WO2011052342A1 - 中空シャフトおよび等速自在継手 - Google Patents

中空シャフトおよび等速自在継手 Download PDF

Info

Publication number
WO2011052342A1
WO2011052342A1 PCT/JP2010/067229 JP2010067229W WO2011052342A1 WO 2011052342 A1 WO2011052342 A1 WO 2011052342A1 JP 2010067229 W JP2010067229 W JP 2010067229W WO 2011052342 A1 WO2011052342 A1 WO 2011052342A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow shaft
constant velocity
universal joint
velocity universal
type constant
Prior art date
Application number
PCT/JP2010/067229
Other languages
English (en)
French (fr)
Inventor
和彦 吉田
浩氣 向井
浩量 大場
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US13/500,140 priority Critical patent/US9856906B2/en
Priority to CN201080048490.2A priority patent/CN102597547B/zh
Priority to EP10826476.3A priority patent/EP2495461B1/en
Publication of WO2011052342A1 publication Critical patent/WO2011052342A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
    • F16D3/2055Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part having three pins, i.e. true tripod joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/62Low carbon steel, i.e. carbon content below 0.4 wt%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/06Drive shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D2003/2026Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints with trunnion rings, i.e. with tripod joints having rollers supported by a ring on the trunnion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22323Attachments to the shaft of the inner joint member whereby the attachments are distanced from the core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • F16D2200/0008Ferro
    • F16D2200/0021Steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0038Surface treatment
    • F16D2250/0053Hardening

