JP2003025347A - Vacuum rtm molding method - Google Patents

Vacuum rtm molding method

Info

Publication number
JP2003025347A
JP2003025347A JP2001215210A JP2001215210A JP2003025347A JP 2003025347 A JP2003025347 A JP 2003025347A JP 2001215210 A JP2001215210 A JP 2001215210A JP 2001215210 A JP2001215210 A JP 2001215210A JP 2003025347 A JP2003025347 A JP 2003025347A
Authority
JP
Japan
Prior art keywords
resin
molding method
cavity
mold
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001215210A
Other languages
Japanese (ja)
Other versions
JP2003025347A5 (en
JP4806866B2 (en
Inventor
Shunei Sekido
俊英 関戸
Hiroki Ooseto
浩樹 大背戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001215210A priority Critical patent/JP4806866B2/en
Publication of JP2003025347A publication Critical patent/JP2003025347A/en
Publication of JP2003025347A5 publication Critical patent/JP2003025347A5/ja
Application granted granted Critical
Publication of JP4806866B2 publication Critical patent/JP4806866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of a resin unimpregnated part caused by the excessive local flow of an injected resin in a cavity. SOLUTION: In the vacuum RTM molding method wherein the cavity of a mold, in which a reinforcing fiber substrate is arranged, is evacuated and the resin is injected in the evacuated cavity by utilizing the difference pressure between the inner pressure of the cavity and outside pressure to impregnate the reinforcing substrate, the injection speed of the resin is reduced to a flow velocity lower than the natural flow velocity due to the difference pressure to inject the resin in the cavity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、真空RTM(Vacu
um Resin Transfer Molding )成形方法に関し、とく
に、樹脂含浸不良の発生のない、優れた品質のFRP
(繊維強化プラスチック)成形品を得ることができるよ
うにした真空RTM成形方法に関する。
TECHNICAL FIELD The present invention relates to a vacuum RTM (Vacu
um Resin Transfer Molding) With regard to molding method, FRP of excellent quality with no occurrence of defective resin impregnation.
The present invention relates to a vacuum RTM molding method capable of obtaining a (fiber reinforced plastic) molded product.

【0002】[0002]

【従来の技術】FRP、とくにCFRP(炭素繊維強化
プラスチック)は、軽量で高い機械特性を発揮できる複
合材料であり、各種分野に使用されている。FRPの代
表的な成形方法の一つとして、真空RTM成形方法が知
られている。真空RTM成形方法は、型内に強化繊維基
材を配置し、その型のキャビティ内を減圧し、樹脂を、
減圧されたキャビティ内圧力と外部圧力との差圧を利用
してキャビティ内に注入し、注入した樹脂を強化繊維基
材に含浸させた後、樹脂を硬化させ、硬化後に脱型して
FRP成形品を得る方法である。
2. Description of the Related Art FRP, especially CFRP (carbon fiber reinforced plastic), is a composite material that is lightweight and can exhibit high mechanical properties and is used in various fields. A vacuum RTM molding method is known as one of typical FRP molding methods. In the vacuum RTM molding method, a reinforcing fiber base material is placed in a mold, the cavity in the mold is depressurized, and the resin is
It is injected into the cavity by utilizing the pressure difference between the reduced pressure inside the cavity and the external pressure, and after the injected resin is impregnated into the reinforcing fiber base material, the resin is cured, and after curing, it is demolded and FRP molded. It is a method of obtaining goods.

【0003】このような真空RTM成形方法において、
キャビティ内を減圧し、キャビティ内外の圧力差(最
大、1kg/cm2 )で樹脂を注入し、強化繊維基材に
含浸するが、注入初期の段階では基材にまだ樹脂が十分
に含浸されていないので流動抵抗が低く、速い流速で勢
いよく流れる。しかし、基材は場所によって、流動抵抗
に差があり、流動抵抗にばらつきが生じている。たとえ
ば、基材がオーバーラップしている部分と、それ以外の
部分での流動抵抗の差は、倍以上になることもある。そ
のような場合、オーバーラップ部分では大きな流動抵抗
のために、樹脂含浸に比較的長時間を要するが、オーバ
ーラップしていない部分では、流動抵抗が低いことから
速やかに含浸が進行する。そのため、それらの部分間
に、樹脂流動および含浸に時間的な差が生じ、流動抵抗
の低い部分に樹脂が先回りして、流動抵抗の高い、未だ
樹脂が十分に含浸されていない部分からの真空吸引経路
を塞いでしまうことがある。このような状態が生じる
と、その樹脂未含浸部分からの真空吸引が阻害され、そ
の部分における樹脂の流動速度が急激に低下し、やが
て、樹脂が十分に含浸できないうちに樹脂がゲル化して
しまい、その部分が未含浸状態のままになってしまうと
いう問題を招く。
In such a vacuum RTM molding method,
The cavity is decompressed, and the resin is injected with a pressure difference between the inside and outside of the cavity (maximum 1 kg / cm 2 ) to impregnate the reinforced fiber base material, but at the initial stage of injection, the base material is still sufficiently impregnated with the resin. Since it has no flow resistance, it flows vigorously at a high flow rate. However, the flow resistance of the base material varies depending on the location, and the flow resistance varies. For example, the difference in flow resistance between the portion where the base material overlaps and the portion where the base material does not overlap may double or more. In such a case, the resin impregnation takes a relatively long time due to the large flow resistance in the overlapping portion, but the impregnation proceeds promptly in the non-overlap portion because the flow resistance is low. Therefore, there is a time difference in resin flow and impregnation between these parts, the resin precedes the part with low flow resistance, and the vacuum from the part with high flow resistance that is not yet sufficiently impregnated with resin. The suction path may be blocked. When such a state occurs, vacuum suction from the resin non-impregnated portion is hindered, the flow rate of the resin in the portion is rapidly reduced, and eventually the resin gels before being sufficiently impregnated with the resin. However, this causes a problem that the portion remains unimpregnated.

