WO2011029728A1 - Abgasbehandlungsvorrichtung mit zwei wabenkörpern zur erzeugung eines elektrischen potentials - Google Patents

Abgasbehandlungsvorrichtung mit zwei wabenkörpern zur erzeugung eines elektrischen potentials Download PDF

Info

Publication number
WO2011029728A1
WO2011029728A1 PCT/EP2010/062464 EP2010062464W WO2011029728A1 WO 2011029728 A1 WO2011029728 A1 WO 2011029728A1 EP 2010062464 W EP2010062464 W EP 2010062464W WO 2011029728 A1 WO2011029728 A1 WO 2011029728A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb body
exhaust gas
electrodes
treatment device
gas treatment
Prior art date
Application number
PCT/EP2010/062464
Other languages
English (en)
French (fr)
Inventor
Jan Hodgson
Christian Vorsmann
Original Assignee
Emitec Gesellschaft Für Emissionstechnologie Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft Für Emissionstechnologie Mbh filed Critical Emitec Gesellschaft Für Emissionstechnologie Mbh
Priority to KR1020127009388A priority Critical patent/KR101319139B1/ko
Priority to CN2010800407662A priority patent/CN102498269B/zh
Priority to RU2012114687/06A priority patent/RU2496012C1/ru
Priority to EP10745646.9A priority patent/EP2478194B1/de
Priority to IN1833DEN2012 priority patent/IN2012DN01833A/en
Priority to JP2012528306A priority patent/JP6045346B2/ja
Publication of WO2011029728A1 publication Critical patent/WO2011029728A1/de
Priority to US13/419,636 priority patent/US8628606B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • F01N3/0275Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using electric discharge means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/02Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate silencers in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor

Definitions

  • the invention relates to an exhaust gas treatment device for generating an electrical potential or an electric field and / or plasma. With this plasma soot particles are at least agglomerated or electrically charged in an exhaust gas flow, so that a deposition of the particles is promoted in a particulate filter.
  • An exhaust treatment device of this kind can be used, for example, in a motor vehicle.
  • soot particles contained in the exhaust gas of the internal combustion engine, which must not be discharged into the environment. This is predetermined by corresponding exhaust regulations that specify limit values for the number and mass of soot particles per exhaust gas weight or exhaust gas volume and in some cases also for an entire motor vehicle. Carbon black particles are in particular unburned carbons and hydrocarbons in the exhaust gas.
  • soot particles and / or larger soot particles are regularly deposited in a filter system clearly easy. Soot particle agglomerates are transported more carrier in an exhaust gas flow due to their greater inertia and thus store easier at deflection of an exhaust gas flow. Electrically charged soot particles are drawn to surfaces due to their charge, to which they attach and release their charge. This also facilitates the removal of soot particles from the exhaust stream in the operation of motor vehicles.
  • the present invention is now based on the objects at least partially to solve the problems described in the prior art and in particular to disclose a device for generating an electric field for a mobile exhaust treatment system improved compared to the prior art.
  • a method for treating an exhaust gas is to be specified.
  • the device according to the invention is an exhaust gas treatment device, comprising at least:
  • first at least partially electrically conductive honeycomb body having a first front side and a first rear side
  • second at least partially electrically conductive honeycomb body having a second front side and a second rear side
  • a gap between the first honeycomb body and the second honeycomb body a power supply for forming an electric potential between the first honeycomb body and the second honeycomb body
  • a plurality of electrodes affixed to the first honeycomb body extend beyond the first backside with a first one
  • Length extend into the gap and are positioned at a first distance to the second front side of the second honeycomb body.
  • an electric field can be generated by means of the voltage source between the electrodes (first pole) on the first honeycomb body and the second honeycomb body (second pole).
  • the electrodes essentially act as punctiform electrodes with respect to a planar electrode that is formed with the second front side of the second honeycomb body.
  • Such an arrangement is particularly suitable for generating an electric field and / or for the formation of a plasma, because electrical charges due to a strong concentration of the electric field in this area regularly emerge at the punctiform electrodes.
