WO2011037247A1 - ハニカム構造体 - Google Patents

ハニカム構造体 Download PDF

Info

Publication number
WO2011037247A1
WO2011037247A1 PCT/JP2010/066779 JP2010066779W WO2011037247A1 WO 2011037247 A1 WO2011037247 A1 WO 2011037247A1 JP 2010066779 W JP2010066779 W JP 2010066779W WO 2011037247 A1 WO2011037247 A1 WO 2011037247A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
silicon
silicon carbide
partition wall
mass
Prior art date
Application number
PCT/JP2010/066779
Other languages
English (en)
French (fr)
Inventor
野口 康
淳志 金田
井上 崇行
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2011533073A priority Critical patent/JP5735428B2/ja
Priority to EP10818917.6A priority patent/EP2484446A4/en
Priority to CN201080042720.4A priority patent/CN102574121B/zh
Publication of WO2011037247A1 publication Critical patent/WO2011037247A1/ja
Priority to US13/432,322 priority patent/US8530030B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2492Hexagonal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5093Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with elements other than metals or carbon
    • C04B41/5096Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • Y10T428/24165Hexagonally shaped cavities

Definitions

  • the present invention relates to a honeycomb structure, and more particularly to a honeycomb structure having a volume electric resistance in a predetermined range and functioning as a catalyst carrier and a heater.
  • the power source used for the electrical system of the vehicle is commonly used, and a power source having a high voltage of, for example, 200V is used.
  • a power source having a high voltage of 200V since the metal heater has a low electrical resistance, there is a problem in that when a power supply having a high voltage of 200 V is used, an excessive current flows and the power supply circuit may be damaged.
  • the heater is made of metal, it is difficult to integrate the heater and the catalyst because it is difficult to support the catalyst even if it is processed into a honeycomb structure.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a honeycomb structure having a volume electric resistance in a predetermined range and serving as a catalyst carrier as well as a heater.
  • the present invention provides the following honeycomb structure.
  • a honeycomb structure having a porous partition wall that partitions and forms a plurality of cells extending from one end surface to the other end surface serving as a fluid flow path, and an outer peripheral wall positioned at the outermost periphery;
  • the outer peripheral wall contains silicon carbide particles as an aggregate and silicon as a binder for bonding the silicon carbide particles, the partition wall thickness is 50 to 200 ⁇ m, and the cell density is 50 to 150 cells / cell. cm 2, and an average particle diameter of 3 ⁇ 40 [mu] m of silicon carbide particles as the aggregate honeycomb structure volume resistivity at 400 ° C. is 1 ⁇ 40 ⁇ cm.
  • the ratio of the mass of silicon as the binder to the total of the mass of silicon carbide particles as the aggregate and the mass of silicon as the binder is 10 to 40% by mass.
  • Honeycomb structure
  • the partition wall thickness is 70 to 130 ⁇ m
  • the cell density is 70 to 100 cells / cm 2
  • the partition wall porosity is 35 to 45%
  • the partition wall average pore diameter is 10 to 10 ⁇ m. 20 ⁇ m
  • the ratio of the mass of silicon as the binder to the total mass of silicon carbide particles as the aggregate and silicon as the binder is 15 to 35% by mass, at 400 ° C.
  • the honeycomb structure according to any one of [1] to [4], wherein the volume electric resistance is 10 to 35 ⁇ cm.
  • the honeycomb structure of the present invention has a volume electrical resistance of 1 to 40 ⁇ cm at 400 ° C., even when a current is supplied using a high voltage power source, the current does not flow excessively and can be suitably used as a heater. .
  • the partition wall thickness is 50 to 200 ⁇ m, even when the honeycomb structure is used as a catalyst carrier and the catalyst is supported, it is possible to suppress an excessive increase in pressure loss when exhaust gas flows.
  • FIG. 1 is a perspective view schematically showing an embodiment of a honeycomb structure of the present invention.
  • 1 is a schematic diagram showing a cross section parallel to a cell extending direction of an embodiment of a honeycomb structure of the present invention.
  • FIG. 1 is a perspective view schematically showing an embodiment of a honeycomb structure of the present invention. 1 is a schematic diagram showing a cross section parallel to a cell extending direction of an embodiment of a honeycomb structure of the present invention.
  • honeycomb structure As shown in FIGS. 1 and 2, one embodiment of the honeycomb structure of the present invention is a porous material that partitions and forms a plurality of cells 2 extending from one end face 11 to the other end face 12 serving as a fluid flow path.
  • the partition wall 1 Of the partition wall 1 and an outer peripheral wall 3 located on the outermost periphery (disposed so as to surround the outer periphery of the entire partition wall 1). Silicon carbide particles (silicon carbide) as a material, and silicon as a binder for bonding silicon carbide particles, the partition wall 1 has a thickness of 50 to 200 ⁇ m, and the cell density is 50 to 150 cells / cm 2 .
  • the average particle diameter of silicon carbide as an aggregate is 3 to 40 ⁇ m, and the volume electric resistance at 400 ° C. is 1 to 40 ⁇ cm.
  • the honeycomb structure 100 of the present embodiment includes the honeycomb structure portion 3.
  • FIG. 1 is a perspective view schematically showing one embodiment of a honeycomb structure of the present invention.
  • Fig. 2 is a schematic diagram showing a cross section parallel to the cell extending direction of one embodiment of the honeycomb structure of the present invention.
  • the honeycomb structure 100 of the present embodiment has a volume electric resistance of 1 to 40 ⁇ cm at 400 ° C., so that even when a current is supplied using a high voltage power source, an excessive current does not flow, It can be used suitably. Further, since the partition wall thickness is 50 to 200 ⁇ m, even when a catalyst is supported and used as a catalyst carrier, it is possible to suppress an excessive increase in pressure loss when exhaust gas is flowed.
  • the partition walls 1 and the outer peripheral wall 3 contain silicon carbide particles as an aggregate and silicon as a binder for bonding the silicon carbide particles.
  • a plurality of silicon carbide particles are bonded by silicon so as to form pores between the silicon carbide particles.
  • the ratio of the mass of silicon as a binder to the total of the mass of silicon carbide particles as an aggregate and the mass of silicon as a binder is preferably 10 to 40% by mass, and 15 to 35% by mass. More preferably it is. If it is lower than 10% by mass, the strength of the honeycomb structure may be lowered. If it is higher than 40% by mass, the shape may not be maintained during firing.
  • the partition walls 1 and the outer peripheral wall 3 may be formed of only silicon carbide particles as an aggregate and silicon as a binder for bonding the silicon carbide particles.
  • a substance may be contained. Examples of other substances contained in the partition wall 1 and the outer peripheral wall 3 include strontium.
  • the porosity of the partition wall 1 is preferably 30 to 60%, and more preferably 35 to 45%. A porosity of less than 30% is not preferable because deformation during firing increases. If the porosity exceeds 60%, the strength of the honeycomb structure decreases, which is not preferable.
  • the porosity is a value measured with a mercury porosimeter.
  • the average pore diameter of the partition wall 1 is preferably 2 to 20 ⁇ m, and more preferably 10 to 20 ⁇ m. If the average pore diameter is smaller than 2 ⁇ m, the volume electrical resistance becomes too large, which is not preferable. If the average pore diameter is larger than 20 ⁇ m, the volume electrical resistance becomes too small, which is not preferable.
  • the average pore diameter is a value measured with a mercury porosimeter.
  • the average particle diameter of the silicon carbide particles as the aggregate is 3 to 40 ⁇ m, and preferably 10 to 35 ⁇ m.
