WO2011036973A1 - Process for production of carbon nanotube film - Google Patents

Process for production of carbon nanotube film Download PDF

Info

Publication number
WO2011036973A1
WO2011036973A1 PCT/JP2010/064351 JP2010064351W WO2011036973A1 WO 2011036973 A1 WO2011036973 A1 WO 2011036973A1 JP 2010064351 W JP2010064351 W JP 2010064351W WO 2011036973 A1 WO2011036973 A1 WO 2011036973A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
nanotube film
forming
film according
shielding member
Prior art date
Application number
PCT/JP2010/064351
Other languages
French (fr)
Japanese (ja)
Inventor
貴士 松本
正仁 杉浦
建次郎 小泉
勇作 柏木
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2011036973A1 publication Critical patent/WO2011036973A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only

Definitions

  • the present invention relates to a carbon nanotube film forming method for forming a carbon nanotube film by CVD using a catalytic metal.
  • a plasma layer is formed by forming a catalyst layer composed of fine particles of a transition metal such as Ni, Fe, Co on a substrate and using hydrocarbon gas and hydrogen gas for the substrate.
  • a method for forming a carbon nanotube film on a substrate Japanese Patent Laid-Open No. 2007-252970: Patent Document 1.
  • Patent Document 1 as a technique for preventing the surface of the fine particles from being oxidized and reducing the catalytic activity when the catalyst metal is finely divided, the surface of the catalyst metal is irradiated with radical species to prevent the catalyst surface from being oxidized. It is described to activate.
  • an object of the present invention is to provide a film forming method of a carbon nanotube film that can form a low-defect and high-density carbon nanotube film by forming a catalyst metal in a lower layer into fine particles and a high density. .
  • preparing a substrate to be processed having a metal catalyst layer formed on the surface subjecting the metal catalyst layer to oxygen plasma treatment, and containing hydrogen in the metal catalyst layer after the oxygen plasma treatment.
  • a method for forming a carbon nanotube film is provided.
  • FIG. 3 is a flowchart showing a carbon nanotube film forming method according to the first embodiment of the present invention. It is a schematic diagram which shows the structure of the wafer which has a metal catalyst on the film-forming surface used for the 1st Embodiment of this invention. It is a figure which shows the spatial potential in a chamber when not applying a voltage to a grid electrode. It is a figure which shows the spatial potential in a chamber at the time of applying a voltage to a grid electrode.
  • FIG. 1 is a cross-sectional view schematically showing an example of a film forming apparatus used for carrying out the method of forming a carbon nanotube film according to the first embodiment of the present invention.
  • a film forming apparatus 100 shown in FIG. 1 is configured as an RLSA (Radial Line Slot Antenna) microwave plasma type plasma processing apparatus.
  • the film forming apparatus 100 includes a substantially cylindrical chamber 1, a susceptor (mounting table) 2 provided in the chamber 1 for mounting a semiconductor wafer (hereinafter simply referred to as a wafer) W as a substrate to be processed, and a chamber A charged particle control mechanism 3 that controls charged particles in plasma formed in 1, a microwave introduction mechanism 4 that introduces microwaves into the chamber 1, a gas supply mechanism 5 that guides gas into the chamber 1, An exhaust mechanism 6 that exhausts the inside of the chamber 1 and a control unit 7 that controls each component of the film forming apparatus 100 are provided.
  • a circular opening 10 is formed at a substantially central portion of the bottom wall 1a of the chamber 1, and an exhaust chamber 11 that communicates with the opening 10 and protrudes downward is provided on the bottom wall 1a. .
  • a loading / unloading port 17 for loading / unloading the wafer W and a gate valve 18 for opening / closing the loading / unloading port 17 are provided.
  • the susceptor 2 is made of ceramic such as AlN, and is supported by a support member 12 made of ceramic such as cylindrical AlN that extends upward from the center of the bottom of the exhaust chamber 11.
  • a guide ring 13 for guiding the wafer W is provided on the outer edge of the susceptor 2.
  • elevating pins (not shown) for elevating the wafer W are provided inside the susceptor 2 so as to protrude and retract with respect to the upper surface of the susceptor 2.
  • a resistance heating type heater 14 is embedded in the susceptor 2, and the heater 14 is heated by the heater power supply 15 to heat the wafer W thereon via the susceptor 2.
  • thermocouple (not shown) is inserted into the susceptor 2 so that the heating temperature of the wafer W can be controlled in the range of 200 to 650 ° C.
  • an electrode 16 having the same size as the wafer W is embedded above the heater 14 in the susceptor 2, and this electrode 16 is grounded.
  • the microwave introduction mechanism 4 is provided so as to face the opening at the top of the chamber 1, and includes a planar antenna 21 in which a large number of microwave transmission holes 21a are formed, a microwave generator 22 that generates microwaves, And a microwave transmission mechanism 23 that guides the wave generator 22 to the planar antenna 21.
  • a microwave transmission plate 24 made of a dielectric is provided below the planar antenna 21 so as to be supported by an upper plate 32 provided in a ring shape above the chamber 1, and a shield member 25 is disposed on the planar antenna 21. Is provided. Further, a slow wave material 26 made of a dielectric is provided between the shield member 25 and the planar antenna 21.
  • the microwave transmission mechanism 23 is a coaxial waveguide comprising a waveguide 27 extending in the horizontal direction for guiding microwaves from the microwave generator 22, an inner conductor 29 extending upward from the center of the planar antenna 21, and an outer conductor 30 outside thereof.
  • a wave tube 28 and a mode conversion mechanism 31 provided between the waveguide 27 and the coaxial waveguide 28 are provided.
  • the gas supply mechanism 5 is provided in a ring shape along the inner wall of the chamber 1 at a position above the shower plate 41 and a shower plate 41 horizontally provided so as to partition the upper and lower sides above the susceptor 2 in the chamber 1.
  • the shower ring 42 is provided.
  • the shower plate 41 includes a gas flow member 51 formed in a lattice shape, a gas flow path 52 provided in a lattice shape inside the gas flow member 51, and a number of gases extending downward from the gas flow path 52. It has a discharge hole 53, and a through-hole 54 is formed between the lattice-like gas flow members 51.
  • a gas supply path 55 reaching the outer wall of the chamber 1 extends in the gas flow path 52 of the shower plate 41, and a gas supply pipe 56 is connected to the gas supply path 55.
  • the branch pipes 56a, 56b, and 56c are provided with a mass flow controller for flow rate control and valves before and after the mass flow controller.
  • the shower ring 42 has a ring-shaped gas flow path therein and a large number of gas discharge holes (none of which are shown) connected to the gas flow path and opening inside thereof.
  • a gas supply pipe 61 is connected to the.
  • the gas supply pipe 61 is branched into three branch pipes 61a, 61b, and 61c.
  • An Ar gas supply source 62 that supplies Ar gas as a plasma generation gas to each of the branch pipes 61a, 61b, and 61c, supplying O 2 gas as an oxidizing gas O 2 gas supply source 63, for supplying N 2 gas as a purge N 2 gas supply source 64 is connected.
  • the branch pipes 61a, 61b, and 61c are provided with a mass flow controller for flow rate control and valves before and after that, although not shown.
  • the charged particle control mechanism 3 includes a grid electrode 71, a support member 72 that supports the grid electrode, a variable DC power source 73 that applies a DC voltage to the grid electrode 71 via the support member 72, and a pulse signal to the variable DC power source 73. And a pulse generator 74.
  • the grid electrode 71 is provided directly below the shower plate 41 so as to cover the wafer W on the susceptor 2 and has a net shape having a large number of openings, and also functions as a shielding member.
  • the outer periphery of the grid electrode 71 reaches the vicinity of the inner wall of the chamber 1, and an insulating ring 75 made of an insulator is provided between the grid electrode 71 and the inner wall of the chamber 1 so as to fill a gap therebetween. Yes.
  • This insulating ring 75 can surely prevent plasma from leaking from the gap between the grid electrode 71 and the chamber 1. However, if there is a gap between the grid electrode 71 and the inner wall of the chamber 1, the insulating ring 75 may not be provided if plasma leakage can be sufficiently prevented.
  • the grid electrode 71 functions as a shielding member to prevent transmission of charged particles such as electrons and ions that may damage the surface of the wafer W, thereby suppressing the arrival of charged particles to the wafer W. Further, by applying a DC voltage from the variable DC power source 73 to the grid electrode 71, charged particles such as electrons and ions are repelled or attracted by the grid electrode 71 to prevent these particles from going straight, and the charged particles reach the wafer W. Suppress more effectively. For example, by applying a negative DC voltage to the grid electrode 71, electrons and negative ions can be repelled mainly to prevent the electrons from reaching the wafer W.
  • the voltage application to the grid electrode 71 can be made pulsed.
  • the pulse generator 74 by making the voltage applied to the grid electrode 71 into a pulse shape by the pulse generator 74, there is an effect that even an insulating substrate can be processed without charging the substrate surface.
  • the exhaust mechanism 6 includes the exhaust chamber 11, an exhaust pipe 81 provided on a side surface of the exhaust chamber 11, and an exhaust device 82 having a vacuum pump, a pressure control valve, and the like connected to the exhaust pipe 81.
  • the control unit 7 includes a calculation unit 91 including a microprocessor (computer), a user interface 92, and a storage unit 93.
  • Each component of the film forming apparatus 100 is electrically connected to the calculation unit 91 and controlled.
  • the user interface 92 is connected to the calculation unit 91, and a keyboard on which an operator inputs a command to manage each component of the film forming apparatus 100, and an operation status of each component of the film forming device 100. It consists of a display etc. that visualizes and displays.
  • the storage unit 93 is also connected to the calculation unit 91, and the storage unit 93 stores control programs for realizing various processes executed by the film forming apparatus 100 under the control of the calculation unit 91, processing conditions, and the like.
  • a control program for causing each component of the film forming apparatus 100 to execute a predetermined process that is, a process recipe, various databases, and the like are stored.
  • the processing recipe is stored in a storage medium (not shown) in the storage unit 93.
  • the storage medium may be a fixed medium such as a hard disk or a portable medium such as a CDROM, DVD, or flash memory.
  • a predetermined processing recipe is called from the storage unit 93 by an instruction from the user interface 92 and executed by the calculation unit 91, so that the film forming apparatus 100 can control the control unit 7. Desired processing is performed.
  • FIG. 2 is a flowchart for explaining a carbon nanotube film forming method according to the first embodiment of the present invention.
  • a wafer W having a metal catalyst on the film formation surface is prepared, the gate valve 18 is opened, and the wafer W is loaded into the chamber 1 (step 1).
  • a SiO 2 film 202 is formed as an insulating film on a Si substrate 201, and a metal catalyst layer 204 is formed thereon via an underlayer 203. Is used.
  • Examples of the metal constituting the metal catalyst layer 204 include transition metals such as Ni, Co, and Fe, or alloys containing at least one transition metal.
  • a method for forming the metal catalyst layer 204 a film formation technique generally used in this field, such as a thin film formation technique such as sputtering, vapor deposition, CVD, or plating, can be used.
  • the thickness of the metal catalyst layer 204 is preferably 0.1 to 2.0 nm.
  • the underlayer 203 functions as a film that prevents coarsening due to aggregation of the metal catalyst, and examples thereof include Al, Si, Ta, Ti, TiN, TiC, Al 2 O 3 , and MgO.
  • the underlying layer 203 can be formed by a film forming technique generally used in this field.
  • the thickness of the underlayer 203 is preferably 10 to 100 nm.
  • step 2 After the semiconductor wafer W having such a structure is loaded into the chamber 1 and placed on the susceptor 2, the metal catalyst layer 204 is subjected to oxygen plasma treatment (step 2).
  • Ar gas and O 2 gas are introduced into the chamber 1 from the shower ring 42, and the microwave generated by the microwave generation unit 22 is converted into a planar antenna in a predetermined mode via the microwave transmission mechanism 23. 21 is transmitted through the microwave transmitting hole 21 a and the microwave transmitting plate 24 of the planar antenna 21 and supplied uniformly into the chamber 1.
  • Ar gas and O 2 gas are converted into plasma by the microwave, and oxygen plasma treatment is performed on the surface of the metal catalyst layer 204 on the surface of the wafer W by the microwave plasma.
  • This treatment is a treatment that removes organic substances and the like attached to the surface of the metal catalyst layer 204 to make a clean surface, and this facilitates migration due to heating on the surface of the metal catalyst layer 204. Appropriate agglomeration occurs in the metal constituting 204, and the formation of fine particles can be facilitated.
  • the preferable conditions for this oxygen plasma treatment are as follows. Wafer temperature: 300-600 ° C Chamber pressure: 67-533Pa O 2 gas flow rate: 50 to 200 mL / min (sccm) Ar gas flow rate: 300 to 600 mL / min (sccm) Microwave power: 250-2000W Processing time: 5-10 minutes
  • the grid electrode 71 functions as a shielding member, and electrons and ions in the plasma are suppressed from reaching the metal catalyst layer 204 on the surface of the wafer W. Radicals can mainly act without damaging electrons or ions. For this reason, the effect of aggregating the metal of the metal catalyst layer 204 appropriately can be exhibited more effectively. Then, by applying a voltage to the grid electrode 71, it is possible to prevent the charged particles such as electrons and ions from going straight and to more effectively prevent the charged particles from reaching the wafer W. The effect of appropriately aggregating the metal of the layer 204 can be further enhanced.
  • the opening diameter of the grid electrode 71 is preferably 2 mm ⁇ or less, and the opening ratio is preferably 40 to 85%.
  • the voltage applied to the grid electrode 71 is preferably ⁇ 300 to 300V. From the viewpoint of effectively suppressing the arrival of electrons, a negative voltage is good, and ⁇ 300 to 0 V is more preferable.
  • FIGS. 4A and 4B are diagram showing the spatial potential in the chamber 1 when no voltage is applied to the grid electrode 71
  • FIG. 4B is a diagram showing the spatial potential in the chamber 1 when ⁇ 100V is applied to the grid electrode 71.
  • the grid electrode 71 when no voltage is applied to the grid electrode 71, there is no potential difference between the shower plate 41 and the wafer W, but no electrical action occurs on charged particles such as electrons and ions.
  • the grid electrode When the grid electrode is provided and ⁇ 100 V is applied thereto, the grid electrode 71 has a negative potential with respect to the grounded shower plate 41 and the wafer W (susceptor 2). It becomes difficult for negatively charged charged particles such as negative ions to reach the wafer W.
  • H 2 O, O 3 , N 2 O, or the like can be used in addition to O 2 gas.
  • an activation treatment is performed (step 3).
  • the microwave is stopped, the O 2 gas is stopped, and the Ar gas is kept flowing.
  • the microwave generator 22, the microwave transmission mechanism 23, and the planar antenna 21 are used. Then, the microwave is uniformly supplied into the chamber 1 through the microwave transmission plate 24.
  • the Ar gas is turned into plasma by the microwave, and H 2 gas is introduced into the chamber 1 through the shower plate 41 at the timing when the plasma is ignited, and the H 2 gas is turned into plasma by Ar plasma.
  • the surface of the metal catalyst layer 204 is activated by the microwave plasma thus formed.
