WO2011055856A1 - 透明導電膜の製造方法及び透明導電膜、それを用いた素子、透明導電基板並びにそれを用いたデバイス - Google Patents

透明導電膜の製造方法及び透明導電膜、それを用いた素子、透明導電基板並びにそれを用いたデバイス Download PDF

Info

Publication number
WO2011055856A1
WO2011055856A1 PCT/JP2010/070165 JP2010070165W WO2011055856A1 WO 2011055856 A1 WO2011055856 A1 WO 2011055856A1 JP 2010070165 W JP2010070165 W JP 2010070165W WO 2011055856 A1 WO2011055856 A1 WO 2011055856A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
film
compound
coating
Prior art date
Application number
PCT/JP2010/070165
Other languages
English (en)
French (fr)
Inventor
雅也 行延
勇樹 村山
崇仁 永野
良広 大塚
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2011539430A priority Critical patent/JP5403293B2/ja
Priority to CN201080049929.3A priority patent/CN102598160B/zh
Priority to US13/261,283 priority patent/US8963146B2/en
Publication of WO2011055856A1 publication Critical patent/WO2011055856A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources

Definitions

  • the present invention relates to a transparent conductive film and a method for producing the transparent conductive film. Specifically, it is formed on a heat-resistant inorganic substrate such as glass or ceramics or a resin substrate such as a plastic film by using a coating method (wet coating method) at a low temperature of less than 300 ° C., particularly 100 to 250 ° C.
  • a transparent conductive film obtained by a method for producing a transparent conductive film having both properties and conductivity, and excellent in film strength and resistance stability, and a method for producing the transparent conductive film, and an element using the transparent conductive film and
  • the present invention relates to a transparent conductive substrate and a device using the transparent conductive substrate.
  • Transparent electrode for display element such as liquid crystal display, electroluminescence, plasma display, transparent electrode for touch panel, solar cell, etc., forming material for transparent conductive film used for functional coating such as heat ray reflection, electromagnetic wave shielding, antistatic, antifogging etc.
  • a conductive oxide tin-doped indium oxide (Indium Tin Oxide, hereinafter sometimes referred to as “ITO”) is known.
  • the transparent conductive film (ITO film) made of ITO As a method for producing the transparent conductive film (ITO film) made of ITO, physical methods such as vacuum deposition, sputtering, and chemical vapor deposition are widely used. These methods can form a uniform ITO transparent conductive film excellent in transparency and conductivity on a substrate.
  • the film forming apparatus used for this is very expensive because it is based on a vacuum vessel, and the component gas pressure in the manufacturing apparatus must be precisely controlled every time the substrate is formed. There is a problem with sex.
  • a method of applying on a substrate using a coating solution for forming a transparent conductive film in which an indium compound and a tin compound are dissolved in a solvent (hereinafter referred to as “coating method” or “wet coating method”). Is sometimes considered).
  • a transparent conductive film (ITO film) is formed by a simple manufacturing process such as coating, drying, and baking of a coating liquid for forming a transparent conductive film on a substrate.
  • Methods include inkjet printing, screen printing, gravure printing, offset printing, flexographic printing, dispenser printing, slit coating, die coating, doctor blade coating, wire bar coating, spin coating, dip A coating method, a spray coating method, and the like are known.
  • Various coating solutions containing an indium compound and a tin compound have been conventionally developed as coating solutions used in such a coating method.
  • a mixed solution of indium nitrate containing halogen ions or carboxyl groups and an alkyltin nitrate for example, see Patent Document 1
  • a mixture of an organic indium compound containing an alkoxyl group and the like and an organic tin compound for example, see Patent Document 2
  • a mixture of indium nitrate and an organic tin compound for example, see Patent Document 3
  • an inorganic compound mixture such as indium nitrate and tin nitrate (for example, see Patent Document 4)
  • an organic indium nitrate such as indium dicarboxylate and an alkyl tin nitrate, etc.
  • a mixture of organic tin nitrates (see, for example, Patent Document 5) and organic compound mixed solutions composed of an organic indium complex coordinated with acetylacetone and a tin complex (see, for example, Patent Document 6, Patent Document 7, and Patent Document 8) has been.
  • Many of these conventionally known coating solutions use indium or tin nitrates, organic or inorganic compounds composed of halides, or organometallic compounds such as metal alkoxides.
  • coating solutions using nitrates or halides have the problem of corrosive gases such as nitrogen oxides and chlorine being generated during firing, resulting in equipment corrosion and environmental contamination.
  • coating solutions using metal alkoxides Since the raw material is easily hydrolyzed, there is a problem in the stability of the coating solution.
  • many of the coating liquids using the organometallic compound described in the patent document have a problem that wettability with respect to the substrate is poor and a non-uniform film is easily formed.
  • indium acetylacetonate (standard nomenclature: tris (acetylacetonato) indium: In (C 5 H 7 O 2) 3), acetylacetonate tin (official name: di -n- butoxide bis (2,4-pentanedionato) tin: [Sn (C 4 H 9 ) 2 (C 5 H 7 O 2) 2]), hydroxypropyl cellulose, alkylphenols and / or alkenyl phenols and a dibasic acid ester and / Or the coating liquid for transparent conductive film formation containing a benzyl acetate (for example, refer patent document 9) is disclosed.
  • This coating solution improves the wettability of the coating solution to the substrate by containing hydroxypropyl cellulose in a mixed solution of acetylacetone indium and acetylacetone tin, and at the same time, the viscosity of the coating solution is controlled by the content of hydroxypropylcellulose as a viscosity agent. It is possible to adjust and adopt various coating methods such as spin coating, spray coating, dip coating, screen printing, and wire bar coating.
  • an organic indium compound such as acetylacetone indium and indium octylate, an organic tin such as acetylacetone tin and tin octylate, and an organic solvent, an alkylphenol and / or An acetylacetone solution in which alkenylphenol is dissolved, and a coating liquid for forming a transparent conductive film using a solution obtained by diluting an alkylphenol and / or an acetylacetone solution in which alkenylphenol is dissolved with alcohol have been proposed (see, for example, Patent Document 10).
  • This coating solution has a low viscosity and can be used for spray coating, dip coating as well as spin coating.
  • a coating liquid for forming a transparent conductive film it is irradiated with ultraviolet rays from a high pressure mercury lamp or a metal halide lamp to obtain a homogeneous and dense dry coating film, and the dry coating film is heated at a high temperature of about 500 ° C.
  • Patent Document 11 A method of firing (see Patent Document 11) and a method of irradiating a transparent conductive film obtained by high temperature firing (thermal decomposition) at 500 ° C. or higher (see Patent Document 12) are proposed.
  • these methods are not sufficient in reducing the resistance of the film, and the resistance once lowered by irradiating the transparent conductive film obtained by firing with ultraviolet rays tends to increase again by storage in the atmosphere.
  • a coating liquid for forming a transparent conductive film containing an indium compound and a tin compound is applied to the substrate, and then dried by preheating at 300 ° C. or lower.
  • a method of performing irradiation with ultraviolet light having a wavelength of 200 nm or less using a low-pressure mercury lamp and further firing at a temperature of 300 ° C. or higher (preferably 400 ° C. or higher) in a non-oxidizing atmosphere see Patent Document 13). Proposed.
  • Patent Document 14 there has been proposed a method of obtaining a transparent conductive film by applying and drying a transparent conductive film forming coating solution on a transparent substrate, followed by baking in an oxygen atmosphere and further baking in a vacuum.
  • the firing temperature can be lowered to 180 ° C. by firing in an oxygen atmosphere, and the resistance is reduced by irradiating the ultraviolet rays of a mercury lamp during firing in the oxygen atmosphere. It is possible.
  • the “ultraviolet ray of the mercury lamp” refers to, and there is no evidence or specific example that can lower the firing temperature to 180 ° C.
  • the film characteristics (transmittance, resistance value) of the transparent conductive film obtained at the firing temperature are not described at all. Therefore, this method has doubts about practicability and has many execution issues.
  • a metal oxide fine particle film such as TiO 2 fine particles and ITO fine particles by low-temperature heating
  • it contains metal oxide fine particles obtained by applying and drying a coating liquid containing metal oxide fine particles and a binder on a substrate.
  • a method of removing the binder by performing plasma treatment on the coating layer see Patent Document 15.
  • this method aims to obtain a porous film having a large porosity by using fine particles that have already become metal oxides as a filler of the coating solution, and by forming a dense film, the transparency of the transparent conductive film, It does not attempt to improve characteristics such as conductivity, film strength, and resistance stability.
  • the conductive oxide film containing a conductive oxide such as indium oxide as a main component has recently attracted attention as a channel active layer of a thin film transistor in addition to the use of the transparent electrode represented by the ITO film described above. Research has been actively conducted.
  • a thin film such as amorphous silicon formed on a glass substrate has been generally used as a channel active layer of a field effect thin film transistor (TFT).
  • TFT field effect thin film transistor
  • amorphous silicon has low carrier mobility. Also, the characteristics as a thin film transistor element were not sufficient.
  • a transparent thin film transistor used for a channel layer see Patent Documents 16 and 17
  • a thin film transistor using a transparent amorphous oxide semiconductor film (a-IGZO) made of an In—Ga—Zn—O system as a channel active layer Non-Patent Document 1
  • a thin film transistor using a non-single-crystal oxide semiconductor made of Ga—Zn—O or Ga—Sn—O as an active layer see Patent Document 18
  • In—Ga—Zn—O a thin film transistor see Patent Document 19
  • an In-Ga Zn-SnO-based see Patent Document 20
  • Patent Document 16 Patent Documents 18 to 21, Non-Patent Document 1
  • Patent Document 17 a channel active layer made of ZnO is formed using a coating solution in which zinc acetate is suspended in isopropanol. After coating the coating solution, it is 600 to 900 in air or in an oxygen atmosphere. It requires high temperature firing at °C.
  • a high-quality conductive oxide film (oxide semiconductor film) suitable for a channel active layer of a thin film transistor by a coating method using low-temperature baking at less than 300 ° C.
  • the above-mentioned coating liquid for forming a transparent conductive film for forming transparent electrodes for various devices that can only be heated at a low temperature (less than 300 ° C., particularly 100 to 250 ° C.), for example, liquid crystal displays and touch panels. Therefore, there has been a demand for a method for forming a transparent conductive film having excellent transparency and conductivity by low-temperature heat treatment at less than 300 ° C., particularly 100 to 250 ° C.
  • the above-described coating liquid for forming a transparent conductive film for forming a conductive oxide film (oxide semiconductor film) as a channel active layer of a thin film transistor element the density is increased so that the carrier mobility is increased.
  • the present invention provides good transparency and high conductivity formed by low-temperature heating at less than 300 ° C., particularly 100 to 250 ° C., using an ink coating method that is a low-cost and simple method for producing a transparent conductive film.
  • an ink coating method that is a low-cost and simple method for producing a transparent conductive film.
  • the inventors applied, dried, and heated a coating solution for forming a transparent conductive film containing, as a main component, at least one of an organic indium compound, an organic tin compound, and an organic zinc compound.
  • an oxygen-containing atmosphere is applied to the dried coated film after coating and drying.
  • the dry coating film is decomposed and burned even at a low heating temperature (substrate temperature) of less than 300 ° C., particularly 100 to 250 ° C.
  • a low heating temperature substrate temperature
  • the first invention of the present invention is a coating process for forming a coating film by applying a coating liquid for forming a transparent conductive film containing an organometallic compound as a main component on a substrate, and drying the coating film.
  • the dried coating film containing the organometallic compound as a main component is irradiated with energy rays while being heated to a heating temperature of less than 300 ° C. in an oxygen-containing atmosphere.
  • Metal formed by the heating energy ray irradiation step, the step of forming an inorganic film mainly composed of an inorganic component that is a metal oxide by decomposition or combustion, or removing by decomposition and combustion, and the plasma treatment step By subjecting an inorganic film mainly composed of an inorganic component, which is an oxide, to plasma treatment at a substrate temperature of less than 300 ° C. in a non-oxidizing gas atmosphere, it further promotes the mineralization or crystallization of the film, thereby oxidizing the metal.
  • the organometallic compound is any of an organic indium compound, an organic tin compound, and an organic zinc compound.
  • the metal oxide is one or more of indium oxide, tin oxide, and zinc oxide.
  • a coating step of coating a transparent conductive film forming coating solution containing an organometallic compound as a main component and an organometallic compound for a dopant on a substrate to form a coating film the coating A drying step of drying the film to form a dry coating film, and irradiating energy rays while heating the dry coating film to form an inorganic film mainly composed of an inorganic component that is a metal oxide containing a dopant metal compound.
  • a method for producing a transparent conductive film which is formed through each step of a heating energy ray irradiation step, a plasma treatment step of plasma-treating the inorganic film to further promote mineralization or crystallization of the film,
  • the dry coating film containing as a main component the organometallic compound formed in the drying step and the organometallic compound for dopant is applied in an oxygen-containing atmosphere. It is a metal oxide containing a dopant metal compound that is irradiated with energy rays while being heated to a heating temperature of less than 0 ° C. and decomposes or burns, or removes the organic components contained in the dried coating film by decomposition and combustion.
  • the plasma treatment step is a metal oxide containing a dopant metal compound formed in the heating energy ray irradiation step.
  • the organometallic compound is an organic indium compound, organic Compounds, any consist of one or more organic zinc compound, the metal oxide is indium oxide, tin oxide, a method for producing a transparent conductive film is any one or more of zinc oxide.
  • the content ratio of the organometallic compound and the organometallic compound for dopant is 99.9: 0.1 to 66.7 in terms of molar ratio of organometallic compound: organometallic compound for dopant.
  • a range of 33.3 is the method for producing a transparent conductive film according to the second invention.
  • the organometallic compound is an organoindium compound
  • the organometallic compound for dopant is an organotin compound, an organotitanium compound, an organogermanium compound, an organozinc compound, an organotungsten compound, an organozirconium A compound, an organic tantalum compound, an organic niobium compound, an organic hafnium compound, or an organic vanadium compound
  • the dopant metal compound is tin oxide, titanium oxide, germanium oxide, zinc oxide, tungsten oxide, zirconium oxide, oxidation
  • the method for producing a transparent conductive film according to the second or third invention wherein the method is one or more of tantalum, niobium oxide, hafnium oxide, and vanadium oxide.
  • the fifth invention of the present invention is characterized in that the organometallic compound is an organotin compound, and the organometallic compound for dopant is any one or more of an organoindium compound, an organoantimony compound, and an organophosphorus compound.
  • the method for producing a transparent conductive film according to the second or third invention is characterized in that the organometallic compound is an organotin compound, and the organometallic compound for dopant is any one or more of an organoindium compound, an organoantimony compound, and an organophosphorus compound.
  • the sixth invention of the present invention is characterized in that the organometallic compound is an organozinc compound, and the organometallic compound for dopant is one or more of an organoaluminum compound, an organoindium compound, and an organogallium compound.
  • the method for producing a transparent conductive film according to the second or third invention is characterized in that the organometallic compound is an organozinc compound, and the organometallic compound for dopant is one or more of an organoaluminum compound, an organoindium compound, and an organogallium compound.
  • the plasma treatment is a low-pressure plasma treatment performed in a reduced-pressure non-oxidizing gas atmosphere. It is a manufacturing method of this transparent conductive film.
  • the eighth invention of the present invention is the method for producing a transparent conductive film according to the seventh invention, wherein the low-pressure plasma treatment is a low-pressure microwave plasma treatment or a low-pressure high-frequency plasma treatment.
  • the decompressed non-oxidizing gas atmosphere is an atmosphere containing at least one of nitrogen gas, inert gas, and reducing gas, and the atmospheric gas pressure is 2 to 1000 Pa. It is a manufacturing method of the transparent conductive film as described in 7th or 8th invention characterized by these.
  • the low-pressure plasma treatment heats the substrate to a substrate temperature of less than 300 ° C., and at the same time cuts ions in the low-pressure microwave plasma and mainly irradiates the inorganic film with radical components.
  • the plasma treatment is an atmospheric pressure plasma treatment performed in a non-oxidizing gas atmosphere at atmospheric pressure. It is a manufacturing method of the transparent conductive film of description.
  • a twelfth aspect of the present invention is the method for producing a transparent conductive film according to the eleventh aspect, wherein the atmospheric pressure plasma treatment is an atmospheric pressure microwave plasma treatment or an atmospheric pressure high frequency plasma treatment. .
  • the non-oxidizing gas atmosphere at atmospheric pressure is an atmosphere containing at least one of nitrogen gas, inert gas, and reducing gas. It is a manufacturing method of the transparent conductive film as described in 12 inventions.
  • the plasma processing step selectively performs plasma processing only on a part of the inorganic film formed in the heating energy ray irradiation step, so that a patterned conductive oxide fine particle layer is formed.
  • a fifteenth aspect of the present invention following the energy ray irradiation performed while heating to a heating temperature of less than 300 ° C. and the plasma treatment performed at a substrate temperature of less than 300 ° C. in the oxygen-containing atmosphere, a neutral atmosphere or The method for producing a transparent conductive film according to any one of the first to fourteenth inventions, wherein heating is performed at a heating temperature of less than 300 ° C. in a reducing atmosphere.
  • the neutral atmosphere is at least one of nitrogen gas and inert gas, or the reducing atmosphere is hydrogen gas or the neutral atmosphere is at least hydrogen gas or organic solvent vapor.
  • the atmosphere includes one or more types.
  • energy beam irradiation performed while heating to a heating temperature of less than 300 ° C. and plasma treatment performed at a substrate temperature of less than 300 ° C. are performed in an oxygen-containing atmosphere
  • An eighteenth aspect of the present invention is the method for producing a transparent conductive film according to any one of the first to seventeenth aspects, wherein a dew point temperature of the oxygen-containing atmosphere is ⁇ 10 ° C. or lower. is there.
  • the nineteenth invention of the present invention is any one of the first to eighteenth inventions characterized in that the energy beam irradiation is irradiation of ultraviolet rays containing at least a wavelength of 200 nm or less as one of main components. It is a manufacturing method of the transparent conductive film of description.
  • the irradiation of ultraviolet rays containing at least a wavelength of 200 nm or less as one of the main components is irradiation of ultraviolet rays emitted from any one of a low-pressure mercury lamp, an amalgam lamp and an excimer lamp.
  • a method for producing a transparent conductive film according to the nineteenth aspect of the invention is irradiation of ultraviolet rays emitted from any one of a low-pressure mercury lamp, an amalgam lamp and an excimer lamp.
  • a twenty-first invention of the present invention is the method for producing a transparent conductive film according to any one of the first to twentieth inventions, wherein the organic indium compound is acetylacetone indium.
  • the coating method for forming the transparent conductive film forming liquid on the substrate in the coating step is an inkjet printing method, a screen printing method, a gravure printing method, an offset printing method, a flexographic printing method, a dispenser.
  • the first or second invention which is any one of a printing method, a slit coating method, a die coating method, a doctor blade coating method, a wire bar coating method, a spin coating method, a dip coating method, and a spray coating method. It is a manufacturing method of this transparent conductive film.
  • a twenty-third invention of the present invention is a transparent conductive film obtained by the method for producing a transparent conductive film according to any one of the first to twenty-second inventions.
  • a twenty-fourth aspect of the present invention is an element including a conductive oxide film, wherein the conductive oxide film is the transparent conductive film according to the twenty-third aspect.
  • a twenty-fifth aspect of the present invention is the element according to the twenty-fourth aspect, wherein the element is a thin film transistor using the conductive oxide film as a channel layer of the thin film transistor.
  • a twenty-sixth aspect of the present invention is a transparent conductive substrate comprising a transparent conductive film on a substrate, wherein the transparent conductive film is the transparent conductive film according to the twenty-third invention. .
  • a twenty-seventh aspect of the present invention is a device including a transparent electrode, wherein the transparent electrode is the transparent conductive substrate according to the twenty-sixth aspect.
  • a twenty-eighth aspect of the present invention is the device according to the twenty-seventh aspect, wherein the device is one selected from a light emitting device, a power generation device, a display device, and an input device.
  • a conductive oxide fine particle layer densely filled with conductive oxide fine particles mainly composed of at least one of indium oxide, tin oxide, and zinc oxide It can be formed easily and at low cost by heating at a low temperature of less than 300 ° C., particularly 100 to 250 ° C., using a coating method. And the obtained transparent conductive film has the outstanding transparency and high electroconductivity, and is excellent in film
  • a transparent conductive substrate having this transparent conductive film formed on a substrate is a light emitting device such as an LED element, an electroluminescence lamp (electroluminescence element) or a field emission lamp, a power generation device such as a solar cell, a liquid crystal display (liquid crystal element). It is suitable for display devices such as electroluminescence displays (electroluminescence elements), plasma displays and electronic paper elements, and input devices such as touch panels.
  • the conductive oxide fine particle layer densely filled with the conductive oxide fine particles containing the metal oxide as a main component has a high density, so that carrier mobility can be increased. It is also suitable for a conductive oxide film (oxide semiconductor film) as a channel active layer.
  • FIG. 1 is a transmission electron micrograph (TEM image) of a cross section of a transparent conductive film according to Example 1.
  • FIG. 1 is a transmission electron micrograph (TEM image) of a cross section of a transparent conductive film according to Example 1.
  • FIG. 2 is a transmission electron micrograph (TEM image) in which a part of a cross section of a transparent conductive film according to Example 1 is enlarged.
  • 2 is a Z contrast image of a cross section of a transparent conductive film according to Example 1.
  • FIG. 4 is a transmission electron micrograph (TEM image) of a cross section of a transparent conductive film according to Example 2.
  • FIG. 4 is a transmission electron micrograph (TEM image) in which a part of a cross section of a transparent conductive film according to Example 2 is enlarged.
  • 3 is a Z contrast image of a cross section of a transparent conductive film according to Example 2.
  • FIG. 4 is a transmission electron micrograph (TEM image) of a cross section of a transparent conductive film according to Example 3.
  • FIG. 4 is a Z contrast image of a cross section of a transparent conductive film according to Example 3.
  • FIG. 6 is a transmission electron micrograph (TEM image) of a cross section of a transparent conductive film according to Example 4.
  • FIG. 6 is a Z contrast image of a cross section of a transparent conductive film according to Example 4.
  • FIG. 5 is a graph showing changes with time in surface resistance values of transparent conductive films of Examples 1 to 5 and Comparative Example 3 when left in the air. It is another figure which shows the time-dependent change of the surface resistance value when the transparent conductive film of Example 9 is left in the atmosphere.
  • the present invention forms a coating film by applying a coating liquid for forming a transparent conductive film, the main component of which is one or more of an organic indium compound, an organic tin compound, and an organic zinc compound, onto a substrate.
  • Coating process drying process for drying the formed coating film to form a dried coating film, irradiation of energy rays while heating the dried coating film to form an inorganic film mainly composed of an inorganic component that is a metal oxide
  • a method for producing a transparent conductive film formed through each step of a heating energy ray irradiation process to be formed and a plasma treatment process in which the formed inorganic film is subjected to plasma treatment to further promote mineralization or crystallization of the film In a method for producing a transparent conductive film formed through each step of a heating energy ray irradiation process to be formed and a plasma treatment process in which the formed inorganic film is subjected to plasma treatment to further promote mineralization or crystallization of the film.
  • transparent conductive film structure First, the transparent conductive film structure will be described. In the following, a transparent conductive film made of tin-doped indium oxide (ITO) will be described as an example. However, the same applies to a transparent conductive film containing tin oxide or zinc oxide as a main component other than indium oxide. Can do. Further, the same applies to various amorphous conductive oxide films (oxide semiconductor films) such as InGaZnO 4 whose main component is at least one of indium oxide, tin oxide, and zinc oxide.
  • ITO tin-doped indium oxide
  • a transparent conductive film made of ITO is formed using a vapor phase growth method such as a sputtering method, a polycrystalline ITO film structure, which is a film structure in which ITO crystal grains are usually arranged through grain boundaries, is formed. In this ITO film structure, ITO fine particles are hardly observed.
  • a dry coating film 3 obtained by applying and drying a coating solution for forming a transparent conductive film mainly composed of an organic indium compound and an organic tin compound on a substrate 2 is used as a hot plate or the like.
  • the ITO fine particle usually has a film structure bonded to each other.
  • the particle size and the size of the voids present between the ITO fine particles vary depending on the heat treatment conditions, but it is known that it becomes a transparent conductive film composed of ITO fine particles having open pores (open pores). .
  • the transparent conductive film in which ITO fine particles formed by this coating method are bonded to each other has a small contact area between the ITO fine particles because the conductive mechanism intervenes the contact portion (bonded portion) of the ITO fine particles.
  • Conductivity drop at the contact portion that is thought to occur due to contact conductivity at atmospheric exposure that is thought to occur because oxygen and water vapor in the atmosphere enter the film through open gaps and degrade the contact between ITO particles Deterioration of the film over time, a decrease in film strength, which is considered to occur due to the coarse filling of ITO fine particles, and the like.
  • the conductive oxide fine particles are densely packed and at the same time, the crystal growth of the conductive oxide fine particles is promoted, and the open oxides (open pores) are small and the conductive oxide fine particles are in contact with each other.
  • the dry coating film By applying a heating energy ray in an oxygen-containing atmosphere and a plasma treatment in a non-oxidizing gas atmosphere, the main component is one or more of indium oxide, tin oxide, and zinc oxide.
  • the conductive oxide fine particle layer in which the contact between the conductive oxide fine particles is reinforced is formed.
  • an indium oxide, tin oxide, or zinc oxide coating solution is formed by using a coating liquid for forming a transparent conductive film containing as a main component one or more of an organic indium compound, an organic tin compound, and an organic zinc compound.
  • a transparent conductive film mainly containing any one or more is formed.
  • the transparent conductive film has a higher conductivity.
  • the metal oxide which is the main component of indium oxide, tin oxide, or zinc oxide, is doped with other metal compounds, mainly metal oxides. Improves conductivity.
  • the conductivity of the transparent conductive film is improved. This is because the dopant metal compound functions to increase the concentration of electrons as carriers (carrier density) in the conductive oxide.
  • an organic metal compound for dopant is added to a coating liquid for forming a transparent conductive film containing as a main component one or more of an organic indium compound, an organic tin compound, or an organic zinc compound. There is a method of blending a predetermined amount.
  • the organic indium compound used in the present invention indium acetylacetonate (standard nomenclature: tris (acetylacetonato) indium) [In (C 5 H 7 O 2) 3], 2- ethylhexanoate, indium formate, indium alkoxides Basically, it dissolves in a solvent and oxidizes without generating harmful gases such as chlorine gas and nitrogen oxide gas during irradiation with heat energy rays, plasma treatment, or subsequent heat treatment. Any organic indium compound that decomposes into a material may be used.
  • indium acetylacetone is highly soluble in organic solvents, and even when heated in the air, it decomposes and burns (oxidizes) at a temperature of about 200 to 250 ° C to become an oxide, and is irradiated with heating energy rays (wavelength of 200 nm or less If it is used in combination with UV irradiation, it is preferable that it decomposes and burns (oxidizes) at a temperature lower than the above temperature to become an oxide.
  • organometallic compounds for dopants that improve conductivity organic tin compounds, organic titanium compounds, organic germanium compounds, organic zinc compounds, organic tungsten compounds, organic zirconium compounds, organic tantalum compounds, organic niobium compounds, organic hafnium Any one or more of a compound and an organic vanadium compound are preferable.
  • the conductivity is low to some extent (high resistance value), so the addition of the organometallic compound for dopant to the coating liquid for forming the transparent conductive film What is necessary is just to implement suitably as needed.
  • organotin compound as the organometallic compound for dopant examples include, for example, acetylacetone tin (formal name: di-n-butoxide bis (2,4-pentane) dionato) tin, [Sn (C 4 H 9 ) 2 (C 5 H 7 O 2) 2], tin octylate, tin 2-ethylhexanoate, tin acetate (II) [Sn (CH 3 COO) 2] , tin acetate (IV) [Sn (CH 3 COO) 4], di -n- butyl tin diacetate [Sn (C 4 H 9) 2 (CH 3 COO) 2], formic acid, tin as tin alkoxide - tert-Butoxide [Sn (C 4 H 9 O) 4 ] and the like can be mentioned.
  • acetylacetone tin formal name: di-n-butoxide bis (2,4-pent
  • Nitrogen oxide Scan may be a decomposed organic tin compound to an oxide without generating harmful gas such as.
  • acetylacetone tin since relatively inexpensive and easily available preferred.
  • the organic titanium compound as the dopant organometallic compound for example, acetylacetone titanium (full name as titanium acetylacetone complex: titanium di -n- butoxide bis (2,4-pentanedionate) [Ti (C 4 H 9 O) 2 (C 5 H 7 O 2 ) 2 ]), titanyl (IV) acetylacetonate [(C 5 H 7 O 2 ) 4 TiO], titanium diisopropoxide bis (2,4-pentanedionate) [C 16 H 36 O 4 Ti] and the like, titanium tetraethoxide as titanium alkoxide [Ti (C 2 H 5 O) 4 ], titanium (IV) -tert-butoxide [Ti (C 4 H 9 O) 4 ], titanium tetra -n- butoxide [Ti (C 4 H 9 O ) 4], titanium tetraisopropoxide [Ti (C 3 H 7 O ) 4] Basically, it dissolves in
  • Any organic titanium compound that decomposes into a material can be used.
  • acetylacetone titanium, titanium tetra-n-butoxide, and titanium tetraisoproposide are preferable because they are inexpensive and easily available.
  • germanium tetraethoxide [Ge (C 2 H 5 O) 4 ] as germanium alkoxide, germanium tetra-n-butoxide [Ge (C 4 H 9 O) 4 ], Germanium tetraisopropoxide [Ge (C 3 H 7 O) 4 ] and the like, ⁇ -carboxyethyl germanium oxide [(GeCH 2 CH 2 COOH) 2 O 3 ], tetraethyl germanium [Ge (C 2 H 5 ) 4 ], tetrabutyl germanium [Ge (C 4 H 9 ) 4 ], tributyl germanium [Ge (C 4 H 9 ) 3 ], etc., which are basically dissolved in a solvent and irradiated with heating energy rays.
  • Any organic germanium compound that decomposes into oxide without generating harmful gas such as fluoride gas may be used.
  • germanium tetraethoxide, germanium tetra-n-butoxide, and germanium tetraisopropoxide are preferable because they are relatively inexpensive and easily available.
  • the organic zinc compound of the dopant organometallic compound for example, zinc acetylacetonate as a zinc acetylacetone complex (official name: Zinc 2,4-pentanedionate) [Zn (C 5 H 7 O 2) 2], zinc - 2,2,6,6-tetramethyl-3,5-heptanedionate [Zn (C 11 H 19 O 2 ) 2 ] and the like can be mentioned.
  • Any organic zinc compound that decomposes into an oxide without generating harmful gases such as chlorine gas and nitrogen oxide gas during irradiation, plasma treatment, and subsequent heat treatment may be used.
  • zinc acetylacetone is preferable because it is inexpensive and easily available.
  • organotungsten compound as the organometallic compound for the dopant examples include tungsten (V) ethoxide [W (C 2 H 5 O) 5 ] and tungsten (VI) ethoxide [W (C 2 H 5 O) 6 as tungsten alkoxide.
  • harmful gases such as chlorine gas and nitrogen oxide gas are dissolved in a solvent, and are irradiated with heating energy rays, microwave plasma treatment, and further heat treatment. Any organic tungsten compound that decomposes into an oxide without being generated may be used.