Definitions

  • the present invention relates to a hollow shaft, in particular, a hollow shaft used for a drive shaft and a propeller shaft constituting a part of a power transmission system of an automobile, and a constant velocity universal joint using such a hollow shaft.
  • Shafts that make up the power transmission system of automobiles include drive shafts that connect the final reduction gear and the wheel bearing device, and propeller shafts that transmit power from the transmission to the final reduction gear.
  • a spline or the like is provided.
  • the intermediate shaft of this drive shaft can be broadly divided into basic types. Solid shafts machined from solid bars, and hollow shafts that are plastically machined and joined from bars and steel pipes There is.
  • a solid shaft is usually used.
  • a hollow shaft has been increasingly used because of the necessity in terms of functions such as weight reduction of an automobile undercarriage, improvement of torsional rigidity and NVH characteristics. .
  • the integrated hollow shaft is, for example, a swaging process in which a steel pipe is rotated around its axis while being struck in the diametrical direction at a high speed, and a press process in which the diameter is reduced by pushing the steel pipe into the die in the axial direction A molded one is used.
  • the integrated hollow shaft manufactured by plastic processing such as swaging processing causes the wrinkles to be processed on the inner diameter surface (inner surface) due to the plastic flow of the material to the inner diameter side when the diameter of the steel pipe is reduced. It is easy to remain.
  • the inner wrinkled surface wrinkles may become a starting point of damage when a torsional torque is applied to the shaft. If the shaft is damaged from this part, the static torsional strength and the torsional fatigue strength may be reduced.
  • Patent Documents 1 to 3 joins the opening end surface of the cylindrical portion of the shaft constituent member and the opening end surface of another shaft constituent member, and increases the joining area, thereby improving the strength of the joining portion. It is.
  • Patent Document 2 the pre-processing of the spline processing is formed by plastic processing, the inner diameter after the molding is made smaller than the inner diameter before the molding, and the wall thickness is made substantially the same before and after the molding.
  • Patent Document 3 is intended to remove wrinkles generated by plastic working before quench hardening by cutting and grinding.
  • Patent Document 1 a flange portion having a large outer diameter is formed at a joint portion, and the strength at the joint portion is improved.
  • the torsional strength, etc. except for the flange portion having an enlarged diameter, and the torsional strength of the entire shaft cannot be improved.
  • the flange portion having a large outer diameter is formed, the size is increased.
  • Patent Document 2 the strength of the spline lower diameter can be improved, but the strength of the small diameter portion where the outer diameter surface in the vicinity of the spline is made smooth can not be improved.
  • Patent Document 3 an attempt is made to ensure static torsional strength and torsional strength by removing wrinkles on the inner diameter surface.
  • it is difficult to detect all the processing wrinkles on the inner diameter surface and it is difficult to remove all the processing wrinkles.
  • such a process of removing the wrinkle is necessary, and the entire process becomes longer and the cost is increased.
  • the hardened layer formed by carburizing and quenching has a surface abnormal layer including an incompletely hardened portion and a grain boundary oxidized portion on the surface portion.
  • This abnormal surface layer is a soft and brittle layer.
  • the surface of the hardened layer is subjected to grinding or the like, thereby removing the surface abnormal layer.
  • An object of the present invention is to improve the static torsional strength and torsional fatigue strength of a small-diameter portion (small-diameter portion whose outer peripheral surface is a smooth surface) in the vicinity of the spline at the end, and can reduce costs. And a constant velocity universal joint using such a hollow shaft.
  • the hollow shaft of the present invention is a hollow shaft that is molded from a tubular material by plastic working and is hardened and hardened, and the hardening and hardening treatment is carburizing and hardening treatment, and after the carburizing and hardening treatment, A softened part is formed in part by local heat treatment.
  • the hardened layer has a high hardness at a high carbon concentration and may be brittle. For this reason, after carburizing and quenching, by forming a softened part by local heating treatment in part, the softened part can be reduced in hardness and tough.
  • Male splines are formed at both ends, respectively, and are integrated hollow shafts having small diameter portions with smooth outer diameter surfaces in the vicinity of the male splines at both ends, one of the two being the smallest diameter portion.
  • the minimum diameter portion is preferably a softened portion by local heat treatment.
  • the minimum diameter portion having a smooth outer diameter surface is a portion that is easily deformed. For this reason, by making this small diameter part a softening part, preventing the embrittlement failure by a grain boundary fracture becomes the most preferable thing for the strength improvement in such a hollow shaft.
  • the local heat treatment can be performed by high-frequency heat treatment.
  • induction hardening is a method that applies the principle of heating a conductive object by placing Joule heat in a coil through which high-frequency current flows, and generating Joule heat by electromagnetic induction. How to enter.
  • the carbon content can be 0.15% to 0.45%, and the surface carbon concentration of the carburized and quenched portion can be 0.50% to 0.70%. Further, it is preferable that the inner diameter surface hardness of the small diameter portion, which is the softened portion by the local heat treatment, is 45 HRC to 55 HRC, or the depth of the surface abnormal layer after the carburizing and quenching treatment is 5 ⁇ m or less.
  • It may be a hollow shaft that is subjected to induction tempering after carburizing and quenching treatment, in which a softened portion is formed by local heating treatment during induction tempering.
  • the local heat treatment is preferably carried out in a liquid. With local heat treatment performed in the liquid, for example, the shaft is immersed in quenching oil filled in the quenching tank, and the heating coil connected to the high-frequency power source is externally fitted to the shaft. This is a heat treatment performed by applying a high frequency to the coil.
  • the small diameter portion on the fixed type constant velocity universal joint side can be a softened portion by local heating treatment. That is, the softening portion can be provided only on the fixed type constant velocity universal joint side.
  • one end may be connected to a fixed type constant velocity universal joint, and the other end may be connected to a sliding type constant velocity universal joint.
  • the ratio (Ds / Df) when the outer diameter of the small diameter portion of the sliding type constant velocity universal joint is Ds and the outer diameter of the small diameter portion on the fixed type constant velocity universal joint side is Df is 1.05 to 1 .13 may be used.
  • L ′ the axial length of the minimum diameter portion of the shaft, which is the small diameter part on the fixed type constant velocity universal joint side, is L ′, and the outer joint of the fixed type constant velocity universal joint
  • the ratio (L ′ / Lo) may be 1 to 4 when the length of the interference portion in the high operating angle bending state with the member is Lo.
  • the hardness in the softened portion, the hardness can be reduced to give toughness, and the static torsional strength and torsional fatigue strength can be improved regardless of the presence or absence of processing wrinkles.
  • the small diameter portion is a softened portion, the strength of the portion that is easily deformed can be improved, and the strength as the shaft can be stably obtained.
  • the minimum diameter portion is a softened portion, the reliability of strength stability is improved.
  • Local heat treatment can be performed by high-frequency heat treatment, and has many advantages.
  • high-frequency heat treatment is capable of local heating, can be heated in a short time, has less oxidation, has less quenching distortion than other quenching methods, has high surface hardness, and has excellent strength.
  • advantages such as the point obtained, the selection of the depth of the hardened layer is relatively easy, the automation is easy, and the incorporation into a machining line is possible.
  • the plastic workability is good and the strength can be further increased. If the carbon content is less than 0.15%, the required hardness of the core after carburizing and quenching cannot be obtained, resulting in a decrease in strength. If the carbon content exceeds 0.45%, the plastic workability of the tubular material is reduced. To do.
  • the hardness distribution at the time of carburizing and quenching can be made appropriate. If the surface carbon concentration (CP value) is less than 0.50%, stable surface hardness cannot be obtained, and if the surface carbon concentration (CP value) exceeds 0.70%, brittle fracture tends to occur. Here, the brittle fracture is a fracture in which the plastic change is remarkably reduced.
  • Static torsional strength can be ensured by setting the inner surface hardness of the small-diameter portion, which has been softened by local heat treatment, to 45 HRC to 55 HRC. If the inner surface hardness is less than 45 HRC, the yield point is lowered, and if the inner surface hardness exceeds 55 HRC, the processing wrinkles and cracks caused by the plastic processing become sharp and cause a decrease in strength.
  • the depth of the surface abnormal layer after the carburizing and quenching treatment 5 ⁇ m or less, the strength does not decrease, and it is not necessary to perform grinding to remove the surface abnormal layer after carburizing and quenching. Improvement and cost reduction can be achieved.
  • the depth of the abnormal surface layer is 5 ⁇ m. If it exceeds, it becomes the base point and the strength decreases.
  • a softened part is formed by local heating at the same time as induction tempering, the work time should be shortened compared to the process of forming a softened part by local heating after performing induction tempering. Therefore, productivity can be improved and cost can be reduced.
  • the range of the heat affected zone can be localized. For this reason, it is possible to facilitate the management of local heating for the small-diameter portion, and it is possible to effectively prevent softening of unnecessary portions such as splines adjacent to the small-diameter portion.
  • the ratio (Ds / Df) is 1.05 to 1.13
  • the small diameter portion on the fixed type constant velocity universal joint side becomes the minimum diameter portion, and only the minimum diameter portion needs to be heated locally. The heating cost can be reduced.
  • the ratio (Ds / Df) is less than 1.05, the small diameter portion on the sliding type constant velocity universal joint side becomes the weakest portion after local heating, so that it is not a countermeasure. If the ratio (Ds / Df) is larger than 1.13, plastic working becomes difficult and the manufacturing cost increases.
  • the ratio (L '/ Lo) is set to 1 to 4, the maximum operating angle as a constant velocity universal joint can be secured, and the range of the local heating part can be set relatively small, making it easy to manage and reducing costs. Can be achieved. If the ratio (L ′ / Lo) ⁇ 1, the maximum operating angle as a constant velocity universal joint cannot be secured, and if the ratio (L ′ / Lo)> 4, it is difficult to obtain a limited merit.
  • the hollow shaft can improve static torsional strength and torsional fatigue, and a constant velocity universal joint capable of stable torque transmission over a long period of time can be configured.
  • FIG. 1 shows a first embodiment of a hollow shaft 1 according to the present invention.
  • the hollow shaft 1 includes a large-diameter portion 2 at an intermediate portion in the axial direction, splines (male spline portions) 3 and 4 at both ends, Small diameter portions 5 and 6 disposed between the large diameter portion 2 and the splines 3 and 4 are provided.
  • a spline shoulder 7 is provided between the spline 3 and the small diameter portion 5, and a spline shoulder 8 is provided between the spline 4 and the small diameter portion 6.
  • the spline shoulder portions 7 and 8 include short cylindrical portions 7a and 8a and tapered portions 7b and 8b, respectively.
  • Middle diameter portions 9 and 10 are provided between the large diameter portion 2 and the small diameter portions 5 and 6, respectively.
  • the middle diameter portions 9 and 10 are formed with circumferential grooves 11 and 12 for boot mounting, which will be described later.
  • tapered portions 13 and 14 are provided between the medium diameter portions 9 and 10 and the small diameter portions 5 and 6.
  • the splines 3 and 4 are formed with fitting grooves 15 and 16 in which retaining rings to be described later are mounted.
  • this hollow shaft 1 is applied to a drive shaft as shown in FIG. 2, for example. That is, one end is connected to the fixed type constant velocity universal joint 20 via the spline 3, and is connected to the sliding type constant velocity universal joint 21 via the other end spline 4.
  • the constant velocity universal joint 20 is shown as an example of a Rzeppa type here, but other fixed type constant velocity universal joints such as an undercut free type having a straight portion at the bottom of the ball groove can also be adopted.