  • This activation treatment is a treatment for activating the metal catalyst by reducing the surface of the metal catalyst layer 204 oxidized by the oxygen plasma treatment in step 2. That is, by performing the treatment with the hydrogen plasma in this way, the surface of the metal catalyst layer 204 is activated, and the metal constituting the metal catalyst layer 204 can be finely divided and densified.
  • Preferred conditions for this activation treatment are as follows. Wafer temperature: 300-600 ° C Chamber pressure: 67-533Pa H 2 gas flow rate: 100 to 1200 mL / min (sccm) Ar gas flow rate: 300 to 600 mL / min (sccm) Microwave power: 250-2000W Treatment time: 5 to 10 minutes
  • the temperature during this activation treatment may be different from the oxygen plasma treatment, but it is preferable to carry out at the same temperature because the throughput can be increased.
  • the grid electrode 71 functions as a shielding member, and electrons and ions in the plasma are suppressed from reaching the metal catalyst layer 204 on the surface of the wafer W. Radicals can mainly act without damaging electrons or ions. For this reason, the effect of activating the surface of the metal catalyst layer 204 to make the metal constituting the metal catalyst layer 204 fine particles and increasing the density can be more effectively exhibited. Then, by applying a voltage to the grid electrode 71, it is possible to prevent the charged particles such as electrons and ions from going straight, and more effectively prevent the charged particles from reaching the wafer W. The effect of making the surface of the metal catalyst layer 204 fine particles and increasing the density by activating the surface can be further enhanced.
  • the opening diameter of the grid electrode 71 is preferably 2 mm ⁇ or less, and the opening ratio is preferably 40 to 85%.
  • the voltage applied to the grid electrode 71 is preferably ⁇ 300 to 300V. From the viewpoint of effectively suppressing the arrival of electrons, a negative voltage is good, and ⁇ 300 to 0 V is more preferable.
  • H-containing gas for example, NH 3 gas can be used instead of H 2 gas.
  • step 4 the microwave and H 2 gas are stopped, and Ar gas and N 2 gas are flowed to purge the chamber 1 (step 4). At this time, the inside of the chamber 1 is rapidly exhausted by the exhaust device 82.
  • the purge is performed under the conditions of, for example, a chamber pressure of 67 to 533 Pa, an N 2 gas flow rate of 50 to 300 mL / min (sccm), an Ar gas flow rate of 300 to 600 mL / min (sccm), and a temperature of 300 to 600 ° C. Preferably it is performed for 1-2 minutes.
  • a carbon nanotube film is formed (step 5).
  • the N 2 gas is stopped and the Ar gas is allowed to flow at a predetermined flow rate, and the microwave generator 22, the microwave transmission mechanism 23, the planar antenna 21, A microwave is uniformly supplied into the chamber 1 through the microwave transmission plate 24.
  • the C 2 H 4 gas and H 2 gas was introduced into the chamber 1 through the shower plate 41 at the timing when the plasma is ignited, C 2 H 4 gas and the Ar plasma H 2 gas is turned into plasma.
  • a carbon nanotube film is formed on the metal catalyst layer 204 by the microwave plasma thus formed while applying a predetermined voltage to the grid electrode 71.
  • a carbon nanotube film oriented in a direction perpendicular to the surface of the wafer W can be grown on the surface of the activated metal catalyst layer 204.
  • the carbon nanotube film grows while maintaining the properties of the metal catalyst layer 204.
  • fine and high-density carbon nanotubes can be formed on the metal catalyst layer 204 that has been activated and refined by the activation treatment in step 3.
  • the grid electrode 71 functions as a shielding member, so that electrons and ions in the plasma are prevented from reaching the metal catalyst layer 204 on the surface of the wafer W, and the metal catalyst layer 204 is not damaged by electrons and ions. Can mainly act on radicals.
  • the preferable conditions for the film forming process of the carbon nanotube film are as follows. Wafer temperature: 300-600 ° C Chamber pressure: 67-533Pa C 2 H 4 gas flow rate: 5 to 150 mL / min (sccm) H 2 gas flow rate: 100 to 1200 mL / min (sccm) Ar gas flow rate: 300 to 600 mL / min (sccm) Microwave power: 250-2000W Treatment time: 1 to 60 minutes The temperature during this activation treatment may be different from the oxygen plasma treatment and the activation treatment, but it is preferable to carry out at the same temperature because the throughput can be increased.
  • the grid diameter of the grid electrode 71 is preferably 2 mm ⁇ or less, and the aperture ratio is preferably 40 to 85%.
  • the voltage applied to the grid electrode 71 is preferably ⁇ 300 to 300V. From the viewpoint of effectively suppressing the arrival of electrons, a negative voltage is good, and ⁇ 300 to 0 V is more preferable.
  • ethylene (C 2 H 4 ) gas not only ethylene (C 2 H 4 ) gas but also methane (CH 4 ) gas, ethane (C 2 H 6 ) gas, propane (C 3 H 8 ) gas, propylene
  • CH 4 methane
  • ethane (C 2 H 6 ) gas propane (C 3 H 8 ) gas
  • hydrocarbon gases such as (C 2 H 6 ) gas
  • the reducing gas is not limited to H 2 gas, and other gases such as ammonia (NH 3 ) can be used.
  • the wafer W having the metal catalyst layer 204 on the surface is subjected to oxygen plasma treatment, and subsequently subjected to activation treatment using hydrogen plasma, and then the carbon nanotube film is formed by plasma CVD. Is deposited.
  • the surface of the metal catalyst layer 204 is cleaned by oxygen plasma treatment to facilitate migration due to heating on the surface of the metal catalyst layer 204, and moderate aggregation occurs in the metal constituting the metal catalyst layer 204, resulting in fine particles. It is possible to facilitate progress.
  • the activation treatment with hydrogen plasma after that the surface of the metal catalyst layer 204 can be activated to make the metal constituting the metal catalyst layer 204 fine and dense. For this reason, in the subsequent film formation of the carbon nanotube film, it is possible to grow a carbon nanotube film having a high density and oriented perpendicular to the substrate surface on the finely divided and densified catalyst metal layer 204. it can.
  • the grid electrode functioning as a shielding member is provided between the shower plate 41 and the wafer W, it is possible to suppress electrons and ions in the plasma from reaching the metal catalyst layer 204 on the surface of the wafer W. For this reason, radicals can act mainly on the metal catalyst layer 204 without damaging the electrons and ions, so that the introduction of crystal defects and impurities due to the electrons and ions can be suppressed. A good carbon nanotube film can be formed. Furthermore, such an effect can be further enhanced by applying a voltage to the grid electrode 71.
  • the processing is performed with microwave plasma, plasma processing mainly consisting of radicals having a high density and a low electron temperature can be performed, and the above-described effects can be effectively exhibited.
  • an RLSA microwave plasma type plasma processing apparatus that forms microwave plasma by radiating microwaves from a number of microwave radiation holes 21 a of the planar antenna 21 is used. Among them, particularly high density and low electron temperature plasma can be generated.
  • FIG. 1 An example in which one grid electrode 71 is provided in the charged particle control mechanism 3 has been shown. However, as shown in FIG. 5, two grid electrodes 71a and 71b are provided so as to overlap each other. Also good. Thereby, the effect which shields charged particles, such as an electron and an ion, can be made higher by using these as a shielding member.
  • An insulating ring 75 is provided between the grid electrodes 71a and 71b and the inner wall of the chamber 1 as in the apparatus of FIG. However, the insulating ring 75 is not essential as in the apparatus of FIG.
  • the diameter of the openings of the grid electrodes 71a and 71b is preferably 2 mm ⁇ or less, and the opening ratio is preferably 40 to 85%.
  • the voltage applied to the grid electrodes 71a and 71b is preferably ⁇ 300 to 300V.
  • a variable DC power supply 95 and a pulse generator 96 may be connected to the susceptor 2. Also by this, charged particles such as electrons and ions can be prevented from reaching the surface of the wafer W. For example, by applying a negative DC voltage to the susceptor 2, the wafer W has a negative voltage, and electrons and negative ions are repelled and do not easily reach the surface of the wafer W.
  • Example 7 a blanket in which a TiN underlayer 303 is formed with a thickness of 70 nm on a SiO 2 film 302 formed on a Si substrate 301 and a Ni catalyst layer 304 is formed thereon with a thickness of 2 nm.
  • a carbon nanotube film was formed using a wafer. At that time, after the wafer is first loaded into the chamber 1 of the apparatus of FIG. 1, oxygen plasma treatment and activation treatment are sequentially performed under the conditions shown in FIG. A nanotube film was formed.
  • the crystallinity of the carbon nanotube film thus formed was evaluated by Raman spectroscopy. Specifically, from the intensity ratio (G / D ratio) of G-band (1585 cm ⁇ 1 ) due to the graphene structure in the Raman spectrum and D-band (1350 cm ⁇ 1 ) indicating disorder of the crystallinity of the graphene sheet. The crystallinity was evaluated. The higher the G / D ratio, the better the crystallinity.
  • the G / D ratio was improved and the crystallinity of the carbon nanotube film was improved as the opening diameter of the grid electrode 71 was reduced, and the opening diameter was preferably 2 mm or less. . It was also confirmed that the G / D ratio was improved when the applied voltage was a negative voltage rather than a positive voltage. In the case of one grid electrode, the G / D ratio was highest when the opening diameter was 1 mm and the applied voltage was ⁇ 100 V, and the G / D ratio was 0.9. It was also confirmed that using two grid electrodes with an opening diameter of 2 mm resulted in a higher G / D ratio than when using one grid electrode with the same opening diameter. It was also confirmed that when two grid electrodes were used, a high G / D ratio could be obtained without applying a voltage.
  • FIG. 1 A cross section of a sample with a high G / D ratio obtained using two grid electrodes was photographed with a scanning microscope (SEM). The photograph is shown in FIG. As shown in this figure, it was confirmed that a carbon nanotube film having a high density and oriented perpendicular to the substrate surface was obtained.
  • the wafer on which the metal catalyst layer is formed is subjected to oxygen plasma treatment using microwave plasma of O 2 gas and activation treatment using microwave plasma of H 2 gas, and then the opening diameter and application of the grid electrode are applied. It was confirmed that a carbon nanotube film with good crystallinity can be obtained by adjusting the voltage and forming the carbon nanotube film by microwave plasma CVD.
  • FIG. 11 is a schematic view showing an example of a film forming apparatus used for carrying out the carbon nanotube film forming method according to the second embodiment of the present invention.
  • This film forming apparatus is a multi-chamber capable of continuously performing oxygen plasma treatment, activation treatment using hydrogen plasma, and film formation of a carbon nanotube film in separate chambers without breaking the vacuum. Type.
  • the film forming apparatus 100 ′ includes an oxygen plasma processing unit 101, an activation processing unit 102, and a film forming unit 103 which are maintained in a vacuum. These units 101 to 103 basically have the above-described film forming. It is configured as an RLSA microwave plasma type plasma processing apparatus similar to the apparatus 100, and these are connected via a gate valve G to a transfer chamber 105 held in a vacuum. In addition, load lock chambers 106 and 107 are connected to the transfer chamber 105 through gate valves G.
  • An air loading / unloading chamber 108 is connected to the side surface of the load lock chamber 106, 107 opposite to the transfer chamber 105, and on the opposite side of the loading / unloading chamber 108 from the connecting portion of the load lock chamber 106, 107.
  • Three carrier attachment ports 109, 110, and 111 for attaching the carrier C capable of accommodating the wafer W are provided.
  • a transfer device 112 that loads and unloads the wafer W with respect to the oxygen plasma processing unit 101, the activation processing unit 102, the carbon nanotube film forming unit 103, and the load lock chambers 106 and 107 is provided. ing.
  • the transfer device 112 is provided at substantially the center of the transfer chamber 105, and has two support arms 114a and 114b that support the semiconductor wafer W at the tip of a rotatable / extensible / retractable portion 113 that can be rotated and extended. These two support arms 114a and 114b are attached to the rotation / extension / contraction section 113 so as to face opposite directions.
  • a transfer device 116 for loading / unloading the wafer W into / from the carrier C and loading / unloading the wafer W into / from the load lock chambers 106 and 107 is provided.
  • the transfer device 116 has an articulated arm structure, and can run on the rail 118 along the arrangement direction of the carrier C.
  • the wafer W is placed on the support arm 117 at the tip thereof and transferred. I do.
  • This film forming apparatus includes a control unit 120 that controls each component, and thereby each component of the oxygen plasma processing unit 101, each component of the activation processing unit 102, and each of the carbon nanotube film forming unit 103. Control is performed such as opening / closing of each component, the transfer devices 112 and 116, the exhaust system (not shown) of the transfer chamber 105, and the gate valve G.
  • the control unit 120 is configured similarly to the control unit 7 of the first embodiment.
  • FIG. 12 is a flowchart for explaining a carbon nanotube film forming method according to the second embodiment of the present invention.
  • a wafer W having a metal catalyst on a film formation surface similar to that shown in FIG. 3 is prepared and carried into the film formation apparatus 100 ′ (step 11). Specifically, the wafer W is taken out from the carrier C by the transfer device 116 in the loading / unloading chamber 108 and transferred to one of the load lock chambers 106 and 107.
  • the wafer W is taken out by the transfer device 112 of the transfer chamber 105 and transferred to the oxygen plasma processing unit 101 to perform oxygen plasma treatment on the metal catalyst layer of the wafer W. (Step 12).
  • the oxygen plasma treatment at this time is performed in the same manner as in step 2 of the first embodiment.
  • step 13 The activation process at this time is performed in the same manner as in step 3 of the first embodiment.
  • the wafer W after the activation process is taken out from the activation process unit 102 by the transfer device 112 and transferred to the film formation unit 103, where the film formation process of the carbon nanotube film is performed (step 14).
  • the film forming process at this time is performed in the same manner as in step 5 of the first embodiment.
  • the wafer after the carbon nanotube film is formed is taken out from the film forming unit 103 by the transfer device 112, transferred to one of the load lock chambers 106 and 107, and the load lock chamber is returned to atmospheric pressure. It is carried out to one of the carriers C by the transport device 116 (step 15).
  • an apparatus that can efficiently and continuously perform oxygen plasma treatment, activation treatment, and carbon nanotube film formation treatment in one chamber is used.
  • the efficiency is not always good, and when it is desired to divide the gas supply system of the apparatus into each process, or an apparatus having a slightly different apparatus configuration between these three processes. In some cases (for example, the presence or absence of a grid electrode). This embodiment is suitable for such a case.
  • each process is performed in separate units (chambers).
  • the oxygen plasma process and the activation process are performed in one unit (chamber) to form a carbon nanotube film.
  • At least one process may be performed in a separate unit (chamber), such as in another unit (chamber).
  • the present invention can be variously modified without being limited to the above embodiment.
  • the example in which the oxygen plasma treatment, the activation treatment, and the carbon nanotube film formation treatment are performed by the plasma treatment apparatus of the RLSA microwave plasma method is shown.
  • a method may be used, and not only microwave plasma but also inductively coupled plasma or capacitively coupled plasma may be used.
  • microwave plasma is preferable because it is low electron temperature plasma mainly composed of radicals.
  • the structure of the wafer is not limited to that of FIG. 2 as long as the metal catalyst layer is formed on the surface, and the substrate to be processed is not limited to the semiconductor wafer.