  • the organic zirconium compound as the dopant organometallic compound for example, zirconium di -n- butoxide bis as zirconium acetylacetone complex (2,4-pentanedionate) [Zr (C 4 H 9 O) 2 (C 5 H 7 O 2 ) 2 ], acetylacetone zirconium (zirconium-2,4-pentanedionate) [Zr (C 5 H 7 O 2 ) 4 ], zirconium ethoxide as a zirconium alkoxide [Zr (C 2 H 5 O) 4 ] , Zirconium-n-propoxide [Zr (C 3 H 7 O) 4 ], zirconium isopropoxide [Zr (C 3 H 7 O) 4 ], zirconium-n-butoxide [Zr (C 4 H 9 O) 4 ], zirconium -tert- butoxide [Zr (C 4 H 9 O ) 4], zirconium
  • tantalum (V) tetraethoxide-pentanedionate as a tantalum acetylacetone complex) [Ta (C 5 H 7 O 2 ) (OC 2 H 5 ) 4 ], Tantalum methoxide [Ta (CH 3 O) 5 ], tantalum ethoxide [Ta (C 2 H 5 O) 5 ], tantalum isopropoxide [Ta (C 3 H 7 O) 5 ], tantalum- n-butoxide [Ta (C 4 H 9 O) 5 ], tetraethoxyacetylacetonato tantalum [Ta (C 2 H 5 O) 4 (C 5 H 7 O 2 )] and the like can be mentioned.
  • niobium ethoxide as niobium alkoxide [Nb (C 2 H 5 O) 5 ], niobium-n-butoxide [Nb (C 4 H 9 O) 5 ], etc.
  • niobium ethoxide dissolves in a solvent, and does not generate harmful gases such as chlorine gas and nitrogen oxide gas during heating energy ray irradiation and plasma treatment, and also during the subsequent heat treatment.
  • Any organic niobium compound that decomposes into an oxide may be used.
  • hafnium di-n-butoxide bis (2,4-pentandionate) [Hf (C 4 H 9 O) 2 (C 5 H 7 as a hafnium acetylacetone complex) O 2 ) 2 ]
  • acetylacetone hafnium (hafnium-2,4-pentandionate) [Hf (C 5 H 7 O 2 ) 4 ]
  • organic vanadium compound of the organometallic compound for dopant for example, vanadium oxide bis-2,4-pentanedionate [VO (C 5 H 7 O 2 ) 2 ] as a vanadium acetylacetone complex, acetylacetone vanadium (vanadium-2, 4-pentanedionate) [V (C 5 H 7 O 2 ) 3 ] and the like are basically mentioned, but it is basically dissolved in a solvent, heated with energy radiation, plasma treatment, and further heated. Any organic vanadium compound that decomposes into oxides without generating harmful gases such as chlorine gas or nitrogen oxide gas during processing may be used.
  • the coating liquid for forming a transparent conductive film containing an organic tin compound as a main component will be described below.
  • the organic tin compound used in the present invention the organic tin compound described in the description of the coating liquid for forming a transparent conductive film containing an organic indium compound as a main component can be used. Is preferably at least one of an organic indium compound, an organic antimony compound, and an organic phosphorus compound.
  • the organic indium compound as the organometallic compound for dopant the organic indium compound described above in the description of the coating liquid for forming a transparent conductive film containing the organic indium compound as a main component may be used.
  • organic antimony compound of the organometallic compound for the dopant for example, antimony (III) acetate [Sb (CH 3 COO) 3 ], antimony (III) ethoxide [Sb (C 2 H 5 O) 3 ] as antimony alkoxide, Antimony (III) -n-butoxide [Sb (C 4 H 9 O) 3 ] and the like can be mentioned. Basically, it dissolves in a solvent, and is irradiated with heating energy rays and plasma treatment. Any organic antimony compound that decomposes into oxide without generating harmful gases such as chlorine gas and nitrogen oxide gas during heat treatment may be used. Among these, antimony (III) -n-butoxide is preferable because it is relatively inexpensive and easily available.
  • organophosphorus compound of the organometallic compound for dopant examples include, for example, triethyl phosphate [PO (C 2 H 5 O) 3 ] and the like.
  • any organic phosphorus compound that decomposes into an oxide without generating harmful gases such as chlorine gas and nitrogen oxide gas during plasma treatment and further during subsequent heat treatment may be used.
  • a coating liquid for forming a transparent conductive film containing an organic zinc compound as a main component will be described below.
  • the organic zinc compound used in the present invention the organic zinc compound described in the explanation of the coating liquid for forming a transparent conductive film containing an organic indium compound as a main component can be used. Is preferably at least one of an organoaluminum compound, an organoindium compound, and an organogallium compound.
  • the organic indium compound as the organometallic compound for dopant the organic indium compound described above in the description of the coating liquid for forming a transparent conductive film containing the organic indium compound as a main component may be used.
  • acetylacetone aluminum (aluminum-2,4-pentanedionate) [Al (C 5 H 7 O 2 ) 3 ] as an aluminum acetylacetone complex
  • aluminum ethoxide as an aluminum alkoxide [Al (C 2 H 5 O ) 3]
  • aluminum -n- butoxide [Al (C 4 H 9 O ) 3]
  • aluminum -tert- butoxide [Al (C 4 H 9 O ) 3]
  • aluminum isopropoxide [Al (C 3 H 7 O) 3 ] and the like can be mentioned.
  • Organic alcohol that decomposes into oxides without generating harmful gases such as oxide gases It may be a chloride compound.
  • acetylacetone aluminum and aluminum-n-butoxide are preferable because they are relatively inexpensive and easily available.
  • organogallium compound as the dopant organometallic compound examples include acetylacetone gallium (gallium-2,4-pentanedionate) [Ga (C 5 H 7 O 2 ) 3 ] as a gallium acetylacetone complex, and gallium ethoxide as a gallium alkoxide. [Ga (C 2 H 5 O) 3 ] and the like can be mentioned. Basically, chlorine gas or nitrogen is dissolved in a solvent and irradiated with heating energy rays, plasma treatment, and further heat treatment. Any organic gallium compound that decomposes into oxide without generating harmful gas such as oxide gas may be used.
  • One or more organometallic compounds of the organic indium compound, organotin compound, and organozinc compound in the coating solution for forming the transparent conductive film, or the organometallic compound and the organometallic compound for the dopant are formed on the substrate.
  • the total content thereof is preferably in the range of 1 to 30% by weight, more preferably 5 to 20% by weight. If the total content is less than 1% by weight, only a thin transparent conductive film can be obtained, and sufficient conductivity cannot be obtained. On the other hand, if it exceeds 30% by weight, the organometallic compound in the coating liquid for forming the transparent conductive film is likely to be precipitated and the stability of the coating liquid is reduced, or the resulting transparent conductive film becomes too thick and cracks are caused. May occur and conductivity may be impaired.
  • the content rate of an organometallic compound and the organometallic compound for dopants is an organometallic compound.
  • 99.9: 0.1 to 66.7: 33.3 is preferable in terms of molar ratio of the organometallic compound for dopant.
  • 99 in terms of the molar ratio of the organometallic compound: the organometallic compound for the dopant. .9: 0.1 to 87:13 is preferable, and 99: 1 to 91: 9 is preferable.
  • the coating liquid for forming a transparent conductive film containing an organic indium compound as a main component when an organozinc compound is used as an organometallic compound for doping, it is 95 in terms of a molar ratio of organometallic compound: organometallic compound for dopant. : 5 to 66.7: 33.3, preferably 91: 9 to 71:29.
  • the compounding ratio of the organometallic compound for the dopant in the coating liquid for forming the transparent conductive film varies depending on the processing conditions such as the substrate heating temperature in the microwave plasma processing step, so the applicable range varies. It is better to further optimize within the above described range.
  • the carrier density of the transparent conductive film may decrease and the conductivity of the transparent conductive film may deteriorate rapidly.
  • the crystal growth of the conductive oxide fine particles is difficult to proceed and the conductivity may be deteriorated.
  • an organic binder to the coating liquid for forming a transparent conductive film.
  • the binder is preferably a material that burns or decomposes during irradiation with heat energy rays, plasma treatment, or subsequent heat treatment, and cellulose derivatives, acrylic resins, and the like are effective as such materials.
  • cellulose derivatives used in the organic binder include methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, carboxyethyl methyl cellulose, nitrocellulose and the like.
  • HPC hydroxypropyl cellulose
  • HPC When this HPC is used, sufficient wettability can be obtained at a content of 5% by weight or less, and at the same time, the viscosity can be greatly adjusted.
  • the combustion start temperature of HPC is about 300 ° C for simple atmospheric heating, but it decomposes and burns even at heating temperatures below 300 ° C when used in combination with energy beam irradiation (for example, UV irradiation with a wavelength of 200 nm or less).
  • energy beam irradiation for example, UV irradiation with a wavelength of 200 nm or less.
  • the content of HPC When the content of HPC is more than 5% by weight, it becomes a gel and tends to remain in the coating solution, forming an extremely porous transparent conductive film, and the transparency and conductivity are significantly impaired.
  • the viscosity of the coating solution can be set lower than when HPC is used.
  • the acrylic resin is preferably an acrylic resin that burns at a relatively low temperature.
  • Solvents used in the coating liquid for forming a transparent conductive film include alkylphenols and / or alkenylphenols and dibasic acid esters or alkylphenols and / or alkenylphenols that can dissolve acetylacetone complexes such as acetylacetone indium, acetylacetone zinc, and acetylacetone vanadium at high concentrations. It is preferable to use benzyl acetate and a mixed solution thereof.
  • alkylphenol and alkenylphenol examples include cresols, xylenol, ethylphenol, p-tert-butylphenol, octylphenol, nonylphenol, cashew nut shell liquid [3 pentadecadeseal phenol], and dibasic acid esters (for example, dibasic acid esters).
  • dibasic acid esters for example, dibasic acid esters.
  • dimethyl acid, diethyl dibasic acid, etc. succinic acid ester, glutaric acid ester, adipic acid ester, malonic acid ester, phthalic acid ester and the like are used.
  • the solvent to be blended in the coating solution for forming the transparent conductive film includes organic indium compounds, organometallic compounds for dopants, and cellulose derivatives and / or acrylic resins.
  • the solvents used include methyl ethyl ketone (MEK), cyclohexanone, propylene glycol monomethyl ether (PGM), N-methyl-2-pyrrolidone (NMP), ⁇ -butyrolactone, and the like. preferable.
  • the coating liquid for forming a transparent conductive film used in the present invention is any one of the above organic indium compounds, organic tin compounds, and organic zinc compounds, and any of the above-mentioned various organometallic compounds for dopants. It is produced by heating and dissolving a mixture of one or more, and further, if necessary, a binder.
  • the melting by heating is usually performed by setting the heating temperature to 60 to 200 ° C. and stirring for 0.5 to 12 hours.
  • the heating temperature is lower than 60 ° C.
  • the coating does not dissolve sufficiently.
  • the heating temperature is lower than 60 ° C.
  • the coating solution for forming a transparent conductive film mainly composed of an organic indium compound the deposition and separation of a metal compound such as acetylacetone indium occurs. If the stability of the liquid is lowered and the temperature is higher than 200 ° C., the evaporation of the solvent becomes remarkable and the composition of the coating liquid changes, which is not preferable.
  • the viscosity of the coating liquid for forming a transparent conductive film can be adjusted by the molecular weight and content of the binder and the type of solvent, the inkjet printing method, the screen printing method, the gravure printing method, the offset printing method, the flexographic printing method, The viscosity can be adjusted to correspond to each of various coating methods such as dispenser printing, slit coating, die coating, doctor blade coating, wire bar coating, spin coating, and spray coating.
  • the coating liquid having a high viscosity (about 5000 to 50000 mPa ⁇ s) can be prepared by containing a high molecular weight binder in an amount of 5% by weight or less, preferably 2 to 4% by weight.
  • the low viscosity (about 5 to 500 mPa ⁇ s) is Further, it can be prepared by containing a low molecular weight binder in an amount of 5% by weight or less, preferably 0.1 to 2% by weight, and diluting with a low viscosity diluent.
  • a medium viscosity (500 to 5000 mPa ⁇ s) coating solution can be produced by mixing a high viscosity coating solution and a low viscosity coating solution.
  • the manufacturing method of the transparent conductive film of this invention includes a coating step of applying a transparent conductive film-forming coating solution on a substrate to form a coating film, a drying step of drying the coating film to form a dry coating film, and the dry coating film It is formed through each step of a heating energy ray irradiation step for forming an inorganic film by irradiating energy rays while heating and a plasma treatment step for plasma treatment of the inorganic film.
  • Coating of the coating liquid for forming the transparent conductive film on the substrate is performed by inkjet printing, screen printing, gravure printing, offset printing, flexographic printing, dispenser printing, slit coating, and die coating. It is applied using various coating methods such as a doctor blade coating method, a wire bar coating method, a spin coating method, and a spray coating method. These coatings are preferably performed in a clean atmosphere such as a clean room where the temperature and humidity are controlled. The temperature is generally room temperature (about 25 ° C.) and the humidity is generally 40 to 60% RH.
  • heat-resistant inorganic substrates such as soda lime glass, alkali-free glass, quartz glass, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), nylon, polyethersulfone (PES), polyethylene (PE),
  • resin substrates plastic film
  • PP polypropylene
  • urethane urethane
  • cycloolefin resin Zeonor [made by Nippon Zeon], Arton [made by JSR], etc.
  • fluorine-based resin polyamideimide, polyimide (PI), etc. it can.
  • drying step the substrate coated with the coating liquid for forming a transparent conductive film is kept in the normal atmosphere at 80 to 180 ° C. for 1 to 30 minutes, preferably 2 to 10 minutes to dry the coated film. And a dry coating film is produced.
  • the drying conditions drying temperature, drying time
  • drying time may be appropriately selected depending on the type of substrate to be used, the coating thickness of the transparent conductive film forming coating solution, and the like, and are not limited to the above drying conditions.
  • the drying time is shortened to the minimum necessary so that the quality of the obtained dry coating film does not deteriorate.
  • the drying temperature needs to be equal to or lower than the heat resistance temperature of the substrate to be used.
  • the PET film it is necessary to set it to 160 ° C. or less (depending on the drying time).
  • drying under reduced pressure the solvent in the applied coating liquid for forming a transparent conductive film is forcibly removed under reduced pressure and the drying proceeds, so that drying at a lower temperature is possible compared to drying in the air. This is useful when a substrate made of a material having poor heat resistance and solvent resistance is used.
  • This dry coating film is obtained by volatilizing and removing the above-mentioned solvent from a coating liquid for forming a transparent conductive film, and includes at least one organometallic compound of an organic indium compound, an organotin compound, and an organozinc compound, Organometallic compound for dopant) and organic components such as a binder.
  • Heating energy ray irradiation step In the heating energy ray irradiation step, usually, as shown in FIG. 2, a heating device such as a hot plate 1 and an energy ray irradiation lamp 4 are used and obtained in the drying step of the previous step.
  • the dried coating film 3 is irradiated with energy rays while being heated to a heating temperature of less than 300 ° C.
  • Organometallic compounds, or organic indium compounds containing organometallic compounds for dopants, organic tin compounds, organic zinc compounds, organic zinc compounds, and organic components such as binders are decomposed and burned (oxidized).
  • a transparent conductive film is obtained as a conductive oxide fine particle layer densely filled with conductive oxide fine particles crystallized in (1).
  • energy rays are usually emitted from the energy ray irradiation lamp in addition to energy rays necessary for decomposition / combustion (oxidation) of organic components, for example, when the heating temperature is as low as about 40 to 50 ° C.
  • No heating device such as a hot plate is required.
  • the substrate is heated to at least about 40 to 50 ° C. by heat ray irradiation from the energy ray irradiation lamp without being heated by a heating device such as a hot plate.
  • the heating energy ray irradiation step for example, when the irradiation amount of energy rays increases in a range of heating temperature less than 300 ° C., that is, when the energy ray irradiation time becomes longer, the organic indium compound in the dry coating film,
  • One or more organometallic compounds (including those containing organometallic compounds for dopants) are gradually decomposed and burned (oxidized) to form an amorphous state (here, X
  • the crystallite size obtained by line diffraction refers to the state of very fine particles of less than 3 nm) is converted into a conductive oxide, so-called mineralization, and the final transparent conductive film component is formed. .
  • the binder is also gradually decomposed and burned (oxidized) by irradiation with energy rays in an oxygen-containing atmosphere in the heating energy ray irradiation step. Therefore, it is mainly converted into carbon dioxide (CO 2 ), volatilized in the atmosphere, and disappears from the film.
  • CO 2 carbon dioxide
  • the energy ray irradiation process that is, the energy ray illuminance
  • a large amount of binder remains until the energy ray irradiation time is about several tens of seconds to 3 minutes, and is formed by the above mineralization.
  • the binder is uniformly interposed between the conductive oxides to suppress crystallization at the nano level, and the binder component gradually disappears as the time of energy beam irradiation increases, and the above conductive oxidation occurs. It is considered that crystallization at the nano level of the material starts and a very fine amorphous conductive oxide fine particle layer is formed.
  • the organic component of the dried coating film is gradually decomposed and burned (oxidized) by the irradiation of the heating energy ray in an oxygen-containing atmosphere, and the film becomes mineralized. It goes down.
  • a dry coating film having a thickness of 500 to 600 nm is finally changed into an inorganic film having a thickness of about 110 to 130 nm by irradiation with heating energy rays in the oxygen-containing atmosphere.
  • the heating temperature in the heating energy ray irradiation step may be less than 300 ° C., preferably 40 to 250 ° C., more preferably 100 to 200 ° C., and further preferably 100 to 150 ° C.
  • the temperature is 300 ° C. or higher, thermal decomposition of the dried coating film to which the energy beam irradiation is performed before the energy beam irradiation is started, so that densification of the film is hindered.
  • the temperature below 40 ° C. is not practical at all, it is necessary to pay sufficient attention to the decrease in the rate of mineralization and densification of the dried coating film by heating energy ray irradiation.
  • the irradiation of the heating energy ray is preferably an ultraviolet irradiation including at least a wavelength of 200 nm or less as one of main components, and more specifically, any of a low pressure mercury lamp, an amalgam lamp, and an excimer lamp. Irradiation of ultraviolet rays emitted from the above is preferred.
  • the irradiation amount of the ultraviolet rays is illuminance of light having a wavelength of 200 nm or less: 2 mW / cm 2 or more, preferably 4 mW / cm 2 or more, and the irradiation time is 2 minutes or more, preferably 4 minutes or more.
  • the irradiation amount of ultraviolet rays can be appropriately adjusted by the distance between the substrate and the lamp (irradiation distance), the irradiation time, or the output of the lamp.
  • irradiation distance the distance between the substrate and the lamp
  • irradiation time the irradiation time
  • the output of the lamp the irradiation amount of ultraviolet rays
  • straight tube lamps may be arranged in parallel, or a surface light source of a grid type lamp may be used.
  • the low-pressure mercury lamp and excimer lamp capable of emitting light with a wavelength of 200 nm or less will be described in detail.
  • the lamp is used. It is more preferable to use a low-pressure mercury lamp that can reduce the influence of heating.
  • an amalgam lamp is a low-pressure mercury lamp that generally encloses argon gas and mercury in a quartz glass tube. The output can be increased by about 2 to 3 times, and the output wavelength characteristic is almost the same as that of the low-pressure mercury lamp, so that detailed description is omitted.
  • the amalgam lamp like the low-pressure mercury lamp, has few restrictions on use in the heating energy ray irradiation process of the present invention, and can reduce the influence of heating to the lamp when used in combination with heat treatment. preferable.
  • the low-pressure mercury lamp emits ultraviolet rays having wavelengths of 185 nm and 254 nm.
  • 185 nm light decomposes oxygen to generate ozone, and further 254 nm light is converted into ms (milliseconds). It decomposes at a unit rate to produce high energy active atomic oxygen O ( 1 D).
  • an excimer lamp (xenon excimer lamp) emits ultraviolet light having a wavelength of 172 nm, and, for example, in air, unlike a low-pressure mercury lamp, a high-energy active atomic oxygen as shown in the following formula (4):
  • O ( 1 D) can be directly generated.
  • dissociation of the oxygen molecule shown in Formula (4) requires a wavelength of 175 nm or less, this dissociation does not occur in the light of 185 nm of the low-pressure mercury lamp.
  • ozone is generated by the following formula (5)
  • active atomic oxygen can also be generated by the formula (6).
  • Formula (6) shows a secondary reaction, and it is considered that the main generation of active atomic oxygen is based on Formula (4).
  • the energy of photons is as large as 696 kJ / mol, there is also an advantage that the ability to cut bonds between organic substances is high. That is, since it is higher than the molecular bond energy of most organic substances, the probability that the molecular bond is broken increases.
  • 172 nm light has an oxygen absorption coefficient about 100 times larger than that of 185 nm light from a low-pressure mercury lamp and is strongly absorbed by oxygen.
  • the ozone and high-energy active atomic oxygen are Oxidation reaction takes place only in the vicinity, and there is a drawback that the effective irradiation distance in the atmosphere is extremely shortened to 0 to 3 mm (critical irradiation distance is 8 mm).
  • oxygen-containing atmospheric gas used in the present invention examples include air, oxygen gas, or a mixed gas of oxygen gas and nitrogen gas / inert gas (argon, helium, etc.). Air that is inexpensive and easily available is preferable.
  • the pressure of the atmosphere is not particularly limited and may be reduced or increased, but atmospheric pressure is preferred from the viewpoint of simplicity.
  • an oxygen-containing atmosphere having a low dew point that is, a low water vapor content (for reference, FIG. 3 shows the relationship between the saturated water vapor content (volume%) in air and the dew point (° C.).
  • the film structure in which the binder is uniformly interposed between the conductive oxides is maintained at least until the nano-level crystallization of the conductive oxides generated by the inorganicization in the heating energy ray irradiation process starts.
  • This film structure is flexible by the action of a binder, which is an organic substance, and allows the film to shrink (densify) in the direction perpendicular to the substrate.
  • a binder which is an organic substance
  • the dew point of the oxygen-containing atmosphere gas having a low dew point is preferably ⁇ 10 ° C. or lower, more preferably ⁇ 20 ° C. or lower, still more preferably ⁇ 30 ° C. or lower, and most preferably ⁇ 40 ° C. or lower.
  • a large amount of binder still remains in the formation process of the conductive oxide fine particle layer composed of very fine conductive oxide fine particles due to the inorganicization of the film in the heating energy ray irradiation process. Water vapor promotes nano-level crystallization and crystal growth of the conductive oxide.
  • the film structure capable of contracting in the film vertical direction in which the binder is uniformly interposed between the conductive oxides is destroyed, the conductive oxide fine particles are fixed and cannot move, and the densification of the film is inhibited. This is not preferable because the conductivity, film strength, resistance stability, and the like of the finally obtained transparent conductive film are lowered.
  • the heating device used in the heating energy ray irradiation process examples include, but are not limited to, a hot plate, a hot air heating device, a far infrared heating device (for example, a halogen lamp heating device), and the like.
  • a hot plate for example, a hot plate
  • a hot air heating device for example, a far infrared heating device (for example, a halogen lamp heating device), and the like.
  • a far infrared heating device for example, a halogen lamp heating device
  • the heating energy ray irradiation step for example, when an atmosphere such as a gas having a different oxygen concentration from air or an atmosphere such as air having a low humidity, that is, a low dew point, is used as the oxygen-containing atmosphere, For example, as shown in FIG.
  • a substrate such as a hot plate in an irradiation box having an ultraviolet irradiation window 5 of a synthetic quartz plate (having a high transmittance of ultraviolet rays having a wavelength of 200 nm or less) is required.
  • a structure in which a heating device is installed is desirable.
  • the synthetic quartz plate is suitable for the ultraviolet irradiation window 5, when the irradiation window does not have to be so thick, for example, a fused quartz plate (wavelength of 200 nm or less) with a thickness of about 0.5 mm to 2 mm. (The transmittance of the ultraviolet rays is somewhat low) is not particularly troublesome when applied to the ultraviolet irradiation window 5.
  • the material of the ultraviolet irradiation window 5 is not particularly limited to the quartz as long as it transmits ultraviolet rays required for energy rays (for example, ultraviolet rays having a wavelength of 172 nm, ultraviolet rays having wavelengths of 185 nm and 254 nm).
  • (D) Plasma treatment step In the plasma treatment step, the inorganic film obtained in the energy beam irradiation step of the previous step is subjected to plasma treatment at a substrate temperature of less than 300 ° C. in a non-oxidizing gas atmosphere, and a trace amount remains in the inorganic film.
  • the organic component is further decomposed to promote mineralization, and at the same time, energy is applied to the film to promote crystallization, so that an inorganic film made of a conductive oxide, more specifically, conductive oxide fine particles
  • a transparent conductive film is formed as a conductive oxide fine particle layer that is densely packed and has enhanced contact between the conductive oxide fine particles.
  • the substrate temperature in the plasma processing step usually indicates the temperature of the substrate heated by the plasma having high energy (for example, when ion components in the microwave plasma are cut with an ion trap as described later) Etc., the substrate may be heated using a heating device.)
  • FIG. 5 shows a typical relationship between the plasma processing time and the substrate temperature in the plasma processing step. The substrate temperature increases from room temperature with the plasma processing time, and decreases when the plasma processing is completed.
  • plasma processing at a substrate temperature of less than 300 ° C. means that the maximum temperature reached by the substrate in FIG. 5 is less than 300 ° C., and the processing temperature of the plasma processing step is this maximum temperature reached. Is shown.
  • high-density plasma is generated as will be described later, so that various chemical reactions are promoted simultaneously with heating the substrate.
  • plasma treatment unlike molecules in a normal gas atmosphere, the effect of promoting crystallization by high-energy gas ions or excited atoms (active atoms) present in the plasma, for example, nitrogen ions or active nitrogen.
  • active atoms for example, nitrogen ions or active nitrogen.
  • it has the effect of remarkably enhancing the conductivity and resistance stability of the film by strengthening the contact between the conductive oxide fine particles due to its crystallization promoting effect.
  • conductive oxide fine particles composed of fine crystals of about 5 to 20 nm as shown in the examples are densely packed, and the crystal orientation of these conductive oxide fine particles is A conductive oxide fine particle layer having a special structure adjacent to the aligned region is formed. Since this structure has a strong crystallization-promoting effect, which is the action of plasma in plasma treatment, first, crystal grains are formed on the film surface in the crystallization / crystal growth of the film, and at the same time, the contact portions between the crystal grains are formed. This is considered to be formed because crystallization and crystal growth proceeded from the film surface to the substrate side.
  • the dopant concentration in the transparent conductive film also affects the crystal growth, and generally the lower the dopant concentration, the easier the crystal growth. Therefore, from the viewpoint of promoting crystal growth, it is necessary to further lower the dopant concentration, particularly when the substrate temperature in the plasma processing step is low and crystal growth is difficult.
  • the compounding ratio of tin oxide as the dopant metal compound is the molar ratio of indium: tin. In conversion, 99: 1 to 95: 5 is most preferable.
  • a conductive oxide fine particle layer having a structure in which contact between conductive oxide fine particles (bonding of contact areas) is enhanced can be obtained.
  • it has a feature that the stability of the resistance value can be greatly improved.
  • a reduced pressure plasma treatment performed in a reduced non-oxidizing gas atmosphere and an atmospheric pressure plasma treatment performed in an atmospheric pressure non-oxidizing gas atmosphere (“normal pressure plasma treatment” (“regular” It can be roughly divided into two methods (also called “pressure plasma treatment”). In any of these plasma treatments, the conductive oxide fine particle layer described above can be densified and the conductivity of the transparent conductive film can be improved. The characteristics of each plasma treatment will be described below.
  • Low-pressure plasma treatment (performed in a reduced non-oxidizing gas atmosphere)
  • microwave plasma or high-frequency plasma may be used as a plasma used in a reduced-pressure plasma treatment performed in a reduced non-oxidizing gas atmosphere.
  • any plasma application is possible.
  • the pressure in the atmosphere used is preferably about 2 to 1000 Pa, preferably about 3 to 500 Pa in order to stably form plasma.
  • microwave plasma becomes unstable when the atmospheric pressure becomes high, so it is used to form it stably.
  • the pressure in the atmosphere is 2 to 200 Pa, preferably 3 to 20 Pa, more preferably 3 to 10 Pa.
  • the pressure exceeds 200 Pa, it becomes difficult to form a microwave plasma, and at the same time, the existence lifetime of ions and active atoms in the plasma is shortened, and the ion concentration and active atom concentration are lowered. Since the effect is small, it cannot be said to be preferable.
  • the pressure is less than 2 Pa, it is not preferable because it is difficult to form microwave plasma and at the same time the ion concentration and active atom concentration in the plasma are reduced.
  • the reduced-pressure high-frequency plasma treatment using the high-frequency plasma will be described.
  • the pressure in the atmosphere used is 2 to 1000 Pa, preferably About 3 to 500 Pa is preferable.
  • the non-oxidizing gas atmosphere used here includes at least one of nitrogen gas, inert gas (such as argon and helium), and reducing gas (such as organic solvent vapor such as hydrogen gas, ammonia gas, and methanol).
  • nitrogen gas such as argon and helium
  • reducing gas such as organic solvent vapor such as hydrogen gas, ammonia gas, and methanol.
  • An atmosphere etc. are mentioned.
  • the film is weakly reduced and a carrier forming action is formed in the conductive oxide fine particle. This is because it is necessary to increase the carrier concentration by forming oxygen vacancies having oxygen.
  • the film is strongly reduced, for example, excessively reduced pressure plasma treatment with hydrogen gas alone, the resulting transparent conductive film has too many oxygen vacancies and the film may be blackened or reduced to metal. Because there is attention.
  • a preferable non-oxidizing gas atmosphere is nitrogen gas.
  • a preferable non-oxidizing gas atmosphere has a reducing power stronger than that of nitrogen gas, and can reduce the film to give oxygen vacancies. It is a mixed gas of gas and other nitrogen gas or inert gas.
  • the oxygen vacancies formed in the conductive oxide fine particles by this reduction facilitate diffusion of component elements (indium, oxygen, etc.) of the conductive oxide fine particles, in addition to promoting crystallization by plasma energy. It has the effect of further promoting crystallization, and is also effective for improving the conductivity of the transparent conductive film and stabilizing the resistance (suppressing aging).
  • the low-pressure plasma treatment has the effect of further decomposing organic components remaining in the inorganic film to promote mineralization, but the decomposition effect of the organic components is not large.
  • the main action is crystallization and crystal growth of the inorganic film.
  • an oxygen-containing atmosphere as a decompressed gas atmosphere has a greater effect of promoting mineralization by decomposition / combustion (oxidation) of organic components than a non-oxidizing gas atmosphere. Therefore, from the viewpoint of promoting mineralization of the transparent conductive film, the reduced oxidizing gas is applied between the heating energy ray irradiation step in an oxygen-containing atmosphere and the reduced-pressure plasma treatment step in a reduced non-oxidizing gas atmosphere. It is also possible to insert a low-pressure plasma treatment step under an atmosphere.
  • the oxidizing gas atmosphere include air, oxygen gas, or a mixed gas of oxygen gas and nitrogen gas / inert gas (argon, helium, etc.).
  • an inorganic film having a thickness of about 115 to 125 nm is reduced by about 20 to 30% to a thickness of about 90 to 105 nm by the reduced pressure plasma treatment.
  • the substrate temperature heated by the plasma is controlled by the distance between the substrate and the plasma generation part (irradiation distance), the processing time, the input energy (several hundred W to several kiloW), or the substrate It can be adjusted as appropriate by cooling, heating or the like.
  • the low-pressure plasma treatment on the entire surface of the large substrate can be performed by, for example, arranging energy (microwave or high frequency) introduction portions uniformly in a plane to form a large area microwave plasma or high frequency plasma.
  • the plasma treatment is intermittently performed as a method for improving the characteristics of the transparent conductive film while suppressing the increase in the substrate temperature in the low-pressure plasma treatment process and extending the plasma treatment time. Then, substrate heating (plasma ON) and cooling (plasma OFF) may be performed alternately.
  • Microwave is an electromagnetic wave having an extremely short wavelength and is a general term for radio waves having a wavelength of about 3 to 30 cm (frequency: 1000 M to 10000 MHz). Industrially, 2450 MHz and 915 MHz are used, but 2450 MHz is common.
  • FIG. 7 is a schematic view showing an example of a reduced-pressure microwave plasma treatment step performed in a reduced-pressure non-oxidizing gas atmosphere in the transparent conductive film manufacturing step by the coating method according to the present invention.