【0004】[0004]

【発明が解決しようとする課題】そこで本発明の課題
は、上記のような真空RTM成形方法における問題点に
着目し、注入樹脂がキャビティ内に局部的に流動しすぎ
ないようにし、とくに注入開始初期の段階で局部的に流
動しすぎないようにし、含浸すべき強化繊維基材の全体
にわたって、未含浸部の発生を防止できるようにした、
真空RTM成形方法を提供することにある。
Therefore, an object of the present invention is to pay attention to the problems in the vacuum RTM molding method as described above, to prevent the injected resin from locally flowing too much into the cavity, and particularly to start the injection. In the initial stage, it was prevented from locally flowing too much, and it was possible to prevent the generation of an unimpregnated portion throughout the reinforcing fiber base material to be impregnated.
It is to provide a vacuum RTM molding method.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る真空RTM成形方法は、強化繊維基材
を配置した型のキャビティ内を減圧し、樹脂を、減圧さ
れたキャビティ内圧力と外部圧力との差圧を利用してキ
ャビティ内に注入し強化繊維基材に含浸する真空RTM
成形方法において、樹脂の注入速度を、前記差圧による
自然流速よりも低い流速に減速して、樹脂を注入するこ
とを特徴とする方法からなる。
In order to solve the above-mentioned problems, the vacuum RTM molding method according to the present invention reduces the pressure in the cavity of the mold in which the reinforcing fiber base material is arranged and the resin in the pressure-reduced cavity. Vacuum RTM for injecting into the cavity and impregnating the reinforced fiber substrate by using the differential pressure between the pressure and the external pressure
In the molding method, the injection speed of the resin is reduced to a flow speed lower than the natural flow speed due to the differential pressure, and the resin is injected.

【0006】この本発明に係る真空RTM成形方法は、
前述したような流動抵抗が高い部分にも十分に樹脂が含
浸されるまで、流動抵抗の低い部分への樹脂流動、含浸
が進みすぎないよう全体の流速を抑制するもので、とく
に、流動開始初期(注入開始初期)の段階での流速を抑
えるよう樹脂の注入速度を、何ら制御を行わない自然流
速よりも低い流速に抑制する制御を行うものである。
The vacuum RTM molding method according to the present invention is
Until the resin with sufficient flow resistance is sufficiently impregnated as described above, it controls the resin flow into the area with low flow resistance and the overall flow velocity to prevent excessive impregnation. In order to suppress the flow velocity at the (initial stage of injection start), the resin injection velocity is controlled to be lower than the natural flow velocity for which no control is performed.

【0007】樹脂注入速度の制御としては、樹脂の初期
注入流速Vcを、上記自然流速における初期注入流速V
nの2/3以下に制御することが好ましい。このような
制御により、とくに注入開始後の初期の段階で有効に、
流動抵抗の低い部分への樹脂流動、含浸が進みすぎない
ようにでき、真空吸引経路が局部的に塞がれるのを防止
して、基材全体への良好な樹脂含浸を達成でき、未含浸
部の発生を防止できるようになる。
To control the resin injection rate, the initial injection flow rate Vc of the resin is set to the initial injection flow rate V at the natural flow rate.
It is preferable to control to 2/3 or less of n. By such control, especially in the early stage after the start of infusion,
It is possible to prevent resin flow and impregnation to a part with low flow resistance from progressing too much, to prevent the vacuum suction path from being locally blocked, and to achieve good resin impregnation of the entire base material. It becomes possible to prevent the occurrence of parts.

【0008】ただし、樹脂注入速度を低く抑えると、樹
脂注入工程に要する時間が長くなり、樹脂注入工程を含
めた成形工程全体のサイクル時間が長くなって生産性を
低下させるおそれが生じる。そこで、樹脂注入工程の時
間が長くなりすぎないようにするために、樹脂の粘度を
下げて、樹脂の流動速度、含浸しやすさとしては比較的
高い水準を保ち、その条件下において、局部的な未含浸
部が発生しないようにすることが好ましい。そのために
は、樹脂注入温度を、問題が生じない程度に高くして樹
脂の粘度を下げることが好ましい。たとえば、樹脂を型
温度50℃以上で注入することが好ましい。また、同様
に成形サイクルを短くする観点から、強化繊維基材に含
浸した樹脂を型温度70℃以上で硬化させることが好ま
しい。
However, if the resin injection speed is kept low, the time required for the resin injection process becomes long, and the cycle time of the entire molding process including the resin injection process becomes long, which may reduce the productivity. Therefore, in order to prevent the resin injection process from taking too long, the viscosity of the resin is lowered to maintain a relatively high level of resin flow rate and impregnation, and under those conditions, the local It is preferable that no such unimpregnated portion is generated. For that purpose, it is preferable to raise the resin injection temperature to such an extent that a problem does not occur and to lower the viscosity of the resin. For example, it is preferable to inject the resin at a mold temperature of 50 ° C. or higher. Similarly, from the viewpoint of shortening the molding cycle, it is preferable to cure the resin impregnated in the reinforcing fiber base at a mold temperature of 70 ° C. or higher.

【0009】このような要求を満たす注入樹脂として、
ポリアミン硬化剤と液状エポキシ樹脂とからなる樹脂組
成物を用いることができる。
As an injection resin satisfying such requirements,
A resin composition composed of a polyamine curing agent and a liquid epoxy resin can be used.

【0010】また、本発明に係る真空RTM成形方法に
おいては、樹脂の拡散や基材への含浸をより促進し、局
部的な未含浸部の発生をより確実に防止するために、強
化繊維基材の表面上に、樹脂の流動抵抗を下げる樹脂拡
散媒体を配置することができる。また、強化繊維基材間
に、表面に樹脂流路としての溝を有するコア材を配置す
ることもできる。
Further, in the vacuum RTM molding method according to the present invention, in order to further promote the diffusion of the resin and the impregnation of the base material and to more reliably prevent the local non-impregnated portion from being generated, A resin diffusion medium that lowers the flow resistance of the resin can be arranged on the surface of the material. Further, a core material having a groove as a resin channel on the surface can be arranged between the reinforcing fiber base materials.

【0011】[0011]

【発明の実施の形態】以下に、本発明について、望まし
い実施の形態とともに詳細に説明する。図1は、本発明
の真空RTM成形方法の基本的なプロセスを示してい
る。図1に示す基本プロセスは、材料準備工程101、
材料配置工程102、真空吸引工程103、樹脂注入含
浸工程104、樹脂硬化工程105、脱型工程106を
有している。これら各工程について以下に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below along with preferred embodiments. FIG. 1 shows the basic process of the vacuum RTM molding method of the present invention. The basic process shown in FIG. 1 is a material preparation step 101,
It has a material placement step 102, a vacuum suction step 103, a resin injection impregnation step 104, a resin curing step 105, and a demolding step 106. Each of these steps will be described below.

