WO2011030867A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2011030867A1
WO2011030867A1 PCT/JP2010/065652 JP2010065652W WO2011030867A1 WO 2011030867 A1 WO2011030867 A1 WO 2011030867A1 JP 2010065652 W JP2010065652 W JP 2010065652W WO 2011030867 A1 WO2011030867 A1 WO 2011030867A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor chip
island
lead
semiconductor device
wire
Prior art date
Application number
PCT/JP2010/065652
Other languages
English (en)
French (fr)
Inventor
尚司 安永
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2011530893A priority Critical patent/JP5629264B2/ja
Priority to CN2010800396780A priority patent/CN102484083A/zh
Priority to US13/395,653 priority patent/US9293435B2/en
Publication of WO2011030867A1 publication Critical patent/WO2011030867A1/ja
Priority to US15/058,863 priority patent/US9543239B2/en
Priority to US15/370,436 priority patent/US9837373B2/en
Priority to US15/811,542 priority patent/US20180068972A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/49513Lead-frames or other flat leads characterised by the die pad having bonding material between chip and die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/4952Additional leads the additional leads being a bump or a wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the layer connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2733Manufacturing methods by local deposition of the material of the layer connector in solid form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2902Disposition
    • H01L2224/29034Disposition the layer connector covering only portions of the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3205Shape
    • H01L2224/32057Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3205Shape
    • H01L2224/32057Shape in side view
    • H01L2224/32059Shape in side view comprising protrusions or indentations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4801Structure
    • H01L2224/48011Length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48455Details of wedge bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • H01L2224/78302Shape
    • H01L2224/78303Shape of the pressing surface, e.g. tip or head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85186Translational movements connecting first outside the semiconductor or solid-state body, i.e. off-chip, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10162Shape being a cuboid with a square active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof.
  • a typical semiconductor device includes a die pad, a semiconductor chip arranged on the die pad, leads arranged around the die pad, and wires connecting the semiconductor chip and the leads.
  • first bonding normally, normal bonding is performed in which the wire is first bonded to the semiconductor chip (first bonding) and then bonded to the lead (second bonding).
  • second bonding when the difference in height between the lead (pad) and the lead in the semiconductor chip is relatively large, so-called reverse bonding is performed because it is difficult to bond the wire to the lead satisfactorily. In reverse bonding, the wire is first bonded to the lead and second bonded to the semiconductor chip.
  • FIG. 34 is a schematic side view of a semiconductor device in which wires are installed by reverse bonding.
  • the semiconductor chip 201 is bonded to the upper surface of the die pad 202 with the surface that is the element formation surface facing upward.
  • a pad 203 is disposed on the peripheral edge of the surface of the semiconductor chip 201.
  • a wire 205 is provided between the pad 203 and the upper surface of the lead 204 disposed around the die pad 202.
  • the lead 204 is pressed by the press plate 208 to fix the die pad 202 and the lead 204 to the wire bonder.
  • the press plate 208 is brought into contact with a position at a minute interval on the opposite side of the semiconductor chip 201 with respect to the bonding position of the wire 205 (ball portion 206) on the upper surface of the lead 204.
  • An FAB Free Air Ball
  • the capillary C is moved toward the pad 203, and the wire 205 is pressed against the pad 203 and further torn off.
  • the wire 205 is installed between the pad 203 and the lead 204.
  • the wire 205 constructed by reverse bonding has a mirror-shaped ball portion 206 on the lead 204 and a wedge-shaped stitch portion 207 on the pad 203 in side view.
  • the resin-encapsulated semiconductor device has a structure in which a semiconductor chip is encapsulated with a lead frame together with a resin package.
  • the lead frame is formed by punching a thin metal plate, and includes an island (die pad) and a plurality of leads arranged around the island.
  • the semiconductor chip is die-bonded to the upper surface of the island, and is electrically connected to each lead by a bonding wire laid between the surface and each lead.
  • a paste-like bonding agent such as solder paste is used for die bonding of the semiconductor chip to the island.
  • a semiconductor chip is placed on the bonding agent, and a load is applied to the semiconductor chip.
  • the bonding agent is expanded between the semiconductor chip and the island, the semiconductor chip and the island are bonded, and die bonding of the semiconductor chip to the island is achieved.
  • the capillary C is linearly moved toward the pad 203, the wire 205 may come into contact with the corner of the semiconductor chip 201. Therefore, as indicated by a broken line in FIG. 34, the capillary C is once moved to the side away from the semiconductor chip 201 and then moved toward the pad 203. However, at this time, the capillary C and the press plate 208 may come into contact with each other.
  • the protruding bonding agent overflows from the island.
  • the bonding agent is added to the space for bonding the wire in the island. Will spread and hinder bonding.
  • the bonding agent flows from the side of the semiconductor chip to the surface.
  • DAF Die Attach Film
  • DAF Die Attach Film
  • the DAF is attached to the back surface of the semiconductor chip in a wafer state. Then, the semiconductor wafer and the DAF are diced together to obtain a semiconductor chip having the DAF attached to the back surface thereof. When this semiconductor chip is pressed onto the island, the island and the semiconductor chip are joined, and die bonding of the semiconductor chip to the island is achieved.
  • One object of the present invention is to provide a semiconductor device in which a wire is well bonded to a lead by normal bonding.
  • Another object of the present invention is to provide a semiconductor device and a method for manufacturing the same that can prevent various problems caused by the spread of solder even in a small-sized semiconductor chip. .
  • a semiconductor device includes a semiconductor chip, a lead disposed on a side of the semiconductor chip, one end and the other end joined to the semiconductor chip and the lead, respectively,
  • a wire having a ball portion and a stitch portion having a wedge shape in side view is provided on each of the leads. That is, in the semiconductor device according to the present invention, the wires are laid between the semiconductor chip (pad provided on the surface of the semiconductor chip) and the leads arranged on the side thereof by normal bonding. Therefore, the wire has a ball portion on the semiconductor chip and a wedge-shaped stitch portion on the lead as viewed from the side.
  • the wire entry angle with respect to the lead that is, the angle formed between the end of the wire on the stitch portion side and the lead is 50 ° or more.
  • the length of the stitch portion (the length in the direction along the wire at the contact portion between the wire and the lead) is 33 ⁇ m or more, the wire does not crack in the vicinity of the stitch portion in the wire. Good bonding is achieved.
  • the length of the wire is 400 ⁇ m or less, and the height difference between the joint portion of the ball portion in the semiconductor chip and the joint portion of the stitch portion in the lead is 200 ⁇ m or more.
  • the length of the stitch portion is 33 ⁇ m or more, good bonding of the wire to the lead can be achieved without causing cracks in the vicinity of the stitch portion of the wire.
  • a method of manufacturing a semiconductor device comprising: a support arrangement step of arranging a support made of solid solder on an island; and a semiconductor chip on the support after the support arrangement step A chip supporting process for supporting the semiconductor chip on the support, and a bonding process for melting the support by heat treatment and bonding the island and the semiconductor chip after the chip mounting process. Is included.
  • a support made of solid solder is disposed on an island.
  • a semiconductor chip is placed on the support.
  • the support is melted by heat treatment, and the island and the semiconductor chip are joined.
  • the melted solder spreads between the semiconductor chip and the island due to the surface tension and wettability of the solder. Therefore, unlike the method using a paste adhesive for joining the semiconductor chip and the island, it is not necessary to apply a load to the semiconductor chip when joining the semiconductor chip to the island. By not applying a load to the semiconductor chip, it is possible to prevent the solder from spreading due to the load.
  • the support arranging step Prior to the support arranging step, it further includes a step of forming a thin film made of silver on the island, and in the support arranging step, the support is preferably arranged on the thin film. Since the wettability of the solder with respect to silver is high, when the support is melted during the heat treatment, the melted support (solder) expands in a range where a thin film made of silver is formed. Therefore, by forming a thin film made of silver, it is possible to control the spread of the solder, and it is possible to reliably prevent various problems caused by the spread of the solder.
  • the island may be formed with a recess dug from the upper surface thereof, and the support may be disposed in the recess in the support body arranging step.
  • a support body can be stably arrange
  • a flux application step of applying a flux to the support may be further included after the support arrangement step and prior to the chip support step.
  • the contact part with the flux in a semiconductor chip and an island is wash
  • the semiconductor device manufacturing method includes a flux application step
  • the flux adheres to the solder bonding agent that bonds the semiconductor chip and the island.
  • a semiconductor device manufactured by a manufacturing method including a flux application step includes a semiconductor chip, an island to which the semiconductor chip is bonded to the upper surface, and solder, and is interposed between the semiconductor chip and the island.
  • a solder bonding agent for bonding the semiconductor chip and the island is included, and flux is attached to the solder bonding agent.
  • FIG. 1A is a plan view of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 1B is a diagram in which a modification is applied to FIG. 1A.
  • 2A is a schematic plan view showing a state in which the semiconductor chip, the wire, and the solder bonding agent are omitted from the semiconductor device shown in FIG. 1A.
  • FIG. 2B is a diagram in which a modification is applied to FIG. 2A.
  • 3 is a schematic cross-sectional view of the semiconductor device shown in FIG. 1A when cut along a cutting line III-III.
  • FIG. 4 is a schematic cross-sectional view of the semiconductor device taken along section line IV-IV shown in FIG. 1A.
  • FIG. 5A is a schematic cross-sectional view showing a manufacturing step of the semiconductor device shown in FIG. 1A.
  • FIG. 5B is a schematic cross-sectional view showing a step subsequent to FIG. 5A.
  • FIG. 5C is a schematic cross-sectional view showing a step subsequent to FIG. 5B.
  • FIG. 5D is a schematic cross-sectional view showing a step subsequent to FIG. 5C.
  • FIG. 5E is a schematic cross-sectional view showing a step subsequent to FIG. 5D.
  • FIG. 6 is a perspective view showing another configuration of the island and the support.
  • FIG. 7 is a perspective view showing still another configuration of the island and the support.
  • FIG. 8 is a schematic cross-sectional view showing the tip shape of the capillary used in the first embodiment.
  • FIG. 8 is a schematic cross-sectional view showing the tip shape of the capillary used in the first embodiment.
  • FIG. 9 is an SEM image (part 1) in the vicinity of the stitch portion obtained in the first embodiment.
  • FIG. 10 is an SEM image (part 2) in the vicinity of the stitch portion obtained in the first embodiment.
  • FIG. 11 is an SEM image (part 3) in the vicinity of the stitch portion obtained in the first embodiment.
  • FIG. 12 is a schematic cross-sectional view showing the tip shape of a capillary used in the second embodiment.
  • FIG. 13 is an SEM image (part 1) in the vicinity of the stitch portion obtained in the second embodiment.
  • FIG. 14 is an SEM image (part 2) in the vicinity of the stitch portion obtained in the second embodiment.
  • FIG. 15 is a schematic cross-sectional view showing the tip shape of a capillary used in a comparative example.
  • FIG. 16 is an SEM image near the stitch portion obtained in the comparative example.
  • FIG. 17 is a plan view of a semiconductor device according to the second embodiment of the present invention.
  • 18 is a schematic cross-sectional view of the semiconductor device taken along section line AA shown in FIG.
  • FIG. 19 is a schematic cross-sectional view showing a tip shape of a capillary used in the first embodiment.
  • FIG. 20 is an SEM image (part 1) in the vicinity of the stitch portion obtained in the first embodiment.
  • FIG. 21 is an SEM image (part 2) in the vicinity of the stitch portion obtained in the first embodiment.
  • FIG. 22 is an SEM image (part 3) in the vicinity of the stitch portion obtained in the first embodiment.
  • FIG. 23 is a schematic cross-sectional view showing a tip shape of a capillary used in the second embodiment.
  • FIG. 24 is a SEM image (part 1) in the vicinity of the stitch portion obtained in the second embodiment.
  • FIG. 25 is an SEM image (part 2) in the vicinity of the stitch portion obtained in the second embodiment.
  • FIG. 26 is a schematic cross-sectional view showing the tip shape of a capillary used in a comparative example.
  • FIG. 27 is an SEM image near the stitch portion obtained in the comparative example.
  • FIG. 28 is a schematic plan view of a semiconductor device according to the third embodiment of the present invention.
  • FIG. 29 is a schematic plan view showing a state in which the semiconductor chip, the wires, and the solder bonding agent are omitted from the semiconductor device shown in FIG.
  • FIG. 30 is a schematic cross-sectional view of the semiconductor device shown in FIG. 28 taken along the cutting line BB.
  • FIG. 31A is a schematic cross-sectional view showing a manufacturing step of the semiconductor device shown in FIG.
  • FIG. 31B is a schematic cross-sectional view showing a step subsequent to FIG. 31A.
  • FIG. 31C is a schematic cross-sectional view showing a step subsequent to FIG. 31B.
  • FIG. 31D is a schematic cross-sectional view showing a step subsequent to FIG. 31C.
  • FIG. 31E is a schematic cross-sectional view showing a step subsequent to FIG. 31D.
  • FIG. 32 is a perspective view showing another configuration of the island and the support.
  • FIG. 33 is a perspective view showing still another configuration of the island and the support.
  • FIG. 34 is a schematic side view of a semiconductor device in which wires are installed by reverse bonding.
  • FIG. 1A is a plan view of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 1B is a diagram in which a modification is applied to FIG. 1A.
  • each member sealed in the resin package is transmitted and shown by a solid line.
  • 2A is a schematic plan view showing a state in which the semiconductor chip, the wire, and the solder bonding agent are omitted from the semiconductor device shown in FIG. 1A.
  • FIG. 2B is a diagram in which a modification is applied to FIG. 2A.
  • 3 is a schematic cross-sectional view of the semiconductor device shown in FIG. 1A when cut along a cutting line III-III.
  • FIG. 4 is a schematic cross-sectional view of the semiconductor device taken along section line IV-IV shown in FIG. 1A. In FIG. 4, the resin package is not shown.
  • the semiconductor device 1 has a structure in which a semiconductor chip 3 is bonded to a lead frame 2 and these are sealed with a resin package 4.
  • the outer shape of the semiconductor device 1 (resin package 4) has a flat rectangular parallelepiped shape (in this embodiment, a hexahedron having a square shape in plan view).
  • the lead frame 2 includes a die pad (island) 5 disposed in the center of the semiconductor device 1 in plan view and four leads 6 disposed around the die pad 5.
