WO2011054995A2 - VACUNAS PROFILACTICAS DE GRIPE A PARTIR DE CAPSIDAS VIRALES DE BIRNAVIRUS CONTENIENDO EL ANTIGENO M2e DEL VIRUS DE LA GRIPE - Google Patents

VACUNAS PROFILACTICAS DE GRIPE A PARTIR DE CAPSIDAS VIRALES DE BIRNAVIRUS CONTENIENDO EL ANTIGENO M2e DEL VIRUS DE LA GRIPE Download PDF

Info

Publication number
WO2011054995A2
WO2011054995A2 PCT/ES2010/070716 ES2010070716W WO2011054995A2 WO 2011054995 A2 WO2011054995 A2 WO 2011054995A2 ES 2010070716 W ES2010070716 W ES 2010070716W WO 2011054995 A2 WO2011054995 A2 WO 2011054995A2
Authority
WO
WIPO (PCT)
Prior art keywords
subunit
chimeric
viral particle
pseudo
particle according
Prior art date
Application number
PCT/ES2010/070716
Other languages
English (en)
French (fr)
Other versions
WO2011054995A3 (es
Inventor
Thomas Zurcher
Cayetano Von Kobbe
Juan José BERNAL
Ignacio JIMÉNEZ TORRES
María VELA CUENCA
Ana Diaz Blazquez
Miguel Angel Llamas Matias
Diana Martin Lorenzo
Arcadio GARCÍA DE CASTRO
Original Assignee
Chimera Pharma, S. L. U.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chimera Pharma, S. L. U. filed Critical Chimera Pharma, S. L. U.
Publication of WO2011054995A2 publication Critical patent/WO2011054995A2/es
Publication of WO2011054995A3 publication Critical patent/WO2011054995A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5258Virus-like particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2720/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
    • C12N2720/00011Details
    • C12N2720/10011Birnaviridae
    • C12N2720/10022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2720/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
    • C12N2720/00011Details
    • C12N2720/10011Birnaviridae
    • C12N2720/10023Virus like particles [VLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the invention relates to prophylactic vaccines for the prevention of influenza in humans.
  • the vaccines of the present invention are formed by birnavirus chimeric pseudo-viral capsids containing the influenza virus M2e antigen. STATE OF THE PREVIOUS TECHNIQUE
  • the flu represents a major global health problem. It is estimated that each year the flu affects 1 billion people, of which between 3 and 5 million develop a severe form of the disease that causes between 300,000 and 500,000 deaths.
  • M2e antigen is bound or fused to other biological entities, such as the TLR5 flagelin ligand [Huleatt W et al. Vaccine (2008) 26, 201— 214], the hemocyanin of Megathura Crenulata (KLH) or the outer membrane protein complex of Neisseria meningitidis (OMPC, Outer Membrane Protein Complex) [Fan J et al. Vaccine (2004) 22: 2993-3003].
  • TLR5 flagelin ligand Huleatt W et al. Vaccine (2008) 26, 201— 214
  • KLH hemocyanin of Megathura Crenulata
  • OMPC Outer Membrane Protein Complex
  • VLP chimeric pseudo-viral particles
  • M2e antigen in Hepatitis B VLP [WO9907839; Neirynck S et al Nat. Med (1999) 5 (10): 1 157-1163; From Fil ⁇ te M et al. (2006) Vaccine 24 (44-46): 6597-6601; From Fil ⁇ te M et al. (2008) Vaccine 26 (51): 6503-6507].
  • VLPs proposed for the presentation of different antigens are those derived from the Infectious Bursitis Virus (IBDV).
  • IBDV belongs to the Birnaviridae family and is the causative agent of Gumboro disease in birds.
  • the protein components of the viral capsid result from the proteolysis of the precursor polypeptide pVP2-VP4-VP3 (109 kDa) to release the VP2 precursor of 512 amino acids (pVP2 512 ), VP4 and VP3.
  • VP2 of different strains of IBDV have a protein sequence homology of more than 80%.
  • VLP T 1 from fusions of sequences encoding said antigen at the carboxyl end of the gene of the VP2 protein [WO2007009673].
  • sequences coding for VP2 of IBDV and M2e of influenza virus are combined in order to obtain an effective vaccine in the prevention of influenza. It is not obvious which sequences of M2e or VP2 may be suitable in the generation of the vaccine, nor the optimal fusion or insertion site of M2e with VP2.
  • the particles selected in the present invention incorporate two or three copies of M2e, preferably two.
  • the chimeric VLPs of the present invention are obtained from a selection process in which the optimal arrangement of the M2e sequences for VLP formation and the VP2 insertion sites that give rise to chimeric VLPs with a greater efficacy in prophylaxis against influenza virus.
  • the present invention provides pseudo-viral particles originating from insertions of M2e sequences encoding the influenza virus into the gene encoding Birnavirus VP2 and effective in prevention. of the flu caused by different variants of the virus that causes the disease.
  • a first aspect of the invention relates to a chimeric pseudo-viral (VLP) particle (hereinafter, chimeric VLP of the invention) formed by a fusion protein (hereinafter, fusion protein of the invention) which understands:
  • subunit (a) consisting of the Birnavirus pVP2 protein or a fragment thereof
  • subunit (b) comprising an influenza virus M2e antigen
  • pseudo-viral capsid refers to a three-dimensional nanometric structure formed by the assembly of structural viral proteins.
  • the structural viral proteins that form the pseudo-viral particle of the invention are fusion proteins comprising the pVP2 protein of a Birnavirus or a fragment thereof and at least one M2e antigen of the Influenza virus (Influenzavirus ).
  • Birnavirus refers to any virus of the family Birnaviridae, belonging to Group I I I according to the Baltimore Classification.
  • the Birnaviridae family consists of the genera Avibirnavirus, Aquabirnavirus, Blosnavirus and Entomobirnavirus.
  • the Birnavirus is from the Avibirnavirus family, and more preferably, the infectious Bursitis Virus (IBDV).
  • infectious bursitis virus or "IBDV” (IBDV) refers to viruses of the family Birnaviridae and genus Avibirnavirus causing Gumboro disease in chickens and belonging to Group II I of the Baltimore Classification.
  • the IBDV is the IBDV strain Soroa.
  • the Birnavirus genome consists of two linear double-stranded RNA molecules called A and B, which encode 5 proteins.
  • pVP2 protein refers to the VP2 precursor protein encoded by the VP2 gene of a Birnavirus. Preferably, this term refers to the 512 amino acid VP2 precursor protein (VP2 5 and 2 ) of IBDV.
  • VP2 5 12 protein of the IBDV strain Soroa (SEQ ID NO: 1) is deposited with the accession number AAD30136 in NCBI (from the National Center for Biotechnology Information).
  • VP2 512 protein from other strains of IBDV has at least 80% identity with SEQ ID NO: 1. Therefore, in a preferred embodiment, the term pVP2 refers to a protein with at least 80%, 85%, 90%, 95%, 98% or 99% identity, with SEQ ID NO: one . In a more preferred embodiment the term pVP2 refers to SEQ ID NO: 1.
  • identity refers to the proportion of identical amino acids between two amino acid sequences that are compared.
  • the percentage of identity existing between two amino acid sequences can be easily identified by one skilled in the art, for example, with the help of an appropriate computer program to compare sequences.
  • fragment refers to a portion of the pVP2 protein, of at least 400 amino acids, capable of forming VLP. This term includes, therefore, the mature VP1 protein of 441 amino acids of the IBDV (VP2 44 i).
  • the subunit (a) of the fusion protein that forms the chimeric VLP of the invention consists of a protein with at least 80% identity with SEQ ID NO: 1 or A fragment of it.
  • the subunit (a) of the fusion protein that forms the chimeric VLP of the invention consists of a protein with SEQ ID NO: 1 or a fragment thereof.
  • the subunit (a) of the fusion protein that forms the chimeric VLP of the invention consists of SEQ ID NO: 2.
  • the subunit (b) is inserted into the P region of the subunit (a).
  • P region refers to the four external domains (BC, DE, FG and H 1) of the pVP2 protein or the amino acid sequences corresponding to said domains in a pVP2 protein fragment.
  • the four external domains of the IBVV strain Soroa strain pVP2 protein correspond to the sequences between amino acids Q219-G224 (BC domain), R249-L255 (DE domain), T283-D287 (FG domain) and S315-Q324 (domain Hl).
  • BC domain BC domain
  • R249-L255 DE domain
  • T283-D287 FG domain
  • S315-Q324 domain Hl
  • BC domain of the P region therefore refers to the amino acid sequence between the amino acid of position 219 and the amino acid of position 224 of the pVP2 protein.
  • this term refers to the amino acid sequence between Q219 and G224 of SEQ ID NO: 1. More preferably, this term refers to the amino acid sequence between the Q219 and G 2 24 SEQ ID NO: 2.
  • DE domain of the P region thus refers to the amino acid sequence between the amino acid of position 249 and the amino acid of position 255 of the pVP2 protein.
  • this term refers to the amino acid sequence between R 24 g and l 25 of SEQ ID NO: 1. More preferably, this term refers to the amino acid sequence between R 24 g and L 25 5 of SEQ ID NO: 2.
  • FG domain of the P region thus refers to the amino acid sequence between the amino acid of position 283 and the amino acid of position 287 of the pVP2 protein.
  • this term refers to the amino acid sequence between T 28 3 and D 28 7 of SEQ ID NO: 1. More preferably, this term refers to the amino acid sequence between T 28 3 and D 28 7 of SEQ ID NO: 2.
  • Hl domain of the P region thus refers to the amino acid sequence between the amino acid of position 315 and the amino acid of position 324 of the pVP2 protein.
  • this term refers to the amino acid sequence between S315 and Q3 24 of SEQ ID NO: 1. More preferably, this term refers to the amino acid sequence between S315 and Q324 of SEQ ID NO: 2.
  • the subunit (b) is inserted into the P region of SEQ ID NO: 2.
  • the subunit (b) of the fusion protein that forms the VLP of the invention is inserted into the Hl domain of the P region pVP2 or a fragment of pVP2.
  • the subunit (b) of the fusion protein that forms the VLP of the invention is inserted between amino acids D 32 3 and Q324 of pVP2 or a fragment of pVP2.
  • the subunit (b) of the fusion protein that forms the VLP of the invention is inserted in the Hl domain of the P region of SEQ ID NO: 2.
  • the subunit (b) of the fusion protein that forms the VLP of the invention is inserted between amino acids D 323 and Q 324 of SEQ ID NO: 2.
  • M2e antigen refers to the flu virus M2 matrix protein antigen that contains the extracellular region of that protein.
  • M2e antigen includes antigens of the influenza virus M2 matrix protein, such as, but not limited to, the human, swine or avian influenza virus.
  • M2e antigen refers to the antigen of the human influenza virus M2 matrix protein that contains the extracellular region of said protein, whose sequence is SEQ ID NO: 3. Therefore, the term M2e, preferably, it refers to a polypeptide with at least 60%, 70%, 80%, 90%, 95% or 99% identity, with SEQ ID NO: 3. More preferably, the term is refers to a polypeptide with the amino acid sequence SEQ ID NO: 3.