  • the volume electrical resistance of the honeycomb structure 100 at 400 ° C. can be 1 to 40 ⁇ cm.
  • the average particle diameter of the silicon carbide particles is smaller than 3 ⁇ m, the volume electric resistance at 400 ° C. of the honeycomb structure 100 is not preferable. If the average particle diameter of the silicon carbide particles is larger than 40 ⁇ m, the volume electrical resistance at 400 ° C. of the honeycomb structure 100 is not preferable.
  • the average particle diameter of the silicon carbide particles is larger than 40 ⁇ m, it is not preferable because the forming raw material may be clogged in the die for extrusion forming when the honeycomb formed body is extruded.
  • the average particle diameter of the silicon carbide particles is a value measured by a laser diffraction method.
  • the honeycomb structure 100 of the present embodiment has a volume electrical resistance at 400 ° C. of 1 to 40 ⁇ cm, and preferably 10 to 35 ⁇ cm.
  • a volume electrical resistance at 400 ° C. of less than 1 ⁇ cm is not preferable because an excessive current flows when the honeycomb structure 100 is energized by a 200 V power source.
  • the volume electrical resistance at 400 ° C. is larger than 40 ⁇ cm, it is not preferable because a current hardly flows when the honeycomb structure 100 is energized by a 200 V power source and heat may not be generated sufficiently.
  • the volume electrical resistance at 400 ° C. of the honeycomb structure is a value measured by the two-terminal method.
  • the electrical resistance of the honeycomb structure 100 at 400 ° C. is preferably 1 to 30 ⁇ , and more preferably 10 to 25 ⁇ . If the electrical resistance at 400 ° C. is smaller than 1 ⁇ , it is not preferable because an excessive current flows when the honeycomb structure 100 is energized by a 200 V power source. When the electrical resistance at 400 ° C. is larger than 30 ⁇ , it is not preferable because current hardly flows when the honeycomb structure 100 is energized by a 200 V power source.
  • the electrical resistance at 400 ° C. of the honeycomb structure is a value measured by the two-terminal method.
  • the partition wall thickness is 50 to 200 ⁇ m, and preferably 70 to 130 ⁇ m.
  • a partition wall thickness of less than 50 ⁇ m is not preferable because the strength of the honeycomb structure decreases.
  • the partition wall thickness is larger than 200 ⁇ m, when the honeycomb structure 100 is used as a catalyst carrier and a catalyst is supported, a pressure loss when exhaust gas flows is increased, which is not preferable.
  • the thickness of the outer peripheral wall 3 constituting the outermost periphery of the honeycomb structure 100 of the present embodiment is preferably 0.1 to 2 mm. If it is thinner than 0.1 mm, the strength of the honeycomb structure 100 may be lowered. If it is thicker than 2 mm, the area of the partition wall supporting the catalyst may be small.
  • the honeycomb structure 100 of the present embodiment has a cell density of 50 to 150 cells / cm 2 and preferably 70 to 100 cells / cm 2 .
  • the cell density is lower than 50 cells / cm 2 , the catalyst supporting area decreases, which is not preferable.
  • the cell density is higher than 150 cells / cm 2 , when the honeycomb structure 100 is used as a catalyst carrier and a catalyst is supported, pressure loss when exhaust gas flows is increased, which is not preferable.
  • the shape of the cell 2 in a cross section orthogonal to the extending direction of the cell 2 is a square or a hexagon.
  • the shape of the honeycomb structure of the present embodiment is not particularly limited.
  • the bottom has a circular cylindrical shape (cylindrical shape), the bottom has an oval cylindrical shape, and the bottom has a polygonal shape (square, pentagon, hexagon, heptagon. , Octagons, etc.).
  • the area of the bottom surface is preferably 2000 to 20000 mm 2 , and more preferably 4000 to 10000 mm 2 .
  • the length of the honeycomb structure in the central axis direction is preferably 50 to 200 mm, and more preferably 75 to 150 mm.
  • the isostatic strength of the honeycomb structure 100 of the present embodiment is preferably 1 MPa or more. When the isostatic strength is less than 1 MPa, the honeycomb structure may be easily damaged when used as a catalyst carrier or the like. Isostatic strength is a value measured by applying hydrostatic pressure in water.
  • metal silicon (metal silicon powder), a binder, a surfactant, a pore former, water and the like are added to silicon carbide powder (silicon carbide) to produce a forming raw material.
  • the mass of the metal silicon is 10 to 30% by mass with respect to the total of the mass of the silicon carbide powder and the mass of the metal silicon.
  • the average particle diameter of the silicon carbide particles in the silicon carbide powder is preferably 3 to 40 ⁇ m, and more preferably 10 to 35 ⁇ m.
  • the average particle diameter of metal silicon (metal silicon powder) is preferably 2 to 20 ⁇ m. If it is smaller than 2 ⁇ m, the volume electric resistance may be too small. If it is larger than 20 ⁇ m, the volume electric resistance may become too large.
  • the average particle diameter of silicon carbide particles and metal silicon is a value measured by a laser diffraction method.
  • the silicon carbide particles are silicon carbide fine particles constituting the silicon carbide powder, and the metal silicon particles are metal silicon fine particles constituting the metal silicon powder.
  • the total mass of the silicon carbide particles and the metal silicon is preferably 30 to 78 mass% with respect to the mass of the entire forming raw material.
  • binder examples include methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, and polyvinyl alcohol. Among these, it is preferable to use methyl cellulose and hydroxypropoxyl cellulose in combination.
  • the binder content is preferably 2 to 10% by mass with respect to the entire forming raw material.
  • the water content is preferably 20 to 60% by mass with respect to the entire forming raw material.
  • ethylene glycol, dextrin, fatty acid soap, polyalcohol or the like can be used as the surfactant. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the content of the surfactant is preferably 2% by mass or less with respect to the whole forming raw material.
  • the pore former is not particularly limited as long as it becomes pores after firing, and examples thereof include graphite, starch, foamed resin, water absorbent resin, silica gel and the like.
  • the pore former content is preferably 10% by mass or less based on the entire forming raw material.
  • the average particle size of the pore former is preferably 10 to 30 ⁇ m. If it is smaller than 10 ⁇ m, pores may not be formed sufficiently. If it is larger than 30 ⁇ m, the die may be clogged during molding.
  • the average particle diameter of the pore former is a value measured by a laser diffraction method.
  • the forming raw material is kneaded to form a clay.
  • molding raw material and forming a clay For example, the method of using a kneader, a vacuum clay kneader, etc. can be mentioned.
  • the clay is extruded to form a honeycomb formed body.
  • a die having a desired overall shape, cell shape, partition wall thickness, cell density and the like.
  • a cemented carbide which does not easily wear is preferable.
  • the honeycomb formed body has a structure having porous partition walls that define and form a plurality of cells serving as fluid flow paths and an outer peripheral wall located at the outermost periphery.
  • the partition wall thickness, cell density, outer peripheral wall thickness, etc. of the honeycomb molded body can be appropriately determined in accordance with the structure of the honeycomb structure of the present invention to be manufactured in consideration of shrinkage during drying and firing.
  • the drying method is not particularly limited, and examples thereof include an electromagnetic heating method such as microwave heating drying and high-frequency dielectric heating drying, and an external heating method such as hot air drying and superheated steam drying.
  • an electromagnetic heating method such as microwave heating drying and high-frequency dielectric heating drying
  • an external heating method such as hot air drying and superheated steam drying.