  • the constant velocity universal joint 20 includes an outer joint member 25, an inner joint member 26, a plurality of balls 27 as torque transmitting elements, and a cage 28 that holds the balls 27 as main members.
  • the outer joint member 25 is made of, for example, medium carbon steel containing 0.50 to 0.55 wt% of carbon such as S53C, and includes a mouse part 31 and a shaft part (stem part) 32.
  • the mouse part 31 opens at one end.
  • a plurality of ball grooves 34 extending in the axial direction are formed on the spherical inner peripheral surface (inner spherical surface) 33 at equal intervals in the circumferential direction.
  • the inner joint member 26 is made of medium carbon steel containing 0.17 to 0.23 wt% of carbon such as SCr420, for example, and is spline-fitted with the spline 3 at the end of the shaft 1 through the spline hole 36a in the shaft center.
  • SCr420 medium carbon steel
  • the shaft 1 is coupled to be able to transmit torque.
  • the shaft 1 is prevented from coming off from the inner joint member 26 by a retaining ring 39 attached to the end of the shaft 1.
  • the inner joint member 26 has a spherical outer peripheral surface (outer spherical surface) 35, and a plurality of ball grooves 36 extending in the axial direction are formed at equal intervals in the circumferential direction.
  • the ball groove 34 of the outer joint member 25 and the ball groove 36 of the inner joint member 26 form a pair, and one ball 27 is incorporated in a ball track formed by each pair of ball grooves 34 and 36 so as to roll. It is.
  • the ball 27 is interposed between the ball groove 34 of the outer joint member 25 and the ball groove 36 of the inner joint member 26 to transmit torque. All balls 27 are held in the same plane by the cage 28.
  • the cage 28 is interposed between the outer joint member 25 and the inner joint member 26 in a spherical contact state, is in contact with the inner spherical surface 33 of the outer joint member 25 at the spherical outer peripheral surface, and is inner at the spherical inner peripheral surface. It contacts the outer spherical surface 35 of the joint member 26.
  • the opening of the mouse part 31 is closed with a boot 40 in order to prevent leakage of the lubricant filled inside and to prevent foreign matter from entering from the outside.
  • the boot 40 includes a large diameter portion 40a, a small diameter portion 40b, and a bellows portion 40c that connects the large diameter portion 40a and the small diameter portion 40b.
  • the large diameter portion 40 a is attached to the opening of the mouse portion 31 and fastened with a boot band 41.
  • the small-diameter portion 40b is attached to the boot mounting portion of the shaft 1 (the portion having the circumferential groove 11 for boot mounting of the medium-diameter portion 9) and fastened with the boot band 42.
  • the sliding type constant velocity universal joint 21 is shown here as an example of a tripod type, but other sliding type constant velocity universal joints such as a double offset type can also be adopted.
  • the constant velocity universal joint 21 includes an outer joint member 51, a trunnion 52 as an inner joint member, and a roller 53 as a torque transmission element as main components.
  • the outer joint member 51 is made of, for example, medium carbon steel containing 0.17 to 0.23 wt% of carbon such as SCr420, and is composed of a mouse portion 51a and a stem portion 51b.
  • the stem portion 51b is connected to the output shaft of the final reduction gear. It connects so that torque transmission is possible.
  • the mouse portion 51a has a cup shape opened at one end, and a track groove 56 extending in the axial direction is formed at a position of the inner circumference in the circumferential direction. For this reason, the cross-sectional shape of the mouse
  • the trunnion 52 includes a boss 58 and a leg shaft 59.
  • the trunnion 52 is made of, for example, medium carbon steel containing 0.17 to 0.23 wt% of carbon such as SCr420, and the spline 4 of the shaft 1 is formed in the spline hole 58a of the boss 58. It is coupled so that torque can be transmitted.
  • the leg shaft 59 protrudes in the radial direction from the circumferentially divided position of the boss 58.
  • a roller 53 is rotatably supported on each leg shaft 59.
  • the boot 60 is attached to close the opening of the outer joint member 51. This prevents leakage of the lubricant filled inside and prevents foreign matter from entering from the outside.
  • the boot 60 includes a large diameter portion 60a, a small diameter portion 60b, and a bellows portion 60c between the large diameter portion 60a and the small diameter portion 60b.
  • the large diameter portion 60a is attached to the open end of the mouse portion 51a.
  • the small-diameter portion 60 b is attached to the boot mounting portion of the shaft 1 (the portion having the circumferential groove 12 for mounting the boot of the medium-diameter portion 10) and tightened with the boot band 62.
  • the outer diameter dimension of the small diameter portion 6 on the sliding type constant velocity universal joint 21 side is Ds (see FIG. 1)
  • the outer diameter dimension of the small diameter portion 5 on the fixed type constant velocity universal joint 20 side is Df.
  • the ratio (Ds / Df) is 1.05 to 1.13 (see FIG. 1). For this reason, the small diameter portion 5 on the fixed type constant velocity universal joint 20 side becomes the minimum diameter portion (minimum smooth portion).
  • this hollow shaft 1 is first splined at both ends by plastic working such as swaging for rotating the steel pipe (tubular material) around its axis and striking it in the diameter direction at a high speed.
  • a hollow body in which 4 is not formed is formed.
  • splines 3 and 4 are formed at the end of the hollow body by rolling or pressing.
  • carburizing and quenching is a method in which carbon is infiltrated / diffused from the surface of a low-carbon material, and then quenched.
  • the carbon content of the tubular material is 0.15% to 0.45%
  • the surface carbon concentration (CP value) during the carburizing and quenching process is 0.50% to 0.70%.
  • a softened portion M (see FIGS. 4 and 5) is formed in a part thereof by local heating treatment.
  • the softened portion M is the small diameter portion 5 on the fixed type constant velocity universal joint 20 side, that is, the minimum diameter portion in which the outer peripheral surface is a smooth surface.
  • the local heat treatment induction hardening is performed.
  • the small diameter portion (minimum smooth portion) 5 has high hardness and may be brittle. For this reason, by locally heating the small diameter portion (minimum smooth portion) 5, the hardness is lowered and ductility is imparted.
  • Induction hardening is a hardening method that applies the principle of heating a conductive object by placing a portion necessary for hardening in a coil through which high-frequency current flows and generating Joule heat by electromagnetic induction. For example, as shown in FIG. 6, heating is performed from room temperature to about 300 ° C. in about 1.5 seconds, high-frequency heating is stopped in this state, and then the temperature is lowered to room temperature by air cooling.
  • Induction hardening is preferably performed in a liquid as shown in FIG.
  • the local heating process performed in the liquid includes a quenching tank 70 filled with quenching oil 72 and the like, and a heating coil 71 connected to a high-frequency power source (not shown). That is, the shaft 1 is immersed in the quenching oil 72 filled in the quenching tank 70, and the heating coil 71 connected to the high frequency power source is fitted to the shaft 1 so that the coil 71 has a high frequency. It is the heat processing performed by flowing. 4 and 5 indicate the softened portion M formed by this submerged induction hardening process. The inner surface hardness of the softened portion M formed in this way is set to 45 HRC to 55 HRC.
  • processing conditions processing conditions such as heating temperature, heating time, cooling time, etc.
  • various conditions are selected so that the inner surface hardness of the softened portion M is 45 HRC to 55 HRC, etc. can do.
  • the depth of the abnormal surface layer after carburizing and quenching is set to 5 ⁇ m or less. That is, by adjusting the thickness of the hardened layer formed by carburizing and quenching, or adjusting the material of the tubular material, the depth of the surface abnormal layer after the carburizing and quenching process is 5 ⁇ m or less. Can be set.
  • the hardness can be reduced and ductility can be obtained, and the static torsional strength and torsional fatigue strength can be improved regardless of the presence or absence of processing wrinkles.
  • transform can be aimed at, and the intensity
  • Local heat treatment is performed by high-frequency heat treatment, and has many advantages.
  • high-frequency heat treatment is capable of local heating, can be heated in a short time, has less oxidation, has less quenching distortion than other quenching methods, has high surface hardness, and has excellent strength.
  • advantages such as the point obtained, the selection of the depth of the hardened layer is relatively easy, the automation is easy, and the incorporation into a machining line is possible.
  • the plastic workability is good and the strength can be further increased. If the carbon content is less than 0.15%, the required hardness of the core after carburizing and quenching cannot be obtained, resulting in a decrease in strength. If the carbon content exceeds 0.45%, the plastic workability of the tubular material is reduced. To do.
  • the hardness distribution at the time of carburizing and quenching can be made appropriate. If the surface carbon concentration (CP value) is less than 0.50%, stable surface hardness cannot be obtained, and if the surface carbon concentration (CP value) exceeds 0.70%, brittle fracture tends to occur. Here, the brittle fracture is a fracture in which the plastic change is remarkably reduced.
  • Static torsional strength can be ensured by setting the inner surface hardness of the small-diameter portion, which has been softened by local heat treatment, to 45 HRC to 55 HRC. If the inner surface hardness is less than 45 HRC, the yield point is lowered, and if the inner surface hardness exceeds 55 HRC, the processing wrinkles and cracks caused by the plastic processing become sharp and cause a decrease in strength.
  • the strength does not decrease, and it is not necessary to perform grinding to remove the surface abnormal layer after carburizing and quenching. Improvement and cost reduction can be achieved.
  • the depth of the surface abnormal layer exceeds 5 ⁇ m, it becomes a base point and the strength is lowered.
  • the ratio (Ds / Df) is 1.05 to 1.13, the small diameter portion 5 on the fixed type constant velocity universal joint side becomes the minimum diameter portion, and only the minimum diameter portion needs to be locally heated. The cost of local heating can be reduced. If the ratio (Ds / Df) is less than 1.05, the small-diameter portion 6 on the sliding type constant velocity universal joint side becomes the weakest portion after local heating, which is not a countermeasure. If the ratio (Ds / Df) is larger than 1.13, plastic working becomes difficult and the manufacturing cost increases.
  • a normal tempering process is performed as the carburizing and quenching process.
  • induction hardening as described above is performed after carburizing and quenching. Therefore, the entire or necessary portion may be tempered simultaneously with induction hardening, which is a local heating process, without performing tempering in such a carburizing and quenching process.
  • the working time is compared with the process of forming the softened part by the local heating process after performing the induction tempering. Can be shortened, productivity can be improved, and cost can be reduced.
  • the softened part M by the local heating process may be formed on the small diameter part 6 on the other side (sliding type constant velocity universal joint 21 side).
  • strength as the whole shaft 1 can be obtained stably.
  • the axial length of the smallest diameter portion (small diameter portion 5) on the fixed type constant velocity universal joint 20 side is L ′
  • the outer joint member 25 of the fixed type constant velocity universal joint 20 is in a high operating angle bending state.
  • the ratio (L ′ / Lo) is 1 to 4.
  • the axial length L ′ of the small diameter portion 5 of the shaft 1 is set shorter than the axial length L of the small diameter portion 5 shown in FIG.
  • the ratio (L ′ / Lo) is 1 to 4, the maximum operating angle as a constant velocity universal joint can be secured, the range of the local heating part can be set relatively small, and management is easy. Cost reduction can be achieved. If the ratio (L ′ / Lo) ⁇ 1, the maximum operating angle as a constant velocity universal joint cannot be secured, and if the ratio (L ′ / Lo)> 4, it is difficult to obtain a limited merit. *
  • the plastic working may be performed cold or hot.
  • the number of the axial convex portions and the axial concave portions can be arbitrarily set, and the shape of the axial convex portions and the axial concave portions can also be attached.
  • the spline processing can be performed by pressing into a mold. In terms of dimensional accuracy, indentation molding is preferred.
  • a hollow shaft for example, it is used for a drive shaft and a propeller shaft constituting a part of a power transmission system of an automobile. It is connected to a fixed type constant velocity universal joint and a sliding type constant velocity universal joint.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 端部のスプライン近傍の小径部(外周面が平滑面とされた小径部)の静捩り強度や捩り疲労強度を向上させることができ、しかも低コスト化を図ることが可能な中空シャフトおよびこのような中空シャフトを用いた等速自在継手提供にある。 中空シャフト1は、管状素材から塑性加工により成形され、焼入硬化処理されたものである。焼入硬化処理が浸炭焼入処理であって、浸炭焼入処理後において、その一部に局部加熱処理による軟化部Mを形成した。