  • the term M2e antigen refers to the influenza virus M2 matrix protein antigen containing the extracellular region of said protein in which some or all tanks have been replaced by serines.
  • this term refers to a polypeptide with the amino acid sequence SEQ ID NO: 4.
  • the subunit (b) of the fusion protein comprises two M2e antigens linked by a hydrophilic polypeptide. Subunit (b) is inserted into subunit (a) to give rise to the fusion protein that forms the chimeric VLP of the invention.
  • inserted means that the amino acid sequence of the subunit (a) is divided into two parts (a1) and (a2), among which is the amino acid sequence of the subunit (b).
  • the union between the amino acid sequence of the subunit (b) and the amino acid sequence of each of the subunits (a1) or (a2) can be direct or by one or two spacer polypeptides.
  • spacer polypeptide refers to a short amino acid sequence, preferably, up to 15 amino acids in length, more preferably, up to 10 amino acids in length, even more preferably, up to 5 amino acids in length, located either between the amino acid sequence of the subunit (b) and the amino acid sequence of the subunit (a), or between the M2e antigens that are part of the subunit (b ).
  • the spacer polypeptide (p) is a hydrophilic polypeptide.
  • the term "hydrophilic spacer polypeptide” or “hydrophilic linker” are sequences comprising between 2 and 8 hydrophilic amino acids (h), such as histidine (H), glutamine (Q), asparagine (N), lysine (K), aspartic acid (D), glutamic acid (E), arginine (R), serine (S) and glycine (G).
  • the hydrophilic polypeptide is a polypeptide consisting of 4 hydrophilic amino acids (hhhh).
  • the amino acid of the carboxy-terminal end of the part (a1) of the subunit (a) forms a bond peptide with the amino acid of the amino-terminal end of the subunit (b) and the amino acid of the carboxyl-terminal end of the subunit (b) forms a peptide bond with the amino acid of the amino-terminal end of part (a2) of the subunit (a) , as represented in the following scheme:
  • (a1) represents a part of the subunit (a)
  • (a2) represents the other part of the subunit (a)
  • (b) represents the subunit (b)
  • Nt represents the amino-terminal end of the corresponding subunit
  • Ct represents the carboxyl-terminal end of the corresponding subunit
  • represents a peptide bond between the different units of the protein of fusion of the invention.
  • the amino acid of the carboxyl-terminal end of the part ( a1) of the subunit (a) forms a peptide bond with the amino acid of the amino-terminal end of a first spacer polypeptide (p1)
  • the amino acid of the carboxyl-terminal end of this first spacer polypeptide (p1) forms a bond with the amino acid of the amino-terminal end of the subunit (b)
  • the amino acid of the carboxyl-terminal end of the subunit (b) forms a peptide bond with the amino acid of the amino-terminal end of a second spacer polypeptide (p2) and the amino acid of the end
  • the carboxyl-terminal of this second spacer polypeptide (p2) forms a bond with the amino acid of the amino-terminal end of part (a2) of the subunit (a), as depict
  • (a1) represents a part of the subunit (a)
  • (a2) represents the other part of the subunit (a)
  • (b) represents the subunit (b)
  • (p1) represents a first spacer polypeptide
  • (p2 ) represents a second spacer polypeptide
  • Nt represents the amino-terminal end of the subunit or the corresponding spacer polypeptide
  • Ct represents the carboxyl-terminal end of the subunit or the corresponding spacer polypeptide
  • represents a peptide bond between the different units of the fusion protein of the invention.
  • the subunit (b) at one end is joined with one of the parts of the subunit (a) directly by peptide bonding and at the other end is linked to the other part of the subunit (a) by a spacer polypeptide, as represented in the following schemes:
  • (a1) represents a part of the subunit (a)
  • (a2) represents the other part of the subunit (a)
  • (b) represents the subunit (b)
  • (p) represents a spacer polypeptide
  • Nt represents the amino-terminal end of the subunit or the corresponding spacer polypeptide
  • Ct represents the carboxyl-terminal end of the subunit or the corresponding spacer polypeptide
  • represents a peptide bond between the different fusion protein units of the invention.
  • the fusion protein that forms the chimeric VLP of the invention comprises, in addition to subunit (a) and subunit (b), one or two hydrophilic spacer polypeptides between the amino acid sequence of subunit (b) and the amino acid sequences of the subunit (a).
  • the fusion protein that forms the chimeric VLP of the invention comprises, in addition to the subunit (a) and the subunit (b), two hydrophilic spacer polypeptides between the amino acid sequence of the subunit (b) and the amino acid sequences of the subunit (a).
  • the subunit (b) of the fusion protein that forms the chimeric VLP of the invention comprises two M2e antigens (M2e-1 and M2e-2), which may be the same or different from each other.
  • M2e-1 and M2e-2 M2e antigens
  • the union between the amino acid sequence between these two antigens M2e-1 and M2e-2 of the subunit (b) can be direct or by a spacer polypeptide.
  • the carboxyl-terminal amino acid of a first M2e-1 antigen forms a peptide bond with the amino acid of the amino-terminal end of a second M2e-1 antigen, as depicted in the following scheme:
  • the amino acid of the carboxyl-terminal end of a first M2e antigen -1 forms a peptide bond with the amino-terminus amino acid of a spacer polypeptide (p) and the amino acid of the carboxy-terminal end of the spacer polypeptide (p) forms a peptide bond with the amino acid of the amino-terminal end of a second M2e-2 antigen, as represented in the following scheme: ⁇ Nt- (M2e-1) -Ct ⁇ Nt- (p) -Ct ⁇ Nt- (M2e-2) -Ct ⁇ where (M2e-1) represents one of the M2e antigens, (M2e-2) represents the other M2e antigens, (p) represents a spacer polypeptide, Nt represents the amino-terminal end of
  • the subunit (b) of the fusion protein that forms the chimeric VLP of the invention comprises three M2e antigens (M2e-1, M2e-2 and M2e-3), which may be the same or different from each other. .
  • M2e antigens M2e-1, M2e-2 and M2e-3
  • the union between the amino acid sequence between these different antigens M2e-1, M2e-2 and Me-3 of subunit (b) can be direct or by one or two spacer polypeptides.
  • the amino acid of the carboxyl-terminal end of a first M2e-1 antigen forms a peptide bond forms a peptide bond with the amino acid of the amino-terminal end of a first spacer polypeptide (p1)
  • the amino acid of the carboxyl-terminal end of this first Spacer polypeptide (p1) forms a bond with the amino acid of the amino-terminal end of a second M2e-1 antigen
  • the amino acid of the carboxyl-terminal end of this second M2e-2 antigen forms a peptide bond with the amino acid of the amino-terminal end of a second spacer polypeptide (p2)
  • the carboxyl-terminal amino acid of this second spacer polypeptide (p2) forms a bond with the amino acid of the amino-terminal end of a te rcer M2e-3 antigen, as depicted in the following scheme: ⁇ Nt- (M2e-1) -Ct ⁇ Nt- (p1) -Ct ⁇ N
  • one of the junctions between the M2e antigens is a direct binding by peptide bond, while another of the junctions takes place by means of a spacer polypeptide, as represented in the following schemes:
  • the subunit (b) of the fusion protein that forms the chimeric VLP of the invention comprises two M2e antigens, linked together in addition to the subunit (a) and subunit (b), one or two polypeptides hydrophilic spacers between the amino acid sequence of the subunit (b) and the amino acid sequences of the subunit (a).
  • the fusion protein where the subunit (b) comprises two M2e antigens, linked together by a hydrophilic polypeptide, wherein said subunit (b) is inserted into the subunit (a) by two hydrophilic spacer polypeptides, such and as represented in the following scheme: ⁇ Nt- (a1) -Ct ⁇ Nt- (p1) -Ct ⁇ Nt- (M2e-1) -Ct ⁇ Nt- (p2) - Ct ⁇ Nt- (M2e-2 ) -Ct ⁇ Nt- (p3) -Ct ⁇ Nt- (a2) -Ct ⁇ , where (M2e-1) represents a first M2e antigen, (M2e-2) represents a second M2e antigen, (p1) represents a first spacer polypeptide, (p2) represents a second spacer polypeptide, (p3) represents a third spacer polypeptide, Nt represents the amino-terminal end of the
  • amino acid sequence of ⁇ Nt- (p) -Ct ⁇ Nt- (M2e-1) -Ct ⁇ Nt- (p) -Ct ⁇ Nt- (M2e-2) -Ct ⁇ Nt- ( p) -Ct ⁇ according to the previous scheme is SEQ ID NO: 7.
  • a preferred embodiment of this first aspect of the invention relates to a chimeric VLP formed by a fusion protein comprising SEQ ID NO: 7 inserted between amino acids D323 and Q324 of SEQ ID NO: 2.
  • a more preferred embodiment refers to a chimeric VLP formed by a fusion protein whose amino acid sequence is SEQ ID NO: 8.
  • a second aspect of the invention relates to a process for obtaining the chimeric VLPs of the invention, which comprises culturing a host cell comprising a nucleic acid encoding the fusion protein of the invention, under conditions that allow expression. from said fusion proteins, and the assembly of said fusion proteins to form chimeric VLPs.
  • a preferred embodiment of this second aspect of the invention relates to a process for obtaining the chimeric VLP particles of the invention, which comprises culturing a host cell comprising a nucleic acid encoding the fusion protein of the invention, under conditions that allow the expression of said fusion proteins, and the assembly of said fusion proteins to form chimeric VLPs, and which further comprises isolating or purifying said chimeric VLPs.
  • the fusion protein of the invention can be obtained by genetic or recombinant engineering techniques well known in the state of the art.
  • the sequence of a nucleic acid encoding the fusion protein of the invention (hereinafter, nucleic acid of the invention) can be obtained by any biological or synthetic method, including, for example, but not limited to, the restriction of appropriate sequences or amplification of the DNA sequence of the protein of interest by polymerase chain reaction (PCR).
  • the nucleic acid of the invention comprises the sequence SEQ ID NO: 5.
  • the nucleic acid may be comprised in a gene construct (hereinafter, gene construct of the invention).
  • This gene construct of the invention may comprise the nucleic acid of the invention, operably linked to, a sequence regulating the expression of the nucleic acid of the invention, thereby constituting an expression cassette.
  • "Operationally linked” refers to a juxtaposition in which the components thus described have a relationship that allows them to function in the intended way.
  • a control sequence "operatively linked" to the nucleic acid is linked to it in such a way that expression of the nucleic acid coding sequence is achieved.