  • the microwave plasma 11 normally introduces a microwave having a frequency of 2450 MHz into the chamber 10 through the introduction window 9 made of a material such as quartz that transmits the microwave from the waveguide 8, and ionizes the gas molecules in the chamber 10. -Dissociate to generate plasma.
  • gas molecules, ions generated from the gas molecules, atomic elements (ground state atoms), radicals (excited atoms) are mixed, for example when nitrogen gas is used , Molecules (N 2 ), ions (N + , N 2 + ), atomic elements (N), and radicals (N) are generated.
  • the plasma generated in this way can shield the electric field, so that its radio waves cannot enter the interior, but can propagate as surface waves along the surface of the plasma.
  • a microwave surface plasma that becomes a high-density plasma of 10 11 to 10 12 / cm 3 under a gas pressure of 2 to 200 Pa can be obtained.
  • the plasma density of the commonly used radio frequency plasma is about 10 9 to 10 10 / cm 3
  • the microwave plasma has a feature that the chemical reaction rate can be increased by the high plasma density.
  • the microwave plasma 11 is as low as about 1 eV with respect to several eV or more of the high-frequency plasma (RF plasma), so that thermal degradation due to excessive heating of the substrate can be reduced.
  • electrodeless discharge eliminates the need for an electrode inside the chamber, and the structure is simple, so that the degree of design freedom in the apparatus can be increased.
  • the decompressed non-oxidizing gas atmosphere is a predetermined non-oxidizing gas after a sample is placed on the substrate support plate 6 in the chamber 10 and the inside of the chamber 10 is once evacuated to about 10 ⁇ 5 Pa. Is introduced so as to have a predetermined gas partial pressure.
  • the substrate may be heated or cooled in order to control the substrate temperature as described above.
  • a hot plate, a far-infrared heating apparatus, or the like can be used as the substrate holding plate 6 in FIG. 7, but is not limited thereto.
  • the substrate is held in close contact with the substrate support plate 6 (made of a material having high thermal conductivity such as copper) that is forcibly cooled by a water cooling jacket or the like.
  • the substrate support plate 6 made of a material having high thermal conductivity such as copper
  • a method of performing a microwave plasma treatment while taking heat away is conceivable.
  • the ion trap 12 for example, a punching metal plate with a small hole can be used. Since the ion component is trapped in the ion trap 12 (punching metal plate), only the atomic element or radical component in the microwave plasma is irradiated to the inorganic film 7.
  • irradiation of ion components mainly causes an increase in the temperature of the substrate. Therefore, when the ion trap 12 as described above is used, an increase in the substrate temperature is difficult to occur. The substrate temperature will only rise up to. Accordingly, in order to raise the substrate temperature to, for example, 100 ° C. or higher in the reduced-pressure microwave plasma processing using the ion trap 12, it is necessary to use in combination with a heating apparatus such as that used in the heating energy ray irradiation process described above. . In addition, irradiation of the heated inorganic film 7 with atomic elements or radical components has a modification action (crystallization, crystal growth) of the inorganic film, as in the low-pressure microwave plasma treatment without ion cutting. ing.
  • the inorganic film modification (crystallization, crystal growth) and substrate heating can be controlled separately. Since the temperature control of the substrate can be simplified and the temperature distribution of the substrate can be made more uniform, the entire low-pressure microwave plasma processing process can be easily controlled. In addition, since the processing time can be set long (for example, several minutes to several tens of minutes), further improvement in film characteristics can be expected.
  • the high frequency of the high frequency plasma is an electromagnetic wave having a radio frequency (RF) wavelength, and is a general term for radio waves having a wavelength of about 1 m to 100 km (frequency: 3 k to 300 MHz).
  • RF radio frequency
  • FIG. 9 is a schematic view showing an example of a reduced-pressure high-frequency plasma treatment process performed in a reduced non-oxidizing gas atmosphere in the transparent conductive film manufacturing process by the coating method according to the present invention.
  • the plasma 11 is generally formed by applying a high frequency of 13.56 MHz to a plasma generating electrode 13 sandwiching a chamber 10 made of a material that transmits high frequency (borosilicate glass, non-alkali glass, quartz glass, etc.) Plasma molecules 11 are generated by ionizing and dissociating gas molecules in 10. Therefore, in the plasma 11, gas molecules, ions generated from the gas molecules, atomic elements (ground state atoms), and radicals (excited atoms) are mixed.
  • the plasma density is about 10 9 to 10 10 / cm 3, which is somewhat lower than the plasma density of microwave plasma, but the structure of the apparatus is simple and the apparatus cost is low.
  • the decompressed non-oxidizing gas atmosphere is obtained by placing a sample on the substrate support plate 6 in the chamber 10 and then evacuating the inside of the chamber 10 to about 10 ⁇ 5 to several tens of Pa, followed by It is obtained by introducing an oxidizing gas so as to obtain a predetermined gas partial pressure.
  • the substrate may be heated or cooled in order to control the substrate temperature as described above.
  • a hot plate, a far infrared heating apparatus, or the like can be used as the substrate holding plate 6 in FIG. 9, but is not limited thereto.
  • the substrate is held in close contact with the substrate support plate 6 (made of a material having high thermal conductivity such as copper) forcibly cooled by, for example, a water cooling jacket.
  • a method of performing high-frequency plasma treatment under reduced pressure while taking heat away can be considered.
  • the reduced-pressure plasma treatment has a great effect in densifying the conductive oxide fine particle layer and improving the conductivity of the transparent conductive film, for example, by utilizing the fact that the chemical reaction rate is high due to the high plasma density. have.
  • a vacuum treatment chamber 10 as shown in FIG. 7 or FIG. 8 is required for the plasma treatment under reduced pressure, and there is a drawback that the price of the plasma treatment apparatus increases.
  • the process steps are complicated, and the total processing time (tact time) becomes long. There was also an aspect that the processing capacity was lowered.
  • the atmospheric pressure plasma treatment performed in a non-oxidizing gas atmosphere at atmospheric pressure described below is a plasma treatment method that can cope with these problems.
  • Atmospheric pressure plasma treatment (performed under atmospheric pressure non-oxidizing gas atmosphere) (atmospheric pressure plasma treatment)
  • atmospheric pressure plasma treatment performed in an atmospheric pressure non-oxidizing gas atmosphere generates plasma in an atmospheric pressure atmospheric gas and uses the generated gas (plasma gas 16).
  • the inorganic film 7 is processed. Similar to the above-described reduced-pressure microwave plasma treatment performed in a reduced-pressure non-oxidizing gas atmosphere, by the modification action (crystallization, crystal growth) of the inorganic film by ions, atomic elements, and radical components in the plasma, Densification of the conductive oxide fine particle layer and improvement of the conductivity of the transparent conductive film can be achieved.
  • the substrate 2 having the inorganic film 7 obtained in the heating energy ray irradiation process is sandwiched between electrodes 13 for plasma generation, and a plasma gas (atmospheric pressure) 16 is formed immediately above the inorganic film 7 to perform plasma treatment. How to do it.
  • a plasma gas (atmospheric pressure) 16 is generated by the plasma generator 14, and is blown from the plasma gas discharge nozzle 15 to the inorganic film 7 on the substrate 2 to form a transparent conductive film 17 that has been plasma-treated. How to get.
  • a patterned transparent conductive film 18 can be obtained by selective plasma treatment.
  • the plasma of the atmospheric pressure plasma treatment may be microwave plasma or high frequency plasma.
  • the non-oxidizing gas atmosphere is an organic solvent such as nitrogen gas, inert gas (argon, helium, etc.), reducing gas (hydrogen gas, ammonia gas, methanol, etc.) as in the case of the above-described reduced-pressure microwave plasma treatment.
  • An atmosphere containing at least one kind of steam or the like) is included, and a preferable non-oxidizing gas atmosphere is nitrogen gas or a mixed gas containing nitrogen gas containing hydrogen gas or ammonia gas.
  • the substrate is preferably heated or cooled as necessary so that its temperature falls within a predetermined range.
  • a heat treatment in a neutral atmosphere or a reducing atmosphere may be performed as necessary following the plasma treatment.
  • oxygen vacancies are formed in the conductive oxide fine particles, the carrier concentration increases, and the conductivity of the transparent conductive film can be improved in some cases.
  • the heat treatment method include a hot air heating device and a halogen lamp heating device. Note that this heat treatment in a neutral atmosphere or a reducing atmosphere facilitates crystal growth by making oxygen vacancies formed in the film easier to diffuse the constituent elements (indium, oxygen, etc.) of the conductive oxide fine particles.
  • resistance stabilization suppression of change over time
  • the neutral atmosphere is composed of at least one of nitrogen gas and inert gas (argon, helium, etc.), and the reducing atmosphere is hydrogen gas or hydrogen or an organic solvent vapor (organic such as methanol) in the neutral atmosphere. Gas) and the like, as long as the conductive carrier concentration can be increased by depriving oxygen atoms from the finely packed conductive oxide fine particles to form oxygen vacancies. It is not limited. And if the heat processing temperature is less than 300 degreeC, the mixture which made hydrogen gas 0.1 to 7% (volume%) (more preferably 0.5 to 4%) contain in nitrogen gas or an inert gas Gas is a preferable atmosphere because there is no risk of explosion even if it leaks into the atmosphere.
  • the heating conditions for the heat treatment in a neutral atmosphere or a reducing atmosphere are as follows: the heat treatment temperature is 150 ° C. or higher and lower than 300 ° C., more preferably 200 ° C. or higher and lower than 300 ° C. for 5 to 120 minutes, more preferably 15 to 60 minutes. From the viewpoint of further promoting the crystal growth between the conductive oxide fine particles, the heat treatment temperature is preferably 250 ° C. or higher and lower than 300 ° C. When the heat treatment temperature is lower than 150 ° C., oxygen vacancies cannot be sufficiently formed in the conductive oxide fine particles, and improvement in the conductivity of the transparent conductive film due to an increase in carrier concentration cannot be expected.
  • the heat treatment in the neutral atmosphere or the reducing atmosphere is performed in addition to the function of increasing the carrier concentration by forming oxygen vacancies in the conductive oxide, and the presence of the oxygen vacancies in the transparent conductive film. Since it also has a function of facilitating crystal growth by facilitating movement of constituent elements, the strength and conductivity of the transparent conductive film may be further improved depending on the applied conditions.
  • FIG. 13 shows a method for performing a reduced-pressure plasma treatment step subsequent to the heating energy ray irradiation step
  • FIG. 14 shows a method for applying an atmospheric pressure plasma treatment step subsequent to the heating energy ray irradiation step.
  • the thin film transistor element includes, for example, a field effect transistor element having a coplanar structure or a staggered structure, and the details are omitted.
  • the thin film transistor element is used as a driver element of a display or an image sensor such as an active matrix liquid crystal display or an electroluminescence display described later.
  • amorphous silicon has been widely used for the channel active layer of thin film transistor elements so far.
  • amorphous silicon has the disadvantages of low carrier mobility and unstable characteristics during continuous driving. Aiming for better device characteristics than silicon (high mobility, low threshold voltage, high on-off ratio, low S value, normally off, etc.), amorphous conductivity such as In—Ga—Zn—O system (InGaZnO 4 ) Attempts have been made to apply a conductive oxide (oxide semiconductor) to a channel active layer.
  • the transparent conductive film obtained by the present invention is a conductive oxide fine particle layer in which conductive oxide fine particles mainly composed of a metal oxide are packed very densely (amorphous), for example, the channel activity of a thin film transistor
  • An amorphous conductive oxide layer (oxide semiconductor layer) such as InGaZnO 4 applicable to the layer can be formed by low-temperature heating at less than 300 ° C.
  • the transparent conductive film and the transparent conductive substrate of the present invention are applied.
  • Examples of such devices include LED elements, electroluminescence lamps (electroluminescence elements), light emission devices such as field emission lamps, power generation devices such as solar cells, liquid crystal displays (liquid crystal elements), electroluminescence displays (electroluminescence elements), Examples thereof include display devices such as plasma displays and electronic paper elements, and input devices such as touch panels.
  • the transparent conductive film and the transparent conductive substrate of the present invention are suitable for these transparent electrodes.
  • electroluminescent elements as light emitting devices include an organic EL element using an organic light emitting material and an inorganic EL element using an inorganic light emitting material.
  • This organic EL element is a self-luminous element unlike a liquid crystal display element, and is expected to be used as a display device such as a display because it can be driven at a low voltage to obtain high luminance.
  • Organic EL devices also have a low molecular type and a high molecular type.
  • a high molecular type structure has a hole injection layer (hole) made of a conductive polymer such as a polythiophene derivative on a transparent conductive film as an anode electrode layer.
  • organic light emitting layer (polymer light emitting layer formed by coating), cathode electrode layer [magnesium (Mg), calcium (Ca), aluminum (Al ) And the like, and a gas barrier coating layer (or a sealing treatment with metal or glass) are sequentially formed.
  • the gas barrier coating layer is required to prevent the deterioration of the organic EL element, and an oxygen barrier and a water vapor barrier are required.
  • the water vapor transmission rate is about 10 ⁇ 5 g / m 2 / day.
  • the following very high barrier performance is required, and the inside of the organic EL element (device) is completely sealed from the outside.
  • Solar cells as power generation devices are power generation elements that convert sunlight into electrical energy
  • solar cells are silicon solar cells (thin film type, microcrystal type, crystal type), CIS solar cells (copper-indium-selenium thin film).
  • CIGS solar cells copper-indium-gallium-selenium thin film
  • dye-sensitized solar cells etc., for example, silicon solar cells sequentially have a transparent electrode, a semiconductor power generation layer (silicon), and a metal electrode on a transparent substrate. Formed.
  • a liquid crystal element as a display device is a non-light-emitting electronic display element widely used in displays such as mobile phones, PDAs (Personal Digital Assistants), and PCs (Personal Computers), and is a simple matrix system (passive matrix system). And an active matrix method.
  • the active matrix method is superior in terms of image quality and response speed.
  • the basic structure is a structure in which liquid crystal is sandwiched between transparent electrodes (corresponding to the transparent conductive film of the present invention), and liquid crystal molecules are aligned by voltage driving, and the actual elements are color electrodes.
  • a filter, a retardation film, a polarizing film, etc. are further laminated and used.
  • liquid crystal elements include polymer dispersed liquid crystal elements (hereinafter abbreviated as PDLC elements) and polymer network liquid crystal elements (hereinafter abbreviated as PNLC elements) used for optical shutters such as windows. included.
  • the basic structure is that, as described above, the liquid crystal layer is sandwiched between electrodes (at least one is a transparent electrode and the transparent conductive film of the present invention corresponds), and liquid crystal molecules are aligned by voltage driving.
  • electrodes at least one is a transparent electrode and the transparent conductive film of the present invention corresponds
  • liquid crystal molecules are aligned by voltage driving.
  • it is a structure that causes a transparent / opaque appearance change, it differs from the liquid crystal display element described above in that it does not require a retardation film or a polarizing film in an actual element, and has a feature that the structure of the element can be simplified.
  • the PDLC element has a structure in which liquid crystal microencapsulated in a polymer resin matrix is dispersed, while the PNLC element has a structure in which liquid crystal is filled in a mesh part of a resin network.
  • the PDLC element has a high resin content in the liquid crystal layer, so an AC drive voltage of several tens V or more (for example, about 80 V) is required. It can be driven by AC voltage of
  • it is necessary to prevent water vapor from being mixed into the liquid crystal. For example, a water vapor transmission rate of 0.01 g / m 2 / day or less is required, The inside of the liquid crystal element (device) is completely sealed from the outside.
  • An electronic paper element as a display device is a non-light-emitting electronic display element that does not emit light by itself, has a memory effect that remains displayed even when the power is turned off, and is expected as a display for displaying characters.
  • an electrophoresis method in which colored particles are moved in a liquid between electrodes by electrophoresis
  • a twist ball method in which particles having dichroism are colored by rotating in an electric field, for example, a cholesteric liquid crystal is used as a transparent electrode.
  • a liquid crystal system that displays images by sandwiching them between them, a powder system that displays images by moving colored particles (toner) and electronic powder fluid (Quick Response Liquid Powder) in the air, and color development based on electrochemical oxidation / reduction action
  • An electrochromic system that performs the above-mentioned process, an electrodeposition system that displays a metal by precipitating and dissolving a metal by electrochemical oxidation / reduction and a color change associated therewith have been developed.
  • the display layer has a structure sandwiched between a transparent conductive film (transparent electrode) and a counter electrode.
  • the touch panel is a position input element, such as a resistance method or a capacitance method.
  • a resistive touch panel has a structure in which two transparent conductive substrates as coordinate detection resistance films for detecting coordinates are bonded together via a dot-shaped transparent spacer.
  • the transparent conductive substrate is required to have a hit point durability, and the transparent conductive film is required to be flexible so as not to cause cracks.
  • further improvement in conductivity of the transparent conductive film is required due to an increase in resolution.
  • solution B containing acetylacetone tin and hydroxypropylcellulose.
  • the substrate 2 having the dry coating film 3 is placed on a hot plate 1, heated to 150 ° C. (heating rate: 30 ° C./min), and low-humidity air having a dew point of ⁇ 50 ° C. Is supplied between the ultraviolet irradiation window 5 (synthetic quartz plate; thickness: 2 mm) and the substrate while being held at 150 ° C., and is irradiated with a heating energy ray that irradiates a low-pressure mercury lamp for 20 minutes to dry the coating film
  • the inorganic film (decomposition or combustion of organic components) was promoted to obtain an inorganic film (film thickness: 115 nm, surface resistance value: 5 ⁇ 10 12 ⁇ / ⁇ ).
  • the irradiation distance which is the distance between the low-pressure mercury lamp and the substrate, was 10.5 mm, the illuminance of 254 nm light: about 20 mW / cm 2 , and the estimated illuminance of 185 nm light: about 5 mW / cm 2 . Furthermore, the space
  • the substrate 2 having the inorganic film 7 is placed on a substrate support plate (copper plate having a thickness of 3 mm) 6 having a cooling action for the glass substrate in the chamber 10, and the chamber 10 is evacuated. (About 10 ⁇ 3 Pa), while supplying nitrogen gas as an atmospheric gas so as to have a partial pressure of 5 Pa, a microwave having a frequency of 2450 MHz (output: 1400 W) is passed from the waveguide 8 through the quartz introduction window 9. Introduced into the chamber 10, microwave plasma 11 is generated, and microwave plasma treatment is performed for 1.0 minute (60 seconds) to further promote mineralization (decomposition or combustion of organic components) of the inorganic film 7.
  • FIG. 15 and FIG. 16 show a transmission electron micrograph (TEM image) which observed the cross section of the transparent conductive film of Example 1, and a part of cross section with the transmission electron microscope.
  • FIG. 17 shows a Z contrast image obtained by observing a cross section of the transparent conductive film of Example 1 with a transmission electron microscope. In the Z contrast image, heavy elements appear bright, so the ITO portion appears bright.
  • the transparent conductive film is finely filled with conductive oxide fine particles in which ITO fine crystals of about 5 to 10 nm and ITO fine crystals (amorphous) of 3 nm or less are mixed. It can be seen that it is composed of layers.
  • This Z-contrast image is a high-angle annular dark field (HAADF) image, and inelastically scattered electrons scattered at a large angle when electrons pass through the sample are detected in an annular shape.
  • the intensity detected is proportional to the square of the atomic number.
  • the surface resistance of the transparent conductive film was measured using a surface resistance meter Loresta AP (MCP-T400) manufactured by Mitsubishi Chemical Corporation.
  • the haze value and visible light transmittance were measured based on JIS K7136 (haze value) and JIS K7361-1 (transmittance) using a Nippon Denshoku Co., Ltd. haze meter (NDH5000).
  • the film thickness was measured using a stylus type film thickness meter (Alpha-Step IQ) manufactured by KLA-Tencor Corporation.
  • the crystallite size was determined by X-ray diffraction measurement and the Scherrer method for the (222) peak of indium oxide (In 2 O 3 ).
  • the pencil hardness was measured based on JIS K5400.
  • the visible light transmittance and the haze value are values only for the transparent conductive film, and were obtained by the following equations 3 and 4, respectively.
  • FIG. 18 and FIG. 19 show a transmission electron micrograph obtained by observing the cross section of the transparent conductive film of Example 2 with a transmission electron microscope.
  • the transparent conductive film is a region in which conductive oxide fine particles made of ITO fine crystals of about 5 to 20 nm are densely packed and the crystal orientations of these conductive oxide fine particles are aligned. It can be seen that the (oriented region) is composed of adjacent conductive oxide fine particle layers having a special structure.
  • FIG. 21 and FIG. 22 show a Z contrast image obtained by observing the cross section of the transparent conductive film of Example 3 with a transmission electron microscope.
  • the transparent conductive film is densely filled with conductive oxide fine particles made of ITO fine crystals of about 5 to 20 nm, and these conductive oxide fine particles. It can be seen that the region where the crystal orientations are aligned (orientated region) is composed of adjacent conductive oxide fine particle layers having a special structure.
  • the transparent conductive film is a conductive oxide fine particle layer densely filled with conductive oxide fine particles formed by mixing ITO fine crystals of about 5 to 10 nm and ITO fine crystals (amorphous) of 3 nm or less. It can be seen that it consists of
  • Example 1 Various characteristics of the produced transparent conductive film were measured in the same manner as in Example 1, and the results are shown in Table 1. Furthermore, when the cross section of the transparent conductive film of Example 5 was observed with the transmission electron microscope, from the transmission electron microscope photograph (TEM image) and the Z contrast image, the transparent conductive film had an ITO fine crystal of about 5 to 10 nm and 3 nm. It turned out that the conductive oxide fine particle layer which the conductive oxide fine particle which the following ITO microcrystals (amorphous) coexisted closely packed was comprised.
  • an inorganic film (film thickness: 120 nm, surface resistance value: 5 ⁇ 10 12 ⁇ / ⁇ ) was obtained in the same manner as in Example 1.
  • an ion trap 12 for cutting ion components in the microwave plasma is installed in the chamber 10, and further on the heating device (plate heater) 1 for heating the glass substrate.
  • a micro gas having a frequency of 2450 MHz is supplied while supplying nitrogen gas as an atmospheric gas so as to have a partial pressure of 5 Pa.
  • a wave (output: 1000 W) is introduced from the waveguide 8 through the quartz introduction window 9 into the chamber 10, and the ion component is cut to generate a microwave plasma 11 containing atomic elements and radical components.
  • 600 seconds for a microwave plasma treatment to further promote mineralization (decomposition or combustion of organic components) of the inorganic film 7 and Original process (film introduction of oxygen vacancies) aims to promote the crystallization, the transparent conductive film (thickness: 105 nm) according to Example 6 was manufactured.
  • the average substrate temperature during the microwave plasma treatment was 200 ° C.
  • the substrate temperature is set to 190 ° C. using the heating apparatus. The temperature was controlled in the range of °C ⁇ 210 °C). In FIG. 8, the distance between the substrate and the quartz introduction window was about 14 cm.
  • the surface resistance, haze value, visible light transmittance, transparent conductive film thickness, crystallite size, and pencil hardness of the produced transparent conductive film were measured, and the results are shown in Table 1. Furthermore, when the cross section of the transparent conductive film of Example 6 was observed with the transmission electron microscope, from the transmission electron microscope photograph (TEM image) and the Z contrast image, the transparent conductive film had an ITO fine crystal of about 5 to 10 nm and 3 nm. It turned out that the conductive oxide fine particle layer which the conductive oxide fine particle which the following ITO microcrystals (amorphous) coexisted closely packed was comprised.
  • an inorganic film 7 (film thickness: 120 nm, surface resistance value: 4 ⁇ 10 12 ⁇ / ⁇ ) was obtained in the same manner as in Example 1.
  • the substrate 2 having the inorganic film 7 is placed on the substrate support plate 6, and nitrogen gas is supplied to the plasma generation unit of the plasma generator 14 at 15 liters / minute, while the frequency is 2450 MHz.
  • Microwave plasma (output: 150 W) is generated to discharge atmospheric plasma gas 16 (nitrogen plasma gas) from the plasma gas discharge nozzle 15 of the plasma generator 14.
  • the inorganic film 7 was subjected to atmospheric pressure plasma treatment by spraying on the surface.
  • Example 7 having a patterned transparent conductive film 18 that is plasma-treated only on a selected portion of an inorganic film (film thickness: 120 nm, surface resistance value: 4 ⁇ 10 12 ⁇ / ⁇ ) that is almost insulating. A transparent conductive film (film thickness: 95 nm) was produced.
  • the substrate temperature during the atmospheric pressure microwave plasma treatment was 200 ° C.
  • the distance between the substrate and the tip of the plasma gas discharge nozzle 15 is about 5 mm, and the movement of the plasma gas discharge nozzle 15 is moved on a straight line at a speed of 240 mm / min so as to obtain a line pattern.
  • the diameter of the plasma gas 16 discharged from the plasma gas discharge nozzle 15 was about 2 mm, and the line pattern width of the patterned transparent conductive film 18 was also about 2 mm.
  • the surface resistance, haze value, visible light transmittance, transparent conductive film thickness, crystallite size, and pencil hardness of the produced transparent conductive film were measured, and the results are shown in Table 1. Furthermore, when the cross section of the transparent conductive film of Example 7 was observed with the transmission electron microscope, from the transmission electron microscope photograph (TEM image) and the Z contrast image, the transparent conductive film had an ITO fine crystal of about 5 to 10 nm and 3 nm. It turned out that the conductive oxide fine particle layer which the conductive oxide fine particle which the following ITO microcrystals (amorphous) coexisted closely packed was comprised.
  • the irradiation distance which is the distance between the low-pressure mercury lamp and the substrate, was 10.5 mm, the illuminance of 254 nm light: about 20 mW / cm 2 , and the estimated illuminance of 185 nm light: about 5 mW / cm 2 . Furthermore, the space
  • the substrate 2 having the inorganic film 7 is placed on the substrate support plate 6 (borosilicate glass having a thickness of about 5 mm) in the glass chamber 10, and the inside of the chamber 10 is first evacuated. (Approx. 20 Pa), while supplying 3 volume% hydrogen-97 volume% nitrogen as an atmospheric gas to a partial pressure of 250 Pa (0.16 liter / minute), a high frequency of 13.56 MHz (output: 200 W) ) Is generated in the chamber 10 from the waveguide 8 and subjected to a high-frequency plasma treatment for 60 minutes to further promote mineralization (decomposition or combustion of the organic component) of the inorganic film 7 and reduce the film.
  • the substrate support plate 6 borosilicate glass having a thickness of about 5 mm
  • the surface resistance, haze value, visible light transmittance, transparent conductive film thickness, crystallite size, and pencil hardness of the produced transparent conductive film were measured, and the results are shown in Table 1. Further, the cross section of the transparent conductive film of Example 8 and a part of the cross section were observed with a transmission electron microscope. It was found that a conductive oxide fine particle layer in which conductive oxide fine particles composed of a mixture of ITO fine crystals and ITO fine crystals of 3 nm or less (amorphous) were closely packed was formed.
  • the transparent conductive film of Example 9 was found to be an ITO microcrystal having a thickness of about 5 to 10 nm from the transmission electron micrograph (TEM image) and the Z contrast image. It was found that a conductive oxide fine particle layer in which conductive oxide fine particles formed by mixing ITO fine crystals (amorphous) of 3 nm or less were densely packed was formed.
  • Example 1 the transparent conductive film according to Comparative Example 1 (film thickness: 115 nm) as an inorganic film obtained by irradiating the dried coating film with heating energy rays without performing microwave plasma treatment (in nitrogen for 1 minute) was made.
  • Example 2 In Example 1, the dry applied film was not irradiated with heating energy rays, and the dry applied film was directly subjected to microwave plasma treatment (1.0 minute in nitrogen), and the transparent conductive film according to Comparative Example 2 (film thickness: 485 nm). ) was produced.
  • Example 3 [Preparation of transparent conductive film]
  • the substrate having the dry coating film of Example 1 was heated to 350 ° C. over 35 minutes in an air atmosphere (supply of 1 liter / min) with a dew point of ⁇ 50 ° C., and baked at 350 ° C. for 15 minutes.
  • the atmosphere was switched to 1% by volume hydrogen-99% by volume nitrogen (1 liter / min supply) and baked at 350 ° C. for another 15 minutes to produce a transparent conductive film (film thickness: 105 nm) according to Comparative Example 3.
  • the transparent conductive film was made of ITO fine crystals of about 20 nm from the transmission electron micrograph (TEM image) and the Z contrast image. It was found that the conductive oxide fine particle layer was densely filled with oxide fine particles.
  • the conductive oxide fine particles made of about 20 nm of ITO microcrystals had random crystal orientations, and no oriented region was formed at all.
  • Example 9 Evaluation of the stability of the resistance value was carried out using a substrate having the transparent conductive film according to Examples 1 to 5 and Example 9 and a substrate having the transparent conductive film of Comparative Example 3 at a temperature of 23 to 25 ° C. and a relative humidity of 50. This is expressed by investigating the change over time in the surface resistance value when left in a room (atmosphere) of ⁇ 70% for about one month.
  • Example 1 When each of the above Examples (Examples 1 to 9) is compared with Comparative Examples 1 and 2, each Example is mineralized and crystal growth proceeds (especially the amount of the tin compound as a metal compound for dopant)
  • Example 2 and Example 3 where the crystallite size is very small
  • Comparative Example 1 and Comparative Example 2 are not sufficiently mineralized and not crystallized. Since the film is an amorphous transparent film, it can be seen that the resistance value is 5 ⁇ 10 12 ⁇ / ⁇ and> 1 ⁇ 10 13 ⁇ / ⁇ , and the film strength (pencil hardness) is extremely low.
  • Example 1 and 4 to In No. 9 ITO fine crystals of 5 to 10 nm are observed in the TEM image, whereas in Comparative Examples 1 and 2, ITO fine crystals of 3 nm or more are not observed in the TEM image.
  • Example 2 and Example 3 ITO microcrystals of about 5 to 20 nm are observed in the TEM image, while the crystallite sizes determined by X-ray diffraction measurement are 46.3 nm and 39.1 nm, respectively.
  • each example is a transparent conductive film in which crystallization progresses due to mineralization, and the film thickness is densified to 86 to 105 nm, whereas Comparative Example 2 is a transparent insulating film that is insufficiently mineralized. It can be seen that the film thickness is as thick as 485 nm and is not densified.
  • Example 9 the bonding of the contact portions between the conductive oxide fine particles is strengthened by the effect of promoting the crystal growth of the plasma treatment.
  • the resistance value is extremely stable when left in a room (relative humidity) of 50 to 70% (in the atmosphere) for about 1 month, whereas Comparative Example 3 is formed by conventional simple baking. It can be seen that, since the bonding at the contact portion between the conductive oxide fine particles is not strengthened, the initial resistance value of the transparent conductive film is low, but is deteriorated with time and increased to about 10 times the initial resistance value.
  • the transparent conductive film according to the present invention can be easily and inexpensively formed on a substrate by low-temperature heating at less than 300 ° C., particularly 100 to 250 ° C., using various inexpensive coating methods. Has excellent transparency and high conductivity, and is excellent in film strength and resistance stability. Therefore, a transparent conductive substrate on which this transparent conductive film is formed is an LED element, an electroluminescence lamp (electroluminescence lamp).
  • the conductive oxide fine particle layer densely filled with the conductive oxide fine particles containing the metal oxide as a main component has high density, so that carrier mobility can be increased. It is also suitable for a conductive oxide film (oxide semiconductor film) as a channel active layer.
  • Heating device hot plate, etc.
  • Energy beam irradiation lamp ultraviolet irradiation lamp
  • UV irradiation window synthetic quartz plate, etc.
  • chamber 11 plasma microwave plasma or high frequency plasma
  • Ion trap Ion trap
  • Plasma generating electrode Plasma generator 15
  • Plasma-treated transparent conductive film 18