【0012】(1)材料準備工程 強化繊維基材:炭素繊維やガラス繊維の織布を用いる
ことが好ましく、それを所定の寸法に裁断する。必要に
よっては、製品形状に賦形し、固着材で形状保持させ
る。更に、所定の枚数、積層する。 樹脂:とくに熱硬化性樹脂を使用し、主剤と硬化剤を
個別に真空(加熱)脱泡させることが好ましい。中で
も、ポリアミン硬化剤と液状エポキシ樹脂とからなる樹
脂組成物を用いることが好ましい。 コア材:コア材とその両面に強化繊維基材を配したサ
ンドイッチ構造を成形する場合に使用する。コア材とし
ては、主に、フォームコア(発泡体コア材)を用いるこ
とが、軽量化等の観点から望ましい。場合によっては、
バルサコアや木材も用いることもできる。コア材の表面
には、必要に応じて、樹脂流路用の溝を加工しておく。 副資材:樹脂注入用や真空吸引用チューブや、必要に
応じて樹脂拡散媒体や離型用織布、押圧板などを準備す
る。
(1) Material Preparation Step Reinforcing Fiber Substrate: It is preferable to use a woven fabric of carbon fiber or glass fiber, which is cut into a predetermined size. If necessary, it is shaped into a product shape and held by a fixing material. Furthermore, a predetermined number of sheets are stacked. Resin: In particular, it is preferable to use a thermosetting resin and perform vacuum (heating) degassing of the main agent and the curing agent separately. Above all, it is preferable to use a resin composition comprising a polyamine curing agent and a liquid epoxy resin. Core material: Used when molding a sandwich structure in which a core material and reinforcing fiber substrates are arranged on both sides thereof. As the core material, it is desirable to mainly use a foam core (foam core material) from the viewpoint of weight reduction and the like. In some cases,
Balsacore and wood can also be used. A groove for a resin flow path is formed on the surface of the core material, if necessary. Sub-materials: Prepare resin injection and vacuum suction tubes, and if necessary, resin diffusion media, release woven cloth, pressing plate, etc.

【0013】(2)材料配置(レイアツプ)工程 離型剤が塗布された成形型面上に、上記材料を所定の
位置に配置する。 配置する際、非成形面にマーキングされた基準線など
を基準に、織物基材の繊維配向やコア材の向き等をセッ
トするとよい。
(2) Material Arrangement (Lay Up) Step The above material is arranged at a predetermined position on the mold surface coated with the release agent. When arranging, it is advisable to set the fiber orientation of the woven fabric substrate, the orientation of the core material, etc. on the basis of a reference line or the like marked on the non-molding surface.

【0014】(3)真空吸引工程 強化繊維基材を配置した下型のキャビティを、上型で
閉じてキャビティ内をシールするか、あるいは、下型の
キャビティを可撓性材料からなるバッグ材(たとえば、
フィルムやゴム材などからなるバッグ材)でバギング
し、内部を外部に対してシールする。また、該可撓性材
料からなるバッグ材と強化繊維基材の間に押圧板を配置
する場合もある。 上型で閉じた、あるいはバッグ材でバギングしたキャ
ビティ内を真空吸引して減圧状態にする。 真空吸引は、少なくとも20torr以下、望ましく
は10torr以下にする。 真空吸引は、吸引し続ける場合と20torr以下に
達した時点で、吸引口を閉鎖する場合がある。
(3) Vacuum suction step The cavity of the lower mold in which the reinforcing fiber substrate is arranged is closed by the upper mold to seal the inside of the cavity, or the cavity of the lower mold is made of a flexible bag material ( For example,
Bag material made of film or rubber material) is used for bagging to seal the inside from the outside. Further, a pressing plate may be arranged between the bag material made of the flexible material and the reinforcing fiber base material. The inside of the cavity closed with the upper mold or bagging with the bag material is vacuum-sucked to reduce the pressure. Vacuum suction should be at least 20 torr or less, preferably 10 torr or less. In vacuum suction, the suction port may be closed when the suction is continued or when the pressure reaches 20 torr or less.

【0015】(4)樹脂注入含浸工程 成形型を加熱し、樹脂をキャビティ内に注入する。成
形型は予め材料配置工程より加熱状態にあってもよい。 樹脂注入は、大気圧による自然流速よりも遅い速度で
ゆっくり注入する。望ましくは、自然注入時の自然流速
よりも2/3以下の速度に制御する。これは、初期の流
速を自然流入のようにコントロールせずに注入すると、
キャビティ内に流入した樹脂は先ず樹脂流動抵抗の低い
部位を主体に流れ、例えば基材のオーバーラップ部や極
端な変曲部などの高流動抵抗部分では流れが悪くなり
(流れやすい部分との差が大きくなり)、流れの方向に
流れが不揃いになって未含浸部が生じ、そのままボイド
として残る場合が多い。このような現象は流速の速い注
入初期に生じやすいため、樹脂注入の開始直後から樹脂
流動速度(注入速度)を抑制する必要がある。 樹脂を注入して、含浸し終えたか否かの判断は、真空
吸引口より樹脂が排出したか否かで行う。
(4) Resin injection impregnation step The molding die is heated to inject the resin into the cavity. The mold may be heated in advance from the material placement step. The resin is slowly injected at a rate lower than the natural flow rate due to atmospheric pressure. Desirably, the speed is controlled to be 2/3 or less than the natural flow rate at the time of natural injection. This is because if you inject without controlling the initial flow rate like natural inflow,
The resin that flows into the cavity first flows mainly in the area where the resin flow resistance is low. For example, the flow becomes poor at the high flow resistance area such as the overlapped portion or the extremely curved portion of the base material (the difference from the easily flowable area). In many cases), the flow becomes uneven in the direction of the flow, and an unimpregnated part is generated, which often remains as a void. Since such a phenomenon is likely to occur in the initial stage of injection with a high flow rate, it is necessary to suppress the resin flow rate (injection rate) immediately after the start of resin injection. Whether or not the resin has been injected and impregnated is determined by whether or not the resin has been discharged from the vacuum suction port.