Description

中空シャフトおよび等速自在継手
 本発明は、中空シャフト、特に自動車の動力伝達系の一部を構成するドライブシャフトやプロペラシャフトに使用される中空シャフト、及びこのような中空シャフトを用いた等速自在継手に関する。
 自動車の動力伝達系を構成するシャフトには、終減速機と車輪軸受装置を繋ぐドライブシャフトや、変速機から終減速機に動力を伝達するプロペラシャフトがあり、いずれも軸端部に連結要素であるスプライン等が設けられる。このドライブシャフトの中間シャフトは、その種類を基本構造で大別すると、中実の棒材から加工された中実シャフトと、棒材や鋼管などから塑性加工され、また、接合加工された中空シャフトとがある。
 従来は、通常中実シャフトを使用していたが、近年、自動車の足回りの軽量化、捩り剛性やNVH特性の向上といった機能面での必要性から中空シャフトが用いられることが多くなってきた。
 一体型中空シャフトは、例えば、鋼管をその軸周りに回転させながら、高速度で直径方向に打撃して縮径させるスウェージング加工や鋼管をダイスに軸方向に押し込むことで縮径させるプレス加工により成形されたものが用いられる。このようなスウェージング加工などの塑性加工により製作された一体型中空シャフトは、鋼管が縮径される際にその内径側に素材が塑性流動することにより、内径面(内表面)に加工しわが残り易い。この内径面の加工しわは、シャフトに捩りトルクが付加される際、破損起点となる可能性があり、この部位から破損すれば、静捩り強度や捩り疲労強度が低下するおそれがある。
 そこで、従来には、強度向上を図った中空シャフトが種々提案されている(特許文献1~特許文献3)。特許文献1は、シャフト構成部材の円筒状部の開口端面と他のシャフト構成部材の開口端面とを接合させるものであって、接合面積を増大させ、これによって、接合部の強度を向上させるものである。特許文献2は、スプライン加工の前加工が、塑性加工により成形され、その成形後の内径を成形前の内径よりも小径とし、かつその肉厚を成形前後で略同一としたものである。特許文献3は、焼入硬化処理前に塑性加工で生じたしわを切削および研削加工にて除去するものである。
特開2005-164016号公報 特開2007-75824号公報 特開2007-247847号公報
 特許文献1では、接合部においてその外径が大であるフランジ部を形成し、この接合部における強度の向上を図っている。しかしながら、拡径したフランジ部以外においては、捩り強度等に変化はなく、シャフト全体としての捩り強度の向上を図ることができない。しかも、外径の大きいフランジ部を形成するため、大型化することになる。
 また、特許文献2では、スプライン下径の強度を向上させることができるが、他の部位、特に、スプライン近傍の外径面が平滑面とされた小径部の強度を向上させることはできない。
 さらに、特許文献3では、内径面の加工しわを除去することによって、静捩り強度及び捩り強度を確保しようとしている。しかしながら、内径面の加工しわの全てを検出することは困難で、全ての加工しわを除去することは難しい。しかも、このような加工しわの除去工程が必要であり、全体としての加工工程が長くなるとともに、コスト高となる。
 ところで、このような中間シャフトは、強度向上のため焼入が施される。この焼入は高周波焼入が用いられることが多い。しかしながら、中空シャフトのスウェージング加工により内径面にできる加工しわは、手で触っても分からない程度の微妙なものであるが、高周波焼入を行うと、内部に引張の応力が残留するため加工しわの進展の引き金となるため強度的に問題となる場合がある。そのため、近年では、この種の中間シャフトにおける焼入手段として浸炭焼入を行うようになってきた。
 しかしながら、浸炭焼入により形成される硬化層には、その表面部に不完全焼入部や粒界酸化部などを含んだ表面異常層が存在する。この表面異常層は軟質で脆い層である。このため、従来における浸炭品では、浸炭焼入後に、焼入層表面に研削加工等を施し、これによりこの表面異常層を除去するようにしていた。しかしながら、浸炭焼入後に研削加工等を施す必要があり、生産性に劣るとともに、コスト高となっていた。
 本発明の課題は、端部のスプライン近傍の小径部(外周面が平滑面とされた小径部)の静捩り強度や捩り疲労強度を向上させることができ、しかも低コスト化を図ることが可能な中空シャフトおよびこのような中空シャフトを用いた等速自在継手を提供することにある。
 本発明の中空シャフトは、管状素材から塑性加工により成形され、焼入硬化処理された中空シャフトであって、前記焼入硬化処理が浸炭焼入処理であって、浸炭焼入処理後において、その一部に局部加熱処理による軟化部を形成したものである。
 通常、浸炭焼入後においては、硬化層は高い炭素濃度で高い硬度となっており、脆化している場合がある。このため、浸炭焼入処理後において、一部に局部加熱処理による軟化部を形成することによって、この軟化部において、硬度を低下させてじん性を持たすことができる。
 両端部にそれぞれ雄スプラインが形成され、両端部の雄スプラインの近傍に、その外径面が平滑とされた小径部を備えた一体型中空シャフトであって、2つのうち一方を最小径部とし、この最小径部が局部加熱処理による軟化部であるのが好ましい。このような中空シャフトにおいては、外径面が平滑とされた最小径部が変形しやすい部位である。このため、この小径部を軟化部とすることによって、粒界破壊による脆化破壊を防止することが、このような中空シャフトにおいて強度向上に最も好ましいものとなる。
 局部加熱処理は高周波加熱処理で行うことができる。ここで、高周波焼入とは、高周波電流の流れているコイル中に焼入に必要な部分を入れ、電磁誘導作用により、ジュール熱を発生させて、伝導性物体を加熱する原理を応用した焼入方法である。
 管状素材として炭素量を0.15%~0.45%とすることができ、浸炭焼入処理部の表面炭素濃度を0.50%~0.70%とすることができる。また、局部加熱処理による軟化部とした小径部の内径面硬度を45HRC~55HRCとしたり、浸炭焼入処理後の表面異常層の深さを5μm以下としたりするのが好ましい。
 浸炭焼入処理後に高周波焼戻が施される中空シャフトであって、高周波焼戻時に局部加熱処理による軟化部が形成されているものであってもよい。局部加熱処理として液中で行われるのが好ましい。液中で行う局部加熱処理とは、例えば、焼入槽に満たされた焼入油等の中にシャフトを浸漬し、高周波電源に接続された加熱コイルを、シャフトに対して外嵌状として、このコイルに高周波を流すことによって行う加熱処理である。
 一方の端部が固定型等速自在継手に連結され、固定型等速自在継手側の小径部を局部加熱処理による軟化部とすることができる。すなわち、固定型等速自在継手側のみに軟化部を設けたものとできる。
 また、一方の端部が固定型等速自在継手に連結され、他方の端部が摺動型等速自在継手に連結されるものであってもよい。
 摺動型等速自在継手の小径部の外径寸法をDsとし、固定型等速自在継手側の小径部の外径寸法をDfとしたときの比(Ds/Df)を1.05~1.13としたものであってもよい。
 一方の端部が固定型等速自在継手に連結され、固定型等速自在継手側の小径部であるシャフト最小径部の軸方向長さをL´とし、固定型等速自在継手の外側継手部材との高作動角曲げ状態での干渉部位の長さをLoとしときの比(L´/Lo)を1~4としたものであってもよい。
 本発明の中空シャフトでは、軟化部において、硬度を低下させてじん性を持たすことができ、加工しわの有無によらず、その静捩り強度や捩り疲労強度の向上を図ることができる。また、小径部を軟化部とすれば、変形しやすい部位の強度向上を図ることができ、シャフトとしての強度を安定して得ることができる。特に、最小径部を軟化部とすれば、強度の安定性の信頼度が向上する。
 局部加熱処理は高周波加熱処理でもって行うことができ、多くの利点を有することになる。例えば、高周波加熱処理は局部加熱ができる点、短時間に加熱ができるため酸化が少ない点、他の焼入方法に比べて、焼入歪が少ない点、表面硬さが高く、優れた強度を得られる点、硬化層の深さの選定も比較的容易である点、自動化が容易で機械加工ラインへの組み入れも可能である点等の利点を有する。
 管状素材として炭素量を0.15%~0.45%とすることによって、塑性加工性が良く、さらに高強度にできる。炭素量が0.15%未満では、浸炭焼入処理後の芯部の必要硬度が得られず、強度低下を招き、炭素量が0.45%を越えると、管状素材の塑性加工性が低下する。