Abstract

A substrate to be treated, which has a metal catalyst layer formed on the surface thereof, is provided (step 1), the metal catalyst layer is subjected to an oxygen plasma treatment (step 2), the metal catalyst layer which has been treated with an oxygen plasma is subjected to a hydrogen-containing plasma treatment to activate the surface of the metal catalyst layer (step 3), and subsequently a carbon nanotube film is formed on the metal catalyst layer by means of plasma CVD (step 5).

Description

カーボンナノチューブ膜の成膜方法Method for forming carbon nanotube film
 本発明は、触媒金属を用いてCVDによりカーボンナノチューブ膜を成膜するカーボンナノチューブ膜の成膜方法に関する。 The present invention relates to a carbon nanotube film forming method for forming a carbon nanotube film by CVD using a catalytic metal.
 カーボンナノチューブは、優れた電気特性を有することから、半導体デバイスの配線等の用途への適用が検討されている。カーボンナノチューブ膜の成膜方法としては、Ni、Fe、Co等の遷移金属の微粒子から構成された触媒層を基板上に形成し、その基板に対し炭化水素ガスと水素ガスとを用いたプラズマCVDにより基板にカーボンナノチューブを成膜する方法が提案されている(特開2007-252970号公報:特許文献1)。 Since carbon nanotubes have excellent electrical characteristics, application to applications such as wiring of semiconductor devices is being studied. As a method for forming a carbon nanotube film, a plasma layer is formed by forming a catalyst layer composed of fine particles of a transition metal such as Ni, Fe, Co on a substrate and using hydrocarbon gas and hydrogen gas for the substrate. Has proposed a method for forming a carbon nanotube film on a substrate (Japanese Patent Laid-Open No. 2007-252970: Patent Document 1).
 また、上記特許文献1には、触媒金属を微粒子化した場合に、微粒子表面が酸化して触媒活性が低下することを防止する手法として、触媒金属の表面にラジカル種を照射して触媒表面を活性化させることが記載されている。 In Patent Document 1, as a technique for preventing the surface of the fine particles from being oxidized and reducing the catalytic activity when the catalyst metal is finely divided, the surface of the catalyst metal is irradiated with radical species to prevent the catalyst surface from being oxidized. It is described to activate.
 カーボンナノチューブ膜をビア配線として使うためには、カーボンナノチューブの欠陥を低減し、単位面積当たりの密度を高くする必要がある。カーボンナノチューブの密度は触媒金属の形状等に依存するため、カーボンナノチューブを低欠陥でかつ高密度のものとするために触媒金属を極めて微粒にかつ高密度に形成する必要がある。しかし、上記特許文献1のように単に触媒金属を活性化しただけでは、触媒金属が十分に微粒かつ高密度にならず、所望の低欠陥かつ高密度のカーボンナノチューブ膜を得ることが困難である。 In order to use the carbon nanotube film as a via wiring, it is necessary to reduce the defects of the carbon nanotube and increase the density per unit area. Since the density of the carbon nanotube depends on the shape of the catalyst metal and the like, it is necessary to form the catalyst metal in a very fine and high density so that the carbon nanotube has a low defect and a high density. However, simply activating the catalyst metal as in Patent Document 1 described above does not make the catalyst metal sufficiently fine and dense, and it is difficult to obtain a desired low defect and high density carbon nanotube film. .
 したがって、本発明の目的は、下層の触媒金属を微粒にかつ高密度に形成して低欠陥で高密度のカーボンナノチューブ膜を形成することができるカーボンナノチューブ膜の成膜方法を提供することにある。 Accordingly, an object of the present invention is to provide a film forming method of a carbon nanotube film that can form a low-defect and high-density carbon nanotube film by forming a catalyst metal in a lower layer into fine particles and a high density. .
 本発明によれば、表面に金属触媒層が形成された被処理基板を準備することと、前記金属触媒層に酸素プラズマ処理を施すことと、前記酸素プラズマ処理後の前記金属触媒層に水素含有プラズマ処理を施して、前記金属触媒層の表面を活性化することと、前記活性化が施された後の前記金属触媒層の上にプラズマCVDによりカーボンナノチューブ膜を成膜することとを有する、カーボンナノチューブ膜の成膜方法が提供される。 According to the present invention, preparing a substrate to be processed having a metal catalyst layer formed on the surface, subjecting the metal catalyst layer to oxygen plasma treatment, and containing hydrogen in the metal catalyst layer after the oxygen plasma treatment. Performing a plasma treatment to activate the surface of the metal catalyst layer; and forming a carbon nanotube film on the metal catalyst layer after the activation by plasma CVD. A method for forming a carbon nanotube film is provided.
本発明の第1の実施形態に係るカーボンナノチューブ膜の成膜方法を実施するために用いられる成膜装置の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the film-forming apparatus used in order to implement the film-forming method of the carbon nanotube film | membrane concerning the 1st Embodiment of this invention. 本発明の第1の実施形態に係るカーボンナノチューブ膜の成膜方法を示すフローチャートである。3 is a flowchart showing a carbon nanotube film forming method according to the first embodiment of the present invention. 本発明の第1の実施形態に用いられる成膜表面に金属触媒を有するウエハの構造を示す模式図である。It is a schematic diagram which shows the structure of the wafer which has a metal catalyst on the film-forming surface used for the 1st Embodiment of this invention. グリッド電極に電圧を印加しない場合のチャンバ内の空間ポテンシャルを示す図である。It is a figure which shows the spatial potential in a chamber when not applying a voltage to a grid electrode. グリッド電極に電圧を印加した場合のチャンバ内の空間ポテンシャルを示す図である。It is a figure which shows the spatial potential in a chamber at the time of applying a voltage to a grid electrode. 本発明の第1の実施形態に用いられる装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the apparatus used for the 1st Embodiment of this invention. 本発明の第1の実施形態に用いられる装置の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the apparatus used for the 1st Embodiment of this invention. 本発明の実施例に用いたウエハの構造を示す模式図である。It is a schematic diagram which shows the structure of the wafer used for the Example of this invention. 本発明の実施例の処理条件を示す図である。It is a figure which shows the process conditions of the Example of this invention. 本発明の実施例におけるグリッド電極の各開口径におけるグリッド電極電圧と得られたカーボンナノチューブ膜のG/D比との関係を示すグラフである。It is a graph which shows the relationship between the grid electrode voltage in each opening diameter of the grid electrode in the Example of this invention, and G / D ratio of the obtained carbon nanotube film | membrane. グリッド開口径2mmの2枚のグリッド電極を用いて成膜したカーボンナノチューブ膜を示す走査型顕微鏡(SEM)写真である。It is a scanning microscope (SEM) photograph which shows the carbon nanotube film | membrane formed into a film using two grid electrodes with a grid opening diameter of 2 mm. 本発明の第2の実施形態に係るカーボンナノチューブ膜の成膜方法を実施するために用いられる成膜装置の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the film-forming apparatus used in order to enforce the film-forming method of the carbon nanotube film | membrane concerning the 2nd Embodiment of this invention. 本発明の第2の実施形態に係るカーボンナノチューブ膜の成膜方法を示すフローチャートである。It is a flowchart which shows the film-forming method of the carbon nanotube film | membrane which concerns on the 2nd Embodiment of this invention.
 以下、添付図面を参照して、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
<第1の実施形態>
 まず、第1の実施形態について説明する。
 (第1の実施形態の方法を実施するための成膜装置の構成)
 図1は、本発明の第1の実施形態に係るカーボンナノチューブ膜の成膜方法を実施するために用いられる成膜装置の一例を模式的に示す断面図である。図1に示す成膜装置100は、RLSA(Radial Line Slot Antenna)マイクロ波プラズマ方式のプラズマ処理装置として構成されている。
<First Embodiment>
First, the first embodiment will be described.
(Configuration of film forming apparatus for carrying out the method of the first embodiment)
FIG. 1 is a cross-sectional view schematically showing an example of a film forming apparatus used for carrying out the method of forming a carbon nanotube film according to the first embodiment of the present invention. A film forming apparatus 100 shown in FIG. 1 is configured as an RLSA (Radial Line Slot Antenna) microwave plasma type plasma processing apparatus.
 この成膜装置100は、略円筒状のチャンバ1と、チャンバ1内に設けられ、被処理基板である半導体ウエハ(以下単にウエハと記す)Wを載置するサセプタ(載置台)2と、チャンバ1内に形成されたプラズマ中の荷電粒子を制御する荷電粒子制御機構3と、チャンバ1内にマイクロ波を導入するマイクロ波導入機構4と、チャンバ1内にガスを導くガス供給機構5と、チャンバ1内を排気する排気機構6と、成膜装置100の各構成部を制御する制御部7とを有している。 The film forming apparatus 100 includes a substantially cylindrical chamber 1, a susceptor (mounting table) 2 provided in the chamber 1 for mounting a semiconductor wafer (hereinafter simply referred to as a wafer) W as a substrate to be processed, and a chamber A charged particle control mechanism 3 that controls charged particles in plasma formed in 1, a microwave introduction mechanism 4 that introduces microwaves into the chamber 1, a gas supply mechanism 5 that guides gas into the chamber 1, An exhaust mechanism 6 that exhausts the inside of the chamber 1 and a control unit 7 that controls each component of the film forming apparatus 100 are provided.
 チャンバ1の底壁1aの略中央部には円形の開口部10が形成されており、底壁1aにはこの開口部10と連通し、下方に向けて突出する排気室11が設けられている。チャンバ1の側壁には、ウエハWを搬入出するための搬入出口17と、この搬入出口17を開閉するゲートバルブ18とが設けられている。 A circular opening 10 is formed at a substantially central portion of the bottom wall 1a of the chamber 1, and an exhaust chamber 11 that communicates with the opening 10 and protrudes downward is provided on the bottom wall 1a. . On the side wall of the chamber 1, a loading / unloading port 17 for loading / unloading the wafer W and a gate valve 18 for opening / closing the loading / unloading port 17 are provided.
 サセプタ2はAlN等のセラミックスからなり、排気室11の底部中央から上方に延びる円筒状のAlN等のセラミックスからなる支持部材12により支持されている。サセプタ2の外縁部にはウエハWをガイドするためのガイドリング13が設けられている。また、サセプタ2の内部には、ウエハWを昇降するための昇降ピン(図示せず)がサセプタ2の上面に対して突没可能に設けられている。さらに、サセプタ2の内部には抵抗加熱型のヒータ14が埋め込まれており、このヒータ14はヒータ電源15から給電されることによりサセプタ2を介してその上のウエハWを加熱する。また、サセプタ2には、熱電対(図示せず)が挿入されており、ウエハWの加熱温度を200~650℃の範囲で温度制御可能となっている。さらに、サセプタ2内のヒータ14の上方には、ウエハWと同程度の大きさの電極16が埋設されており、この電極16は接地されている。 The susceptor 2 is made of ceramic such as AlN, and is supported by a support member 12 made of ceramic such as cylindrical AlN that extends upward from the center of the bottom of the exhaust chamber 11. A guide ring 13 for guiding the wafer W is provided on the outer edge of the susceptor 2. Further, elevating pins (not shown) for elevating the wafer W are provided inside the susceptor 2 so as to protrude and retract with respect to the upper surface of the susceptor 2. Further, a resistance heating type heater 14 is embedded in the susceptor 2, and the heater 14 is heated by the heater power supply 15 to heat the wafer W thereon via the susceptor 2. In addition, a thermocouple (not shown) is inserted into the susceptor 2 so that the heating temperature of the wafer W can be controlled in the range of 200 to 650 ° C. Further, an electrode 16 having the same size as the wafer W is embedded above the heater 14 in the susceptor 2, and this electrode 16 is grounded.
 マイクロ波導入機構4は、チャンバ1の上部の開口部に臨むように設けられ、多数のマイクロ波透過孔21aが形成された平面アンテナ21と、マイクロ波を発生させるマイクロ波発生部22と、マイクロ波発生部22を平面アンテナ21に導くマイクロ波伝送機構23とを有している。平面アンテナ21の下方には誘電体からなるマイクロ波透過板24がチャンバ1の上部にリング状に設けられたアッパープレート32に支持されるように設けられ、平面アンテナ21の上にはシールド部材25が設けられている。さらに、シールド部材25と平面アンテナ21との間には、誘電体からなる遅波材26が設けられている。 The microwave introduction mechanism 4 is provided so as to face the opening at the top of the chamber 1, and includes a planar antenna 21 in which a large number of microwave transmission holes 21a are formed, a microwave generator 22 that generates microwaves, And a microwave transmission mechanism 23 that guides the wave generator 22 to the planar antenna 21. A microwave transmission plate 24 made of a dielectric is provided below the planar antenna 21 so as to be supported by an upper plate 32 provided in a ring shape above the chamber 1, and a shield member 25 is disposed on the planar antenna 21. Is provided. Further, a slow wave material 26 made of a dielectric is provided between the shield member 25 and the planar antenna 21.
 マイクロ波伝送機構23は、マイクロ波発生部22からマイクロ波を導く水平方向に伸びる導波管27と、平面アンテナ21の中心から上方に伸びる内導体29およびその外側の外導体30からなる同軸導波管28と、導波管27と同軸導波管28との間に設けられたモード変換機構31とを有している。 The microwave transmission mechanism 23 is a coaxial waveguide comprising a waveguide 27 extending in the horizontal direction for guiding microwaves from the microwave generator 22, an inner conductor 29 extending upward from the center of the planar antenna 21, and an outer conductor 30 outside thereof. A wave tube 28 and a mode conversion mechanism 31 provided between the waveguide 27 and the coaxial waveguide 28 are provided.
 ガス供給機構5は、チャンバ1内のサセプタ2の上方位置に上下を仕切るように水平に設けられたシャワープレート41と、シャワープレート41の上方位置に、チャンバ1の内壁に沿ってリング状に設けられたシャワーリング42とを有している。 The gas supply mechanism 5 is provided in a ring shape along the inner wall of the chamber 1 at a position above the shower plate 41 and a shower plate 41 horizontally provided so as to partition the upper and lower sides above the susceptor 2 in the chamber 1. The shower ring 42 is provided.
 シャワープレート41は、格子状に形成されたガス通流部材51と、このガス通流部材51の内部に格子状に設けられたガス流路52と、ガス流路52から下方に延びる多数のガス吐出孔53とを有しており、格子状のガス通流部材51の間は貫通孔54となっている。このシャワープレート41のガス流路52にはチャンバ1の外壁に達するガス供給路55が延びており、このガス供給路55にはガス供給配管56が接続されている。このガス供給配管56は分岐管56a、56b、56cの3つに分岐しており、これら分岐管56a、56b、56cには、それぞれ還元ガスとしてのHガスを供給するHガス供給源57、原料ガスとしてのエチレン(C)ガスを供給するCガス供給源58、パージガスとしてのNガスを供給するNガス供給源59が接続されている。なお、分岐管56a、56b、56cには、図示してはいないが、流量制御用のマスフローコントローラおよびその前後のバルブが設けられている。 The shower plate 41 includes a gas flow member 51 formed in a lattice shape, a gas flow path 52 provided in a lattice shape inside the gas flow member 51, and a number of gases extending downward from the gas flow path 52. It has a discharge hole 53, and a through-hole 54 is formed between the lattice-like gas flow members 51. A gas supply path 55 reaching the outer wall of the chamber 1 extends in the gas flow path 52 of the shower plate 41, and a gas supply pipe 56 is connected to the gas supply path 55. The gas supply pipe 56 branch pipe 56a, 56b, branches into three 56c, these branch pipes 56a, 56b, the 56c, H 2 gas to supply H 2 gas supply source 57 as the respective reduction gas supplies ethylene (C 2 H 4) gas as a raw material gas C 2 H 4 gas supply source 58, N 2 gas supply source 59 for supplying N 2 gas as a purge gas is connected. Although not shown, the branch pipes 56a, 56b, and 56c are provided with a mass flow controller for flow rate control and valves before and after the mass flow controller.
 シャワーリング42は、その内部にリング状のガス流路と、このガス流路に接続されその内側に開口する多数のガス吐出孔と(いずれも図示せず)を有しており、ガス流路にはガス供給配管61が接続されている。このガス供給配管61は分岐管61a、61b、61cの3つに分岐しており、これら分岐管61a、61b、61cには、それぞれプラズマ生成ガスとしてのArガスを供給するArガス供給源62、酸化ガスとしてのOガスを供給するOガス供給源63、パージガスとしてのNガスを供給するNガス供給源64が接続されている。なお、分岐管61a、61b、61cには、図示してはいないが、流量制御用のマスフローコントローラおよびその前後のバルブが設けられている。 The shower ring 42 has a ring-shaped gas flow path therein and a large number of gas discharge holes (none of which are shown) connected to the gas flow path and opening inside thereof. A gas supply pipe 61 is connected to the. The gas supply pipe 61 is branched into three branch pipes 61a, 61b, and 61c. An Ar gas supply source 62 that supplies Ar gas as a plasma generation gas to each of the branch pipes 61a, 61b, and 61c, supplying O 2 gas as an oxidizing gas O 2 gas supply source 63, for supplying N 2 gas as a purge N 2 gas supply source 64 is connected. The branch pipes 61a, 61b, and 61c are provided with a mass flow controller for flow rate control and valves before and after that, although not shown.