【0016】上記の樹脂注入流速の減速は、樹脂注入ラ
インの配置されたバルブを絞ること等によって制御で
き、たとえば図2に示すような流速パターンに制御でき
る。図2において、流速パターンAは、減速しないで自
然流速のまま樹脂を注入したばあいの流速を示してお
り、これに対し、たとえば樹脂注入ラインの配置された
バルブを、ある一定量絞り、絞ったままにすると、たと
えば流速パターンB1のような流速特性になる。このパ
ターンB1のような流速特性でもよいが、ある程度注入
が進行した段階では、それほど流速を低下させないで
も、すでに樹脂がキャビティ内に十分に良好に流動して
いる場合が多いので、そのような場合には、成形サイク
ルを極力短縮する観点から、流速特性を途中で流速パタ
ーンAに近づけ、たとえば流速パターンB2のような流
速特性にすることができる。
The above deceleration of the resin injection flow rate can be controlled by, for example, squeezing the valve in which the resin injection line is arranged, and can be controlled in the flow rate pattern as shown in FIG. 2, for example. In FIG. 2, the flow velocity pattern A shows the flow velocity when the resin is injected at the natural flow velocity without deceleration, whereas, for example, the valve in which the resin injection line is arranged is squeezed by a certain fixed amount. If left as it is, a flow velocity characteristic such as a flow velocity pattern B1 is obtained. Although the flow velocity characteristics such as the pattern B1 may be used, at a stage where the injection has progressed to some extent, the resin is already sufficiently well flowing into the cavity even if the flow velocity is not reduced so much. From the viewpoint of shortening the molding cycle as much as possible, the flow velocity characteristic can be brought close to the flow velocity pattern A on the way to obtain the flow velocity characteristic such as the flow velocity pattern B2.

【0017】(5)樹脂硬化工程 樹脂注入含浸後、樹脂注入口を閉鎖する(空気の流入
を防ぐ)。 真空吸引側については、吸引し続ける場合と閉鎖する
場合がある。特に、樹脂に溶媒を含む場合には吸引し続
け、できるだけ発生ガスをキャビティ内より排出するよ
うにする。
(5) Resin curing step After the resin injection and impregnation, the resin injection port is closed (air is prevented from flowing in). The vacuum suction side may be closed or closed. In particular, when the resin contains a solvent, suction is continued and the generated gas is discharged from the cavity as much as possible.

【0018】(6)脱型工程 基本的には、型温度を殆ど下げずに成形品を型より取
り出すことが好ましい。 脱型が難しい場合は、故意に型温を下げて型の収縮力
を利用し、脱型を助けることもある。
(6) Demolding step Basically, it is preferable to take out the molded product from the mold without lowering the mold temperature. When it is difficult to remove the mold, the mold temperature may be intentionally lowered to utilize the contraction force of the mold to assist the mold removal.

【0019】[0019]

【実施例】以下に、成形方法のより具体的な例を含め
て、本発明を実施例に基づいて説明する。 実施例1 図3は、本発明の実施例1に係る真空RTM成形方法を
示している。図3においては、金属製の上型1と下型2
の両面成形型によって、内部にキャビティ3が成形され
ている。上型1、下型2内には、型加熱様の熱媒流路
4、5がそれぞれ内蔵されている。
EXAMPLES The present invention will be described below based on examples, including more specific examples of the molding method. Example 1 FIG. 3 shows a vacuum RTM molding method according to Example 1 of the present invention. In FIG. 3, a metal upper mold 1 and a lower mold 2
The cavity 3 is formed inside by the double-sided mold. In the upper mold 1 and the lower mold 2, heat medium flow paths 4 and 5 for heating the mold are respectively incorporated.

【0020】型面上に離型剤を塗布し、予め熱媒流路5
に温水を流して約40℃に加熱した下型成形面上に強化
繊維基材6(東レ(株)製、炭素繊維織物:”トレカ”
T300×200g/m2 ×8ply)をレイアップし
た。その上に、離型用織布7(ナイロン製タフタ)と樹
脂拡散媒体8(#200メッシュのポリエチレン製網状
体)を配置した。
A mold release agent is applied on the mold surface, and the heat medium channel 5 is previously formed.
Reinforcing fiber base material 6 (Toray Industries, Inc., carbon fiber woven fabric: "Torayca") on the molding surface of the lower mold heated with warm water at about 40 ° C.
T300 × 200 g / m 2 × 8 ply) was laid up. On top of that, a release woven fabric 7 (nylon taffeta) and a resin diffusion medium 8 (# 200 mesh polyethylene net) were placed.

【0021】下型2と同様に、予め約40℃に加熱した
上型1を下型2上にガイドピンに沿って押圧して固定状
態を保持し、型締めした。
Similar to the lower mold 2, the upper mold 1 preheated to about 40 ° C. was pressed onto the lower mold 2 along the guide pins to maintain the fixed state and clamp the mold.

【0022】キャビティ3の幅方向に形成された台形状
の溝である減圧吸引部9に連通した吸引口より、バルブ
10、真空トラップ11(樹脂の真空ポンプへの流入を
阻止するためのトラップ)を介して真空ポンプ12によ
り真空吸引した。
A valve 10 and a vacuum trap 11 (traps for preventing resin from flowing into a vacuum pump) through a suction port communicating with a vacuum suction section 9 which is a trapezoidal groove formed in the width direction of the cavity 3. Vacuum suction was performed by the vacuum pump 12 through the.

【0023】キャビティ3内が10torr以下に達し
た後、真空吸引用溝である上記減圧吸引部9と基材6が
配置された成形部分を介して対比関係にある位置に、該
減圧吸引部9と同様に幅方向に形成された台形状の溝で
ある樹脂注入部13に連通する樹脂注入ラインのバルブ
14を開いて、タンク15に貯蔵されていた樹脂16を
大気圧でキャビティ3内に流入させた。真空吸引ライン
上のバルブ10は開いたままで真空吸引を続行した。樹
脂及び真空シールは、型面上の全周にわたって配置した
Oリング17で行った。このとき、樹脂注入ラインのバ
ルブ14の開度を調整し、通常全開で注入している自然
流速の約1/2の流速まで注入流速を低下させた。熱硬
化性樹脂16には、東レ(株)製ポリアミン硬化型エポ
キシ樹脂:TR−C32(ポリアミン硬化剤とエポキシ
樹脂からなる樹脂組成物)を使用した。
After the inside of the cavity 3 reaches 10 torr or less, the decompression suction part 9 is located at a position having a contrasting relationship with the decompression suction part 9 which is a vacuum suction groove and the molding part where the substrate 6 is arranged. Similarly, the valve 14 of the resin injection line communicating with the resin injection portion 13 which is a trapezoidal groove formed in the width direction is opened, and the resin 16 stored in the tank 15 is flown into the cavity 3 at atmospheric pressure. Let The vacuum suction was continued while the valve 10 on the vacuum suction line was kept open. The resin and the vacuum seal were performed by the O-ring 17 arranged all around the mold surface. At this time, the opening degree of the valve 14 of the resin injection line was adjusted, and the injection flow rate was reduced to about 1/2 of the natural flow rate which is normally fully opened. As the thermosetting resin 16, a polyamine-curable epoxy resin: TR-C32 (resin composition consisting of polyamine curing agent and epoxy resin) manufactured by Toray Industries, Inc. was used.