  • the multiplicity of electrodes substantially improves the design a specific predetermined field in the space.
  • the first honeycomb body and / or the second honeycomb body preferably have metallic components that are electrically conductive.
  • honeycomb body application which are constructed with at least one at least partially structured metal foil (possibly also from stacks with alternating smooth and corrugated metal foils).
  • the first honeycomb body and / or the second honeycomb body preferably has (rectilinear and / or parallel) channels extending from the front side to the rear side, which possibly are formed by perforated channel walls.
  • the first honeycomb body and / or the second honeycomb body preferably have a channel density of between 50 cpsi and 1000 cpsi, preferably about 600 cpsi [channels per square inch].
  • At least a portion of the electrodes are formed in the manner of (straight-line) metallic pins having a diameter of between 0.5 mm and 3 mm, preferably 1 mm to 2 mm [mm].
  • first honeycomb body which is instrumental in providing the entire arrangement for the formation of the electric field. This is thus independently of the overall arrangement described as follows: At least partially electrically conductive honeycomb body having a first front side and a first rear side, wherein a plurality of electrodes, which are attached to the first honeycomb body, beyond the first rear side with a first length extend.
  • the electrodes are preferably electrically conductively connected to the honeycomb body, for. B. soldered or welded.
  • the number of electrodes is preferably at least 10 or even at least 30.
  • the first length with which the electrodes project beyond the first back side of the first honeycomb body is at least 2 mm [millimeters], preferably at least 3 mm.
  • the first length should also be at most 20 mm, preferably at most 15 mm and particularly preferably at most 10 mm. It is preferred that all the electrodes meet the above requirements, wherein optionally at least for a portion of the electrodes, however, different first lengths may be provided. On the one hand, this characteristic of the first length (or of the supernatant) of the electrodes ensures that the electric field forms only between the electrodes and the second honeycomb body and not between the second honeycomb body and the first honeycomb body.
  • the inventive Permitted exhaust gas treatment device has the advantage that the position of the electrodes can be set very precisely and thus a particularly well-defined electric field or plasma can be operated in the intermediate space.
  • the first length (or the overhang) of the electrodes can be adapted in a targeted manner as a function of the voltage supply, the exhaust gas flow to be treated and / or the spatial conditions.
  • a plurality of electrodes attached to the second honeycomb body extend beyond the second front side with a second length into the gap and at a second distance are positioned to the first back of the first honeycomb body.
  • the amount of the second length and / or the amount of the second distance may be different from or equal to the amount of the first length and the amount of the first distance, respectively.
  • the exhaust gas treatment device is further developed if the first length is at least one electrode different from the first length of the remaining electrodes.
  • the first length is at least one electrode different from the first length of the remaining electrodes.
  • a concentrated or expanded electric field can be generated towards the second front side of the second honeycomb body. This can be useful, for example, in the central region of the honeycomb body, where an increased exhaust gas flow occurs and thus more particles also have to be deposited.
  • the electrodes may differ from one another, at least with regard to one of the following properties:
  • Power supply (voltage sources, electrical connection conductors, etc.),
  • the exhaust gas treatment device is also advantageous if at least the first rear side of the first honeycomb body or at least the second front side of the second honeycomb body has a non-planar shape.
  • the flow distribution over the cross section can be influenced by the honeycomb body.
  • the channels of the honeycomb body may be formed by a non-planar shape of a honeycomb body of different lengths.
  • the structure of the honeycomb body or the prevailing exhaust gas flow can be adapted to the producible electric field.
  • first back side of the first honeycomb body and / or the second front side of the second honeycomb body it is possible for the first back side of the first honeycomb body and / or the second front side of the second honeycomb body to have a shape deviating from a planar (in other words, flat or in a plane) surface, these differences in shape (or over the cross section different length running gap) are compensated by a variation of the first length of the electrodes.
  • the first distance between the electrodes and the second honeycomb body can nevertheless be set the same at each location, although the first rear side of the first honeycomb body is arranged at different distances from the second front side of the second honeycomb body.