  • the lead frame 2 is formed by punching a metal thin plate (for example, a copper thin plate).
  • the die pad 5 is integrally provided with a central portion 7 and a hanging portion 8.
  • the center portion 7 is formed in a quadrangular shape in plan view having four sides inclined at 45 ° with respect to each side of the resin package 4 with the center overlapping the center of the resin package 4 in plan view.
  • the hanging portion 8 is formed in a square shape in plan view extending from each corner portion of the central portion 7 toward the side surface of the resin package 4 facing the corner portion. The lower surface of the central portion 7 is exposed on the back surface of the resin package 4.
  • each recess 107 is formed in a semicircular cross section, and extends in parallel with two opposite sides of the central portion 7.
  • a thin film 108 made of silver (Ag) is formed in a region including a portion where the concave portion 107 is formed in a plan view on the upper surface of the central portion 7 (see FIG. 2A). Specifically, as shown in FIG. 3, the thin film 108 is formed to have substantially the same size as a portion of the island 5 facing the semiconductor chip 3 in a state where the semiconductor chip 3 is bonded to the island 5.
  • each lead 6 is arranged one by one in a portion facing each side of the central portion 7 of the die pad 5 in plan view.
  • Each lead 6 is formed in a trapezoidal shape in plan view. More specifically, each lead 6 includes a side 9 parallel to the opposing side of the die pad 5, a side 10 extending on the side surface of the resin package 4, a right angle with the side 10, and a side surface of the resin package 4. It has an extending side 11, and sides 12 and 13 connecting the side 9 and the sides 10 and 11, respectively.
  • the lower surface of each lead 6 is exposed on the back surface of the resin package 4 and functions as an external terminal for connection to a wiring board (not shown). Further, the side surface having the side 10 of each lead 6 is exposed at the side surface of the resin package 4.
  • Each lead 6 may be formed in a triangular shape in plan view as shown in FIGS. 1B and 2B.
  • the semiconductor chip 3 is bonded to the die pad 5 via a conductive solder bonding agent 109 with the front surface (device forming surface), which is an element forming surface, facing upward. Bonding).
  • a metal film 115 for improving the adhesion between the solder bonding agent 109 and the semiconductor chip 3 is applied.
  • the metal film 115 is a laminated film formed by, for example, laminating Au (gold), Ni (nickel), Ag, and Au in this order from the semiconductor chip 3 side.
  • a solidified flux 110 solidified in the form of a resin adheres to the peripheral portion of the solder bonding agent 109, that is, to the side of the bonding portion between the semiconductor chip 3 and the island 5.
  • the thickness of the semiconductor chip 3 is 200 ⁇ m or more (in this embodiment, 230 ⁇ m), and between the surface of the semiconductor chip 3 (specifically, the surface of a pad 14 described later) and the upper surface of the lead 6, There is a height difference according to the thickness of the semiconductor chip 3. As shown in FIG. 1A, five pads 14 electrically connected to wiring (not shown) formed on the semiconductor chip 3 are formed on the surface of the semiconductor chip 3. Four pads 14 (hereinafter referred to as “corner pads 14”) are arranged at each corner of the semiconductor chip 3. The remaining one pad 14 (hereinafter referred to as “remaining pad 14”) is disposed adjacent to one corner pad 14.
  • One end of a wire (bonding wire) 15 is joined to each pad 14.
  • the other end of each wire 15 is joined to the upper surface of the lead 6.
  • the other ends of the wires 15 whose one ends are bonded to the pads 14 at the four corners are respectively bonded to the upper surfaces of the different leads 6.
  • the other end of the wire 15 having one end bonded to the remaining pad 14 is bonded to the lead 6 closest to the remaining pad 14.
  • the semiconductor chip 3 is electrically connected to the lead 6 via the wire 15.
  • the length of the wire 15 is 400 ⁇ m or less (in this embodiment, 300 to 400 ⁇ m).
  • the cutting line III-III extends in parallel to both the wire 15 extending from the pad 14 at the lower corner of the semiconductor chip 3 in FIG. 1A and the wire 15 extending from the remaining pad 14 described above. .
  • the cutting line III-III actually overlaps with these wires 15 but is shown in a position slightly deviated from these wires 15 in order to make these wires 15 easier to see.
  • the cutting line IV-IV extends in parallel with the wire 15 extending from the pad 14 at the upper corner of the semiconductor chip 3 in FIG. 1A. Although the cutting line IV-IV actually overlaps the wire 15, it is shown in a position slightly deviated from the wire 15 in order to make the wire 15 easier to see.
  • Each wire 15 is formed by normal bonding. That is, when the wire 15 is formed (at the time of wire bonding), a current is applied to the tip of the wire 15 held in the capillary C (see FIG. 34) of the wire bonder, so that the FAB (Free Air) is applied to the tip. Ball) is formed. Then, the FAB is pressed against the pad 14 by the movement of the capillary C. When the FAB is pressed against the capillary C, the FAB is deformed, and a mirror-shaped ball portion 16 is formed on the pad 14 as shown in FIG. ) Is achieved. Thereafter, the capillary C is separated upward from the pad 14 to a predetermined height.
  • the capillary C is moved toward the upper surface of the lead 6 at an inclination angle larger than 50 ⁇ with respect to the upper surface of the lead 6, and the wire 15 is pressed against the upper surface of the lead 6 and further torn off.
  • the other end of the wire 15 is deformed to form a wedge-shaped stitch portion 17 in a side view on the lead 6, and the joining of the other end of the wire 15 to the lead 6 (second bonding) is achieved. Therefore, the wire 15 has a ball portion 16 on the pad 14 and a stitch portion 17 on the lead 6.
  • the capillary C is moved at an inclination angle larger than 50 ° with respect to the upper surface of the lead 6, so that the entry angle of the wire 15 with respect to the upper surface of the lead 6, that is, on the stitch portion 17 side of the wire 15.
  • An angle ⁇ formed by the end portion and the upper surface of the lead 6 is 50 ° or more.
  • the length L of the stitch portion 17 (the length of the contact portion between the wire 15 and the lead 6 in the direction along the wire 15) L is 33 ⁇ m or more.
  • the angle ⁇ formed by the upper surface of the stitch portion 17 and the upper surface of the lead 6 is 15 ° or more.
  • 5A to 5E are schematic cross-sectional views for sequentially explaining manufacturing steps of the semiconductor device shown in FIGS. 1A and 1B.
  • 5A to 5E the lead 6 and the bonding wire 15 are not shown.
  • the lead frame 2 including the island 5 in which the concave portion 107 is formed is prepared.
  • the lead frame 2 is formed by, for example, pressing and punching a copper thin plate.
  • a thin film 108 made of silver is formed on the island 5 by plating or sputtering. At this time, the thin film 108 is also formed on the inner surface of the recess 107.
  • a support 113 made of solid solder is disposed on the thin film 108 in the recess 107.
  • the support body 113 is formed in substantially the same shape as the concave portion 107 in a plan view and has a circular cross section.
  • a flux 114 is applied to the support 113.
  • the flux 114 may be applied all over the upper surface of the island 5 or may be selectively applied to a portion of the support 113 that is exposed from the recess 107.
  • the semiconductor chip 3 is placed on the support 113.
  • the semiconductor chip 3 is supported by the support body 113.
  • the support 113 is melted as shown in FIG. 5E by performing a heat treatment for 30 seconds under a temperature condition of 340 ° C., and its surface tension and wettability.
  • the support 113 is expanded in a range where the thin film 108 is formed.
  • the gap between the opposing portions of the semiconductor chip 3 and the island 5 is filled with the molten support body 113 (solder bonding agent 109), and the bonding between the semiconductor chip 3 and the island 5 is achieved.
  • the flux 114 agglomerates and solidifies on the side of the semiconductor chip 3 while cleaning the lower surface of the semiconductor chip 3 (the surface of the metal film 115) and the upper surface of the island 5, thereby forming the solidified flux 110.
  • a bonding wire 15 is installed between the semiconductor chip 3 and the lead 6, and the resin package 4 is formed so that only the back surface of the island 5 and the lead 6 is exposed, whereby the semiconductor device shown in FIGS. 1 is obtained.
  • the melted solder spreads between the semiconductor chip 3 and the island 5 due to the surface tension and wettability of the solder. Therefore, unlike the method using a paste adhesive for joining the semiconductor chip 3 and the island 5, it is not necessary to apply a load to the semiconductor chip 3 when joining the semiconductor chip 3 to the island 5. By not applying a load to the semiconductor chip 3, it is possible to prevent the solder from spreading due to the load.
  • the support body 113 by changing the size, shape and number of the support body 113 according to the size of the semiconductor chip 3, a large amount of solder protrudes between the semiconductor chip 3 and the island 5 regardless of the size of the semiconductor chip 3.
  • the semiconductor chip 3 and the island 5 can be joined without causing the above. Therefore, even with a small-sized semiconductor chip 3, die bonding to the island 5 can be achieved without causing various problems due to the spread of solder.
  • the support 113 is disposed on a thin film 108 made of silver. Since the wettability of the solder with respect to silver is high, when the support 113 is melted during the heat treatment, the melted support 113 expands in a range where the thin film 108 made of silver is formed. Therefore, by forming the thin film 108 made of silver, the spread of the support 113 can be controlled, and various problems caused by the spread of the solder can be surely prevented.
  • the island 5 is formed with a concave portion 107 dug from the upper surface thereof, and the support body 113 is disposed in the concave portion 107. Thereby, the support body 113 can be stably disposed on the island 5.
  • the surface of the support 113 can be prevented from being oxidized and the wettability of the support 113 (solder) during heat treatment can be improved. .
  • the contact part with the flux 114 in the semiconductor chip 3 and the island 5 is washed by the action of the flux 114, the adhesion between the semiconductor chip 3 and the island 5 can be further improved.
  • FIG. 6 is a perspective view showing another configuration of the island and the support.
  • the island 121 shown in FIG. 6 can be used in place of the island 5 shown in FIG. 1A.
  • the island 121 has a rectangular shape in plan view.
  • the island 121 has three recesses 122 dug in a hemispherical shape from the upper surface thereof.
  • the recesses 122 are arranged at an interval so that the inside of the line connecting them is a triangle.
  • a thin film 123 made of silver is formed in a region including a portion where the concave portion 122 is formed in plan view. Specifically, the thin film 123 is formed to have substantially the same size as a portion of the island 121 facing the semiconductor chip 3 in a state where the semiconductor chip 3 (see FIG. 1A) is bonded to the island 121. The thin film 123 is also formed on the inner surface of each recess 122.
  • a support 124 is disposed on the thin film 123 in the recess 122.
  • the support 124 is formed in a spherical shape having substantially the same diameter as the recess 122.
  • the support 124 melts, and the support 124 (solder) is within a range where the thin film 123 is formed by the surface tension and wettability. Will spread.
  • the gap between the opposing portions of the semiconductor chip 3 and the island 121 is filled with the molten support 124, and the bonding between the semiconductor chip 3 and the island 121 is achieved.
  • FIG. 7 is a perspective view showing still another configuration of the island and the support.
  • the island 131 shown in FIG. 7 can be used in place of the island 5 shown in FIG. 1A.
  • the island 131 has a rectangular shape in plan view.
  • a thin film 132 made of silver is formed on the upper surface of the island 131. Specifically, the thin film 132 is formed to have substantially the same size as a portion of the island 131 facing the semiconductor chip 3 in a state where the semiconductor chip 3 (see FIG. 1A) is bonded to the island 131.
  • the support 133 is formed in an elongated plate shape (ribbon shape) in plan view, and extends in parallel with a space between each other.
  • the support 133 is melted, and the support 133 (solder) is within a range in which the thin film 132 is formed by the surface tension and wettability. Will spread.
  • the gap between the opposing portions of the semiconductor chip 3 and the island 131 is filled with the molten support 133, and the bonding between the semiconductor chip 3 and the island 131 is achieved.
  • a QFN Quad Flat Non-leaded Package
  • this embodiment is another type of non-lead package such as a SON (Small Outlined Non-leaded Package). It can also be applied to a semiconductor device to which is applied.
  • a lead cut type non-lead package in which the lead protrudes from the side surface of the sealing resin was applied.
  • the present embodiment can also be applied to a semiconductor device.
  • the present embodiment can be applied not only to a non-lead package but also to a semiconductor device to which a package having outer leads formed by protruding leads from a sealing resin, such as QFP (Quad Flat Package), is applied.
  • a semiconductor device such as QFP (Quad Flat Package)
  • QFP Quad Flat Package
  • the semiconductor device 1 a so-called surface mount type semiconductor device in which the back surface of the lead and the island is exposed from the back surface of the resin package is illustrated, but the resin-encapsulated type in which the lead extends toward the side of the resin package.
  • This embodiment may be applied to a semiconductor device. That is, this embodiment can be widely applied to semiconductor devices having a structure in which a semiconductor chip is bonded on an island.
  • Example 1 Using a capillary shown in FIG. 8, a gold wire with a wire diameter of 25 ⁇ m was installed between the pad on the surface of the semiconductor chip and the lead by normal bonding.
  • the T dimension of the capillary shown in FIG. 8 is 130 ⁇ m, and the CD dimension is 50 ⁇ m.
  • the wire entry angle with respect to the upper surface of the lead is 50 °.
  • Example 2 Using the capillary shown in FIG. 12, a gold wire having a wire diameter of 25 ⁇ m was installed between the pad on the surface of the semiconductor chip and the lead by normal bonding.
  • the FA (Face Angle) angle of the capillary shown in FIG. 12 is 15 °.
  • the wire entry angle with respect to the upper surface of the lead is 50 °.
  • FIG. 17 is a plan view of a semiconductor device according to the second embodiment of the present invention.
  • each member sealed in the resin package is shown as a solid line through.
  • 18 is a schematic cross-sectional view of the semiconductor device taken along section line AA shown in FIG. In FIG. 18, the resin package is not shown.
  • the same reference numerals are used for portions corresponding to the respective portions of the first embodiment.
  • the semiconductor device 1 has a structure in which a semiconductor chip 3 is bonded to a lead frame 2 and these are sealed with a resin package 4.
  • the outer shape of the semiconductor device 1 (resin package 4) has a flat rectangular parallelepiped shape (in this embodiment, a hexahedron having a square shape in plan view).
  • the lead frame 2 includes a die pad 5 disposed in the center of the semiconductor device 1 in plan view and four leads 6 disposed around the die pad 5.
  • the lead frame 2 is formed by punching a metal thin plate (for example, a copper thin plate).
  • the die pad 5 is integrally provided with a central portion 7 and a hanging portion 8.
  • the center portion 7 is formed in a quadrangular shape in plan view having four sides inclined at 45 ° with respect to each side of the resin package 4 with the center overlapping the center of the resin package 4 in plan view.
  • the hanging portion 8 is formed in a square shape in plan view extending from each corner portion of the central portion 7 toward the side surface of the resin package 4 facing the corner portion. The lower surface of the central portion 7 is exposed on the back surface of the resin package 4.