  • Control sequence refers to nucleic acid sequences that affect the expression of the sequences to which they are linked. Such control sequences include, for example, but not limited to, promoters, initiation signals, termination signals, enhancers or silencers. The term “control sequences” is intended to include those components whose presence is necessary for expression, and may also include additional components whose presence is advantageous.
  • the gene construct of the invention comprises the nucleic acid of the invention operably linked to at least one control sequence of the list comprising: a. a promoter,
  • promoter refers to a region of DNA located at position 5 'with respect to the starting point of transcription and which is necessary or facilitates such transcription in an animal cell. This term includes, for example, but not limited to, constitutive promoters, cell or tissue specific promoters or inducible or repressible promoters.
  • control sequences depend on the origin of the cell in which the nucleic acid of the invention is to be expressed.
  • expression control sequences linked to the nucleic acid of the invention are functional in prokaryotic cells and organisms, for example, but without limit yourself, bacteria; while in another particular embodiment, said expression control sequences are functional in eukaryotic cells and organisms, for example, yeast cells or animal cells.
  • the nucleic acid of the invention or the gene construct of the invention can be introduced into a cell, called a host cell, for example, but not limited, as a naked nucleic acid or by a vector.
  • cloning vector refers to a DNA molecule in which another DNA fragment can be integrated, without losing the capacity for self-replication.
  • expression vectors are, but are not limited to, plasmids, cosmids, DNA phages or artificial yeast chromosomes.
  • expression vector refers to a cloning vector suitable for expressing a nucleic acid that has been cloned therein after being introduced into a cell, called a host cell. Said nucleic acid is generally operatively linked to control sequences.
  • host cell refers to any prokaryotic or eukaryotic organism that is the recipient of an expression vector, cloning or any other DNA molecule.
  • a third aspect of the invention relates to the use of the chimeric VLP of the invention for the preparation of a medicament, preferably a vaccine.
  • a fourth aspect of the invention relates to the use of the chimeric VLP of the invention for the preparation of a medicament for the prevention and / or treatment of an infection caused by the influenza virus.
  • a sixth aspect of the invention relates to a pharmaceutical composition (hereinafter, pharmaceutical composition of the invention) comprising the chimeric VLP of the invention.
  • a preferred embodiment of this sixth aspect of the invention relates to a pharmaceutical composition comprising the chimeric VLP of the invention and further comprising a pharmaceutically acceptable carrier.
  • Another preferred embodiment of this sixth aspect of the invention relates to a pharmaceutical composition comprising the chimeric VLP of the invention and further comprising another active ingredient.
  • a more preferred embodiment of this sixth aspect of the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising the chimeric VLP of the invention, a pharmaceutically acceptable carrier and also another active ingredient.
  • active substance refers to any component that potentially provides a pharmacological activity or other different diagnostic effect , cure, mitigation, treatment or prevention of a disease, or that affects the structure or function of the body of the human being or other animals.
  • composition of the invention can be formulated for administration in a variety of ways known in the state of the art. Such formulations may be administered to an animal and, more preferably, to a mammal, including a human, by a variety of routes, including, but not limited to parenteral, intraperitoneal, intravenous, intradermal, epidural, intraspinal, intrastromal, intraaricular, intrasynovial. , intrathecal, intralesional, intraarterial, intracapsular, intracardiac, intramuscular, intranasal, intracranial, subcutaneous, intraorbital, intracapsular or topical.
  • routes including, but not limited to parenteral, intraperitoneal, intravenous, intradermal, epidural, intraspinal, intrastromal, intraaricular, intrasynovial.
  • intrathecal intralesional, intraarterial, intracapsular, intracardiac, intramuscular, intranasal, intracranial, subcutaneous, intraorbital, intra
  • the dosage to obtain a therapeutically effective amount depends on a variety of factors, such as, for example, age, weight, sex or tolerance of the animal.
  • the term "therapeutically effective amount” refers to the amount of the pharmaceutically effective composition that produces the desired effect and, in general, will be determined among other causes, by the characteristics of said pharmaceutical composition and of the therapeutic effect to be achieved.
  • the pharmaceutically acceptable “adjuvants” or “vehicles” that can be used in said compositions are the vehicles known in the state of the art.
  • FIG. 1 Construction of insertion vectors: Represents the insertion of Notl-Spel restriction sites from Serine-Threonine (TS) insertions generated by directed mutagenesis.
  • Step 1 an adapter is cloned by using Xbal-Spel compatible restriction enzymes.
  • Step 2 the adapter is replaced by the insert of interest using the Notl-Spel restriction sites.
  • FIG. 2 DNA sequence of the 2xM2e insert and its corresponding amino acid sequence.
  • the sequence of M2e is represented with gray color.
  • VLPs birnavirus chimeric pseudoviral capsids
  • EXAMPLE 1 SEARCH AND SELECTION OF VIRAL CAPSIDES OF BIRNAVIRUS CONTAINING THE M2e ANTIGEN OF THE VIRUS OF THE FLU. a) SEARCH AND SELECTION, THROUGH A PROCESS OF SUCCESSIVE SCREENING, OF CHEMICAL VLP CONTAINING M2e OF THE VIRUS OF THE FLU.
  • a process of insertion of two copies of M2e of the influenza virus is carried out in different positions of the external P domains of the VP2 protein.
  • a collection of 8 different plasmids containing a Spel site at the preferred positions within the domains is obtained by directed mutagenesis using the yeast expression plasmid pESC-URA (Stratagene TM) -VP2 45 2 external P of the VP2 protein.
  • each plasmid contains a multiple cloning site (MCS).
  • MCS multiple cloning site
  • the insert with the MCS contains several stop codons of translation "stop" in phase, which ensures that the religion of vectors without insert generates a truncated VP2, unable to form VLP.
  • the selection of the 8 vectors includes cloning sites in the 4 main external domains of the P region of the VP2 protein (see Table 1).
  • the 2xM2e sequence containing two copies of the sequence encoding the human influenza virus M2e antigen is generated by PCR (SEQ ID NO: 3) in which methionine in position 1 (Mi) is excluded, and the cysteines of positions 17 and 19 (Ci 7 and C19) are replaced by serines (S) (SEQ ID NO: 4).
  • each of the four hydrophilic amino acids is encoded by a codon of three randomly generated nucleotides as follows: in position 1 nucleotide A, G or C (V according to the IUPAC code), in the position 2 nucleotide A or G (R according to the IUPAC code), and in position 3 nucleotide A, G, C or T (N according to the IUPAC code).
  • VRN codons code for the 9 most hydrophilic amino acids, that is, histidine (H), glutamine (Q), asparagine (N), lysine (K), aspartic acid (D), glutamic acid (E), arginine (R ), serine (S) and glycine (G), as shown in Figure 2.
  • H histidine
  • glutamine Q
  • asparagine N
  • lysine K
  • aspartic acid D
  • E glutamic acid
  • E arginine
  • S serine
  • G glycine
  • the different randomly generated 2xM2e inserts contain seven additional amino acids in its ends whose DNA sequence contains the Not ⁇ and Spel restriction sites, used in molecular cloning [SEQ ID NO: 6].
  • the generation of an insertion library "hhhh- (M2e) -hhhh- (M2e) -hhhh" in the eight possible preselected insertion sites in the P region of the VP2 protein is carried out by a ligation reaction of the library of 8 vectors pre-digested with Not ⁇ and Spel and the library of PCR-generated DNA fragments containing the randomly generated 2xM2e fragments and pre-digested with Not ⁇ and Spel.
  • the ligation result is transformed into electrocompetent E.coli cells to generate a library of clones containing the different 2xM2e fragments inserted in the eight possible points of Preset insert in VP2.
  • ⁇ g of DNA from a mixture of plasmid DNA from all clones of the library is used to transform yeast cells, S.cerevisiae strain Y449 that are subsequently seeded in YNB / CSM-URA medium with 2% glucose
  • the yeast clones isolated and obtained in this selective medium will be transferred to YNB / CSM-URA plates with galactose and the resulting colonies are transferred to polyvinylidene fluoride membranes (English PVDF, Polyvinylidene Fluoride) to study the production of VLP by immunoblots of colonies using specific antibodies against the M2e epitope.
  • chimeric VLP VLP-M2e capable of generating a significant immune response against M2e is carried out by immunizing 6 mice with an initial dose intraperitoneally (i. P.), followeded by two recall doses subcutaneously. (sc) - In each dose 50 ⁇ g is administered for each of the VLP-2xM2e generated, or of the VLPs control without the M2e insert, in 200 ⁇ saline. All three doses are administered at intervals of 3 weeks. One week before the first immunization and two weeks after each booster dose, blood samples are obtained from the animals by retro-orbital puncture.
  • Table 3 Places of insertion in VP2 and sequence of the 2xM2e insert of the constructions resulting from the process of search and selection of chimeric VLPs containing 2xM2e and expressing more efficiently.
  • the efficacy as a vaccine for the protection against influenza virus infection of the three candidates of VLP-M2e with greater title "endpoint" is evaluated by the viral challenge in previously immunized animals. For this, groups of 13 mice are immunized with an initial immunogen dose intraperitoneally (i.p.), followed by two subcutaneous (s.c.) recall doses at 3-week intervals. In each dose 50 ⁇ g of VLP-2xM2e, or of the appropriate control, is administered in 200 ⁇ of saline.
  • mice are sacrificed if their body weight falls below 75% of their initial weight. As shown in Table 4, all mice in the control VLP groups without M2e inserts die within 8 days after the viral challenge. In contrast, none of the animals vaccinated with VLP 4 52-D 3 23 ⁇ 2xM2e ⁇ Q324 (Clone ID 4A) die in the course of the experiment, which means a survival rate of 100%.
  • Table 4 Survival data of mice vaccinated with different VLPs incorporating 2xM2e insertions in P regions of the VP2 of IBDV.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mycology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Pulmonology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