 荷電粒子制御機構3は、グリッド電極71と、グリッド電極を支持する支持部材72と、支持部材72を介してグリッド電極71に直流電圧を印加する可変直流電源73と、可変直流電源73にパルス信号を与えるパルス発生器74とを有する。グリッド電極71は、シャワープレート41の直下に、サセプタ2上のウエハWを覆うように設けられ、かつ、多数の開口を有する網状をなしており、遮蔽部材としても機能する。グリッド電極71の外周はチャンバ1の内壁近傍まで達しており、グリッド電極71とチャンバ1の内壁との間には、これらの間の隙間を埋めるように絶縁体からなる絶縁リング75が設けられている。この絶縁リング75によりグリッド電極71とチャンバ1との隙間からプラズマが漏れることを確実に防止することができる。ただし、グリッド電極71とチャンバ1の内壁との間の隙間があってもプラズマの漏洩を十分に防止できる場合には、絶縁リング75は設けなくてもよい。 The charged particle control mechanism 3 includes a grid electrode 71, a support member 72 that supports the grid electrode, a variable DC power source 73 that applies a DC voltage to the grid electrode 71 via the support member 72, and a pulse signal to the variable DC power source 73. And a pulse generator 74. The grid electrode 71 is provided directly below the shower plate 41 so as to cover the wafer W on the susceptor 2 and has a net shape having a large number of openings, and also functions as a shielding member. The outer periphery of the grid electrode 71 reaches the vicinity of the inner wall of the chamber 1, and an insulating ring 75 made of an insulator is provided between the grid electrode 71 and the inner wall of the chamber 1 so as to fill a gap therebetween. Yes. This insulating ring 75 can surely prevent plasma from leaking from the gap between the grid electrode 71 and the chamber 1. However, if there is a gap between the grid electrode 71 and the inner wall of the chamber 1, the insulating ring 75 may not be provided if plasma leakage can be sufficiently prevented.
 このようにグリッド電極71が遮蔽部材として機能してウエハW表面にダメージを与えるおそれのある電子やイオン等の荷電粒子の透過を妨げて、ウエハWへの荷電粒子の到達を抑制する。さらにグリッド電極71に可変直流電源73から直流電圧を印加することにより、グリッド電極71で電子やイオン等の荷電粒子を反発または吸引してこれらの直進を妨げ、ウエハWへの荷電粒子の到達をより一層効果的に抑制する。例えば、グリッド電極71に負の直流電圧を印加することにより、主に電子および負イオンを反発させてウエハWへの電子の到達を抑制することができる。この場合に、パルス発生器74から所定のパルスを与えることにより、グリッド電極71への電圧印加をパルス状にすることができる。もちろん、パルスを発生させずに通常の直流電圧を印加するようにすることもできる。なお、グリッド電極71に印加する電圧をパルス発生器74によりパルス状とすることにより、絶縁体基板においても基板表面を帯電させずに処理できるという効果がある。 In this way, the grid electrode 71 functions as a shielding member to prevent transmission of charged particles such as electrons and ions that may damage the surface of the wafer W, thereby suppressing the arrival of charged particles to the wafer W. Further, by applying a DC voltage from the variable DC power source 73 to the grid electrode 71, charged particles such as electrons and ions are repelled or attracted by the grid electrode 71 to prevent these particles from going straight, and the charged particles reach the wafer W. Suppress more effectively. For example, by applying a negative DC voltage to the grid electrode 71, electrons and negative ions can be repelled mainly to prevent the electrons from reaching the wafer W. In this case, by applying a predetermined pulse from the pulse generator 74, the voltage application to the grid electrode 71 can be made pulsed. Of course, it is also possible to apply a normal DC voltage without generating a pulse. In addition, by making the voltage applied to the grid electrode 71 into a pulse shape by the pulse generator 74, there is an effect that even an insulating substrate can be processed without charging the substrate surface.
 排気機構6は、上記排気室11と、排気室11の側面に設けられた排気配管81と、排気配管81に接続された真空ポンプおよび圧力制御バルブ等を有する排気装置82とを有する。 The exhaust mechanism 6 includes the exhaust chamber 11, an exhaust pipe 81 provided on a side surface of the exhaust chamber 11, and an exhaust device 82 having a vacuum pump, a pressure control valve, and the like connected to the exhaust pipe 81.
 制御部7は、マイクロプロセッサ(コンピュータ)を備えた演算部91と、ユーザーインターフェース92と、記憶部93とを有している。演算部91には成膜装置100の各構成部が電気的に接続されて制御される構成となっている。ユーザーインターフェース92は、演算部91に接続されており、オペレータが成膜装置100の各構成部を管理するためにコマンドの入力操作などを行うキーボードや、成膜装置100の各構成部の稼働状況を可視化して表示するディスプレイ等からなっている。記憶部93も演算部91に接続されており、この記憶部93には、成膜装置100で実行される各種処理を演算部91の制御にて実現するための制御プログラムや、処理条件等に応じて成膜装置100の各構成部に所定の処理を実行させるための制御プログラムすなわち処理レシピや、各種データベース等が格納されている。処理レシピは記憶部93の中の記憶媒体(図示せず)に記憶されている。記憶媒体は、ハードディスク等の固定的に設けられているものであってもよいし、CDROM、DVD、フラッシュメモリ等の可搬性のものであってもよい。また、他の装置から、例えば専用回線を介してレシピを適宜伝送させるようにしてもよい。 The control unit 7 includes a calculation unit 91 including a microprocessor (computer), a user interface 92, and a storage unit 93. Each component of the film forming apparatus 100 is electrically connected to the calculation unit 91 and controlled. The user interface 92 is connected to the calculation unit 91, and a keyboard on which an operator inputs a command to manage each component of the film forming apparatus 100, and an operation status of each component of the film forming device 100. It consists of a display etc. that visualizes and displays. The storage unit 93 is also connected to the calculation unit 91, and the storage unit 93 stores control programs for realizing various processes executed by the film forming apparatus 100 under the control of the calculation unit 91, processing conditions, and the like. Accordingly, a control program for causing each component of the film forming apparatus 100 to execute a predetermined process, that is, a process recipe, various databases, and the like are stored. The processing recipe is stored in a storage medium (not shown) in the storage unit 93. The storage medium may be a fixed medium such as a hard disk or a portable medium such as a CDROM, DVD, or flash memory. Moreover, you may make it transmit a recipe suitably from another apparatus via a dedicated line, for example.
 そして、必要に応じて、ユーザーインターフェース92からの指示等にて所定の処理レシピを記憶部93から呼び出して演算部91に実行させることで、制御部7の制御下で、成膜装置100での所望の処理が行われる。 Then, if necessary, a predetermined processing recipe is called from the storage unit 93 by an instruction from the user interface 92 and executed by the calculation unit 91, so that the film forming apparatus 100 can control the control unit 7. Desired processing is performed.
 (第1の実施形態に係るカーボンナノチューブ膜の成膜方法)
 次に、このように構成される成膜装置100により行われるカーボンナノチューブ膜の成膜方法について図2を参照して説明する。
 図2は、本発明の第1の実施形態に係るカーボンナノチューブ膜の成膜方法を説明するためのフローチャートである。
(Method for Forming Carbon Nanotube Film According to First Embodiment)
Next, a carbon nanotube film forming method performed by the film forming apparatus 100 configured as described above will be described with reference to FIG.
FIG. 2 is a flowchart for explaining a carbon nanotube film forming method according to the first embodiment of the present invention.
 まず、成膜表面に金属触媒を有するウエハWを準備し、ゲートバルブ18を開放して、このウエハWをチャンバ1内に搬入する(工程1)。この際のウエハWとしては、例えば、図3に示すように、Si基板201上に絶縁膜としてSiO膜202を形成し、その上に下地層203を介して金属触媒層204を形成したものを用いる。 First, a wafer W having a metal catalyst on the film formation surface is prepared, the gate valve 18 is opened, and the wafer W is loaded into the chamber 1 (step 1). As the wafer W at this time, for example, as shown in FIG. 3, a SiO 2 film 202 is formed as an insulating film on a Si substrate 201, and a metal catalyst layer 204 is formed thereon via an underlayer 203. Is used.
 金属触媒層204を構成する金属としては、Ni、Co、Fe等の遷移金属、または遷移金属の少なくとも1種を含む合金を挙げることができる。この金属触媒層204を形成する手法としては、スパッタリング、蒸着法、CVD等の薄膜形成技術やめっき等、この分野で一般的に用いられる成膜技術を用いることができる。金属触媒層204の厚さは、0.1~2.0nmであることが好ましい。 Examples of the metal constituting the metal catalyst layer 204 include transition metals such as Ni, Co, and Fe, or alloys containing at least one transition metal. As a method for forming the metal catalyst layer 204, a film formation technique generally used in this field, such as a thin film formation technique such as sputtering, vapor deposition, CVD, or plating, can be used. The thickness of the metal catalyst layer 204 is preferably 0.1 to 2.0 nm.
 下地層203は、金属触媒の凝集による粗大化を防止する膜として機能するものであり、例えばAl、Si、Ta、Ti、TiN、TiC、Al、MgO等を挙げることができる。この下地層203も同様に、この分野で一般的に用いられる成膜技術を用いることができる。下地層203の厚さは、10~100nmであることが好ましい。 The underlayer 203 functions as a film that prevents coarsening due to aggregation of the metal catalyst, and examples thereof include Al, Si, Ta, Ti, TiN, TiC, Al 2 O 3 , and MgO. Similarly, the underlying layer 203 can be formed by a film forming technique generally used in this field. The thickness of the underlayer 203 is preferably 10 to 100 nm.
 このような構造の半導体ウエハWをチャンバ1内に搬入し、サセプタ2上に載置した後、金属触媒層204に対して酸素プラズマ処理を施す(工程2)。この工程2では、シャワーリング42からチャンバ1内にArガスおよびOガスを導入するとともに、マイクロ波発生部22で発生したマイクロ波を、マイクロ波伝送機構23を介して所定のモードで平面アンテナ21に導き、平面アンテナ21のマイクロ波透過孔21aおよびマイクロ波透過板24を透過させてチャンバ1内に均一に供給する。そして、そのマイクロ波により、ArガスおよびOガスをプラズマ化し、そのマイクロ波プラズマによりウエハW表面の金属触媒層204の表面に酸素プラズマ処理を施す。 After the semiconductor wafer W having such a structure is loaded into the chamber 1 and placed on the susceptor 2, the metal catalyst layer 204 is subjected to oxygen plasma treatment (step 2). In step 2, Ar gas and O 2 gas are introduced into the chamber 1 from the shower ring 42, and the microwave generated by the microwave generation unit 22 is converted into a planar antenna in a predetermined mode via the microwave transmission mechanism 23. 21 is transmitted through the microwave transmitting hole 21 a and the microwave transmitting plate 24 of the planar antenna 21 and supplied uniformly into the chamber 1. Then, Ar gas and O 2 gas are converted into plasma by the microwave, and oxygen plasma treatment is performed on the surface of the metal catalyst layer 204 on the surface of the wafer W by the microwave plasma.
 この処理は、金属触媒層204の表面に付着している有機物などを除去して清浄な表面とする処理であり、これにより金属触媒層204の表面に加熱によるマイグレーションが起こりやすくなり、金属触媒層204を構成している金属に適度の凝集が生じ、微粒子化を進行しやすくすることができる。 This treatment is a treatment that removes organic substances and the like attached to the surface of the metal catalyst layer 204 to make a clean surface, and this facilitates migration due to heating on the surface of the metal catalyst layer 204. Appropriate agglomeration occurs in the metal constituting 204, and the formation of fine particles can be facilitated.
 この酸素プラズマ処理の際の好ましい条件は、以下の通りである。
  ウエハ温度:300~600℃
  チャンバ内圧力:67~533Pa
  Oガス流量:50~200mL/min(sccm)
  Arガス流量:300~600mL/min(sccm)
  マイクロ波パワー:250~2000W
  処理時間:5~10分
The preferable conditions for this oxygen plasma treatment are as follows.
Wafer temperature: 300-600 ° C
Chamber pressure: 67-533Pa
O 2 gas flow rate: 50 to 200 mL / min (sccm)
Ar gas flow rate: 300 to 600 mL / min (sccm)
Microwave power: 250-2000W
Processing time: 5-10 minutes
 工程2の酸素プラズマ処理の際には、グリッド電極71が遮蔽部材として機能し、プラズマ中の電子やイオンがウエハWの表面の金属触媒層204に到達することが抑制され、金属触媒層204に電子やイオンによるダメージを与えることなく主にラジカルを作用させることができる。このため、金属触媒層204の金属を適度に凝集させる効果をより有効に発揮することができる。そして、グリッド電極71に電圧を印加することにより、電子やイオン等の荷電粒子の直進を妨げて、ウエハWへの荷電粒子の到達を一層効果的に抑制することができ、これにより、金属触媒層204の金属を適度に凝集させる効果をさらに高めることができる。この場合に、グリッド電極71の開口の径は2mmφ以下が好ましく、開口率は40~85%が好ましい。また、グリッド電極71に印加する電圧は、-300~300Vが好ましい。電子の到達を効果的に抑制する観点からは負電圧がよく、-300~0Vがより好ましい。 At the time of the oxygen plasma treatment in step 2, the grid electrode 71 functions as a shielding member, and electrons and ions in the plasma are suppressed from reaching the metal catalyst layer 204 on the surface of the wafer W. Radicals can mainly act without damaging electrons or ions. For this reason, the effect of aggregating the metal of the metal catalyst layer 204 appropriately can be exhibited more effectively. Then, by applying a voltage to the grid electrode 71, it is possible to prevent the charged particles such as electrons and ions from going straight and to more effectively prevent the charged particles from reaching the wafer W. The effect of appropriately aggregating the metal of the layer 204 can be further enhanced. In this case, the opening diameter of the grid electrode 71 is preferably 2 mmφ or less, and the opening ratio is preferably 40 to 85%. The voltage applied to the grid electrode 71 is preferably −300 to 300V. From the viewpoint of effectively suppressing the arrival of electrons, a negative voltage is good, and −300 to 0 V is more preferable.
 グリッド電極71に電圧を印加した場合の効果について図4A、図4Bを参照して説明する。図4Aはグリッド電極71に電圧を印加しない場合のチャンバ1内の空間ポテンシャルを示す図であり、図4Bは、グリッド電極71に-100V印加した場合のチャンバ1内の空間ポテンシャルを示す図である。これらの図から明らかなようにグリッド電極71に電圧を印加しない場合には、シャワープレート41からウエハWまでの間に電位差はなく電子やイオンのような荷電粒子には電気的作用は生じないが、グリッド電極を設けてそこに-100Vを印加した場合には、グリッド電極71は、接地されているシャワープレート41およびウエハW(サセプタ2)に対して負のポテンシャルを有しているため、電子や負イオン等の負に帯電した荷電粒子がウエハWに到達し難くなる。 The effect when a voltage is applied to the grid electrode 71 will be described with reference to FIGS. 4A and 4B. 4A is a diagram showing the spatial potential in the chamber 1 when no voltage is applied to the grid electrode 71, and FIG. 4B is a diagram showing the spatial potential in the chamber 1 when −100V is applied to the grid electrode 71. . As is apparent from these figures, when no voltage is applied to the grid electrode 71, there is no potential difference between the shower plate 41 and the wafer W, but no electrical action occurs on charged particles such as electrons and ions. When the grid electrode is provided and −100 V is applied thereto, the grid electrode 71 has a negative potential with respect to the grounded shower plate 41 and the wafer W (susceptor 2). It becomes difficult for negatively charged charged particles such as negative ions to reach the wafer W.
 なお、この酸素プラズマ処理を行う際のガスとしてはOガスの他、HO、O、NO等を用いることができる。 As a gas for performing this oxygen plasma treatment, H 2 O, O 3 , N 2 O, or the like can be used in addition to O 2 gas.
 以上のような工程2の酸素プラズマ処理に引き続いて活性化処理を行う(工程3)。この活性化処理においては、工程2の終了後、マイクロ波を停止するとともにOガスを停止し、Arガスを流したまま、同様にマイクロ波発生部22、マイクロ波伝送機構23、平面アンテナ21、マイクロ波透過板24を介してマイクロ波をチャンバ1内に均一に供給する。そのマイクロ波により、Arガスをプラズマ化し、プラズマが着火されたタイミングでシャワープレート41を介してHガスをチャンバ1内に導入し、ArプラズマによりHガスをプラズマ化する。そして、このように形成されたマイクロ波プラズマにより、金属触媒層204の表面に活性化処理を施す。 Following the oxygen plasma treatment in step 2 as described above, an activation treatment is performed (step 3). In this activation process, after the end of step 2, the microwave is stopped, the O 2 gas is stopped, and the Ar gas is kept flowing. Similarly, the microwave generator 22, the microwave transmission mechanism 23, and the planar antenna 21 are used. Then, the microwave is uniformly supplied into the chamber 1 through the microwave transmission plate 24. The Ar gas is turned into plasma by the microwave, and H 2 gas is introduced into the chamber 1 through the shower plate 41 at the timing when the plasma is ignited, and the H 2 gas is turned into plasma by Ar plasma. Then, the surface of the metal catalyst layer 204 is activated by the microwave plasma thus formed.
 この活性化処理は、工程2の酸素プラズマ処理により酸化した金属触媒層204の表面を還元して金属触媒の活性化を行う処理である。すなわち、このように水素プラズマにより処理を行うことにより、金属触媒層204の表面を活性化させて金属触媒層204を構成する金属を微粒子化し、かつ高密度化することができる。 This activation treatment is a treatment for activating the metal catalyst by reducing the surface of the metal catalyst layer 204 oxidized by the oxygen plasma treatment in step 2. That is, by performing the treatment with the hydrogen plasma in this way, the surface of the metal catalyst layer 204 is activated, and the metal constituting the metal catalyst layer 204 can be finely divided and densified.
 この活性化処理の際の好ましい条件は、以下の通りである。
  ウエハ温度:300~600℃
  チャンバ内圧力:67~533Pa
  Hガス流量:100~1200mL/min(sccm)
  Arガス流量:300~600mL/min(sccm)
  マイクロ波パワー:250~2000W
  処理時間:5~10分
 なお、この活性化処理の際の温度は、酸素プラズマ処理と異なっていてもよいが、同じ温度で行うほうがスループットを高めることができ好ましい。
Preferred conditions for this activation treatment are as follows.
Wafer temperature: 300-600 ° C
Chamber pressure: 67-533Pa
H 2 gas flow rate: 100 to 1200 mL / min (sccm)
Ar gas flow rate: 300 to 600 mL / min (sccm)
Microwave power: 250-2000W
Treatment time: 5 to 10 minutes The temperature during this activation treatment may be different from the oxygen plasma treatment, but it is preferable to carry out at the same temperature because the throughput can be increased.