  • the at least one electrode has a conically tapered tip. It is further preferred that all electrodes have such a tip. By a tapered tip a greater concentration of the electric field can be achieved in the region of this tip, whereby the formation of an electric field or plasma between the electrodes and the second honeycomb body is further favored.
  • the pins that make up the Electrodes are made to have a certain thickness which is greater than the cross section of the tip, whereby a high mechanical stability of the electrodes and a good attachment of the electrodes is achieved in the first honeycomb body.
  • the at least one electrode is offset toward the intermediate space. This means, in particular, that the diameter of the electrode changes abruptly at least once, in particular decreases in the direction of the gap. In this way, a secure attachment to the first honeycomb body is ensured even when the electrode is worn.
  • the first distance is between 5 mm and 100 mm. Very particularly preferred is the range of 25 mm to 40 mm. It has been found that such first distances for forming an electric field or plasma are particularly advantageous. Furthermore, it is also proposed that an insulation surrounding the intermediate space be provided.
  • the first honeycomb body is generally to be electrically insulated from the rest of the exhaust system, and in particular also against a surrounding exhaust pipe, so that a voltage (only) between the electrodes and the second honeycomb body can be established.
  • An electrical insulation surrounding the gap is also advantageous in that an electric field is formed only between the electrodes and the second honeycomb body and not between the electrodes and the wall of the exhaust pipe.
  • the second honeycomb body is annular.
  • the second honeycomb body is arranged annularly around the original central flow direction of the exhaust gas, so that the exhaust gas is at least partially deflected for flowing through the second honeycomb body.
  • the second honeycomb body can therefore also be used in particular as an annular catalyst carrier body
  • mica is a clear transparent material (alumino silicate) with a high dielectric resistance; it is resistant to a constant working temperature of at least 550 C and has a melting point of about 1250 C.
  • mica is resistant to almost all media such as e.g. Alkalis, chemicals, lanes, oils and acids.
  • the mica insulation can be designed, for example, as a bearing mat, so that at the same time it also compensates for expansion differences due to temperature differences between the first honeycomb body and / or the second honeycomb body and the exhaust gas line.
  • the electrical insulation should have a dielectric strength against electrical voltages of at least 20 kV [kilovolts - 20,000 volts], preferably at least 30 kV [kilovolts - 30,000 volts].
  • the voltage source for generating an electrical voltage of at most between 5 kV [kilovolts - 5,000 volts] and 30 kV [kilovolts - 30,000 volts] is set up between the first honeycomb body and the second honeycomb body.
  • the supply of the electrodes with voltage is carried out regularly (individually, jointly and / or grouped) via the electrically conductive first honeycomb body.
  • a high-voltage supply is proposed here.
  • mean field strengths in the space of more than 1 million V / m [volt per meter] can be achieved.
  • a connection of the power supply with at least the first honeycomb body or the second honeycomb body takes place at least in sections via a coaxial cable.
  • a shield of the coaxial cable can thus serve as a positive conductor for connecting the voltage supply to the first honeycomb body or the second honeycomb body and an inner conductor of the coaxial cable as a negative conductor for connecting the voltage source to the second honeycomb body or the first honeycomb body.
  • the degree of protection of the connection should also be independent of the IP68 coaxial cable and should therefore be dustproof and protected against constant submersion.
  • the first honeycomb body has at least one at least partially structured metal foil and the second honeycomb body has at least one filter material.
  • a partially structured metal foil may also be provided in the second honeycomb body.
  • An at least partially structured metal foil is regularly electrically conductive and can thus ensure the voltage supply of the electrodes.
  • the at least partially structured metal foil may be wound, wound and / or stacked with the honeycomb body.
  • the filter material of the second honeycomb body allows effective deposition of the agglomerated or electrically charged soot particles in the second honeycomb body.
  • a filter material is preferably a metallic fabric and / or nonwoven into consideration, which is formed with a plurality of (welded or soldered together) wire filaments.