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Non-Insulated Conductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】透明導電膜の製造方法である塗布法を用い、300℃未満の低温加熱により優れた透明性、導電性、膜強度、抵抗安定性を有する透明導電膜及びその製造方法の提供。 【解決手段】基板上に有機金属化合物を含む塗布膜を形成する塗布工程、その塗布膜の乾燥工程、乾燥塗布膜から無機膜を形成する加熱エネルギー線照射工程、その無機膜にプラズマ処理するプラズマ処理工程により形成される透明導電膜の製造方法で、加熱エネルギー線照射工程が酸素含有雰囲気下で300℃未満に加熱しながらエネルギー線照射を行い無機膜を形成する工程で、プラズマ処理工程がその無機膜を非酸化性ガス雰囲気下で300℃未満の基板温度でプラズマ処理を行い、膜の無機化あるいは結晶化を促進させて金属酸化物を主成分とする導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層を形成する工程である透明導電膜の製造方法。

Description

透明導電膜の製造方法及び透明導電膜、それを用いた素子、透明導電基板並びにそれを用いたデバイス
 本発明は、透明導電膜及びその透明導電膜の製造方法に関する。
 詳しくは、ガラスやセラミックス等の耐熱性無機基板上やプラスチックフィルム等の樹脂基板上に塗布法(ウェットコーティング法)を用いて300℃未満、特に100~250℃の低温加熱で形成された、透明性と導電性を兼ね備え、かつ膜強度や抵抗安定性に優れる透明導電膜の製造方法、及びその透明導電膜の製造方法によって得られた透明導電膜に関し、更にその透明導電膜を用いた素子及び透明導電基板、並びにその透明導電基板を用いたデバイスに関するものである。
 液晶ディスプレイ、エレクトロルミネッセンス、プラズマディスプレイ等の表示素子用透明電極、タッチパネル、太陽電池等の透明電極、熱線反射、電磁波シールド、帯電防止、防曇等の機能性コーティングに用いられる透明導電膜の形成材料として、導電性酸化物である錫ドープ酸化インジウム(Indium Tin Oxide、以下、「ITO」と表記する場合がある)が知られている。
 このITOからなる透明導電膜(ITO膜)の製造方法としては、真空蒸着法、スパッタリング法、化学蒸着法等の物理的手法が広く用いられている。これらの方法は、透明性と導電性に優れた均一なITO透明導電膜を基板上に形成することができる。
 しかしながら、これに使用する膜形成装置は真空容器をベースとするため非常に高価であり、また基板成膜毎に製造装置内の成分ガス圧を精密に制御しなければならないため、製造コストと量産性に問題がある。
 この問題を解決する製造方法として、インジウム化合物と錫化合物を溶剤に溶解させた透明導電膜形成用塗布液を用いて、基板上に塗布する方法(以下、「塗布法」または「ウェットコーティング法」と表記する場合がある)が検討されている。
 この塗布方法では、透明導電膜形成用塗布液の基板上への塗布、乾燥、焼成という簡素な製造工程で透明導電膜(ITO膜)を形成するもので、その塗布液の基板上への塗布法には、インクジェット印刷法、スクリーン印刷法、グラビア印刷法、オフセット印刷法、フレキソ印刷法、ディスペンサ印刷法、スリットコート法、ダイコート法、ドクターブレードコート法、ワイヤーバーコート法、スピンコート法、ディップコート法、スプレーコート法等が知られている。
 このような塗布法に用いられる塗布液として、インジウム化合物及び錫化合物を含む塗布液が、従来種々開発されている。例えば、ハロゲンイオンまたはカルボキシル基を含む硝酸インジウムとアルキル硝酸錫の混合液(例えば、特許文献1参照)、アルコキシル基などを含む有機インジウム化合物と有機錫化合物の混合物(例えば、特許文献2参照)、硝酸インジウムと有機錫化合物の混合物(例えば、特許文献3参照)、硝酸インジウム、硝酸錫等の無機化合物混合物(例えば、特許文献4参照)、ジカルボン酸硝酸インジウムなどの有機硝酸インジウムとアルキル硝酸錫などの有機硝酸錫の混合物(例えば、特許文献5参照)、アセチルアセトンを配位した有機インジウム錯体と錫錯体からなる有機化合物混合溶液(例えば、特許文献6、特許文献7、特許文献8参照)が開示されている。
 これらの従来知られている塗布液の多くは、インジウムや錫の硝酸塩、ハロゲン化物からなる有機または無機化合物、あるいは金属アルコキシドなどの有機金属化合物等が用いられている。
 しかし、硝酸塩やハロゲン化物を用いた塗布液は、焼成時に窒素酸化物や塩素などの腐食性ガスが発生するため、設備腐食や環境汚染を生ずるといった問題があり、金属アルコキシドを用いた塗布液では、原料が加水分解し易いため、塗布液の安定性に問題がある。また、特許文献に記載された有機金属化合物を用いた塗布液の多くは、基板に対する濡れ性が悪く、不均一膜が形成され易いといった問題もあった。
 そこで、これらの問題点を改良した塗布液として、アセチルアセトンインジウム(正式名称:トリス(アセチルアセトナト)インジウム:In(C)、アセチルアセトン錫(正式名称:ジ−n−ブトキシド ビス(2,4−ペンタンジオナト)錫:[Sn(C(C])、ヒドロキシプロピルセルロース、アルキルフェノール及び/またはアルケニルフェノールと二塩基酸エステル及び/または酢酸ベンジルを含有する透明導電膜形成用塗布液(例えば、特許文献9参照)が開示されている。
 この塗布液は、アセチルアセトンインジウム、アセチルアセトン錫の混合溶液にヒドロキシプロピルセルロースを含有させることによって塗布液の基板に対する濡れ性を改善すると同時に、粘性剤であるヒドロキシプロピルセルロースの含有量によって塗布液の粘度を調整し、スピンコート、スプレーコート、ディップコート、スクリーン印刷、ワイヤーバーコート等の各種塗布法の採用を可能にするものである。
 また、スピンコート用の改良塗布液として、アセチルアセトンインジウム、オクチル酸インジウム等の有機インジウム化合物と、アセチルアセトン錫、オクチル酸錫等の有機錫と、有機溶剤とを含み、その有機溶剤にアルキルフェノール及び/またはアルケニルフェノールを溶解したアセチルアセトン溶液、アルキルフェノール及び/またはアルケニルフェノールを溶解したアセチルアセトン溶液をアルコールで希釈した液を用いる透明導電膜形成用塗布液(例えば、特許文献10参照)が提案されている。
 この塗布液は、低粘度であり、スピンコートのほかスプレーコート、ディップコートにも使用可能である。
 更に、塗布法において、得られる透明導電膜の性能向上を目的として、透明導電膜形成用塗布液を基板上に塗布、乾燥、焼成するという単純な成膜工程に、紫外線照射等を組み合わせる試みも行なわれている。例えば、透明導電膜形成用塗布液を塗布して乾燥する際に高圧水銀ランプやメタルハライドランプの紫外線を照射して均質で緻密な乾燥塗布膜を得、該乾燥塗布膜を500℃程度の高温で焼成する方法(特許文献11参照)や、500℃以上の高温焼成(熱分解)で得られた透明導電膜に紫外線を照射する方法(特許文献12参照)が提案されている。
 しかし、これらの方法でも膜の低抵抗化は充分ではなく、また焼成して得られた透明導電膜への紫外線の照射で一旦低下した抵抗も大気中保管により再度上昇する傾向がある。
 そこで、低抵抗、かつ、抵抗安定性に優れる透明導電膜を得るため、インジウム化合物と錫化合物を含む透明導電膜形成用塗布液を基板に塗布し、その後300℃以下の予備加熱による乾燥中、あるいは乾燥後に、例えば低圧水銀灯を用いた200nm以下の波長の紫外線照射を行い、更に非酸化性雰囲気下の300℃以上(好ましくは400℃以上)の温度において焼成する方法(特許文献13参照)が提案されている。
 また、透明基板上に透明導電膜形成用塗布液を塗布・乾燥した後、酸素雰囲気中で焼成し、更に真空中で焼成して透明導電膜を得る方法(特許文献14参照)が提案されており、それによれば、酸素雰囲気中で焼成を行うことで、焼成温度を180℃まで低下でき、また、上記酸素雰囲気中での焼成中に水銀ランプの紫外線を照射することで低抵抗化を図ることが可能となっている。ただし、「水銀ランプの紫外線」がどの波長の紫外線を指すものかが定かでなく、更に、上記焼成温度を180℃まで低下できる根拠や具体例も示されておらず、加えて、180℃の焼成温度で得られた透明導電膜の膜特性(透過率、抵抗値)も全く記載されていない。
 したがって、この方法は、実用性について疑問があり、また実行面の課題が多いと言わざるを得ない。
 更に、TiO微粒子やITO微粒子等の金属酸化物微粒子膜を低温加熱で得る方法として、基板上に金属酸化物微粒子とバインダーを含む塗布液を塗布・乾燥して得られた金属酸化物微粒子含有塗布層にプラズマ処理を施してバインダーを除去する方法が提案されている(特許文献15参照)。
 しかし、この方法は既に金属酸化物となった微粒子を塗布液のフィラーに用い、空隙率の大きな多孔質膜を得ることを目的としており、緻密な膜を形成して透明導電膜の透明性、導電性、膜強度、抵抗安定性等の特性向上を図るものではない。
 ところで、酸化インジウム等の導電性酸化物を主成分とする導電性酸化物膜は、前述のITO膜に代表される透明電極等の用途に加え、近年では、薄膜トランジスタのチャネル活性層として注目され、盛んに研究が行われてきている。
 これまで、一般的に、電界効果型の薄膜トランジスタ(TFT)のチャネル活性層としては、ガラス基板上に形成されたアモルファスシリコン等の薄膜が用いられてきたが、アモルファスシリコンは、キャリア移動度が低く、薄膜トランジスタ素子としての特性も十分とは言えなかった。
 そこで、各種導電性酸化物膜をチャネル活性層に用いて薄膜トランジスタ素子の特性向上等を試みる多くの提案が行われており、例えば、ZnOを主成分として用いた透明導電性酸化物多結晶薄膜をチャネル層に用いた透明な薄膜トランジスタ(特許文献16、および特許文献17参照)、In−Ga−Zn−O系からなる透明アモルファス酸化物半導体膜(a−IGZO)をチャネル活性層に用いた薄膜トランジスタ(非特許文献1参照)、Ga−Zn−O系やGa−Sn−O系からなる非単結晶酸化物半導体を活性層として用いた薄膜トランジスタ(特許文献18参照)、In−Ga−Zn−O系(InGaZnO)からなる非単結晶酸化物半導体をチャネル活性層として用いた薄膜トランジスタ(特許文献19参照)、In−Ga−Zn−Sn−O系(SnをドープしたInGaZnO)からなる非単結晶酸化物半導体をチャネル活性層として用いた薄膜トランジスタ(特許文献20参照)、ZnO、SnO、Inのいずれか1種以上からなるアモルファス酸化物半導体をチャネル活性層として利用する薄膜トランジスタ(特許文献21参照)、等が開示されている。
 しかしながら、上述の薄膜トランジスタにおける導電性酸化物膜の形成(特許文献16、特許文献18~21、非特許文献1参照)は、全てスパッタリング法、パルスレーザー蒸着法(PLD法)、電子ビーム蒸着法などの気相法を用いて行われており、塗布法は用いられていない。
 また、特許文献17では、酢酸亜鉛をイソプロパノールに懸濁した塗布液を用いてZnOからなるチャネル活性層を形成しているが、塗布液を塗布した後、空気中または酸素雰囲気中で600~900℃という高温焼成を必要としている。
 以上のように、薄膜トランジスタのチャネル活性層に適した良質な導電性酸化物膜(酸化物半導体膜)を300℃未満の低温焼成を用いた塗布法で得ることは困難であった。
特開昭57−138708号公報 特開昭61−26679号公報 特開平4−255768号公報 特開昭57−36714号公報 特開昭57−212268号公報 特公昭63−25448号公報 特公平2−20706号公報 特公昭63−19046号公報 特開平6−203658号公報 特開平6−325637号公報 特公昭60−19610号公報 特開昭63−314714号公報 特開平11−60278号公報 特開2001−106567号公報 特開2003−308893号公報 特開2002−76356号公報 特開2001−244464号公報 特開2007−123698号公報 特開2007−123700号公報 特開2007−123699号公報 特開2007−201366号公報
K.Nomura et.al.、Nature、2004、Vol.432,p.488−492
 しかしながら、以上のような各種透明導電膜形成用塗布液を基板上に塗布、乾燥、焼成して形成する透明導電膜の製造方法は、そのほとんどが、透明導電膜形成用塗布液の塗布・乾燥後に高温焼成(例えば400℃以上)が必要であり、300℃未満、特に100~250℃の低温加熱処理で、良好な膜特性を有する透明導電膜を得ることはできなかった。また、300℃未満の低温焼成で透明導電膜が得られるという方法でも、酸素雰囲気中での焼成が必要であり、材料面を含めて加熱処理装置への制約が大きいという課題があると同時に、実用性について疑問があり、実行面で多くの課題が想定される。
 従って、製造プロセスで低温加熱(300℃未満、特に100~250℃)しか行えない各種デバイス、例えば、液晶ディスプレイやタッチパネル等の透明電極形成に、上記透明導電膜形成用塗布液を利用するには、透明性や導電性に優れる透明導電膜を300℃未満、特に100~250℃の低温加熱処理で形成する方法が要望されていた。同様に、薄膜トランジスタ素子のチャネル活性層としての導電性酸化物膜(酸化物半導体膜)の形成に上記透明導電膜形成用塗布液を利用するには、キャリア移動度が高くなるように、緻密度の高い透明導電膜(酸化物半導体膜)を300℃未満の低温加熱処理で形成する方法が要望されていた。
 本発明は、低コストかつ簡便な透明導電膜の製造方法であるインク塗布法を用いて、300℃未満、特に100~250℃の低温加熱で形成される、良好な透明性と高い導電性を兼ね備え、且つかつ膜強度や抵抗安定性に優れる透明導電膜、及びこの透明導電膜の製造方法及び得られる透明導電膜、それを用いた素子、透明導電基板並びにそれを用いたデバイスを提供することを目的とする。
 このような課題に鑑み、発明者らは有機インジウム化合物、有機錫化合物、有機亜鉛化合物のいずれか一つ以上を主成分として含有する透明導電膜形成用塗布液を基板上に塗布、乾燥、加熱処理して得られる酸化インジウム、酸化錫、酸化亜鉛のいずれか一つ以上を主成分とする透明導電膜の製造方法について鋭意研究を重ねた結果、塗布、乾燥後の乾燥塗布膜に酸素含有雰囲気下で加熱しながらエネルギー線照射、及び非酸化性ガス雰囲気下でプラズマ処理すると300℃未満、特に100~250℃という低い加熱温度(基板温度)でも乾燥塗布膜の分解並びに燃焼が生じて膜の無機化と結晶化が進行し、導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層の膜構造が得られ、良好な透明性と高い導電性を兼ね備え、且つ膜強度や抵抗安定性にも優れる透明導電膜が得られることを発明したものである。
 即ち、本発明の第1の発明は、主成分として有機金属化合物を含有する透明導電膜形成用塗布液を、基板上に塗布して塗布膜を形成する塗布工程、前記塗布膜を乾燥して乾燥塗布膜を形成する乾燥工程、前記乾燥塗布膜に加熱しながらエネルギー線照射して、金属酸化物である無機成分を主成分とする無機膜を形成する加熱エネルギー線照射工程、前記無機膜にプラズマ処理して、膜の無機化あるいは結晶化を一層促進させるプラズマ処理工程の各工程を経て形成される、透明導電膜の製造方法であって、前記加熱エネルギー線照射工程が、前記乾燥工程で形成された有機金属化合物を主成分とする乾燥塗布膜を、酸素含有雰囲気下で、300℃未満の加熱温度に加熱しながら、エネルギー線の照射を行い、前記乾燥塗布膜に含まれる有機成分を分解または燃焼、或いは分解並びに燃焼により除去して金属酸化物である無機成分を主成分とする無機膜を形成する工程、前記プラズマ処理工程が、前記加熱エネルギー線照射工程で形成された金属酸化物である無機成分を主成分とする無機膜を、非酸化性ガス雰囲気下で300℃未満の基板温度でプラズマ処理を行い、膜の無機化あるいは結晶化を一層促進させることで、金属酸化物を主成分とする導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層を形成する工程、であり、さらに、その有機金属化合物が有機インジウム化合物、有機錫化合物、有機亜鉛化合物のいずれか一つ以上からなり、その金属酸化物が酸化インジウム、酸化錫、酸化亜鉛のいずれか一つ以上である透明導電膜の製造方法である。
 本発明の第2の発明は、主成分として有機金属化合物、及びドーパント用有機金属化合物を含有する透明導電膜形成用塗布液を、基板上に塗布して塗布膜を形成する塗布工程、前記塗布膜を乾燥して乾燥塗布膜を形成する乾燥工程、前記乾燥塗布膜に加熱しながらエネルギー線を照射して、ドーパント金属化合物を含む金属酸化物である無機成分を主成分とする無機膜を形成する加熱エネルギー線照射工程、前記無機膜にプラズマ処理して、膜の無機化あるいは結晶化を一層促進させるプラズマ処理工程の各工程を経て形成される、透明導電膜の製造方法であって、前記加熱エネルギー線照射工程が、前記乾燥工程で形成された有機金属化合物、及びドーパント用有機金属化合物を主成分とする前記乾燥塗布膜を、酸素含有雰囲気下で、300℃未満の加熱温度に加熱しながら、エネルギー線の照射を行い、前記乾燥塗布膜に含まれる有機成分を分解または燃焼、或いは分解並びに燃焼により除去してドーパント金属化合物を含む金属酸化物である無機成分を主成分とする無機膜を形成する工程、前記プラズマ処理工程が、前記加熱エネルギー線照射工程で形成されたドーパント用金属化合物を含む金属酸化物である無機成分を主成分とする無機膜を、非酸化性ガス雰囲気下で300℃未満の基板温度でプラズマ処理を行い、膜の無機化あるいは結晶化を一層促進させることで、ドーパント金属化合物を含み金属酸化物を主成分とする導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層を形成する工程であり、さらに、その有機金属化合物が有機インジウム化合物、有機錫化合物、有機亜鉛化合物のいずれか一つ以上からなり、その金属酸化物が酸化インジウム、酸化錫、酸化亜鉛のいずれか一つ以上である透明導電膜の製造方法である。
 本発明の第3の発明は、その有機金属化合物及びドーパント用有機金属化合物の含有割合が、有機金属化合物:ドーパント用有機金属化合物のモル比換算で、99.9:0.1~66.7:33.3の範囲であることを特徴とする第2の発明に記載の透明導電膜の製造方法である。
 本発明の第4の発明は、その有機金属化合物が有機インジウム化合物であって、ドーパント用有機金属化合物が、有機錫化合物、有機チタン化合物、有機ゲルマニウム化合物、有機亜鉛化合物、有機タングステン化合物、有機ジルコニウム化合物、有機タンタル化合物、有機ニオブ化合物、有機ハフニウム化合物、有機バナジウム化合物のいずれか一種以上であり、前記ドーパント金属化合物が、酸化錫、酸化チタン、酸化ゲルマニウム、酸化亜鉛、酸化タングステン、酸化ジルコニウム、酸化タンタル、酸化ニオブ、酸化ハフニウム、酸化バナジウムのいずれか一種以上であることを特徴とする第2または第3の発明に記載の透明導電膜の製造方法である。
 本発明の第5の発明は、その有機金属化合物が有機錫化合物であって、ドーパント用有機金属化合物が、有機インジウム化合物、有機アンチモン化合物、有機リン化合物のいずれか一種以上であることを特徴とする第2または第3の発明に記載の透明導電膜の製造方法である。
 本発明の第6の発明は、その有機金属化合物が有機亜鉛化合物であって、ドーパント用有機金属化合物が、有機アルミニウム化合物、有機インジウム化合物、有機ガリウム化合物のいずれか一種以上であることを特徴とする第2または第3の発明に記載の透明導電膜の製造方法である。
 本発明の第7の発明は、前記プラズマ処理が、減圧された非酸化性ガス雰囲気下で行われる減圧プラズマ処理であることを特徴とする第1~6の発明のいずれか1つの発明に記載の透明導電膜の製造方法である。
 本発明の第8の発明は、前記減圧プラズマ処理が、減圧マイクロ波プラズマ処理または減圧高周波プラズマ処理であることを特徴とする第7の発明に記載の透明導電膜の製造方法である。
 本発明の第9の発明は、前記減圧された非酸化性ガス雰囲気が、窒素ガス、不活性ガス、還元性ガスのいずれか一種以上が含まれた雰囲気で、かつ雰囲気ガス圧力が2~1000Paであることを特徴とする第7または8の発明に記載の透明導電膜の製造方法である。
 本発明の第10の発明は、前記減圧プラズマ処理が、300℃未満の基板温度まで基板の加熱を行うと同時に、減圧マイクロ波プラズマ中のイオンをカットし、主としてラジカル成分を前記無機膜に照射することを特徴とする第7~9のいずれか1つの発明に記載の透明導電膜の製造方法である。
 本発明の第11の発明は、前記プラズマ処理が、大気圧の非酸化性ガス雰囲気下で行われる大気圧プラズマ処理であることを特徴とする第1~6の発明のいずれか1つの発明に記載の透明導電膜の製造方法である。
 本発明の第12の発明は、前記大気圧プラズマ処理が、大気圧マイクロ波プラズマ処理または大気圧高周波プラズマ処理であることを特徴とする第11の発明に記載の透明導電膜の製造方法である。
 本発明の第13の発明は、前記大気圧の非酸化性ガス雰囲気が、窒素ガス、不活性ガス、還元性ガスのいずれか一種以上が含まれた雰囲気であることを特徴とする第11または12の発明に記載の透明導電膜の製造方法である。
 本発明の第14の発明は、前記プラズマ処理工程が、前記加熱エネルギー線照射工程で形成された無機膜の一部にだけ選択的にプラズマ処理を施すことでパターン状の導電性酸化物微粒子層を形成する工程であり、その工程によりパターン状の透明導電膜を形成することを特徴とする第1~13の発明のいずれか1つの発明に記載の透明導電膜の製造方法である。
 本発明の第15の発明は、前記酸素含有雰囲気下で、300℃未満の加熱温度に加熱しながら行うエネルギー線照射、及び300℃未満の基板温度で行うプラズマ処理に続いて、中性雰囲気または還元性雰囲気下で、300℃未満の加熱温度で加熱することを特徴とする第1~14の発明のいずれか1つの発明に記載の透明導電膜の製造方法である。
 本発明の第16の発明は、前記中性雰囲気が、窒素ガス、不活性ガスのいずれか一種以上、または前記還元性雰囲気が、水素ガス若しくは前記中性雰囲気に水素ガス或いは有機溶剤蒸気の少なくとも一種以上が含まれた雰囲気であることを特徴とする第15の発明に記載の透明導電膜の製造方法である。
 本発明の第17の発明は、前記酸素含有雰囲気下で、300℃未満の加熱温度に加熱しながら行うエネルギー線照射、及び300℃未満の基板温度で行うプラズマ処理が、酸素含有雰囲気下で、100~250℃の加熱温度に加熱しながら行うエネルギー線照射、及び100~250℃の基板温度で行うプラズマ処理であることを特徴とする第1~16の発明のいずれか1つの発明に記載の透明導電膜の製造方法である。
 本発明の第18の発明は、前記酸素含有雰囲気の露点温度が−10℃以下であることを特徴とする第1~17の発明のいずれか1つの発明に記載の透明導電膜の製造方法である。
 本発明の第19の発明は、前記エネルギー線照射が、少なくとも200nm以下の波長を主要成分の一つとして含む紫外線の照射であることを特徴とする第1~18の発明のいずれか1つの発明に記載の透明導電膜の製造方法である。
 本発明の第20の発明は、前記少なくとも200nm以下の波長を主要成分の一つとして含む紫外線の照射が、低圧水銀ランプ、アマルガムランプ、エキシマランプのいずれかから放射される紫外線の照射であることを特徴とする第19の発明に記載の透明導電膜の製造方法である。
 本発明の第21の発明は、前記有機インジウム化合物が、アセチルアセトンインジウムであることを特徴とする第1~20の発明のいずれか1つの発明に記載の透明導電膜の製造方法である。
 本発明の第22の発明は、前記塗布工程における透明導電膜形成用塗布液の基板上への塗布方法が、インクジェット印刷法、スクリーン印刷法、グラビア印刷法、オフセット印刷法、フレキソ印刷法、ディスペンサ印刷法、スリットコート法、ダイコート法、ドクターブレードコート法、ワイヤーバーコート法、スピンコート法、ディップコート法、スプレーコート法のいずれかであることを特徴とする第1または第2の発明に記載の透明導電膜の製造方法である。
 本発明の第23の発明は、第1~22の発明のいずれか1つの発明に記載の透明導電膜の製造方法で得られたことを特徴とする透明導電膜である。
 本発明の第24の発明は、導電性酸化物膜を備える素子において、前記導電性酸化物膜が、第23の発明に記載の透明導電膜であることを特徴とする素子である。
 本発明の第25の発明は、前記素子が、前記導電性酸化物膜を、薄膜トランジスタのチャネル層として用いている薄膜トランジスタであることを特徴とする第24の発明に記載の素子である。
 本発明の第26の発明は、基板上に透明導電膜を備える透明導電基板において、その透明導電膜が、第23の発明に記載の透明導電膜であることを特徴とする透明導電基板である。
 本発明の第27の発明は、透明電極を備えるデバイスにおいて、前記透明電極が、第26の発明に記載の透明導電基板であることを特徴とするデバイスである。
 本発明の第28の発明は、前記デバイスが、発光デバイス、発電デバイス、表示デバイス、入力デバイスから選ばれた1種であることを特徴とする第27の発明に記載のデバイスである。
 本発明の透明導電膜の製造方法によれば、酸化インジウム、酸化錫、酸化亜鉛のいずれか一つ以上を主成分とする導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層を、塗布法を用いて300℃未満、特に100~250℃の低温加熱で簡便かつ低コストに形成できる。そして、得られた透明導電膜は、優れた透明性と高い導電性を兼ね備え、かつ膜強度や抵抗安定性に優れる。そのため、この透明導電膜を基板上に形成した透明導電基板は、LED素子、エレクトロルミネッセンスランプ(エレクトロルミネッセンス素子)、フィールドエミッションランプ等の発光デバイス、太陽電池等の発電デバイス、液晶ディスプレイ(液晶素子)、エレクトロルミネッセンスディスプレイ(エレクトロルミネッセンス素子)、プラズマディスプレイ、電子ペーパー素子等の表示デバイス、及びタッチパネル等の入力デバイス等に好適である。
 加えて、上記金属酸化物を主成分とする導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層は、その緻密度が高いため、キャリア移動度を高めることが可能であり、薄膜トランジスタのチャネル活性層としての導電性酸化物膜(酸化物半導体膜)にも好適である。
従来の塗布法による透明導電膜製造工程における焼成工程の一例を示す模式図である。 本発明に係る塗布法による透明導電膜製造工程における加熱エネルギー線照射工程の一例を示す模式図である。 空気中の飽和水蒸気含有量(体積%)と露点(℃)の関係を示す図である。 本発明に係る塗布法による透明導電膜製造工程における加熱エネルギー線照射工程の別の一例を示す模式図である。 本発明に係る塗布法による透明導電膜製造工程における減圧された非酸化性ガス雰囲気下で行われる減圧プラズマ処理工程における基板温度の推移を示す模式図である。 本発明に係る塗布法による透明導電膜製造工程における減圧された非酸化性ガス雰囲気下で行われる減圧プラズマ処理工程における基板温度の推移の別の一例を示す模式図である。 本発明に係る塗布法による透明導電膜製造工程における減圧された非酸化性ガス雰囲気下で行われる減圧マイクロ波プラズマ処理工程の一例を示す模式図である。 本発明に係る塗布法による透明導電膜製造工程における減圧された非酸化性ガス雰囲気下で行われる減圧マイクロ波プラズマ処理工程の別の一例を示す模式図である。 本発明に係る塗布法による透明導電膜製造工程における減圧された非酸化性ガス雰囲気下で行われる減圧高周波プラズマ処理工程の別の一例を示す模式図である。 本発明に係る塗布法による透明導電膜製造工程における大気圧の非酸化性ガス雰囲気下で行われる大気圧プラズマ処理工程の一例を示す模式図である。 本発明に係る塗布法による透明導電膜製造工程における大気圧の非酸化性ガス雰囲気下で行われる大気圧プラズマ処理工程の別の一例を示す模式図である。 本発明に係る塗布法による透明導電膜製造工程における大気圧の非酸化性ガス雰囲気下で行われる大気圧プラズマ処理工程の更に別の一例を示す模式図である。 本発明に係る塗布法による透明導電膜の製造工程フローの一例を示す図である。 本発明に係る塗布法による透明導電膜の製造工程フローの他の一例を示す図である。 実施例1に係る透明導電膜の断面の透過電子顕微鏡写真(TEM像)である。 実施例1に係る透明導電膜の断面の一部を拡大した透過電子顕微鏡写真(TEM像)である。 実施例1に係る透明導電膜の断面のZコントラスト像である。 実施例2に係る透明導電膜の断面の透過電子顕微鏡写真(TEM像)である。 実施例2に係る透明導電膜の断面の一部を拡大した透過電子顕微鏡写真(TEM像)である。 実施例2に係る透明導電膜の断面のZコントラスト像である。 実施例3に係る透明導電膜の断面の透過電子顕微鏡写真(TEM像)である。 実施例3に係る透明導電膜の断面の一部を拡大した透過電子顕微鏡写真(TEM像)である。 実施例3に係る透明導電膜の断面のZコントラスト像である。 実施例4に係る透明導電膜の断面の透過電子顕微鏡写真(TEM像)である。 実施例4に係る透明導電膜の断面の一部を拡大した透過電子顕微鏡写真(TEM像)である。 実施例4に係る透明導電膜の断面のZコントラスト像である。 実施例1~5、及び比較例3の透明導電膜の大気中放置における表面抵抗値の経時変化を示す図である。 実施例9の透明導電膜の大気中放置における表面抵抗値の経時変化を示す別の図である。
 以下、本発明の実施の形態について詳細に説明する。
 本発明は、有機インジウム化合物、有機錫化合物、有機亜鉛化合物のいずれか一つ以上の有機金属化合物を主成分とする透明導電膜形成用塗布液を、基板上に塗布して塗布膜を形成する塗布工程、その形成した塗布膜を乾燥して乾燥塗布膜を形成する乾燥工程、その乾燥塗布膜を加熱しながらエネルギー線照射して、金属酸化物である無機成分を主成分とする無機膜を形成する加熱エネルギー線照射工程、形成した無機膜をプラズマ処理して、膜の無機化あるいは結晶化を一層促進するプラズマ処理工程の各工程を経て形成する透明導電膜の製造方法において、300℃未満、特に100~250℃という低い加熱温度、すなわち低い基板温度においても、膜の分解並びに燃焼が生じることにより、その無機化と結晶化が進行し、酸化インジウム、酸化錫、酸化亜鉛のいずれか一つ以上を主成分とする導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層が形成されるため、透明性と導電性に優れる透明導電膜が得られるものである。
[透明導電膜構造]
 先ず、透明導電膜構造を説明する。
 以下では、錫をドープした酸化インジウム(ITO)の透明導電膜を例に挙げて説明するが、酸化インジウム以外の、酸化錫や酸化亜鉛を主成分とする透明導電膜に関しても同じように行うことができる。更に、酸化インジウム、酸化錫、酸化亜鉛のいずれかひとつ以上を主要成分とするInGaZnO等の各種アモルファス導電性酸化物膜(酸化物半導体膜)に関しても同様である。
 まず、スパッタリング法等の気相成長法を用いてITOからなる透明導電膜を形成した場合、通常ITO結晶粒が粒界を介して配列した膜構造である多結晶のITO膜構造が形成され、このITO膜構造においてITO微粒子はほとんど観察されない。
 一方で、図1に示すように、有機インジウム化合物と有機錫化合物を主成分とする透明導電膜形成用塗布液を基板2上に塗布・乾燥して得られる乾燥塗布膜3を、ホットプレート等の加熱装置1を用いて大気雰囲気中で350℃以上で高温焼成する塗布法で形成されるITOからなる透明導電膜では、通常ITO微粒子同士が結合した膜構造を有しており、ITO微粒子の粒子径やITO微粒子間に存在する空隙の大きさは、加熱処理条件などで異なるが、少なからず開空隙(オープンポア)を有するITO微粒子で構成される透明導電膜となることが知られている。