La invención se refiere a vacunas profilácticas para la prevención de la gripe en humanos. En particular, las vacunas de la presente invención están formadas por cápsidas pseudo-virales quiméricas de birnavirus conteniendo el antígeno M2e del virus de la gripe.

Description

VACUNAS PROFILACTICAS DE GRIPE A PARTIR DE CAPSIDAS VIRALES DE BIRNAVIRUS CONTENIENDO EL ANTIGENO M2e DEL VIRUS DE LA GRIPE. La invención se refiere a vacunas profilácticas para la prevención de la gripe en humanos. En particular, las vacunas de la presente invención están formadas por cápsidas pseudo-virales quiméricas de birnavirus conteniendo el antígeno M2e del virus de la gripe. ESTADO DE LA TÉCNICA ANTERIOR
La gripe representa un importante problema de salud global. Se estima que cada año la gripe afecta a 1 .000 millones de personas, de las cuales entre 3 y 5 millones desarrollan una forma severa de la enfermedad que origina entre 300.000 y 500.000 muertes.
Cada año se vacunan unos 200 millones de personas en el mundo con vacunas profilácticas frente a la gripe estacional que pueden contener más de una cepa del Influenzavirus inactivado. La necesidad de obtener cada año una nueva vacuna estacional viene dada por la gran variabilidad de los antígenos Neuraminidasa (NA) y Hemaglutinina (HA) de las proteínas de superficie de Influenzavirus causante de la gripe. Sin embargo el ectodominio de la proteína de superficie M2 (en inglés, M2e Matrix Protein 2 Ectodomain) es un antígeno que está muy conservado ente distintas cepas de influenza virus de origen humano y se ha propuesto como candidato a vacunas "universales" que conferiría protección contra distintas cepas de gripe estacional [Schotseart M. et al. Expert Rev. Vaccine (2009) 8(4):499-508].
Existen en la actualidad desarrollos clínicos de vacunas universales que incorporan el antígeno M2e. Entre ellas, cabe destacar aquellas en las que el antígeno M2e esta ligado o fusionado a otras entidades biológicas, como por ejemplo el ligando de TLR5 flagelina [Huleatt W et al. Vaccine (2008) 26, 201— 214], la hemocianína de Megathura Crenulata (KLH, del inglés Keyhole Limpet Hemocyanin) o el complejo proteico de la membrana externa de Neisseria meningitidis (OMPC del Inglés, Outer Membrane Protein Complex) [Fan J et al. Vaccine (2004) 22: 2993-3003].
Un ejemplo de presentación de antígenos sobre macroestructuras biológicas lo constituyen las partículas pseudo-virales (VLP, del inglés Virus-Like Partióles) quiméricas formadas a partir de proteínas virales estructurales que incorporan antígenos relevantes a una enfermedad. En este sentido existen precedentes que incorporan el antígeno de M2e en VLP de Hepatitis B [WO9907839; Neirynck S et al Nat. Med (1999) 5(10):1 157-1163; De Filíete M et al. (2006) Vaccine 24(44-46): 6597-6601 ; De Filíete M et al. (2008) Vaccine 26(51 ): 6503- 6507]. Entre las VLP propuestas para la presentación de diferentes antígenos se encuentran aquellas derivadas del Virus de la Bursitis Infecciosa (IBDV, del inglés Infectious Bursal Disease Virus). IBDV pertenece a la familia Birnaviridae y es el agente causante de la enfermedad de Gumboro en aves. Las partículas virales de IBDV son icosaédricas con simetría T=13 y están formadas por 260 trímeros de la proteína VP2 (37 kDa) reforzada en su parte interna por la proteína estructural VP3 (29 kDa). En el proceso de morfogénesis del virión los componentes proteicos de la cápsida viral resultan de la proteolísis del polipéptido precursor pVP2-VP4-VP3 (109 kDa) para liberar el precursor de VP2 de 512 aminoácidos (pVP2512), VP4 y VP3. La posterior escisión de aminoácidos en el extremo carboxilo terminal de pVP2512 da lugar a la forma madura de VP2 de 441 aminoácidos de longitud (VP244i ) presente en el virión [Da Costa B. et al. J. Virology (2002) 76(5):2393-2402]. Las VP2 de distintas cepas de IBDV presentan una homología de secuencia de proteína de más del 80%. Las VP2 de otros Birnaviridae comparten con IBDV homologías en su secuencia de proteína de un 40% en el caso de Birnavirus acuáticos y un 30% de Birnavirus de Drosophila melanogaster [Coulibaly F. et al. (2005) Cell 25,120(6):761 -772]. La expresión del polipéptido precursor pVP2-VP4-VP3 de IBDV en células eucariotas da lugar a la formación de VLP icosaédricas de simetría T=13, idénticas a las cápsidas nativas de IBDV [Martínez-Torrecuadrada JL. et al. (2001 ) J. Virology 75(22): 10815-10828]. Asimismo, la expresión de VP2 en células eucariotas en ausencia de otras proteínas de IBDV origina la formación de partículas icosaédricas VLP de simetría T=1 más pequeñas que los viriones de IBDV [Martinez-Torrecuadrada JL. et al. (2003) Vaccine 21 (17-18):1952- 1960]. Esta característica ha sido aprovechada para el diseño y expresión de VLP quiméricas que incorporan el antígeno BT procedente del virus de la fiebre aftosa en VLP T=1 a partir de fusiones de secuencias que codifican para dicho antígeno en el extremo carboxilo terminal del gen de la proteína VP2 [WO2007009673].
La capacidad de VP2 que contienen fusiones o inserciones de distinta naturaleza para formar VLP de IBDV del tipo T=1 de forma eficiente en un sistema de expresión en eucariotas depende, en gran medida, de la longitud de la VP2 [WO2005105834; Saugar I. et al. (2005) Structure 13(7): 1007-1 1 17], del lugar de inserción de estos insertos en la secuencia de VP2, y de la secuencia de los insertos que se introduzcan en VP2 [Rémond M. et al (2009) Vaccine. 27{1 ):93-8]. Sin embargo, la capacidad de las VLP quiméricas obtenidas para inducir una respuesta inmune adecuada en un modelo animal resulta impredecible.
DESCRIPCIÓN DE LA INVENCIÓN
En el diseño de vacunas profilácticas universales contra el virus de la gripe sería deseable contar con un sistema de presentación del antígeno M2e que genere una respuesta inmune específica y eficaz. En la presente invención se combinan secuencias que codifican para VP2 de IBDV y M2e del virus de la gripe con el fin de obtener una vacuna eficaz en la prevención de la gripe. No resulta obvio qué secuencias de M2e o de VP2 pueden resultar idóneas en la generación de la vacuna, ni tampoco el lugar óptimo de fusión o inserción de M2e con VP2. Por esta razón, en la presente invención se lleva cabo un proceso de búsqueda de VLP T=1 quiméricas a partir de fusiones e inserciones de secuencias que codifican M2e en el gen de VP2 de IBDV que resultan en la selección de las VLP quiméricas más eficaces en la prevención de la gripe causadas por Influenzavirus.
La inserción de secuencias ajenas a birnavirus en el gen de VP2 da lugar a modificaciones en la estructura tridimensional de la proteína codificada que afectan negativamente a su capacidad para auto-ensamblarse y formar cápsidas pseudo-virales de forma eficiente. Este efecto negativo no sólo depende del sitio de inserción, sino también de la secuencia de aminoácidos y longitud del inserto. No resulta, por tanto, obvio a priori qué puntos de inserción y secuencias de aminoácidos insertadas resultan en una eficiente formación de VLP quiméricas. Asimismo, la formación de VLP que incorporan secuencias que contienen M2e no es condición suficiente para generar una vacuna profiláctica eficiente frente al virus de la gripe, sino que ésto depende de la disposición final de los antígenos que contienen M2e en la VLP quimérica resultante. Más aún, es sabido que el sistema inmune responde de forma más potente frente a repeticiones del antígeno y, por tanto, las partículas seleccionadas en la presente invención incorporan dos o tres copias de M2e, preferiblemente dos. Las VLP quiméricas de la presente invención se obtienen de un proceso de selección en el que se identifica la disposición óptima de las secuencias de M2e para la formación de VLP y los lugares de inserción en VP2 que dan que dan lugar a VLP quiméricas con una mayor eficacia en la profilaxis contra el virus de la gripe.
Tal y como se describe, sin limitación, en el Ejemplo 1 , la presente invención proporciona partículas pseudo-virales originadas a partir de inserciones de secuencias que codifican M2e del virus de la gripe en el gen que codifica VP2 de Birnavirus y eficaces en la prevención de la gripe causada por distintas variantes del virus que causa dicha enfermedad. Un primer aspecto de la invención se refiere a una partícula pseudo-viral (VLP) quimérica (de aquí en adelante, VLP quimérica de la invención) formada por una proteína de fusión (de aquí en adelante, proteína de fusión de la invención) que comprende:
- una subunidad (a) que consiste en la proteína pVP2 de Birnavirus o un fragmento de la misma, y
- una subunidad (b) que comprende un antígeno M2e de Virus de la Gripe,
donde la subunidad (b) está insertada en la subunidad (a).
El término "cápsida pseudo-viral", "partícula pseudo-viral" o "VLP" (del inglés Virus-Like Partióle) se refiere a una estructura nanométrica tridimensional formada por el ensamblado de proteínas virales estructurales. En la presente invención, las proteínas virales estructurales que forman la partícula pseudo- viral de la invención son proteínas de fusión que comprenden la proteína pVP2 de un Birnavirus o un fragmento de la misma y al menos un antígeno M2e del virus de la Gripe (Influenzavirus). El término Birnavirus se refiere a cualquier virus de la familia Birnaviridae, perteneciente al Grupo I I I según la Clasificación de Baltimore. La familia Birnaviridae está constituida por los géneros Avibirnavirus, Aquabirnavirus, Blosnavirus y Entomobirnavirus. Preferiblemente, el Birnavirus es de la familia Avibirnavirus, y más preferiblemente, el Virus de la Bursitis infecciosa (IBDV).
El término "virus de la bursitis infecciosa" o "IBDV" (IBDV, del inglés Infectious Bursal Disease Virus) se refiere a virus de la familia Birnaviridae y genero Avibirnavirus causantes de la enfermedad de Gumboro en pollos y que pertenecen al Grupo II I de la Clasificación de Baltimore. Preferiblemente, el IBDV es el IBDV cepa Soroa. El genoma de los Birnavirus consta de dos moléculas lineares de ARN de doble cadena denominadas A y B, que codifican 5 proteínas. El gen VP2, enclavado en el segmento A, codifica la proteína precursora de la proteína VP2 (pVP2). La eliminación de secuencias del extremo carboxilo terminal de pVP2 por proteólisis da lugar a la proteína VP2 madura, que es la proteína principal que constituye la cápsida viral.
El término "proteína pVP2" o "pVP2", tal y como se utiliza en la presente descripción, se refiere a la proteína precursora de VP2 codificada por el gen VP2 de un Birnavirus. Preferiblemente, este término se refiere a la proteína precursora de VP2 de 512 aminoácidos (VP25i2) del IBDV.
La secuencia de aminoácidos de la proteína VP2512 del IBDV cepa Soroa (SEQ ID NO: 1 ) se encuentra depositada con el número de acceso AAD30136 en NCBI (del inlgés National Center for Biotechnology Information). La proteína VP2512 de otras cepas de IBDV presenta al menos un 80% de identidad con SEQ ID NO: 1 . Por tanto, en una realización preferida, el término pVP2 se refiere a una proteína con al menos un 80%, un 85%, un 90%, un 95%, un 98% o un 99% de identidad, con SEQ ID NO: 1 . En una realización más preferida el término pVP2 se refiere a la SEQ ID NO: 1 .
El término "identidad", tal y como se utiliza en esta descripción, hace referencia a la proporción de aminoácidos idénticos entre dos secuencias de aminoácidos que se comparan. El tanto por ciento de identidad existente entre dos secuencias de aminoácidos puede ser identificado fácilmente por un experto en la materia, por ejemplo, con la ayuda de un programa informático apropiado para comparar secuencias.
El término "fragmento", tal y como se utiliza en la presente descripción se refiere a una porción de la proteína pVP2, de al menos 400 aminoácidos, capaz de formar VLP. Este término incluye, por tanto, la proteína VP2 madura de 441 aminoácidos del IBDV (VP244i ). En una realización preferida de este primer aspecto de la invención, la subunidad (a) de la proteína de fusión que forma la VLP quimérica de la invención consiste en una proteína con al menos un 80% de identidad con la SEQ ID NO: 1 o un fragmento de la misma. En una realización más preferida, la subunidad (a) de la proteína de fusión que forma la VLP quimérica de la invención consiste en una proteína con la SEQ ID NO: 1 o un fragmento de la misma. En una realización aún más preferida, la subunidad (a) de la proteína de fusión que forma la VLP quimérica de la invención consiste en la SEQ ID NO: 2.
En una realización preferida, la subunidad (b) está insertada en la región P de la subunidad (a). La expresión "región P", tal y como se utiliza en la presente descripción, se refiere a los cuatro dominios externos (BC, DE, FG y H l) de la proteína pVP2 o las secuencias de aminoácidos que corresponden a dichos dominios en un fragmento de la proteína pVP2.