  • the entire molded body can be dried quickly and uniformly without cracks, and after drying a certain amount of moisture with an electromagnetic heating method, the remaining moisture is dried with an external heating method. It is preferable to make it.
  • drying conditions it is preferable to remove water of 30 to 99% by mass with respect to the amount of moisture before drying by an electromagnetic heating method, and then to make the moisture to 3% by mass or less by an external heating method.
  • the electromagnetic heating method dielectric heating drying is preferable, and as the external heating method, hot air drying is preferable.
  • the length in the central axis direction of the honeycomb formed body is not a desired length, it is preferable to cut both end surfaces (both end portions) to a desired length.
  • the cutting method is not particularly limited, and examples thereof include a method using a circular saw cutting machine.
  • the honeycomb formed body is preferably fired to produce a honeycomb structure 100 as shown in FIGS.
  • Pre-baking is preferably performed at 400 to 500 ° C. for 0.5 to 20 hours in an air atmosphere.
  • the method of temporary baking and baking is not particularly limited, and baking can be performed using an electric furnace, a gas furnace, or the like.
  • firing conditions it is preferable to heat at 1400 to 1500 ° C. for 1 to 20 hours in an inert atmosphere such as nitrogen or argon.
  • oxygenation treatment at 1200 to 1350 ° C. for 1 to 10 hours after firing to improve durability.
  • Example 1 As a ceramic raw material, silicon carbide (SiC) powder and metal silicon (Si) powder are mixed at a mass ratio of 80:20, and strontium carbonate as a sintering aid, hydroxypropylmethylcellulose as a binder, and pore-forming material. While adding a water-absorbing resin, water was used as a forming raw material, the forming raw material was kneaded, and a columnar clay was prepared with a vacuum kneader. The binder content is 7% by mass with respect to the total of silicon carbide (SiC) powder and metal silicon (Si) powder, and the content of strontium carbonate is the total of silicon carbide (SiC) powder and metal silicon (Si) powder.
  • the pore former content is 3% by mass with respect to the total of silicon carbide (SiC) powder and metal silicon (Si) powder, and the water content is silicon carbide (SiC) powder and metal. It was 42 mass% with respect to the sum total of silicon (Si) powder.
  • the average particle diameter of the silicon carbide powder was 20 ⁇ m, and the average particle diameter of the metal silicon powder was 6 ⁇ m.
  • the average particle diameter of the pore former was 20 ⁇ m.
  • the average particle diameters of silicon carbide, metal silicon and pore former are values measured by a laser diffraction method.
  • the obtained columnar kneaded material was molded using an extrusion molding machine to obtain a honeycomb molded body.
  • the obtained honeycomb formed body was dried by high-frequency dielectric heating and then dried at 120 ° C. for 2 hours using a hot air dryer, and both end surfaces were cut by a predetermined amount.
  • the obtained honeycomb formed body was degreased at 550 ° C. for 3 hours using an air furnace equipped with a deodorizing apparatus in an air atmosphere, and then fired at about 1450 ° C. for 2 hours in an Ar inert atmosphere. Oxygenation treatment was performed at 1 ° C. for 1 hour. A porous honeycomb structure in which SiC crystal particles were bonded with Si was obtained.
  • the resulting honeycomb structure had an average pore diameter of 8.6 ⁇ m and a porosity of 45%.
  • the average pore diameter and porosity are values measured with a mercury porosimeter.
  • the honeycomb structure had a partition wall thickness of 90 ⁇ m and a cell density of 90 cells / cm 2 .
  • the bottom surface of the honeycomb structure was a circle having a diameter of 93 mm, and the length of the honeycomb structure in the cell extending direction was 100 mm.
  • the isostatic strength of the obtained honeycomb structure was 2.5 MPa. Isostatic strength is the breaking strength measured by applying hydrostatic pressure in water.
  • a test piece of 10 mm ⁇ 10 mm ⁇ 50 mm was made of the same material as the honeycomb structure. A silver paste was applied to the entire surface of both ends, and wiring was performed so that current could be supplied. A voltage application current measuring device was connected to the test piece to apply a voltage. A thermocouple was installed in the center of the test piece, and the time-dependent change in the test piece temperature during voltage application was confirmed with a recorder. Volume electric resistance was calculated from the current and voltage values that flowed when 100 to 200 V was applied and the test piece temperature reached 400 ° C., and the test piece dimensions.
  • a silver paste was applied to the side surface of the honeycomb structure (carrier) having a bottom surface (end surface) of a circle having a diameter of 93 mm and a length of 100 mm in the cell extending direction, and wiring was performed so that current could be supplied.
  • a voltage application current measuring device was connected to the carrier to apply a voltage. Using a thermocouple, the temperature distribution in the carrier when 600 V was applied was measured (the temperature was measured uniformly at 39 points in the honeycomb structure), and flowed when the average temperature in the carrier reached 400 ° C. The carrier electric resistance was calculated from the current value and the voltage value.
  • the pressure loss of the honeycomb structure was evaluated by the opening ratio of the cross section of the honeycomb structure.
  • the opening ratio is the “total area of cells (openings)” in a cross section perpendicular to the “cell extending direction” of the honeycomb structure, with respect to the cross sectional area of the honeycomb structure (area of the cross section orthogonal to the cell extending direction), The ratio of
  • Example 2 Comparative Examples 1 and 2 “SiC average particle diameter ( ⁇ m)”, “SiC blending amount (mass%)”, “Si average particle diameter ( ⁇ m)”, “Si blending quantity (mass%)”, “pore forming material average particle diameter ( ⁇ m)” ”,“ Pore content (pore) ”(mass%),“ water content (water) (mass%) ”,“ porosity (porosity) (%) of partition walls ”,“ average of partition walls ” Except for changing the pore diameter (average pore diameter) ( ⁇ m), “partition wall thickness ( ⁇ m)”, “cell density (cell / cm 2 )” and “cell shape” as shown in Table 1, A honeycomb structure was produced in the same manner as in Example 1.
  • SiC blending amount (mass%)” indicates the blending ratio of silicon carbide with respect to the total mass of silicon carbide and metal silicon
  • Si blending quantity (mass%)” is the total mass of silicon carbide and metal silicon.
  • the compounding ratio of metallic silicon to is shown.
  • pore forming material content (pore forming material) (mass%)” indicates the blending ratio of the pore former relative to the whole forming raw material
  • water content (water) (mass%) is the forming raw material.
  • the mixing ratio of water to the whole is shown.
  • Cell shape indicates the shape of a cell in a cross section perpendicular to the cell extending direction.
  • the volume electric resistance of the honeycomb structure is 1 to 40 ⁇ cm. It can also be seen that when the average particle diameter of silicon carbide is smaller than 3 ⁇ m, the volume electrical resistance of the honeycomb structure becomes too large. It can also be seen that when the average particle diameter of silicon carbide is larger than 40 ⁇ m, the volume electrical resistance of the honeycomb structure becomes too small. In addition, the honeycomb structure of Comparative Example 1 had a large average particle diameter of silicon carbide, and thus many defects were generated in the partition walls.
  • honeycomb structure of the present invention can be suitably used as a carrier for a catalyst device that purifies exhaust gas discharged from an internal combustion engine in various fields such as chemistry, electric power, and steel.
  • 1 partition wall
  • 2 cell
  • 3 outer peripheral wall
  • 4 honeycomb structure part
  • 11 one end surface
  • 12 the other end surface
  • 100 honeycomb structure