  • each lead 6 is formed in a trapezoidal shape in plan view. More specifically, each lead 6 includes a side 9 parallel to the opposing side of the die pad 5, a side 10 extending on the side surface of the resin package 4, a right angle with the side 10, and a side surface of the resin package 4. It has an extending side 11, and sides 12 and 13 connecting the side 9 and the sides 10 and 11, respectively.
  • the lower surface of each lead 6 is exposed on the back surface of the resin package 4 and functions as an external terminal for connection to a wiring board (not shown). Further, the side surface having the side 10 of each lead 6 is exposed at the side surface of the resin package 4.
  • the semiconductor chip 3 is bonded (die-bonded) to the die pad 5 via a conductive bonding agent (not shown) with the surface that is the element formation surface facing upward.
  • the thickness of the semiconductor chip 3 is 200 ⁇ m or more (in this embodiment, 230 ⁇ m), and between the surface of the semiconductor chip 3 (specifically, the surface of a pad 14 described later) and the upper surface of the lead 6, There is a height difference according to the thickness of the semiconductor chip 3.
  • corner pads 14 On the surface of the semiconductor chip 3, five pads 14 electrically connected to wiring (not shown) formed on the semiconductor chip 3 are formed.
  • four pads 14 (hereinafter referred to as “corner pads 14”) are arranged at each corner of the semiconductor chip 3.
  • the remaining one pad 14 (hereinafter referred to as “remaining pad 14”) is disposed adjacent to one corner pad 14.
  • One end of a wire 15 is joined to each pad 14.
  • the other end of each wire 15 is joined to the upper surface of the lead 6.
  • the other ends of the wires 15 whose one ends are bonded to the pads 14 at the four corners are respectively bonded to the upper surfaces of the different leads 6.
  • the other end of the wire 15 having one end bonded to the remaining pad 14 is bonded to the lead 6 closest to the remaining pad 14.
  • the semiconductor chip 3 is electrically connected to the lead 6 via the wire 15.
  • the length of the wire 15 is 400 ⁇ m or less (in this embodiment, 300 to 400 ⁇ m).
  • each wire 15 is formed by normal bonding. That is, when the wire 15 is formed (at the time of wire bonding), a current is applied to the tip of the wire 15 held in the capillary C (see FIG. 34) of the wire bonder, so that the FAB (Free Air) is applied to the tip. Ball) is formed. Then, the FAB is pressed against the pad 14 by the movement of the capillary C.
  • FAB Free Air
  • the FAB When the FAB is pressed against the capillary C, the FAB is deformed, and a mirror-shaped ball portion 16 is formed on the pad 14 as shown in FIG. ) Is achieved. Thereafter, the capillary C is separated upward from the pad 14 to a predetermined height. The capillary C is moved toward the upper surface of the lead 6 at an inclination angle larger than 50 ° with respect to the upper surface of the lead 6, and the wire 15 is pressed against the upper surface of the lead 6 and further torn off. As a result, the other end of the wire 15 is deformed to form a wedge-shaped stitch portion 17 in a side view on the lead 6, and the joining of the other end of the wire 15 to the lead 6 (second bonding) is achieved. Therefore, the wire 15 has a ball portion 16 on the pad 14 and a stitch portion 17 on the lead 6.
  • the capillary C is moved at an inclination angle larger than 50 ° with respect to the upper surface of the lead 6, so that the entry angle of the wire 15 with respect to the upper surface of the lead 6, that is, on the stitch portion 17 side of the wire 15.
  • An angle ⁇ formed by the end portion and the upper surface of the lead 6 is 50 ° or more.
  • the length L of the stitch portion 17 (the length of the contact portion between the wire 15 and the lead 6 in the direction along the wire 15) L is 33 ⁇ m or more.
  • the angle ⁇ formed by the upper surface of the stitch portion 17 and the upper surface of the lead 6 is 15 ° or more.
  • a QFN Quad Flat Non-leaded Package
  • this embodiment is another type of non-lead package such as a SON (Small Outlined Non-leaded Package). It can also be applied to a semiconductor device to which is applied.
  • a lead cut type non-lead package in which the lead protrudes from the side surface of the sealing resin was applied.
  • the present embodiment can also be applied to a semiconductor device.
  • the present embodiment can be applied not only to a non-lead package but also to a semiconductor device to which a package having outer leads formed by protruding leads from a sealing resin, such as QFP (Quad Flat Package), is applied.
  • a sealing resin such as QFP (Quad Flat Package)
  • QFP Quad Flat Package
  • Example 1 Using a capillary shown in FIG. 19, a gold wire having a wire diameter of 25 ⁇ m was installed between a pad on the surface of a semiconductor chip and a lead by normal bonding.
  • the T dimension of the capillary shown in FIG. 19 is 130 ⁇ m, and the CD dimension is 50 ⁇ m.
  • the wire entry angle with respect to the upper surface of the lead is 50 °.
  • Example 2 Using a capillary shown in FIG. 23, a gold wire having a wire diameter of 25 ⁇ m was installed between a pad on the surface of a semiconductor chip and a lead by normal bonding.
  • the FA (Face Angle) angle of the capillary shown in FIG. 23 is 15 °.
  • the wire entry angle with respect to the upper surface of the lead is 50 °.
  • reed of a gold wire was observed using the scanning electron microscope.
  • the SEM images at that time are shown in FIGS.
  • a stitch portion having an angle of 15 between the upper surface and the upper surface of the lead is formed, and defects such as cracks are generated in the vicinity of the stitch portion. Not confirmed. 3.
  • the FA (Face Angle) angle of the capillary shown in FIG. 26 is 11 °.
  • the wire entry angle with respect to the upper surface of the lead is 50 °.
  • FIG. 28 is a schematic plan view of a semiconductor device according to the third embodiment of the present invention.
  • FIG. 29 is a schematic plan view showing a state in which the semiconductor chip, the wires, and the solder bonding agent are omitted from the semiconductor device shown in FIG. 30 is a schematic cross-sectional view of the semiconductor device shown in FIG. 28 taken along the cutting line BB.
  • the same reference numerals are used for portions corresponding to the respective portions of the first and second embodiments.
  • the semiconductor device 1 has a structure in which a semiconductor chip 3 is sealed with a resin package 4 together with a lead frame 2.
  • the outer shape of the semiconductor device 1 has a flat rectangular parallelepiped shape (in this embodiment, a hexahedron having a square shape in plan view).
  • the lead frame 2 is made of a metal material such as copper (Cu), and includes an island 5 and four leads 6 disposed around the island 5.
  • the island 5 has a square shape in plan view (in this embodiment, a square shape in plan view).
  • the lower surface of the island 5 is exposed on the back surface of the resin package 4.
  • the island 5 is formed with two (a pair of) groove-shaped recesses 107 dug from the upper surface thereof (see FIG. 29).
  • Each recess 107 is formed in a semicircular cross section and extends in parallel with two opposite sides of the island 5.
  • a thin film 108 made of silver (Ag) is formed in a region including a portion where the concave portion 107 is formed in plan view on the upper surface of the island 5 (see FIG. 29). Specifically, as shown in FIG. 28, the thin film 108 is formed to be approximately the same size as a portion of the island 5 facing the semiconductor chip 3 in a state where the semiconductor chip 3 is bonded to the island 5.
  • the leads 6 are disposed at portions facing the four sides of the island 5 in plan view. Each lead 6 is formed in a triangular shape in plan view. The lower surface of each lead 6 is exposed on the back surface of the resin package 4 and functions as an external terminal for connection to a wiring board (not shown).
  • the semiconductor chip 3 has an island 5 via a conductive solder bonding agent 109 with the back surface of the functional element formed side (device forming surface) facing upward. (Die bonding).
  • a metal film 115 for improving the adhesion between the solder bonding agent 109 and the semiconductor chip 3 is applied.
  • the metal film 115 is a laminated film formed by, for example, laminating Au (gold), Ni (nickel), Ag, and Au in this order from the semiconductor chip 3 side.
  • a solidified flux 110 solidified in the form of a resin adheres to the peripheral portion of the solder bonding agent 109, that is, to the side of the bonding portion between the semiconductor chip 3 and the island 5.
  • a pad 14 is formed on the surface of the semiconductor chip 3 so as to correspond to each lead 6 by exposing a part of the wiring layer from the surface protective film.
  • One end of a bonding wire 15 is bonded to each pad 14.
  • the other end of the bonding wire 15 is bonded to the upper surface of each lead 6. Thereby, the semiconductor chip 3 is electrically connected to the lead 6 via the bonding wire 15.
  • the cutting line BB is parallel to both the wire 15 extending from the lower pad 14 in FIG. 28 of the semiconductor chip 3 and the wire 15 extending from the pad 14 adjacent to the left of the right pad 14 in FIG. It extends to.
  • the cutting line BB actually overlaps with these wires 15, but is shown at a position slightly deviated from these wires 15 in order to make these wires 15 easier to see.
  • 31A to 31E are schematic cross-sectional views for sequentially explaining the manufacturing process of the semiconductor device shown in FIG. 31A to 31E, the lead 6 and the bonding wire 15 are not shown.
  • the lead frame 2 including the island 5 in which the concave portion 107 is formed is prepared.
  • the lead frame 2 is formed by, for example, pressing and punching a copper thin plate.
  • a thin film 108 made of silver is formed on the island 5 by plating or sputtering. At this time, the thin film 108 is also formed on the inner surface of the recess 107.
  • a support 113 made of solid solder is disposed on the thin film 108 in the recess 107.
  • the support body 113 is formed in substantially the same shape as the concave portion 107 in a plan view and has a circular cross section.
  • the flux 114 is applied to the support 113.
  • the flux 114 may be applied all over the upper surface of the island 5 or may be selectively applied to a portion of the support 113 that is exposed from the recess 107.
  • the semiconductor chip 3 is placed on the support 113.
  • the semiconductor chip 3 is supported by the support body 113.
  • the support body 113 is lead solder
  • the heat treatment is performed for 30 seconds under a temperature condition of 340 ° C., so that the support body 113 melts as shown in FIG. 31E, and its surface tension and wettability.
  • the support 113 is expanded in a range where the thin film 108 is formed.
  • the gap between the opposing portions of the semiconductor chip 3 and the island 5 is filled with the molten support body 113 (solder bonding agent 109), and the bonding between the semiconductor chip 3 and the island 5 is achieved.
  • the flux 114 agglomerates and solidifies on the side of the semiconductor chip 3 while cleaning the lower surface of the semiconductor chip 3 (the surface of the metal film 115) and the upper surface of the island 5, thereby forming the solidified flux 110.
  • a bonding wire 15 is installed between the semiconductor chip 3 and the lead 6, and the resin package 4 is formed so that only the back surface of the island 5 and the lead 6 is exposed, whereby the semiconductor device shown in FIGS. 1 is obtained.
  • the melted solder spreads between the semiconductor chip 3 and the island 5 due to the surface tension and wettability of the solder. Therefore, unlike the method using a paste adhesive for joining the semiconductor chip 3 and the island 5, it is not necessary to apply a load to the semiconductor chip 3 when joining the semiconductor chip 3 to the island 5. By not applying a load to the semiconductor chip 3, it is possible to prevent the solder from spreading due to the load.
  • the support body 113 by changing the size, shape and number of the support body 113 according to the size of the semiconductor chip 3, a large amount of solder protrudes between the semiconductor chip 3 and the island 5 regardless of the size of the semiconductor chip 3.
  • the semiconductor chip 3 and the island 5 can be joined without causing the above. Therefore, even with a small-sized semiconductor chip 3, die bonding to the island 5 can be achieved without causing various problems due to the spread of solder.
  • the support 113 is disposed on a thin film 108 made of silver. Since the wettability of the solder with respect to silver is high, when the support 113 is melted during the heat treatment, the melted support 113 expands in a range where the thin film 108 made of silver is formed. Therefore, by forming the thin film 108 made of silver, the spread of the support 113 can be controlled, and various problems caused by the spread of the solder can be surely prevented.
  • the island 5 is formed with a concave portion 107 dug from the upper surface thereof, and the support body 113 is disposed in the concave portion 107. Thereby, the support body 113 can be stably disposed on the island 5.
  • the surface of the support 113 can be prevented from being oxidized and the wettability of the support 113 (solder) during heat treatment can be improved. .
  • the contact part with the flux 114 in the semiconductor chip 3 and the island 5 is washed by the action of the flux 114, the adhesion between the semiconductor chip 3 and the island 5 can be further improved.
  • FIG. 32 is a perspective view showing another configuration of the island and the support.
  • the island 121 shown in FIG. 32 can be used in place of the island 5 shown in FIG.
  • the island 121 has a rectangular shape in plan view.
  • the island 121 has three recesses 122 dug in a hemispherical shape from the upper surface thereof.
  • the recesses 122 are arranged at an interval so that the inside of the line connecting them is a triangle.
  • a thin film 123 made of silver is formed in a region including a portion where the concave portion 122 is formed in plan view. Specifically, the thin film 123 is formed to have substantially the same size as a portion of the island 121 facing the semiconductor chip 3 in a state where the semiconductor chip 3 (see FIG. 28) is bonded to the island 121. The thin film 123 is also formed on the inner surface of each recess 122.
  • a support 124 is disposed on the thin film 123 in the recess 122.
  • the support 124 is formed in a spherical shape having substantially the same diameter as the recess 122.
  • the support 124 melts, and the support 124 (solder) is within a range where the thin film 123 is formed by the surface tension and wettability. Will spread.
  • the gap between the opposing portions of the semiconductor chip 3 and the island 121 is filled with the molten support 124, and the bonding between the semiconductor chip 3 and the island 121 is achieved.
  • FIG. 33 is a perspective view showing still another configuration of the island and the support.
  • An island 131 shown in FIG. 33 can be used in place of the island 5 shown in FIG.
  • the island 131 has a rectangular shape in plan view.
  • a thin film 132 made of silver is formed on the upper surface of the island 131. Specifically, the thin film 132 is formed to have substantially the same size as a portion of the island 131 facing the semiconductor chip 3 in a state where the semiconductor chip 3 (see FIG. 28) is bonded to the island 131.
  • the support 133 is formed in an elongated plate shape (ribbon shape) in plan view, and extends in parallel with a space between each other.
  • the support 133 is melted, and the support 133 (solder) is within a range in which the thin film 132 is formed by the surface tension and wettability. Will spread.
  • the gap between the opposing portions of the semiconductor chip 3 and the island 131 is filled with the molten support 133, and the bonding between the semiconductor chip 3 and the island 131 is achieved.
  • the semiconductor device 1 is exemplified by a so-called surface-mount type semiconductor device in which the back surface of the lead and the island is exposed from the back surface of the resin package, but in this embodiment, the lead extends toward the side of the resin package. It can also be applied to resin-encapsulated semiconductor devices. That is, this embodiment can be applied to a semiconductor device having a structure in which a semiconductor chip is bonded on an island.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)
  • Die Bonding (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