【0024】大気圧で加圧された樹脂16は、一旦幅方
向に溝が形成された樹脂注入部13に到達して充満した
後、キャビティ3との連通路である上下型の間隙で形成
されたフィルムゲート18(隙間=約0.5mm)を通
ってキャビティ3内に到達する。その後、基材6より流
動抵抗が遙かに低い樹脂拡散媒体8に流れ込む。そし
て、その樹脂拡散媒体8内を主体に樹脂は流れながら、
少しずつ厚み方向の基材6内に含浸して行き、やがて幅
方向に溝が形成された減圧吸引部9に到達する。その
後、真空吸引ライン上に樹脂が見えだした時点で樹脂注
入ラインのバルブ14を閉鎖し、樹脂注入をストップし
た。樹脂注入開始から真空吸引ライン上に樹脂が見える
までの時間は約20分であり、その20分間に型温度を
80℃に昇温させた。樹脂注入流速を抑制したので、後
述の成形品でチェックした結果、樹脂はキャビティ内、
つまり、樹脂を含浸すべき部位に隈なく回り込んでお
り、未含浸部の発生はなかった。
The resin 16 pressurized at atmospheric pressure once reaches and is filled with the resin injecting portion 13 in which a groove is formed in the width direction, and then is formed in a gap between the upper and lower molds which is a communication path with the cavity 3. It reaches the inside of the cavity 3 through the film gate 18 (gap = about 0.5 mm). After that, it flows into the resin diffusion medium 8 whose flow resistance is much lower than that of the base material 6. Then, while the resin flows mainly in the resin diffusion medium 8,
The base material 6 in the thickness direction is gradually impregnated, and eventually reaches the vacuum suction unit 9 having grooves formed in the width direction. After that, when the resin appeared on the vacuum suction line, the valve 14 of the resin injection line was closed to stop the resin injection. The time from the start of resin injection until the resin was visible on the vacuum suction line was about 20 minutes, and the mold temperature was raised to 80 ° C. during the 20 minutes. Since the resin injection flow rate was suppressed, as a result of checking with the molded product described below, the resin was
In other words, the resin was thoroughly wrapped around the portion to be impregnated with the resin, and no unimpregnated portion was generated.

【0025】樹脂がキャビティ3内に充満し、型温度が
80℃の状態で基材6内に含浸したまま約1時間40分
保持した。該樹脂はやがて型からの加熱により脱型可能
なまでに硬化した。
The cavity 3 was filled with the resin and kept in the substrate 6 for about 1 hour and 40 minutes while the mold temperature was 80 ° C. The resin was cured by heating from the mold until it could be removed from the mold.

【0026】樹脂が硬化した後、型温度を降温し、上型
1を上昇させて下型2から離型して成形品を型内より脱
型させた。
After the resin was hardened, the mold temperature was lowered, the upper mold 1 was raised, and the lower mold 2 was released from the mold to release the molded product from the mold.

【0027】脱型した成形品は自動車部材であるフェン
ダーであり、成形品に未含浸部位の発生はなく、表面状
態は光沢があり、全くボイドやピンホールなどは見られ
ない良品であった。
The demolded molded product was a fender, which is an automobile member, and it was a good product in which there were no unimpregnated parts in the molded product, the surface condition was glossy, and voids and pinholes were not seen at all.

【0028】このように、熱硬化性樹脂の注入速度を適
切に低下させることにより、成形サイクルを大幅に増加
させることなく、成形部位の全体にわたって樹脂の良好
な含浸性を確保でき、FRP製品の良好な品質を得るこ
とができた。
As described above, by appropriately lowering the injection rate of the thermosetting resin, good impregnation of the resin can be ensured over the entire molding site without significantly increasing the molding cycle, and the FRP product Good quality could be obtained.

【0029】実施例2 本実施例では、片面型として下型21を用い、上型は用
いずにシート状のバッグ材22で覆った。金属製の下型
21には、型加熱用の熱媒流路23を形成されている。
離型剤を型面上に塗布し、温水が通った熱媒流路23に
よって型温度は約40℃に加熱した。
Example 2 In this example, the lower mold 21 was used as a single-sided mold, and the upper mold was not used, and the bag was covered with a sheet-like bag material 22. A heating medium flow path 23 for heating the die is formed in the metal lower die 21.
A mold release agent was applied onto the mold surface, and the mold temperature was heated to about 40 ° C. by the heat medium passage 23 through which warm water passed.

【0030】その型面上に強化繊維基材24(東レ
(株)製、炭素繊維織物:”トレカ”T700×300
g/m2 ×2ply)をレイアップした。更にその上に
アクリル系のフォームコア材25(厚さ:10mm)を
配置した後、その上に強化繊維基材24(東レ(株)
製、炭素繊維織物:”トレカ”T700×300g/m
2 ×2ply)を配置した。そして、その上には、該フ
ォームコア材25と外寸が殆ど同一で厚さが3mmのF
RP製押圧板26を載せ、下型表面の全体をナイロン製
バッグ材22で覆った。そのバッグ材22と下型21と
のシールは、粘着性シール材で行った。更に、該バッグ
材22の上にヒータ線を内蔵したシリコン製ラバーヒー
タ28を被せた。なお、上記フォームコア材25には上
下面共に、樹脂流入路用としての細溝(幅1.5mm×
深さ3mm)を樹脂注入部29から減圧吸引部30方向
に加工してある。
On the mold surface, a reinforcing fiber substrate 24 (manufactured by Toray Industries, Inc., carbon fiber woven fabric: "Torayca" T700 × 300)
g / m 2 × 2 ply) was laid up. Further, an acrylic foam core material 25 (thickness: 10 mm) was placed thereon, and the reinforcing fiber base material 24 (Toray Industries, Inc.) was placed thereon.
Made, carbon fiber fabric: "Torayca" T700 × 300g / m
2 × 2 ply) was placed. On top of that, the outer diameter of the foam core material 25 is almost the same as that of the foam core material 25 having a thickness of 3 mm.
The RP pressing plate 26 was placed, and the entire surface of the lower mold was covered with the nylon bag material 22. The bag material 22 and the lower mold 21 were sealed with an adhesive sealing material. Further, a silicone rubber heater 28 having a built-in heater wire was covered on the bag material 22. It should be noted that the foam core material 25 has a narrow groove (width 1.5 mm ×
The depth (3 mm) is processed from the resin injection part 29 toward the vacuum suction part 30.