Abstract

 流体の流路となる一方の端面から他方の端面まで延びる複数のセルを区画形成する多孔質の隔壁と、最外周に位置する外周壁とを有するハニカム構造部を備え、隔壁及び外周壁が、骨材としての炭化珪素粒子、及び炭化珪素粒子を結合させる結合材としての珪素を含有し、隔壁の厚さが50~200μmであり、セル密度が50~150セル/cmであり、骨材としての炭化珪素の平均粒子径が3~40μmであり、400℃における体積電気抵抗が1~40Ωcmであるハニカム構造体。体積電気抵抗が所定の範囲にあり、触媒担体であると共にヒーターとしても機能するハニカム構造体を提供する。

Description

ハニカム構造体
 本発明は、ハニカム構造体に関し、さらに詳しくは、体積電気抵抗が所定の範囲にあり、触媒担体であると共にヒーターとしても機能するハニカム構造体に関する。
 従来、コージェライト製のハニカム構造体に触媒を担持したものを、自動車エンジンから排出された排ガス中の有害物質の処理に用いていた。また、炭化珪素質焼結体によって形成されたハニカム構造体を排ガスの浄化に使用することも知られている(例えば、特許文献1を参照)。
 ハニカム構造体に担持した触媒によって排ガスを処理する場合、触媒を所定の温度まで昇温する必要があるが、エンジン始動時には、触媒温度が低いため、排ガスが十分に浄化されないという問題があった。
 そのため、触媒が担持されたハニカム構造体の上流側に、金属製のヒーターを設置して、排ガスを昇温させる方法が検討されている(例えば、特許文献2を参照)。
特許第4136319号公報 特許第2931362号公報
 上記のようなヒーターを、自動車に搭載して使用する場合、自動車の電気系統に使用される電源が共通で使用され、例えば200Vという高い電圧の電源が用いられる。しかし、金属製のヒーターは、電気抵抗が低いため、200Vという高い電圧の電源を用いた場合、過剰に電流が流れ、電源回路を損傷させることがあるという問題があった。
 また、ヒーターが金属製であると、仮にハニカム構造に加工したものであっても、触媒を担持し難いため、ヒーターと触媒とを一体化させることは難しかった。
 本発明は、上述した問題に鑑みてなされたものであり、体積電気抵抗が所定の範囲にあり、触媒担体であると共にヒーターとしても機能するハニカム構造体を提供することを目的とする。
 上述の課題を解決するため、本発明は、以下のハニカム構造体を提供する。
[1] 流体の流路となる一方の端面から他方の端面まで延びる複数のセルを区画形成する多孔質の隔壁と、最外周に位置する外周壁とを有するハニカム構造部を備え、前記隔壁及び前記外周壁が、骨材としての炭化珪素粒子、及び前記炭化珪素粒子を結合させる結合材としての珪素を含有し、前記隔壁の厚さが50~200μmであり、セル密度が50~150セル/cmであり、前記骨材としての炭化珪素粒子の平均粒子径が3~40μmであり、400℃における体積電気抵抗が1~40Ωcmであるハニカム構造体。
[2] 前記骨材としての炭化珪素粒子の質量と前記結合材としての珪素の質量の合計に対する、前記結合材としての珪素の質量の比率が、10~40質量%である[1]に記載のハニカム構造体。
[3] 前記隔壁の気孔率が30~60%であり、前記隔壁の平均細孔径が2~20μmである[1]又は[2]に記載のハニカム構造体。
[4] 400℃における電気抵抗が1~30Ωである[1]~[3]のいずれかに記載のハニカム構造体。
[5] 前記隔壁の厚さが70~130μmであり、セル密度が70~100セル/cmであり、前記隔壁の気孔率が35~45%であり、前記隔壁の平均細孔径が10~20μmであり、前記骨材としての炭化珪素粒子の質量と前記結合材としての珪素の質量の合計に対する、前記結合材としての珪素の質量の比率が、15~35質量%であり、400℃における体積電気抵抗が10~35Ωcmである[1]~[4]のいずれかに記載のハニカム構造体。
[6] 前記セルの延びる方向に直交する断面における前記セルの形状が、四角形又は六角形である[1]~[5]のいずれかに記載のハニカム構造体。
 本発明のハニカム構造体は、400℃における体積電気抵抗が1~40Ωcmであるため、電圧の高い電源を用いて電流を流しても、過剰に電流が流れず、ヒーターとして好適に用いることができる。また、隔壁厚さが50~200μmであるため、ハニカム構造体を触媒担体として用いて、触媒を担持しても、排ガスを流したときの圧力損失が大きくなり過ぎることを抑制できる。
本発明のハニカム構造体の一の実施形態を模式的に示す斜視図である。 本発明のハニカム構造体の一の実施形態の、セルの延びる方向に平行な断面を示す模式図である。
 次に本発明を実施するための形態を図面を参照しながら詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。
(1)ハニカム構造体:
 本発明のハニカム構造体の一の実施形態は、図1及び図2に示すように、流体の流路となる一方の端面11から他方の端面12まで延びる複数のセル2を区画形成する多孔質の隔壁1と、最外周に位置する(隔壁1全体の外周を取り囲むように配設された)外周壁3とを有するハニカム構造部4を備えるものであり、隔壁1及び外周壁3が、骨材としての炭化珪素粒子(炭化珪素)、及び炭化珪素粒子を結合させる結合材としての珪素を含有し、隔壁1の厚さが50~200μmであり、セル密度が50~150セル/cmであり、骨材としての炭化珪素の平均粒子径が3~40μmであり、400℃における体積電気抵抗が1~40Ωcmである。本実施形態のハニカム構造体100は、ハニカム構造部3からなるものである。図1は、本発明のハニカム構造体の一の実施形態を模式的に示す斜視図である。図2は、本発明のハニカム構造体の一の実施形態の、セルの延びる方向に平行な断面を示す模式図である。
 このように、本実施形態のハニカム構造体100は、400℃における体積電気抵抗が1~40Ωcmであるため、電圧の高い電源を用いて電流を流しても、過剰に電流が流れず、ヒーターとして好適に用いることができる。また、隔壁厚さが50~200μmであるため、触媒を担持して触媒担体として用いても、排ガスを流したときの圧力損失が大きくなり過ぎることを抑制できる。
 本実施形態のハニカム構造体100は、隔壁1及び外周壁3が、骨材としての炭化珪素粒子、及び炭化珪素粒子を結合させる結合材としての珪素を含有するものである。本実施形態のハニカム構造体100においては、複数の炭化珪素粒子が、炭化珪素粒子間に細孔を形成するようにして、珪素によって結合されている。
 骨材としての炭化珪素粒子の質量と結合材としての珪素の質量との合計に対する、結合材としての珪素の質量の比率が、10~40質量%であることが好ましく、15~35質量%であることが更に好ましい。10質量%より低いと、ハニカム構造体の強度が低下することがある。40質量%より高いと、焼成時に形状を保持できないことがある。
 本実施形態のハニカム構造体100は、隔壁1及び外周壁3が、骨材としての炭化珪素粒子、及び炭化珪素粒子を結合させる結合材としての珪素のみから形成されていてもよいが、他の物質を含有してもよい。隔壁1及び外周壁3に含有される他の物質としては、ストロンチウム等を挙げることができる。
 隔壁1の気孔率は、30~60%であることが好ましく、35~45%であることが更に好ましい。気孔率が、30%未満であると、焼成時の変形が大きくなってしまうため好ましくない。気孔率が60%を超えるとハニカム構造体の強度が低下するため好ましくない。気孔率は、水銀ポロシメータにより測定した値である。
 隔壁1の平均細孔径は、2~20μmであることが好ましく、10~20μmであることが更に好ましい。平均細孔径が2μmより小さいと、体積電気抵抗が大きくなりすぎるため好ましくない。平均細孔径が20μmより大きいと、体積電気抵抗が小さくなりすぎるため好ましくない。平均細孔径は、水銀ポロシメータにより測定した値である。