 そして、この塗布法で形成されたITO微粒子同士が結合した透明導電膜は、その導電機構が、ITO微粒子の接触部分(結合部分)を介在するものであることから、ITO微粒子同士が微小面積で接触するために起こると考えられる接触部分での導電性低下、開空隙を通して大気中の酸素や水蒸気が膜内に進入しITO微粒子同士の接触を劣化させるために起こると考えられる大気曝露における導電性の経時劣化、ITO微粒子が粗に充填しているために起こると考えられる膜強度の低下などを生じる。
 したがって、上記導電性酸化物微粒子を緻密に充填させると同時に、導電性酸化物微粒子の結晶成長を促進させて、開空隙(オープンポア)が少なく緻密で、かつ導電性酸化物微粒子同士の接触が強化された酸化インジウム、酸化錫、酸化亜鉛のいずれか一つ以上を主成分とする導電性酸化物微粒子層を有する膜構造を形成して、透明導電膜の導電性の向上を図り、膜強度の向上も達成すると同時に、導電性の経時劣化を大きく抑制することが重要である。
 そこで、本発明では透明導電膜形成用塗布液を用いた塗布法で塗布膜を形成し、その塗布膜を乾燥した乾燥塗布膜を経て形成される透明導電膜の製造方法において、その乾燥塗布膜に酸素含有雰囲気下で加熱エネルギー線の照射、及び非酸化性ガス雰囲気下でプラズマ処理を施すことで、酸化インジウム、酸化錫、酸化亜鉛のいずれか一つ以上を主成分とする、緻密、かつ導電性酸化物微粒子同士の接触が強化された導電性酸化物微粒子層を形成するものである。
[透明導電膜形成用塗布液]
 次に、本発明で用いられる透明導電膜形成用塗布液について詳細する。
 本発明では、有機インジウム化合物、有機錫化合物、有機亜鉛化合物のいずれか一つ以上の有機金属化合物を主成分とする透明導電膜形成用塗布液を用いて、酸化インジウム、酸化錫、酸化亜鉛のいずれか一つ以上を主成分とする透明導電膜を形成する。一般に透明導電膜の導電性は高い方が望ましく、そのような場合には、酸化インジウム、酸化錫、酸化亜鉛という主成分となる酸化物にそれ以外の金属化合物、主として金属酸化物をドーピングすることで導電性を向上させる。即ち、ドーパント金属化合物を含む酸化インジウム、酸化錫、酸化亜鉛を導電性酸化物として用いれば、透明導電膜の導電性が向上する。これは、ドーパント金属化合物が導電性酸化物において、キャリアとしての電子の濃度(キャリア密度)を高める働きがあるからである。
 その具体的なドーピングの方法としては、有機インジウム化合物、有機錫化合物、有機亜鉛化合物のいずれか一つ以上の有機金属化合物を主成分とする透明導電膜形成用塗布液に、ドーパント用有機金属化合物を所定量配合する方法がある。
 まず、有機インジウム化合物を主成分とする透明導電膜形成用塗布液について、以下に説明する。
 本発明で用いる有機インジウム化合物には、アセチルアセトンインジウム(正式名称:トリス(アセチルアセトナト)インジウム)[In(C]、2−エチルヘキサン酸インジウム、蟻酸インジウム、インジウムアルコキシド等が挙げられるが、基本的には、溶剤に溶解し、加熱エネルギー線の照射時やプラズマ処理時、あるいはその後の加熱処理時において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機インジウム化合物であれば良い。
 これらの中でもアセチルアセトンインジウムは有機溶剤への溶解性が高く、単純な大気中加熱でも200~250℃程度の温度で分解・燃焼(酸化)して酸化物となり、加熱エネルギー線の照射(波長200nm以下の紫外線の照射)と併用すれば、上記温度よりも更に低温で分解・燃焼(酸化)して酸化物となるため好ましい。
 次に、導電性を向上させるドーパント用有機金属化合物としては、有機錫化合物、有機チタン化合物、有機ゲルマニウム化合物、有機亜鉛化合物、有機タングステン化合物、有機ジルコニウム化合物、有機タンタル化合物、有機ニオブ化合物、有機ハフニウム化合物、有機バナジウム化合物のいずれか一種以上が好ましい。
 なお、透明導電膜を適用するデバイスによっては導電性がある程度低い(抵抗値が高い)ことが必要とされる場合もあるため、透明導電膜形成用塗布液へのドーパント用有機金属化合物の添加は、必要に応じて適宜実施すればよい。
 ドーパント用有機金属化合物の有機錫化合物(化合物中の錫の価数は2価、4価にこだわらない)としては、例えば、アセチルアセトン錫(正式名称:ジ−n−ブトキシド ビス(2,4−ペンタンジオナト)錫、[Sn(C(C]、オクチル酸錫、2−エチルヘキサン酸錫、酢酸錫(II)[Sn(CHCOO)]、酢酸錫(IV)[Sn(CHCOO)]、ジ−n−ブチル錫ジアセテート[Sn(C(CHCOO)]、蟻酸錫、錫アルコキシドとしての錫−tert−ブトキシド[Sn(CO)]等が挙げられるが、基本的には、溶剤に溶解し、加熱エネルギー線照射時やプラズマ処理時、あるいはその後の加熱処理時において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機錫化合物であれば良い。これらの中でも、アセチルアセトン錫は、比較的安価で入手し易いので好ましい。
 ドーパント用有機金属化合物の有機チタン化合物としては、例えば、チタンアセチルアセトン錯体としてのアセチルアセトンチタン(正式名称:チタンジ−n−ブトキシド ビス(2,4−ペンタンジオネート)[Ti(CO)(C])、チタニル(IV)アセチルアセトネート[(CTiO]、チタンジイソプロポキシド ビス(2,4−ペンタンジオネート)[C1636Ti]等や、チタンアルコキシドとしてのチタンテトラエトキシド[Ti(CO)]、チタン(IV)−tert−ブトキシド[Ti(CO)]、チタンテトラ−n−ブトキシド[Ti(CO)]、チタンテトライソプロポキシド[Ti(CO)]等が挙げられるが、基本的には、溶剤に溶解し、加熱エネルギー線の照射時およびプラズマ処理時、あるいはその後の加熱処理時において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機チタン化合物であれば良い。
 これらの中でも、アセチルアセトンチタン、チタンテトラ−n−ブトキシド、チタンテトライソプロポシドは、安価で入手し易いので好ましい。
 ドーパント用有機金属化合物の有機ゲルマニウム化合物としては、例えば、ゲルマニウムアルコキシドとしてのゲルマニウムテトラエトキシド[Ge(CO)]、ゲルマニウムテトラ−n−ブトキシド[Ge(CO)]、ゲルマニウムテトライソプロポキシド[Ge(CO)]等や、β−カルボキシエチルゲルマニウムオキシド[(GeCHCHCOOH)]、テトラエチルゲルマニウム[Ge(C]、テトラブチルゲルマニウム[Ge(C]、トリブチルゲルマニウム[Ge(C]等が挙げられるが、基本的には、溶剤に溶解し、加熱エネルギー線の照射時およびプラズマ処理時、あるいはその後の加熱処理時において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機ゲルマニウム化合物であれば良い。
 これらの中でも、ゲルマニウムテトラエトキシド、ゲルマニウムテトラ−n−ブトキシド、ゲルマニウムテトライソプロポキシドは、比較的安価で入手し易いので好ましい。
 ドーパント用有機金属化合物の有機亜鉛化合物としては、例えば、亜鉛アセチルアセトン錯体としてのアセチルアセトン亜鉛(正式名称:亜鉛−2,4−ペンタンジオネート)[Zn(C]、亜鉛−2,2,6,6−テトラメチル−3,5−ヘプタンジオネート[Zn(C1119]等が挙げられるが、基本的には、溶剤に溶解し、加熱エネルギー線の照射時およびプラズマ処理時、さらにはその後の加熱処理時において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機亜鉛化合物であれば良い。
 これらの中でも、アセチルアセトン亜鉛は、安価で入手し易いので好ましい。
 ドーパント用有機金属化合物の有機タングステン化合物としては、例えば、タングステンアルコキシドとしてのタングステン(V)エトキシド[W(CO)]、タングステン(VI)エトキシド[W(CO)]等が挙げられるが、基本的には、溶剤に溶解し、加熱エネルギー線の照射時およびマイクロ波プラズマ処理時、さらにはその後の加熱処理時において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機タングステン化合物であれば良い。
 ドーパント用有機金属化合物の有機ジルコニウム化合物としては、例えば、ジルコニウムアセチルアセトン錯体としてのジルコニウム ジ−n−ブトキシド ビス(2,4−ペンタンジオネート)[Zr(CO)(C]、アセチルアセトンジルコニウム(ジルコニウム−2,4−ペンタンジオネート)[Zr(C]、ジルコニウムアルコキシドとしてのジルコニウムエトキシド[Zr(CO)]、ジルコニウム−n−プロポキシド[Zr(CO)]、ジルコニウムイソプロポキシド[Zr(CO)]、ジルコニウム−n−ブトキシド[Zr(CO)]、ジルコニウム−tert−ブトキシド[Zr(CO)]、ジルコニウム−2−メチル−2−ブトキシド[Zr(C11O)]、ジルコニウム−2−メトキシメチル−2−プロポキシド[Zr(C11]等が挙げられるが、基本的には、溶剤に溶解し、加熱エネルギー線の照射時およびプラズマ処理時、さらにはその後の加熱処理時において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機ジルコニウム化合物であれば良い。
 これらの中でも、ジルコニウム−n−プロポキシド、ジルコニウム−n−ブトキシドは、比較的安価で入手し易いので好ましい。
 ドーパント用有機金属化合物の有機タンタル化合物としては、例えば、タンタルアセチルアセトン錯体としてのタンタル(V)テトラエトキシド−ペンタンジオネート)[Ta(C)(OC]、タンタルアルコキシドとしてのタンタルメトキシド[Ta(CHO)]、タンタルエトキシド[Ta(CO)]、タンタルイソプロポキシド[Ta(CO)]、タンタル−n−ブトキシド[Ta(CO)]、テトラエトキシアセチルアセトナトタンタル[Ta(CO)(C)]等が挙げられるが、基本的には、溶剤に溶解し、加熱エネルギー線の照射時およびプラズマ処理時、さらにはその後の加熱処理時において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機タンタル化合物であれば良い。
 ドーパント用有機金属化合物の有機ニオブ化合物としては、例えば、ニオブアルコキシドとしてのニオブエトキシド[Nb(CO)]、ニオブ−n−ブトキシド[Nb(CO)]等が挙げられるが、基本的には、溶剤に溶解し、加熱エネルギー線の照射時およびプラズマ処理時、さらにはその後の加熱処理時において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機ニオブ化合物であれば良い。
 ドーパント用有機金属化合物の有機ハフニウム化合物としては、例えば、ハフニウムアセチルアセトン錯体としてのハフニウム ジ−n−ブトキシドビス(2,4−ペンタンジオネート)[Hf(CO)(C]、アセチルアセトンハフニウム(ハフニウム−2,4−ペンタンジオネート)[Hf(C]、ハフニウムアルコキシドとしてのハフニウムエトキシド[Hf(CO)]、ハフニウム−n−ブトキシド[Hf(CO)]、ハフニウム−tert−ブトキシド[Hf(CO)]、ハフニウム(VI)イソプロポキシドモノイソプロピレート[Hf(CO)(COH)]等が挙げられるが、基本的には、溶剤に溶解し、加熱エネルギー線の照射時およびプラズマ処理時、さらにはその後の加熱処理時において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機ハフニウム化合物であれば良い。これらの中でも、ハフニウム−n−ブトキシドは、比較的安価で入手し易いので好ましい。
 ドーパント用有機金属化合物の有機バナジウム化合物としては、例えば、バナジウムアセチルアセトン錯体としてのバナジウムオキサイドビス−2,4−ペンタンジオネート[VO(C]、アセチルアセトンバナジウム(バナジウム−2,4−ペンタンジオネート)[V(C]等が挙げられるが、基本的には、溶剤に溶解し、加熱エネルギー線の照射時およびプラズマ処理時、さらにはその後の加熱処理時において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機バナジウム化合物であれば良い
 次に、有機錫化合物を主成分とする透明導電膜形成用塗布液についても以下に説明する。
 本発明で用いる有機錫化合物には、有機インジウム化合物を主成分とする透明導電膜形成用塗布液の説明で述べた有機錫化合物を用いることができ、導電性を向上させるドーパント用有機金属化合物としては、有機インジウム化合物、有機アンチモン化合物、有機リン化合物のいずれか一種以上が好ましい。
 ドーパント用有機金属化合物としての有機インジウム化合物には、先に有機インジウム化合物を主成分とする透明導電膜形成用塗布液の説明で述べた有機インジウム化合物を用いれば良い。
 ドーパント用有機金属化合物の有機アンチモン化合物としては、例えば、酢酸アンチモン(III)[Sb(CHCOO)]、アンチモンアルコキシドとしてのアンチモン(III)エトキシド[Sb(CO)]、アンチモン(III)−n−ブトキシド[Sb(CO)]等が挙げられるが、基本的には、溶剤に溶解し、加熱エネルギー線の照射時およびプラズマ処理時、さらにはその後の加熱処理時において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機アンチモン化合物であれば良い。
 これらの中でも、アンチモン(III)−n−ブトキシドは、比較的安価で入手し易いので好ましい。
 ドーパント用有機金属化合物の有機リン化合物としては、例えば、トリエチルフォスフェイト[PO(CO)]等が挙げられるが、基本的には、溶剤に溶解し、加熱エネルギー線の照射時およびプラズマ処理時、さらにはその後の加熱処理時において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機リン化合物であれば良い。
 更に、有機亜鉛化合物を主成分とする透明導電膜形成用塗布液についても以下に説明する。
 本発明で用いる有機亜鉛化合物には、有機インジウム化合物を主成分とする透明導電膜形成用塗布液の説明で述べた有機亜鉛化合物を用いることができ、導電性を向上させるドーパント用有機金属化合物としては、有機アルミニウム化合物、有機インジウム化合物、有機ガリウム化合物のいずれか一種以上が好ましい。
 ドーパント用有機金属化合物としての有機インジウム化合物には、先に有機インジウム化合物を主成分とする透明導電膜形成用塗布液の説明で述べた有機インジウム化合物を用いれば良い。
 ドーパント用有機金属化合物の有機アルミニウム化合物としては、アルミニウムアセチルアセトン錯体としてのアセチルアセトンアルミニウム(アルミニウム−2,4−ペンタンジオネート)[Al(C]、アルミニウムアルコキシドとしてのアルミニウムエトキシド[Al(CO)]、アルミニウム−n−ブトキシド[Al(CO)]、アルミニウム−tert−ブトキシド[Al(CO)]、アルミニウムイソプロポキシド[Al(CO)]等が挙げられるが、基本的には、溶剤に溶解し、加熱エネルギー線の照射時およびプラズマ処理時、さらにはその後の加熱処理時において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機アルミニウム化合物であれば良い。
 これらの中でも、アセチルアセトンアルミニウム、アルミニウム−n−ブトキシドは、比較的安価で入手し易いので好ましい。
 ドーパント用有機金属化合物の有機ガリウム化合物としては、ガリウムアセチルアセトン錯体としてのアセチルアセトンガリウム(ガリウム−2,4−ペンタンジオネート)[Ga(C]、ガリウムアルコキシドとしてのガリウムエトキシド[Ga(CO)]等が挙げられるが、基本的には、溶剤に溶解し、加熱エネルギー線の照射時およびプラズマ処理時、さらにはその後の加熱処理時において塩素ガスや窒素酸化物ガスなどの有害ガスが発生せずに酸化物に分解する有機ガリウム化合物であれば良い。
 透明導電膜形成用塗布液における有機インジウム化合物、有機錫化合物、有機亜鉛化合物のいずれか一つ以上の有機金属化合物、または、該有機金属化合物とドーパント用有機金属化合物は、基板上に透明導電膜を形成させるための主たる化合物原料であり、その合計含有量は1~30重量%の範囲であることが好ましく、更に好ましくは5~20重量%とするのが良い。
 その合計含有量が1重量%未満であると膜厚の薄い透明導電膜しか得られなくなるため十分な導電性が得られない。また、30重量%より多いと透明導電膜形成用塗布液中の有機金属化合物が析出し易くなって塗布液の安定性が低下したり、得られる透明導電膜が厚くなり過ぎて亀裂(クラック)が発生して導電性が損なわれる場合がある。
 また、透明導電膜形成用塗布液にドーパント用有機金属化合物を配合する場合(高い導電性を得ようとする場合)には、有機金属化合物とドーパント用有機金属化合物の含有割合は、有機金属化合物:ドーパント用有機金属化合物のモル比換算で99.9:0.1~66.7:33.3が好ましい。詳しくは、有機インジウム化合物を主成分とする透明導電膜形成用塗布液においてドーパント用有機金属化合物として有機亜鉛化合物を用いる場合を除いて、有機金属化合物:ドーパント用有機金属化合物のモル比換算で99.9:0.1~87:13が良く、好ましくは99:1~91:9である。
 なお、有機インジウム化合物を主成分とする透明導電膜形成用塗布液において、有機亜鉛化合物をドーピング用有機金属化合物して用いる場合には、有機金属化合物:ドーパント用有機金属化合物のモル比換算で95:5~66.7:33.3が良く、好ましくは91:9~71:29である。
 ただし、透明導電膜形成用塗布液におけるドーパント用有機金属化合物の配合割合は、マイクロ波プラズマ処理工程の基板加熱温度等の処理条件によっても、その適合範囲が変わってくるため、適用する工程条件によって上記記載範囲内で更に適宜最適化すると良い。
 このモル比範囲を外れてドーパント用有機金属化合物が少なくても、或いは、多すぎても、透明導電膜のキャリア密度が減少して透明導電膜の導電性が急激に悪化する場合があり、また、上記モル比範囲を外れてドーパント用有機金属化合物が多い場合には、導電性酸化物微粒子の結晶成長が進みにくくなって導電性が悪化する場合があるため好ましくない。
 さらに、透明導電膜形成用塗布液には、有機バインダーを添加することが好ましい。
 このバインダーを加えることで、基板に対する濡れ性が改善されると同時に、塗布液の粘度調整を行うことができる。上記バインダーは加熱エネルギー線照射時やプラズマ処理時、あるいはその後の加熱処理時において燃焼や分解する材料が好ましく、このような材料として、セルロース誘導体、アクリル樹脂等が有効である。
 有機バインダーに用いられるセルロース誘導体としては、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース、カルボキシエチルセルロース、カルボキシエチルメチルセルロース、ニトロセルロース等が挙げられるが、これらの中でもヒドロキシプロピルセルロース(以下、「HPC」と表記する場合がある)が好ましい。
 このHPCを用いれば、5重量%以下の含有量で十分な濡れ性が得られると同時に、大幅な粘度調整を行うことができる。またHPCの燃焼開始温度は単純な大気中加熱だと300℃程度だが、エネルギー線照射(例えば、波長200nm以下の紫外線照射)と併用すれば300℃未満の加熱温度でも分解・燃焼するので、生成する導電性粒子の粒成長を阻害せず、導電性が良好な透明導電膜を作製することができる。HPCの含有量が5重量%より多くなると、ゲル状になって塗布液中に残留し易くなり、極めて多孔質の透明導電膜を形成して透明性や導電性が著しく損なわれる。
 ここで、セルロース誘導体として、例えばHPCの代わりにエチルセルロースを用いた場合には、HPCを用いた場合よりも塗布液の粘度が低く設定できるが、高粘度塗布液が好適であるスクリーン印刷法等ではパターン印刷性が若干低下する。
 ところで、ニトロセルロースは、分解性は優れているが、加熱エネルギー線照射時やプラズマ処理時、あるいはその後の加熱処理時において有害な窒素酸化物ガスの発生があり、加熱処理炉の劣化や排ガス処理に問題を生じる場合がある。以上のように、使用するセルロース誘導体は、状況に応じて適宜選択する必要がある。
 また、アクリル樹脂としては、比較的低温で燃焼するアクリル樹脂が好ましい。
 透明導電膜形成用塗布液に用いる溶剤としては、アセチルアセトンインジウム、アセチルアセトン亜鉛、アセチルアセトンバナジウム等のアセチルアセトン錯体を高濃度で溶解できるアルキルフェノール及び/またはアルケニルフェノールと二塩基酸エステル、あるいはアルキルフェノール及び/またはアルケニルフェノールと酢酸ベンジル、またはこれらの混合溶液を用いるのが好ましい。アルキルフェノール及びアルケニルフェノールとしては、クレゾール類、キシレノール、エチルフェノール、p−tert−ブチルフェノール、オクチルフェノール、ノニルフェノール、カシューナット殻液[3ペンタデカデシールフェノール]等が挙げられ、二塩基酸エステル(例えば二塩基酸ジメチル、二塩基酸ジエチル等)としては、コハク酸エステル、グルタル酸エステル、アジピン酸エステル、マロン酸エステル、フタル酸エステル等が用いられる。
 更に、塗布液の粘度を低下さたり、塗布性を改善させるために透明導電膜形成用塗布液に配合する溶剤としては、有機インジウム化合物、ドーパント用有機金属化合物、並びにセルロース誘導体及び/またはアクリル樹脂を溶解させた溶液と相溶性があれば良く、水、メタノール(MA)、エタノール(EA)、1−プロパノール(NPA)、イソプロパノール(IPA)、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコール(DAA)等のアルコール系溶媒、アセトン、メチルエチルケトン(MEK)、メチルプロピルケトン、メチルイソブチルケトン(MIBK)、シクロヘキサノン、イソホロン等のケトン系溶媒、酢酸エチル、酢酸ブチル、酢酸イソブチル、ギ酸アミル、酢酸イソアミル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、オキシ酢酸メチル、オキシ酢酸エチル、オキシ酢酸ブチル、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル、3−オキシプロピオン酸メチル、3−オキシプロピオン酸エチル、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、2−オキシプロピオン酸メチル、2−オキシプロピオン酸エチル、2−オキシプロピオン酸プロピル、2−メトキシプロピオン酸メチル、2−メトキシプロピオン酸エチル、2−メトキシプロピオン酸プロピル、2−エトキシプロピオン酸メチル、2−エトキシプロピオン酸エチル、2−オキシ−2−メチルプロピオン酸メチル、2−オキシ−2−メチルプロピオン酸エチル、2−メトキシ−2−メチルプロピオン酸メチル、2−エトキシ−2−メチルプロピオン酸エチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2−オキソブタン酸メチル、2−オキソブタン酸エチル等のエステル系溶媒、エチレングリコールモノメチルエーテル(MCS)、エチレングリコールモノエチルエーテル(ECS)、エチレングリコールイソプロピルエーテル(IPC)、エチレングリコールモノブチルエーテル(BCS)、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールメチルエーテル(PGM)、プロピレングリコールエチルエーテル(PE)、プロピレングリコールメチルエーテルアセテート(PGM−AC)、プロピレングリコールエチルエーテルアセテート(PE−AC)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル等のグリコール誘導体、トルエン、キシレン、メシチレン、ドデシルベンゼン等のベンゼン誘導体、ホルムアミド(FA)、N−メチルホルムアミド、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、ジメチルスルフォキシド(DMSO)、N−メチル−2−ピロリドン(NMP)、γ−ブチロラクトン、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1、3−ブチレングリコール、ペンタメチレングリコール、1、3−オクチレングリコール、テトラヒドロフラン(THF)、クロロホルム、ミネラルスピリッツ、ターピネオール等、及びこれらのいくつかの混合液が挙げられるが、これらに限定されるものではない。
 塗布液の安定性や成膜性を考慮すると、使用する溶剤としては、メチルエチルケトン(MEK)、シクロヘキサノン、プロピレングリコールモノメチルエーテル(PGM)、N−メチル−2−ピロリドン(NMP)、γ−ブチロラクトン等が好ましい。
 本発明で用いる透明導電膜形成用塗布液は、上記有機インジウム化合物、有機錫化合物、有機亜鉛化合物のいずれか一つ以上の有機金属化合物、必要に応じて上記各種ドーパント用有機金属化合物のいずれか一種以上、更に、必要に応じてバインダーを加えた混合物を溶剤に加熱溶解させることによって製造する。
 加熱溶解は、通常、加熱温度を60~200℃とし、0.5~12時間攪拌することにより行われる。加熱温度が60℃よりも低いと十分に溶解せず、例えば、有機インジウム化合物を主成分とする透明導電膜形成用塗布液であれば、アセチルアセトンインジウム等の金属化合物の析出分離が起って塗布液の安定性が低下してしまい、200℃よりも高いと溶剤の蒸発が顕著となり塗布液の組成が変化してしまうので好ましくない。
 透明導電膜形成用塗布液の粘度は、上記バインダーの分子量や含有量、溶剤の種類によって調整することができるので、インクジェット印刷法、スクリーン印刷法、グラビア印刷法、オフセット印刷法、フレキソ印刷法、ディスペンサ印刷法、スリットコート法、ダイコート法、ドクターブレードコート法、ワイヤーバーコート法、スピンコート法、スプレーコート法等の各種塗布法のそれぞれに適した粘度に調整して対応することができる。
 高粘度(5000~50000mPa・s程度)の塗布液は、高分子量のバインダーを5重量%以下、好ましくは2~4重量%含有させることで作製でき、低粘度(5~500mPa・s程度)は、低分子量のバインダーを5重量%以下、好ましくは0.1~2重量%含有させ、かつ低粘度の希釈用溶剤で希釈することで作製できる。また、中粘度(500~5000mPa・s)の塗布液は、高粘度の塗布液と低粘度の塗布液を混合することで作製できる。
[透明導電膜の製造方法]
 本発明の透明導電膜の製造方法について詳細する。
 本発明の透明導電膜は、基板上に透明導電膜形成用塗布液を塗布して塗布膜を形成する塗布工程、その塗布膜を乾燥して乾燥塗布膜を形成する乾燥工程、その乾燥塗布膜を加熱しながらエネルギー線照射して無機膜を形成する加熱エネルギー線照射工程、その無機膜をプラズマ処理するプラズマ処理工程の各工程を経て形成される。
(a)塗布工程
 基板上への透明導電膜形成用塗布液の塗布は、インクジェット印刷法、スクリーン印刷法、グラビア印刷法、オフセット印刷法、フレキソ印刷法、ディスペンサ印刷法、スリットコート法、ダイコート法、ドクターブレードコート法、ワイヤーバーコート法、スピンコート法、スプレーコート法等の各種塗布法を用いて塗布される。これらの塗布は、クリーンルーム等のように清浄でかつ温度や湿度が管理された雰囲気下で行うことが好ましい。温度は室温(25℃程度)、湿度は40~60%RHが一般的である。
 その基板としては、ソーダライムガラス、無アルカリガラス、石英ガラス等の耐熱性無機基板や、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ナイロン、ポリエーテルスルホン(PES)、ポリエチレン(PE)、ポリプロピレン(PP)、ウレタン、シクロオレフィン樹脂(ゼオノア[日本ゼオン製]やアートン[JSR製]等)、フッ素系樹脂、ポリアミドイミド、ポリイミド(PI)等の各種樹脂基板(プラスチックフィルム)を用いることができる。
(b)乾燥工程
 この乾燥工程では、透明導電膜形成用塗布液を塗布した基板を、通常大気中80~180℃で1~30分間、好ましくは2~10分間保持して塗布膜の乾燥を行って、乾燥塗布膜を作製する。乾燥条件(乾燥温度、乾燥時間)は、用いる基板の種類や透明導電膜形成用塗布液の塗布厚さ等によって、適宜選択すればよく、上記乾燥条件に限定される訳ではない。ただし、生産性を考慮すれば、乾燥時間は、得られる乾燥塗布膜の膜質が悪化しない必要最低限度に短縮することが望ましい。また、乾燥温度は、用いる基板の耐熱温度以下であることが必要で、例えば、上記PETフィルムであれば(乾燥時間にもよるが)160℃以下に設定する必要がある。
 なお、必要に応じて、大気中乾燥に代えて、減圧乾燥(到達圧力:通常1kPa以下)を適用することも可能である。減圧乾燥では、塗布された透明導電膜形成用塗布液中の溶剤が、減圧下で強制的に除去されて乾燥が進行するため、大気中乾燥に比べてより低温での乾燥が可能となるため、耐熱性や耐溶剤性に乏しい素材からなる基板を用いる場合に有用である。
 この乾燥塗布膜は、透明導電膜形成用塗布液から前述の溶剤が揮発除去されたものであって、有機インジウム化合物、有機錫化合物、有機亜鉛化合物のいずれか一つ以上の有機金属化合物、(ドーパント用有機金属化合物)、バインダー等の有機系成分で構成されている。
(c)加熱エネルギー線照射工程
 加熱エネルギー線照射工程では、通常、図2に示すように、ホットプレート1等の加熱装置、及びエネルギー線照射ランプ4を用いて、前工程の乾燥工程で得られた乾燥塗布膜3に、酸素含有雰囲気下で300℃未満の加熱温度に加熱しながらエネルギー線を照射し、乾燥塗布膜中の有機インジウム化合物、有機錫化合物、有機亜鉛化合物のいずれか一つ以上の有機金属化合物、あるいはドーパント用有機金属化合物を含む有機インジウム化合物、有機錫化合物、有機亜鉛化合物のいずれか一つ以上の有機金属化合物、およびバインダー等の有機系成分を分解・燃焼(酸化)させ、無機成分である導電性酸化物からなる無機膜、本発明では粒子径が3nm未満の非常に微細な導電性酸化物微粒子(ナノレベルで結晶化した導電性酸化物微粒子)が緻密に充填した導電性酸化物微粒子層としての透明導電膜を得ている。
 なお、エネルギー線照射ランプからは、通常、有機系成分の分解・燃焼(酸化)に必要なエネルギー線以外に熱線も放出されるため、例えば加熱温度が40~50℃程度と低い場合には必ずしもホットプレート等の加熱装置を必要としない。言い換えれば、ホットプレート等の加熱装置で加熱しなくても、エネルギー線照射ランプからの熱線照射によって、基板は少なくとも40~50℃程度まで加熱されている。
 すなわち、加熱エネルギー線照射工程において、例えば加熱温度300℃未満の範囲でエネルギー線の照射量が多くなってくる、つまりエネルギー線照射時間が長くなってくると、乾燥塗布膜中の有機インジウム化合物、有機錫化合物、有機亜鉛化合物のいずれか一つ以上の有機金属化合物(ドーパント用有機金属化合物を含有する物も含む)は徐々に分解・燃焼(酸化)されて、まずアモルファス状態(ここでは、X線回折で求めた結晶子サイズ=3nm未満の非常に微細な粒子の状態を称する)の導電性酸化物への変換、所謂無機化を起こし、最終的な透明導電膜の構成要素が形成される。
 一方、バインダーも同様に、加熱エネルギー線照射工程の酸素含有雰囲気下でのエネルギー線の照射により徐々に分解・燃焼(酸化)する。そのため、主に二酸化炭素(CO)に転化されて雰囲気中に揮散して膜中から消失し、これは、バインダーの種類にもよるが、例えばHPCを用いた場合であれば40~250℃に加熱しながらエネルギー線の照射をすればほぼ消失していくため、最終的には透明導電膜中にはほとんど残留しない。
 なお、加熱エネルギー線照射工程の初期段階、すなわちエネルギー線照度にもよるが、エネルギー線の照射時間が数十秒~3分程度の段階まではバインダーが多く残留し、上記無機化で形成された導電性酸化物間にバインダーが均一に介在してナノレベルでの結晶化を抑制しており、エネルギー線照射の時間を長くしていくとバインダー成分が徐々に消失していって上記導電性酸化物のナノレベルでの結晶化が始まり、非常に微細なアモルファス状態の導電性酸化物微粒子層を形成するものと考えられる。