【0031】キャビティ31の幅方向に形成された台形
状の溝である減圧吸引部30に連通した吸引口よりバル
ブ32、真空トラップ33を介して真空ポンプ34によ
って真空吸引した。このときよりラバーヒータ28を7
0℃に昇温開始した。そして、キャビティ31内が6t
orr以下に達した後、真空吸引用溝である上記減圧吸
引部30と基材24が配置された成形部分を介して対比
関係にある位置に、該減圧吸引部30と同様に幅方向に
形成された台形状の溝である樹脂注入部29に連通する
樹脂注入ラインのバルブ35を開いてタンク36に貯蔵
された樹脂37を大気圧でキャビティ31内に流入させ
た。このとき、バルブ35の開度を調整し、通常全開で
注入している自然流速の約1/2の流速まで注入流速を
低下させた。真空吸引ライン上のバルブ32は開いたま
まで、真空吸引し続けた。なお、樹脂及び真空シール
は、型面上の全周に連通したOリング27で行った。ま
た、ここで用いた熱硬化性樹脂37は、東レ(株)製ポ
リアミン硬化型エポキシ樹脂:TR−C32であり、7
0℃での粘度は約50mPa・sである。
Vacuum suction was performed by a vacuum pump 34 via a valve 32 and a vacuum trap 33 from a suction port communicating with a vacuum suction unit 30 which is a trapezoidal groove formed in the width direction of the cavity 31. From this time, set the rubber heater 28 to 7
The temperature started to rise to 0 ° C. And the inside of the cavity 31 is 6t
After reaching orr or less, it is formed in the width direction in the same manner as the decompression suction unit 30 at a position having a contrasting relationship with the decompression suction unit 30, which is a vacuum suction groove, and the molding portion in which the substrate 24 is arranged. The resin 37 stored in the tank 36 was allowed to flow into the cavity 31 at atmospheric pressure by opening the valve 35 of the resin injection line that communicates with the resin injection portion 29 that is a trapezoidal groove. At this time, the opening degree of the valve 35 was adjusted to reduce the injection flow rate to about 1/2 of the natural flow rate that is normally injected fully. The valve 32 on the vacuum suction line was kept open and vacuum suction was continued. The resin and the vacuum seal were performed by an O-ring 27 which was in communication with the entire circumference of the mold surface. Further, the thermosetting resin 37 used here is polyamine curing type epoxy resin: TR-C32 manufactured by Toray Industries, Inc., 7
The viscosity at 0 ° C. is about 50 mPa · s.

【0032】大気圧で加圧された樹脂37は、前記図2
記載の実施例1と同様に一旦樹脂注入部29に到達し充
満した後、キャビティ31から延長して樹脂注入部29
まで配置された基材24内を通ってキャビティ31内に
達する。但し、上記基材の延長部分には樹脂抵抗を下げ
る為に図3に記載したのと同様の樹脂拡散媒体を基材の
上に配置した(図4では省略)。その後、基材24より
流動抵抗が遙かに低いコア材25に形成された上記細溝
内に流れ込む。そして樹脂39は、コア材25の上下面
の細溝内を中心に流れながら少しずつ厚み方向の基材2
4内に含浸していき、やがて減圧吸引部30に到達す
る。その後、真空吸引ライン上に樹脂が見えだした時点
で型温度を80℃に上昇させるとともに、樹脂注入ライ
ンのバルブ35を閉鎖し、樹脂注入をストップした。
The resin 37 pressurized at atmospheric pressure is the same as that shown in FIG.
In the same manner as in the described first embodiment, once the resin injection part 29 is reached and filled, the resin injection part 29 is extended from the cavity 31.
It reaches the inside of the cavity 31 through the inside of the base material 24 disposed up to. However, in the extended portion of the base material, the same resin diffusion medium as described in FIG. 3 was placed on the base material in order to reduce the resin resistance (omitted in FIG. 4). After that, it flows into the narrow groove formed in the core material 25 having a flow resistance much lower than that of the base material 24. Then, the resin 39 flows little by little while flowing in the narrow grooves on the upper and lower surfaces of the core material 25 in the thickness direction.
4 is impregnated and eventually reaches the vacuum suction unit 30. After that, when the resin appeared on the vacuum suction line, the mold temperature was raised to 80 ° C., the valve 35 of the resin injection line was closed, and the resin injection was stopped.

【0033】上記樹脂が80℃に達した成形型のキャビ
ティ31内に充満し、基材24内に含浸した状態で約1
時間40分保持した。該樹脂はやがて型からの加熱によ
り硬化した。
The cavity 31 of the mold, which has reached 80 ° C., is filled with the above-mentioned resin, and the base material 24 is impregnated with the resin to about 1
Hold for 40 minutes. The resin was cured by heating from the mold.

【0034】樹脂が硬化した後、下型21からラバーヒ
ータ28とバッグ材22を剥奪して成形品を型内より脱
型させた。この場合、型温度は80℃から50℃に降温
している途中で行い、できるだけ成形サイクルの短縮化
をはかった。
After the resin was hardened, the rubber heater 28 and the bag material 22 were stripped from the lower mold 21, and the molded product was released from the mold. In this case, the temperature of the mold was lowered from 80 ° C. to 50 ° C., and the molding cycle was shortened as much as possible.

【0035】脱型した成形品は自動車部材であるボンネ
ット・フードであり、樹脂の未含浸部の発生は全く見ら
れなかった。意匠面はゲルコートによって一層光沢があ
り、塗装無しで基材の織物の織り目が外面に現われ、そ
れによって商品価値を高めることができた。
The demolded molded product was a bonnet hood, which is an automobile member, and no resin-impregnated portion was observed. The design surface was more glossy due to the gel coat, and the texture of the base fabric appeared on the outer surface without painting, thereby increasing the commercial value.

【0036】[0036]

【発明の効果】以上説明したように、本発明に係る真空
RTM成形方法によれば、樹脂の注入速度を適切に小さ
く抑えることにより、注入樹脂のキャビティ内での望ま
しくない流動を防止して未含浸部やボイドが発生するの
を効果的に防止でき、FRP成形品の優れた品質を確保
することができる。
As described above, according to the vacuum RTM molding method of the present invention, the injection rate of the resin is appropriately suppressed to prevent undesired flow of the injected resin in the cavity. It is possible to effectively prevent the generation of impregnated parts and voids, and it is possible to ensure the excellent quality of FRP molded products.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の真空RTM成形方法の基本プロセスを
示す工程フロー図である。
FIG. 1 is a process flow chart showing a basic process of a vacuum RTM molding method of the present invention.

【図2】樹脂注入流速の特性図である。FIG. 2 is a characteristic diagram of a resin injection flow rate.