 浸炭焼入処理時の表面炭素濃度(CP値)を0.50%~0.70%とすることによって、浸炭焼入処理時の硬度分布を適正にしやすくなる。表面炭素濃度(CP値)が0.50%未満では、安定した表面硬度を得ることができず、表面炭素濃度(CP値)が0.70%を越えると、脆性破壊を生じ易くなる。ここで、脆性破壊とは、塑性変化が著しく低下する破壊である。
 局部加熱処理による軟化部とした小径部の内径面硬度を45HRC~55HRCとすることによって、静的捩り強度を確保できる。内径面硬度が45HRC未満であれば、降伏点が低くなり、内径面硬度が55HRCを越えると、塑性加工によって生じた加工しわや傷の亀裂が鋭敏となり、強度低下を招く。
 浸炭焼入処理後の表面異常層の深さを5μm以下とすることによって、強度低下を招かず、浸炭焼入後において表面異常層を除去するための研削加工等を行う必要がなく、生産性の向上及び低コスト化を図ることができる。これに対して、表面異常層の深さが5μm
を越えると、それが基点となり強度が低下することになる。
 高周波焼戻時に、同時に局部加熱処理による軟化部が形成されるものであれば、高周波焼戻を行った後、局部加熱処理による軟化部形成を行う工程に比べて、作業時間の短縮を図ることができ、生産性の向上を図ることができ、コスト低減を図ることができる。
 局部加熱処理として液中で行うことによって、熱影響部の範囲を局在化できる。このため、小径部に対する局部加熱の管理の容易化を図ることができ、この小径部に隣接するスプライン等の局部加熱の不必要な部位の軟化を有効に防止できる。
 比(Ds/Df)を1.05~1.13としたものであれば、固定型等速自在継手側の小径部が最小径部となり、この最小径部にのみ局部加熱すればよく、局部加熱のコストを低減できる。比(Ds/Df)が1.05未満では、局部加熱後に摺動型等速自在継手側の小径部が最弱部となるため対策とならない。比(Ds/Df)が1.13より大きいと塑性加工が困難となり、製造コストが増大する。
 比(L´/Lo)を1~4としたものであれば、等速自在継手としての最大作動角を確保でき、しかも局部加熱部位の範囲を比較的小さく設定でき管理しやすくなり、コスト低減を図ることができる。比(L´/Lo)<1であれば、等速自在継手としての最大作動角が確保できず、比(L´/Lo)>4であれば、限定のメリットが得にくい。
 本発明の等速自在継手では、中空シャフトが静捩り強度や捩り疲労の向上を図ることができ、長期にわたって安定したトルク伝達が可能な等速自在継手を構成することができる。
本発明の第1の実施形態を示す中空シャフトの正面図である。 前記中空シャフトを用いたドライブシャフトアッセンブリの断面図である。 前記ドライブシャフトアッセンブリの固定型等速自在継手の要部拡大断面図である。 液中での局部加熱処理状態を示す簡略図である。 局部加熱処理後の中空シャフトの要部拡大断面図である。 局部加熱処理における高周波加熱処理条件を示すグラフ図である。 本発明の第2の実施形態を示す中空シャフトの断面図である。 本発明の第3の実施形態を示す中空シャフトの断面図である。
以下、本発明の実施形態を図1~図6に従って説明する。
 図1に本発明に係る中空シャフト1の第1の実施形態を示し、この中空シャフト1は、軸方向中間部の大径部2と、両端部のスプライン(雄スプライン部)3、4と、大径部2とスプライン3,4との間に配設される小径部5、6とを備える。また、スプライン3と小径部5との間にはスプライン肩部7が設けられ、スプライン4と小径部6との間にはスプライン肩部8が設けられている。なお、スプライン肩部7、8は、それぞれ、短円筒部7a、8aと、テーパ部7b,8bとからなる。
 大径部2と小径部5、6との間には、それぞれ中径部9,10が設けられている。そして、中径部9,10には、後述するブーツ装着用の周方向溝11、12が形成されている。また、中径部9,10と小径部5,6との間にはテーパ部13、14が設けられている。なお、スプライン3,4には、後述する止め輪が装着される嵌合溝15,16が形成されている。
 ところで、この中空シャフト1は、例えば、図2に示すように、ドライブシャフトに適用される。すなわち、一方の端部がスプライン3を介して固定型等速自在継手20に連結され、他方の端部スプライン4を介して摺動型等速自在継手21に連結される。
 等速自在継手20は、ここではツェッパ型の例を示してあるが、ボール溝の溝底に直線部分を有するアンダーカットフリー型等、他の固定式等速自在継手を採用することもできる。等速自在継手20は、外側継手部材25と、内側継手部材26と、トルク伝達要素としての複数のボール27と、ボール27を保持するケージ28とを主要な部材として含む。
 外側継手部材25は例えばS53C等の炭素0.50~0.55wt%を含む中炭素鋼でつくられ、マウス部31と軸部(ステム部)32とからなり、マウス部31は一端にて開口した椀状で、その球面状の内周面(内球面)33に、軸方向に延びた複数のボール溝34が円周方向に等間隔に形成してある。
 内側継手部材26は例えばSCr420等の炭素0.17~0.23wt%を含む中炭素鋼でつくられ、軸心部のスプライン孔36aにてシャフト1の端部のスプライン3とスプライン嵌合させることにより、シャフト1とトルク伝達可能に結合してある。シャフト1の端部に装着した止め輪39によって内側継手部材26からのシャフト1の抜け止めをしてある。内側継手部材26は球面状の外周面(外球面)35を有し、軸方向に延びた複数のボール溝36が円周方向に等間隔に形成してある。
 外側継手部材25のボール溝34と内側継手部材26のボール溝36とは対をなし、各対のボール溝34,36で形成されるボールトラックに1個ずつ、ボール27が転動可能に組み込んである。ボール27は外側継手部材25のボール溝34と内側継手部材26のボール溝36との間に介在してトルクを伝達する。すべてのボール27はケージ28によって同一平面内に保持される。ケージ28は外側継手部材25と内側継手部材26との間に球面接触状態で介在し、球面状の外周面にて外側継手部材25の内球面33と接し、球面状の内周面にて内側継手部材26の外球面35と接する。
 内部に充填した潤滑剤の漏洩を防止するとともに、外部から異物が侵入するのを防止するため、マウス部31の開口部はブーツ40で塞いである。ブーツ40は、大径部40aと、小径部40bと、大径部40aと小径部40bとを連結する蛇腹部40cとからなる。大径部40aはマウス部31の開口部に取り付けてブーツバンド41で締め付けてある。小径部40bはシャフト1のブーツ装着部(中径部9のブーツ装着用の周方向溝11を有する部位)に取り付けてブーツバンド42で締め付けてある。
 摺動型等速自在継手21は、ここではトリポード型の例を示してあるが、ダブルオフセット型等、他のしゅう動式等速自在継手を採用することもできる。等速自在継手21は、外側継手部材51と、内側継手部材としてのトラニオン52と、トルク伝達要素としてのローラ53とを主要な構成要素としている。
 外側継手部材51は例えばSCr420等の炭素0.17~0.23wt%を含む中炭素鋼でつくられ、マウス部51aとステム部51bとからなり、ステム部51bにて終減速機の出力軸とトルク伝達可能に連結するようになっている。マウス部51aは一端にて開口したカップ状で、内周の円周方向三等分位置に軸方向に延びるトラック溝56が形成してある。このためマウス部51aの横断面形状は花冠状を呈する。
 トラニオン52はボス58と脚軸59とからなり、例えば、SCr420等の炭素0.17~0.23wt%を含む中炭素鋼でつくられ、ボス58のスプライン孔58aにてシャフト1のスプライン4とトルク伝達可能に結合している。脚軸59はボス58の円周方向三等分位置から半径方向に突出している。各脚軸59にはローラ53を回転自在に支持させてある。
 ここでも、ブーツ60を取り付けて外側継手部材51の開口部を塞いである。これにより、内部に充填した潤滑剤の漏洩を防止するとともに、外部から異物が侵入するのを防止する。ブーツ60は、大径部60aと、小径部60bと、大径部60aと小径部60bとの間の蛇腹部60cとからなり、大径部60aをマウス部51aの開口端部に取り付けてブーツバンド61で締め付け、小径部60bをシャフト1のブーツ装着部(中径部10のブーツ装着用の周方向溝12を有する部位)に取り付けてブーツバンド62で締め付けてある。