半導体装置は、半導体チップと、半導体チップの側方に配置されるリードと、一端および他端がそれぞれ半導体チップおよびリードに接合されて、半導体チップおよびリード上にそれぞれボール部および側面視楔状のステッチ部を有するワイヤとを含んでいる。リードに対するワイヤの進入角度が50°以上であり、ステッチ部の長さが33μm以上である。

Description

半導体装置およびその製造方法
 この発明は、半導体装置およびその製造方法に関する。
 典型的な半導体装置は、ダイパッドと、ダイパッド上に配置された半導体チップと、ダイパッドの周囲に配置されたリードと、半導体チップとリードとを接続するワイヤとを含む。
 ワイヤを架設するとき、通常、ワイヤを半導体チップに先に接合(ファーストボンディング)し、次にリードに接合(セカンドボンディング)する、ノーマルボンディングが行われる。しかし、半導体チップにおけるワイヤが接続される部分(パッド)とリードとの高低差が比較的大きい場合には、ワイヤをリードに良好に接合することが困難なため、いわゆるリバースボンディングが行われる。リバースボンディングでは、ワイヤをリードにファーストボンディングし、半導体チップにセカンドボンディングする。
 図34は、リバースボンディングによりワイヤが架設された半導体装置の模式的な側面図である。
 半導体チップ201は、素子形成面である表面を上方に向けた状態で、その裏面がダイパッド202の上面に接合されている。半導体チップ201の表面の周縁部には、パッド203が配置されている。そして、パッド203とダイパッド202の周囲に配置されたリード204の上面との間に、ワイヤ205が架設されている。
 ワイヤボンディング時には、ダイパッド202およびリード204をワイヤボンダに固定するため、リード204がプレスプレート208により押さえられる。プレスプレート208は、リード204の上面におけるワイヤ205(ボール部206)の接合位置に対して半導体チップ201と反対側に微小な間隔を空けた位置に当接される。そして、ワイヤボンダのキャピラリC(破線で示す。)に保持されたワイヤ205の先端部にFAB(Free Air Ball)が形成され、そのFABがリード204の上面に接合される。その後、キャピラリCがパッド203に向けて移動され、ワイヤ205がパッド203に押し付けられて、さらに引きちぎられる。これにより、パッド203とリード204との間に、ワイヤ205が架設される。リバースボンディングにより架設されたワイヤ205は、リード204上に鏡餅形状のボール部206を有し、パッド203上に側面視楔状のステッチ部207を有している。
 樹脂封止型の半導体装置は、半導体チップをリードフレームとともに樹脂パッケージで封止した構造を有している。リードフレームは、金属薄板を打ち抜くことにより形成され、アイランド(ダイパッド)と、このアイランドの周囲に配置される複数のリードとを備えている。半導体チップは、アイランドの上面にダイボンディングされており、その表面と各リードとの間に架設されるボンディングワイヤにより、各リードと電気的に接続されている。
 アイランドへの半導体チップのダイボンディングには、たとえば、半田ペーストなどのペースト状の接合剤が用いられる。アイランドの上面にペースト状の接合剤を塗布した後、接合剤上に半導体チップが配置されて、半導体チップに荷重が加えられる。これにより、半導体チップとアイランドとの間で接合剤が押し拡げられて、半導体チップとアイランドとが接合し、アイランドに対する半導体チップのダイボンディングが達成される。
特開2004-207292号公報 特開2003-249616号公報
 図34を参照して、リード204にFABが接合された後、キャピラリCが、パッド203に向けて直線的に移動されると、ワイヤ205が半導体チップ201の角部に接触するおそれがある。そこで、図34に破線で示すように、キャピラリCは、半導体チップ201から離れる側に一旦移動された後、パッド203に向けて移動される。ところが、このとき、キャピラリCとプレスプレート208とが接触するおそれがある。
 そのため、キャピラリCとプレスプレート208との接触を防止すべく、FAB(ボール部206)の接合位置とプレスプレート208との間には、十分なクリアランスが設けられる。そのため、半導体装置のパッケージサイズが縮小されても、1枚のリードフレームから得ることができる半導体装置(ダイパッド202およびリード204)の数を増加させることができない。
 ノーマルボンディングでは、キャピラリCとプレスプレート208との接触の問題がない。したがって、ノーマルボンディングによりリードに対するワイヤの良好な接合を得ることができれば、1枚のリードフレームから得ることができる半導体装置の数を増加させることができる。
 一方、ペースト状の接合剤(半田)が用いられる場合、半導体チップに荷重が加えられたときに、半導体チップとアイランドとの間からその周囲に接合剤が大きくはみ出すことがある。この接合剤のはみ出しは、次のような種々の不具合を生じることがある。
 たとえば、アイランドが小さい場合には、そのはみ出した接合剤がアイランド上から溢れる。また、アイランドが半導体チップと比較して十分に大きく形成されていても、半導体チップとアイランドとの間にワイヤを架設する場合には、アイランドにおけるワイヤの接合(ボンディング)のためのスペースに接合剤が拡がり、ボンディングの妨げとなる。さらに、アイランドの大きさにかかわらず、半導体チップが薄型である場合には、接合剤が半導体チップの側方から表面に回りこむ。
 接合剤の拡がりに起因する問題を解決するために、DAF(Die Attach Film:ダイアタッチフィルム)を用いることが考えられる。DAFは、フィルム状の接合材である。半導体チップがウエハの状態で、その裏面にDAFが貼り付けられる。そして、半導体ウエハとDAFとが一括してダイシングされることにより、その裏面にDAFが貼り付けられた半導体チップが得られる。この半導体チップがアイランド上に押し付けられることにより、アイランドと半導体チップとが接合し、アイランドに対する半導体チップのダイボンディングが達成される。
 しかしながら、ウエハの裏面にDAFが貼り付けられた状態で、そのウエハを小サイズ(たとえば、550μm角)に切り分けることは困難であり、小サイズの半導体チップのアイランドへの接合にDAFを使用することはできない。
 本発明の1つの目的は、ノーマルボンディングによりワイヤがリードに良好に接合された、半導体装置を提供することである。
 また、本発明の別の目的は、小サイズの半導体チップであっても、半田の拡がりに起因する種々問題が生じるのを防止することができる、半導体装置およびその製造方法を提供することである。
 本発明の一の局面に係る半導体装置は、半導体チップと、前記半導体チップの側方に配置されるリードと、一端および他端がそれぞれ前記半導体チップおよび前記リードに接合されて、前記半導体チップおよび前記リード上にそれぞれボール部および側面視楔状のステッチ部を有するワイヤとを備えている。すなわち、本発明に係る半導体装置では、ノーマルボンディングにより、ワイヤが半導体チップ(半導体チップの表面に設けられたパッド)とその側方に配置されたリードとの間に架設されている。したがって、ワイヤは、半導体チップ上にボール部を有し、リード上に側面視楔状のステッチ部を有している。
 そして、一実施形態に係る半導体装置では、リードに対するワイヤの進入角度、つまりワイヤのステッチ部側の端部とリードとのなす角度が50°以上である。
 この場合に、ステッチ部の長さ(ワイヤとリードとの接触部分のワイヤに沿う方向の長さ)が33μm以上であれば、ワイヤにおけるステッチ部の近傍にクラックを生じることなく、リードに対するワイヤの良好な接合が達成される。
 また、ステッチ部の上面とリードの上面とのなす角度が15°以上である場合にも、ワイヤにおけるステッチ部の近傍にクラックを生じることなく、リードに対するワイヤの良好な接合が達成される。
 むろん、ステッチ部の長さが33μm以上であり、かつ、ステッチ部の上面とリードの上面とのなす角度が15°以上であっても、ワイヤにおけるステッチ部の近傍にクラックを生じることなく、リードに対するワイヤの良好な接合が達成される。
 また、一実施形態に係る半導体装置では、ワイヤの長さが400μm以下であり、半導体チップにおけるボール部の接合部分とリードにおける前記ステッチ部の接合部分との高低差が200μm以上である。
 この場合に、ステッチ部の長さが33μm以上であれば、ワイヤにおけるステッチ部の近傍にクラックを生じることなく、リードに対するワイヤの良好な接合が達成される。
 また、ステッチ部の上面とリードの上面とのなす角度が15°以上である場合にも、ワイヤにおけるステッチ部の近傍にクラックを生じることなく、リードに対するワイヤの良好な接合が達成される。
 むろん、ステッチ部の長さが33μm以上であり、かつ、ステッチ部の上面とリードの上面とのなす角度が15°以上であっても、ワイヤにおけるステッチ部の近傍にクラックを生じることなく、リードに対するワイヤの良好な接合が達成される。
 また、本発明の一の局面に係る半導体装置の製造方法は、アイランド上に固体の半田からなる支持体を配置する支持体配置工程と、前記支持体配置工程後、前記支持体上に半導体チップを載置し、前記支持体に前記半導体チップを支持させるチップ支持工程と、前記チップ載置工程後、熱処理により、前記支持体を溶融させて前記アイランドと前記半導体チップとを接合する接合工程とを含んでいる。
 この半導体装置の製造方法によれば、まず、アイランド上に、固体の半田からなる支持体が配置される。そして、支持体上に、半導体チップが載置される。これにより、半導体チップが支持体に支持される。その後、熱処理により、支持体(半田)が溶融し、アイランドと半導体チップとが接合される。
 熱処理時には、半田の有する表面張力および濡れ性によって、溶融した半田が半導体チップとアイランドとの間に拡がる。そのため、半導体チップとアイランドとの接合にペースト状の接着剤を用いる方法とは異なり、アイランドに対する半導体チップの接合時に、半導体チップに荷重を加える必要がない。半導体チップに荷重を加えないことにより、その荷重による半田の拡がりを防止することができる。また、支持体の大きさ、形状および数を半導体チップのサイズに応じて変更することにより、半導体チップのサイズにかかわらず、半導体チップとアイランドとの間からの半田の大きなはみ出しを生じることなく、半導体チップとアイランドとを接合することができる。よって、小サイズの半導体チップであっても、半田の拡がりに起因する種々の問題を生じることなく、アイランドへのダイボンディングを達成することができる。
 支持体配置工程に先立ち、アイランド上に銀からなる薄膜を形成する工程をさらに含み、支持体配置工程では、薄膜上に支持体が配置されるのが好ましい。銀に対する半田の濡れ性が高いため、熱処理時に支持体が溶融すると、その溶融した支持体(半田)は、銀からなる薄膜が形成されている範囲で拡がる。したがって、銀からなる薄膜を形成することにより、半田の拡がりを制御することができ、半田の拡がりに起因する種々の問題が生じるのを確実に防止することができる。
 また、アイランドには、その上面から掘り下がった凹部が形成され、支持体配置工程では、支持体は凹部内に配置されてもよい。これにより、支持体をアイランド上に安定して配置することができる。
 また、支持体配置工程の後、チップ支持工程に先立ち、支持体にフラックスを塗布するフラックス塗布工程をさらに含んでいてもよい。これにより、支持体の表面が酸化されるのを防止することができるとともに、熱処理時における支持体(半田)の濡れ性を向上させることができる。また、半導体チップおよびアイランドにおけるフラックスとの接触部分がフラックスの作用によって洗浄されるので、半導体チップとアイランドとの接着性を一層向上させることができる。
 半導体装置の製造方法にフラックス塗布工程が含まれる場合、当該製造方法により製造される半導体装置では、半導体チップとアイランドとを接合する半田接合剤にフラックスが付着している。すなわち、フラックス塗布工程を含む製造方法により製造される半導体装置は、半導体チップと、前記半導体チップが上面に接合されるアイランドと、半田からなり、前記半導体チップと前記アイランドとの間に介在され、前記半導体チップと前記アイランドとを接合させる半田接合剤とを含み、前記半田接合剤には、フラックスが付着している。
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