 骨材である炭化珪素粒子の平均粒子径は、3~40μmであり、10~35μmであることが好ましい。平均粒子径をこのような範囲とすることにより、ハニカム構造体100の400℃における体積電気抵抗を1~40Ωcmにすることができる。炭化珪素粒子の平均粒子径が3μmより小さいと、ハニカム構造体100の400℃における体積電気抵抗が大きくなるため好ましくない。炭化珪素粒子の平均粒子径が40μmより大きいと、ハニカム構造体100の400℃における体積電気抵抗が小さくなるため好ましくない。また、炭化珪素粒子の平均粒子径が40μmより大きいと、ハニカム成形体を押出成形するときに、押出成形用の口金に成形用原料が詰まることがあるため好ましくない。炭化珪素粒子の平均粒子径はレーザー回折法で測定した値である。
 本実施形態のハニカム構造体100は、400℃における体積電気抵抗が1~40Ωcmであり、10~35Ωcmであることが好ましい。400℃における体積電気抵抗が1Ωcmより小さいと、200Vの電源によってハニカム構造体100に通電したときに、電流が過剰に流れるため好ましくない。400℃における体積電気抵抗が40Ωcmより大きいと、200Vの電源によってハニカム構造体100に通電したときに、電流が流れ難くなり、十分に発熱しないことがあるため好ましくない。ハニカム構造体の400℃における体積電気抵抗は、二端子法により測定した値である。
 また、ハニカム構造体100の400℃における電気抵抗は、1~30Ωであることが好ましく、10~25Ωであることが更に好ましい。400℃における電気抵抗が1Ωより小さいと、200Vの電源によってハニカム構造体100に通電したときに、電流が過剰に流れるため好ましくない。400℃における電気抵抗が30Ωより大きいと、200Vの電源によってハニカム構造体100に通電したときに、電流が流れ難くなるため好ましくない。ハニカム構造体の400℃における電気抵抗は、二端子法により測定した値である。
 本実施形態のハニカム構造体100は、隔壁厚さが50~200μmであり、70~130μmであることが好ましい。隔壁厚さをこのような範囲にすることにより、ハニカム構造体100を触媒担体として用いて、触媒を担持しても、排ガスを流したときの圧力損失が大きくなり過ぎることを抑制できる。隔壁厚さが50μmより薄いと、ハニカム構造体の強度が低下するため好ましくない。隔壁厚さが200μmより厚いと、ハニカム構造体100を触媒担体として用いて、触媒を担持した場合に、排ガスを流したときの圧力損失が大きくなるため好ましくない。
 また、本実施形態のハニカム構造体100の最外周を構成する外周壁3の厚さは、0.1~2mmであることが好ましい。0.1mmより薄いと、ハニカム構造体100の強度が低下することがある。2mmより厚いと、触媒を担持する隔壁の面積が小さくなることがある。
 本実施形態のハニカム構造体100は、セル密度が50~150セル/cmであり、70~100セル/cmであることが好ましい。セル密度をこのような範囲にすることにより、排ガスを流したときの圧力損失と触媒の浄化性能のバランスがとれるという利点がある。セル密度が50セル/cmより低いと、触媒担持面積が少なくなるため好ましくない。セル密度が150セル/cmより高いと、ハニカム構造体100を触媒担体として用いて、触媒を担持した場合に、排ガスを流したときの圧力損失が大きくなるため好ましくない。
 本実施形態のハニカム構造体100は、セル2の延びる方向に直交する断面におけるセル2の形状が、四角形又は六角形であることが好ましい。セル形状をこのようにすることにより、排ガスを流したときの圧力損失が小さく、触媒の浄化性能が優れるという利点がある。
 本実施形態のハニカム構造体の形状は特に限定されず、例えば、底面が円形の筒状(円筒形状)、底面がオーバル形状の筒状、底面が多角形(四角形、五角形、六角形、七角形、八角形等)の筒状等の形状とすることができる。また、ハニカム構造体の大きさは、ハニカム構造体が筒状の場合、底面の面積が2000~20000mmであることが好ましく、4000~10000mmであることが更に好ましい。また、ハニカム構造体の中心軸方向の長さは、50~200mmであることが好ましく、75~150mmであることが更に好ましい。
 本実施形態のハニカム構造体100のアイソスタティック強度は、1MPa以上であることが好ましい。アイソスタティック強度が1MPa未満であると、ハニカム構造体を触媒担体等として使用する際に、破損し易くなることがある。アイソスタティック強度は水中にて静水圧をかけて測定した値である。
(2)ハニカム構造体の製造方法:
 次に、本発明のハニカム構造体の一の実施形態の製造方法について説明する。
 まず、炭化珪素粉末(炭化珪素)に、金属珪素(金属珪素粉末)、バインダ、界面活性剤、造孔材、水等を添加して成形原料を作製する。炭化珪素粉末の質量と金属珪素の質量との合計に対して、金属珪素の質量が10~30質量%となるようにすることが好ましい。炭化珪素粉末における炭化珪素粒子の平均粒子径は、3~40μmが好ましく、10~35μmが更に好ましい。金属珪素(金属珪素粉末)の平均粒子径は、2~20μmであることが好ましい。2μmより小さいと、体積電気抵抗が小さくなりすぎることがある。20μmより大きいと、体積電気抵抗が大きくなりすぎることがある。炭化珪素粒子及び金属珪素(金属珪素粒子)の平均粒子径はレーザー回折法で測定した値である。炭化珪素粒子は、炭化珪素粉末を構成する炭化珪素の微粒子であり、金属珪素粒子は、金属珪素粉末を構成する金属珪素の微粒子である。炭化珪素粒子及び金属珪素の合計質量は、成形原料全体の質量に対して30~78質量%であることが好ましい。
 バインダとしては、メチルセルロース、ヒドロキシプロポキシルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール等を挙げることができる。これらの中でも、メチルセルロースとヒドロキシプロポキシルセルロースとを併用することが好ましい。バインダの含有量は、成形原料全体に対して2~10質量%であることが好ましい。
 水の含有量は、成形原料全体に対して20~60質量%であることが好ましい。
 界面活性剤としては、エチレングリコール、デキストリン、脂肪酸石鹸、ポリアルコール等を用いることができる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。界面活性剤の含有量は、成形原料全体に対して2質量%以下であることが好ましい。
 造孔材としては、焼成後に気孔となるものであれば特に限定されるものではなく、例えば、グラファイト、澱粉、発泡樹脂、吸水性樹脂、シリカゲル等を挙げることができる。造孔材の含有量は、成形原料全体に対して10質量%以下であることが好ましい。造孔材の平均粒子径は、10~30μmであることが好ましい。10μmより小さいと、気孔を十分形成できないことがある。30μmより大きいと、成形時に口金に詰まることがある。造孔材の平均粒子径はレーザー回折方法で測定した値である。
 次に、成形原料を混練して坏土を形成する。成形原料を混練して坏土を形成する方法としては特に制限はなく、例えば、ニーダー、真空土練機等を用いる方法を挙げることができる。
 次に、坏土を押出成形してハニカム成形体を形成する。押出成形に際しては、所望の全体形状、セル形状、隔壁厚さ、セル密度等を有する口金を用いることが好ましい。口金の材質としては、摩耗し難い超硬合金が好ましい。ハニカム成形体は、流体の流路となる複数のセルを区画形成する多孔質の隔壁と最外周に位置する外周壁とを有する構造である。
 ハニカム成形体の隔壁厚さ、セル密度、外周壁の厚さ等は、乾燥、焼成における収縮を考慮し、作製しようとする本発明のハニカム構造体の構造に合わせて適宜決定することができる。
 得られたハニカム成形体について、焼成前に乾燥を行うことが好ましい。乾燥の方法は特に限定されず、例えば、マイクロ波加熱乾燥、高周波誘電加熱乾燥等の電磁波加熱方式と、熱風乾燥、過熱水蒸気乾燥等の外部加熱方式とを挙げることができる。これらの中でも、成形体全体を迅速かつ均一に、クラックが生じないように乾燥することができる点で、電磁波加熱方式で一定量の水分を乾燥させた後、残りの水分を外部加熱方式により乾燥させることが好ましい。乾燥の条件として、電磁波加熱方式にて、乾燥前の水分量に対して、30~99質量%の水分を除いた後、外部加熱方式にて、3質量%以下の水分にすることが好ましい。電磁波加熱方式としては、誘電加熱乾燥が好ましく、外部加熱方式としては、熱風乾燥が好ましい。