 この中空シャフト1は、摺動型等速自在継手21側の小径部6の外径寸法をDs(図1参照)とし、固定型等速自在継手20側の小径部5の外径寸法をDf(図1参照)としたときの比(Ds/Df)を1.05~1.13としている。このため、固定型等速自在継手20側の小径部5が最小径部(最小平滑部)となる。
 ところで、この中空シャフト1は、まず、鋼管(管状素材)をその軸周りに回転させながら、高速度で直径方向に打撃して縮径させるスウェージング加工などの塑性加工により、両端部にスプライン3、4が形成されていない中空体を成形する。その後、中空体の端部に、転造加工又はプレス加工等にてスプライン3、4を形成する。
 次に、浸炭焼入にて中空シャフト1のほぼ全長及び全周にわたって硬化層を形成する。ここで、浸炭焼入とは、低炭素材料の表面から炭素を浸入/拡散させ、その後に焼入を行う方法である。ところで、管状素材は、その炭素量を、0.15%~0.45%とし、浸炭焼入処理時の表面炭素濃度(CP値)を0.50%~0.70%としている。
 その後、その一部に局部加熱処理による軟化部M(図4と図5参照)を形成する。この場合、軟化部Mとするのが、固定型等速自在継手20側の小径部5、つまり外周面が平滑面とされた最小径部である。局部加熱処理としては、高周波焼入を行う。浸炭焼入を行ったままの中空シャフト1では、小径部(最小平滑部)5は高い硬度となっており、脆化している場合がある。このため、この小径部(最小平滑部)5に対して局部的な加熱を行うことによって、その硬度を低下させ、延性を持たせている。高周波焼入とは、高周波電流の流れているコイル中に焼入に必要な部分を入れ、電磁誘導作用によりジュール熱を発生させて伝導性物体を加熱する原理を応用した焼入方法である。例えば、図6に示すように、室温の状態から1.5秒程度で300℃程度に加熱し、この状態で高周波加熱を停止し、その後、空冷にて室温まで温度を低下させるものである。
 高周波焼入は、図4に示すような液中で行うのが好ましい。液中で行う局部加熱処理は、焼入油72等に満たされた焼入槽70と、高周波電源(図示省略)に接続された加熱コイル71とを備える。すなわち、焼入槽70に満たされた焼入油72等の中にシャフト1を浸漬し、高周波電源に接続された加熱コイル71を、シャフト1に対して外嵌状として、このコイル71に高周波を流すことによって行う加熱処理である。なお、図4と図5におけるクロスハッチング部がこの液中高周波焼入処理によって形成された軟化部Mを示している。このように形成された軟化部Mの内径面硬度を45HRC~55HRCとする。なお、この液中で行う局部加熱処理の処理条件(加熱温度、加熱時間、冷却時間等の処理条件)としては、軟化部Mの内径面硬度を45HRC~55HRC等となるような条件を種々選択することができる。
 また、浸炭焼入処理後の表面異常層の深さを5μm以下となるように設定する。すなわち、浸炭焼入にて形成される硬化層の厚さを調整したり、管状素材の材質を調整したりすることによって、浸炭焼入処理後の表面異常層の深さが5μm以下となるよう設定することができる。
 本発明の中空シャフトでは、軟化部Mにおいて、硬度を低下させて延性を持たすことができ、加工しわの有無によらず、その静捩り強度や捩り疲労強度の向上を図ることができる。また、小径部5を軟化部Mとしているので、最も変形しやすい部位の強度向上を図ることができ、シャフト1としての強度を安定して得ることができる。
 局部加熱処理は高周波加熱処理でもって行うものであり、多くの利点を有することになる。例えば、高周波加熱処理は局部加熱ができる点、短時間に加熱ができるため酸化が少ない点、他の焼入方法に比べて、焼入歪が少ない点、表面硬さが高く、優れた強度を得られる点、硬化層の深さの選定も比較的容易である点、自動化が容易で機械加工ラインへの組み入れも可能である点等の利点を有する。
 管状素材として炭素量を0.15%~0.45%とすることによって、塑性加工性が良く、さらに高強度にできる。炭素量が0.15%未満では、浸炭焼入処理後の芯部の必要硬度が得られず、強度低下を招き、炭素量が0.45%を越えると、管状素材の塑性加工性が低下する。
 浸炭焼入処理時の表面炭素濃度(CP値)を0.50%~0.70%とすることによって、浸炭焼入処理時の硬度分布を適正にしやすくなる。表面炭素濃度(CP値)が0.50%未満では、安定した表面硬度を得ることができず、表面炭素濃度(CP値)が0.70%を越えると、脆性破壊を生じ易くなる。ここで、脆性破壊とは、塑性変化が著しく低下する破壊である。
 局部加熱処理による軟化部とした小径部の内径面硬度を45HRC~55HRCとすることによって、静的捩り強度を確保できる。内径面硬度が45HRC未満であれば、降伏点が低くなり、内径面硬度が55HRCを越えると、塑性加工によって生じた加工しわや傷の亀裂が鋭敏となり、強度低下を招く。
 浸炭焼入処理後の表面異常層の深さを5μm以下とすることによって、強度低下を招かず、浸炭焼入後において表面異常層を除去するための研削加工等を行う必要がなく、生産性の向上及び低コスト化を図ることができる。これに対して、表面異常層の深さが5μmを越えると、それが基点となり強度が低下することになる。
 局部加熱処理として液中で行うことによって、小径部5に対する局部加熱の管理の容易化を図ることができ、この小径部5に隣接するスプライン3等の局部加熱の不必要な部位の軟化を有効に防止できる。
 比(Ds/Df)を1.05~1.13としたものであれば、固定型等速自在継手側の小径部5が最小径部となり、この最小径部にのみ局部加熱すればよく、局部加熱のコストを低減できる。比(Ds/Df)が1.05未満では、局部加熱後に摺動型等速自在継手側の小径部6が最弱部となるため対策とならない。比(Ds/Df)が1.13より大きいと塑性加工が困難となり、製造コストが増大する。
 ところで、浸炭焼入処理としては通常焼戻処理を行うものである。また、本発明では、浸炭焼入処理後において、前記したような高周波焼入を行うものである。そこで、このような浸炭焼入処理における焼戻しを行わずに、局部加熱処理である高周波焼入と同時に、全体もしくは必要部位の焼戻しを行うものであってもよい。
 このように、高周波焼戻時に、同時に局部加熱処理による軟化部Mが形成されるものであれば、高周波焼戻を行った後、局部加熱処理による軟化部形成を行う工程に比べて、作業時間の短縮を図ることができ、生産性の向上を図ることができ、コスト低減を図ることができる。
 図7に示すように、他方(摺動型等速自在継手21側)の小径部6にも局部加熱処理による軟化部Mを形成してもよい。このように、両小径部5、6を軟化部Mとすることによって、シャフト1全体としての強度を安定して得ることができる。
 図8では、固定型等速自在継手20側の最小径部(小径部5)の軸方向長さをL´とし、固定型等速自在継手20の外側継手部材25における高作動角曲げ状態でのシャフト干渉部位S(図3参照)の長さをLoとしたとき、比(L´/Lo)を1~4としている。この場合、シャフト1の小径部5の軸方向長さL´を図1に示す小径部5の軸方向長さLよりも短く設定している。
 比(L´/Lo)を1~4としたものであれば、等速自在継手としての最大作動角を確保でき、しかも局部加熱部位の範囲を比較的小さく設定でき管理しやすくなり、また、コスト低減を図ることができる。比(L´/Lo)<1であれば、等速自在継手としての最大作動角が確保できず、比(L´/Lo)>4であれば、限定のメリットが得にくい。  
 以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、塑性加工として、冷間で行っても、熱間で行ってもよく、寸法精度の面から冷間で行うことが望ましい。また、転造加工によって形成されるスプラインとして、その軸方向凸部および軸方向凹部の数等は任意に設定することができ、軸方向凸部および軸方向凹部の形状としても、装着される相手側に応じて種々変更することができる。また、スプライン加工は、型に押し込み成型することも可能である。寸法精度の面から、押し込み成型が好ましい。
 中空シャフトとして、例えば、自動車の動力伝達系の一部を構成するドライブシャフトやプロペラシャフトに使用される。固定型等速自在継手や摺動型等速自在継手に連結される。
M     軟化部
S     シャフト干渉部位
1     中空シャフト
3,4 スプライン
5,6 小径部
20   固定型等速自在継手
21   摺動型等速自在継手
 