 工程3の活性化処理の際にも、グリッド電極71が遮蔽部材として機能し、プラズマ中の電子やイオンがウエハWの表面の金属触媒層204に到達することが抑制され、金属触媒層204に電子やイオンによるダメージを与えることなく主にラジカルを作用させることができる。このため、金属触媒層204の表面を活性化させて金属触媒層204を構成する金属を微粒子化し、かつ高密度化する効果をより有効に発揮することができる。そして、グリッド電極71に電圧を印加することにより、電子やイオン等の荷電粒子の直進を妨げて、ウエハWへの荷電粒子の到達を一層効果的に抑制することができ、金属触媒層204の表面を活性化させて金属触媒層204を構成する金属を微粒子化し、かつ高密度化する効果をさらに高めることができる。この場合に、グリッド電極71の開口の径は2mmφ以下が好ましく、開口率は40~85%が好ましい。また、グリッド電極71に印加する電圧は、-300~300Vが好ましい。電子の到達を効果的に抑制する観点からは負電圧がよく、-300~0Vがより好ましい。 Also in the activation process of step 3, the grid electrode 71 functions as a shielding member, and electrons and ions in the plasma are suppressed from reaching the metal catalyst layer 204 on the surface of the wafer W. Radicals can mainly act without damaging electrons or ions. For this reason, the effect of activating the surface of the metal catalyst layer 204 to make the metal constituting the metal catalyst layer 204 fine particles and increasing the density can be more effectively exhibited. Then, by applying a voltage to the grid electrode 71, it is possible to prevent the charged particles such as electrons and ions from going straight, and more effectively prevent the charged particles from reaching the wafer W. The effect of making the surface of the metal catalyst layer 204 fine particles and increasing the density by activating the surface can be further enhanced. In this case, the opening diameter of the grid electrode 71 is preferably 2 mmφ or less, and the opening ratio is preferably 40 to 85%. The voltage applied to the grid electrode 71 is preferably −300 to 300V. From the viewpoint of effectively suppressing the arrival of electrons, a negative voltage is good, and −300 to 0 V is more preferable.
 なお、この活性化処理を行う際のガスとしてはHガスの代わりに、他のH含有ガス、例えばNHガスを用いることができる。 As a gas for performing this activation treatment, other H-containing gas, for example, NH 3 gas can be used instead of H 2 gas.
 工程3の活性化処理の後、マイクロ波およびHガスを停止して、ArガスおよびNガスを流し、チャンバ1内をパージする(工程4)。このとき、排気装置82によってチャンバ1内を急速に排気する。 After the activation process of step 3, the microwave and H 2 gas are stopped, and Ar gas and N 2 gas are flowed to purge the chamber 1 (step 4). At this time, the inside of the chamber 1 is rapidly exhausted by the exhaust device 82.
 パージは、例えば、チャンバ内圧力:67~533Pa、Nガス流量:50~300mL/min(sccm)、Arガス流量:300~600mL/min(sccm)、温度:300~600℃の条件で、好ましくは1~2分行う。 The purge is performed under the conditions of, for example, a chamber pressure of 67 to 533 Pa, an N 2 gas flow rate of 50 to 300 mL / min (sccm), an Ar gas flow rate of 300 to 600 mL / min (sccm), and a temperature of 300 to 600 ° C. Preferably it is performed for 1-2 minutes.
 工程4のパージを行った後、カーボンナノチューブ膜の成膜を行う(工程5)。このカーボンナノチューブ膜の成膜においては、工程4のパージの後、Nガスを停止し、Arガスを所定流量で流したまま、マイクロ波発生部22、マイクロ波伝送機構23、平面アンテナ21、マイクロ波透過板24を介してマイクロ波をチャンバ1内に均一に供給する。そのマイクロ波により、Arガスをプラズマ化し、プラズマが着火されたタイミングでシャワープレート41を介してCガスおよびHガスをチャンバ1内に導入し、ArプラズマによりCガスおよびHガスをプラズマ化する。そして、グリッド電極71に所定の電圧を印加しつつ、このように形成されたマイクロ波プラズマにより、金属触媒層204の上にカーボナノチューブ膜を成膜する。 After purging in step 4, a carbon nanotube film is formed (step 5). In the formation of the carbon nanotube film, after purging in Step 4, the N 2 gas is stopped and the Ar gas is allowed to flow at a predetermined flow rate, and the microwave generator 22, the microwave transmission mechanism 23, the planar antenna 21, A microwave is uniformly supplied into the chamber 1 through the microwave transmission plate 24. By its microwave into a plasma of Ar gas, the C 2 H 4 gas and H 2 gas was introduced into the chamber 1 through the shower plate 41 at the timing when the plasma is ignited, C 2 H 4 gas and the Ar plasma H 2 gas is turned into plasma. Then, a carbon nanotube film is formed on the metal catalyst layer 204 by the microwave plasma thus formed while applying a predetermined voltage to the grid electrode 71.
 このカーボンナノチューブ膜の成膜においては、活性化された金属触媒層204の表面にウエハWの面に垂直な方向に配向したカーボンナノチューブ膜を成長させることができる。この場合に、カーボンナノチューブ膜は、金属触媒層204の性状を保ったまま成長する。したがって、工程3の活性化処理により活性化されて微粒化および高密度化された金属触媒層204の上に、微粒でかつ高密度のカーボンナノチューブを形成することができる。また、グリッド電極71が遮蔽部材として機能し、プラズマ中の電子やイオンがウエハWの表面の金属触媒層204に到達することが抑制され、金属触媒層204に電子やイオンによるダメージを与えることなく主にラジカルを作用させることができる。このため、電子やイオン等による結晶の欠陥や不純物の導入を抑制することができ、不純物が少なく結晶性の良好なカーボンナノチューブ膜を形成することができる。そして、グリッド電極71に電圧を印加することにより、電子やイオン等の荷電粒子の直進を妨げて、ウエハWへの荷電粒子の到達を一層効果的に抑制することができ、一層不純物が少なく結晶性の良好なカーボンナノチューブ膜を形成することができる。 In the formation of the carbon nanotube film, a carbon nanotube film oriented in a direction perpendicular to the surface of the wafer W can be grown on the surface of the activated metal catalyst layer 204. In this case, the carbon nanotube film grows while maintaining the properties of the metal catalyst layer 204. Accordingly, fine and high-density carbon nanotubes can be formed on the metal catalyst layer 204 that has been activated and refined by the activation treatment in step 3. Further, the grid electrode 71 functions as a shielding member, so that electrons and ions in the plasma are prevented from reaching the metal catalyst layer 204 on the surface of the wafer W, and the metal catalyst layer 204 is not damaged by electrons and ions. Can mainly act on radicals. For this reason, it is possible to suppress the introduction of crystal defects or impurities due to electrons or ions, and it is possible to form a carbon nanotube film with few impurities and good crystallinity. Then, by applying a voltage to the grid electrode 71, it is possible to prevent the charged particles such as electrons and ions from moving straight, and to more effectively suppress the arrival of the charged particles to the wafer W. A carbon nanotube film with good properties can be formed.
 このカーボンナノチューブ膜の成膜処理の際の好ましい条件は、以下の通りである。
  ウエハ温度:300~600℃
  チャンバ内圧力:67~533Pa
  Cガス流量:5~150mL/min(sccm)
  Hガス流量:100~1200mL/min(sccm)
  Arガス流量:300~600mL/min(sccm)
  マイクロ波パワー:250~2000W
  処理時間:1~60分
 なお、この活性化処理の際の温度は、酸素プラズマ処理および活性化処理と異なっていてもよいが、同じ温度で行うほうがスループットを高めることができ好ましい。
The preferable conditions for the film forming process of the carbon nanotube film are as follows.
Wafer temperature: 300-600 ° C
Chamber pressure: 67-533Pa
C 2 H 4 gas flow rate: 5 to 150 mL / min (sccm)
H 2 gas flow rate: 100 to 1200 mL / min (sccm)
Ar gas flow rate: 300 to 600 mL / min (sccm)
Microwave power: 250-2000W
Treatment time: 1 to 60 minutes The temperature during this activation treatment may be different from the oxygen plasma treatment and the activation treatment, but it is preferable to carry out at the same temperature because the throughput can be increased.
 また、このカーボンナノチューブ成膜処理においても、グリッド電極71のグリッドの径は2mmφ以下が好ましく、開口率は40~85%が好ましい。また、グリッド電極71に印加する電圧は、-300~300Vが好ましい。電子の到達を効果的に抑制する観点からは負電圧がよく、-300~0Vがより好ましい。 Also in this carbon nanotube film forming process, the grid diameter of the grid electrode 71 is preferably 2 mmφ or less, and the aperture ratio is preferably 40 to 85%. The voltage applied to the grid electrode 71 is preferably −300 to 300V. From the viewpoint of effectively suppressing the arrival of electrons, a negative voltage is good, and −300 to 0 V is more preferable.
 なお、カーボンナノチューブ膜の成膜処理においては、エチレン(C)ガスに限らず、メタン(CH)ガス、エタン(C)ガス、プロパン(C)ガス、プロピレン(C)ガス等、他の炭化水素ガスを用いることができる。また、還元ガスとしては、Hガスに限らず、アンモニア(NH)等、他のガスを用いることができる。 In the carbon nanotube film forming process, not only ethylene (C 2 H 4 ) gas but also methane (CH 4 ) gas, ethane (C 2 H 6 ) gas, propane (C 3 H 8 ) gas, propylene Other hydrocarbon gases such as (C 2 H 6 ) gas can be used. The reducing gas is not limited to H 2 gas, and other gases such as ammonia (NH 3 ) can be used.
 このようなカーボンナノチューブ膜の成膜の後、マイクロ波およびガスの供給を停止し、チャンバ1内の圧力を調整してゲートバルブ18を開放してウエハWを搬出する(工程6)。 After the formation of such a carbon nanotube film, the supply of microwaves and gas is stopped, the pressure in the chamber 1 is adjusted, the gate valve 18 is opened, and the wafer W is unloaded (step 6).
 本実施形態によれば、以上のように金属触媒層204を表面に有するウエハWに対し、酸素プラズマ処理を行い、引き続き水素プラズマを用いた活性化処理を行った後に、プラズマCVDによりカーボンナノチューブ膜を成膜する。このため、酸素プラズマ処理により金属触媒層204の表面を清浄化して金属触媒層204の表面に加熱によるマイグレーションを起こりやすくし、金属触媒層204を構成している金属に適度の凝集が生じて微粒子化を進行しやすくすることができる。また、その後の水素プラズマによる活性化処理により、金属触媒層204の表面を活性化させて金属触媒層204を構成する金属を微粒子化し、かつ高密度化することができる。このため、その後のカーボンナノチューブ膜の成膜において、微粒子化および高密度化した触媒金属層204の上に、基板面に対して垂直に配向し、かつ高密度のカーボンナノチューブ膜を成長させることができる。 According to the present embodiment, as described above, the wafer W having the metal catalyst layer 204 on the surface is subjected to oxygen plasma treatment, and subsequently subjected to activation treatment using hydrogen plasma, and then the carbon nanotube film is formed by plasma CVD. Is deposited. For this reason, the surface of the metal catalyst layer 204 is cleaned by oxygen plasma treatment to facilitate migration due to heating on the surface of the metal catalyst layer 204, and moderate aggregation occurs in the metal constituting the metal catalyst layer 204, resulting in fine particles. It is possible to facilitate progress. Further, by the activation treatment with hydrogen plasma after that, the surface of the metal catalyst layer 204 can be activated to make the metal constituting the metal catalyst layer 204 fine and dense. For this reason, in the subsequent film formation of the carbon nanotube film, it is possible to grow a carbon nanotube film having a high density and oriented perpendicular to the substrate surface on the finely divided and densified catalyst metal layer 204. it can.
 また、シャワープレート41とウエハWとの間に遮蔽部材として機能するグリッド電極を設けているので、プラズマ中の電子やイオンがウエハWの表面の金属触媒層204に到達することが抑制される。このため、金属触媒層204に電子やイオンによるダメージを与えることなく主にラジカルを作用させて、電子やイオン等による結晶の欠陥や不純物の導入を抑制することができ、不純物が少なく結晶性の良好なカーボンナノチューブ膜を形成することができる。さらに、グリッド電極71に電圧を印加することにより、そのような効果を一層高めることができる。 In addition, since the grid electrode functioning as a shielding member is provided between the shower plate 41 and the wafer W, it is possible to suppress electrons and ions in the plasma from reaching the metal catalyst layer 204 on the surface of the wafer W. For this reason, radicals can act mainly on the metal catalyst layer 204 without damaging the electrons and ions, so that the introduction of crystal defects and impurities due to the electrons and ions can be suppressed. A good carbon nanotube film can be formed. Furthermore, such an effect can be further enhanced by applying a voltage to the grid electrode 71.
 さらに、本実施形態ではマイクロ波プラズマにより処理を行うため、本質的に高密度で低電子温度のラジカルを主体としたプラズマ処理を行うことができ、上記効果を有効に発揮することができる。特に、本実施形態では、マイクロ波を平面アンテナ21の多数のマイクロ波放射孔21aから放射させてマイクロ波プラズマを形成するRLSAマイクロ波プラズマ方式のプラズマ処理装置を用いているので、マイクロ波プラズマの中でも特に高密度で、かつ低電子温度プラズマを生成することができる。 Furthermore, in this embodiment, since the processing is performed with microwave plasma, plasma processing mainly consisting of radicals having a high density and a low electron temperature can be performed, and the above-described effects can be effectively exhibited. In particular, in the present embodiment, since an RLSA microwave plasma type plasma processing apparatus that forms microwave plasma by radiating microwaves from a number of microwave radiation holes 21 a of the planar antenna 21 is used. Among them, particularly high density and low electron temperature plasma can be generated.
 (第1の実施形態の他の装置例)
 次に、第1の実施形態の他の装置例について説明する。
 図1の装置では、荷電粒子制御機構3に1枚のグリッド電極71を設けた例を示したが、図5に示すように、2枚のグリッド電極71a,71bを上下に重ねるように設けてもよい。これにより、これらを遮蔽部材として用いることによって、電子、イオン等の荷電粒子を遮蔽する効果をより高くすることができる。グリッド電極71a,71bとチャンバ1の内壁との間には、図1の装置と同様、絶縁リング75が設けられている。ただし、図1の装置と同様、絶縁リング75は必須ではない。これらグリッド電極71a,71bにそれぞれ直流電源73a,73b、パルス発生器74a,74bを接続することにより、これらの少なくとも一方に適宜の電圧を印加して、電子、イオン等の荷電粒子がウエハWに到達することをより効果的に防止することができる。このため、カーボンナノチューブ膜の成膜において、1枚のグリッド電極を設ける場合よりも、さらに一層不純物が少なく結晶性の良好なカーボンナノチューブ膜を形成することができる。また、酸素プラズマ処理および活性化処理においても、このように2枚のグリッドを設けることにより、金属触媒層204の金属を適度に凝集させる効果、および金属触媒層204の表面を活性化させて金属触媒層204を構成する金属を微粒子化し、かつ高密度化する効果をさらに一層高めることができる。
(Another apparatus example of the first embodiment)
Next, another example of the apparatus according to the first embodiment will be described.
In the apparatus of FIG. 1, an example in which one grid electrode 71 is provided in the charged particle control mechanism 3 has been shown. However, as shown in FIG. 5, two grid electrodes 71a and 71b are provided so as to overlap each other. Also good. Thereby, the effect which shields charged particles, such as an electron and an ion, can be made higher by using these as a shielding member. An insulating ring 75 is provided between the grid electrodes 71a and 71b and the inner wall of the chamber 1 as in the apparatus of FIG. However, the insulating ring 75 is not essential as in the apparatus of FIG. By connecting DC power sources 73a and 73b and pulse generators 74a and 74b to the grid electrodes 71a and 71b, respectively, an appropriate voltage is applied to at least one of them, and charged particles such as electrons and ions are applied to the wafer W. Reaching can be prevented more effectively. For this reason, in the formation of the carbon nanotube film, it is possible to form a carbon nanotube film with fewer impurities and better crystallinity than in the case of providing one grid electrode. Also in the oxygen plasma treatment and the activation treatment, by providing two grids in this way, the metal of the metal catalyst layer 204 is appropriately aggregated, and the surface of the metal catalyst layer 204 is activated to activate the metal. The effect of making the metal constituting the catalyst layer 204 fine particles and increasing the density can be further enhanced.
 この場合に、グリッド電極71a、71bの開口の径は2mmφ以下が好ましく、開口率は40~85%が好ましい。グリッドまた、グリッド電極71a、71bに印加する電圧は、-300~300Vが好ましい。 In this case, the diameter of the openings of the grid electrodes 71a and 71b is preferably 2 mmφ or less, and the opening ratio is preferably 40 to 85%. The voltage applied to the grid electrodes 71a and 71b is preferably −300 to 300V.
 さらに、図6に示すように、サセプタ2に可変直流電源95およびパルス発生器96を接続するようにしてもよい。これによっても、電子、イオン等の荷電粒子がウエハW表面に到達することを抑制することができる。例えば、サセプタ2に負の直流電圧を印加することにより、ウエハWが負の電圧を持つようになり、電子および負イオンが反発してウエハWの表面に到達し難くなる。 Furthermore, as shown in FIG. 6, a variable DC power supply 95 and a pulse generator 96 may be connected to the susceptor 2. Also by this, charged particles such as electrons and ions can be prevented from reaching the surface of the wafer W. For example, by applying a negative DC voltage to the susceptor 2, the wafer W has a negative voltage, and electrons and negative ions are repelled and do not easily reach the surface of the wafer W.
 (実施例)
 次に、具体的な実施例について説明する。
 ここでは、図7に示す、Si基板301上に形成されたSiO膜302の上にTiN下地層303を70nmの厚さで形成し、さらにその上にNi触媒層304を2nmで形成したブランケットウエハを用いてカーボンナノチューブ膜を成膜した。その際に、まずウエハを図1の装置のチャンバ1内に搬入した後、図8に示す条件で、酸素プラズマ処理、活性化処理を順次行った後、チャンバ1内をパージし、その後、カーボンナノチューブ膜を成膜した。その際に、グリッド電極として開口径が5mm(開口率61.4%)、2mm(開口率80.7%)、1mm(開口率40.1%)の3種類のものを用い、カーボンナノチューブ膜を成膜する際のグリッド電極71への電圧を-100~+100Vまで変化させた。また、2枚のグリッド電極(開口径2mm(開口率80.7%))を有する図5の装置におけるカーボンナノチューブの成膜も行った。カーボンナノチューブ膜の成膜の際に、上のグリッド電極に電圧を印加せず、下のグリッド電極への電圧を-100~+50Vまで変化させた試験も行った。
(Example)
Next, specific examples will be described.