  • the second honeycomb body can then be embodied in particular in the manner of an open particle separator, in which the channels are partially bounded by a metal foil with deflections and openings on the one hand and the filter material on the other hand, the channels having no closure from the second front side to the second rear side. but for several deflections or openings with which the exhaust gas with the particles to the filter material (or in an adjacent channel) are directed.
  • a method is also proposed for treating soot particles in the exhaust gas with an exhaust gas treatment device according to the invention, wherein at least temporarily an electric field is applied between the first honeycomb body and the second honeycomb body, so that at least a part of the soot particles flowing through the exhaust gas treatment device at least ionizes or agglomerates and deposited on the second honeycomb body.
  • the exhaust gas first passes through the first honeycomb body and is possibly brought into contact with a first catalyst, then flows through the intermediate space in which the electric field is formed, so that there uses an ionization or agglomeration of the soot particles, and finally hits the second honeycomb body, where preferably the soot particles are deposited.
  • the cleaned exhaust gas then exits the exhaust treatment device after exiting the second rear.
  • the power supply is operated so that a current between the first honeycomb body and the second honeycomb body is regulated to 0.005 mA [milliampere] to 0.5 mA, preferably to 0.01 mA to 0.1 mA.
  • a current arises in the operation of the exhaust treatment device by a transfer of charges to the soot particles.
  • the regulation of the current to the proposed value range allows sufficient loading of the soot particles, but also prevents the formation of a spark discharge.
  • the method according to the invention is furthermore advantageous if the electric field is activated and deactivated at a repetition rate of between 2 and 30,000 Hz [1 / second], preferably between 2 and 2,000 Hz and particularly preferably between 50 and 2,000 Hz.
  • a repetition rate allows a particularly effective generation an electric field, so that soot particles are at least ionized or agglomerate.
  • the method is also advantageous if the repetition rate is regulated as a function of the exhaust gas temperature. If the internal combustion engine already supplies exhaust gas with a temperature which is suitable, for example, for a catalytic conversion, the repetition rate and / or the magnitude of the potential difference can be reduced. It is also preferred if the electric field is activated with a rising ramp. This means, for example, that in particular during operation of the power supply with a repetition rate, the voltage or the current is increased to the operating level in a time of at most half of the reciprocal of the repetition rate. It has been found that in this way a higher end tension can be achieved without causing a spark discharge.
  • a first part of the electrodes is operated differently from a second part of the electrodes.
  • the electrodes can be operated, for example, with separate circuits, that is activated or deactivated with other voltages and / or operating times.
  • the electric field can be regulated as a function of the actual exhaust gas flow on the basis of predetermined, calculated and / or measured parameters.
  • the exhaust gas treatment device according to the invention may also be preceded by an additional honeycomb body, which evened out a laminar flow through a flowing exhaust gas flow, so that no flow vortices occur with dead zones when flowing through the downstream exhaust treatment device according to the invention, which favor a deposition of soot particles.
  • a motor vehicle comprising an internal combustion engine and an exhaust gas treatment device according to the invention for the treatment of exhaust gases of the internal combustion engine.
  • FIGS. show particularly preferred embodiments, to which the invention is not limited.
  • the figures and in particular the illustrated proportions are only schematic. Show it:
  • FIG. 1 shows a first embodiment of an exhaust gas treatment device according to the invention
  • FIG. 3 shows a further embodiment of a first honeycomb body
  • FIG. 4 an additional embodiment of a first honeycomb body, a plan view of a first honeycomb body, and FIG. 6: a motor vehicle, having an exhaust gas treatment device according to the invention.
  • exhaust gas treatment devices 11 according to the invention are respectively shown.
  • the exhaust gas treatment devices 11 have a first honeycomb body 12 and a second honeycomb body 13.
  • the first honeycomb body 12 has channels 5 extending from a first front side 3 to a first rear side 26.
  • the second honeycomb body 13 has channels 5 extending from a second front side 25 to a second rear side 27.
  • Pin-shaped electrodes 6 are provided on the first honeycomb body 12 ,
  • the electrodes 6 are stuck with a second length 21 in channels 5 of the first honeycomb body 12, which is preferably (but not necessarily) such that the (ends 7 of the) electrodes do not protrude beyond the first front side 3.