Claims (14)

  1.  管状素材から塑性加工により成形され、焼入硬化処理された中空シャフトであって、
     前記焼入硬化処理が浸炭焼入処理であって、浸炭焼入処理後において、少なくともその一部に局部加熱処理による軟化部を形成したことを特徴とする中空シャフト。
  2.  両端部にそれぞれ雄スプラインが形成され、両端部の雄スプラインの近傍に、その外径面が平滑とされた小径部を備えた中空シャフトであって、2つのうち一方を最小径部とし、この最小径部が局部加熱処理による軟化部であることを特徴とする請求項1に記載の中空シャフト。
  3.  前記局部加熱処理は高周波加熱処理であることを特徴とする請求項1又は請求項2に記載の中空シャフト。
  4.  前記管状素材として炭素量を0.15%~0.45%としたことを特徴とする請求項1~請求項3のいずれか1項に記載の中空シャフト。
  5.  浸炭焼入処理部の表面炭素濃度を0.50%~0.70%としたことを特徴とする請求項1~請求項4のいずれか1項に記載の中空シャフト。
  6.  局部加熱処理による軟化部とした小径部の内径面硬度を45HRC~55HRCとしたことを特徴とする請求項1~請求項5のいずれか1項に記載の中空シャフト。
  7.  浸炭焼入処理後の表面異常層の深さが5μm以下であることを特徴とする請求項1~請求項6のいずれか1項に記載の中空シャフト。
  8.  浸炭焼入処理後に高周波焼戻が施される中空シャフトであって、高周波焼戻時に局部加熱処理による軟化部が形成されていることを特徴とする請求項1~請求項7のいずれか1項に記載の中空シャフト。
  9.  局部加熱処理は液中で行われたことを特徴とする請求項1~請求項8のいずれか1項に記載の中空シャフト。
  10.  一方の端部が固定型等速自在継手に連結され、固定型等速自在継手側の小径部であるシャフト最小径部を局部加熱処理による軟化部としたことを特徴とする請求項1~請求項9のいずれか1項に記載の中空シャフト。
  11.  一方の端部が固定型等速自在継手に連結され、他方の端部が摺動型等速自在継手に連結されることを特徴とする請求項1~請求項10のいずれか1項に記載の中空シャフト。
  12.  摺動型等速自在継手側の小径部の外径寸法をDsとし、固定型等速自在継手側の小径部の外径寸法をDfとしたときの比(Ds/Df)を1.05~1.13としたことを特徴とする請求項1~請求項11に記載の中空シャフト。
  13.  一方の端部が固定型等速自在継手に連結され、固定型等速自在継手側の小径部の軸方向長さをL´とし、固定型等速自在継手の外側継手部材との高作動角曲げ状態での干渉部位の長さをLoとしたときの比(L´/Lo)を1~4としたことを特徴とする請求項1~請求項12のいずれか1項に記載の中空シャフト。
  14.  前記請求項1~請求項13のいずれか1項に記載の中空シャフトを用いたことを特徴とする等速自在継手。
PCT/JP2010/067229 2009-10-29 2010-10-01 中空シャフトおよび等速自在継手 WO2011052342A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/500,140 US9856906B2 (en) 2009-10-29 2010-10-01 Hollow shaft and constant velocity universal joint
CN201080048490.2A CN102597547B (zh) 2009-10-29 2010-10-01 中空轴及等速万向接头
EP10826476.3A EP2495461B1 (en) 2009-10-29 2010-10-01 Hollow shaft and constant velocity universal joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009249017A JP2011094700A (ja) 2009-10-29 2009-10-29 中空シャフトおよび等速自在継手
JP2009-249017 2009-10-29