 次に、ハニカム成形体の中心軸方向長さが、所望の長さではない場合は、両端面(両端部)を切断して所望の長さとすることが好ましい。切断方法は特に限定されないが、丸鋸切断機等を用いる方法を挙げることができる。
 次に、ハニカム成形体を焼成して、図1、図2に示すようなハニカム構造体100を作製することが好ましい。焼成の前に、バインダ等を除去するため、仮焼成を行うことが好ましい。仮焼成は大気雰囲気において、400~500℃で、0.5~20時間行うことが好ましい。仮焼成及び焼成の方法は特に限定されず、電気炉、ガス炉等を用いて焼成することができる。焼成条件は、窒素、アルゴン等の不活性雰囲気において、1400~1500℃で、1~20時間加熱することが好ましい。また、焼成後、耐久性向上のために、1200~1350℃で、1~10時間、酸素化処理を行うことが好ましい。
 以下、本発明を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
(実施例1)
 セラミックス原料として、炭化珪素(SiC)粉末と金属珪素(Si)粉末とを80:20の質量割合で混合し、これに、焼結助剤として炭酸ストロンチウム、バインダとしてヒドロキシプロピルメチルセルロース、造孔材として吸水性樹脂を添加すると共に、水を添加して成形原料とし、成形原料を混練し、真空土練機により円柱状の坏土を作製した。バインダの含有量は炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計に対し7質量%であり、炭酸ストロンチウムの含有量は炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計に対し1質量%であり、造孔材の含有量は炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計に対し3質量%であり、水の含有量は炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計に対し42質量%であった。炭化珪素粉末の平均粒子径は20μmであり、金属珪素粉末の平均粒子径は6μmであった。また、造孔材の平均粒子径は、20μmであった。炭化珪素、金属珪素及び造孔材の平均粒子径は、レーザー回折法で測定した値である。
 得られた円柱状の坏土を押出成形機を用いて成形し、ハニカム成形体を得た。得られたハニカム成形体を高周波誘電加熱乾燥した後、熱風乾燥機を用いて120℃で2時間乾燥し、両端面を所定量切断した。
 得られたハニカム成形体を、大気雰囲気にて脱臭装置付き大気炉を用いて550℃で3時間かけて脱脂し、その後、Ar不活性雰囲気にて約1450℃で2時間焼成し、更に、1300℃で1時間、酸素化処理を行った。SiC結晶粒子がSiで結合された、多孔質のハニカム構造体を得た。
 得られたハニカム構造体の平均細孔径は8.6μmであり、気孔率は45%であった。平均細孔径および気孔率は、水銀ポロシメータにより測定した値である。また、ハニカム構造体の、隔壁の厚さは90μmであり、セル密度は90セル/cmであった。また、ハニカム構造体の底面は直径93mmの円形であり、ハニカム構造体のセルの延びる方向における長さは100mmであった。また、得られたハニカム構造体のアイソスタティック強度は2.5MPaであった。アイソスタティック強度は水中で静水圧をかけて測定した破壊強度である。
 得られたハニカム構造体について、以下の方法で、「400℃における体積電気抵抗(体積電気抵抗)」、「ハニカム構造体の電気抵抗(担体電気抵抗)」、「電流値安定性」及び「圧力損失」を求めた。結果を表1に示す。表1において、「電流値安定性」の欄の「A」は、電流が、30~100Aで安定して流れていたことを示す。また、「B」は、電流が、「20A以上、30A未満」又は「100A超、700A以下」となることがあったことを示す。また、「C」は、電流が、「20A未満」又は「700A超」となることがあり、非常に不安定であったことを示す。A及びBは合格であり、Cは不合格である。また、表1において、「圧力損失」の欄の「A」は、開口率80%以上を示す。また「B」は、開口率80%未満を示す。
(体積電気抵抗)
 ハニカム構造体と同じ材質で10mm×10mm×50mmの試験片を作成した。両端部全面に銀ペーストを塗布し、配線して通電できるようにした。試験片に電圧印加電流測定装置をつなぎ電圧を印加した。試験片中央部に熱伝対を設置し、電圧印加時の試験片温度の経時変化をレコーダーにて確認した。100~200V印加し、試験片温度が400℃になった時点で流れた電流値及び電圧値と、試験片寸法から体積電気抵抗を算出した。
(担体電気抵抗)
 底面(端面)が直径93mmの円形であり、セルの延びる方向における長さが100mmであるハニカム構造体(担体)の側面に、銀ペーストを塗布し、配線して通電できるようにした。担体に電圧印加電流測定装置をつなぎ電圧を印加した。熱電対を用いて、600V印加時の担体内の温度分布を測定し(ハニカム構造体内を、均等に39箇所、温度測定する。)、担体内の平均温度が400℃になった時点で流れた電流値及び電圧値から、担体電気抵抗を算出した。
(電流値安定性)
 上記「担体電気抵抗」の試験と同様にして、600V印加し、担体内の平均温度が400℃になった時点で流れた電流値を測定した。
(圧力損失)
 ハニカム構造体の圧力損失はハニカム構造体の断面の開口率で評価した。開口率は、ハニカム構造体の断面積(セルの延びる方向に直交する断面の面積)に対する、ハニカム構造体の「セルの延びる方向」に直交する断面における「セル(開口部)の合計面積」、の比率とした。
Figure JPOXMLDOC01-appb-T000001
(実施例2~23、比較例1,2)
 「SiC平均粒子径(μm)」、「SiC配合量(質量%)」、「Si平均粒子径(μm)」、「Si配合量(質量%)」、「造孔材平均粒子径(μm)」、「造孔材含有量(造孔材)(質量%)」、「水含有量(水)(質量%)」、「隔壁の気孔率(気孔率)(%)」、「隔壁の平均細孔径(平均細孔径)(μm)」、「隔壁厚さ(μm)」、「セル密度(セル/cm)」及び「セル形状」を表1に示すように変化させた以外は、実施例1と同様にしてハニカム構造体を作製した。実施例1の場合と同様にして、「ハニカム構造体の体積電気抵抗(体積電気抵抗)(Ωcm)」、「ハニカム構造体の電気抵抗(担体電気抵抗)(Ω)」、「電流値安定性」及び「圧力損失」を測定した。結果を表1に示す。
 尚、「SiC配合量(質量%)」は、炭化珪素と金属珪素の合計質量に対する、炭化珪素の配合比率を示し、「Si配合量(質量%)」は、炭化珪素と金属珪素の合計質量に対する、金属珪素の配合比率を示す。また、「造孔材含有量(造孔材)(質量%)」は、成形原料全体に対する、造孔材の配合比率を示し、「水含有量(水)(質量%)」は、成形原料全体に対する、水の配合比率を示す。また、「セル形状」は、セルの延びる方向に直交する断面における、セルの形状を示す。
 表1より、炭化珪素の平均粒子径が3~40μmであると、ハニカム構造体の体積電気抵抗が1~40Ωcmになることがわかる。また、炭化珪素の平均粒子径が3μmより小さいと、ハニカム構造体の体積電気抵抗が大きくなり過ぎることがわかる。また、炭化珪素の平均粒子径が40μmより大きいと、ハニカム構造体の体積電気抵抗が小さくなり過ぎることがわかる。また、比較例1のハニカム構造体は、炭化珪素の平均粒子径が大きいため、隔壁に多くの欠陥が発生していた。
 本発明のハニカム構造体は、化学、電力、鉄鋼等の様々な分野において、内燃機関から排出される排ガスを浄化する触媒装置用の担体として好適に利用することができる。
1:隔壁、2:セル、3:外周壁、4:ハニカム構造部、11:一方の端面、12:他方の端面、100:ハニカム構造体。