Los cuatro dominios externos de la proteína pVP2 de IBDV cepa Soroa se corresponden con las secuencias comprendidas entre los aminoácidos Q219- G224 (dominio BC), R249-L255 (dominio DE), T283-D287 (dominio FG) y S315-Q324 (dominio Hl). Entre paréntesis figuran el primer y último aminoácido de cada dominio y su correspondiente posición en la secuencia de pVP2 de IBDV.
El término "dominio BC de la región P" se refiere, por tanto, a la secuencia de aminoácidos comprendida entre el aminoácido de la posición 219 y el aminoácido de la posición 224 de la proteína pVP2. Preferiblemente, este término se refiere a la secuencia de aminoácidos comprendida entre la Q219 y la G224 de la SEQ ID NO: 1 . Más preferiblemente, este término se refiere a la secuencia de aminoácidos comprendida entre la Q219 y la G224 de la SEQ ID NO: 2. El término "dominio DE de la región P" se refiere, por tanto, a la secuencia de aminoácidos comprendida entre el aminoácido de la posición 249 y el aminoácido de la posición 255 de la proteína pVP2. Preferiblemente, este término se refiere a la secuencia de aminoácidos comprendida entre la R24g y la l_255 de la SEQ ID NO: 1 . Más preferiblemente, este término se refiere a la secuencia de aminoácidos comprendida entre la R24g y la L255 de la SEQ ID NO: 2.
El término "dominio FG de la región P" se refiere, por tanto, a la secuencia de aminoácidos comprendida entre el aminoácido de la posición 283 y el aminoácido de la posición 287 de la proteína pVP2. Preferiblemente, este término se refiere a la secuencia de aminoácidos comprendida entre la T283 y la D287 de la SEQ ID NO: 1 . Más preferiblemente, este término se refiere a la secuencia de aminoácidos comprendida entre la T283 y la D287 de la SEQ ID NO: 2.
El término "dominio Hl de la región P" se refiere, por tanto, a la secuencia de aminoácidos comprendida entre el aminoácido de la posición 315 y el aminoácido de la posición 324 de la proteína pVP2. Preferiblemente, este término se refiere a la secuencia de aminoácidos comprendida entre la S315 y la Q324 de la SEQ ID NO: 1 . Más preferiblemente, este término se refiere a la secuencia de aminoácidos comprendida entre la S315 y la Q324 de la SEQ ID NO: 2. En una realización preferida de este primer aspecto de la invención, la subunidad (b) está insertada en la región P de la SEQ ID NO: 2.
En una realización preferida de este primer aspecto de la invención, la subunidad (b) de la proteína de fusión que forma la VLP de la invención, está insertada en el dominio Hl de la región P pVP2 o un fragmento de pVP2. En una realización más preferida, la subunidad (b) de la proteína de fusión que forma la VLP de la invención, está insertada entre los aminoácidos D323 y Q324 de pVP2 o un fragmento de pVP2.
En una realización más preferida de este primer aspecto de la invención, la subunidad (b) de la proteína de fusión que forma la VLP de la invención, está insertada en el dominio Hl de la región P de la SEQ ID NO: 2. En una realización más preferida, la subunidad (b) de la proteína de fusión que forma la VLP de la invención, está insertada entre los aminoácidos D323 y Q324 de la SEQ ID NO: 2.
El término "antígeno M2e" o "M2e" (del inglés, Matrix Protein 2 Ectodomain) se refiere al antígeno de la proteína de matriz M2 del virus de la gripe que contiene la región extracelular de dicha proteína. El término antígeno M2e incluye antígenos de la proteína de matriz M2 del virus de la gripe, como por ejemplo, pero sin limitarnos, el virus de la gripe humana, porcina o aviar. En una realización preferida, el término antígeno M2e se refiere al antígeno de la proteína de matriz M2 del virus de la gripe humana que contiene la región extracelular de dicha proteína, cuya secuencia es SEQ ID NO: 3. Por tanto, el término M2e, preferiblemente, se refiere es un polipéptido con al menos un 60%, un 70%, un 80%, un 90%, un 95% o un 99% de identidad, con SEQ ID NO: 3. Más preferiblemente, el término, se refiere a un polipéptido con la secuencia de aminoácidos SEQ ID NO: 3.
La sustitución de las cisternas por serinas en la SEQ ID NO: 3 confiere una mayor estabilidad y/o previene la agregación del antígeno M2e. Por tanto, en una realización preferida, el término antígeno M2e se refiere al antígeno de la proteína de matriz M2 del virus de la gripe que contiene la región extracelular de dicha proteína en el que algunas o todas las cisternas se han sustituido por serinas. En una realización más preferida, este término se refiere a un polipéptido con la secuencia de aminoácidos SEQ ID NO: 4. En una realización preferida de este primer aspecto de la invención, la subunidad (b) de la proteína de fusión comprende dos antígenos M2e unidos mediante un polipéptido hidrofílico. La subunidad (b) está insertada en la subunidad (a) para dar lugar a la proteína de fusión que forma la VLP quimérica de la invención. La expresión "insertada" significa que la secuencia de aminoácidos de la subunidad (a) está dividida en dos partes (a1 ) y (a2), entre las cuales se encuentra la secuencia de aminoácidos de la subunidad (b). La unión entre la secuencia de aminoácidos de la subunidad (b) y la secuencia de aminoácidos de cada una de las subunidades (a1 ) o (a2) puede ser directa o mediante uno o dos polipéptidos espaciadores.
El término "polipéptido espaciador" o "linker", tal y como se utiliza en la presente descripción, se refiere a una secuencia de aminoácidos corta, preferiblemente, de hasta 15 aminoácidos de longitud, más preferiblemente, de hasta 10 aminoácidos de longitud, aún más preferiblemente, de hasta 5 aminoácidos de longitud, situada o bien entre la secuencia de aminoácidos de la subunidad (b) y la secuencia de aminoácidos de la subunidad (a), o bien entre los antígenos M2e que forman parte de la subunidad (b).
En un realización preferida, el polipéptido espaciador (p) es un polipéptido hidrofílico. El término "polipéptido espaciador hidrofílico" o "linker hidrofílico" son secuencias que comprenden entre 2 y 8 aminoácidos hidrofílicos (h), como por ejemplo, histidina (H), glutamina (Q), asparagina (N), lisina (K), ácido aspártico (D), acido glutámico (E), arginina (R), serina (S) y glicina (G). En una realización más preferida, el polipéptido hidrofílico es un polipéptido formado por 4 aminoácidos hidrofílicos (hhhh). Cuando la unión entre las subunidades (a) y (b) de la proteína de fusión que forma la VLP de la invención es directa, el aminoácido del extremo carboxilo- terminal de la parte (a1 ) de la subunidad (a) forma un enlace peptídico con el aminoácido del extremo amino-terminal de la subunidad (b) y el aminoácido del extremo carboxilo-terminal de la subunidad (b) forma un enlace peptídico con el aminoácido del extremo amino-terminal de la parte (a2) de la subunidad (a), tal y como se representa en el siguiente esquema:
Nt-(a1 ) -Ct ~ Nt-(b)-Ct ~ Nt-(a2) -Ct donde (a1 ) representa una parte de la subunidad (a), (a2) representa la otra parte de la subunidad (a), (b) representa a la subunidad (b), Nt representa el extremo amino-terminal de la subunidad correspondiente, Ct representa el extremo carboxilo-terminal de la subunidad correspondiente, y ~ representa un enlace peptídico entre las diferentes unidades de la proteína de fusión de la invención. Cuando la unión entre las subunidades (a) y (b) de la proteína de fusión que forma la VLP de la invención se realiza mediante dos polipéptidos espaciadores, que pueden ser iguales o distintos, el aminoácido del extremo carboxilo-terminal de la parte (a1 ) de la subunidad (a) forma un enlace peptídico con el aminoácido del extremo amino-terminal de un primer polipéptido espaciador (p1 ), el aminoácido del extremo carboxilo-terminal de este primer polipéptido espaciador (p1 ) forma un enlace con el aminoácido del extremo amino-terminal de la subunidad (b), el aminoácido del extremo carboxilo-terminal de la subunidad (b) forma un enlace peptídico con el aminoácido del extremo amino-terminal de un segundo polipéptido espaciador (p2) y el aminoácido del extremo carboxilo-terminal de este segundo polipéptido espaciador (p2) forma un enlace con el aminoácido del extremo amino-terminal de la parte (a2) de la subunidad (a), tal y como se representa en el siguiente esquema:
Nt-(a1 ) -Ct ~ Nt-(p1 )-Ct ~ Nt-(b)-Ct ~ Nt-(p2)-Ct ~ Nt-(a2) -Ct donde (a1 ) representa una parte de la subunidad (a), (a2) representa la otra parte de la subunidad (a), (b) representa a la subunidad (b), (p1 ) representa un primer polipéptido espaciador, (p2) representa un segundo polipéptido espaciador, Nt representa el extremo amino-terminal de la subunidad o del polipéptido espaciador correspondiente, Ct representa el extremo carboxilo- terminal de la subunidad o del polipéptido espaciador correspondiente, y ~ representa un enlace peptídico entre las diferentes unidades de la proteína de fusión de la invención. Cuando la unión entre las subunidades (a) y (b) de la proteína de fusión que forma la VLP de la invención se realiza mediante únicamente un polipéptido espaciador, la subunidad (b) por un extremo se encuentra unida con una de las partes de la subunidad (a) directamente mediante enlace peptídico y por el otro extremo se encuentra unida con la otra parte de la subunidad (a) mediante un polipéptido espaciador, tal y como se representa en los siguientes esquemas:
Nt-(a1 ) -Ct ~ Nt-(b)-Ct ~ Nt-(p)-Ct ~ Nt-(a2) -Ct Nt-(a1 ) -Ct ~ Nt-(p)-Ct ~ Nt-(b)-Ct ~ Nt-(a2) -Ct donde (a1 ) representa una parte de la subunidad (a), (a2) representa la otra parte de la subunidad (a), (b) representa a la subunidad (b), (p) representa un polipéptido espaciador, Nt representa el extremo amino-terminal de la subunidad o del polipéptido espaciador correspondiente, Ct representa el extremo carboxilo-terminal de la subunidad o del polipéptido espaciador correspondiente, y ~ representa un enlace peptídico entre las diferentes unidades de la proteína de fusión de la invención.
En una realización preferida, la proteína de fusión que forma la VLP quimérica de la invención comprende, además de la subunidad (a) y la subunidad (b), uno o dos polipéptidos espaciadores hidrofílicos entre la secuencia de aminoácidos de la subunidad (b) y las secuencias de aminoácidos de la subunidad (a). En una realización más preferida, la proteína de fusión que forma la VLP quimérica de la invención comprende, además de la subunidad (a) y la subunidad (b), dos polipéptidos espaciadores hidrofílicos entre la secuencia de aminoácidos de la subunidad (b) y las secuencias de aminoácidos de la subunidad (a). En una realización más preferida, la subunidad (b) de la proteína de fusión que forma la VLP quimérica de la invención comprende dos antígenos M2e (M2e-1 y M2e-2), que pueden ser iguales o distintos entre sí. La unión entre la secuencia de aminoácidos entre estos dos antígenos M2e-1 y M2e-2 de la subunidad (b) puede ser directa o mediante un polipéptido espaciador.
Cuando la unión entre los antígenos M2e-1 y M2e-2 de la subunidad (b) de la proteína de fusión que forma la VLP de la invención es directa, el aminoácido del extremo carboxilo-terminal de un primer antígeno M2e-1 forma un enlace peptídico con el aminoácido del extremo amino-terminal de un segundo antígeno M2e-1 , tal y como se representa en el siguiente esquema:
~ Nt-(M2e-1 )-Ct ~ Nt-(M2e-2)-Ct ~ donde (M2e-1 ) representa uno de los antígenos M2e, (M2e-2) representa el otro antígenos M2e, Nt representa el extremo amino-terminal del antígeno correspondiente, Ct representa el extremo carboxilo-terminal del antígeno correspondiente, y ~ representa un enlace peptídico entre las diferentes unidades de la subunidad (b) de la proteína de fusión de la invención. Cuando la unión entre los antígenos M2e-1 y M2e-2 de la subunidad (b) de la proteína de fusión que forma la VLP de la invención se realiza mediante un polipéptido espaciador, el aminoácido del extremo carboxilo-terminal de un primer antígeno M2e-1 forma un enlace peptídico con el aminoácido del extremo amino-terminal de un polipéptido espaciador (p) y el aminoácido del extremo carboxilo-terminal del polipéptido espaciador (p) forma un enlace peptídico con el aminoácido del extremo amino-terminal de un segundo antígeno M2e-2, tal y como se representa en el siguiente esquema: ~ Nt-(M2e-1 )-Ct ~ Nt-(p)-Ct ~ Nt-(M2e-2)-Ct ~ donde (M2e-1 ) representa uno de los antígenos M2e, (M2e-2) representa el otro antígenos M2e, (p) representa un polipéptido espaciador, Nt representa el extremo amino-terminal del antígeno o del polipéptido espaciador correspondiente, Ct representa el extremo carboxilo-terminal del antígeno o del polipéptido espaciador correspondiente, y ~ representa un enlace peptídico entre las diferentes unidades de la subunidad (b) de la proteína de fusión de la invención.
En una realización más preferida, la subunidad (b) de la proteína de fusión que forma la VLP quimérica de la invención comprende tres antígenos M2e (M2e-1 , M2e-2 y M2e-3), que pueden ser iguales o distintos entre sí. La unión entre la secuencia de aminoácidos entre estos los diferente antígenos M2e-1 , M2e-2 y Me-3 de la subunidad (b) puede ser directa o mediante un o dos polipéptidos espaciadores.