図1Aは、本発明の第1実施形態に係る半導体装置の平面図である。 図1Bは、図1Aに変形例を適用した図である。 図2Aは、図1Aに示す半導体装置から半導体チップ、ワイヤおよび半田接合剤を省略した状態を示す模式的な平面図である。 図2Bは、図2Aに変形例を適用した図である。 図3は、図1Aに示す半導体装置を切断線III-IIIで切断したときの模式的な断面図である。 図4は、図1Aに示す切断線IV-IVにおける半導体装置の模式的な断面図である。 図5Aは、図1Aに示す半導体装置の製造工程を示す模式的な断面図である。 図5Bは、図5Aの次の工程を示す模式的な断面図である。 図5Cは、図5Bの次の工程を示す模式的な断面図である。 図5Dは、図5Cの次の工程を示す模式的な断面図である。 図5Eは、図5Dの次の工程を示す模式的な断面図である。 図6は、アイランドおよび支持体の他の構成を示す斜視図である。 図7は、アイランドおよび支持体のさらに他の構成を示す斜視図である。 図8は、実施例1に用いられるキャピラリの先端形状を示す図解的な断面図である。 図9は、実施例1で得られるステッチ部の近傍のSEM画像(その1)である。 図10は、実施例1で得られるステッチ部の近傍のSEM画像(その2)である。 図11は、実施例1で得られるステッチ部の近傍のSEM画像(その3)である。 図12は、実施例2に用いられるキャピラリの先端形状を示す図解的な断面図である。 図13は、実施例2で得られるステッチ部の近傍のSEM画像(その1)である。 図14は、実施例2で得られるステッチ部の近傍のSEM画像(その2)である。 図15は、比較例に用いられるキャピラリの先端形状を示す図解的な断面図である。 図16は、比較例で得られるステッチ部の近傍のSEM画像である。 図17は、本発明の第2実施形態に係る半導体装置の平面図である。 図18は、図17に示す切断線A-Aにおける半導体装置の模式的な断面図である。 図19は、実施例1に用いられるキャピラリの先端形状を示す図解的な断面図である。 図20は、実施例1で得られるステッチ部の近傍のSEM画像(その1)である。 図21は、実施例1で得られるステッチ部の近傍のSEM画像(その2)である。 図22は、実施例1で得られるステッチ部の近傍のSEM画像(その3)である。 図23は、実施例2に用いられるキャピラリの先端形状を示す図解的な断面図である。 図24は、実施例2で得られるステッチ部の近傍のSEM画像(その1)である。 図25は、実施例2で得られるステッチ部の近傍のSEM画像(その2)である。 図26は、比較例に用いられるキャピラリの先端形状を示す図解的な断面図である。 図27は、比較例で得られるステッチ部の近傍のSEM画像である。 図28は、本発明の第3実施形態に係る半導体装置の模式的な平面図である。 図29は、図28に示す半導体装置から半導体チップ、ワイヤおよび半田接合剤を省略した状態を示す模式的な平面図である。 図30は、図28に示す半導体装置を切断線B-Bで切断したときの模式的な断面図である。 図31Aは、図28に示す半導体装置の製造工程を示す模式的な断面図である。 図31Bは、図31Aの次の工程を示す模式的な断面図である。 図31Cは、図31Bの次の工程を示す模式的な断面図である。 図31Dは、図31Cの次の工程を示す模式的な断面図である。 図31Eは、図31Dの次の工程を示す模式的な断面図である。 図32は、アイランドおよび支持体の他の構成を示す斜視図である。 図33は、アイランドおよび支持体のさらに他の構成を示す斜視図である。 図34は、リバースボンディングによりワイヤが架設された半導体装置の模式的な側面図である。
<第1実施形態>
 図1Aは、本発明の第1実施形態に係る半導体装置の平面図である。図1Bは、図1Aに変形例を適用した図である。図1A~1Bでは、樹脂パッケージに封止されている各部材が透過して実線で示されている。図2Aは、図1Aに示す半導体装置から半導体チップ、ワイヤおよび半田接合剤を省略した状態を示す模式的な平面図である。図2Bは、図2Aに変形例を適用した図である。図3は、図1Aに示す半導体装置を切断線III-IIIで切断したときの模式的な断面図である。図4は、図1Aに示す切断線IV-IVにおける半導体装置の模式的な断面図である。図4では、樹脂パッケージの図示が省略されている。
 半導体装置1は、リードフレーム2に半導体チップ3を接合し、これらを樹脂パッケージ4で封止した構造を有している。半導体装置1(樹脂パッケージ4)の外形は、扁平な直方体形状(この実施形態では、平面視正方形状の6面体)をなしている。
 リードフレーム2は、図1Aに示すように、平面視で半導体装置1の中央部に配置されるダイパッド(アイランド)5と、ダイパッド5の周囲に配置される4つのリード6とを備えている。リードフレーム2は、金属薄板(たとえば、銅薄板)を打ち抜くことにより形成される。
 ダイパッド5は、中央部7と、吊り部8とを一体的に備えている。中央部7は、平面視でその中心が樹脂パッケージ4の中心と重なり、樹脂パッケージ4の各辺に対して45°傾斜する4辺を有する平面視四角形状に形成されている。吊り部8は、中央部7の各角部から当該角部が対向する樹脂パッケージ4の側面に向けて延びる平面視四角形状に形成されている。中央部7の下面は、樹脂パッケージ4の裏面で露出している。
 中央部7には、その上面から掘り下がった2つ(一対)の溝状の凹部107が形成されている(図2A参照)。各凹部107は、断面半円形状に形成され、中央部7の向かい合う2辺とそれぞれ平行に延びている。中央部7の上面において、平面視で凹部107が形成されている部分を含む領域には、銀(Ag)からなる薄膜108が形成されている(図2A参照)。具体的には、図3に示すように、薄膜108は、アイランド5上に半導体チップ3が接合された状態で、アイランド5における半導体チップ3との対向部分とほぼ同じサイズに形成される。
 リード6は、平面視で、ダイパッド5の中央部7の各辺と対向する部分に1つずつ配置されている。各リード6は、平面視台形状に形成されている。より具体的には、各リード6は、ダイパッド5の対向する辺と平行な辺9と、樹脂パッケージ4の側面上を延びる辺10と、辺10と直交し、樹脂パッケージ4の側面と平行に延びる辺11と、辺9と辺10,11とをそれぞれ接続する辺12,13とを有している。各リード6の下面は、樹脂パッケージ4の裏面で露出し、配線基板(図示せず)との接続のための外部端子として機能する。また、各リード6の辺10を有する側面は、樹脂パッケージ4の側面で露出している。なお、各リード6は、図1Bおよび図2Bに示すように、平面視三角形状に形成されていてもよい。
 図3に示すように、半導体チップ3は、素子形成面である表面(デバイス形成面)を上方に向けた状態で、その裏面が導電性の半田接合剤109を介してダイパッド5に接合(ダイボンディング)されている。半導体チップ3の裏面には、半田接合剤109と半導体チップ3との接着性を高めるための金属膜115が被着されている。金属膜115は、たとえば、Au(金)、Ni(ニッケル)、AgおよびAuを半導体チップ3側からこの順に積層することにより形成される積層膜である。半田接合剤109の周縁部、すなわち、半導体チップ3とアイランド5との接合部分の側方には、樹脂状に固化した固化フラックス110が付着している。
 半導体チップ3の厚さは、200μm以上(この実施形態では、230μm)であり、半導体チップ3の表面(詳細には、後述するパッド14の表面)とリード6の上面との間には、その半導体チップ3の厚さに応じた高低差がある。
 図1Aに示すように、半導体チップ3の表面には、半導体チップ3に形成された配線(図示せず)と電気的に接続された5つのパッド14が形成されている。4つのパッド14(以下「角部のパッド14」という。)は、半導体チップ3の各角部に配置されている。残りの1つのパッド14(以下「残りのパッド14」という。)は、1つの角部のパッド14に隣接して配置されている。
 各パッド14には、ワイヤ(ボンディングワイヤ)15の一端が接合されている。各ワイヤ15の他端は、リード6の上面に接合されている。具体的には、4つの角部のパッド14に一端が接合されたワイヤ15の他端は、それぞれ互いに異なるリード6の上面に接合されている。残りのパッド14に一端が接合されたワイヤ15の他端は、その残りのパッド14から最も近いリード6に接合されている。これにより、半導体チップ3は、ワイヤ15を介して、リード6と電気的に接続されている。ワイヤ15の長さは、400μm以下(この実施形態では、300~400μm)である。
 なお、切断線III-IIIは、半導体チップ3の図1Aにおける下端の角部のパッド14から延びるワイヤ15と、前述した残りのパッド14から延びるワイヤ15との両方に対して平行に延びている。切断線III-IIIは、実際には、これらのワイヤ15と重なっているのだが、これらのワイヤ15を見やすくするため、これらのワイヤ15から少しずれた位置に図示されている。また、切断線IV-IVは、半導体チップ3の図1Aにおける上端の角部のパッド14から延びるワイヤ15と平行に延びている。切断線IV-IVは、実際には、このワイヤ15と重なっているのだが、このワイヤ15を見やすくするため、このワイヤ15から少しずれた位置に図示されている。
 各ワイヤ15は、ノーマルボンディングにより形成される。すなわち、ワイヤ15の形成時(ワイヤボンディング時)には、ワイヤボンダのキャピラリC(図34参照)に保持されたワイヤ15の先端部に電流が印加されることにより、その先端部にFAB(Free Air Ball)が形成される。そして、キャピラリCの移動により、FABがパッド14に押し付けられる。FABがキャピラリCに押圧されることにより、FABが変形して、図4に示すように、パッド14上に鏡餅形状のボール部16が形成され、ワイヤ15の一端のパッド14に対する接合(ファーストボンディング)が達成される。その後、キャピラリCがパッド14から上方に所定の高さまで離間される。そして、キャピラリCは、リード6の上面に向けて、リード6の上面に対して50ーよりも大きい傾斜角度で移動され、ワイヤ15がリード6の上面に押し付けられて、さらに引きちぎられる。これにより、ワイヤ15の他端が変形して、リード6上に側面視楔状のステッチ部17が形成され、ワイヤ15の他端のリード6に対する接合(セカンドボンディング)が達成される。よって、ワイヤ15は、パッド14上にボール部16を有し、リード6上にステッチ部17を有している。
 セカンドボンディングの際に、キャピラリCがリード6の上面に対して50°よりも大きい傾斜角度で移動されることにより、リード6の上面に対するワイヤ15の進入角度、つまりワイヤ15のステッチ部17側の端部とリード6の上面とのなす角度βが50°以上となっている。
 そして、半導体装置1では、ステッチ部17の長さ(ワイヤ15とリード6との接触部分のワイヤ15に沿う方向の長さ)Lが33μm以上である。また、ステッチ部17の上面とリード6の上面とのなす角度αが15°以上である。
 これにより、リード6の上面に対するワイヤ15の進入角度が50°以上であっても、ワイヤ15におけるステッチ部17の近傍にクラックを生じることなく、リード6に対するワイヤ15の良好な接合が達成されている。また、ワイヤ15の長さが400μm以下であり、かつ、半導体チップ3の表面とリード6の上面との高低差が200μm以上であっても、ワイヤ15におけるステッチ部17の近傍にクラックを生じることなく、リード6に対するワイヤ15の良好な接合が達成されている。
 図5A~5Eは、図1Aおよび図1Bに示す半導体装置の製造工程を順に説明するための模式的な断面図である。なお、図5A~5Eでは、リード6およびボンディングワイヤ15などの図示が省略されている。
 まず、凹部107が形成されたアイランド5を備えるリードフレーム2が用意される。リードフレーム2は、たとえば、銅薄板をプレス加工および打ち抜き加工することにより形成される。そして、図5Aに示すように、めっき法またはスパッタ法により、アイランド5上に銀からなる薄膜108が形成される。このとき、凹部107の内面にも薄膜108が形成される。
 次いで、図5Bに示すように、凹部107内における薄膜108上に固体の半田からなる支持体113が配置される。支持体113は、平面視で凹部107とほぼ同形状に形成され、断面が円形状をなしている。
 その後、図5Cに示すように、支持体113にフラックス114が塗布される。フラックス114は、アイランド5の上面の全域に一括して塗布されてもよいし、支持体113における凹部107から露出した部分に選択的に塗布されてもよい。
 次に、図5Dに示すように、支持体113上に半導体チップ3が載置される。これにより、半導体チップ3が支持体113に支持される。
 そして、たとえば、支持体113が鉛半田である場合、340℃の温度条件下で30secの熱処理が行われることにより、図5Eに示すように、支持体113が溶融し、その表面張力および濡れ性によって薄膜108が形成されている範囲で支持体113が拡がる。これにより、半導体チップ3とアイランド5との対向部分の隙間が溶融した支持体113(半田接合剤109)により埋め尽くされ、半導体チップ3とアイランド5との接合が達成される。また、このとき、フラックス114は、半導体チップ3の下面(金属膜115の表面)およびアイランド5の上面を洗浄しつつ、半導体チップ3の側方において凝集して固化し、固化フラックス110となる。
 その後、半導体チップ3とリード6との間にボンディングワイヤ15が架設され、アイランド5およびリード6の裏面のみが露出するように樹脂パッケージ4が形成されることにより、図1A~3に示す半導体装置1が得られる。
 以上のように、熱処理時には、半田の有する表面張力および濡れ性によって、溶融した半田が半導体チップ3とアイランド5との間に拡がる。よって、半導体チップ3とアイランド5との接合にペースト状の接着剤を用いる方法とは異なり、アイランド5に対する半導体チップ3の接合時に、半導体チップ3に荷重を加える必要がない。半導体チップ3に荷重を加えないことにより、その荷重による半田の拡がりを防止することができる。また、支持体113の大きさ、形状および数を半導体チップ3のサイズに応じて変更することにより、半導体チップ3のサイズにかかわらず、半導体チップ3とアイランド5との間からの半田の大きなはみ出しを生じることなく、半導体チップ3とアイランド5とを接合することができる。よって、小サイズの半導体チップ3であっても、半田の拡がりに起因する種々の問題を生じることなく、アイランド5へのダイボンディングを達成することができる。