Claims (6)

  1.  流体の流路となる一方の端面から他方の端面まで延びる複数のセルを区画形成する多孔質の隔壁と、最外周に位置する外周壁とを有するハニカム構造部を備え、
     前記隔壁及び前記外周壁が、骨材としての炭化珪素粒子、及び前記炭化珪素粒子を結合させる結合材としての珪素を含有し、
     前記隔壁の厚さが50~200μmであり、セル密度が50~150セル/cmであり、前記骨材としての炭化珪素粒子の平均粒子径が3~40μmであり、400℃における体積電気抵抗が1~40Ωcmであるハニカム構造体。
  2.  前記骨材としての炭化珪素粒子の質量と前記結合材としての珪素の質量の合計に対する、前記結合材としての珪素の質量の比率が、10~40質量%である請求項1に記載のハニカム構造体。
  3.  前記隔壁の気孔率が30~60%であり、前記隔壁の平均細孔径が2~20μmである請求項1又は2に記載のハニカム構造体。
  4.  400℃における電気抵抗が1~30Ωである請求項1~3のいずれかに記載のハニカム構造体。
  5.  前記隔壁の厚さが70~130μmであり、セル密度が70~100セル/cmであり、前記隔壁の気孔率が35~45%であり、前記隔壁の平均細孔径が10~20μmであり、前記骨材としての炭化珪素粒子の質量と前記結合材としての珪素の質量の合計に対する、前記結合材としての珪素の質量の比率が、15~35質量%であり、400℃における体積電気抵抗が10~35Ωcmである請求項1~4のいずれかに記載のハニカム構造体。
  6.  前記セルの延びる方向に直交する断面における前記セルの形状が、四角形又は六角形である請求項1~5のいずれかに記載のハニカム構造体。
PCT/JP2010/066779 2009-09-28 2010-09-28 ハニカム構造体 WO2011037247A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011533073A JP5735428B2 (ja) 2009-09-28 2010-09-28 ハニカム構造体
EP10818917.6A EP2484446A4 (en) 2009-09-28 2010-09-28 HONEYCOMB STRUCTURE
CN201080042720.4A CN102574121B (zh) 2009-09-28 2010-09-28 蜂窝状结构体
US13/432,322 US8530030B2 (en) 2009-09-28 2012-03-28 Honeycomb structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009222538 2009-09-28
JP2009-222538 2009-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/432,322 Continuation US8530030B2 (en) 2009-09-28 2012-03-28 Honeycomb structure

Publications (1)

Publication Number Publication Date
WO2011037247A1 true WO2011037247A1 (ja) 2011-03-31

Family

ID=43795985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066779 WO2011037247A1 (ja) 2009-09-28 2010-09-28 ハニカム構造体

Country Status (5)