Publications (1)

Publication Number Publication Date
WO2011052342A1 true WO2011052342A1 (ja) 2011-05-05

Family

ID=43921770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067229 WO2011052342A1 (ja) 2009-10-29 2010-10-01 中空シャフトおよび等速自在継手

Country Status (5)

Country Link
US (1) US9856906B2 (ja)
EP (1) EP2495461B1 (ja)
JP (1) JP2011094700A (ja)
CN (1) CN102597547B (ja)
WO (1) WO2011052342A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9445461B2 (en) 2011-11-04 2016-09-13 Ntn Corporation Method of producing a high-frequency heat treatment coil
JP5917249B2 (ja) * 2012-04-11 2016-05-11 Ntn株式会社 等速自在継手の内方部材およびその製造方法
TR201505451T1 (tr) * 2012-11-08 2015-07-21 Dana Automotive Systems Group İki̇nci̇l şekle sahi̇p, hi̇droli̇k preste bi̇çi̇mlendi̇ri̇lmi̇ş tahri̇k mi̇li̇ tüpü.
KR101363401B1 (ko) * 2013-09-11 2014-02-14 한국델파이주식회사 중공 구동축 및 이의 제조 방법
JP7375300B2 (ja) * 2018-12-25 2023-11-08 株式会社ジェイテクト 等速ジョイントの構成部材の製造方法
KR102274744B1 (ko) * 2020-02-07 2021-07-08 이래에이엠에스 주식회사 볼 스플라인 구조를 갖는 드라이브 샤프트용 관형 샤프트를 위한 열처리 방법 및 그에 의해 제조된 관형 샤프트

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340221A (ja) * 2003-05-14 2004-12-02 Nsk Ltd ピニオンシャフト
JP2005030569A (ja) * 2003-07-11 2005-02-03 Nsk Ltd カムフォロア
JP2005164016A (ja) 2003-12-05 2005-06-23 Toyota Motor Corp 中空シャフトおよびその製造方法
JP2006002809A (ja) * 2004-06-15 2006-01-05 Ntn Corp 中空状動力伝達シャフト
JP2007075824A (ja) 2005-09-09 2007-03-29 Ntn Corp 中空シャフト
JP2007247847A (ja) 2006-03-17 2007-09-27 Ntn Corp 動力伝達シャフト

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319337B1 (en) * 1999-02-10 2001-11-20 Ntn Corporation Power transmission shaft
US7022020B2 (en) * 2000-05-22 2006-04-04 Ntn Corporation Tripod constant velocity universal joint
JP4313014B2 (ja) * 2002-09-30 2009-08-12 株式会社ジェイテクト シャフト及びその製造方法
WO2004082872A2 (en) * 2003-03-18 2004-09-30 The Penn State Research Foundation Method and apparatus for strengthening of powder metal gears by ausforming
JP2006002185A (ja) * 2004-06-15 2006-01-05 Ntn Corp 中空状動力伝達シャフトの熱処理方法
JP2006046408A (ja) * 2004-08-02 2006-02-16 Ntn Corp 中空状動力伝達シャフト
JP2008208940A (ja) * 2007-02-27 2008-09-11 Ntn Corp 等速自在継手用部品及びその製造方法
WO2008123363A1 (ja) 2007-03-30 2008-10-16 Sumitomo Metal Industries, Ltd. 一体成形型ドライブシャフト用冷間仕上継目無鋼管およびそれを用いたドライブシャフト、並びにその冷間仕上継目無鋼管の製造方法
JP5352874B2 (ja) * 2008-02-05 2013-11-27 Ntn株式会社 等速自在継手の製造方法
JP2010083327A (ja) * 2008-09-30 2010-04-15 Toyota Motor Corp 車両用操舵力伝達装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340221A (ja) * 2003-05-14 2004-12-02 Nsk Ltd ピニオンシャフト
JP2005030569A (ja) * 2003-07-11 2005-02-03 Nsk Ltd カムフォロア
JP2005164016A (ja) 2003-12-05 2005-06-23 Toyota Motor Corp 中空シャフトおよびその製造方法
JP2006002809A (ja) * 2004-06-15 2006-01-05 Ntn Corp 中空状動力伝達シャフト
JP2007075824A (ja) 2005-09-09 2007-03-29 Ntn Corp 中空シャフト
JP2007247847A (ja) 2006-03-17 2007-09-27 Ntn Corp 動力伝達シャフト

Also Published As

Publication number Publication date
CN102597547A (zh) 2012-07-18
EP2495461A4 (en) 2018-02-28
US9856906B2 (en) 2018-01-02
US20120211125A1 (en) 2012-08-23
EP2495461B1 (en) 2020-01-15
EP2495461A1 (en) 2012-09-05
CN102597547B (zh) 2015-09-16
JP2011094700A (ja) 2011-05-12

Similar Documents

Publication Publication Date Title
JP5718003B2 (ja) 等速自在継手の外側継手部材およびその摩擦圧接方法
WO2011052342A1 (ja) 中空シャフトおよび等速自在継手
JP5231266B2 (ja) 等速自在継手の外方部材
CN104884832B (zh) 等速万向联轴器的外侧联轴器构件的制造方法
US20220297179A1 (en) Hollow drive shaft using upsetting method and manufacturing method therefor
JP2013066903A (ja) 中空状動力伝達シャフト
JP2018159404A (ja) 中空状動力伝達シャフト、等速自在継手の外側継手部材、およびドライブシャフト
JP2006002185A (ja) 中空状動力伝達シャフトの熱処理方法
JP2009275878A (ja) スプライン軸、動力伝達シャフトおよび等速自在継手外輪
JP2008019983A (ja) 中空シャフトおよび等速自在継手の外側継手部材
JP2007211926A (ja) 等速自在継手の内方部材及びその製造方法
JP6385730B2 (ja) 等速自在継手の外側継手部材の製造方法および外側継手部材
JP6026096B2 (ja) 外側継手部材の製造方法
JP2020063784A (ja) 動力伝達シャフト
JP2005146313A (ja) 動力伝達軸
JP2006002809A (ja) 中空状動力伝達シャフト
JP2000240669A (ja) 動力伝達軸
JP2007138192A (ja) 部品結合方法
JP5398965B2 (ja) 固定式等速自在継手
JP2009162335A (ja) 車輪用軸受装置
JP4554299B2 (ja) 中空状動力伝達シャフトの製造方法
JP2001208037A (ja) ドライブシャフト用中間軸及びその製造方法
JP4855369B2 (ja) 等速自在継手用外側継手部材及び固定式等速自在継手
WO2017061208A1 (ja) 等速自在継手の外側継手部材
WO2020195487A1 (ja) トリポード型等速自在継手

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048490.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13500140

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4543/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010826476

Country of ref document: EP