Cuando la unión entre los antígenos M2e-1 , M2e-2 y M2e-3 de la subunidad (b) de la proteína de fusión que forma la VLP de la invención se realiza mediante dos polipéptidos espaciadores, que pueden ser iguales o distintos entre sí, el aminoácido del extremo carboxilo-terminal de un primer antígeno M2e-1 forma un enlace peptídico forma un enlace peptídico con el aminoácido del extremo amino-terminal de un primer polipéptido espaciador (p1 ), el aminoácido del extremo carboxilo-terminal de este primer polipéptido espaciador (p1 ) forma un enlace con el aminoácido del extremo amino-terminal de un segundo antígeno M2e-1 , el aminoácido del extremo carboxilo-terminal de este segundo antígeno M2e-2 forma un enlace peptídico con el aminoácido del extremo amino-terminal de un segundo polipéptido espaciador (p2) y el aminoácido del extremo carboxilo-terminal de este segundo polipéptido espaciador (p2) forma un enlace con el aminoácido del extremo amino-terminal de un tercer antígeno M2e-3, tal y como se representa en el siguiente esquema: ~ Nt-(M2e-1 ) -Ct ~ Nt-(p1 )-Ct ~ Nt-(M2e-2)-Ct ~ Nt-(p2)-Ct ~ Nt-(M2e-3)-Ct ~ donde (M2e-1 ) representa un primer antígeno M2e, (M2e-2) representa un segundo antígeno M2e, (M2e-3) representa un tercer antígeno M2e, (p1 ) representa un primer polipéptido espaciador, (p2) representa un segundo polipéptido espaciador, Nt representa el extremo amino-terminal del antígeno o del polipéptido espaciador correspondiente, Ct representa el extremo carboxilo- terminal del antígeno o del polipéptido espaciador correspondiente, y ~ representa un enlace peptídico entre las diferentes unidades de la subunidad (b) de la proteína de fusión de la invención.
Cuando la unión entre los antígenos M2e-1 , M2e-2 y M2e-3 de la subunidad (b) de la proteína de fusión que forma la VLP se realiza mediante únicamente un polipéptido espaciador, una de las uniones entre los antígenos M2e es una unión directa mediante enlace peptídico, mientras otra de las uniones tiene lugar mediante un polipéptido espaciador, tal y como se representa en los siguientes esquemas:
~ Nt-(M2e-1 ) -Ct ~ Nt-(p)-Ct ~ Nt-(M2e-2)-Ct ~ Nt-(M2e-3)-Ct ~
~ Nt-(M2e-1 ) -Ct ~ Nt-(M2e-2)-Ct ~ Nt-(p)-Ct ~ Nt-(M2e-3)-Ct ~ donde (M2e-1 ) representa un primer antígeno M2e, (M2e-2) representa un segundo antígeno M2e, (M2e-3) representa un tercer antígeno M2e, (p) representa un polipéptido espaciador, Nt representa el extremo amino-terminal del antígeno o del polipéptido espaciador correspondiente, Ct representa el extremo carboxilo-terminal del antígeno o del polipéptido espaciador correspondiente, y ~ representa un enlace peptídico entre las diferentes unidades de la proteína de fusión de la invención. En una realización preferida, la subunidad (b) de la proteína de fusión que forma la VLP quimérica de la invención comprende dos antígenos M2e, unidos entre sí además de la subunidad (a) y la subunidad (b), uno o dos polipéptidos espaciadores hidrofílicos entre la secuencia de aminoácidos de la subunidad (b) y las secuencias de aminoácidos de la subunidad (a).
En una realización más preferida, la proteína de fusión donde la subunidad (b) comprende dos antígenos M2e, unidos entre sí mediante un polipéptido hidrofílico, donde dicha subunidad (b) está insertada en la subunidad (a) mediante dos polipéptidos espaciadores hidrofílicos, tal y como se representa en el siguiente esquema: ~ Nt-(a1 ) -Ct ~ Nt-(p1 )-Ct ~ Nt-(M2e-1 )-Ct ~ Nt-(p2)- Ct ~ Nt-(M2e-2)-Ct ~ Nt-(p3)-Ct ~ Nt-(a2)-Ct ~, donde (M2e-1 ) representa un primer antígeno M2e, (M2e-2) representa un segundo antígeno M2e, (p1 ) representa un primer polipéptido espaciador, (p2) representa un segundo polipéptido espaciador, (p3) representa un tercer polipéptido espaciador, Nt representa el extremo amino-terminal del antígeno o del polipéptido espaciador correspondiente, Ct representa el extremo carboxilo-terminal del antígeno o del polipéptido espaciador correspondiente, y ~ representa un enlace peptídico entre las diferentes unidades de la proteína de fusión de la invención.
En una realización preferida, la secuencia de aminoácidos de ~ Nt-(p)-Ct ~ Nt- (M2e-1 )-Ct ~ Nt-(p)-Ct ~ Nt-(M2e-2)-Ct ~ Nt-(p)-Ct ~ según el esquema anterior es SEQ ID NO: 7.
Una realización preferida de este primer aspecto de la invención se refiere a una VLP quimérica formada por una proteína de fusión que comprende la SEQ ID NO: 7 insertada entre los aminoácidos D323 y Q324 de la SEQ ID NO: 2. Una realización más preferida, se refiere a una VLP quimérica formada por una proteína de fusión cuya secuencia de aminoácidos es la SEQ ID NO: 8.
Un segundo aspecto de la invención se refiere a un procedimiento para la obtención de las VLP quiméricas de la invención, que comprende cultivar una célula hospedadora que comprende un ácido nucleico que codifica para la proteína de fusión de la invención, en condiciones que permiten la expresión de dichas proteínas de fusión, y el ensamblaje de dichas proteínas de fusión para formar VLP quiméricas.
Una realización preferida de este segundo aspecto de la invención, se refiere a un procedimiento para la obtención de las partículas VLP quiméricas de la invención, que comprende cultivar una célula hospedadora que comprende un ácido nucleico que codifica para la proteína de fusión de la invención, en condiciones que permiten la expresión de dichas proteínas de fusión, y el ensamblaje de dichas proteínas de fusión para formar VLP quiméricas, y que además comprende aislar o purificar dichas VLP quiméricas.
La proteína de fusión de la invención puede obtenerse mediante técnicas de ingeniería genética o recombinante bien conocidas en el estado de la técnica. La secuencia de un ácido nucleico que codifica para la proteína de fusión de la invención (de aquí en adelante, ácido nucleico de la invención) puede obtenerse mediante cualquier método biológico o sintético, incluyendo, por ejemplo, pero sin limitarse a, la restricción de secuencias apropiadas o la amplificación de la secuencia de ADN de la proteína de interés mediante la reacción en cadena de la polimerasa (PCR).
En una realización preferida, el ácido nucleico de la invención comprende la secuencia SEQ ID NO: 5.
El ácido nucleico puede estar comprendido en una construcción génica (de aquí en adelante, construcción génica de la invención). Esta construcción génica de la invención puede comprender el ácido nucleico de la invención, operativamente unido a, una secuencia reguladora de la expresión del ácido nucleico de la invención, constituyendo de este modo un cassette de expresión. "Unidos operativamente" se refiere a una yuxtaposición en la que los componentes así descritos tienen una relación que les permite funcionar en la manera intencionada. Una secuencia de control "unida de forma operativa" al ácido nucleico, está ligada al mismo de tal manera que se consigue la expresión de la secuencia codificadora del ácido nucleico.
"Secuencia de control" se refiere a secuencias de ácidos nucleicos que afectan la expresión de las secuencias a las que están ligadas. Dichas secuencias de control incluyen, por ejemplo, pero sin limitarse, promotores, señales de iniciación, señales de terminación, intensificadores o silenciadores. Se pretende que el término "secuencias de control" incluya, aquellos componentes cuya presencia es necesaria para la expresión, y también puede incluir componentes adicionales cuya presencia sea ventajosa.
En una realización preferida, la construcción génica de la invención comprende el ácido nucleico de la invención unido operativamente a, al menos, una secuencia de control de la lista que comprende: a. un promotor,
b. una señal de inicio de la transcripción,
c. una señal de terminación de la transcripción,
d. una señal de poliadenilación, o
e. un activador transcripcional.
Como se usa aquí, el término "promotor" hace referencia a una región de ADN situada en posición 5' con respecto al punto de inicio de la transcripción y que resulta necesaria o facilita dicha transcripción en una célula animal. Este término incluye, por ejemplo, pero sin limitarse, promotores constitutivos, promotores específicos de tipo celular o de tejido o promotores inducibles o reprimibles.
Las secuencias de control dependen del origen de la célula en la que se quiere expresar el ácido nucleico de la invención. En una realización particular, las secuencias de control de expresión unidas al ácido nucleico de la invención son funcionales en células y organismos procariotas, por ejemplo, pero sin limitarse, bacterias; mientras que en otra realización particular, dichas secuencias de control de expresión son funcionales en células y organismos eucariotas, por ejemplo, células de levadura o células animales. El ácido nucleico de la invención o la construcción génica de la invención pueden ser introducidos al interior de una célula, denominada célula hospedadora, por ejemplo, pero sin limitarse, como ácido nucleico desnudo o mediante un vector. El término "vector de clonación", tal y como se utiliza en la presente descripción, se refiere a una molécula de ADN en la que se puede integrar otro fragmento de ADN, sin que pierda la capacidad de autorreplicación. Ejemplos de vectores de expresión son, pero sin limitarse, plásmidos, cósmidos, fagos de ADN o cromosomas artificiales de levadura.
El término "vector de expresión", tal y como se utiliza en la presente descripción, se refiere a un vector de clonaje adecuado para expresar un ácido nucleico que ha sido clonado en el mismo tras ser introducido en una célula, denominada célula huésped. Dicho ácido nucleico se encuentra, por lo general, unido operativamente a secuencias de control.
El término "célula hospedadora", tal y como se utiliza en la presente descripción se refiere a cualquier organismo procariota o eucariota que es recipiente de un vector de expresión, de clonación o de cualquier otra molécula de ADN.
Un tercer aspecto de la invención se refiere al uso de la VLP quimérica de la invención para la elaboración de un medicamento, preferiblemente, una vacuna. Un cuarto aspecto de la invención se refiere al uso de la VLP quimérica de la invención para la elaboración de un medicamento para la prevención y/o el tratamiento de una infección causada por el virus de la gripe. Un sexto aspecto de la invención se refiere a una composición farmacéutica (de aquí, en adelante, composición farmacéutica de la invención) que comprende la VLP quimérica de la invención. Una realización preferida de este sexto aspecto de la invención se refiere a una composición farmacéutica que comprende la VLP quimérica de la invención y que además comprende un vehículo farmacéuticamente aceptable. Otra realización preferida de este sexto aspecto de la invención se refiere a una composición farmacéutica que comprende la VLP quimérica de la invención y que además comprende otro principio activo. Una realización más preferida de este sexto aspecto de la invención se refiere a una composición farmacéutica que comprende la VLP quimérica de la invención, un vehículo farmacéuticamente aceptable y además otro principio activo. Como se emplea aquí, los términos "principio activo", "sustancia activa", sustancia farmacéuticamente activa", "ingrediente activo" o "ingrediente farmacéuticamente activo" se refiere a cualquier componente que potencialmente proporcione una actividad farmacológica u otro efecto diferente en el diagnóstico, cura, mitigación, tratamiento o prevención de una enfermedad, o que afecte a la estructura o función del cuerpo del ser humano u otros animales.
La composición farmacéutica de la invención puede formularse para su administración en una variedad de formas conocidas en el estado de la técnica. Tales formulaciones pueden administrarse a un animal y, más preferiblemente, a un mamífero, incluyendo a un humano, por una variedad de vías, incluyendo, pero sin limitarse a parenteral, intraperitoneal, intravenosa, intradérmica, epidural, intraespinal, intraestromal, intraaricular, intrasinovial, intratecal, intralesional, intraarterial, intracapsular, intracardiaca, intramuscular, intranasal, intracraneal, subcutánea, intraorbital, intracapsular o tópica. La dosificación para obtener una cantidad terapéuticamente efectiva depende de una variedad de factores, como, por ejemplo, edad, peso, sexo o tolerancia del animal. En el sentido utilizado en esta descripción, la expresión "cantidad terapéuticamente efectiva" se refiere a la cantidad de la composición farmacéuticamente efectiva que produzca el efecto deseado y, en general, vendrá determinada entre otras causas, por las características propias de dicha composición farmacéutica y del efecto terapéutico a conseguir. Los "adyuvantes" o "vehículos" farmacéuticamente aceptables que pueden ser utilizados en dichas composiciones son los vehículos conocidos en el estado de la técnica.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Las siguientes figuras y ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. DESCRIPCION DE LAS FIGURAS