Country Link
US (1) US8530030B2 (ja)
EP (1) EP2484446A4 (ja)
JP (1) JP5735428B2 (ja)
CN (1) CN102574121B (ja)
WO (1) WO2011037247A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140011667A1 (en) * 2011-03-18 2014-01-09 Ngk Insulators, Ltd. Silicon carbide porous body, honeycomb structure, and electric heating type catalyst carrier
JP2014054934A (ja) * 2012-09-13 2014-03-27 Ngk Insulators Ltd ヒーター
JP2014054935A (ja) * 2012-09-13 2014-03-27 Ngk Insulators Ltd ヒーター
US9447716B2 (en) 2012-03-30 2016-09-20 Ngk Insulators, Ltd. Honeycomb structure
JP2020204300A (ja) * 2019-06-18 2020-12-24 日本碍子株式会社 ハニカム構造体、電気加熱式ハニカム構造体、電気加熱式担体及び排気ガス浄化装置
CN115124347A (zh) * 2021-03-25 2022-09-30 日本碍子株式会社 碳化硅质多孔体、蜂窝结构体、电加热催化器及碳化硅质多孔体的制造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5735481B2 (ja) 2010-02-26 2015-06-17 日本碍子株式会社 ハニカム構造体
JP5658233B2 (ja) 2010-03-31 2015-01-21 日本碍子株式会社 ハニカム構造体
WO2011125817A1 (ja) 2010-03-31 2011-10-13 日本碍子株式会社 ハニカム構造体
EP2554263B1 (en) 2010-03-31 2018-08-15 NGK Insulators, Ltd. Honeycomb structure
CN108698037B (zh) * 2016-03-24 2019-10-18 株式会社科特拉 排气净化装置
JP7038585B2 (ja) * 2018-03-30 2022-03-18 日本碍子株式会社 セラミックス多孔体及び集塵用フィルタ
WO2021049075A1 (ja) * 2019-09-11 2021-03-18 日本碍子株式会社 ハニカム構造体及び排気ガス浄化装置
CN111167491B (zh) * 2020-01-03 2022-07-29 南京工业大学 一种共烧结制备碳化硅催化膜的方法
JP2022142543A (ja) 2021-03-16 2022-09-30 日本碍子株式会社 ハニカム構造体及び電気加熱式担体
JP2022153941A (ja) * 2021-03-30 2022-10-13 日本碍子株式会社 ハニカム構造体
CN114108076A (zh) * 2021-12-01 2022-03-01 浙江晶越半导体有限公司 一种碳化硅籽晶粘连的治具和方法
JP7313589B1 (ja) 2023-03-30 2023-07-24 日本碍子株式会社 ハニカム構造体の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2931362B2 (ja) 1990-04-12 1999-08-09 日本碍子株式会社 抵抗調節型ヒーター及び触媒コンバーター
JP2002201082A (ja) * 2000-04-14 2002-07-16 Ngk Insulators Ltd ハニカム構造体及びその製造方法
JP2003155908A (ja) * 2001-11-20 2003-05-30 Ngk Insulators Ltd ハニカム構造体及びその製造方法
WO2004031100A1 (ja) * 2002-10-07 2004-04-15 Ibiden Co., Ltd. ハニカム構造体
WO2004031101A1 (ja) * 2002-10-07 2004-04-15 Ibiden Co., Ltd. ハニカム構造体
WO2004083148A1 (ja) * 2003-03-20 2004-09-30 Ngk Insulators Ltd. 多孔質材料及びその製造方法、並びにハニカム構造体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995143A (en) * 1974-10-08 1976-11-30 Universal Oil Products Company Monolithic honeycomb form electric heating device
JPS61423A (ja) * 1984-03-31 1986-01-06 Ibiden Co Ltd 炭化珪素質焼結体のフイルタ−
US5288975A (en) 1991-01-30 1994-02-22 Ngk Insulators, Ltd. Resistance adjusting type heater
EP1703095A4 (en) * 2003-12-25 2007-02-28 Ibiden Co Ltd EXHAUST GAS CLEANING DEVICE AND METHOD FOR RECOVERING AN EXHAUST GAS CLEANING DEVICE
FR2921848B1 (fr) * 2007-10-08 2011-03-18 Saint Gobain Ct Recherches Structure de purification texturee incorporant un systeme de catalyse electrochimique
FR2921847B1 (fr) * 2007-10-08 2011-03-18 Saint Gobain Ct Recherches Structure de purification incorporant un systeme de catalyse electrochimique polarise
EP2487146B1 (en) * 2009-10-07 2016-01-13 NGK Insulators, Ltd. Honeycomb structure
JP5735481B2 (ja) * 2010-02-26 2015-06-17 日本碍子株式会社 ハニカム構造体
JP5883299B2 (ja) * 2011-03-24 2016-03-09 日本碍子株式会社 潤滑系流体の加熱用ヒーター
JP2012214364A (ja) * 2011-03-28 2012-11-08 Ngk Insulators Ltd ハニカム構造体、Si−SiC系複合材料、ハニカム構造体の製造方法及びSi−SiC系複合材料の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2931362B2 (ja) 1990-04-12 1999-08-09 日本碍子株式会社 抵抗調節型ヒーター及び触媒コンバーター
JP2002201082A (ja) * 2000-04-14 2002-07-16 Ngk Insulators Ltd ハニカム構造体及びその製造方法
JP4136319B2 (ja) 2000-04-14 2008-08-20 日本碍子株式会社 ハニカム構造体及びその製造方法
JP2003155908A (ja) * 2001-11-20 2003-05-30 Ngk Insulators Ltd ハニカム構造体及びその製造方法
WO2004031100A1 (ja) * 2002-10-07 2004-04-15 Ibiden Co., Ltd. ハニカム構造体
WO2004031101A1 (ja) * 2002-10-07 2004-04-15 Ibiden Co., Ltd. ハニカム構造体
WO2004083148A1 (ja) * 2003-03-20 2004-09-30 Ngk Insulators Ltd. 多孔質材料及びその製造方法、並びにハニカム構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2484446A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140011667A1 (en) * 2011-03-18 2014-01-09 Ngk Insulators, Ltd. Silicon carbide porous body, honeycomb structure, and electric heating type catalyst carrier
US9440225B2 (en) * 2011-03-18 2016-09-13 Ngk Insulators, Ltd. Silicon carbide porous body, honeycomb structure, and electric heating type catalyst carrier
US9447716B2 (en) 2012-03-30 2016-09-20 Ngk Insulators, Ltd. Honeycomb structure
EP2644244A3 (en) * 2012-03-30 2016-11-16 NGK Insulators, Ltd. Honeycomb structure
JP2014054934A (ja) * 2012-09-13 2014-03-27 Ngk Insulators Ltd ヒーター
JP2014054935A (ja) * 2012-09-13 2014-03-27 Ngk Insulators Ltd ヒーター
JP2020204300A (ja) * 2019-06-18 2020-12-24 日本碍子株式会社 ハニカム構造体、電気加熱式ハニカム構造体、電気加熱式担体及び排気ガス浄化装置
JP7184707B2 (ja) 2019-06-18 2022-12-06 日本碍子株式会社 ハニカム構造体、電気加熱式ハニカム構造体、電気加熱式担体及び排気ガス浄化装置
CN115124347A (zh) * 2021-03-25 2022-09-30 日本碍子株式会社 碳化硅质多孔体、蜂窝结构体、电加热催化器及碳化硅质多孔体的制造方法
CN115124347B (zh) * 2021-03-25 2023-10-13 日本碍子株式会社 碳化硅质多孔体、蜂窝结构体、电加热催化器及碳化硅质多孔体的制造方法

Also Published As

Publication number Publication date
US20120183725A1 (en) 2012-07-19
JPWO2011037247A1 (ja) 2013-02-21
CN102574121B (zh) 2014-06-25
US8530030B2 (en) 2013-09-10
CN102574121A (zh) 2012-07-11
EP2484446A1 (en) 2012-08-08
EP2484446A4 (en) 2014-06-11
JP5735428B2 (ja) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5735428B2 (ja) ハニカム構造体
JP5654999B2 (ja) ハニカム構造体
US8530803B2 (en) Honeycomb structure
US8803043B2 (en) Honeycomb structure
EP2540382B1 (en) Honeycomb structure
JP5658233B2 (ja) ハニカム構造体
JP5749894B2 (ja) ハニカム構造体
JP5850858B2 (ja) ハニカム構造体
WO2013146955A1 (ja) ハニカム構造体
JP5902670B2 (ja) ハニカム構造体
WO2012086815A1 (ja) ハニカム構造体
JP6111122B2 (ja) ハニカム構造体及びその製造方法
JP6022984B2 (ja) ハニカム構造体、及びその製造方法
JP6038711B2 (ja) ハニカム構造体及びその製造方法
JP5792743B2 (ja) ハニカム構造体
JP6006153B2 (ja) ハニカム構造体及びその製造方法
JP5992857B2 (ja) ハニカム構造体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080042720.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011533073

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010818917

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010818917

Country of ref document: EP