 以上のように、酸素含有雰囲気下での加熱エネルギー線の照射によって乾燥塗布膜の有機成分が徐々に分解・燃焼(酸化)して、膜の無機化が進行するため、膜の厚みも徐々に低下していく。例えば、厚み500~600nmの乾燥塗布膜が、上記酸素含有雰囲気下での加熱エネルギー線照射によって、最終的に厚み110~130nm程度の無機膜に変化する。
 尚、加熱エネルギー線照射工程における加熱温度は、300℃未満が良く、好ましくは40~250℃、より好ましくは、100~200℃、更に好ましくは100~150℃の範囲である。300℃以上だと、エネルギー線照射前にエネルギー線照射を施す乾燥塗布膜の熱分解が始まるため、膜の緻密化が阻害されるため好ましくない。また、40℃未満は、全く実用的でないとは言えないが、加熱エネルギー線照射による乾燥塗布膜の無機化や緻密化の速度が低下することに十分注意する必要がある。
 ここで、この加熱エネルギー線の照射は、少なくとも200nm以下の波長を主要成分の一つとして含む紫外線の照射であることが望ましく、より具体的には、低圧水銀ランプ、アマルガムランプ、エキシマランプのいずれかから放射される紫外線の照射が好ましい。その紫外線の照射量は、波長200nm以下の光の照度:2mW/cm以上、好ましくは4mW/cm以上で、照射時間は、2分以上、好ましくは4分以上が良い。
 紫外線の照射量は、基板とランプとの距離(照射距離)、照射時間、またはランプの出力によって適宜調整できる。上記ランプを用いた基板全面へのエネルギー線照射では、例えば直管状のランプを並行に配列させて照射しても良いし、グリッド型ランプの面光源を用いても良い。
 以下、波長200nm以下の光を放射可能な低圧水銀ランプとエキシマランプについて詳細に説明するが、本発明の加熱エネルギー線照射工程では、使用上の制約が少なく、加熱処理と併用した場合にランプへの加熱の影響を小さくできる低圧水銀ランプを用いることがより好ましい。
 なお、アマルガムランプは、低圧水銀ランプが一般に石英ガラス管内にアルゴンガスと水銀を封入するのに対し、水銀と特殊希少金属の合金であるアマルガム合金を封入することで、低圧水銀ランプと比べて、2~3倍程度の高出力化を可能としたもので、出力波長特性はほぼ低圧水銀ランプと同じため、詳細説明は省略する。当然のことながら、アマルガムランプも、低圧水銀ランプと同様に、本発明の加熱エネルギー線照射工程では、使用上の制約が少なく、加熱処理と併用した場合にランプへの加熱の影響を小さくできるため好ましい。
 ただし、紫外線の吸収を伴わない窒素ガス等を冷却ガスとしてランプを冷却する特殊な装置を用いる事も可能で、そのような場合はこの限りでない。
 低圧水銀ランプは、185nmと254nmの波長の紫外線を放射する。例えば空気中では、下記数1に示す式(1)~(3)のように185nmの光は、酸素を分解してオゾンを生成し、更に、そのオゾンを254nmの光がms(ミリ秒)単位の速さで分解して、高エネルギーの活性原子状酸素O(D)を生成する。これと同時に185nmの光(フォトンエネルギー:647kJ/mol)、及び254nmの光(フォトンエネルギー:472kJ/mol)は有機物の化学結合を切断し、その化学結合が切断された有機物にオゾンや活性原子状酸素が作用して、最終的に有機物を水や炭酸ガスに酸化分解・揮発させると考えられ、その有効照射距離は0~20mm(臨界照射距離は200mm)と比較的長い照射距離を確保できる。
Figure JPOXMLDOC01-appb-M000001
 一方、エキシマランプ(キセノンエキシマランプ)は、172nmの波長の紫外線を放射し、例えば空気中では、低圧水銀ランプと異なり、下記数2に示す式(4)のように高エネルギーの活性原子状酸素O(D)を直接生成できるという特徴がある。ここで、式(4)に示す酸素分子の解離には波長175nm以下が必要なので、低圧水銀ランプの185nmの光ではこの解離は起きない。
 また下記数2の式(5)によりオゾンが生成し、式(6)によっても活性原子状酸素を生成できる。式(6)は2次反応を示しており、主たる活性原子状酸素の生成は式(4)によると考えられる。さらに、フォトンのエネルギーが696kJ/molと大きいので有機物の結合を切る能力が高いという利点もある。すなわち、ほとんどの有機物の分子結合エネルギーより高いため分子結合が切れる確率が高くなる。ただし、172nmの光は、低圧水銀ランプの185nmの光に比べて酸素の吸収係数が約100倍も大きく、酸素に強く吸収されるため、上記オゾンや高エネルギーの活性原子状酸素は、ランプ表面近傍でしか酸化反応が起こせず、大気中での有効照射距離が0~3mm(臨界照射距離は8mm)と極端に短くなる欠点がある。
Figure JPOXMLDOC01-appb-M000002
 本発明で使用する酸素含有雰囲気ガスは、空気、酸素ガス、あるいは、酸素ガスと窒素ガス・不活性ガス(アルゴン、ヘリウム等)の混合ガスが挙げられるが、安価で入手しやすい空気が好ましい。また、雰囲気の圧力は特に限定されず、減圧や加圧でもかまわないが、簡便性の観点から大気圧が好ましい。
 さらに、その酸素含有雰囲気ガスとしては、露点の低い、即ち水蒸気含有量の少ない酸素含有雰囲気(参考として、図3に、空気中の飽和水蒸気含有量(体積%)と露点(℃)の関係を示す)を用いることが好ましい。
 このような露点の低い酸素含有雰囲気を用いると、加熱エネルギー線照射工程における膜の無機化の過程で、導電性酸化物のナノレベルでの結晶化、並びに結晶成長が抑制され、非常に微細な導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層の膜構造を得ることができる。なお、導電性酸化物微粒子が緻密に充填するメカニズムに関しては、必ずしも明らかではないが、以下のように考えることができる。
 すなわち、少なくとも加熱エネルギー線照射工程での無機化で生じた導電性酸化物のナノレベルでの結晶化が始まる時点までは、導電性酸化物間にバインダーが均一に介在した膜構造が維持される。この膜構造が有機物質であるバインダーの作用で柔軟性を有して基板と垂直方向への膜の収縮(緻密化)を可能とするため、露点の低い空気雰囲気下で昇温して焼成した場合は、バインダーが消失するぎりぎりまで導電性酸化物のナノレベルでの結晶化が抑制されて収縮可能な膜構造を取ることができ、膜の緻密化につながるものと推測される。
 なお、この露点の低い、即ち水蒸気含有量の少ない空気雰囲気下において導電性酸化物のナノレベルでの結晶化、並びに結晶成長が抑制される理由は明らかではないが、例えば、空気雰囲気中の水蒸気が、(1)導電性酸化物間に介在しているバインダー成分の熱分解・燃焼(酸化)の促進作用を有する、(2)導電性酸化物自体のナノレベルでの結晶化、並びに結晶成長を促進する作用を有する等が考えられる。
 この露点の低い酸素含有雰囲気ガスの露点は、好ましくは−10℃以下、より好ましくは−20℃以下、更に好ましくは−30℃以下、最も好ましくは−40℃以下である。
 露点が−10℃を越えると、加熱エネルギー線照射工程での膜の無機化による非常に微細な導電性酸化物微粒子からなる導電性酸化物微粒子層の形成過程において、バインダーがまだ多く残留している段階で水蒸気が導電性酸化物のナノレベルでの結晶化、並びに結晶成長を促進する。そのため、導電性酸化物間にバインダーが均一に介在した膜垂直方向に収縮可能な膜構造が破壊されて、導電性酸化物微粒子同士が固着し動けなくなり、膜の緻密化が阻害される。こうなると、最終的に得られる透明導電膜の導電性、膜強度、及び抵抗安定性等が低下するため好ましくない。
 加熱エネルギー線照射工程で用いる加熱装置には、ホットプレート、熱風加熱装置、遠赤外線加熱装置(例えば、ハロゲンランプ加熱装置)等が挙げられるが、これらに限定される訳ではない。ただし、加熱エネルギー線照射工程において、例えば酸素含有雰囲気として空気と酸素濃度の異なるガス、あるいは、湿度が低い、すなわち露点が低い空気等の雰囲気を用いる場合には、上記加熱装置には処理雰囲気の制御が可能であることが求められ、例えば、図4に示すように、合成石英板(波長200nm以下の紫外線の透過率が高い)の紫外線照射窓5を有する照射ボックス内にホットプレート等の基板加熱装置を設置する構造が望ましい。なお、紫外線照射窓5には上記合成石英板が適しているものの、照射窓の厚みがそれ程厚くなくても良い場合には、例えば、厚み0.5mm~2mm程度では溶融石英板(波長200nm以下の紫外線の透過率が幾分低い)を紫外線照射窓5に適用しても特に支障はない。紫外線照射窓5の材質は、エネルギー線として必要とされる紫外線(例えば、波長172nmの紫外線、波長185nmと波長254nmの紫外線)を透過すれば特に上記石英に限定されるものではない。
(d)プラズマ処理工程
 プラズマ処理工程では、前工程のエネルギー線照射工程で得られた無機膜を、非酸化性ガス雰囲気下で300℃未満の基板温度でプラズマ処理し、無機膜中に微量残留した有機系成分を、更に分解させて無機化を促進させると同時に、膜にエネルギーを与え結晶化を促進させて、導電性酸化物からなる無機膜、より詳細には、導電性酸化物微粒子が緻密に充填し、かつ導電性酸化物微粒子同士の接触が強化された導電性酸化物微粒子層としての透明導電膜を形成している。
 ここで、プラズマ処理工程における基板温度とは、通常、高エネルギーを有するプラズマによって加熱される基板の温度を示す(後述のように、例えば、イオントラップでマイクロ波プラズマ中のイオン成分をカットした場合等では、加熱装置を用いて基板を加熱する場合もある。)。
 図5にプラズマ処理工程における、典型的なプラズマ処理時間と基板温度の関係を示すが、基板温度はプラズマ処理時間と伴に室温から上昇してゆき、プラズマ処理終了すると低下してゆく。本発明で、300℃未満の基板温度でプラズマ処理するということは、図5における基板の最高到達温度が300℃未満であることを意味し、プラズマ処理工程の処理温度はこの最高到達温度のことを示している。
 すなわち、プラズマ処理工程では、後述する通りの高密度のプラズマが発生するため、基板を加熱すると同時に各種化学反応を促進する。
 これは、プラズマ処理では、通常のガス雰囲気中の分子と異なり、プラズマ中に存在する高いエネルギーを有するガスイオンや励起原子(活性原子)、例えば、窒素イオンや活性窒素による結晶化促進の効果が大きく、その結晶化促進効果で導電性酸化物微粒子同士の接触を強化して、膜の導電性や抵抗安定性を著しく高める作用を有している。このプラズマ処理の結晶化促進効果によって、実施例に示すような5~20nm程度の微結晶から成る導電性酸化物微粒子が緻密に充填し、かつ、それらの導電性酸化物微粒子同士の結晶方位がそろった領域が隣接した特殊な構造の導電性酸化物微粒子層が形成される。この構造は、プラズマ処理のプラズマの作用である結晶化促進効果が強いため、膜の結晶化・結晶成長において、まず膜表面に結晶粒子が形成されると同時に、その結晶粒子同士の接触部を介して膜表面から基板側に結晶化・結晶成長が進行したために形成されたものと考えられる。
 なお、透明導電膜中のドーパント濃度も結晶成長に影響を及ぼし、一般にドーパント濃度が低い方が結晶成長しやすい。そのため、結晶成長促進という観点からすると、特にプラズマ処理工程の基板温度が低く結晶成長しにくい場合には、ドーパント濃度を一層低くする必要がある。例えば錫ドープ酸化インジウム(ITO)を透明導電膜に用い、かつプラズマ処理工程の基板温度が150℃程度と低い場合には、ドーパント金属化合物である酸化錫の配合割合は、インジウム:錫のモル比換算で99:1~95:5が最も好ましい。
 以上のように、本発明のプラズマ処理では、導電性酸化物微粒子間の接触(接触領域の結合)を強化した構造の導電性酸化物微粒子層を得ることができるため、透明導電膜の導電性向上に加えて、抵抗値の安定性を大幅に改善できるという特徴を有している。
 このプラズマ処理工程では、処理雰囲気の圧力の違いによって、減圧された非酸化性ガス雰囲気下で行われる減圧プラズマ処理と、大気圧の非酸化性ガス雰囲気下で行われる大気圧プラズマ処理(「常圧プラズマ処理」とも呼ばれる)の2つの方法に大別できる。これらいずれのプラズマ処理においても、上述した導電性酸化物微粒子層の緻密化や透明導電膜の導電性向上を図ることが可能であり、以下にそれぞれのプラズマ処理の特徴を説明する。
[d−1](減圧された非酸化性ガス雰囲気下で行われる)減圧プラズマ処理
 減圧された非酸化性ガス雰囲気下で行われる減圧プラズマ処理で用いるプラズマとしては、マイクロ波プラズマや高周波プラズマが考えられるが、いずれのプラズマの適用も可能である。
 一般的に減圧プラズマ処理では、プラズマを安定して形成するために、使用される雰囲気における圧力を2~1000Pa、好ましくは3~500Pa程度とすることが好ましい。
 まず、マイクロ波プラズマを用いた減圧マイクロ波プラズマ処理について述べると、マイクロ波プラズマは一般的には雰囲気圧力が高くなると不安定となるため、それを安定して形成するためには、使用される雰囲気における圧力は、2~200Pa、好ましくは3~20Pa、更に好ましくは3~10Paが良い。
 その圧力が、200Paを越えるとマイクロ波プラズマ形成が困難となってくると同時に、プラズマ中のイオンや活性原子の存在寿命が短くなってイオン濃度や活性原子濃度が低下して、上記結晶化促進効果が小さくなるため好ましいとは言えない。また、圧力が2Pa未満でも、同様に、マイクロ波プラズマ形成が困難となると同時に、プラズマ中のイオン濃度や活性原子濃度が低下するため好ましいとは言えない。
 次に、高周波プラズマを用いた減圧高周波プラズマ処理について述べると、高周波プラズマを安定に形成し、かつ上記結晶化促進効果を有するためには、使用される雰囲気における圧力は、2~1000Pa、好ましくは3~500Pa程度が良い。
 ここで使用する非酸化性ガス雰囲気は、窒素ガス、不活性ガス(アルゴン、ヘリウム等)、還元性ガス(水素ガス、アンモニアガス、メタノール等の有機溶剤蒸気等)の少なくとも1種以上が含まれる雰囲気などが挙げられる。
 これは、減圧プラズマ処理工程で得られる導電性酸化物微粒子層で構成される透明導電膜に高い導電性を付与するためには、膜を弱く還元し、導電性酸化物微粒子内にキャリア形成作用を有する酸素空孔を形成してキャリア濃度を増加させる必要があるからである。ただし、膜を強く還元、例えば水素ガス単独での減圧プラズマ処理を過剰に施すと、得られる透明導電膜中の酸素空孔が多くなりすぎて膜が黒化したり、金属まで還元される場合もあるため注意を有する。
 後述するが、減圧マイクロ波プラズマ処理では、化学反応速度が大きくなるため、上述の膜の黒化や金属までの還元が生じやすいため、好ましい非酸化性ガス雰囲気は、窒素ガスである。一方、減圧高周波プラズマ処理では、化学反応を起こしにくいため、好ましい非酸化性ガス雰囲気は、窒素ガスよりも還元力が強く、膜を還元して酸素空孔を付与できる、水素ガス、または、水素ガスと他の窒素ガスや不活性ガスとの混合ガスである。
 なお、この還元で導電性酸化物微粒子中に形成された酸素空孔は、導電性酸化物微粒子の成分元素(インジウム、酸素等)を拡散しやすくするため、プラズマエネルギーによる結晶化促進に加えて、一層結晶化を促進する効果を有しており、上記透明導電膜の導電性向上と抵抗安定化(経時変化抑制)にも有効である。
 これまで述べたように、減圧プラズマ処理は、無機膜中に微量残留した有機系成分を更に分解させて無機化を促進させる効果を有しているが、その有機成分の分解作用は大きいものではなく、あくまでも、その主とする作用は無機膜の結晶化、および結晶成長である。
 なお、減圧プラズマ処理では、減圧されたガス雰囲気として、非酸化性ガス雰囲気よりも酸素含有雰囲気の方が、有機系成分の分解・燃焼(酸化)による無機化促進の効果が大きいと考えられる。したがって、透明導電膜の無機化促進という観点から、酸素含有雰囲気下での加熱エネルギー線照射工程と減圧された非酸化性ガス雰囲気下での減圧プラズマ処理工程の間に、減圧された酸化性ガス雰囲気下での減圧プラズマ処理工程を挿入することもできる。酸化性ガス雰囲気には、空気、酸素ガス、あるいは、酸素ガスと窒素ガス・不活性ガス(アルゴン、ヘリウム等)の混合ガスが挙げられる。
 以上のように、減圧プラズマ処理によって無機膜の無機化が一層促進されると同時に結晶化が進行するため、膜の厚みは更に低下する。例えば、厚み115~125nm程度の無機膜が、減圧プラズマ処理によって、厚み90~105nm程度まで約20~30%程低下する。
 ここで、減圧プラズマ処理工程における、プラズマによって加熱される基板温度の制御は、基板とプラズマ発生部の距離(照射距離)、処理時間、入力エネルギー(数百W~数キロW)、または基板の冷却や加熱等によって適宜調整できる。大型基板全面の減圧プラズマ処理では、例えばエネルギー(マイクロ波や高周波)の導入部を平面内に均等に配列して大面積のマイクロ波プラズマや高周波プラズマを形成させて行うことができる。
 更に、減圧プラズマ処理工程の基板温度の上昇を抑制しながら、かつ、プラズマ処理時間を長くして透明導電膜の特性向上を図る方法として、図6に示すように、プラズマ処理を間歇的に実施して基板加熱(プラズマON)と冷却(プラズマOFF)を交互に行っても良い。
 以下、減圧プラズマ処理のうち、減圧マイクロ波プラズマについて図面を参照して詳細に説明する。
 なお、マイクロ波は極めて短波長の電磁波で、波長3~30cm(周波数1000M~10000MHz)程度の電波の総称である。工業的には、2450MHz、915MHzが利用されるが、2450MHzが一般的である。
 図7は、本発明に係る塗布法による透明導電膜製造工程における減圧された非酸化性ガス雰囲気下で行われる減圧マイクロ波プラズマ処理工程の一例を示す模式図で、図7に示すように、マイクロ波プラズマ11は、通常、周波数2450MHzのマイクロ波を、導波管8からマイクロ波を透過する石英などの素材からなる導入窓9を通してチャンバー10内に導入し、チャンバー10内の気体分子を電離・解離させてプラズマを発生させる。したがって、プラズマ中には、気体分子、および気体分子から生じたイオン、原子状元素(基底状態の原子)、ラジカル(励起された原子)が混在しており、例えば窒素ガスを用いた場合には、分子(N)、イオン(N、N )、原子状元素(N)、ラジカル(N)が発生している。このようにして発生したプラズマは、電場をシールドするために、その電波は内部に進入できないが、プラズマの表面に沿って表面波として伝播でき、この電波の電界で電子が加速されてプラズマにエネルギー供給するため、例えば2~200Paのガス圧力下で、1011~1012/cmという高密度プラズマとなるマイクロ波表面プラズマを得ることができる。
 一般に、良く用いられる高周波プラズマ(RFプラズマ)では、プラズマ密度は10~1010/cm程度であるのに対して、マイクロ波プラズマは、その高いプラズマ密度により、化学反応速度を大きくできる特長を有している。また、電子温度に関しても、高周波プラズマ(RFプラズマ)の数eV以上に対して、マイクロ波プラズマ11は1eV程度と低いため、基板を加熱し過ぎることによる熱劣化を小さくできる。更に、高周波プラズマ(RFプラズマ)と異なり、無電極放電のため、チャンバー内部に電極が不要で単純な構造のため、装置において設計の自由度を高くできる。
 ここで、減圧された非酸化性ガス雰囲気は、チャンバー10内の基板支持プレート6上に試料を設置した後、チャンバー10内を一旦10−5Pa程度の真空したのち、所定の非酸化性ガスを所定のガス分圧となるように導入して得られる。
 減圧マイクロ波プラズマ処理工程では、これまで述べたように基板温度を制御するため、基板を加熱、または冷却してもよい。基板の加熱装置には、図7における基板保持プレート6としてホットプレート、遠赤外線加熱装置等を用いることができるが、これらに限定されない。また、基板温度の上昇を抑制したい場合は、例えば水冷ジャケット等で強制的に冷却した基板支持プレート6(銅等の熱伝導性の高い材質製)上に基板を密着させて保持し、基板から熱を奪いながら減圧マイクロ波プラズマ処理する方法が考えられる。
 なお、図8に示すように、マイクロ波プラズマ中のイオン成分をカットするためのイオントラップ12を設置しても良い。イオントラップ12としては、例えば、小さな穴の開いたパンチングメタル板を用いることができる。イオン成分はイオントラップ12(パンチングメタル板)にトラップされるため、マイクロ波プラズマ中の原子状元素やラジカル成分だけが無機膜7に照射されることとなる。
 一方、減圧マイクロ波プラズマ処理においては、主としてイオン成分の照射が基板の温度上昇を引起すため、上述のようなイオントラップ12を用いると基板温度の上昇が起きがたくなり、例えば数十度程度までしか基板温度が上昇しなくなる。したがって、イオントラップ12を用いた減圧マイクロ波プラズマ処理において、基板温度を例えば100℃以上に上昇させるためには、前述の加熱エネルギー線照射工程で用いたような加熱装置との併用が必要となる。なお、原子状元素やラジカル成分の加熱された無機膜7への照射は、イオンカットしていない減圧マイクロ波プラズマ処理と同様に、無機膜の改質作用(結晶化、結晶成長)を有している。
 以上のようなイオン成分をカットしたマイクロ波プラズマの照射と基板加熱の併用による減圧マイクロ波プラズマ処理工程では、無機膜の改質作用(結晶化、結晶成長)と基板加熱を別々に制御できるため、基板の温度制御が簡単となり、また基板の温度分布もより均一にできるため、減圧マイクロ波プラズマ処理工程全体の制御が容易となる。加えて、処理時間を長く設定できるため(例えば数分~数十分)膜特性の一層の向上が期待できるようになる。
 次に、減圧プラズマ処理のうち、減圧高周波プラズマについて図面を参照して詳細に説明する。
 なお、高周波プラズマの高周波はラジオ波(RF:Radio Frequency)の波長の電磁波で、波長1m~100km(周波数3k~300MHz)程度の電波の総称である。工業的には、13.56MHz、27.12MHz、40.68MHz等が利用されるが、13.56MHzが一般的である。
 図9は、本発明に係る塗布法による透明導電膜製造工程における減圧された非酸化性ガス雰囲気下で行われる減圧高周波プラズマ処理工程の一例を示す模式図で、図9に示すように、高周波プラズマ11は、高周波を透過する素材(硼珪酸ガラス、無アルカリガラス、石英ガラス等)からなるチャンバー10を挟み込んだプラズマ発生用電極13に、通常、周波数13.56MHzの高周波を印加して、チャンバー10内の気体分子を電離・解離させてプラズマ11を発生させる。したがって、プラズマ11中には、気体分子、および気体分子から生じたイオン、原子状元素(基底状態の原子)、ラジカル(励起された原子)が混在している。
 一般に、良く用いられる高周波プラズマ(RFプラズマ)では、プラズマ密度は10~1010/cm程度と、マイクロ波プラズマのプラズマ密度に比べると幾分低いが、装置の構造が単純で装置コストを安価にできる利点がある。
 ここで、減圧された非酸化性ガス雰囲気は、チャンバー10内の基板支持プレート6上に試料を設置した後、チャンバー10内を一旦10−5~数十Pa程度の真空したのち、所定の非酸化性ガスを所定のガス分圧となるように導入して得られる。
 減圧高周波プラズマ処理工程では、これまで述べたように基板温度を制御するため、基板を加熱、または冷却してもよい。基板の加熱装置には、図9における基板保持プレート6としてホットプレート、遠赤外線加熱装置等を用いることができるが、これらに限定されない。また、基板温度の上昇を抑制したい場合は、例えば水冷ジャケット等で強制的に冷却した基板支持プレート6(銅等の熱伝導性の高い材質製)上に基板を密着させて保持し、基板から熱を奪いながら減圧高周波プラズマ処理する方法が考えられる。
 以上説明したように、減圧プラズマ処理は、例えば、その高いプラズマ密度により化学反応速度が大きいことを活用することで、導電性酸化物微粒子層の緻密化や透明導電膜の導電性向上において大きな効果を有している。しかしながら、一方で、減圧下のプラズマ処理のため、図7や図8に示すような真空容器(チャンバー10)が必要となり、プラズマ処理装置の価格が高くなるという欠点がある。更には、処理する基板の真空容器内への搬入・排出の度に大気圧から真空雰囲気にする必要があるため、プロセス工程が煩雑で、かつトータルの処理時間(タクトタイム)が長くなって、処理能力が低下するという側面もあった。
 以下に述べる大気圧の非酸化性ガス雰囲気下で行われる大気圧プラズマ処理は、これらの問題点に対応できるプラズマ処理方法である。
[d−2](大気圧の非酸化性ガス雰囲気下で行われる)大気圧プラズマ処理(常圧プラズマ処理)
 大気圧の非酸化性ガス雰囲気下で行われる大気圧プラズマ処理は、図10や図11に示すように、大気圧の雰囲気ガス中でプラズマを発生させて、その発生ガス(プラズマガス16)で無機膜7を処理するものである。前述の減圧された非酸化性ガス雰囲気下で行われる減圧マイクロ波プラズマ処理と同様に、プラズマ中のイオン、原子状元素、ラジカル成分による無機膜の改質作用(結晶化、結晶成長)によって、導電性酸化物微粒子層の緻密化や透明導電膜の導電性向上を図ることができる。
 図10は、加熱エネルギー線照射工程で得られた無機膜7を有する基板2をプラズマ発生用電極13で挟み込んで、無機膜7の直上にプラズマガス(大気圧)16を形成してプラズマ処理を行う方法である。一方、図11は、プラズマ発生装置14でプラズマガス(大気圧)16を発生させ、それをプラズマガス吐出ノズル15から基板2上の無機膜7に吹き当ててプラズマ処理された透明導電膜17を得る方法である。後者の方法では、図12に示すように、プラズマガス吐出ノズル15の形状を細いパイプ状とすることで、無機膜7上の任意の部分だけにプラズマガス16を吹き当てることが可能となるため、選択的なプラズマ処理によるパターン状の透明導電膜18を得ることができる。
 上記大気圧プラズマ処理のプラズマは、マイクロ波プラズマでも良いし、高周波プラズマでも良い。また、非酸化性ガス雰囲気は、前述の減圧マイクロ波プラズマ処理の場合と同様に、窒素ガス、不活性ガス(アルゴン、ヘリウム等)、還元性ガス(水素ガス、アンモニアガス、メタノール等の有機溶剤蒸気等)の少なくとも1種以上が含まれる雰囲気などが挙げられるが、好ましい非酸化性ガス雰囲気は窒素ガスや、窒素ガスに水素ガスやアンモニアガスを含有させた混合ガスである。
 なお、基板は、その温度が所定範囲となるように、必要に応じて、加熱または冷却することが好ましい。大気圧の非酸化性ガス雰囲気下で行われる大気圧プラズマ処理では、減圧下と比べて基板への熱の移動が生じ易いため、基板温度の制御が比較的簡単となり、かつ基板の温度分布もより均一にできるため、プラズマ処理工程全体の制御が容易となる。また、前述のように、真空容器を必要としないため、プラズマ処理装置が安価で、プロセスも簡便で、更には基板の処理効率を高くでき生産性に優れるというメリットがある。
[e]加熱処理
 ところで、本発明ではプラズマ処理に引き続き、必要に応じて中性雰囲気または還元性雰囲気(すなわち、非酸化性ガス雰囲気)下での加熱処理を行っても良い。この加熱処理により、導電性酸化物微粒子に酸素空孔が形成されてキャリア濃度が増加し、透明導電膜の導電性を向上できる場合がある。加熱処理方法としては、熱風加熱装置、ハロゲンランプ加熱装置を用いて行うことが例示される。
 なお、この中性雰囲気または還元性雰囲気下での加熱処理は、膜中に形成された酸素空孔が導電性酸化物微粒子の成分元素(インジウム、酸素等)を拡散しやすくして結晶成長を促進するため、透明導電膜の導電性向上だけでなく、抵抗安定化(経時変化抑制)も期待できる。
 この中性雰囲気は、窒素ガス、不活性ガス(アルゴン、ヘリウム等)のいずれか1種以上からなり、還元性雰囲気は、水素ガスまたは該中性雰囲気に水素または有機溶剤蒸気(メタノール等の有機ガス)の少なくとも1種以上が含まれる雰囲気などが挙げられるが、緻密に充填した導電性酸化物微粒子から酸素原子を奪い酸素空孔を形成して導電キャリア濃度を高めることができれば良く、これらに限定されない。そして、その加熱処理温度が300℃未満であれば、窒素ガスや不活性ガスに水素ガス0.1~7%(体積%)(より好ましくは、0.5~4%)を含有させた混合ガスは、大気に漏洩しても爆発の恐れがないため好ましい雰囲気である。
 中性雰囲気または還元性雰囲気下での加熱処理の加熱条件は、加熱処理温度が150℃以上300℃未満、より好ましくは200℃以上300℃未満の温度で5~120分間、より好ましくは15~60分間である。なお、前述の導電性酸化物微粒子同士の結晶成長をより促進させるという観点からすると、加熱処理温度は250℃以上300℃未満が望ましい。
 150℃よりも低い加熱処理温度では、導電性酸化物微粒子に酸素空孔が十分に形成できず、キャリア濃度の増加による透明導電膜の導電性向上が期待できない。
 以上のように、中性雰囲気または還元性雰囲気下での加熱処理は、導電性酸化物に酸素空孔を形成してキャリア濃度を増加させる働きに加え、酸素空孔の存在により透明導電膜の構成元素を移動し易くして結晶成長を促進する働きも有しているため、適用する条件によっては、透明導電膜の強度や導電性を一層向上できる場合がある。
 ここで、本発明の透明導電膜の製造工程を図13、および図14に判りやすくまとめた。図13は、加熱エネルギー線照射工程に引き続き減圧プラズマ処理工程を施す方法、図14は、加熱エネルギー線照射工程に引き続き大気圧プラズマ処理工程を施す方法、をそれぞれ示している。
 次に、本発明の透明導電膜が適用される薄膜トランジスタ素子について説明する。
 薄膜トランジスタ素子(TFT素子)には、例えば、コプレナー型構造やスタガード型構造の電界効果トランジスタ素子が挙げられ、詳細は割愛するが、いずれの構造においても、基板上にソース/ドレイン電極、ゲート絶縁膜、チャネル活性層、ゲート電極を備えた素子である。
 薄膜トランジスタ素子は、後述するアクティブマトリクス方式の液晶ディスプレイやエレクトロルミネッセンスディスプレイ等のディスプレイやイメージセンサーのドライバ素子として使用されている。
 前述の通り、これまで薄膜トランジスタ素子のチャネル活性層には、アモルファスシリコンが広く用いられているが、アモルファスシリコンはキャリア移動度が低く、また連続駆動時の特性が不安定という欠点があるため、アモルファスシリコンよりも良好な素子特性(高い移動度、低い閾値電圧、高いオン−オフ比、低いS値、ノーマリーオフ等)を目指し、In−Ga−Zn−O系(InGaZnO)等のアモルファス導電性酸化物(酸化物半導体)をチャネル活性層に適用する試みが進んでいる。
 本発明で得られる透明導電膜は、金属酸化物を主成分とする導電性酸化物微粒子が極めて緻密に充填した(非晶質の)導電性酸化物微粒子層となるため、例えば薄膜トランジスタのチャネル活性層に適用可能な上記InGaZnO等のアモルファス導電性酸化物層(酸化物半導体層)を、300℃未満の低温加熱で形成することができる。
 次に、本発明の透明導電膜、透明導電基板が適用されるデバイスについて説明する。
 このようなデバイスとしては、LED素子、エレクトロルミネッセンスランプ(エレクトロルミネッセンス素子)、フィールドエミッションランプ等の発光デバイス、太陽電池等の発電デバイス、液晶ディスプレイ(液晶素子)、エレクトロルミネッセンスディスプレイ(エレクトロルミネッセンス素子)、プラズマディスプレイ、電子ペーパー素子等の表示デバイス、及びタッチパネル等の入力デバイス等が挙げられ、本発明の透明導電膜、透明導電基板はこれらの透明電極に好適である。
 以下、幾つかのデバイスについて説明する。
 ここで、発光デバイスとしてのエレクトロルミネッセンス素子には、有機発光材料を用いる有機EL素子と、無機発光材料を用いる無機EL素子があり、近年では有機EL素子が脚光を浴びている。
 この有機EL素子は、液晶表示素子と違って自発光素子であり、低電圧駆動で高輝度が得られるためディスプレイ等の表示装置として期待されている。有機EL素子にも低分子型と高分子型があり、例えば高分子型の構造は、アノード電極層としての透明導電膜上に、ポリチオフェン誘導体等の導電性高分子から成る正孔注入層(ホール注入層)、有機発光層(塗布により形成される高分子発光層)、カソード電極層[発光層への電子注入性の良い、仕事関数の低いマグネシウム(Mg)、カルシウム(Ca)、アルミニウム(Al)等の金属層]、ガスバリアコーティング層(あるいは金属やガラスでの封止処理)を順次形成したものである。上記ガスバリアコーティング層は、有機EL素子の劣化を防止するために必要とされ、酸素バリア及び水蒸気バリアが求められるが、例えば、水蒸気に関しては、水蒸気透過率=10−5g/m/day程度以下の非常に高いバリア性能が要求されており、有機EL素子(デバイス)内部は外部から完全に封止された構造となっている。
 発電デバイスとしての太陽電池は、太陽光線を電気エネルギーに変換する発電素子で、また太陽電池はシリコン太陽電池(薄膜型、微結晶型、結晶型)、CIS太陽電池(銅−インジウム−セレン薄膜)、CIGS太陽電池(銅−インジウム−ガリウム−セレン薄膜)、色素増感型太陽電池等があり、例えば、シリコン太陽電池は、透明基板上に透明電極、半導体発電層(シリコン)、金属電極を順次形成したものである。
 表示デバイスとしての液晶素子は、携帯電話、PDA(Personal Digital Assistant)およびPC(Personal Computer)等のディスプレイに広く用いられている非発光型の電子表示素子であり、単純マトリクス方式(パッシブマトリックス方式)とアクティブマトリクス方式がある。画質や応答スピードの点ではアクティブマトリクス方式が優れている。
 その基本構造は、液晶を透明電極(本発明の透明導電膜が対応する)で挟み込み、電圧駆動で液晶分子を配向させて表示を行う構造体で、実際の素子は、透明電極に加え、カラーフィルター、位相差フィルム、偏光フィルム等を更に積層して用いられている。
 また、別のタイプの液晶素子には、窓等の光シャッター等に用いられている高分子分散型液晶素子(以下、PDLC素子と略称)やポリマーネットワーク液晶素子(以下、PNLC素子と略称)も含まれる。
 いずれもその基本構造は、上述のように、液晶層を電極(少なくとも一方は透明電極で、本発明の透明導電膜が対応する)で挟み込み、電圧駆動で液晶分子を配向させて、液晶層の透明/不透明の外観変化を生じさせる構造体であるが、上記液晶表示素子と異なり、実際の素子において、位相差フィルム、偏光フィルムを必要とせず、素子の構造を単純にできるという特徴がある。
 ところで、PDLC素子は、高分子樹脂マトリックス中にマイクロカプセル化した液晶が分散した構造を採り、一方PNLC素子は、樹脂の網目状ネットワークの網目の部分に液晶が充填した構造を採っている。一般には、PDLC素子は液晶層の樹脂含有割合が高いため数十V以上(例えば、80V程度)の交流駆動電圧が必要なのに対し、液晶層の樹脂含有割合を低くできるPNLC素子は数~15V程度の交流電圧で駆動できる特徴がある。
 なお、上記液晶素子の表示安定性を確保するためには、液晶への水蒸気の混入を防止する必要があり、例えば、水蒸気透過率=0.01g/m/day以下が要求されており、液晶素子(デバイス)内部は外部から完全に封止された構造となっている。
 表示デバイスとしての電子ペーパー素子は、自らは発光しない非発光型の電子表示素子であり、電源を切っても表示がそのまま残るメモリ効果を備え、文字表示のためのディスプレイとして期待されている。
 この表示方式には、電気泳動法により着色粒子を電極間の液体中を移動させる電気泳動方式、二色性を有する粒子を電場で回転させることにより着色させるツイストボール方式、例えばコレステリック液晶を透明電極で挟み込んで表示を行う液晶方式、着色粒子(トナー)や電子粉流体(Quick Response Liquid Powder)が、空気中を移動させて表示を行う粉体系方式、電気化学的な酸化・還元作用に基づき発色を行うエレクトロクロミック方式、電気化学的な酸化・還元により金属を析出・溶解させ、これに伴う色の変化で表示を行うエレクトロデポジション方式等が開発されている。これらいずれの方式においても、表示層が透明導電膜(透明電極)と対向電極とではさみ込まれた構造を有している。
 なお、これらの各種方式の電子ペーパー素子において、その表示安定性を確保するためには、表示層への水蒸気の混入を防止する必要があり、方式にもよるが、例えば、水蒸気透過率=0.01~0.1g/m/dayが要求されており、電子ペーパー素子(デバイス)内部は外部から完全に封止された構造となっている。
 タッチパネルは、位置入力素子であり、抵抗方式や静電容量方式等がある。
 例えば、抵抗方式タッチパネルでは、座標を検出するための座標検出用抵抗膜としての2枚の透明導電基板がドット状の透明スペーサーを介して貼り合わされている構造を有している。透明導電基板には打点耐久性が必要とされ、透明導電膜はクラックが生じないようなフレキシビリティが求められる。また、静電容量方式では解像度のアップにより、透明導電膜の一層の導電性向上が求められている。
 以上の発光デバイス、発電デバイス、表示デバイス、入力デバイス等のいずれにおいてもデバイスの特性向上が求められており、本発明に係る透明導電膜、及び透明導電基板をそれらの透明電極に適用することで、デバイスの基本特性が一層向上可能となるために、例えばデバイスの省エネ化や小型化等にも大きく貢献することができるものである。
 以下、実施例を用いて本発明を詳細するが、本発明はこれら実施例に限定されるものではない。
[溶解液A液の作製]
 アセチルアセトンインジウム:In(C(分子量=412.15)40g、p−tert−ブチルフェノール42g、二塩基酸エステル(デュポンジャパン製)14g、ヒドロキシプロピルセルロース(HPC)4gを混合し、130℃に加温して90分間攪拌して溶解させ、次に、得られた溶解液25g、シクロヘキサノン25g、プロピレングリコールモノメチルエーテル(PGM)10g、メチルエチルケトン(MEK)40gを混合して均一になるまで良く攪拌し、アセチルアセトンインジウムとヒドロキシプロピルセルロースを含有する溶解液(A液)を作製した。
[溶解液B液の作製]
 アセチルアセトン錫(正式名称:ジ−n−ブトキシド ビス(2,4−ペンタンジオナト)錫[Sn(C(C](分子量=431.14)40g、p−tert−ブチルフェノール42g、二塩基酸エステル(デュポンジャパン製)14g、ヒドロキシプロピルセルロース(HPC)4gを混合し、130℃に加温して90分間攪拌して溶解させ、得られた溶解液25g、シクロヘキサノン25g、プロピレングリコールモノメチルエーテル(PGM)10g、メチルエチルケトン(MEK)40gを混合して均一になるまで良く攪拌し、アセチルアセトン錫とヒドロキシプロピルセルロースを含有する溶解液(B液)を作製した。
[塗布液の作製]
 作製したA液9.1gとB液0.9gを均一になるまで良く攪拌し、アセチルアセトンインジウムとアセチルアセトン錫を合計で10重量%、ヒドロキシプロピルセルロースを1重量%含有する透明導電膜形成用塗布液を作製した。
[透明導電膜の作製]
 この透明導電膜形成用塗布液を、25℃の無アルカリガラス基板(5cm×5cm×厚み0.7mm;可視光線透過率=91.2%、ヘイズ値=0.26%)上の全面にスピンコーティング(1000rpm×60sec)した後、大気中150℃で10分間乾燥して乾燥塗布膜3(膜厚:580nm、表面抵抗値:>1×1013Ω/□[絶縁状態])を得た。Ω/□は、表面抵抗値を示す単位であり、オーム・パー・スクエアと読む。
 この乾燥塗布膜3を有する基板2を図4に示すように、ホットプレート1上に設置し、150℃に昇温(昇温速度:30℃/分)し、露点−50℃の低湿度空気を紫外線照射窓5(合成石英板;厚さ2mm)と基板との間に供給しながら150℃に保持した状態で、低圧水銀ランプを20分間照射する加熱エネルギー線の照射を施して乾燥塗布膜の無機化(有機成分の分解または燃焼)を促進し、無機膜(膜厚:115nm、表面抵抗値:5×1012Ω/□)を得た。
 なお、低圧水銀ランプと基板との距離である照射距離は10.5mmで、254nmの光の照度:約20mW/cm、185nmの光の推定照度:約5mW/cmであった。更に、基板と紫外線照射窓5の間隔は3.5mmでその間を流れる雰囲気ガス(低湿度空気)の平均流速は約0.57m/秒)であった。
 次いで、図7に示すように、チャンバー10内にガラス基板の冷却作用を有する基板支持プレート(厚み3mmの銅板)6上に、その無機膜7を有する基板2を設置し、チャンバー10内を真空(約10−3Pa)にした後、雰囲気ガスとして窒素ガスを5Paの分圧となるように供給しながら周波数2450MHzのマイクロ波(出力:1400W)を導波管8から石英製導入窓9を通してチャンバー10内に導入し、マイクロ波プラズマ11を発生させ、1.0分(60秒)間のマイクロ波プラズマ処理を施し、無機膜7の無機化(有機成分の分解または燃焼)を一層促進させると共に膜の還元処理(酸素空孔の膜内導入)と結晶化の促進を図り、実施例1に係る透明導電膜(膜厚:103nm)を作製した。なお、マイクロ波プラズマ処理中に基板温度は260℃に到達していた(最高到達温度=260℃)。
 また、図7において、基板と石英製導入窓との距離は約7cmであった。
 次に作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、透明導電膜厚、結晶子サイズ、鉛筆硬度の諸特性を測定し、その結果を表1に示す。
 さらに、実施例1の透明導電膜の断面、及び断面の一部を透過電子顕微鏡で観察した透過電子顕微鏡写真(TEM像)を、それぞれ図15、および図16に示す。また、実施例1の透明導電膜の断面を透過電子顕微鏡で観察したZコントラスト像を図17に示す。Zコントラスト像では、重い元素が明るく写るため、ITO部分が明るく見えている。
 図15~図17から、透明導電膜は、5~10nm程度のITO微結晶と3nm以下のITO微結晶(アモルファス)が混在して成る導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層で構成されていることが判る。
 なお、このZコントラスト像は、高角環状暗視野(high−angle annular dark field:HAADF)像であって、電子が試料を透過する際に大きな角度で散乱された非弾性散乱電子を円環状の検出器で検出し画像化したもので、検出強度は原子番号の2乗に比例している。
 透明導電膜の表面抵抗は、三菱化学(株)製の表面抵抗計ロレスタAP(MCP−T400)を用い測定した。
 ヘイズ値と可視光透過率は、日本電色(株)社製のヘイズメーター(NDH5000)を用いJIS K7136(ヘイズ値)、JISK7361−1(透過率)に基づいて測定した。
 膜厚は、KLA−TencorCorporation製触針式膜厚計(Alpha−StepIQ)を用いて測定した。
 結晶子サイズは、X線回折測定を行い、酸化インジウム(In)の(222)ピークについて、Scherrer法により求めた。
 鉛筆硬度は、JIS K5400に基づいて測定した。
 なお、可視光透過率及びヘイズ値は、透明導電膜だけの値であり、それぞれ下記数3及び数4により求めた。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
[塗布液の作製]
 実施例1のA液9.6gとB液0.4gを均一になるまで良く攪拌し、アセチルアセトンインジウムとアセチルアセトン錫を合計で10重量%、ヒドロキシプロピルセルロースを1重量%含有する透明導電膜形成用塗布液を作製した。
[透明導電膜の作製]
 この透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、乾燥塗布膜(膜厚:560nm)、無機膜(膜厚:125nm、表面抵抗値:3×1012Ω/□)、実施例2に係る透明導電膜(膜厚:93nm)を作製した。なお、マイクロ波プラズマ処理中に基板温度は260℃に到達していた(最高到達温度=260℃)。
 作製した透明導電膜の諸特性を実施例1と同様に測定し、その結果を表1に示す。
 さらに、実施例2の透明導電膜の断面、及び断面の一部を透過電子顕微鏡で観察した透過電子顕微鏡写真(TEM像)を、それぞれ図18、及び図19に示す。また、実施例2の透明導電膜の断面を透過電子顕微鏡で観察したZコントラスト像を図20に示す。Zコントラスト像では、重い元素が明るく写るため、ITO部分が明るく見えている。
 図18~図20から、透明導電膜は、5~20nm程度のITO微結晶から成る導電性酸化物微粒子が緻密に充填し、かつ、それらの導電性酸化物微粒子同士の結晶方位がそろった領域(配向した領域)が隣接した特殊な構造の導電性酸化物微粒子層で構成されていることが判る。
 この膜構造は、マイクロ波プラズマ処理のプラズマの作用(結晶化促進効果)による膜の結晶化・結晶成長において、まず膜表面に結晶粒子が形成されると同時に、その結晶粒子同士の接触部を介して膜表面から基板側に結晶化・結晶成長が進行していったために形成されたものと考えられる。
 なお、図19において、結晶方位がそろっている領域(a)、(b)では、試料を厚み100nm程度に切り出してTEM像観察しているため、その厚み内では異なる結晶方位のITO微結晶が重なっている部分があり、その部分では干渉によるモアレ縞が観察されている。
[塗布液の作製]
 実施例1のA液9.9gとB液0.1gを均一になるまで良く攪拌し、アセチルアセトンインジウムとアセチルアセトン錫を合計で10重量%、ヒドロキシプロピルセルロースを1重量%含有する透明導電膜形成用塗布液を作製した。
[透明導電膜の作製]
 この透明導電膜形成用塗布液を用いた以外は実施例1と同様に行い、乾燥塗布膜(膜厚:510nm、表面抵抗値:>1×1013Ω/□[絶縁状態])、無機膜(膜厚:120nm、表面抵抗値:1×1012Ω/□)、実施例3に係る透明導電膜(膜厚:92nm)を作製した。なお、マイクロ波プラズマ処理中に基板温度は260℃に到達していた(最高到達温度=260℃)。
 作製した透明導電膜の諸特性を実施例1と同様に測定し、その結果を表1に示す。
 さらに、実施例3の透明導電膜の断面、及び断面の一部を透過電子顕微鏡で観察した透過電子顕微鏡写真(TEM像)を、それぞれ図21、及び図22に示す。また、実施例3の透明導電膜の断面を透過電子顕微鏡で観察したZコントラスト像を図23に示す。Zコントラスト像では、重い元素が明るく写るため、ITO部分が明るく見えている。
 実施例2と同様に、図21~図23からは、透明導電膜は、5~20nm程度のITO微結晶から成る導電性酸化物微粒子が緻密に充填し、かつ、それらの導電性酸化物微粒子同士の結晶方位がそろった領域(配向した領域)が隣接した特殊な構造の導電性酸化物微粒子層で構成されていることが判る。
[透明導電膜の作製]
 マイクロ波プラズマ処理を50秒間施した以外は実施例2と同様に行い、実施例4に係る透明導電膜(膜厚:102nm)を作製した。なお、マイクロ波プラズマ処理中に基板温度は225℃に到達していた(最高到達温度=225℃)。
 作製した透明導電膜の諸特性を実施例1と同様に測定し、その結果を表1に示す。
 さらに、実施例4の透明導電膜の断面、及び断面の一部を透過電子顕微鏡で観察した透過電子顕微鏡写真(TEM像)を、それぞれ図24、及び図25に示す。また、実施例4の透明導電膜の断面を透過電子顕微鏡で観察したZコントラスト像を図26に示す。Zコントラスト像では、重い元素が明るく写るため、ITO部分が明るく見えている。
 図24~図26から透明導電膜は、5~10nm程度のITO微結晶と3nm以下のITO微結晶(アモルファス)が混在して成る導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層で構成されていることが判る。
[透明導電膜の作製]
 マイクロ波プラズマ処理を50秒間施した以外は実施例3と同様に行い、実施例5に係る透明導電膜(膜厚:92nm)を作製した。なお、マイクロ波プラズマ処理中に基板温度は225℃に到達していた(最高到達温度=225℃)。
 作製した透明導電膜の諸特性を実施例1と同様に測定し、その結果を表1に示す。
 さらに、実施例5の透明導電膜の断面を透過電子顕微鏡で観察したところ、その透過電子顕微鏡写真(TEM像)、及びZコントラスト像から、透明導電膜が5~10nm程度のITO微結晶と3nm以下のITO微結晶(アモルファス)が混在して成る導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層で構成されていることが判った。
 まず、実施例1と同様に行い無機膜(膜厚:120nm、表面抵抗値:5×1012Ω/□)を得た。
 次いで、図8に示すように、チャンバー10内にマイクロ波プラズマ中のイオン成分をカットするためのイオントラップ12を設置し、さらに、ガラス基板を加熱するための加熱装置(プレートヒーター)1上に、上記無機膜7を有する基板2を設置し、チャンバー10内を真空(約10−3Pa)にした後、雰囲気ガスとして窒素ガスを5Paの分圧となるように供給しながら周波数2450MHzのマイクロ波(出力:1000W)を導波管8から石英製導入窓9を通してチャンバー10内に導入し、イオン成分がカットされて原子状元素やラジカル成分を含むマイクロ波プラズマ11を発生させ、10分(600秒)間のマイクロ波プラズマ処理を施し、無機膜7の無機化(有機成分の分解または燃焼)を一層促進させると共に膜の還元処理(酸素空孔の膜内導入)と結晶化の促進を図り、実施例6に係る透明導電膜(膜厚:105nm)を作製した。
 なお、上記マイクロ波プラズマ処理中の平均基板温度は200℃であった(イオン成分がカットされたマイクロ波プラズマの照射では基板温度の上昇が起きにくいため、上記加熱装置を用いて基板温度を190℃~210℃の範囲で制御した)。また、図8において、基板と石英製導入窓との距離は約14cmであった。
 次に作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、透明導電膜厚、結晶子サイズ、鉛筆硬度の諸特性を測定し、その結果を表1に示す。
 さらに、実施例6の透明導電膜の断面を透過電子顕微鏡で観察したところ、その透過電子顕微鏡写真(TEM像)、及びZコントラスト像から、透明導電膜が5~10nm程度のITO微結晶と3nm以下のITO微結晶(アモルファス)が混在して成る導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層で構成されていることが判った。
 まず、実施例1と同様に行い無機膜7(膜厚:120nm、表面抵抗値:4×1012Ω/□)を得た。
 次いで、図12に示すように、基板支持プレート6上に、上記無機膜7を有する基板2を設置し、プラズマ発生装置14のプラズマ発生部に窒素ガスを15リッター/分供給しながら、周波数2450MHzのマイクロ波(出力:150W)によりマイクロ波プラズマを発生させて、上記プラズマ発生装置14のプラズマガス吐出ノズル15から大気圧のプラズマガス16(窒素プラズマガス)を吐出し、これを無機膜7の表面に吹き当てて、無機膜7に大気圧プラズマ処理を施した。大気圧プラズマ処理が施された部分では、無機膜7の無機化(有機成分の分解または燃焼)が一層促進されると共に膜の還元処理(酸素空孔の膜内導入)が進むため、最終的に、ほぼ絶縁に近い無機膜(膜厚:120nm、表面抵抗値:4×1012Ω/□)の選択された一部分だけにプラズマ処理されたパターン状の透明導電膜18を有する実施例7に係る透明導電膜(膜厚:95nm)を作製した。
 なお、上記大気圧マイクロ波プラズマ処理中の基板温度は200℃であった。また、図12において、基板とプラズマガス吐出ノズル15の先端との距離は約5mmで、プラズマガス吐出ノズル15の動きはラインパターンが得られるように240mm/minの速度で直線上を移動させた。プラズマガス吐出ノズル15から吐出されるプラズマガス16の直径は約2mm程度であり、上記パターン状の透明導電膜18のラインパターン幅も約2mmであった。
 次に作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、透明導電膜厚、結晶子サイズ、鉛筆硬度の諸特性を測定し、その結果を表1に示す。
 さらに、実施例7の透明導電膜の断面を透過電子顕微鏡で観察したところ、その透過電子顕微鏡写真(TEM像)、及びZコントラスト像から、透明導電膜が5~10nm程度のITO微結晶と3nm以下のITO微結晶(アモルファス)が混在して成る導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層で構成されていることが判った。
[溶解液C液の作製]
 アセチルアセトンインジウム:In(C(分子量=412.15)40g、p−tert−ブチルフェノール43.5g、二塩基酸エステル(デュポンジャパン製)14.5g、ヒドロキシプロピルセルロース(HPC)2gを混合し、130℃に加温して90分間攪拌して溶解させ、次に、得られた溶解液25g、シクロヘキサノン25g、プロピレングリコールモノメチルエーテル(PGM)10g、メチルエチルケトン(MEK)40gを混合して均一になるまで良く攪拌し、アセチルアセトンインジウムとヒドロキシプロピルセルロースを含有する溶解液(C液)を作製した。
[溶解液D液の作製]
 アセチルアセトン錫(正式名称:ジ−n−ブトキシド ビス(2,4−ペンタンジオナト)錫[Sn(C(C](分子量=431.14)40g、p−tert−ブチルフェノール43.5g、二塩基酸エステル(デュポンジャパン製)14.5g、ヒドロキシプロピルセルロース(HPC)2gを混合し、130℃に加温して90分間攪拌して溶解させ、得られた溶解液25g、シクロヘキサノン25g、プロピレングリコールモノメチルエーテル(PGM)10g、メチルエチルケトン(MEK)40gを混合して均一になるまで良く攪拌し、アセチルアセトン錫とヒドロキシプロピルセルロースを含有する溶解液(D液)を作製した。
[塗布液の作製]
 作製したC液9.1gとD液0.9gを均一になるまで良く攪拌し、アセチルアセトンインジウムとアセチルアセトン錫を合計で10重量%、ヒドロキシプロピルセルロースを0.5重量%含有する透明導電膜形成用塗布液を作製した。
[透明導電膜の作製]
 この透明導電膜形成用塗布液を、25℃の無アルカリガラス基板(5cm×5cm×厚み0.7mm;可視光線透過率=91.2%、ヘイズ値=0.26%)上の全面にスピンコーティング(750rpm×60sec)した後、大気中150℃で10分間乾燥して乾燥塗布膜(膜厚:400nm、表面抵抗値:>1×1013Ω/□[絶縁状態])を得た。
 次に、図4に示すように、この乾燥塗布膜3を有する基板2を、ホットプレート1上に設置し、150℃に昇温(昇温速度:30℃/分)し、露点−50℃の低湿度空気を紫外線照射窓5(合成石英板;厚さ2mm)と基板との間に供給しながら150℃に保持した状態で、低圧水銀ランプを20分間照射する加熱エネルギー線の照射を施して乾燥塗布膜の無機化(有機成分の分解または燃焼)を促進し、無機膜(膜厚:108nm、表面抵抗値:4×1012Ω/□)を得た。
 なお、低圧水銀ランプと基板との距離である照射距離は10.5mmで、254nmの光の照度:約20mW/cm、185nmの光の推定照度:約5mW/cmであった。更に、基板と紫外線照射窓5の間隔は3.5mmでその間を流れる雰囲気ガス(低湿度空気)の平均流速は約0.57m/秒)であった。
 次いで、図9に示すように、ガラス製のチャンバー10内に基板支持プレート6(厚み約5mmの硼珪酸ガラス)上に、その無機膜7を有する基板2を設置し、チャンバー10内をまず真空(約20Pa)にした後、雰囲気ガスとして3体積%水素−97体積%窒素を250Paの分圧となるように供給(0.16リッター/分)しながら周波数13.56MHzの高周波(出力:200W)を導波管8からチャンバー10内に高周波プラズマ11を発生させ、60分間の高周波プラズマ処理を施し、無機膜7の無機化(有機成分の分解または燃焼)を一層促進させると共に膜の還元処理(酸素空孔の膜内導入)と結晶化の促進を図り、実施例8に係る透明導電膜(膜厚:86nm)を作製した。なお、高周波プラズマ処理中に基板温度は160℃に到達していた(最高到達温度=160℃)。
 次に作製した透明導電膜の表面抵抗、ヘイズ値及び可視光透過率、透明導電膜厚、結晶子サイズ、鉛筆硬度の諸特性を測定し、その結果を表1に示す。
 さらに、実施例8の透明導電膜の断面、及び断面の一部を透過電子顕微鏡で観察したところ、その透過電子顕微鏡写真(TEM像)、及びZコントラスト像から、透明導電膜が5~10nm程度のITO微結晶と3nm以下のITO微結晶(アモルファス)が混在して成る導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層で構成されていることが判った。
[透明導電膜の作製]
 図6に示すような、マイクロ波プラズマ処理を40秒間施した後冷却する処理操作(プラズマ処理時間=40秒、冷却時間=3分[室温付近まで強制冷却])を3回繰り返した以外は実施例1と同様に行い、実施例9に係る透明導電膜(膜厚:101nm)を作製した。なお、マイクロ波プラズマ処理中に基板温度は180℃まで到達していた(最高到達温度=180℃)。
 作製した透明導電膜の諸特性を実施例1と同様に測定し、その結果を表1に示す。
 さらに、この実施例9の透明導電膜の断面を透過電子顕微鏡で観察したところ、その透過電子顕微鏡写真(TEM像)、及びZコントラスト像から、透明導電膜が5~10nm程度のITO微結晶と3nm以下のITO微結晶(アモルファス)が混在して成る導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層で構成されていることが判った。
(比較例1)
 実施例1で、マイクロ波プラズマ処理(窒素中1分間)を行わず、乾燥塗布膜に加熱エネルギー線照射して得られた無機膜としての比較例1に係る透明導電膜(膜厚:115nm)を作製した。
 作製した透明導電膜の諸特性を実施例1と同様に測定し、その結果を表1に示す。
 さらに、比較例1の透明絶縁膜の断面を透過電子顕微鏡で観察したところ、膜の無機化は進んでいたものの、結晶化は全く進んでおらず、明確な導電性酸化物微粒子(3nm以上のITO微結晶)は観察されなかった。
(比較例2)
 実施例1で、乾燥塗布膜に加熱エネルギー線照射を行わず、乾燥塗布膜に直接マイクロ波プラズマ処理(窒素中1.0分間)を施して比較例2に係る透明導電膜(膜厚:485nm)を作製した。
 作製した透明導電膜の諸特性を実施例1と同様に測定し、その結果を表1に示す。
 さらに、比較例2の透明導電膜の断面を透過電子顕微鏡で観察したところ、膜の無機化(有機物の分解)が進んでいないためか、有機成分が大幅に残留し膜が茶色に着色し、かつ明確な導電性酸化物微粒子(3nm以上のITO微結晶)は観察されなかった。
(比較例3)
[透明導電膜の作製]
 実施例1の乾燥塗布膜を有する基板を、露点が−50℃の空気雰囲気(1リッター/分の供給)において、350℃まで35分かけて昇温し、350℃で15分間焼成し、そのまま雰囲気を1体積%水素−99体積%窒素(1リッター/分の供給)に切替えて350℃で更に15分間焼成して比較例3に係る透明導電膜(膜厚:105nm)を作製した。
 作製した透明導電膜の諸特性を実施例1と同様に測定し、その結果を表1に示す。
 さらに、比較例3の透明導電膜の断面を透過電子顕微鏡で観察したところ、その透過電子顕微鏡写真(TEM像)、及びZコントラスト像から、透明導電膜が約20nmのITO微結晶から成る導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層で構成されていることが判った。この約20nmのITO微結晶から成る導電性酸化物微粒子は、互いにランダムな結晶方位を有しており、配向した領域は全く形成されていなかった。
Figure JPOXMLDOC01-appb-T000005
 さらに、透明導電膜の抵抗値の安定性の評価を実施例1~5、および比較例3について行い、その結果を図27に示す。同様に、実施例9について行った結果を図28に示す。
 この抵抗値の安定性の評価は、実施例1~5、実施例9に係る透明導電膜を有する基板、及び比較例3の透明導電膜を有する基板を、温度23~25℃、相対湿度50~70%の室内(大気中)に約1ヶ月放置した場合の表面抵抗値の経時変化を調査することで表わしたものである。
 以上の各実施例(実施例1~9)と比較例1、2を比べると、各実施例では、無機化され、かつ結晶成長が進み(特にドーパント用金属化合物としての錫化合物の配合量の少ない実施例2、及び実施例3では結晶子サイズが非常に大きい)、導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層を有する透明導電膜で、抵抗値が175~1200Ω/□(オーム・パー・スクエアと読む)と導電性が高く、かつ、膜強度(鉛筆硬度)に優れるのに対して、比較例1、及び比較例2では、十分に無機化されず結晶化していないアモルファスの透明膜のため、抵抗値が5×1012Ω/□、及び>1×1013Ω/□と導電性が低く、かつ、膜強度(鉛筆硬度)が著しく低いことがわかる。
 なお、実施例1、実施例4~9、比較例1、および比較例2は、全て、X線回折測定で求めた結晶子サイズからはアモルファスであったが、実施例1、実施例4~9では、5~10nmのITO微結晶がTEM像で観察されるのに対し、比較例1、及び比較例2では3nm以上のITO微結晶がTEM像で観察されていない。
 一方、実施例2、および実施例3は、TEM像では5~20nm程度のITO微結晶が観察される一方で、X線回折測定で求めた結晶子サイズはそれぞれ46.3nmと39.1nmと非常に大きな値を示しており、前述のように、導電性酸化物微粒子同士が結晶方位をそろえて配向していることが判る。
 また、各実施例が無機化して結晶化が進行した透明導電膜で、その膜厚が86~105nmと緻密化しているのに対し、比較例2は無機化が不十分な透明絶縁膜で、その膜厚は485nmと厚く、緻密化していないことがわかる。
 また各実施例と比較例3を比べると、いずれも高い導電性で膜強度に優れた透明導電膜が得られているが、各実施例の成膜プロセス温度(全成膜工程を通しての基板の最高到達温度)が160℃、180℃、225℃または260℃と低いのに対し、比較例3は350℃と非常に高いことが判る。
 さらに、実施例1~5、及び実施例9では、プラズマ処理の結晶成長促進効果により導電性酸化物微粒子同士の接触部分の結合が強化されているため、透明導電膜を温度23~25℃、相対湿度50~70%の室内(大気中)に約1ヶ月放置した場合に、その抵抗値が極めて安定しているのに対し、比較例3は従来の単純な加熱焼成で成膜されており、導電性酸化物微粒子同士の接触部分の結合が強化されていないため、透明導電膜の初期抵抗値は低いものの、初期抵抗値の10倍程度まで経時劣化して上昇していることが判る。
 本発明による透明導電膜は、安価な各種塗布方法を用いて300℃未満、特に100~250℃の低温加熱で基板上へ簡便かつ低コストに形成することが可能であり、得られる透明導電膜は、優れた透明性と高い導電性を兼ね備え、かつ膜強度や抵抗安定性に優れているため、この透明導電膜を基板上に形成した透明導電基板は、LED素子、エレクトロルミネッセンスランプ(エレクトロルミネッセンス素子)、フィールドエミッションランプ等の発光デバイス、太陽電池等の発電デバイス、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ(エレクトロルミネッセンス素子)、プラズマディスプレイ、電子ペーパー素子等の表示デバイス、タッチパネル等の入力デバイス等の透明電極等への利用が期待できる。
 加えて、上記金属酸化物を主成分とする導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層は、その緻密度が高いため、キャリア移動度を高めることが可能であり、薄膜トランジスタのチャネル活性層としての導電性酸化物膜(酸化物半導体膜)にも好適である。
 1  加熱装置(ホットプレート等)
 2  基板
 3  塗布法により形成された透明導電膜形成用塗布液の乾燥塗布膜
 4  エネルギー線照射ランプ(紫外線照射ランプ)
 5  紫外線照射窓(合成石英板等)
 6  基板支持プレート
 7  乾燥塗布膜を加熱しながらエネルギー線照射して得られた無機膜
 8  マイクロ波導波管
 9  導入窓(石英等)
 10 チャンバー
 11 プラズマ(マイクロ波プラズマ、または、高周波プラズマ)
 12 イオントラップ
 13 プラズマ発生用電極
 14 プラズマ発生装置
 15 プラズマガス吐出ノズル
 16 プラズマガス(大気圧)
 17 プラズマ処理された透明導電膜
 18 プラズマ処理されたパターン状の透明導電膜