Here, as shown in FIG. 7, a blanket in which a TiN underlayer 303 is formed with a thickness of 70 nm on a SiO 2 film 302 formed on a Si substrate 301 and a Ni catalyst layer 304 is formed thereon with a thickness of 2 nm. A carbon nanotube film was formed using a wafer. At that time, after the wafer is first loaded into the chamber 1 of the apparatus of FIG. 1, oxygen plasma treatment and activation treatment are sequentially performed under the conditions shown in FIG. A nanotube film was formed. At that time, three types of grid electrodes having an opening diameter of 5 mm (opening ratio 61.4%), 2 mm (opening ratio 80.7%), and 1 mm (opening ratio 40.1%) were used, and a carbon nanotube film was used. The voltage applied to the grid electrode 71 during film formation was changed from −100 to + 100V. Carbon nanotubes were also formed in the apparatus of FIG. 5 having two grid electrodes (opening diameter 2 mm (opening ratio 80.7%)). When the carbon nanotube film was formed, a test was performed in which no voltage was applied to the upper grid electrode and the voltage to the lower grid electrode was changed from −100 to + 50V.
 このようにして成膜したカーボンナノチューブ膜の結晶性をラマン分光法により評価した。具体的には、ラマンスペクトルにおいてグラフェン構造に起因するG-band(1585cm-1)と、グラフェンシートの結晶性の乱れを示すD-band(1350cm-1)の強度比(G/D比)から、結晶性を評価した。G/D比が高いほど結晶性が良好である。 The crystallinity of the carbon nanotube film thus formed was evaluated by Raman spectroscopy. Specifically, from the intensity ratio (G / D ratio) of G-band (1585 cm −1 ) due to the graphene structure in the Raman spectrum and D-band (1350 cm −1 ) indicating disorder of the crystallinity of the graphene sheet. The crystallinity was evaluated. The higher the G / D ratio, the better the crystallinity.
 1枚のグリッド電極の場合には、グリッド径1mm、2mm、5mmの3種類のグリッド電極を用い、電圧を-100~+100Vの範囲で印加して、上記G/D比を求めた。また、2枚のグリッド電極の場合には、グリッド径2mmのグリッド電極を用い、下のグリッド電極に電圧を印加せず、上のグリッド電極への電圧を-100~+50Vの範囲で印加して、上記G/D比を求めた。その結果を図9に示す。図9は、横軸にグリッド電極に印加した電圧をとり、縦軸にG/D比をとって、これらの関係をグリッド径毎にまとめたものである。この図に示すように、グリッド電極71の開口径を小さくするに従ってG/D比が向上し、カーボンナノチューブ膜の結晶性が向上することが確認され、開口径が2mm以下が好ましいことがわかった。また、印加する電圧は正電圧よりも負電圧のほうがG/D比が向上することも確認された。1枚のグリッド電極の場合で、最もG/D比が高かったのは、開口径1mmで印加電圧が-100Vのときで、G/D比は0.9であった。また、開口径2mmの2枚のグリッド電極を用いることにより、同じ開口径の1枚のグリッド電極を用いた場合に比較し、G/D比が高くなることが確認された。また、2枚のグリッド電極を用いた場合には、電圧を印加しなくても高いG/D比が得られることが確認された。 In the case of a single grid electrode, three types of grid electrodes having a grid diameter of 1 mm, 2 mm, and 5 mm were used, and a voltage was applied in the range of −100 to +100 V to obtain the G / D ratio. In the case of two grid electrodes, a grid electrode having a grid diameter of 2 mm is used, and no voltage is applied to the lower grid electrode, and a voltage to the upper grid electrode is applied in the range of −100 to + 50V. The G / D ratio was determined. The result is shown in FIG. In FIG. 9, the voltage applied to the grid electrode is taken on the horizontal axis and the G / D ratio is taken on the vertical axis, and these relationships are summarized for each grid diameter. As shown in this figure, it was confirmed that the G / D ratio was improved and the crystallinity of the carbon nanotube film was improved as the opening diameter of the grid electrode 71 was reduced, and the opening diameter was preferably 2 mm or less. . It was also confirmed that the G / D ratio was improved when the applied voltage was a negative voltage rather than a positive voltage. In the case of one grid electrode, the G / D ratio was highest when the opening diameter was 1 mm and the applied voltage was −100 V, and the G / D ratio was 0.9. It was also confirmed that using two grid electrodes with an opening diameter of 2 mm resulted in a higher G / D ratio than when using one grid electrode with the same opening diameter. It was also confirmed that when two grid electrodes were used, a high G / D ratio could be obtained without applying a voltage.
 2枚のグリッド電極を用いて高G/D比が得られたサンプルの断面を走査型顕微鏡(SEM)で撮影した。その写真を図10に示す。この図に示すように、基板面に対して垂直に配向し、かつ高密度のカーボンナノチューブ膜が得られたことが確認された。 A cross section of a sample with a high G / D ratio obtained using two grid electrodes was photographed with a scanning microscope (SEM). The photograph is shown in FIG. As shown in this figure, it was confirmed that a carbon nanotube film having a high density and oriented perpendicular to the substrate surface was obtained.
 以上から、金属触媒層を形成したウエハに、Oガスのマイクロ波プラズマによる酸素プラズマ処理、およびHガスのマイクロ波プラズマによる活性化処理を行って、その後に、グリッド電極の開口径および印加電圧を調整してマイクロ波プラズマCVDによりカーボンナノチューブ膜を成膜することにより、結晶性の良好なカーボンナノチューブ膜が得られることが確認された。 From the above, the wafer on which the metal catalyst layer is formed is subjected to oxygen plasma treatment using microwave plasma of O 2 gas and activation treatment using microwave plasma of H 2 gas, and then the opening diameter and application of the grid electrode are applied. It was confirmed that a carbon nanotube film with good crystallinity can be obtained by adjusting the voltage and forming the carbon nanotube film by microwave plasma CVD.
<第2の実施形態>
 次に、本発明の第2の実施形態について説明する。
(第2の実施形態の方法を実施するための成膜装置の構成)
 図11は、本発明の第2の実施形態に係るカーボンナノチューブ膜の成膜方法を実施するために用いられる成膜装置の一例を示す模式図である。この成膜装置は、酸素プラズマ処理と、水素プラズマによる活性化処理と、カーボンナノチューブ膜の成膜とを別個のチャンバで真空を破ることなくin-situで連続して実施することができるマルチチャンバタイプである。
<Second Embodiment>
Next, a second embodiment of the present invention will be described.
(Configuration of film forming apparatus for carrying out the method of the second embodiment)
FIG. 11 is a schematic view showing an example of a film forming apparatus used for carrying out the carbon nanotube film forming method according to the second embodiment of the present invention. This film forming apparatus is a multi-chamber capable of continuously performing oxygen plasma treatment, activation treatment using hydrogen plasma, and film formation of a carbon nanotube film in separate chambers without breaking the vacuum. Type.
 この成膜装置100′は、真空に保持されている酸素プラズマ処理ユニット101、活性化処理ユニット102、成膜ユニット103を備えており、これらのユニット101~103は、基本的には上記成膜装置100と同様のRLSAマイクロ波プラズマ方式のプラズマ処理装置として構成されており、これらは、真空に保持された搬送室105にゲートバルブGを介して接続されている。また、搬送室105にはロードロック室106、107がゲートバルブGを介して接続されている。ロードロック室106、107の搬送室105と反対側の側面には、大気雰囲気の搬入出室108が接続されており、搬入出室108のロードロック室106、107の接続部分と反対側にはウエハWを収容可能なキャリアCを取り付ける3つのキャリア取り付けポート109、110、111が設けられている。 The film forming apparatus 100 ′ includes an oxygen plasma processing unit 101, an activation processing unit 102, and a film forming unit 103 which are maintained in a vacuum. These units 101 to 103 basically have the above-described film forming. It is configured as an RLSA microwave plasma type plasma processing apparatus similar to the apparatus 100, and these are connected via a gate valve G to a transfer chamber 105 held in a vacuum. In addition, load lock chambers 106 and 107 are connected to the transfer chamber 105 through gate valves G. An air loading / unloading chamber 108 is connected to the side surface of the load lock chamber 106, 107 opposite to the transfer chamber 105, and on the opposite side of the loading / unloading chamber 108 from the connecting portion of the load lock chamber 106, 107. Three carrier attachment ports 109, 110, and 111 for attaching the carrier C capable of accommodating the wafer W are provided.
 搬送室105内には、酸素プラズマ処理ユニット101、活性化処理ユニット102、カーボンナノチューブ膜成膜ユニット103、ロードロック室106,107に対して、ウエハWの搬入出を行う搬送装置112が設けられている。この搬送装置112は、搬送室105の略中央に設けられており、回転および伸縮可能な回転・伸縮部113の先端に半導体ウエハWを支持する2つの支持アーム114a,114bを有しており、これら2つの支持アーム114a,114bは互いに反対方向を向くように回転・伸縮部113に取り付けられている。 In the transfer chamber 105, a transfer device 112 that loads and unloads the wafer W with respect to the oxygen plasma processing unit 101, the activation processing unit 102, the carbon nanotube film forming unit 103, and the load lock chambers 106 and 107 is provided. ing. The transfer device 112 is provided at substantially the center of the transfer chamber 105, and has two support arms 114a and 114b that support the semiconductor wafer W at the tip of a rotatable / extensible / retractable portion 113 that can be rotated and extended. These two support arms 114a and 114b are attached to the rotation / extension / contraction section 113 so as to face opposite directions.
 搬入出室108内には、キャリアCに対するウエハWの搬入出およびロードロック室106,107に対するウエハWの搬入出を行う搬送装置116が設けられている。この搬送装置116は、多関節アーム構造を有しており、キャリアCの配列方向に沿ってレール118上を走行可能となっていて、その先端の支持アーム117上にウエハWを載せてその搬送を行う。 In the loading / unloading chamber 108, a transfer device 116 for loading / unloading the wafer W into / from the carrier C and loading / unloading the wafer W into / from the load lock chambers 106 and 107 is provided. The transfer device 116 has an articulated arm structure, and can run on the rail 118 along the arrangement direction of the carrier C. The wafer W is placed on the support arm 117 at the tip thereof and transferred. I do.
この成膜装置は、各構成部を制御する制御部120を有しており、これにより酸素プラズマ処理ユニット101の各構成部、活性化処理ユニット102の各構成部、カーボンナノチューブ成膜ユニット103の各構成部、搬送装置112、116、搬送室105の排気系(図示せず)、ゲートバルブGの開閉等の制御を行うようになっている。この制御部120は、第1の実施形態の制御部7と同様に構成される。 This film forming apparatus includes a control unit 120 that controls each component, and thereby each component of the oxygen plasma processing unit 101, each component of the activation processing unit 102, and each of the carbon nanotube film forming unit 103. Control is performed such as opening / closing of each component, the transfer devices 112 and 116, the exhaust system (not shown) of the transfer chamber 105, and the gate valve G. The control unit 120 is configured similarly to the control unit 7 of the first embodiment.
 (第2の実施形態に係るカーボンナノチューブ膜の成膜方法)
 次に、以上のように構成された成膜装置を用いた本実施形態のカーボンナノチューブ膜の成膜方法について説明する。
 図12は、本発明の第2の実施形態に係るカーボンナノチューブ膜の成膜方法を説明するためのフローチャートである。
(Method for Forming Carbon Nanotube Film According to Second Embodiment)
Next, a method of forming a carbon nanotube film according to this embodiment using the film forming apparatus configured as described above will be described.
FIG. 12 is a flowchart for explaining a carbon nanotube film forming method according to the second embodiment of the present invention.
 まず、図3と同様の成膜表面に金属触媒を有するウエハWを準備し、成膜装置100′内に搬入する(工程11)。具体的には、キャリアCから搬入出室108の搬送装置116によりウエハWを取り出してロードロック室106,107のいずれかに搬送する。 First, a wafer W having a metal catalyst on a film formation surface similar to that shown in FIG. 3 is prepared and carried into the film formation apparatus 100 ′ (step 11). Specifically, the wafer W is taken out from the carrier C by the transfer device 116 in the loading / unloading chamber 108 and transferred to one of the load lock chambers 106 and 107.
 次に、そのロードロック室を真空排気した後、搬送室105の搬送装置112により、そのウエハWを取り出し、酸素プラズマ処理ユニット101に搬送してウエハWの金属触媒層に対して酸素プラズマ処理を施す(工程12)。この際の酸素プラズマ処理は、第1の実施形態の工程2と同様に行われる。 Next, after evacuating the load lock chamber, the wafer W is taken out by the transfer device 112 of the transfer chamber 105 and transferred to the oxygen plasma processing unit 101 to perform oxygen plasma treatment on the metal catalyst layer of the wafer W. (Step 12). The oxygen plasma treatment at this time is performed in the same manner as in step 2 of the first embodiment.
 その後、酸素プラズマ処理を施した後のウエハWを搬送装置112により酸素プラズマ処理ユニット101から取り出して、活性化処理ユニット102に搬送し、そこでウエハWの金属触媒層に対して水素プラズマによる活性化処理を施す(工程13)。この際の活性化処理は、第1の実施形態の工程3と同様に行われる。 Thereafter, the wafer W after the oxygen plasma processing is taken out from the oxygen plasma processing unit 101 by the transfer device 112 and transferred to the activation processing unit 102 where the metal catalyst layer of the wafer W is activated by hydrogen plasma. Processing is performed (step 13). The activation process at this time is performed in the same manner as in step 3 of the first embodiment.
 その後、活性化処理を施した後のウエハWを搬送装置112により活性化処理ユニット102から取り出して、成膜ユニット103に搬送し、そこでカーボンナノチューブ膜の成膜処理を実施する(工程14)。この際の成膜処理は、第1の実施形態の工程5と同様に行われる。 Thereafter, the wafer W after the activation process is taken out from the activation process unit 102 by the transfer device 112 and transferred to the film formation unit 103, where the film formation process of the carbon nanotube film is performed (step 14). The film forming process at this time is performed in the same manner as in step 5 of the first embodiment.
 その後、カーボンナノチューブ膜が成膜された後のウエハを搬送装置112により成膜ユニット103から取り出し、ロードロック室106、107のいずれかに搬送し、そのロードロック室を大気圧に戻した後、搬送装置116により、いずれかのキャリアCに搬出する(工程15)。 Thereafter, the wafer after the carbon nanotube film is formed is taken out from the film forming unit 103 by the transfer device 112, transferred to one of the load lock chambers 106 and 107, and the load lock chamber is returned to atmospheric pressure. It is carried out to one of the carriers C by the transport device 116 (step 15).
 第1の実施形態では、1つのチャンバ内で酸素プラズマ処理、活性化処理、カーボンナノチューブの成膜処理を連続して効率的に行うことのできる装置を用いた。しかし、これら3つの処理の条件が異なる場合等には必ずしも効率が良いとは限らず、また装置のガス供給系を各処理で分けたい場合や、これら3つの処理で若干装置構成が異なる装置を用いたい場合(例えば、グリッド電極の有無等)もある。本実施形態では、そのような場合に好適である。 In the first embodiment, an apparatus that can efficiently and continuously perform oxygen plasma treatment, activation treatment, and carbon nanotube film formation treatment in one chamber is used. However, when the conditions of these three processes are different, the efficiency is not always good, and when it is desired to divide the gas supply system of the apparatus into each process, or an apparatus having a slightly different apparatus configuration between these three processes. In some cases (for example, the presence or absence of a grid electrode). This embodiment is suitable for such a case.
 なお、図11の装置では、各処理を別個のユニット(チャンバ)で行った例を示したが、例えば、酸素プラズマ処理と活性化処理を1つのユニット(チャンバ)で行い、カーボンナノチューブ膜の成膜を他のユニット(チャンバ)で行う等、少なくとも1つの処理を別個のユニット(チャンバ)で行えばよい。 11 shows an example in which each process is performed in separate units (chambers). For example, the oxygen plasma process and the activation process are performed in one unit (chamber) to form a carbon nanotube film. At least one process may be performed in a separate unit (chamber), such as in another unit (chamber).
<本発明の他の適用>
 なお、本発明は、上記実施の形態に限定されることなく種々変形可能である。例えば、上記実施形態においては、酸素プラズマ処理、活性化処理、カーボンナノチューブ成膜処理をRLSAマイクロ波プラズマ方式のプラズマ処理装置で行った例を示したが、これに限らず、他のマイクロ波プラズマ方式を用いてもよいし、マイクロ波プラズマに限らず、誘導結合プラズマや容量結合プラズマを用いてもよい。ただし、マイクロ波プラズマはラジカルを主体とする低電子温度プラズマであるのでマイクロ波プラズマが好ましい。また、ウエハの構造も表面に金属触媒層が形成されていれば図2のものに限るものではなく、被処理基板も半導体ウエハに限るものではない。
<Other applications of the present invention>
The present invention can be variously modified without being limited to the above embodiment. For example, in the above-described embodiment, the example in which the oxygen plasma treatment, the activation treatment, and the carbon nanotube film formation treatment are performed by the plasma treatment apparatus of the RLSA microwave plasma method is shown. A method may be used, and not only microwave plasma but also inductively coupled plasma or capacitively coupled plasma may be used. However, microwave plasma is preferable because it is low electron temperature plasma mainly composed of radicals. Further, the structure of the wafer is not limited to that of FIG. 2 as long as the metal catalyst layer is formed on the surface, and the substrate to be processed is not limited to the semiconductor wafer.