Figura 1 : Construcción de vectores de inserción: Representa la inserción de sitios de restricción Notl-Spel a partir de inserciones Serina-Treonina (TS) generados mediante mutagénesis dirigida. En el Paso 1 se clona un adaptador mediante el uso de enzimas de restricción compatibles Xbal-Spel. En Paso 2 se sustituye el adaptador por el inserto de interés usando los sitios de restricción Notl-Spel.
Figura 2: Secuencia de ADN del inserto 2xM2e y su correspondiente secuencia de aminoácidos. Codones VRN (V=nucleótidos A,C o G; R=nucleótidos A o G; N=nucleótidos T,C,A o G) codifican a los 9 aminoácidos mas hidrofílicos (h), que son histidina (H), glutamina (Q), asparagina (N), lisina (K), acido ácido aspártico (D), ácido glutámico (E), arginina (R), serina (S) y glicina (G). La secuencia de M2e se representa con color gris.
Figura 3. VLP quiméricas VP2-2xM2e. Microscopía electrónica de las cápsidas pseudovirales (VLP) quiméricas de birnavirus que presentan el antígeno del virus de la gripe M2e incorporado en el dominio externo Hl de la proteína VP2452 de IBDV.
EJEMPLOS
Los siguientes ejemplos específicos que se proporcionan en este documento de patente sirven para ilustrar la naturaleza de la presente invención. Estos ejemplos se incluyen solamente con fines ilustrativos y no han de ser interpretados como limitaciones a la invención que aquí se reivindica. Por tanto, los ejemplos descritos más adelante ilustran la invención sin limitar el campo de aplicación de la misma.
EJEMPLO 1 : BÚSQUEDA Y SELECCIÓN DE CÁPSIDAS VIRALES DE BIRNAVIRUS CONTENIENDO EL ANTIGENO M2e DEL VIRUS DE LA GRIPE. a) BÚSQUEDA Y SELECCIÓN, MEDIANTE UN PROCESO DE CRIBAJE SUCESIVO, DE VLP QUIMÉRICAS CONTENIENDO M2e DEL VIRUS DE LA GRIPE.
Para la búsqueda de lugares de inserción del antígeno M2e que resultan en la eficaz formación de VLP quiméricas se lleva a cabo un proceso de inserción de dos copias de M2e del virus de la gripe en distintas posiciones de los dominios externos P de la proteína VP2. Para esto, se obtiene mediante mutagénesis dirigida utilizando el plásmido de expresión de levaduras pESC- URA(Stratagene™)-VP2452 una colección de 8 plásmidos diferentes que contienen un sitio Spel en las posiciones preferidas dentro de los dominios externos P de la proteína VP2. Para limitar el número de falsos positivos durante las búsquedas, se prepara una segunda generación de vectores de inserción en los dominios externos P de la proteína VP2 de forma que cada plásmido contiene un sitio de clonaje múltiple (MCS, del inglés Múltiple Cloning Site) para el clonaje direccional del DNA de interés. Tal y como se representa en la Figura 1 , para este propósito los plásmidos que contienen el sitio Spel en cada uno de los puntos de inserción escogidos se digieren con la enzima de restricción Spel y se ligan para incorporar el inserto que contiene un MCS con los lugares de restricción Notl y Spel, que permiten el posterior clonaje direccional de insertos de interés. El inserto con el MCS contiene varios codones de parada de traducción "stop" en fase, lo que asegura que el religado de vectores sin inserto genere una VP2 truncada, incapaz de formar VLP. La selección de los 8 vectores incluye sitios de clonaje en los 4 principales dominios externos de la región P de la proteína VP2 (ver Tabla 1 ).
Tabla 1
Figure imgf000024_0001
Para el clonaje y la posterior identificación de los insertos de 2xM2e que dan lugar a VLP quiméricas de forma más eficiente se genera mediante PCR la secuencia de 2xM2e conteniendo dos copias de la secuencia que codifica el antígeno M2e del virus de la gripe humana (SEQ ID NO: 3) en el que se excluye la metionina en la posición 1 (Mi ), y las cisteínas de las posiciones 17 y 19 (Ci7 y C19) se sustituyen por serinas (S) (SEQ ID NO: 4).
En el diseño y construcción del inserto las dos copias de M2e quedan separadas entre sí y flanqueadas respecto a las secuencias de VP2 por un "linker" constituido por cuatro aminoácidos hidrofílicos (h) variables "hhhh- (M2e)-hhhh-(M2e)-hhhh" [SEQ ID NO: 5]. En el diseño molecular para el clonaje, cada uno de los cuatro aminoácidos hidrofílicos se codifica por un codón de tres nucleótidos generados al azar como sigue: en la posición 1 el nucleótido A, G o C (V según el código IUPAC), en la posición 2 el nucleótido A ó G (R según el código IUPAC), y en la posición 3 el nucleótido A,G,C ó T (N según el código IUPAC). Los codones VRN resultantes codifican para los 9 aminoácidos más hidrofílicos, esto es, histidina (H), glutamina (Q), asparagina (N), lisina (K), ácido aspártico (D), ácido glutámico (E), arginina (R), serina (S) y glicina (G), tal y como queda representado en la Figura 2. Además de estos "linkers" de cuatro aminoácidos hidrofílicos (h), los diferentes insertos de 2xM2e generados al azar, contienen siete aminoácidos adicionales en sus extremos cuya secuencia de ADN contiene los sitios de restricción Not\ y Spel, usados en el clonaje molecular [SEQ ID NO: 6]. La generación de una librería de inserciones "hhhh-(M2e)-hhhh-(M2e)-hhhh" en los ocho posibles lugares de inserción preseleccionados en la región P de la proteína VP2 se lleva a cabo mediante una reacción de ligación de la librería de 8 vectores predigerida con Not\ y Spel y la librería de fragmentos de DNA originados por PCR que contienen los fragmentos 2xM2e generados al azar y predigerida con Not\ y Spel. El resultado de la ligación se transforma en células E.coli electrocompetentes para generar una librería de clones conteniendo los diferentes fragmentos de 2xM2e insertados en los ocho posibles puntos de inserción preseleccionados en VP2. Tras la expansión de la librería, ^g de ADN procedente de una mezcla de ADN plásmidico de todos los clones de la librería se utiliza para transformar células de levadura, S.cerevisiae cepa Y449 que posteriormente se siembran en medio YNB/CSM-URA con 2% glucosa. Los clones de levadura aislados y obtenidos en este medio selectivo se transfirieren a placas YNB/CSM-URA con galactosa y las colonias resultantes se transfieren a membranas de fluoruro de polivinilideno (PVDF del inglés, Polyvinylidene Fluoride) para estudiar la producción de VLP mediante inmunoblots de colonias utilizando anticuerpos específicos frente al epítopo M2e. Una selección de 50 clones positivos se repican y cultivan individualmente en medio líquido selectivo YNB/CSM-URA con 2% galactosa y con los extractos resultantes de su lisis se realizan ensayos tipo ELISA sándwich cuantitativos para confirmar y la producción de VLP mediante la utilización de anticuerpos específicos frente a VLP de IBDV obtenidos de ratón y de conejo. Once colonias con eficiencias de formación de VLP por encima del 10% se secuencian para identificar el inserto de 2xM2e y su lugar de inserción dentro de la proteína VP2. Los clones positivos confirmados se muestran en la Tabla 2. Tabla 2: Lugares de inserción en VP2 y secuencia del inserto de 2xM2e en las construcciones resultantes del proceso de búsqueda y selección de VLP quiméricas que contienen 2xM2e y que expresan con mayor eficiencia.
Clon Lugar de Construcciones %
SECUENCIA DEL INSERTO
erción resultantes
ID. Ins VLP
G254TTRGGRGGGDSLLTEVETPIRN
1A G254†L255 G254†2xM2e†L255 19,5 EWGSRSNDSSDQQGHSLLTEVETP
IRNEWGSRSNDSSDQKQKTS†L255
G254TTRGGRRENQSLLTEVETPIRN
1 B G254†L255 G254†2xM2e†L255 15,2 EWGSRSNDSSDRREQSLLTEVETP
IRNEWGSRSNDSSDGEDKTS†L255
2A T286†D287 T286†2xM2e†D287 15,9 T286ÍTRGGRGDGGSLLTEVETPIRN
EWGSRSNDSSDKNNHSLLTEVETP IRNEWGSRSNDSSDRKNTS†D287
T286†TRGGRGGGRSLLTEVETPIRN
2B 286†D287 T286†2xM2e†D287 12,4 EWGSRSNDSSDRENRSLLTEVETP
IRNEWGSRSNDSSDRRRNTS†D287
T286†TRGGREDGGSLLTEVETPIRN
2C T286†D287 T286†2xM2e†D287 18,4 EWGSRSNDSSDKGEGSLLTEVETP
IRNEWGSRSNDSSDRRHETS†D287
Q32o†TRGGRSHSRSLLTEVETPIRN
3A Q320†A321 Q32o†2xM2e†A32i 31 ,6 EWGSRSNDSSDRQKKSLLTEVETP
IRNEWGSRSNDSSDKRDQTS†A321
Q32o†TRGGRDRGDSLLTEVETPIRN
3B Q320†A321 Q32o†2xM2e†A32i 31 , 1 EWGSRSNDSSDSQNESLLTEVETP
IRNEWGSRSNDSSDGHGRTS†A321
D323†TRGGRQREQSLLTEVETPIRN
4A D323†Q324 D323†2xM2e†Q324 35,2 EWGSRSNDSSDQQGESLLTEVETP
IRNEWGSRSNDSSDGHGRTS†Q324
Continuación Tabla 2:
Figure imgf000027_0001
b) RESPUESTA DE ANTICUERPOS DE DISTINTAS VLP QUE INCORPORAN M2e.
La identificación de VLP quiméricas VLP-M2e capaces de generar una respuesta inmune significativa contra M2e se lleva a cabo mediante la inmunización de 6 ratones con una dosis inicial por vía intraperitoneal (i .p. ), seguida de dos dosis de recuerdo por vía subcutánea (s.c.)- En cada dosis se administran 50 μg por cada una de las VLP-2xM2e generadas, o de las VLP control sin el inserto M2e, en 200 μΙ de suero salino. Las tres dosis se administran a intervalos de 3 semanas. Una semana antes de la primera inmunización y dos semanas después de cada dosis de recuerdo, se obtienen muestras de sangre de los animales mediante punción retro-orbital. Las muestras se tratan a 37°C durante 60 minutos, seguido de una breve incubación en hielo para después, mediante dos centrifugaciones sucesivas, recuperar el suero del sobrenadante en ambas centrifugaciones. Las muestras de suero se almacenan a -20°C. Los títulos de anticuerpos se determinan por ensayos tipo ELISA usando mezclas de sueros procedentes de animales del mismo grupo. Para la titulación de anticuerpos específicos anti-M2e, microplacas de vinilo (Corning™, Costar Ref. 2595) se tapizan con 50 μΙ por pocilio de una solución del péptido M2e a 2μg/ml en 50mM tampón bicarbonato sódico, pH 9.7, y se incuban durante toda la noche a 4°C. Tras el lavado las placas se bloquean 1 hora con TBS, 0.05% Tween-20, 3% BSA, y tras ello se añaden diluciones seriadas 1/3 de las diferentes muestras de suero, comenzando con una dilución 1/100. Los anticuerpos unidos se detectan añadiendo anticuerpos conjugados a peroxidasa anti-lgG total (Jackson ImmunoResearch™, Code 1 15-035-003) seguido de una incubación de 5 min con el sustrato de la peroxidasa (SIGMAF ¾ST™ OPD, ref. P9187, Sigma- Aldrich™). Tras parar la reacción con 20 μΙ de 3M HCI, se mide el valor de la absorbancia a una longitud de onda de 495nm. Los títulos "endpoint" se definen como la dilución más elevada que produce un valor de densidad óptica (O.D.) dos veces el valor del control negativo (suero preimmune).
Tabla 3: Lugares de inserción en VP2 y secuencia del inserto de 2xM2e de las construcciones resultantes del proceso de búsqueda y selección de VLP quiméricas que contienen 2xM2e y que expresan con mayor eficiencia.
Clon Lugar de Construcciones Anti IgG
% VLP
Inserción resultantes
ID. "endpoint"
1A G254ÍI-255 G254†2xM2e†L255 19,5 1 :14.000
1 B G254†l-255 G254†2xM2e†L255 15,2 ND
2A 286†D287 T286†2xM2e†D287 15,9 1 :8.500
2B T286†D287 T286†2xM2e†D287 12,4 ND
2C 286†D287 T286†2xM2e†D287 18,4 1 :1 1.000
3A Q-320†A321 Q32o†2xM2e†A32i 31 ,6 1 :22.000
3B Q-320†A321 Q32o†2xM2e†A32i 31 ,1 ND
4A D323†Q-324 D323†2xM2e†Q324 35,2 1 :35.000
4B D323†Q-324 D323†2xM2e†Q324 24,5 1 :28.000
4C D323†Q-324 D323†2xM2e†Q324 24,4 1 :21.000
4D D323†Q324 D323†2xM2e†Q324 34,8 1 :28.000
C - VLP control 100 <1 :500
c) EFICACIA BIOLÓGICA DE VLP QUE INCORPORAN M2e.
La eficacia como vacuna para la protección contra la infección por el virus de la gripe de los tres candidatos de VLP-M2e con mayor título "endpoint" se evalúa mediante el desafío viral en animales previamente inmunizados. Para esto se inmunizan grupos de 13 ratones con una dosis de inmunógeno inicial por vía intraperitoneal (i.p.), seguida de dos dosis de recuerdo por vía subcutánea (s.c.) a intervalos de 3 semanas. En cada dosis se administran 50 μg de VLP- 2xM2e, o del control apropiado, en 200 μΙ de suero salino.
Tres semanas después de la segunda dosis de recuerdo (día 65) se expone a los animales a una dosis de 4xLD5o (4 veces la dosis letal al 50%) de una cepa del virus Influenza A adaptada a ratón (A/Puerto Rico8/34, H1 N1 ) y durante 17 días se registran la mortalidad y síntomas clínicos. De acuerdo con las normas de ética de experimentación en animales los ratones se sacrifican si su peso corporal cae por debajo del 75% de su peso inicial. Según se muestra en la Tabla 4, todos los ratones de los grupos VLP control sin insertos de M2e mueren a los 8 días tras el desafío viral. En cambio, ninguno de los animales vacunados con VLP452-D323†2xM2e†Q324 (Clon ID 4A) mueren en el curso del experimento, lo que supone una tasa de supervivencia del 100%.
Tabla 4: Datos de supervivencia de ratones vacunados con distintas VLP que incorporan inserciones 2xM2e en regiones P de la VP2 de IBDV.
Clon Lugar de Construcciones Anti IgG Desafío
% VLP
ID. Inserción resultantes "endpoint" viral
1A G254†L255 G254†2xM2e†L255 19,5 1 : 14.000 55%
2C T286†D287 T286†2xM2e†D287 18,4 1 : 1 1 .000 45%
4A D323†Q324 D323†2xM2e†Q324 35,2 1 :35.000 100%
C - VLP control 100 <1 :500 0%

Claims

REIVINDICACIONES
1. Partícula pseudo-viral (VLP) quimérica formada por una proteína de fusión que comprende:
- una subunidad (a) que consiste en la proteína pVP2 de Birnavirus o un fragmento de la misma, y
- una subunidad (b) que comprende un antígeno M2e de Virus de la Gripe,
donde la subunidad (b) está insertada en la subunidad (a).
2. Partícula pseudo-viral quimérica según la reivindicación 1 , donde la subunidad (a) consiste en una proteína con al menos un 80% de identidad con la SEQ ID NO: 1 o un fragmento de la misma.
3. Partícula pseudo-viral quimérica según la reivindicación 2, donde la subunidad (a) consiste en una proteína con la SEQ ID NO: 1 o un fragmento de la misma.
4. Partícula pseudo-viral quimérica según la reivindicación 3, donde la subunidad (a) es la SEQ ID NO: 2.
5. Partícula pseudo-viral quimérica según cualquiera de las reivindicaciones 1 a 4, donde la subunidad (b) está insertada en la región P de la subunidad (a).
6. Partícula pseudo-viral quimérica según la reivindicación 5, donde la subunidad (b) está insertada en el dominio Hl de la región P de la subunidad (a).
7. Partícula pseudo-viral quimérica según la reivindicación 6, donde la subunidad (b) está insertada entre los aminoácidos D323 y Q324 del dominio Hl de la región P de la subunidad (a).
8. Partícula pseudo-viral quimérica según la reivindicación 5, donde la subunidad (b) está insertada en el dominio DE de la región P de la subunidad
(a) .
9. Partícula pseudo-viral quimérica según cualquiera de las reivindicaciones 1 a 8, que además comprende uno o dos polipéptidos espaciadores hidrofílicos entre la secuencia de aminoácidos de la subunidad
(b) y las secuencias de aminoácidos de la subunidad (a).
10. Partícula pseudo-viral quimérica según cualquiera de las reivindicaciones 1 a 9, donde la subunidad (b) comprende al menos dos antígenos M2e.
1 1 . Partícula pseudo-viral quimérica según la reivindicación 10, donde la subunidad (b) comprende dos antígenos M2e.
12. Partícula pseudo-viral quimérica según cualquiera de las reivindicaciones 10 u 1 1 , donde la subunidad (b) comprende además al menos un polipéptido espaciador hidrofílico entre los dos antígenos M2e.
13. Partícula pseudo-viral quimérica según cualquiera de las reivindicaciones 1 a 12, donde el antígeno M2e es un polipéptido con al menos un 60% de identidad con la SEQ ID NO: 3.
14. Partícula pseudo-viral quimérica según cualquiera de las reivindicaciones 1 a 13, donde el antígeno M2e es un polipéptido con la secuencia de aminoácidos SEQ ID NO: 4.
15. Partícula pseudo-viral quimérica según la reivindicación 1 , donde un polipéptido con la secuencia de aminoácidos SEQ ID NO: 7 está insertado en la SEQ ID NO: 2.
16. Partícula pseudo-viral quimérica según la reivindicación 1 , cuya secuencia de aminoácidos es la SEQ ID NO: 8.
17. Procedimiento para la obtención de partículas pseudo-virales quiméricas según cualquiera de las reivindicaciones 1 a 16, que comprende cultivar una célula hospedadora que comprende un ácido nucleico que codifica para una proteína de fusión según cualquiera de las reivindicaciones 1 a 16 en condiciones que permiten la expresión de dichas proteínas de fusión, y el ensamblaje de dichas proteínas de fusión para formar partículas pseudo-virales quiméricas.
18. Procedimiento para la obtención de partículas pseudo-virales quiméricas según la reivindicación 17 donde el ácido nucleico comprende la secuencia SEQ ID NO: 5.
19. Procedimiento para la obtención de partículas pseudo-virales quiméricas según cualquiera de las reivindicaciones 17 ó 18, y que además comprende aislar o purificar dichas partículas pseudo-virales quiméricas.
20. Uso de la partícula pseudo-viral quimérica según cualquiera de las reivindicaciones 1 a 16 para la elaboración de un medicamento.
21 . Uso de la partícula pseudo-viral según cualquiera de las reivindicaciones 1 a 16 para la elaboración de un medicamento para la prevención y/o el tratamiento de una infección causada por el virus de la gripe.
22. Composición farmacéutica que comprende la partícula pseudo-viral quimérica según cualquiera de las reivindicaciones 1 a 16.
23. Composición farmacéutica según la reivindicación 22 que además comprende un vehículo farmacéuticamente aceptable.
24. Composición farmacéutica según cualquiera de las reivindicaciones 22 ó 23 que además comprende otro principio activo.
PCT/ES2010/070716 2009-11-06 2010-11-05 VACUNAS PROFILACTICAS DE GRIPE A PARTIR DE CAPSIDAS VIRALES DE BIRNAVIRUS CONTENIENDO EL ANTIGENO M2e DEL VIRUS DE LA GRIPE WO2011054995A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200930968 2009-11-06
ES200930968 2009-11-06

Publications (2)

Publication Number Publication Date
WO2011054995A2 true WO2011054995A2 (es) 2011-05-12
WO2011054995A3 WO2011054995A3 (es) 2011-06-30

Family

ID=43806896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070716 WO2011054995A2 (es) 2009-11-06 2010-11-05 VACUNAS PROFILACTICAS DE GRIPE A PARTIR DE CAPSIDAS VIRALES DE BIRNAVIRUS CONTENIENDO EL ANTIGENO M2e DEL VIRUS DE LA GRIPE

Country Status (1)

Country Link
WO (1) WO2011054995A2 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013059168A2 (en) * 2011-10-21 2013-04-25 Research Development Foundation Espirito santo virus and methods for detecting and preventing infection with the same
CN103083656A (zh) * 2011-10-27 2013-05-08 苏州科贝生物技术有限公司 甲型流感病毒保守肽M2e与病毒样颗粒的缀合物及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999007839A2 (en) 1997-08-05 1999-02-18 Vlaams Interuniversitair Instituut Voor Biotechnologie Immunoprotective influenza antigen and its use in vaccination
WO2005105834A1 (es) 2004-04-30 2005-11-10 Consejo Superior De Investigaciones Científicas Procedimiento para la producción en levaduras de cápsidas virales vacías compuestas por proteínas derivadas de pvp2 del virus causante de la enfermedad de la bursitis infecciosa (ibdv)
WO2007009673A1 (en) 2005-07-15 2007-01-25 Consejo Superior De Investigaciones Científicas Chimeric empty viral-like particles derived from the infectious bursal disease virus (ibdv), process for their production and applications

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887412B1 (en) * 1997-05-26 2003-10-15 Akzo Nobel N.V. Recombinant birnavirus vaccine
FR2824327B1 (fr) * 2001-05-02 2003-07-11 Agronomique Inst Nat Rech Particules pseudovirales de birnavirus
WO2007020017A1 (en) * 2005-08-12 2007-02-22 Bionostra, S.L. Composition for bird immunization administered by aerosol
WO2009026465A2 (en) * 2007-08-21 2009-02-26 Dynavax Technologies Corporation Composition and methods of making and using influenza proteins
DK2288618T3 (en) * 2008-05-09 2018-01-08 Chimera Pharma S L U CHEMICAL FUSION PROTEINS AND VIRUS LIKE PARTICLES FROM BIRNAVIRUS VP2

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999007839A2 (en) 1997-08-05 1999-02-18 Vlaams Interuniversitair Instituut Voor Biotechnologie Immunoprotective influenza antigen and its use in vaccination
WO2005105834A1 (es) 2004-04-30 2005-11-10 Consejo Superior De Investigaciones Científicas Procedimiento para la producción en levaduras de cápsidas virales vacías compuestas por proteínas derivadas de pvp2 del virus causante de la enfermedad de la bursitis infecciosa (ibdv)
WO2007009673A1 (en) 2005-07-15 2007-01-25 Consejo Superior De Investigaciones Científicas Chimeric empty viral-like particles derived from the infectious bursal disease virus (ibdv), process for their production and applications

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
COULIBALY F. ET AL., CELL, vol. 25,120, no. 6, 2005, pages 761 - 772
DA COSTA B. ET AL., J. VIROLOGY, vol. 76, no. 5, 2002, pages 2393 - 2402
DE FILLETE M ET AL., VACCINE, vol. 24, no. 44-46, 2006, pages 6597 - 6601
DE FILLETE M ET AL., VACCINE, vol. 26, no. 51, 2008, pages 6503 - 6507
FAN J ET AL., VACCINE, vol. 22, 2004, pages 2993 - 3003
HULEATT W ET AL., VACCINE, vol. 26, 2008, pages 201 - 214
MARTINEZ-TORRECUADRADA JL. ET AL., J. VIROLOGY, vol. 75, no. 22, 2001, pages 10815 - 10828
MARTINEZ-TORRECUADRADA JL. ET AL., VACCINE, vol. 21, no. 17-18, 2003, pages 1952 - 1960
NEIRYNCK S ET AL., NAT. MED, vol. 5, no. 10, 1998, pages 1157 - 1163
REMOND M. ET AL., VACCINE, vol. 27, no. 1, 2009, pages 93 - 8
SAUGAR I. ET AL., STRUCTURE, vol. 13, no. 7, 2005, pages 1007 - 1117
SCHOTSEART M. ET AL., EXPERT REV. VACCINE, vol. 8, no. 4, 2009, pages 499 - 508

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013059168A2 (en) * 2011-10-21 2013-04-25 Research Development Foundation Espirito santo virus and methods for detecting and preventing infection with the same
WO2013059168A3 (en) * 2011-10-21 2013-08-01 Research Development Foundation Espirito santo virus and methods for detecting and preventing infection with the same
CN103083656A (zh) * 2011-10-27 2013-05-08 苏州科贝生物技术有限公司 甲型流感病毒保守肽M2e与病毒样颗粒的缀合物及应用

Also Published As

Publication number Publication date
WO2011054995A3 (es) 2011-06-30

Similar Documents

Publication Publication Date Title
JP6957580B2 (ja) 新規多価ナノ粒子に基づくワクチン
V Petukhova et al. Immunogenicity and protective efficacy of candidate universal influenza A nanovaccines produced in plants by Tobacco mosaic virus-based vectors
RU2639551C2 (ru) Оптимизированные с помощью вычислительных средств антигены с широким спектром реактивности для вирусов гриппа h5n1 и h1n1
Ramirez et al. A virus-like particle vaccine candidate for influenza A virus based on multiple conserved antigens presented on hepatitis B tandem core particles
ES2371833T3 (es) Partículas quiméricas vacías similares a virus derivadas del virus de la enfermedad de la bursitis infecciosa (ibdv), proceso para su producción y aplicaciones.
ES2752323T3 (es) Partículas de tipo virus que comprenden proteínas diana fusionadas a proteínas de revestimiento de virus vegetales
JP7317047B2 (ja) インフルエンザウイルスワクチン及びその使用
US11865174B2 (en) Universal vaccine platform
EP2806890A1 (en) Composite antigenic sequences and vaccines
WO2005105834A1 (es) Procedimiento para la producción en levaduras de cápsidas virales vacías compuestas por proteínas derivadas de pvp2 del virus causante de la enfermedad de la bursitis infecciosa (ibdv)
US9896484B2 (en) Influenza virus recombinant proteins
ES2294679T3 (es) Capsidas vacias (vlps(vp4)) del virus causante de la enfermedad de la bursitis infecciosa (ibdv), su procedimiento de obtencion y aplicaciones.
ES2307345B1 (es) Capsidas vacias quimericas del virus causante de la enfermedad de la bursitis infecciosa (ibdv), su procedimiento de obtencion y aplicaciones.
US9060972B2 (en) Recombinant hemagglutinin protein of influenza virus and vaccine containing the same
JP5730204B2 (ja) インフルエンザm2由来の改変ペプチドワクチン
RU2358981C2 (ru) Универсальная вакцина против вируса гриппа птиц
WO2011054995A2 (es) VACUNAS PROFILACTICAS DE GRIPE A PARTIR DE CAPSIDAS VIRALES DE BIRNAVIRUS CONTENIENDO EL ANTIGENO M2e DEL VIRUS DE LA GRIPE
CN114430742A (zh) 流感病毒疫苗及其用途
RU2691302C1 (ru) Иммуногенная композиция на основе рекомбинантных псевдоаденовирусных частиц, а также на основе белковых антигенов и способ получения иммуногенной композиции
KR101557191B1 (ko) 넓은 범위의 방어능력을 갖는 인플루엔자 단독 또는 보강 백신
US20130224235A1 (en) Potato virus a coat protein-based vaccines for melanoma
US10806802B2 (en) Adeno-associated virus particle with mutated capsid and methods of use thereof
US20130243808A1 (en) Compositions and methods for vaccinating humans and animals against enveloped viruses
RU2776479C1 (ru) Живая пробиотическая вакцина, содержащая консервативные эпитопы вируса гриппа А (LAH+4M2e), для профилактики гриппозной инфекции
WO2022071492A1 (ja) インフルエンザウイルス抑制用の融合タンパク質およびこれを含む医薬組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 10809272

Country of ref document: EP

Kind code of ref document: A2