 支持体113は、銀からなる薄膜108上に配置される。銀に対する半田の濡れ性が高いため、熱処理時に支持体113が溶融すると、その溶融した支持体113は、銀からなる薄膜108が形成されている範囲で拡がる。したがって、銀からなる薄膜108を形成することにより、支持体113の拡がりを制御することができ、半田の拡がりに起因する種々の問題が生じるのを確実に防止することができる。
 また、アイランド5には、その上面から掘り下がった凹部107が形成され、支持体113は凹部107内に配置される。これにより、支持体113をアイランド5上に安定して配置することができる。
 また、支持体113にフラックス114が塗布されるので、支持体113の表面が酸化されるのを防止することができるとともに、熱処理時における支持体113(半田)の濡れ性を向上させることができる。また、半導体チップ3およびアイランド5におけるフラックス114との接触部分がフラックス114の作用によって洗浄されるので、半導体チップ3とアイランド5との接着性を一層向上させることができる。
 図6は、アイランドおよび支持体の他の構成を示す斜視図である。
 図6に示すアイランド121は、図1Aに示すアイランド5に代えて用いることができる。
 アイランド121は、平面視四角形状をなしている。アイランド121には、その上面から半球状に掘り下がった3つの凹部122が形成されている。各凹部122は、それらを結ぶ線の内側が三角形となるように互いに間隔を空けて配置されている。
 アイランド121の上面において、平面視で凹部122が形成されている部分を含む領域には、銀からなる薄膜123が形成されている。具体的には、薄膜123は、アイランド121上に半導体チップ3(図1A参照)が接合された状態で、アイランド121における半導体チップ3との対向部分とほぼ同じサイズに形成される。また、薄膜123は、各凹部122の内面にも形成されている。
 凹部122内における薄膜123上には、支持体124が配置される。支持体124は、凹部122とほぼ同じ直径を有する球状に形成されている。
 半導体チップ3が3つの支持体124上に載置され、熱処理が行われると、支持体124が溶融し、その表面張力および濡れ性によって薄膜123が形成されている範囲で支持体124(半田)が拡がる。これにより、半導体チップ3とアイランド121との対向部分の隙間が溶融した支持体124により埋め尽くされ、半導体チップ3とアイランド121との接合が達成される。
 図7は、アイランドおよび支持体のさらに他の構成を示す斜視図である。
 図7に示すアイランド131は、図1Aに示すアイランド5に代えて用いることができる。
 アイランド131は、平面視四角形状をなしている。アイランド131の上面には、銀からなる薄膜132が形成されている。具体的には、薄膜132は、アイランド131上に半導体チップ3(図1A参照)が接合された状態で、アイランド131における半導体チップ3との対向部分とほぼ同じサイズに形成される。
 薄膜132上には、2つの支持体133が配置される。支持体133は、平面視細長板状(リボン状)に形成され、互いに間隔を空けて平行に延びている。
 半導体チップ3が2つの支持体133上に載置され、熱処理が行われると、支持体133が溶融し、その表面張力および濡れ性によって薄膜132が形成されている範囲で支持体133(半田)が拡がる。これにより、半導体チップ3とアイランド131との対向部分の隙間が溶融した支持体133により埋め尽くされ、半導体チップ3とアイランド131との接合が達成される。
 なお、この実施形態の半導体装置1では、QFN(Quad Flat Non-leaded Package)が適用されているが、この実施形態は、SON(Small Outlined Non-leaded Package)など、他の種類のノンリードパッケージが適用された半導体装置にも応用できる。
 また、リードの端面と封止樹脂の側面とが面一に形成された、いわゆるシンギュレーションタイプに限らず、リードが封止樹脂の側面から突出するリードカットタイプのノンリードパッケージが適用された半導体装置に本実施形態を応用することもできる。
 さらに、ノンリードパッケージに限らず、QFP(Quad Flat Package)など、封止樹脂からリードが突出することによるアウターリードを有するパッケージが適用された半導体装置にも本実施形態を応用できる。
 また、半導体装置1として、樹脂パッケージの裏面からリードおよびアイランドの裏面が露出する、いわゆる表面実装型の半導体装置を例示したが、樹脂パッケージの側方に向けてリードが延伸する樹脂封止型の半導体装置にこの実施形態を応用してもよい。すなわち、本実施形態は、アイランド上に半導体チップを接合した構造を有する半導体装置に広く適用することができる。
 次に、本発明を、実施例および比較例に基づいて説明するが、本発明は、以下の実施例によって限定されるものではない。
1.実施例1
 図8に示すキャピラリを用いて、ノーマルボンディングにより、半導体チップの表面のパッドとリードとの間に、線径25μmの金ワイヤを架設した。図8に示すキャピラリのT寸法は、130μmであり、CD寸法は、50μmである。リードの上面に対するワイヤの進入角度は、50°である。
 そして、走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて、金ワイヤのリードとの接合部分(ステッチ部)を観察した。そのときのSEM画像を、図9~11に示す。
 図9~11に示すように、この実施例1では、長さ33μmのステッチ部が形成され、そのステッチ部の近傍にクラックなどの欠陥を生じていないことが確認された。
2.実施例2
 図12に示すキャピラリを用いて、ノーマルボンディングにより、半導体チップの表面のパッドとリードとの間に、線径25μmの金ワイヤを架設した。図12に示すキャピラリのFA(Face Angle)角は、15°である。リードの上面に対するワイヤの進入角度は、50°である。
 そして、走査型電子顕微鏡を用いて、金ワイヤのリードとの接合部分(ステッチ部)を観察した。そのときのSEM画像を、図13,14に示す。
 図13,14に示すように、この実施例2では、その上面とリードの上面とのなす角度αが15°であるステッチ部が形成され、そのステッチ部の近傍にクラックなどの欠陥を生じていないことが確認された。
3.比較例
 図15に示すキャピラリを用いて、ノーマルボンディングにより、半導体チップの表面のパッドとリードとの間に、線径25μmの金ワイヤを架設した。図15に示すキャピラリのFA(Face Angle)角は、11°である。リードの上面に対するワイヤの進入角度は、50°である。
 そして、走査型電子顕微鏡を用いて、金ワイヤのリードとの接合部分(ステッチ部)を観察した。そのときのSEM画像を、図16に示す。
 図16に示すように、この比較例では、ステッチ部の近傍にクラックが生じていることが確認された。
<第2実施形態>
 図17は、本発明の第2実施形態に係る半導体装置の平面図である。図17では、樹脂パッケージに封止されている各部材が透過して実線で示されている。図18は、図17に示す切断線A-Aにおける半導体装置の模式的な断面図である。図18では、樹脂パッケージの図示が省略されている。なお、この実施形態の説明において、第1実施形態の各部に相当する部分は、同一参照符号を用いることにする。
 半導体装置1は、リードフレーム2に半導体チップ3を接合し、これらを樹脂パッケージ4で封止した構造を有している。半導体装置1(樹脂パッケージ4)の外形は、扁平な直方体形状(この実施形態では、平面視正方形状の6面体)をなしている。
 リードフレーム2は、図17に示すように、平面視で半導体装置1の中央部に配置されるダイパッド5と、ダイパッド5の周囲に配置される4つのリード6とを備えている。リードフレーム2は、金属薄板(たとえば、銅薄板)を打ち抜くことにより形成される。
 ダイパッド5は、中央部7と、吊り部8とを一体的に備えている。中央部7は、平面視でその中心が樹脂パッケージ4の中心と重なり、樹脂パッケージ4の各辺に対して45°傾斜する4辺を有する平面視四角形状に形成されている。吊り部8は、中央部7の各角部から当該角部が対向する樹脂パッケージ4の側面に向けて延びる平面視四角形状に形成されている。中央部7の下面は、樹脂パッケージ4の裏面で露出している。
 リード6は、ダイパッド5の中央部7の各辺と対向する部分に1つずつ配置されている。各リード6は、平面視台形状に形成されている。より具体的には、各リード6は、ダイパッド5の対向する辺と平行な辺9と、樹脂パッケージ4の側面上を延びる辺10と、辺10と直交し、樹脂パッケージ4の側面と平行に延びる辺11と、辺9と辺10,11とをそれぞれ接続する辺12,13とを有している。各リード6の下面は、樹脂パッケージ4の裏面で露出し、配線基板(図示せず)との接続のための外部端子として機能する。また、各リード6の辺10を有する側面は、樹脂パッケージ4の側面で露出している。
 半導体チップ3は、素子形成面である表面を上方に向けた状態で、その裏面が導電性接合剤(図示せず)を介してダイパッド5に接合(ダイボンディング)されている。半導体チップ3の厚さは、200μm以上(この実施形態では、230μm)であり、半導体チップ3の表面(詳細には、後述するパッド14の表面)とリード6の上面との間には、その半導体チップ3の厚さに応じた高低差がある。
 半導体チップ3の表面には、半導体チップ3に形成された配線(図示せず)と電気的に接続された5つのパッド14が形成されている。4つのパッド14(以下「角部のパッド14」という。)は、半導体チップ3の各角部に配置されている。残りの1つのパッド14(以下「残りのパッド14」という。)は、1つの角部のパッド14に隣接して配置されている。
 各パッド14には、ワイヤ15の一端が接合されている。各ワイヤ15の他端は、リード6の上面に接合されている。具体的には、4つの角部のパッド14に一端が接合されたワイヤ15の他端は、それぞれ互いに異なるリード6の上面に接合されている。残りのパッド14に一端が接合されたワイヤ15の他端は、その残りのパッド14から最も近いリード6に接合されている。これにより、半導体チップ3は、ワイヤ15を介して、リード6と電気的に接続されている。ワイヤ15の長さは、400μm以下(この実施形態では、300~400μm)である。
 なお、切断線A-Aは、半導体チップ3の図17における上端の角部のパッド14から延びるワイヤ15と平行に延びている。切断線A-Aは、実際には、このワイヤ15と重なっているのだが、このワイヤ15を見やすくするため、このワイヤ15から少しずれた位置に図示されている。
 各ワイヤ15は、ノーマルボンディングにより形成される。すなわち、ワイヤ15の形成時(ワイヤボンディング時)には、ワイヤボンダのキャピラリC(図34参照)に保持されたワイヤ15の先端部に電流が印加されることにより、その先端部にFAB(Free Air Ball)が形成される。そして、キャピラリCの移動により、FABがパッド14に押し付けられる。FABがキャピラリCに押圧されることにより、FABが変形して、図18に示すように、パッド14上に鏡餅形状のボール部16が形成され、ワイヤ15の一端のパッド14に対する接合(ファーストボンディング)が達成される。その後、キャピラリCがパッド14から上方に所定の高さまで離間される。そして、キャピラリCは、リード6の上面に向けて、リード6の上面に対して50°よりも大きい傾斜角度で移動され、ワイヤ15がリード6の上面に押し付けられて、さらに引きちぎられる。これにより、ワイヤ15の他端が変形して、リード6上に側面視楔状のステッチ部17が形成され、ワイヤ15の他端のリード6に対する接合(セカンドボンディング)が達成される。よって、ワイヤ15は、パッド14上にボール部16を有し、リード6上にステッチ部17を有している。
 セカンドボンディングの際に、キャピラリCがリード6の上面に対して50°よりも大きい傾斜角度で移動されることにより、リード6の上面に対するワイヤ15の進入角度、つまりワイヤ15のステッチ部17側の端部とリード6の上面とのなす角度βが50°以上となっている。
 そして、半導体装置1では、ステッチ部17の長さ(ワイヤ15とリード6との接触部分のワイヤ15に沿う方向の長さ)Lが33μm以上である。また、ステッチ部17の上面とリード6の上面とのなす角度αが15°以上である。
 これにより、リード6の上面に対するワイヤ15の進入角度が50°以上であっても、ワイヤ15におけるステッチ部17の近傍にクラックを生じることなく、リード6に対するワイヤ15の良好な接合が達成されている。また、ワイヤ15の長さが400μm以下であり、かつ、半導体チップ3の表面とリード6の上面との高低差が200μm以上であっても、ワイヤ15におけるステッチ部17の近傍にクラックを生じることなく、リード6に対するワイヤ15の良好な接合が達成されている。
 なお、この実施形態の半導体装置1では、QFN(Quad Flat Non-leaded Package)が適用されているが、この実施形態は、SON(Small Outlined Non-leaded Package)など、他の種類のノンリードパッケージが適用された半導体装置にも応用できる。
 また、リードの端面と封止樹脂の側面とが面一に形成された、いわゆるシンギュレーションタイプに限らず、リードが封止樹脂の側面から突出するリードカットタイプのノンリードパッケージが適用された半導体装置に本実施形態を応用することもできる。
 さらに、ノンリードパッケージに限らず、QFP(Quad Flat Package)など、封止樹脂からリードが突出することによるアウターリードを有するパッケージが適用された半導体装置にも本実施形態を応用できる。