Claims (28)

  1.  主成分として有機金属化合物を含有する透明導電膜形成用塗布液を、基板上に塗布して塗布膜を形成する塗布工程、前記塗布膜を乾燥して乾燥塗布膜を形成する乾燥工程、前記乾燥塗布膜に加熱しながらエネルギー線照射して、金属酸化物である無機成分を主成分とする無機膜を形成する加熱エネルギー線照射工程、前記無機膜にプラズマ処理して、膜の無機化あるいは結晶化を一層促進させるプラズマ処理工程の各工程を経て形成される、透明導電膜の製造方法であって、
     前記加熱エネルギー線照射工程が、前記乾燥工程で形成された有機金属化合物を主成分とする前記乾燥塗布膜を、酸素含有雰囲気下で、300℃未満の加熱温度に加熱しながら、エネルギー線の照射を行い、前記乾燥塗布膜に含まれる有機成分を分解または燃焼、或いは分解並びに燃焼により除去して金属酸化物である無機成分を主成分とする無機膜を形成する工程、
     前記プラズマ処理工程が、前記加熱エネルギー線照射工程で形成された金属酸化物である無機成分を主成分とする無機膜を、非酸化性ガス雰囲気下で300℃未満の基板温度でプラズマ処理を行い、膜の無機化あるいは結晶化を一層促進させることで、金属酸化物を主成分とする導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層を形成する工程で、
     前記有機金属化合物が、有機インジウム化合物、有機錫化合物、有機亜鉛化合物のいずれか一つ以上からなり、
     前記金属酸化物が、酸化インジウム、酸化錫、酸化亜鉛のいずれか一つ以上であること、
    を特徴とする透明導電膜の製造方法。
  2.  主成分として有機金属化合物、及びドーパント用有機金属化合物を含有する透明導電膜形成用塗布液を、基板上に塗布して塗布膜を形成する塗布工程、前記塗布膜を乾燥して乾燥塗布膜を形成する乾燥工程、前記乾燥塗布膜に加熱しながらエネルギー線を照射して、ドーパント金属化合物を含む金属酸化物である無機成分を主成分とする無機膜を形成する加熱エネルギー線照射工程、前記無機膜にプラズマ処理して、膜の無機化あるいは結晶化を一層促進させるプラズマ処理工程の各工程を経て形成される、透明導電膜の製造方法であって、
     前記加熱エネルギー線照射工程が、前記乾燥工程で形成された有機金属化合物、及びドーパント用有機金属化合物を主成分とする前記乾燥塗布膜を、酸素含有雰囲気下で、300℃未満の加熱温度に加熱しながら、エネルギー線の照射を行い、前記乾燥塗布膜に含まれる有機成分を分解または燃焼、或いは分解並びに燃焼により除去してドーパント金属化合物を含む金属酸化物である無機成分を主成分とする無機膜を形成する工程、
     前記プラズマ処理工程が、前記加熱エネルギー線照射工程で形成されたドーパント用金属化合物を含む金属酸化物である無機成分を主成分とする無機膜を、非酸化性ガス雰囲気下で300℃未満の基板温度でプラズマ処理を行い、膜の無機化あるいは結晶化を一層促進させることで、ドーパント金属化合物を含み金属酸化物を主成分とする導電性酸化物微粒子が緻密に充填した導電性酸化物微粒子層を形成する工程で、
     前記有機金属化合物が、有機インジウム化合物、有機錫化合物、有機亜鉛化合物のいずれか一つ以上からなり、前記金属酸化物が酸化インジウム、酸化錫、酸化亜鉛のいずれか一つ以上であること、
    を特徴とする透明導電膜の製造方法。
  3.  前記有機金属化合物及びドーパント用有機金属化合物の含有割合が、有機金属化合物:ドーパント用有機金属化合物のモル比換算で、99.9:0.1~66.7:33.3の範囲であることを特徴とする請求項2記載の透明導電膜の製造方法。
  4.  前記有機金属化合物が、有機インジウム化合物からなり、
     前記ドーパント用有機金属化合物が、有機錫化合物、有機チタン化合物、有機ゲルマニウム化合物、有機亜鉛化合物、有機タングステン化合物、有機ジルコニウム化合物、有機タンタル化合物、有機ニオブ化合物、有機ハフニウム化合物、有機バナジウム化合物のいずれか一種以上であり、前記ドーパント金属化合物が、酸化錫、酸化チタン、酸化ゲルマニウム、酸化亜鉛、酸化タングステン、酸化ジルコニウム、酸化タンタル、酸化ニオブ、酸化ハフニウム、酸化バナジウムのいずれか一種以上であることを特徴とする請求項2または3記載の透明導電膜の製造方法。
  5.  前記有機金属化合物が、有機錫化合物からなり、
     前記ドーパント用有機金属化合物が、有機インジウム化合物、有機アンチモン化合物、有機リン化合物のいずれか一種以上であることを特徴とする請求項2または3記載の透明導電膜の製造方法。
  6.  前記有機金属化合物が有機亜鉛化合物からなり、
     前記ドーパント用有機金属化合物が、有機アルミニウム化合物、有機インジウム化合物、有機ガリウム化合物のいずれか一種以上であることを特徴とする請求項2または3記載の透明導電膜の製造方法。
  7.  前記プラズマ処理が、減圧された非酸化性ガス雰囲気下で行われる減圧プラズマ処理であることを特徴とする請求項1~6のいずれか1項に記載の透明導電膜の製造方法。
  8.  前記減圧プラズマ処理が、減圧マイクロ波プラズマ処理または減圧高周波プラズマ処理であることを特徴とする請求項7に記載の透明導電膜の製造方法。
  9.  前記減圧された非酸化性ガス雰囲気が、窒素ガス、不活性ガス、還元性ガスのいずれか一種以上が含まれた雰囲気で、かつ雰囲気ガス圧力が2~1000Paであることを特徴とする請求項7または8記載の透明導電膜の製造方法。
  10.  前記減圧プラズマ処理が、300℃未満の基板温度まで基板の加熱を行うと同時に、減圧プラズマ中のイオンをカットし、主としてラジカル成分を前記無機膜に照射することを特徴とする請求項7~9のいずれか1項に記載の透明導電膜の製造方法。
  11.  前記プラズマ処理が、大気圧の非酸化性ガス雰囲気下で行われる大気圧プラズマ処理であることを特徴とする請求項1~6のいずれか1項に記載の透明導電膜の製造方法。
  12.  前記大気圧プラズマ処理が、大気圧マイクロ波プラズマ処理または大気圧高周波プラズマ処理であることを特徴とする請求項11記載の透明導電膜の製造方法。
  13.  前記大気圧の非酸化性ガス雰囲気が、窒素ガス、不活性ガス、還元性ガスのいずれか一種以上が含まれた雰囲気であることを特徴とする請求項11または12記載の透明導電膜の製造方法。
  14.  前記プラズマ処理工程が、前記加熱エネルギー線照射工程で形成された無機膜の一部にだけ選択的にプラズマ処理を施すことでパターン状の導電性酸化物微粒子層を形成する工程であり、その工程によりパターン状の透明導電膜を形成することを特徴とする請求項1~13のいずれか1項に記載の透明導電膜の製造方法。
  15.  前記酸素含有雰囲気下で、300℃未満の加熱温度に加熱しながら行うエネルギー線照射、及び300℃未満の基板温度で行うプラズマ処理に続いて中性雰囲気または還元性雰囲気下で、300℃未満の加熱温度で加熱することを特徴とする請求項1~14のいずれか1項に記載の透明導電膜の製造方法。
  16.  前記中性雰囲気が、窒素ガス、不活性ガスのいずれか一種以上、または前記還元性雰囲気が、水素ガス若しくは前記中性雰囲気に水素ガス或いは有機溶剤蒸気の少なくとも一種以上が含まれた雰囲気であることを特徴とする請求項15記載の透明導電膜の製造方法。
  17.  前記酸素含有雰囲気下で、300℃未満の加熱温度に加熱しながら行うエネルギー線照射、及び300℃未満の基板温度で行うプラズマ処理が、酸素含有雰囲気下で、100~250℃の加熱温度に加熱しながら行うエネルギー線照射、及び100~250℃の基板温度で行うプラズマ処理であることを特徴とする請求項1~16のいずれか1項に記載の透明導電膜の製造方法。
  18.  前記酸素含有雰囲気の露点温度が−10℃以下であることを特徴とする請求項1~17のいずれか1項に記載の透明導電膜の製造方法。
  19.  前記エネルギー線照射が、少なくとも200nm以下の波長を主要成分の一つとして含む紫外線の照射であることを特徴とする請求項1~18のいずれか1項に記載の透明導電膜の製造方法。
  20.  前記少なくとも200nm以下の波長を主要成分の一つとして含む紫外線の照射が、低圧水銀ランプ、アマルガムランプ、エキシマランプのいずれかから放射される紫外線の照射であることを特徴とする請求項19に記載の透明導電膜の製造方法。
  21.  前記有機インジウム化合物が、アセチルアセトンインジウムであることを特徴とする請求項1~20のいずれか1項に記載の透明導電膜の製造方法。
  22.  前記塗布工程における透明導電膜形成用塗布液の基板上への塗布方法が、インクジェット印刷法、スクリーン印刷法、グラビア印刷法、オフセット印刷法、フレキソ印刷法、ディスペンサ印刷法、スリットコート法、ダイコート法、ドクターブレードコート法、ワイヤーバーコート法、スピンコート法、ディップコート法、スプレーコート法のいずれかであることを特徴とする請求項1または2記載の透明導電膜の製造方法。
  23.  請求項1~22のいずれか1項に記載の透明導電膜の製造方法で得られたことを特徴とする透明導電膜。
  24.  導電性酸化物膜を備える素子において、
     前記導電性酸化物膜が、請求項23記載の透明導電膜であることを特徴とする素子。
  25.  前記素子が、前記導電性酸化物膜を、薄膜トランジスタのチャネル層として用いている薄膜トランジスタであることを特徴とする請求項24記載の素子。
  26.  基板上に透明導電膜を備える透明導電基板において、
     前記透明導電膜が、請求項23記載の透明導電膜であることを特徴とする透明導電基板。
  27.  透明電極を備えるデバイスにおいて、
     前記透明電極が、請求項26記載の透明導電基板であることを特徴とするデバイス。
  28.  前記デバイスが、発光デバイス、発電デバイス、表示デバイス、入力デバイスから選ばれた1種であることを特徴とする請求項27記載のデバイス。
PCT/JP2010/070165 2009-11-05 2010-11-05 透明導電膜の製造方法及び透明導電膜、それを用いた素子、透明導電基板並びにそれを用いたデバイス WO2011055856A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011539430A JP5403293B2 (ja) 2009-11-05 2010-11-05 透明導電膜の製造方法及び透明導電膜、それを用いた素子、透明導電基板並びにそれを用いたデバイス
CN201080049929.3A CN102598160B (zh) 2009-11-05 2010-11-05 透明导电膜及其制造方法、和元件、透明导电基板及器件
US13/261,283 US8963146B2 (en) 2009-11-05 2010-11-05 Method of manufacturing transparent conductive film, the transparent conductive substrate using the film, as well as device using the substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009254468 2009-11-05
JP2009-254468 2009-11-05
JP2010132473 2010-06-09
JP2010-132473 2010-06-09

Publications (1)

Publication Number Publication Date
WO2011055856A1 true WO2011055856A1 (ja) 2011-05-12

Family

ID=43970087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070165 WO2011055856A1 (ja) 2009-11-05 2010-11-05 透明導電膜の製造方法及び透明導電膜、それを用いた素子、透明導電基板並びにそれを用いたデバイス

Country Status (4)

Country Link
US (1) US8963146B2 (ja)
JP (1) JP5403293B2 (ja)
CN (1) CN102598160B (ja)
WO (1) WO2011055856A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155635A1 (ja) * 2010-06-08 2011-12-15 住友金属鉱山株式会社 金属酸化物膜の製造方法及び金属酸化物膜、それを用いた素子、金属酸化物膜付き基板並びにそれを用いたデバイス
CN102354657A (zh) * 2011-09-27 2012-02-15 友达光电股份有限公司 修补氧化物半导体层的缺陷的方法
WO2013099478A1 (ja) * 2011-12-26 2013-07-04 株式会社 日立製作所 複合部材
US20130175521A1 (en) * 2010-06-01 2013-07-11 Sharp Kabushiki Kaisha Thin film transistor and manufacturing method thereof
WO2013129701A1 (ja) * 2012-03-02 2013-09-06 独立行政法人科学技術振興機構 導電性膜の形成方法
JP2014241128A (ja) * 2013-05-15 2014-12-25 日本写真印刷株式会社 タッチセンサおよびタッチセンサモジュール
US20150056381A1 (en) * 2012-02-28 2015-02-26 National University Corporation Nagoya University Method for forming conductive film
US20150232674A1 (en) * 2012-08-29 2015-08-20 Sumitomo Metal Mining Co., Ltd. Production method for coating liquid for formation of transparent conductive film
WO2016052535A1 (ja) * 2014-10-01 2016-04-07 国立研究開発法人産業技術総合研究所 酸化物薄膜素子、その製造方法及び製造装置
JP2017073001A (ja) * 2015-10-07 2017-04-13 株式会社写真化学 銀配線の黒化方法及びディスプレイ装置
JPWO2016104796A1 (ja) * 2014-12-26 2017-09-28 国立研究開発法人産業技術総合研究所 フレキシブル導電性膜及びその製造方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102763174B (zh) * 2010-02-17 2014-08-27 住友金属矿山株式会社 透明导电膜及其制造方法、元件、透明导电基板及其器件
US8507916B2 (en) * 2010-06-08 2013-08-13 Sharp Kabushiki Kaisha Thin film transistor substrate, LCD device including the same, and method for manufacturing thin film transistor substrate
US8871560B2 (en) * 2012-08-09 2014-10-28 International Business Machines Corporation Plasma annealing of thin film solar cells
US10615297B2 (en) * 2013-02-22 2020-04-07 International Business Machines Corporation Electrode formation for heterojunction solar cells
JP6454974B2 (ja) * 2013-03-29 2019-01-23 株式会社リコー 金属酸化物膜形成用塗布液、金属酸化物膜の製造方法、及び電界効果型トランジスタの製造方法
CN103230864B (zh) * 2013-04-03 2015-03-25 江西沃格光电股份有限公司 防静电tft基板的制作方法
TWI504448B (zh) * 2013-10-28 2015-10-21 Univ Nat Cheng Kung 濕式鍍膜方法
CN103763795B (zh) * 2014-01-20 2015-06-10 新乡市杰达精密电子器件有限公司 厚膜加热元件生产方法及电阻浆料用量确定方法
CN104022167B (zh) * 2014-06-17 2016-08-17 华北电力大学 一种醇溶性聚合物太阳电池阴极修饰材料及其修饰方法
TWI560781B (en) * 2014-09-10 2016-12-01 Au Optronics Corp Method for fabricating thin film transistor and apparatus thereof
KR102514716B1 (ko) * 2015-10-05 2023-03-28 삼성디스플레이 주식회사 박막 트랜지스터 기판, 이를 포함하는 표시 장치, 및 박막 트랜지스터 기판의 제조 방법
JP2017075077A (ja) * 2015-10-16 2017-04-20 Necトーキン株式会社 酸化亜鉛膜の製造方法
US20180112331A1 (en) * 2016-10-21 2018-04-26 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Enabling artificial thin film material structures of non-linear complex oxide thin films
US10741783B2 (en) * 2018-01-25 2020-08-11 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Light emitting device and manufacturing method for the same
JP7069966B2 (ja) * 2018-03-29 2022-05-18 住友大阪セメント株式会社 光制御素子
CN108493299A (zh) * 2018-04-11 2018-09-04 深圳市太赫兹科技创新研究院 Azo透明导电薄膜及其制备方法和应用
US11476641B1 (en) * 2019-06-25 2022-10-18 Mac Thin Films, Inc. Window for laser protection
CN111128702A (zh) * 2019-12-10 2020-05-08 Tcl华星光电技术有限公司 一种金属电极的制备方法
CN111137041B (zh) * 2019-12-17 2021-10-08 纳晶科技股份有限公司 膜层预处理方法、装置以及喷墨打印成膜方法
JP2021136255A (ja) * 2020-02-25 2021-09-13 東京エレクトロン株式会社 プラズマ処理方法
CN113593773B (zh) * 2021-07-30 2023-02-28 广西中沛光电科技有限公司 一种超大尺寸电容式触摸屏ito薄膜制备方法
CN114534990B (zh) * 2022-01-11 2023-03-14 西安理工大学 适用于柔性器件的ito薄膜及其制备方法
CN115498068A (zh) * 2022-09-22 2022-12-20 深圳先进技术研究院 Cigs太阳能电池表面改性方法、装置及cigs太阳能电池
WO2024077481A1 (en) * 2022-10-11 2024-04-18 Schott Ag Plasma induced crystallization and densification of amorphous coatings

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736714A (ja) * 1980-08-13 1982-02-27 Hitachi Ltd Tomeidenkyokunoseizohoho
JPS6019610B2 (ja) * 1979-12-14 1985-05-17 株式会社日立製作所 透明導電膜形成法
JPS6325448B2 (ja) * 1981-11-25 1988-05-25 Alps Electric Co Ltd
JPH0220706B2 (ja) * 1984-05-14 1990-05-10 Alps Electric Co Ltd
JPH06203658A (ja) * 1992-12-28 1994-07-22 Sumitomo Metal Mining Co Ltd 透明導電膜形成用塗布液
JPH06325637A (ja) * 1993-05-14 1994-11-25 Sumitomo Metal Mining Co Ltd 透明導電性被膜形成用塗布液及び低反射透明導電膜
JPH1160278A (ja) * 1997-08-07 1999-03-02 Asahi Glass Co Ltd 透明導電膜形成方法
JP2001106567A (ja) * 1999-10-07 2001-04-17 Hitachi Cable Ltd 透明導電膜形成基板及び形成方法
JP2003249132A (ja) * 2002-02-26 2003-09-05 Ulvac Japan Ltd 低抵抗透明導電膜の製造法
JP2010010005A (ja) * 2008-06-27 2010-01-14 Sumitomo Metal Mining Co Ltd 空孔を有する透明導電膜とその製造方法
JP2010225469A (ja) * 2009-03-24 2010-10-07 Sumitomo Chemical Co Ltd 有機el用透明陽極基板およびその製造方法
JP2011028861A (ja) * 2009-07-21 2011-02-10 Sumitomo Metal Mining Co Ltd 透明導電膜の製造方法及び透明導電膜、透明導電基板並びにそれを用いたデバイス

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138708A (en) 1981-02-20 1982-08-27 Hitachi Ltd Composition for forming transparent conductive film and method of forming transparent conductive film
JPS57212268A (en) 1981-06-24 1982-12-27 Hitachi Ltd Pasty composition for forming transparent electrically conductive film and forming method of said film
JPS58102406A (ja) 1981-12-12 1983-06-18 アルプス電気株式会社 透明導電性被膜形成用ペ−スト
JPS6019610A (ja) 1983-07-12 1985-01-31 Hitachi Ltd 搬送設備
JPS6126679A (ja) 1984-07-16 1986-02-05 Alps Electric Co Ltd 透明導電性被膜形成液
JPS6319046A (ja) 1986-07-11 1988-01-26 Mitsubishi Electric Corp レジスタ試験方式
JPS6325448A (ja) 1987-03-27 1988-02-02 Matsushita Seiko Co Ltd ヒ−トポンプ式空気調和機の室内機
JP2589695B2 (ja) 1987-06-18 1997-03-12 松下電器産業株式会社 透明導電膜の製造方法
JP2623301B2 (ja) 1988-07-09 1997-06-25 日本鋪道株式会社 舗装体の冷却方法及び冷却装置
JPH04255768A (ja) 1991-02-07 1992-09-10 Japan Synthetic Rubber Co Ltd 透明な導電性膜形成用塗布液
US6376691B1 (en) * 1999-09-01 2002-04-23 Symetrix Corporation Metal organic precursors for transparent metal oxide thin films and method of making same
JP2001244464A (ja) 2000-03-02 2001-09-07 Sanyo Electric Works Ltd 金属酸化物トランジスタの製造方法
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
ATE524574T1 (de) * 2001-10-02 2011-09-15 Nat Inst Of Advanced Ind Scien Verfahren zur herstellung vom dünnen metalloxidfilm
JP4384389B2 (ja) 2002-04-18 2009-12-16 株式会社ブリヂストン 金属酸化物半導体膜の形成方法、有機色素増感型金属酸化物半導体電極及びこの半導体電極を有する太陽電池
JP2007123700A (ja) 2005-10-31 2007-05-17 Toppan Printing Co Ltd 酸化物半導体のパターニング方法と薄膜トランジスタの製造方法
JP5098152B2 (ja) 2005-10-31 2012-12-12 凸版印刷株式会社 薄膜トランジスタの製造方法
JP2007123698A (ja) 2005-10-31 2007-05-17 Toppan Printing Co Ltd 薄膜トランジスタおよびその製造方法
JP5177954B2 (ja) * 2006-01-30 2013-04-10 キヤノン株式会社 電界効果型トランジスタ
CN101510457A (zh) * 2008-02-13 2009-08-19 住友金属矿山株式会社 挠性透明导电薄膜和挠性功能性元件及它们的制造方法
JP5319961B2 (ja) * 2008-05-30 2013-10-16 富士フイルム株式会社 半導体素子の製造方法
US8529802B2 (en) * 2009-02-13 2013-09-10 Samsung Electronics Co., Ltd. Solution composition and method of forming thin film and method of manufacturing thin film transistor using the solution composition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019610B2 (ja) * 1979-12-14 1985-05-17 株式会社日立製作所 透明導電膜形成法
JPS5736714A (ja) * 1980-08-13 1982-02-27 Hitachi Ltd Tomeidenkyokunoseizohoho
JPS6325448B2 (ja) * 1981-11-25 1988-05-25 Alps Electric Co Ltd
JPH0220706B2 (ja) * 1984-05-14 1990-05-10 Alps Electric Co Ltd
JPH06203658A (ja) * 1992-12-28 1994-07-22 Sumitomo Metal Mining Co Ltd 透明導電膜形成用塗布液
JPH06325637A (ja) * 1993-05-14 1994-11-25 Sumitomo Metal Mining Co Ltd 透明導電性被膜形成用塗布液及び低反射透明導電膜
JPH1160278A (ja) * 1997-08-07 1999-03-02 Asahi Glass Co Ltd 透明導電膜形成方法
JP2001106567A (ja) * 1999-10-07 2001-04-17 Hitachi Cable Ltd 透明導電膜形成基板及び形成方法
JP2003249132A (ja) * 2002-02-26 2003-09-05 Ulvac Japan Ltd 低抵抗透明導電膜の製造法
JP2010010005A (ja) * 2008-06-27 2010-01-14 Sumitomo Metal Mining Co Ltd 空孔を有する透明導電膜とその製造方法
JP2010225469A (ja) * 2009-03-24 2010-10-07 Sumitomo Chemical Co Ltd 有機el用透明陽極基板およびその製造方法
JP2011028861A (ja) * 2009-07-21 2011-02-10 Sumitomo Metal Mining Co Ltd 透明導電膜の製造方法及び透明導電膜、透明導電基板並びにそれを用いたデバイス

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130175521A1 (en) * 2010-06-01 2013-07-11 Sharp Kabushiki Kaisha Thin film transistor and manufacturing method thereof
US8779478B2 (en) * 2010-06-01 2014-07-15 Sharp Kabushiki Kaisha Thin film transistor
WO2011155635A1 (ja) * 2010-06-08 2011-12-15 住友金属鉱山株式会社 金属酸化物膜の製造方法及び金属酸化物膜、それを用いた素子、金属酸化物膜付き基板並びにそれを用いたデバイス
US8753987B2 (en) 2010-06-08 2014-06-17 Sumitomo Metal Mining Co., Ltd. Method of manufacturing metal oxide film
CN102354657A (zh) * 2011-09-27 2012-02-15 友达光电股份有限公司 修补氧化物半导体层的缺陷的方法
WO2013099478A1 (ja) * 2011-12-26 2013-07-04 株式会社 日立製作所 複合部材
JP2013132757A (ja) * 2011-12-26 2013-07-08 Hitachi Ltd 複合部材
US20150056381A1 (en) * 2012-02-28 2015-02-26 National University Corporation Nagoya University Method for forming conductive film
CN104160456A (zh) * 2012-03-02 2014-11-19 独立行政法人科学技术振兴机构 导电性膜的形成方法
WO2013129701A1 (ja) * 2012-03-02 2013-09-06 独立行政法人科学技術振興機構 導電性膜の形成方法
US9082618B2 (en) 2012-03-02 2015-07-14 Japan Science And Technology Agency Method of forming a conductive film
JPWO2013129701A1 (ja) * 2012-03-02 2015-07-30 独立行政法人科学技術振興機構 導電性膜の形成方法
US20150232674A1 (en) * 2012-08-29 2015-08-20 Sumitomo Metal Mining Co., Ltd. Production method for coating liquid for formation of transparent conductive film
US10283230B2 (en) * 2012-08-29 2019-05-07 Sumitomo Metal Mining Co., Ltd. Production method for coating liquid for formation of transparent conductive film
JP2014241128A (ja) * 2013-05-15 2014-12-25 日本写真印刷株式会社 タッチセンサおよびタッチセンサモジュール
WO2016052535A1 (ja) * 2014-10-01 2016-04-07 国立研究開発法人産業技術総合研究所 酸化物薄膜素子、その製造方法及び製造装置
JPWO2016104796A1 (ja) * 2014-12-26 2017-09-28 国立研究開発法人産業技術総合研究所 フレキシブル導電性膜及びその製造方法
JP2017073001A (ja) * 2015-10-07 2017-04-13 株式会社写真化学 銀配線の黒化方法及びディスプレイ装置

Also Published As

Publication number Publication date
JPWO2011055856A1 (ja) 2013-03-28
JP5403293B2 (ja) 2014-01-29
US20120223302A1 (en) 2012-09-06
CN102598160B (zh) 2013-08-07
US8963146B2 (en) 2015-02-24
CN102598160A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5403293B2 (ja) 透明導電膜の製造方法及び透明導電膜、それを用いた素子、透明導電基板並びにそれを用いたデバイス
JP5700259B2 (ja) 透明導電膜の製造方法及び透明導電膜、それを用いた素子、透明導電基板並びにそれを用いたデバイス
JP5240532B2 (ja) 金属酸化物膜の製造方法
JP2012081663A (ja) 透明導電基材及びタッチパネル
JP2004084064A (ja) 透明導電膜形成用組成物、透明導電膜形成用溶液および透明導電膜の形成方法
JP5418502B2 (ja) 透明導電膜の製造方法及び透明導電膜、透明導電基板並びにそれを用いたデバイス
JP4248312B2 (ja) 金属酸化物の製造方法
JP2011108637A (ja) 低屈折率透明導電膜の製造方法及び低屈折率透明導電膜、低屈折率透明導電基板並びにそれを用いたデバイス
JP2011028861A (ja) 透明導電膜の製造方法及び透明導電膜、透明導電基板並びにそれを用いたデバイス
JP5366071B2 (ja) プライマー組成物
JP2013020942A (ja) 有機el用透明導電性基材の製造方法、およびそれを用いた有機el用透明導電性基材、並びに有機el素子
JP2009135098A (ja) 透光性導電膜形成用塗布液及び透光性導電膜
JP2011018542A (ja) 透明導電性基材及びその製造方法
JP2011190528A (ja) 酸化亜鉛系透明導電膜の形成方法、酸化亜鉛系透明導電膜および透明導電性基板
JP5413708B2 (ja) 透明導電膜、透明導電基板及びそれを用いたデバイス並びに透明導電膜の製造方法
WO2011102425A1 (ja) 酸化物焼結体、酸化物混合体、それらの製造方法およびそれらを用いたターゲット
JP2009164116A (ja) 低屈折率透明導電膜形成用塗布液及び低屈折率透明導電膜
JP2006049107A (ja) 透明導電膜の形成方法及び透明導電膜
JP2009164116A5 (ja)
JP2006047720A (ja) 透明導電膜の形成方法及び透明導電膜
JP2012209123A (ja) 透明導電膜の製造方法及び透明導電膜、透明導電基板並びにそれを用いたデバイス
JP2012015103A (ja) 透明導電膜形成用塗布液及び透明導電膜
JP2006164800A (ja) 導電膜の形成方法及び導電膜
JP2007317489A (ja) 導電膜及びその製造方法
JP2010010005A (ja) 空孔を有する透明導電膜とその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080049929.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828414

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011539430

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13261283

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10828414

Country of ref document: EP

Kind code of ref document: A1