【図3】本発明の実施例1に係る真空RTM成形方法を
示す概略構成図である。
FIG. 3 is a schematic configuration diagram showing a vacuum RTM molding method according to a first embodiment of the present invention.

【図4】本発明の実施例2に係る真空RTM成形方法を
示す概略構成図である。
FIG. 4 is a schematic configuration diagram showing a vacuum RTM molding method according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 上型 2、21 下型 3、31 キャビティ 4、5、23 熱媒流路 6、24 強化繊維基材 7 離型用織布 8 樹脂拡散媒体 9、30 減圧吸引部 10、14、32、35 バルブ 11、33 真空トラップ 12、34 真空ポンプ 13、29 樹脂注入部 15、36 タンク 16、37 熱硬化性樹脂 17、27 シール用Oリング 22 バッグ材 25 コア材 26 押圧板 28 ラバーヒータ 1 Upper mold 2,21 Lower mold 3,31 cavity 4, 5, 23 Heat medium flow path 6, 24 Reinforcing fiber base material 7 Release cloth 8 resin diffusion media 9,30 Vacuum suction unit 10, 14, 32, 35 valves 11,33 Vacuum trap 12,34 Vacuum pump 13, 29 Resin injection part 15, 36 tanks 16,37 Thermosetting resin 17,27 O-ring for sealing 22 Bag material 25 core material 26 Press plate 28 Rubber heater

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29K 105:20 B29K 105:20 Fターム(参考) 4F204 AA39 AC06 AD16 AD24 AD35 AR06 AR08 EA03 EB01 EB12 EF01 EF30 EK13 EK17 EK26─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B29K 105: 20 B29K 105: 20 F term (reference) 4F204 AA39 AC06 AD16 AD24 AD35 AR06 AR08 EA03 EB01 EB12 EF01 EF30 EK13 EK17 EK26

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 強化繊維基材を配置した型のキャビティ
内を減圧し、樹脂を、減圧されたキャビティ内圧力と外
部圧力との差圧を利用してキャビティ内に注入し強化繊
維基材に含浸する真空RTM成形方法において、樹脂の
注入速度を、前記差圧による自然流速よりも低い流速に
減速して、樹脂を注入することを特徴とする真空RTM
成形方法。
1. A reinforced fiber substrate is prepared by depressurizing a cavity of a mold in which a reinforced fiber substrate is placed, and injecting a resin into the cavity by utilizing a reduced pressure difference between the cavity internal pressure and an external pressure. In the vacuum RTM molding method of impregnating, the resin is injected by reducing the injection speed of the resin to a flow speed lower than the natural flow speed due to the differential pressure.
Molding method.
【請求項2】 樹脂の初期注入流速Vcを、前記自然流
速における初期注入流速Vnの2/3以下に制御する、
請求項1の真空RTM成形方法。
2. The initial injection flow rate Vc of the resin is controlled to be 2/3 or less of the initial injection flow rate Vn at the natural flow rate.
The vacuum RTM molding method according to claim 1.
【請求項3】 樹脂を型温度50℃以上で注入する、請
求項1または2の真空RTM成形方法。
3. The vacuum RTM molding method according to claim 1, wherein the resin is injected at a mold temperature of 50 ° C. or higher.
【請求項4】 強化繊維基材に含浸した樹脂を型温度7
0℃以上で硬化させる、請求項1〜3のいずれかに記載
の真空RTM成形方法。
4. The mold temperature of the resin impregnated in the reinforcing fiber base is set to 7
The vacuum RTM molding method according to any one of claims 1 to 3, which is cured at 0 ° C or higher.
【請求項5】 注入樹脂としてポリアミン硬化剤と液状
エポキシ樹脂とからなる樹脂組成物を用いる、請求項1
〜4のいずれかに記載の真空RTM成形方法。
5. A resin composition comprising a polyamine curing agent and a liquid epoxy resin is used as an injection resin.
5. The vacuum RTM molding method according to any one of to 4.
【請求項6】 強化繊維基材の表面上に、樹脂の流動抵
抗を下げる樹脂拡散媒体を配置する、請求項1〜5のい
ずれかに記載の真空RTM成形方法。
6. The vacuum RTM molding method according to claim 1, wherein a resin diffusion medium that reduces the flow resistance of the resin is arranged on the surface of the reinforcing fiber base material.
【請求項7】 強化繊維基材間に、表面に樹脂流路とし
ての溝を有するコア材を配置する、請求項1〜5のいず
れかに記載の真空RTM成形方法。
7. The vacuum RTM molding method according to claim 1, wherein a core material having grooves as resin flow passages on the surface is arranged between the reinforcing fiber base materials.
JP2001215210A 2001-07-16 2001-07-16 Vacuum RTM molding method Expired - Fee Related JP4806866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001215210A JP4806866B2 (en) 2001-07-16 2001-07-16 Vacuum RTM molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001215210A JP4806866B2 (en) 2001-07-16 2001-07-16 Vacuum RTM molding method

Publications (3)

Publication Number Publication Date
JP2003025347A true JP2003025347A (en) 2003-01-29
JP2003025347A5 JP2003025347A5 (en) 2008-08-14
JP4806866B2 JP4806866B2 (en) 2011-11-02

Family

ID=19049892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001215210A Expired - Fee Related JP4806866B2 (en) 2001-07-16 2001-07-16 Vacuum RTM molding method

Country Status (1)

Country Link
JP (1) JP4806866B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045005A (en) * 2005-08-10 2007-02-22 Sekisui Chem Co Ltd Vacuum injection molding method of fiber reinforced resin molded product
WO2008114809A1 (en) * 2007-03-20 2008-09-25 Mitsubishi Heavy Industries, Ltd. Method of vacuum-assisted rtm
JP2008254195A (en) * 2007-03-30 2008-10-23 Honda Motor Co Ltd Method and apparatus for manufacturing fiber-reinforced composite material
JP2009096035A (en) * 2007-10-16 2009-05-07 National Institute For Materials Science Method for producing fiber-reinforced composite
WO2011021516A1 (en) * 2009-08-17 2011-02-24 Dic株式会社 Resin composition for fiber-reinforced composite materials, cured product thereof, fiber-reinforced composite materials, moldings of fiber-reinforced resin, and process for production thereof
US7943078B2 (en) 2004-02-17 2011-05-17 Toray Industries, Inc. RTM molding method and device
JP2011168010A (en) * 2010-02-22 2011-09-01 Toray Ind Inc Rtm molding method
US20120010712A1 (en) * 2006-01-25 2012-01-12 Guilhem Denoziere Molds used to produce pva hydrogel implants and related implants
JP5045443B2 (en) * 2006-09-29 2012-10-10 東レ株式会社 Forming mold, and method for producing preform and fiber reinforced plastic using the same
CN101407114B (en) * 2004-02-17 2013-08-28 东丽株式会社 RTM molding method and device
KR20190072976A (en) * 2017-12-18 2019-06-26 울산과학기술원 Method for measuring the curing behavior, flow and impregnation degree of a resin in the production of a resin composite by VARTM
CN110549529A (en) * 2019-07-22 2019-12-10 中国石油大学(华东) Vacuum tank capable of being rapidly filled and used for vacuum bubble discharge