Claims (23)

  1.  表面に金属触媒層が形成された被処理基板を準備することと、
     前記金属触媒層に酸素プラズマ処理を施すことと、
     前記酸素プラズマ処理後の前記金属触媒層に水素含有プラズマ処理を施して、前記金属触媒層の表面を活性化することと、
     前記活性化が施された後の前記金属触媒層の上にプラズマCVDによりカーボンナノチューブ膜を成膜することと
    を有する、カーボンナノチューブ膜の成膜方法。
    Preparing a substrate to be processed having a metal catalyst layer formed on the surface;
    Performing oxygen plasma treatment on the metal catalyst layer;
    Subjecting the metal catalyst layer after the oxygen plasma treatment to a hydrogen-containing plasma treatment to activate the surface of the metal catalyst layer;
    A method of forming a carbon nanotube film, comprising: forming a carbon nanotube film on the metal catalyst layer after the activation by plasma CVD.
  2.  前記酸素プラズマ処理、前記活性化処理、前記カーボンナノチューブ膜の成膜の際に、前記被処理基板を300~600℃に加熱する、請求項1に記載のカーボンナノチューブ膜の成膜方法。 2. The method of forming a carbon nanotube film according to claim 1, wherein the substrate to be processed is heated to 300 to 600 ° C. during the oxygen plasma treatment, the activation treatment, and the formation of the carbon nanotube film.
  3.  前記カーボンナノチューブ膜を成膜する際に、前記被処理基板の直上に前記被処理基板を遮蔽するように、多数の開口を有する遮蔽部材を設け、生成したプラズマを前記遮蔽部材を介して前記被処理基板に到達させる、請求項1に記載のカーボンナノチューブ膜の成膜方法。 When forming the carbon nanotube film, a shielding member having a large number of openings is provided so as to shield the substrate to be processed immediately above the substrate to be processed, and the generated plasma is passed through the shielding member through the shielding member. The method of forming a carbon nanotube film according to claim 1, wherein the carbon nanotube film is made to reach a treatment substrate.
  4.  前記遮蔽部材は少なくとも2枚上下方向に重ねて設けられる、請求項3に記載のカーボンナノチューブ膜の成膜方法。 4. The method of forming a carbon nanotube film according to claim 3, wherein at least two shielding members are provided in the vertical direction.
  5.  前記カーボンナノチューブ膜を成膜する際に、前記遮蔽部材に直流電圧を印加する、請求項3に記載のカーボンナノチューブ膜の成膜方法。 4. The method of forming a carbon nanotube film according to claim 3, wherein a DC voltage is applied to the shielding member when forming the carbon nanotube film.
  6.  前記遮蔽部材に負の直流電圧を印加する、請求項5に記載のカーボンナノチューブ膜の成膜方法。 The method of forming a carbon nanotube film according to claim 5, wherein a negative DC voltage is applied to the shielding member.
  7.  前記カーボンナノチューブ膜を成膜する際に、前記遮蔽部材の少なくとも一つに直流電圧を印加する、請求項4に記載のカーボンナノチューブ膜の成膜方法。 The method of forming a carbon nanotube film according to claim 4, wherein a DC voltage is applied to at least one of the shielding members when forming the carbon nanotube film.
  8.  前記遮蔽部材の前記開口は径が2mm以下である、請求項3に記載のカーボンナノチューブ膜の成膜方法。 The method of forming a carbon nanotube film according to claim 3, wherein the opening of the shielding member has a diameter of 2 mm or less.
  9.  前記酸素プラズマ処理を行う際に、前記被処理基板の直上に前記被処理基板を遮蔽するように、多数の開口を有する遮蔽部材を設け、生成したプラズマを前記遮蔽部材を介して前記被処理基板に到達させる、請求項1に記載のカーボンナノチューブ膜の成膜方法。 When performing the oxygen plasma treatment, a shielding member having a large number of openings is provided so as to shield the substrate to be treated immediately above the substrate to be treated, and the generated plasma is passed through the shielding member to the substrate to be treated. The method of forming a carbon nanotube film according to claim 1, wherein
  10.  前記遮蔽部材は少なくとも2枚上下方向に重ねて設けられる、請求項9に記載のカーボンナノチューブ膜の成膜方法。 10. The method of forming a carbon nanotube film according to claim 9, wherein at least two shielding members are provided so as to overlap each other in the vertical direction.
  11.  前記酸素プラズマ処理を行う際に、前記遮蔽部材に直流電圧を印加する、請求項9に記載のカーボンナノチューブ膜の成膜方法。 The method of forming a carbon nanotube film according to claim 9, wherein a DC voltage is applied to the shielding member when the oxygen plasma treatment is performed.
  12.  前記遮蔽部材に負の直流電圧を印加する、請求項11に記載のカーボンナノチューブ膜の成膜方法。 The method of forming a carbon nanotube film according to claim 11, wherein a negative DC voltage is applied to the shielding member.
  13.  前記酸素プラズマ処理を行う際に、前記遮蔽部材の少なくとも一つに直流電圧を印加する、請求項10に記載のカーボンナノチューブ膜の成膜方法。 The method of forming a carbon nanotube film according to claim 10, wherein a DC voltage is applied to at least one of the shielding members when the oxygen plasma treatment is performed.
  14.  前記遮蔽部材の前記開口は径が2mm以下である、請求項9に記載のカーボンナノチューブ膜の成膜方法。 The method of forming a carbon nanotube film according to claim 9, wherein the opening of the shielding member has a diameter of 2 mm or less.
  15.  前記活性化処理を行う際に、前記被処理基板の直上に前記被処理基板を遮蔽するように、多数の開口を有する遮蔽部材を設け、生成したプラズマを前記遮蔽部材を介して前記被処理基板に到達させる、請求項1に記載のカーボンナノチューブ膜の成膜方法。 When performing the activation process, a shielding member having a large number of openings is provided so as to shield the substrate to be processed immediately above the substrate to be processed, and the generated plasma is supplied to the substrate to be processed through the shielding member. The method of forming a carbon nanotube film according to claim 1, wherein
  16.  前記遮蔽部材は少なくとも2枚上下方向に重ねて設けられることを特徴とする請求項15に記載のカーボンナノチューブ膜の成膜方法。 The carbon nanotube film forming method according to claim 15, wherein at least two of the shielding members are provided so as to overlap each other in the vertical direction.
  17.  前記活性化処理を行う際に、前記遮蔽部材に直流電圧を印加する、請求項15に記載のカーボンナノチューブ膜の成膜方法。 The method of forming a carbon nanotube film according to claim 15, wherein a DC voltage is applied to the shielding member when performing the activation treatment.
  18.  前記遮蔽部材に負の直流電圧を印加する、請求項17に記載のカーボンナノチューブ膜の成膜方法。 The method of forming a carbon nanotube film according to claim 17, wherein a negative DC voltage is applied to the shielding member.
  19.  前記活性化処理を行う際に、前記遮蔽部材の少なくとも一つに直流電圧を印加する、請求項16に記載のカーボンナノチューブ膜の成膜方法。 The method of forming a carbon nanotube film according to claim 16, wherein a DC voltage is applied to at least one of the shielding members when performing the activation treatment.
  20.  前記遮蔽部材の前記開口は径が2mm以下である、請求項15に記載のカーボンナノチューブ膜の成膜方法。 The carbon nanotube film forming method according to claim 15, wherein the opening of the shielding member has a diameter of 2 mm or less.
  21.  前記酸素プラズマ処理、前記活性化処理、前記カーボンナノチューブ膜の成膜の際のプラズマは、マイクロ波プラズマである、請求項1に記載のカーボンナノチューブ膜の成膜方法。 The method for forming a carbon nanotube film according to claim 1, wherein the plasma during the oxygen plasma treatment, the activation treatment, and the carbon nanotube film formation is microwave plasma.
  22.  前記酸素プラズマ処理、前記活性化処理、前記カーボンナノチューブ膜の成膜は、同一チャンバ内で連続して行う、請求項1に記載のカーボンナノチューブ膜の成膜方法。 The method of forming a carbon nanotube film according to claim 1, wherein the oxygen plasma treatment, the activation treatment, and the carbon nanotube film are continuously formed in the same chamber.
  23.  前記酸素プラズマ処理、前記活性化処理、前記カーボンナノチューブ膜の成膜のうち少なくとも1つは、他とは異なるチャンバで実施される、請求項1に記載のカーボンナノチューブ膜の成膜方法。 The method of forming a carbon nanotube film according to claim 1, wherein at least one of the oxygen plasma treatment, the activation treatment, and the carbon nanotube film formation is performed in a chamber different from the others.
PCT/JP2010/064351 2009-09-25 2010-08-25 Process for production of carbon nanotube film WO2011036973A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009220370A JP2011068513A (en) 2009-09-25 2009-09-25 Film formation method of carbon nanotube film
JP2009-220370 2009-09-25

Publications (1)

Publication Number Publication Date
WO2011036973A1 true WO2011036973A1 (en) 2011-03-31

Family

ID=43795732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064351 WO2011036973A1 (en) 2009-09-25 2010-08-25 Process for production of carbon nanotube film

Country Status (2)

Country Link
JP (1) JP2011068513A (en)
WO (1) WO2011036973A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA019141B1 (en) * 2011-09-07 2014-01-30 Федеральное Государственное Бюджетное Учреждение "Научно-Производственный Комплекс "Технологический Центр" Миэт" Process for forming bulks of carbon nanotubes

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691205B1 (en) * 2010-09-03 2011-06-01 日東電工株式会社 Method for producing optical film laminate including thin high-performance polarizing film
JP5757173B2 (en) * 2011-06-17 2015-07-29 アイシン精機株式会社 Power storage device
JP5779439B2 (en) 2011-07-29 2015-09-16 東京エレクトロン株式会社 Pretreatment method and carbon nanotube formation method
JP6016339B2 (en) * 2011-08-12 2016-10-26 東京エレクトロン株式会社 Carbon nanotube processing method and processing apparatus
JP5984536B2 (en) * 2011-09-16 2016-09-06 国立大学法人名古屋大学 Plasma CVD apparatus and carbon nanotube manufacturing method
JP5851804B2 (en) * 2011-11-09 2016-02-03 東京エレクトロン株式会社 Pretreatment method, graphene formation method, and graphene production apparatus
JP5850236B2 (en) * 2012-01-20 2016-02-03 アイシン精機株式会社 Carbon nanotube manufacturing apparatus and carbon nanotube manufacturing method
JP5668009B2 (en) * 2012-03-26 2015-02-12 株式会社東芝 Wiring and semiconductor device
WO2014157738A1 (en) * 2013-03-28 2014-10-02 東京エレクトロン株式会社 Method for growing carbon nanotubes
JP6039534B2 (en) 2013-11-13 2016-12-07 東京エレクトロン株式会社 Carbon nanotube generation method and wiring formation method
JP6960813B2 (en) 2017-09-20 2021-11-05 東京エレクトロン株式会社 Graphene structure forming method and forming device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263564A (en) * 2004-03-19 2005-09-29 Toyota Central Res & Dev Lab Inc Method for manufacturing carbon nanotube
JP2006185636A (en) * 2004-12-24 2006-07-13 National Institute For Materials Science Manufacturing method of electron emission source used for display device
JP2007314908A (en) * 2006-05-25 2007-12-06 Ulvac Japan Ltd Method for forming graphite nanofiber, method for producing field electron emission display device, and method for forming carbon nanotube
JP2008038164A (en) * 2006-08-02 2008-02-21 Ulvac Japan Ltd Plasma cvd apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263564A (en) * 2004-03-19 2005-09-29 Toyota Central Res & Dev Lab Inc Method for manufacturing carbon nanotube
JP2006185636A (en) * 2004-12-24 2006-07-13 National Institute For Materials Science Manufacturing method of electron emission source used for display device
JP2007314908A (en) * 2006-05-25 2007-12-06 Ulvac Japan Ltd Method for forming graphite nanofiber, method for producing field electron emission display device, and method for forming carbon nanotube
JP2008038164A (en) * 2006-08-02 2008-02-21 Ulvac Japan Ltd Plasma cvd apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA019141B1 (en) * 2011-09-07 2014-01-30 Федеральное Государственное Бюджетное Учреждение "Научно-Производственный Комплекс "Технологический Центр" Миэт" Process for forming bulks of carbon nanotubes

Also Published As

Publication number Publication date
JP2011068513A (en) 2011-04-07

Similar Documents

Publication Publication Date Title
WO2011036973A1 (en) Process for production of carbon nanotube film
JP5660804B2 (en) Carbon nanotube formation method and carbon nanotube film forming apparatus
WO2013069593A1 (en) Pretreatment method, graphene forming method and graphene fabrication apparatus
JP5775705B2 (en) Carbon nanotube formation method and pretreatment method
TW200829508A (en) Manufacturing apparatus and manufacturing method for carbon structure
US9650252B2 (en) Pretreatment method and carbon nanotube formation method
US9850132B2 (en) Method for growing carbon nanotubes
JP4963584B2 (en) Plasma CVD apparatus and plasma CVD method
JP5032042B2 (en) Plasma CVD apparatus and film forming method
US10378104B2 (en) Process for producing carbon nanotubes and method for forming wiring
WO2021060110A1 (en) Film-forming method
WO2024029320A1 (en) Film forming method and film forming apparatus
JP2004186229A (en) Chemical vapor growth device
JP2009088383A (en) Method and apparatus for forming silicon nano-crystalline thin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10818649

Country of ref document: EP

Kind code of ref document: A1