 次に、本発明を、実施例および比較例に基づいて説明するが、本発明は、以下の実施例によって限定されるものではない。
1.実施例1
 図19に示すキャピラリを用いて、ノーマルボンディングにより、半導体チップの表面のパッドとリードとの間に、線径25μmの金ワイヤを架設した。図19に示すキャピラリのT寸法は、130μmあり、CD寸法は、50μmである。リードの上面に対するワイヤの進入角度は、50°である。
 そして、走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて、金ワイヤのリードとの接合部分(ステッチ部)を観察した。そのときのSEM画像を、図20~22に示す。
 図20~22に示すように、この実施例1では、長さ33μmのステッチ部が形成され、そのステッチ部の近傍にクラックなどの欠陥を生じていないことが確認された。
2.実施例2
 図23に示すキャピラリを用いて、ノーマルボンディングにより、半導体チップの表面のパッドとリードとの間に、線径25μmの金ワイヤを架設した。図23に示すキャピラリのFA(Face Angle)角は、15°である。リードの上面に対するワイヤの進入角度は、50°である。
 そして、走査型電子顕微鏡を用いて、金ワイヤのリードとの接合部分(ステッチ部)を観察した。そのときのSEM画像を、図24,25に示す。
 図24,25に示すように、この実施例2では、その上面とリードの上面とのなす角度痰ェ15ーであるステッチ部が形成され、そのステッチ部の近傍にクラックなどの欠陥を生じていないことが確認された。
3.比較例
 図26に示すキャピラリを用いて、ノーマルボンディングにより、半導体チップの表面のパッドとリードとの間に、線径25μmの金ワイヤを架設した。図26に示すキャピラリのFA(Face Angle)角は、11°である。リードの上面に対するワイヤの進入角度は、50°である。
 そして、走査型電子顕微鏡を用いて、金ワイヤのリードとの接合部分(ステッチ部)を観察した。そのときのSEM画像を、図27に示す。
 図27に示すように、この比較例では、ステッチ部の近傍にクラックが生じていることが確認された。
<第3実施形態>
 図28は、本発明の第3実施形態に係る半導体装置の模式的な平面図である。図29は、図28に示す半導体装置から半導体チップ、ワイヤおよび半田接合剤を省略した状態を示す模式的な平面図である。図30は、図28に示す半導体装置を切断線B-Bで切断したときの模式的な断面図である。なお、この実施形態の説明において、第1および第2実施形態の各部に相当する部分は、同一参照符号を用いることにする。
 半導体装置1は、半導体チップ3をリードフレーム2とともに樹脂パッケージ4で封止した構造を有している。半導体装置1の外形は、扁平な直方体形状(この実施形態では、平面視正方形状の6面体)をなしている。
 リードフレーム2は、銅(Cu)などの金属材料からなり、アイランド5とアイランド5の周囲に配置される4つのリード6とを備えている。
 アイランド5は、平面視四角形状(この実施形態では、平面視正方形状)をなしている。アイランド5の下面は、樹脂パッケージ4の裏面で露出している。また、アイランド5には、その上面から掘り下がった2つ(一対)の溝状の凹部107が形成されている(図29参照)。各凹部107は、断面半円形状に形成され、アイランド5の向かい合う2辺とそれぞれ平行に延びている。アイランド5の上面において、平面視で凹部107が形成されている部分を含む領域には、銀(Ag)からなる薄膜108が形成されている(図29参照)。具体的には、図28に示すように、薄膜108は、アイランド5上に半導体チップ3が接合された状態で、アイランド5における半導体チップ3との対向部分とほぼ同じサイズに形成される。
 リード6は、平面視で、アイランド5の4辺とそれぞれ対向する部分に配置されている。各リード6は、平面視三角形状に形成されている。各リード6の下面は、樹脂パッケージ4の裏面で露出し、配線基板(図示せず)との接続のための外部端子として機能する。
 図30に示すように、半導体チップ3は、機能素子が形成されている側の表面(デバイス形成面)を上方に向けた状態で、その裏面が導電性の半田接合剤109を介してアイランド5に接合(ダイボンディング)されている。半導体チップ3の裏面には、半田接合剤109と半導体チップ3との接着性を高めるための金属膜115が被着されている。金属膜115は、たとえば、Au(金)、Ni(ニッケル)、AgおよびAuを半導体チップ3側からこの順に積層することにより形成される積層膜である。
 半田接合剤109の周縁部、すなわち、半導体チップ3とアイランド5との接合部分の側方には、樹脂状に固化した固化フラックス110が付着している。
 半導体チップ3の表面には、各リード6と対応して、パッド14が配線層の一部を表面保護膜から露出させることにより形成されている。各パッド14には、ボンディングワイヤ15の一端が接合されている。ボンディングワイヤ15の他端は、各リード6の上面に接合されている。これにより、半導体チップ3は、ボンディングワイヤ15を介して、リード6と電気的に接続されている。
 なお、切断線B-Bは、半導体チップ3の図28における下端のパッド14から延びるワイヤ15と、図28における右端のパッド14の左隣のパッド14から延びるワイヤ15との両方に対して平行に延びている。切断線B-Bは、実際には、これらのワイヤ15と重なっているのだが、これらのワイヤ15を見やすくするため、これらのワイヤ15から少しずれた位置に図示されている。
 図31A~31Eは、図28に示す半導体装置の製造工程を順に説明するための模式的な断面図である。なお、図31A~31Eでは、リード6およびボンディングワイヤ15などの図示が省略されている。
 まず、凹部107が形成されたアイランド5を備えるリードフレーム2が用意される。リードフレーム2は、たとえば、銅薄板をプレス加工および打ち抜き加工することにより形成される。そして、図31Aに示すように、めっき法またはスパッタ法により、アイランド5上に銀からなる薄膜108が形成される。このとき、凹部107の内面にも薄膜108が形成される。
 次いで、図31Bに示すように、凹部107内における薄膜108上に固体の半田からなる支持体113が配置される。支持体113は、平面視で凹部107とほぼ同形状に形成され、断面が円形状をなしている。
 その後、図31Cに示すように、支持体113にフラックス114が塗布される。フラックス114は、アイランド5の上面の全域に一括して塗布されてもよいし、支持体113における凹部107から露出した部分に選択的に塗布されてもよい。
 次に、図31Dに示すように、支持体113上に半導体チップ3が載置される。これにより、半導体チップ3が支持体113に支持される。
 そして、たとえば、支持体113が鉛半田である場合、340℃の温度条件下で30secの熱処理が行われることにより、図31Eに示すように、支持体113が溶融し、その表面張力および濡れ性によって薄膜108が形成されている範囲で支持体113が拡がる。これにより、半導体チップ3とアイランド5との対向部分の隙間が溶融した支持体113(半田接合剤109)により埋め尽くされ、半導体チップ3とアイランド5との接合が達成される。また、このとき、フラックス114は、半導体チップ3の下面(金属膜115の表面)およびアイランド5の上面を洗浄しつつ、半導体チップ3の側方において凝集して固化し、固化フラックス110となる。
 その後、半導体チップ3とリード6との間にボンディングワイヤ15が架設され、アイランド5およびリード6の裏面のみが露出するように樹脂パッケージ4が形成されることにより、図28~30に示す半導体装置1が得られる。
 以上のように、熱処理時には、半田の有する表面張力および濡れ性によって、溶融した半田が半導体チップ3とアイランド5との間に拡がる。よって、半導体チップ3とアイランド5との接合にペースト状の接着剤を用いる方法とは異なり、アイランド5に対する半導体チップ3の接合時に、半導体チップ3に荷重を加える必要がない。半導体チップ3に荷重を加えないことにより、その荷重による半田の拡がりを防止することができる。また、支持体113の大きさ、形状および数を半導体チップ3のサイズに応じて変更することにより、半導体チップ3のサイズにかかわらず、半導体チップ3とアイランド5との間からの半田の大きなはみ出しを生じることなく、半導体チップ3とアイランド5とを接合することができる。よって、小サイズの半導体チップ3であっても、半田の拡がりに起因する種々の問題を生じることなく、アイランド5へのダイボンディングを達成することができる。
 支持体113は、銀からなる薄膜108上に配置される。銀に対する半田の濡れ性が高いため、熱処理時に支持体113が溶融すると、その溶融した支持体113は、銀からなる薄膜108が形成されている範囲で拡がる。したがって、銀からなる薄膜108を形成することにより、支持体113の拡がりを制御することができ、半田の拡がりに起因する種々の問題が生じるのを確実に防止することができる。
 また、アイランド5には、その上面から掘り下がった凹部107が形成され、支持体113は凹部107内に配置される。これにより、支持体113をアイランド5上に安定して配置することができる。
 また、支持体113にフラックス114が塗布されるので、支持体113の表面が酸化されるのを防止することができるとともに、熱処理時における支持体113(半田)の濡れ性を向上させることができる。また、半導体チップ3およびアイランド5におけるフラックス114との接触部分がフラックス114の作用によって洗浄されるので、半導体チップ3とアイランド5との接着性を一層向上させることができる。
 図32は、アイランドおよび支持体の他の構成を示す斜視図である。
 図32に示すアイランド121は、図28に示すアイランド5に代えて用いることができる。
 アイランド121は、平面視四角形状をなしている。アイランド121には、その上面から半球状に掘り下がった3つの凹部122が形成されている。各凹部122は、それらを結ぶ線の内側が三角形となるように互いに間隔を空けて配置されている。
 アイランド121の上面において、平面視で凹部122が形成されている部分を含む領域には、銀からなる薄膜123が形成されている。具体的には、薄膜123は、アイランド121上に半導体チップ3(図28参照)が接合された状態で、アイランド121における半導体チップ3との対向部分とほぼ同じサイズに形成される。また、薄膜123は、各凹部122の内面にも形成されている。
 凹部122内における薄膜123上には、支持体124が配置される。支持体124は、凹部122とほぼ同じ直径を有する球状に形成されている。
 半導体チップ3が3つの支持体124上に載置され、熱処理が行われると、支持体124が溶融し、その表面張力および濡れ性によって薄膜123が形成されている範囲で支持体124(半田)が拡がる。これにより、半導体チップ3とアイランド121との対向部分の隙間が溶融した支持体124により埋め尽くされ、半導体チップ3とアイランド121との接合が達成される。
 図33は、アイランドおよび支持体のさらに他の構成を示す斜視図である。
 図33に示すアイランド131は、図28に示すアイランド5に代えて用いることができる。
 アイランド131は、平面視四角形状をなしている。アイランド131の上面には、銀からなる薄膜132が形成されている。具体的には、薄膜132は、アイランド131上に半導体チップ3(図28参照)が接合された状態で、アイランド131における半導体チップ3との対向部分とほぼ同じサイズに形成される。
 薄膜132上には、2つの支持体133が配置される。支持体133は、平面視細長板状(リボン状)に形成され、互いに間隔を空けて平行に延びている。
 半導体チップ3が2つの支持体133上に載置され、熱処理が行われると、支持体133が溶融し、その表面張力および濡れ性によって薄膜132が形成されている範囲で支持体133(半田)が拡がる。これにより、半導体チップ3とアイランド131との対向部分の隙間が溶融した支持体133により埋め尽くされ、半導体チップ3とアイランド131との接合が達成される。
 なお、半導体装置1として、樹脂パッケージの裏面からリードおよびアイランドの裏面が露出する、いわゆる表面実装型の半導体装置を例示したが、この実施形態は、樹脂パッケージの側方に向けてリードが延伸する樹脂封止型の半導体装置にも応用できる。すなわち、本実施形態は、アイランド上に半導体チップを接合した構造を有する半導体装置に応用できる。
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の精神および範囲は添付の請求の範囲によってのみ限定される。
 この出願は、2009年9月11日に日本国特許庁に提出された特願2009-210776号と、2009年9月16日に日本国特許庁に提出された特願2009-214925号とに対応しており、これらの出願の全開示はここに引用により組み込まれるものとする。
 1   半導体装置
 3   半導体チップ
 5   アイランド
 6   リード
 14  パッド
 15  ワイヤ
 16  ボール部
 17  ステッチ部
 107 凹部
 108 薄膜
 109 半田接合剤
 110 固化フラックス(フラックス)
 113 支持体
 114 フラックス
 121 アイランド
 122 凹部
 123 薄膜
 124 支持体
 131 アイランド
 132 薄膜
 133 支持体

Claims (20)

  1.  半導体チップと、
     前記半導体チップの側方に配置されるリードと、
     一端および他端がそれぞれ前記半導体チップおよび前記リードに接合されて、前記半導体チップおよび前記リード上にそれぞれボール部および側面視楔状のステッチ部を有するワイヤとを含み、
     前記リードに対する前記ワイヤの進入角度が50°以上であり、
     前記ステッチ部の長さが33μm以上である、半導体装置。
  2.  半導体チップと、
     前記半導体チップの側方に配置されるリードと、
     一端および他端がそれぞれ前記半導体チップおよび前記リードに接合されて、前記半導体チップおよび前記リード上にそれぞれボール部および側面視楔状のステッチ部を有するワイヤとを含み、
     前記リードに対する前記ワイヤの進入角度が50°以上であり、
     前記ステッチ部の上面と前記リードの上面とのなす角度が15°以上である、半導体装置。
  3.  前記ステッチ部の長さが33μm以上である、請求項2に記載の半導体装置。
  4.  半導体チップと、
     前記半導体チップの側方に配置されるリードと、
     一端および他端がそれぞれ前記半導体チップおよび前記リードに接合されて、前記半導体チップおよび前記リード上にそれぞれボール部および側面視楔状のステッチ部を有するワイヤとを含み、
     前記ワイヤの長さが400μm以下であり、
     前記半導体チップにおける前記ボール部の接合部分と前記リードにおける前記ステッチ部の接合部分との高低差が200μm以上であり、
     前記ステッチ部の長さが33μm以上である、半導体装置。
  5.  半導体チップと、
     前記半導体チップの側方に配置されるリードと、
     一端および他端がそれぞれ前記半導体チップおよび前記リードに接合されて、前記半導体チップおよび前記リード上にそれぞれボール部および側面視楔状のステッチ部を有するワイヤとを含み、
     前記ワイヤの長さが400μm以下であり、
     前記半導体チップにおける前記ボール部の接合部分と前記リードにおける前記ステッチ部の接合部分との高低差が200μm以上であり、
     前記ステッチ部の上面と前記リードの上面とのなす角度が15°以上である、半導体装置。
  6.  前記ステッチ部の長さが33μm以上である、請求項5に記載の半導体装置。
  7.  前記半導体チップが上面に接合されるアイランドと、
     半田からなり、前記半導体チップと前記アイランドとの間に介在され、前記半導体チップと前記アイランドとを接合させる半田接合剤とをさらに含み、
     前記半田接合剤には、フラックスが付着している、請求項1~6のいずれか一項に記載の半導体装置。
  8.  前記アイランドには、その上面から掘り下がった凹部が形成されている、請求項7に記載の半導体装置。
  9.  前記アイランドは、平面視四角形状であり、
     前記アイランドの上面には、四角形状の前記アイランドの対向する2辺にそれぞれ沿って延びるように掘り下がった一対の溝状の凹部が形成されている、請求項7に記載の半導体装置。
  10.  前記凹部は、断面半円形状である、請求項8または9に記載の半導体装置。
  11.  前記凹部は、半球状である、請求項8に記載の半導体装置。
  12.  アイランド上に固体の半田からなる支持体を配置する支持体配置工程と、
     前記支持体配置工程後、前記支持体上に半導体チップを載置し、前記支持体に前記半導体チップを支持させるチップ支持工程と、
     前記チップ載置工程後、熱処理により、前記支持体を溶融させて前記アイランドと前記半導体チップとを接合する接合工程とを含む、半導体装置の製造方法。
  13.  前記支持体配置工程に先立ち、前記アイランド上に銀からなる薄膜を形成する工程をさらに含み、
     前記支持体配置工程では、前記薄膜上に前記支持体が配置される、請求項12に記載の半導体装置の製造方法。
  14.  前記アイランドには、その上面から掘り下がった凹部が形成されており、
     前記支持体配置工程では、前記支持体は前記凹部内に配置される、請求項12または13に記載の半導体装置の製造方法。
  15.  前記支持体配置工程の後、前記チップ支持工程に先立ち、前記支持体にフラックスを塗布するフラックス塗布工程をさらに含む、請求項12~14のいずれか一項に記載の半導体装置の製造方法。
  16.  半導体チップと、
     前記半導体チップが上面に接合されるアイランドと、
     半田からなり、前記半導体チップと前記アイランドとの間に介在され、前記半導体チップと前記アイランドとを接合させる半田接合剤とを含み、
     前記半田接合剤には、フラックスが付着している、半導体装置。
  17.  前記アイランドには、その上面から掘り下がった凹部が形成されている、請求項16に記載の半導体装置。
  18.  前記アイランドは、平面視四角形状であり、
     前記アイランドの上面には、四角形状の前記アイランドの対向する2辺にそれぞれ沿って延びるように掘り下がった一対の溝状の凹部が形成されている、請求項16に記載の半導体装置。
  19.  前記凹部は、断面半円形状である、請求項17または18に記載の半導体装置。
  20.  前記凹部は、半球状である、請求項17に記載の半導体装置。
PCT/JP2010/065652 2009-09-11 2010-09-10 半導体装置およびその製造方法 WO2011030867A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011530893A JP5629264B2 (ja) 2009-09-11 2010-09-10 半導体装置およびその製造方法
CN2010800396780A CN102484083A (zh) 2009-09-11 2010-09-10 半导体装置及其制造方法
US13/395,653 US9293435B2 (en) 2009-09-11 2010-09-10 Semiconductor device and production method therefor
US15/058,863 US9543239B2 (en) 2009-09-11 2016-03-02 Semiconductor device and production method therefor
US15/370,436 US9837373B2 (en) 2009-09-11 2016-12-06 Semiconductor device and production method therefor
US15/811,542 US20180068972A1 (en) 2009-09-11 2017-11-13 Semiconductor device and production method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-210776 2009-09-11
JP2009210776 2009-09-11
JP2009-214925 2009-09-16
JP2009214925 2009-09-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/395,653 A-371-Of-International US9293435B2 (en) 2009-09-11 2010-09-10 Semiconductor device and production method therefor
US15/058,863 Continuation US9543239B2 (en) 2009-09-11 2016-03-02 Semiconductor device and production method therefor

Publications (1)

Publication Number Publication Date
WO2011030867A1 true WO2011030867A1 (ja) 2011-03-17

Family

ID=43732535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065652 WO2011030867A1 (ja) 2009-09-11 2010-09-10 半導体装置およびその製造方法

Country Status (5)

Country Link
US (4) US9293435B2 (ja)
JP (2) JP5629264B2 (ja)
CN (1) CN102484083A (ja)
TW (1) TWI573235B (ja)
WO (1) WO2011030867A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130093072A1 (en) * 2011-10-13 2013-04-18 Stmicroelectronics Pte Ltd. Leadframe pad design with enhanced robustness to die crack failure
JP2013175699A (ja) * 2011-08-26 2013-09-05 Rohm Co Ltd 半導体装置およびその製造方法
JP2019192947A (ja) * 2013-07-31 2019-10-31 日亜化学工業株式会社 リードフレーム、樹脂付きリードフレーム、樹脂パッケージ、発光装置及び樹脂パッケージの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5464825B2 (ja) * 2008-07-23 2014-04-09 ローム株式会社 Ledモジュール
KR101884234B1 (ko) * 2011-10-24 2018-08-30 엘지이노텍 주식회사 스테핑 모터의 피드백 루프제어 구조
US9269690B2 (en) * 2013-12-06 2016-02-23 Nxp B.V. Packaged semiconductor device with interior polygonal pads
JP6986385B2 (ja) * 2016-08-22 2021-12-22 ローム株式会社 半導体装置、半導体装置の実装構造

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106350A (ja) * 1993-09-30 1995-04-21 Nec Corp 半導体装置
JP2004319830A (ja) * 2003-04-17 2004-11-11 Sony Corp 電子部品、その実装基材、電子部品装置及び電子部品の製造方法
JP2008041999A (ja) * 2006-08-08 2008-02-21 Nec Electronics Corp 半導体装置およびその製造方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521106A (en) * 1978-07-31 1980-02-15 Nec Home Electronics Ltd Method of forming ohmic electrode
JPS5596666A (en) * 1979-01-18 1980-07-23 Mitsubishi Electric Corp Method of fabricating semiconductor device substrate
JPS5615074U (ja) * 1979-07-13 1981-02-09
JPS5615074A (en) 1979-07-19 1981-02-13 Pioneer Electronic Corp Semiconductor device
US4415115A (en) * 1981-06-08 1983-11-15 Motorola, Inc. Bonding means and method
JPS61168927A (ja) * 1985-01-22 1986-07-30 Toshiba Corp ハイブリツド集積回路装置
JPH0372641A (ja) * 1989-05-09 1991-03-27 Citizen Watch Co Ltd Ic実装構造及びその実装方法
JPH0364033A (ja) * 1989-08-02 1991-03-19 Hitachi Ltd 半導体装置およびその製造に用いるリードフレーム
JPH04155854A (ja) * 1990-10-19 1992-05-28 Hitachi Ltd 半導体集積回路装置およびそれに用いるリードフレーム
CH686325A5 (de) * 1992-11-27 1996-02-29 Esec Sempac Sa Elektronikmodul und Chip-Karte.
JP2823454B2 (ja) * 1992-12-03 1998-11-11 株式会社東芝 ワイヤボンディング装置
US5421503A (en) * 1994-08-24 1995-06-06 Kulicke And Soffa Investments, Inc. Fine pitch capillary bonding tool
JPH0992776A (ja) * 1995-09-28 1997-04-04 Mitsubishi Electric Corp リードフレームおよび半導体装置
TW335526B (en) * 1996-07-15 1998-07-01 Matsushita Electron Co Ltd A semiconductor and the manufacturing method
US5907769A (en) * 1996-12-30 1999-05-25 Micron Technology, Inc. Leads under chip in conventional IC package
JPH1167809A (ja) * 1997-08-26 1999-03-09 Sanyo Electric Co Ltd 半導体装置
JPH11111750A (ja) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd 半導体装置
TW424027B (en) * 1998-01-15 2001-03-01 Esec Sa Method of making wire connections of predetermined shaped
JP2000091372A (ja) * 1998-09-11 2000-03-31 Matsushita Electronics Industry Corp 電子部品及びそのワイヤボンディングに使用するキャピラリ
JP2001230360A (ja) * 2000-02-18 2001-08-24 Hitachi Ltd 半導体集積回路装置およびその製造方法
JP3802821B2 (ja) 2002-02-22 2006-07-26 新日本無線株式会社 電子部品のリード切断方法
JP2004207292A (ja) 2002-12-24 2004-07-22 Seiko Epson Corp ワイヤボンディング方法、半導体装置及びその製造方法、回路基板並びに電子機器
JP2007073763A (ja) * 2005-09-07 2007-03-22 Renesas Technology Corp 半導体装置およびその製造方法
JP4980600B2 (ja) * 2005-09-27 2012-07-18 旭化成エレクトロニクス株式会社 磁気センサ
JP4738983B2 (ja) * 2005-11-08 2011-08-03 ローム株式会社 半導体装置
KR100888885B1 (ko) * 2007-04-19 2009-03-17 삼성전자주식회사 리드프레임 및 이를 갖는 반도체 장치
JP2008294172A (ja) * 2007-05-24 2008-12-04 Panasonic Corp リードフレームおよび半導体装置ならびに半導体装置の製造方法
TWI506710B (zh) * 2009-09-09 2015-11-01 Renesas Electronics Corp 半導體裝置之製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106350A (ja) * 1993-09-30 1995-04-21 Nec Corp 半導体装置
JP2004319830A (ja) * 2003-04-17 2004-11-11 Sony Corp 電子部品、その実装基材、電子部品装置及び電子部品の製造方法
JP2008041999A (ja) * 2006-08-08 2008-02-21 Nec Electronics Corp 半導体装置およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175699A (ja) * 2011-08-26 2013-09-05 Rohm Co Ltd 半導体装置およびその製造方法
US20130093072A1 (en) * 2011-10-13 2013-04-18 Stmicroelectronics Pte Ltd. Leadframe pad design with enhanced robustness to die crack failure
JP2019192947A (ja) * 2013-07-31 2019-10-31 日亜化学工業株式会社 リードフレーム、樹脂付きリードフレーム、樹脂パッケージ、発光装置及び樹脂パッケージの製造方法

Also Published As

Publication number Publication date
US20170084569A1 (en) 2017-03-23
US9543239B2 (en) 2017-01-10
JPWO2011030867A1 (ja) 2013-02-07
US20160181186A1 (en) 2016-06-23
TWI573235B (zh) 2017-03-01
JP6035656B2 (ja) 2016-11-30
US20180068972A1 (en) 2018-03-08
US9293435B2 (en) 2016-03-22
JP5629264B2 (ja) 2014-11-19
JP2015026857A (ja) 2015-02-05
TW201125088A (en) 2011-07-16
US9837373B2 (en) 2017-12-05
US20120168946A1 (en) 2012-07-05
CN102484083A (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
JP6035656B2 (ja) 半導体装置およびその製造方法
KR100470897B1 (ko) 듀얼 다이 패키지 제조 방법
TWI421998B (zh) Semiconductor device, lead frame and semiconductor device manufacturing method
JP4917112B2 (ja) 半導体装置
TWI291756B (en) Low cost lead-free preplated leadframe having improved adhesion and solderability
JPH11260985A (ja) リードフレーム,樹脂封止型半導体装置及びその製造方法
JPH11307675A (ja) 樹脂封止型半導体装置及びその製造方法
US8786084B2 (en) Semiconductor package and method of forming
JP3535760B2 (ja) 樹脂封止型半導体装置,その製造方法及びリードフレーム
JP2004228166A (ja) 半導体装置及びその製造方法
JP2010165777A (ja) 半導体装置及びその製造方法
JP2018137342A (ja) 半導体装置及びその製造方法
JP5420737B2 (ja) 半導体装置の製造方法
JP4066050B2 (ja) 樹脂封止型半導体装置及びその製造方法
JP2007073763A (ja) 半導体装置およびその製造方法
JP2000049272A (ja) リードフレーム及びそれを用いた半導体装置の製造方法並びに半導体装置
JP2019145625A (ja) 半導体装置
JP2006216993A (ja) 樹脂封止型半導体装置
JP2002164496A (ja) 半導体装置およびその製造方法
CN106486452B (zh) 半导体装置
JP2012023204A (ja) 半導体装置およびその製造方法
JP2020188078A (ja) 半導体装置
JP2004335947A (ja) 半導体装置及び半導体装置の作製方法
JP2005223352A (ja) 半導体装置及び半導体装置の製造方法
JP2010153676A (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039678.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815461

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011530893

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13395653

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10815461

Country of ref document: EP

Kind code of ref document: A1