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281315A (en) * 1990-03-30 1991-12-12 Toray Ind Inc Injecting device for plastic molding stock solution
JPH06210644A (en) * 1992-09-28 1994-08-02 Takeda Chem Ind Ltd Method and apparatus for molding fiber reinforced plastic
JPH10264210A (en) * 1997-03-25 1998-10-06 Kobe Steel Ltd Resin injection mold, and molding method using the same
JPH1142647A (en) * 1997-07-28 1999-02-16 Taiei Shoko Kk Plastic molding method and mold
JPH1148351A (en) * 1997-08-08 1999-02-23 Yokohama Rubber Co Ltd:The Method for molding fiber-reinforced resin
JPH11348059A (en) * 1998-06-03 1999-12-21 Society Of Japanese Aerospace Co Inc Molding method of composite material, and molding tool thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281315A (en) * 1990-03-30 1991-12-12 Toray Ind Inc Injecting device for plastic molding stock solution
JPH06210644A (en) * 1992-09-28 1994-08-02 Takeda Chem Ind Ltd Method and apparatus for molding fiber reinforced plastic
JPH10264210A (en) * 1997-03-25 1998-10-06 Kobe Steel Ltd Resin injection mold, and molding method using the same
JPH1142647A (en) * 1997-07-28 1999-02-16 Taiei Shoko Kk Plastic molding method and mold
JPH1148351A (en) * 1997-08-08 1999-02-23 Yokohama Rubber Co Ltd:The Method for molding fiber-reinforced resin
JPH11348059A (en) * 1998-06-03 1999-12-21 Society Of Japanese Aerospace Co Inc Molding method of composite material, and molding tool thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943078B2 (en) 2004-02-17 2011-05-17 Toray Industries, Inc. RTM molding method and device
CN101407114B (en) * 2004-02-17 2013-08-28 东丽株式会社 RTM molding method and device
JP2007045005A (en) * 2005-08-10 2007-02-22 Sekisui Chem Co Ltd Vacuum injection molding method of fiber reinforced resin molded product
US20120010712A1 (en) * 2006-01-25 2012-01-12 Guilhem Denoziere Molds used to produce pva hydrogel implants and related implants
JP5045443B2 (en) * 2006-09-29 2012-10-10 東レ株式会社 Forming mold, and method for producing preform and fiber reinforced plastic using the same
WO2008114809A1 (en) * 2007-03-20 2008-09-25 Mitsubishi Heavy Industries, Ltd. Method of vacuum-assisted rtm
US8753469B2 (en) 2007-03-20 2014-06-17 Toray Industries, Inc. Method of vacuum-assisted RTM
JP5322920B2 (en) * 2007-03-20 2013-10-23 三菱重工業株式会社 Vacuum RTM molding method
JP2008254195A (en) * 2007-03-30 2008-10-23 Honda Motor Co Ltd Method and apparatus for manufacturing fiber-reinforced composite material
JP2009096035A (en) * 2007-10-16 2009-05-07 National Institute For Materials Science Method for producing fiber-reinforced composite
JP4775520B2 (en) * 2009-08-17 2011-09-21 Dic株式会社 RESIN COMPOSITION FOR FIBER-REINFORCED COMPOSITE MATERIAL, CURED PRODUCT, FIBER-REINFORCED COMPOSITE MATERIAL, FIBER-REINFORCED RESIN MOLDED ARTICLE, AND METHOD FOR PRODUCING SAME
KR101294713B1 (en) * 2009-08-17 2013-08-08 디아이씨 가부시끼가이샤 Resin composition for fiber-reinforced composite materials, cured product thereof, fiber-reinforced composite materials, moldings of fiber-reinforced resin, and process for production thereof
US8487052B2 (en) 2009-08-17 2013-07-16 Dic Corporation Resin composition for fiber-reinforced composite material, cured product thereof, fiber-reinforced composite material, molding of fiber-reinforced resin, and process for production thereof
WO2011021516A1 (en) * 2009-08-17 2011-02-24 Dic株式会社 Resin composition for fiber-reinforced composite materials, cured product thereof, fiber-reinforced composite materials, moldings of fiber-reinforced resin, and process for production thereof
JP2011168010A (en) * 2010-02-22 2011-09-01 Toray Ind Inc Rtm molding method
KR20190072976A (en) * 2017-12-18 2019-06-26 울산과학기술원 Method for measuring the curing behavior, flow and impregnation degree of a resin in the production of a resin composite by VARTM
KR101997778B1 (en) 2017-12-18 2019-07-08 울산과학기술원 Method for measuring the curing behavior, flow and impregnation degree of a resin in the production of a resin composite by VARTM
CN110549529A (en) * 2019-07-22 2019-12-10 中国石油大学(华东) Vacuum tank capable of being rapidly filled and used for vacuum bubble discharge

Also Published As

Publication number Publication date
JP4806866B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
US9120253B2 (en) Methods of RTM molding
JP5877156B2 (en) Rotor blade manufacturing method and manufacturing apparatus thereof
JP2003025347A (en) Vacuum rtm molding method
WO2011043253A1 (en) Process and apparatus for producing fiber-reinforced plastic
JP4542588B2 (en) RTM molding method
JP2004181627A (en) Resin transfer molding method
US20120043704A1 (en) Bulk resin infusion
JP5223505B2 (en) Manufacturing method of FRP
JP4432563B2 (en) Manufacturing method of FRP
JP4752147B2 (en) RTM molding method
TW201434613A (en) Method for molding hollow molding and method for manufacturing fiber reinforced plastic
RU2579380C2 (en) Method of moulding components from polymer composite materials with application of double vacuum pack
JP4104413B2 (en) RTM molding method
JP4104414B2 (en) Method for producing fiber-reinforced resin molded body
JP2005001306A (en) Manufacturing method and device for fiber-reinforced resin molded body
JP2002248694A (en) Method for molding fiber reinforced composite material
US20220184900A1 (en) Method and Apparatus For Forming a Composite Object

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees