent energy dissipation rate ⁇ is calculated based on the following equation. here.
  • the turbulent flow is sufficiently developed to reach a steady state, and the turbulent energy dissipation rate ⁇ is modeled on the assumption that the generation and dissipation of turbulent energy is in equilibrium.
  • dissipation viscous diffusion + generation
  • average value of the turbulent energy dissipation rate ⁇ may be calculated based on the following equation.
  • dissipation turbulent diffusion + viscous diffusion + generation
  • average value of the turbulent energy dissipation rate ⁇ may be calculated based on the following equation using the kinematic viscosity coefficient ⁇ .
  • an average value of the turbulent energy dissipation rate ⁇ may be calculated based on the following equation.
  • the sound pressure of the flow is calculated using Proudman's theorem.
  • is a scale constant
  • ⁇ 0 is a reference density
  • M t is a turbulent Mach number
  • a 0 is a reference sound velocity
  • k is the turbulent energy k.
  • the sound pressure SPL (x, y, z) and is calculated by the following equation using the sound power P A and the reference sound power P ref.
  • the sound pressure SPL (x, y, z) calculated in this way is a function of x, y, z, and by calculating this sound pressure SPL (x, y, z), an arbitrary position of the flow field It is possible to know the sound source distribution in the three-dimensional flow field, and it is possible to accurately grasp from what part of the three-dimensional object 12 placed in the three-dimensional flow field what kind of noise is emitted.
  • the structure of the particle image flow velocity measuring device of the present invention is not limited to the embodiment, and any structure that can obtain a three-speed component in a three-dimensional space may be used.
  • the main traverser 23 supports the laser sheet irradiation means 31 and the first and second sub-traversers 24A and 24B support the first and second CCD cameras 32A and 32B, respectively.
  • the laser sheet irradiation means 31 and the first and second CCD cameras 32A and 32B may be supported.
  • the driving means of the traverser is not limited to the driving sprocket 26, the driven sprocket 27, and the timing belt 28, and any one such as a rack and pinion mechanism or a pole screw mechanism can be adopted.
  • the laser beam emitted from the laser head 30 may be irradiated in parallel with the guide members 21 and 22 after changing the direction through an optical system such as a mirror for finely adjusting the optical axis.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

3次元空間の音源分布測定装置において、物体(12)の周囲を流れる定常流に含まれるトレーサ粒子に微小時間間隔を有する2時刻において2次元のレーザーシート(Ls)をx-y平面内に照射し、照射されたトレーサ粒子をレーザーシート(Ls)に交差する2方向から撮像手段(32A,32B)で撮像し、得られた2時刻の画像に基づいてレーザーシート(Ls)内のトレーサ粒子の面内速度2成分およびレーザーシート(Ls)に直交する面外速度1成分を測定する。またレーザーシート(Ls)に直交するz軸方向に離間する複数の面内における3速度成分を取得し、それら複数の面内における3速度成分をz軸方向に積み重ねて3次元空間における3速度成分の速度場を測定する。これにより、音源分布測定手段はプラウドマンの定理に基づいて3次元3速度成分の速度場から物体(12)まわりの音源分布を測定するので、3次元空間における音源分布を精度良く測定することができる。

Description

3次元空間の音源分布測定装置
 本発明は、物体の周囲の3次元空間の速度場の音源分布を精度良く測定するための3次元空間の音源分布測定装置に関する。
 粒子画像流速測定法(PIV:Particle Image Velocimetry)により流れ場における速度ベクトルを算出する範囲として、所定の有限な計算領域を設定し、この計算領域外の渦の影響を領域内の渦の影響に置き換えたうえで、Howeの式と物体形状に適したコンパクトグリーン関数とを組み合わせた式を用いて二重極音源の分布を求めるものが、下記特許文献1により公知である。
 また被測定部位を撮像した画像に基づいて粒子画像流速測定法により流れ場の速度ベクトルを演算するとともに、マイクロフォンで被測定部位の音圧を測定し、それら速度ベクトルおよび音圧の相互相関計算により音源分布マップを演算するものが、下記特許文献2により公知である。
日本特開2005-3368号公報 日本特開2008-64692号公報
 ところで上記特許文献1に記載されたものは、公知のステレオPIVシステムによる3次元の空力音源分布の取得を可能にしているが、公知のステレオPIVシステムでは2次元3成分の速度場しか求めることができず、3次元物体の周囲の3次元流れ場の複雑な音源分布を精度良く求めることができないという問題があった。
 また上記特許文献2に記載されたものは、音源探査のために粒子画像流速測定装置以外にマイクロフォンを必要とするだけでなく、得られた音源分布マップは音源の位置を推定し得る程度の精度しかなく、同じく3次元物体の周囲の3次元流れ場の複雑な音源分布を精度良く求めることができないという問題があった。
 本発明は前述の事情に鑑みてなされたもので、物体の周囲の3次元空間の速度場の音源分布を精度良く測定することを目的とする。
 上記目的を達成するために、本発明によれば、物体の周囲の流れ場に含まれるトレーサ粒子に微小時間離れた2時刻においてレーザー光を照射し、レーザー光を照射されたトレーサ粒子を撮像手段で撮像して得られた前記2時刻の画像から3次元空間における3速度成分の速度場を測定する粒子画像流速測定装置と、前記3次元3速度成分の速度場から前記物体まわりの音源分布を測定する音源分布測定手段とを備えることを第1の特徴とする3次元空間の音源分布測定装置が提案される。
 また本発明によれば、前記第1の特徴に加えて、前記粒子画像流速測定装置は、前記流れ場のトレーサ粒子に2次元のレーザーシートを照射し、前記レーザーシートを移動させながら複数の面内における前記3速度成分を取得し、前記複数の面内における前記3速度成分を、流れを定常流として積み重ねて前記速度場を測定することを第2の特徴とする音源分布測定装置が提案される。
 また本発明によれば、前記第2の特徴に加えて、前記粒子画像流速測定装置は、前記レーザーシートを生成するレーザービームと平行な方向に配置されたガイド部材に沿って移動自在な移動部材にレーザーシート照射手段および前記撮像手段を支持し、前記レーザーシート照射手段および前記撮像手段を一定の位置関係を保って移動させることを第3の特徴とする3次元空間の音源分布測定装置が提案される。
 また本発明によれば、前記第1~第3の何れか1つの特徴に加えて、前記音源分布測定手段は、プラウドマンの定理に基づいて前記3次元3速度成分の速度場から前記物体まわりの音源分布を測定することを第4の特徴とする3次元空間の音源分布測定装置が提案される。
 尚、実施の形態の主ガイドレール21および副ガイドレール22は本発明のガイド部材に対応し、実施の形態の主トラバーサ23および第1、第2副トラバーサ24A,24Bは本発明の移動部材に対応し、実施の形態の第1、第2CCDカメラ32A,32Bは本発明の撮像手段に対応し、実施の形態の面外速度1成分wおよび面内速度2成分u,vは本発明の速度成分に対応する。
 本発明の第1の特徴によれば、粒子画像流速測定装置が、物体の周囲の流れ場に含まれるトレーサ粒子に微小時間離れた2時刻においてレーザー光を照射し、レーザー光を照射されたトレーサ粒子を撮像手段で撮像して得られた2時刻の画像から3次元空間における3速度成分の速度場を測定すると、音源分布測定手段が、前記3次元3速度成分の速度場から物体まわりの音源分布を測定するので、3次元空間における音源分布を精度良く測定することができる。
 また本発明の第2の特徴によれば、物体の周囲の流れ場のトレーサ粒子を照射する2次元のレーザーシートを移動させながら複数の面内における3速度成分を取得し、それら複数の面内における3速度成分を、流れを定常流として積み重ねることで、物体の周囲の3次元空間の速度場の3速度成分を測定することができる。
 また本発明の第3の特徴によれば、レーザーシートを生成するレーザービームと平行な方向に配置されたガイド部材に沿って移動自在な移動部材にレーザーシート照射手段および撮像手段を支持し、レーザーシート照射手段および撮像手段を一定の位置関係を保って移動させるので、3次元空間における3速度成分の速度場を測定すべくレーザーシートの位置を移動させる際に、その都度異なるキャリブレーションを実行する必要をなくしてキャリブレーション工数を軽減することができる。
 また本発明の第4の特徴によれば、音源分布測定手段はプラウドマンの定理に基づいて3次元3速度成分の速度場から物体まわりの音源分布を測定するので、3次元空間における音源分布を精度良く測定することができる。
図1は風洞に設けられた粒子画像流速測定装置の全体平面図である。(第1の実施の形態) 図2は図1の2部拡大図である。(第1の実施の形態) 図3は図2の3-3線拡大断面図である。(第1の実施の形態) 図4は図3の4-4線断面図である。(第1の実施の形態) 図5はレーザーシートおよびCCDカメラのz軸方向の移動の説明図である。(第1の実施の形態) 図6は第1、第2時刻の画像からピークレシオを算出する過程の説明図である。(第1の実施の形態) 図7は第1、第2ピークのレシオと誤ベクトルの数との関係を示す図である。(第1の実施の形態) 図8は音源分布測定装置の構成を示すブロック図である。(第1の実施の形態)
12    物体
15    粒子画像流速測定装置
16    音源分布測定手段
21    主ガイドレール(ガイド部材)
22    副ガイドレール(ガイド部材)
23    主トラバーサ(移動部材)
24A   第1副トラバーサ(移動部材)
24B   第2副トラバーサ(移動部材)
31    レーザーシート照射手段
32A   第1CCDカメラ(撮像手段)
32B   第2CCDカメラ(撮像手段)
Lb    レーザービーム
Ls    レーザーシート
u,v   面内速度2成分(速度成分)
w     面外速度1成分(速度成分)
 以下、図1~図8に基づいて本発明の実施の形態を説明する。
第1の実施の形態
 図1に示すように、所定の流速の空気の一様流が供給される風洞11の内部に例えば自動車車体の模型のような物体12が置かれており、その上流側に設置されたトレーサ粒子供給手段13から直径が数μmの微小な油滴(トレーサ粒子)が一様流中に供給される。一様流は物体12の表面に沿って流れの向きを変え、3次元の速度場を形成する。風洞11の壁面の少なくとも一部には透明な観測窓14が設けられており、この観測窓14を挟んで物体12に臨む位置に粒子画像流速測定装置15が配置される。
 図2~図4に示すように、粒子画像流速測定装置15は風洞11の軸線と平行に配置された主ガイドレール21と、主ガイドレール21と平行に配置された副ガイドレール22と、主ガイドレール21に移動自在に支持された主トラバーサ23と副ガイドレール22に移動自在に支持された一対の第1、第2副トラバーサ24A,24Bと、主トラバーサ23および第1副トラバーサ24Aを連結する第1連結ロッド25Aと、主トラバーサ23および第2副トラバーサ24Bを連結する第2連結ロッド25Bとを備えており、第1、第2連結ロッド25A,25Bは同じ長さを有している。
 主ガイドレール21の両端に設けられた駆動スプロケット26および従動スプロケット27に無端のタイミングベルト28が巻き掛けられており、その一方の弦部は主トラバーサ23の一方の貫通孔23a(図4参照)に相対移動不能に係合し、その他方の弦部は主トラバーサ23の他方の貫通孔23b(図4参照)を非係合で通過する。駆動スプロケット26をモータ29(図3および図4参照)で駆動すると、従動スプロケット27との間に巻き掛けたタイミングベルト28が回転し、主トラバーサ23は主ガイドレール21に沿って移動する。主トラバーサ23が移動すると、それに第1、第2連結ロッド25A,25Bを介して連結された第1、第2副トラバーサ24A,24Bが副ガイドレール22に沿って移動する。
 主ガイドレール21の延長線上にレーザーヘッド30が設けられており、レーザーヘッド30は主ガイドレール21に沿ってレーザービームLbを照射する。主トラバーサ23の上面にミラーおよびシリンドリカルレンズよりなるレーザーシート照射手段31が設けられており、レーザーシート照射手段31はレーザービームLbをそれに直交する平面を照射するレーザーシートLsに変換する。レーザービームLbおよび風洞11の軸線はz軸方向に延び、レーザーシートLsはz軸方向に対して直交するx軸およびy軸方向に延びている。
 第1、第2副トラバーサ24A,24Bの上面にそれぞれ第1、第2CCDカメラ32A,32Bが設けられており、第1、第2CCDカメラ32A,32BはレーザーシートLsに対して鏡面対称な位置に配置されて該レーザーシートLs上の一点を指向している。第1、第2CCDカメラ32A,32Bは物体12の近傍のレーザーシートLsの所定領域を撮像するものであり、その撮像領域の全域でピントが合うように第1、第2CCDカメラ32A,32Bにはシャインフルーグアダプタが設けられる。レーザーシート照射手段31を搭載した主トラバーサ23と、第1、第2CCDカメラ32A,32Bを搭載した第1、第2副トラバーサ24A,24Bとは一定の位置関係を保ってz軸方向に移動するため、レーザーシートLsと第1、第2CCDカメラ32A,32Bとは一定の位置関係を保ってz軸方向に移動する。
 主トラバーサ23および第1、第2副トラバーサ24A,24Bはz軸方向に所定距離ずつ間欠的に移動し、停止する度にレーザーシートLsが短い時間間隔Δtで2回照射される。実施の形態ではz軸方向の1mの距離を10cm間隔で間欠的に移動する(図5参照)。前記時間間隔Δtは風洞11内の一様流の流速が大きいほど小さく設定されるもので、その間のトレーサ粒子のz軸方向の移動距離が測定に適した大きさになるように調整される。また前記時間間隔Δtにおけるトレーサ粒子のz軸方向の移動距離は、レーザーシートLsのz軸方向の厚さを超えないように設定される。
 風洞11内を流れる一様流は物体12の周囲で方向を変えて3次元流となり、そこに含まれるトレーサ粒子も空気の流線に沿って移動する。時刻t1における1回目の照射に同期して第1、第2CCDカメラ32A,32BがレーザーシートLsに照射されたトレーサ粒子を撮像することで、照射面内に分布するトレーサ粒子の2方向からの2枚の画像を取得する。同様にして、時刻t1′=t1+Δtにおける2回目の照射に同期して第1、第2CCDカメラ32A,32BがレーザーシートLsに照射されたトレーサ粒子を撮像することで、照射面内に分布するトレーサ粒子の2方向からの2枚の画像を取得する。
 本実施の形態では、PIVの種々の手法のうち、2時刻t1,t1′において取得した二つの画像の輝度パターンを比較してトレーサ粒子群の移動ベクトルを求める「画像相関法」を採用する。
 図6には、例えば第1CCDカメラ32Aで2時刻において取得した二つの画像が示される。第1CCDカメラ32Aの軸線はレーザーシートLsの照射面に対して傾斜しているため、その画像のx-y平面はレーザーシートLsの照射面のx-y座標に対して傾いている。四角い枠は、第1CCDカメラ32Aの画像を碁盤目状に分割した検査領域の一つであり、各々の検査領域においてトレーサ粒子群のx-y平面内の移動ベクトルが算出される。即ち、時刻t1に取得した第1画像の所定の検査領域におけるトレーサ粒子群の輝度パターンが、時刻t1′に取得した第2画像の所定の検査領域のどの位置に移動したかを相互相関値C(Δx,Δy)を用いて検出し、その移動ベクトルを時間Δtで除算したものを該検査領域における2成分速度ベクトルとする。以下、その2成分速度ベクトルの算出過程を説明する。
 先ず、第1ピーク値fpおよび第2ピーク値spの初期値を共に0に設定する。
                  fp←0
                  sp←0
 続いて、次式で定義される相互相関値C(Δx,Δy)を算出する。
Figure JPOXMLDOC01-appb-M000001
 ここで、f(x,y)は第1画像の輝度パターンから求めた輝度関数であり、g(x,y)は第2画像の輝度パターンから求めた輝度関数である。よって、g(x+Δx,y+Δy)は、g(x,y)の輝度分布をx軸方向に-Δxだけ移動させ、y軸方向に-Δyだけ移動させたものに相当する。従って、Δx,Δyは時間間隔Δtにおける輝度パターンの移動量に対応する。
 各検査領域は、一辺の長さがpの正方形のピクセルがx軸方向にn個、y軸方向にn個集合したものであり、Δxをpからnpまで掃引し、かつΔyをpからnpまで掃引しながら、相互相関値C(Δx,Δy)を算出する。そして相互相関値C(Δx,Δy)が現第1ピーク値fpを超える度に、相互相関値C(Δx,Δy)を新第1ピーク値fpとし、現第1ピーク値fpを新第2ピーク値spとする。
 このようにしてΔxおよびΔyの全ての値について相互相関値C(Δx,Δy)を算出したとき、最終的な第1ピーク値fpが得られたΔxおよびΔyの値を第1画像から第2画像への輝度パターンの移動量とする。そしてΔx,Δyを第1、第2画像が取得された時間間隔Δtで除算したものが、その検査領域における2成分速度ベクトルのx成分およびy成分であるvx,vyとなる。
 このとき、第1画像と第2画像との相関度が高い場合には、第1ピーク値fpは突出して大きくなり、第2ピーク値spは第1ピーク値fpに対して遥かに小さくなるが、第1画像と第2画像との相関度が低い場合には、第1ピーク値fpおよび第2ピーク値spの差は小さくなる、このような場合にはΔxおよびΔyに基づいて求めた2成分速度ベクトルの信頼性が低くなる。
 そこで本実施の形態では、第1ピーク値fpおよび第2ピーク値spの比であるピークレシオfp/spを算出し、ピークレシオfp/spが閾値1.2以上の場合、つまり第1ピーク値fpが第2ピーク値spに対して1.2倍以上であれば、2成分速度ベクトルの信頼性が高いと判断し、逆に第1ピーク値fpが第2ピーク値spに対して1.2倍未満であれば、2成分速度ベクトルの信頼性が低いと判断し、その2成分速度ベクトルを誤ベクトルとして削除する。
 図7の横軸はピークレシオであり、縦軸は誤ベクトルの数である。このグラフから、ピークレシオが1.2以上の領域で誤ベクトルの数が極めて少なく、ピークレシオが1.2未満の領域で誤ベクトルの数が急激に増加することが分かる。
 以上、第1CCDカメラ32Aで2時刻t1,t1′において取得した二つの画像から各検査領域における2成分速度ベクトルを算出する手法を説明したが、同様にして、第2CCDカメラ32Bで2時刻t1,t1′において取得した二つの画像を比較することで、各検査領域における3成分速度ベクトルを算出することができる。
 第1CCDカメラ32Aの画像から得られた検査領域の2成分速度ベクトルと、第2CCDカメラ32Bの画像から得られた該検査領域の2成分速度ベクトルとは、第1、第2CCDカメラ32A,32Bの撮像方向が異なっていることにより、つまり実際の3成分速度ベクトルを異なる方向から見た視差により異なったものとなる。
 よって前記二つの2成分速度ベクトルと、レーザーシートLsに対する第1、第2CCDカメラ32A,32Bの相対的な位置関係とから、キャリブレーション(校正)によりレーザーシートLsの面内速度(x軸方向の速度uおよびy軸方向の速度v)と、面外速度(z軸方向の速度w)とよりなる3成分速度ベクトルを、照射面の各位置に対応して算出することができる。
 以上のようにしてレーザーシートLsの照射面内における3成分速度ベクトルが算出されると、主トラバーサ23および第1、第2副トラバーサ24A,24Bを一定の位置関係を保ってz軸方向に移動させることで、つまりレーザーシートLsおよび第1、第2CCDカメラ32A,32Bを一定の位置関係を保ってz軸方向に移動させることで、レーザーシートLsでz軸方向にずれた照射面を照射し、その新たな照射面の各位置における3成分速度ベクトルを算出する。図1には、粒子画像流速測定装置15の照射面が物体12の前端(上流端)側の位置にある状態が実線で示され、物体12の後端(下流端)側の位置にある状態が鎖線で示される。
 この操作をz軸方向に所定距離ずつ離間する複数の照射面について実行した結果をz軸方向に積み重ねることで、物体12の周囲の3次元空間の全ての3成分速度ベクトルを測定することができ、これより物体12の周囲に形成される速度場を詳細に測定することができる。
 尚、レーザーシートLsの位置をz軸方向に移動させながら照射面に分布するトレーサ粒子の画像を順次取得するため、各画像が取得された時刻は異なったものとなるが、物体の周囲の流れを定常流として計測するため、前記時刻のずれは問題とはならない。
 ところで、仮に第1、第2CCDカメラ32A,32Bの位置を固定し、レーザーシート照射手段31だけをz軸方向に移動させた場合、レーザーシート照射手段31の移動に伴って第1、第2CCDカメラ32A,32Bとの相対的な位置関係が変化するため、第1、第2CCDカメラ32A,32Bの画像から得られた二つの2成分速度ベクトルから3成分速度ベクトルを算出する際のキャリブレーションがレーザーシートLsの位置を移動させる毎に異なってしまい、そのキャリブレーション工数が増加する問題がある。
 しかしながら本実施の形態によれば、レーザーシート照射手段31および第1、第2CCDカメラ32A,32Bが一定の位置関係を保ってz軸方向に移動するため、レーザーシートLsの位置が移動する度にキャリブレーションを実行する必要をなくしてキャリブレーション工数を軽減することができる。
 図8に示すように、第1、第2CCDカメラ32A,32Bで撮像した画像に基づいて粒子画像流速測定装置15が3次元空間の3成分速度ベクトルを測定すると、音源分布測定手段16が3次元空間の音源分布を測定する。以下、その測定手順を説明する。
 先ず、粒子画像流速測定装置15で測定した流れのx軸方向流速u(x,y,z)の平均値と、y軸方向流速v(x,y,z)の平均値と、z軸方向流速w(x,y,z)の平均値とを用いて、流れの乱流エネルギーkを次式に基づいて算出する。
Figure JPOXMLDOC01-appb-M000002
 ここで、u′はx軸方向流速uの平均値に対するx軸方向流速uの偏差であり、v′はy軸方向流速vの平均値に対するy軸方向流速vの偏差であり、w′はz軸方向流速wの平均値に対するz軸方向流速wの偏差である。
 次に、乱流エネルギー散逸率εの平均値を、次式に基づいて算出する。ここでは.乱流は充分発達して定常状態に達しており、乱流エネルギーの生成と散逸とが平衡であると仮定し乱流エネルギー散逸率εをモデル化している。
Figure JPOXMLDOC01-appb-M000003
 発達中の乱流では、生成=拡散+散逸であるため、生成=散逸とすると散逸を過評価する可能性がある。よって散逸=乱流拡散+生成とし、乱流エネルギー散逸率εの平均値を次式に基づいて算出しても良い。
Figure JPOXMLDOC01-appb-M000004
 また散逸=粘性拡散+生成とし、乱流エネルギー散逸率εの平均値を次式に基づいて算出しても良い。
Figure JPOXMLDOC01-appb-M000005
 また散逸=乱流拡散+粘性拡散+生成とし、乱流エネルギー散逸率εの平均値を、動粘性係数νを用いて次式に基づいて算出しても良い。
Figure JPOXMLDOC01-appb-M000006
 また近似手法として、乱流エネルギー散逸率εの平均値を次式に基づいて算出しても良い。
Figure JPOXMLDOC01-appb-M000007
 また、乱流エネルギー散逸率εの平均値を次式に基づいて算出しても良い。
Figure JPOXMLDOC01-appb-M000008
 続いて、プラウドマンの定理を用いて流れの音圧を算出する。先ず音響パワーPA を次式に基づいて算出する。
Figure JPOXMLDOC01-appb-M000009
 ここで、αεはスケール定数であり、ρ0 は参照密度であり、Mt は乱流マッハ数であり、a0 は参照音速であり、kは前記乱流エネルギーkである。
 そして、音圧SPL(x,y,z)を、前記音響パワーPA および参照音響パワーPref を用いて次式により算出する。
Figure JPOXMLDOC01-appb-M000010
 このようにして算出された音圧SPL(x,y,z)はx,y,zの関数であり、この音圧SPL(x,y,z)を算出することで流れ場の任意の位置における音源分布を知ることができ、3次元流れ場に置かれた3次元物体12のどの部分からどのような大きさの騒音が出ているかを的確に把握することができる。
 以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
 例えば、本発明の粒子画像流速測定装置の構造は実施の形態に限定されず、3次元空間における3速度成分を求められるものであれば良い。
 また実施の形態では主トラバーサ23にレーザーシート照射手段31を支持し、第1、第2副トラバーサ24A,24Bにそれぞれ第1、第2CCDカメラ32A,32Bを支持しているが、共通のトラバーサにレーザーシート照射手段31および第1、第2CCDカメラ32A,32Bを支持しても良い。
 またトラバーサの駆動手段は駆動スプロケット26、従動スプロケット27およびタイミングベルト28に限定されず、ラック・アンド・ピニオン機構やポールねじ機構等、任意のものを採用することができる。
 またレーザーヘッド30から出たレーザービームを、光軸を微調整するためのミラー等の光学系を介して方向を変換した後、ガイド部材21,22と平行に照射しても良い。

Claims (4)

  1.  物体(12)の周囲の流れ場に含まれるトレーサ粒子に微小時間離れた2時刻においてレーザー光を照射し、レーザー光を照射されたトレーサ粒子を撮像手段(32A,32B)で撮像して得られた前記2時刻の画像から3次元空間における3速度成分(u,v,w)の速度場を測定する粒子画像流速測定装置(15)と、
     前記3次元3速度成分(u,v,w)の速度場から前記物体(12)まわりの音源分布を測定する音源分布測定手段(16)と、
    を備えることを特徴とする3次元空間の音源分布測定装置。
  2.  前記粒子画像流速測定装置(15)は、
     前記流れ場のトレーサ粒子に2次元のレーザーシート(Ls)を照射し、前記レーザーシート(Ls)を移動させながら複数の面内における前記3速度成分(u,v,w)を取得し、前記複数の面内における前記3速度成分(u,v,w)を、流れを定常流として積み重ねて前記速度場を測定することを特徴とする、請求項1に記載の3次元空間の音源分布測定装置。
  3.  前記粒子画像流速測定装置(15)は、
     前記レーザーシート(Ls)を生成するレーザービーム(Lb)と平行な方向に配置されたガイド部材(21,22)に沿って移動自在な移動部材(23,24A,24B)にレーザーシート照射手段(31)および前記撮像手段(32A,32B)を支持し、前記レーザーシート照射手段(31)および前記撮像手段(32A,32B)を一定の位置関係を保って移動させることを特徴とする、請求項2に記載の3次元空間の音源分布測定装置。
  4.  前記音源分布測定手段(16)は、プラウドマンの定理に基づいて前記3次元3速度成分(u,v,w)の速度場から前記物体(12)まわりの音源分布を測定することを特徴とする、請求項1~請求項3の何れか1項に記載の3次元空間の音源分布測定装置。
PCT/JP2010/069406 2009-11-10 2010-11-01 3次元空間の音源分布測定装置 WO2011058899A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011540470A JP5437389B2 (ja) 2009-11-10 2010-11-01 3次元空間の音源分布測定装置
US13/505,869 US8950262B2 (en) 2009-11-10 2010-11-01 Device for measuring sound source distribution in three-dimensional space

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-256698 2009-11-10
JP2009256698 2009-11-10

Publications (1)

Publication Number Publication Date
WO2011058899A1 true WO2011058899A1 (ja) 2011-05-19

Family

ID=43991558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069406 WO2011058899A1 (ja) 2009-11-10 2010-11-01 3次元空間の音源分布測定装置

Country Status (3)

Country Link
US (1) US8950262B2 (ja)
JP (1) JP5437389B2 (ja)
WO (1) WO2011058899A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210185A (ja) * 2014-04-25 2015-11-24 国立大学法人 新潟大学 空力騒音の音源特定装置及び空力騒音の音源特定方法
CN107748052A (zh) * 2017-11-25 2018-03-02 南京航空航天大学 一种基于piv方法的测量襟翼缝道流动的装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108882916B (zh) * 2016-09-30 2022-06-10 深圳迈瑞生物医疗电子股份有限公司 超声血流的参数显示方法及其超声成像***
DE102018008042A1 (de) 2018-10-11 2019-09-05 Daimler Ag Außengeräuschprüfstand und Verfahren zur Ermittlung eines Außengeräusches eines Fahrzeuges
DE102018133314B3 (de) * 2018-12-21 2020-03-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Feldmessverfahren zum Vermessen von Schallquellen mit Hilfe eines Mikrofonarrays

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129729A (ja) * 1984-07-20 1986-02-10 Tokyo Daigaku 乱流可視化装置および方法
JP2004020385A (ja) * 2002-06-17 2004-01-22 Rikogaku Shinkokai 平面及び空間の時系列流体速度計測システム
JP2004286733A (ja) * 2003-03-21 2004-10-14 Lavision Gmbh ステレオpiv法の実施に関しての自己較正のための結像方程式の決定の方法
JP2005003368A (ja) * 2003-06-09 2005-01-06 Railway Technical Res Inst 空力音源探査システム及び空力音源探査方法
JP2007033306A (ja) * 2005-07-28 2007-02-08 Tokyo Electric Power Co Inc:The 流体の流動計測システム及びその計測方法
JP2008064692A (ja) * 2006-09-08 2008-03-21 Mitsuba Corp 音源探査方法および装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5249238A (en) * 1991-03-19 1993-09-28 Komerath Narayanan M Spatial cross-correlating velocimeter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129729A (ja) * 1984-07-20 1986-02-10 Tokyo Daigaku 乱流可視化装置および方法
JP2004020385A (ja) * 2002-06-17 2004-01-22 Rikogaku Shinkokai 平面及び空間の時系列流体速度計測システム
JP2004286733A (ja) * 2003-03-21 2004-10-14 Lavision Gmbh ステレオpiv法の実施に関しての自己較正のための結像方程式の決定の方法
JP2005003368A (ja) * 2003-06-09 2005-01-06 Railway Technical Res Inst 空力音源探査システム及び空力音源探査方法
JP2007033306A (ja) * 2005-07-28 2007-02-08 Tokyo Electric Power Co Inc:The 流体の流動計測システム及びその計測方法
JP2008064692A (ja) * 2006-09-08 2008-03-21 Mitsuba Corp 音源探査方法および装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210185A (ja) * 2014-04-25 2015-11-24 国立大学法人 新潟大学 空力騒音の音源特定装置及び空力騒音の音源特定方法
CN107748052A (zh) * 2017-11-25 2018-03-02 南京航空航天大学 一种基于piv方法的测量襟翼缝道流动的装置
CN107748052B (zh) * 2017-11-25 2018-09-21 南京航空航天大学 一种基于piv测速方式的测量襟翼缝道流动的装置

Also Published As

Publication number Publication date
JPWO2011058899A1 (ja) 2013-03-28
US20120216619A1 (en) 2012-08-30
US8950262B2 (en) 2015-02-10
JP5437389B2 (ja) 2014-03-12

Similar Documents

Publication Publication Date Title
WO2011004783A1 (ja) 粒子画像流速測定方法、3次元空間の粒子画像流速測定方法、粒子画像流速測定装置および粒子画像流速測定装置におけるトレーサ粒子発生装置
Hori et al. High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids
Willert High-speed particle image velocimetry for the efficient measurement of turbulence statistics
Schröder et al. Advances of PIV and 4D-PTV” Shake-The-Box” for turbulent flow analysis–the flow over periodic hills
KR101216706B1 (ko) 예인수조용 입자영상유속계 시스템
JP5437389B2 (ja) 3次元空間の音源分布測定装置
CN105004466B (zh) 一种高精度非接触气动摩擦阻力测量方法及测量装置
JP2010243309A (ja) 流体力分布計測方法及び計測装置
CN209606056U (zh) 用于三维监测水生物体流场与行为的piv测量装置
Yao et al. Synthetic jet flow field database for CFD validation
JP2004020385A (ja) 平面及び空間の時系列流体速度計測システム
JP5312236B2 (ja) 3次元空間の粒子画像流速測定装置
JP5312237B2 (ja) 粒子画像流速測定装置
JP2011017603A (ja) 粒子画像流速測定方法
Stepanov et al. A stereo PIV system for measuring the velocity vector in complex gas flows
Rice et al. Comparison of 4-camera tomographic PIV and single-camera plenoptic PIV
Lobutova et al. Investigation of large-scale circulations in room air flows using three-dimensional particle tracking velocimetry
US8629978B1 (en) Curved laser sheet for conformal optical diagnostics
Doh et al. Single-frame (two-field image) 3-D PTV for high speed flows
Kaiser et al. Large-scale volumetric particle tracking using a single camera: analysis of the scalability and accuracy of glare-point particle tracking
Khashehchi et al. Accuracy of tomographic particle image velocimetry data on a turbulent round jet
JP6357990B2 (ja) 流速と物体変位とを一度に計測する方法
Schäfer et al. Comparison of holographic and tomographic particle-image velocimetry turbulent channel flow measurements
Huera-Huarte An optical instrument based on defocusing for dynamic response model testing in water or wind tunnels
Kirmse et al. Investigation of aero-optical effects in model deformation measurements in a transonic flow

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829859

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011540470

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13505869

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10829859

Country of ref document: EP

Kind code of ref document: A1