  • the second length 21 may be designed differently for at least some of the electrodes 6, so that, for example, different (electrical) contacts are realized.
  • the first honeycomb body 12 is preferably made of smooth and structured metal foils 2.
  • the electrodes 6 may be attached to the metal foils 2 by means of soldering and / or welding. Preferably, the electrodes 6 do not completely close those channels 5 into which they are inserted.
  • the metal foils 2 serve here at least partially as electrical conductors, with which the current (separately or together) is led to the electrodes.
  • the second honeycomb body 13 is likewise partially constructed with structured metal foils 2 in the embodiment variants from FIGS. 1 and 2, wherein these have deflecting structures 30 here.
  • a preferred embodiment is one in which a plurality of deflection structures 30 are arranged in each channel 5.
  • the second honeycomb body 13 has filter materials 29, preferably (catalytically coated) metallic nonwovens. Soot particles contained in the exhaust gas flow may be deposited in the filter materials 29. A deposition takes place in particular therefore (even without alternate closures of the channels), because an exhaust gas flow flowing through the second honeycomb body 13 is repeatedly deflected by the deflecting structures 30 in the direction of the filter material 29.
  • the deflection structures 30 close the channels 5 of the second honeycomb body 13 only partially.
  • first honeycomb body 12 and the second honeycomb body 13 are spaced apart from each other (opposite) with a second distance 22 with the first rear side 26 and the second front side 25.
  • the electrodes 6 project from the first honeycomb body 12 with a first length 8, so that a first distance 16 exists between the electrodes 6 and the second front side 25 of the second honeycomb body.
  • the electrodes 6 also have tips 10, which are preferably tapered, to achieve an increased concentration of electric field in operation at the tips 10.
  • the first honeycomb body 12 and the second honeycomb body 13 are insulated from each other with an electrical insulation 14.
  • first honeycomb body 12 and the second honeycomb body 13 may be isolated from each other.
  • first honeycomb body 12 and the second honeycomb body 13 may be provided with an insulation 14 which electrically separates the entire exhaust gas treatment device 11. If appropriate, similar insulations are then also formed in front of the first honeycomb body or after the second honeycomb body in order to electrically decouple the rest of the exhaust system if, for B. the first honeycomb body is supplied via the housing with electrical energy.
  • the first honeycomb body 12 can also be separated from the exhaust system with an insulation 14, so that the power supply through the housing or the exhaust gas line 20 takes place by means of an electrically insulated connection.
  • an insulation 14 for. B. in the manner of a circumferential ring, as indicated in Fig. 2.
  • a cover 17 can also be provided for the insulation 14, by means of which a flow of the insulation 14 with exhaust gas or soot particles can be at least partially prevented.
  • soot particles deposit in the region of the insulation 14 and form a short-circuit path.
  • electrical insulation 14 can be freed of deposits on a regular basis by applying a short and strong current pulse to the electrical insulation 14, which leads to heating and finally burning off of the soot particles. It can also be triggered several such current pulses. For example, it is possible to trigger such a sequence of current pulses regularly before the beginning or at the start of operation of an exhaust gas treatment device according to the invention. Such a current pulse can be triggered by a short voltage peak which is applied across the insulation 14 or between the first honeycomb body 12 and the second honeycomb body 13.
  • Such a voltage peak can be significantly above the normal operating voltage, for example, well above 30 kV [kilovolts - 30,000 volts] and especially well above 50 kV [kilovolts - 50,000 volts].
  • an electrical conductivity of the deposited soot is generated on the electrical insulation, so that forms a current pulse. It is important that the voltage peak or the current pulse are very short in time, so that only deposits of soot particles are burned, but the insulation 14 is not damaged.
  • FIGS. 3 and 4 show further embodiments or details of first honeycomb bodies 12 of an exhaust gas treatment device.
  • These first honeycomb bodies 12 also have metal foils 2 which define channels 5, which extend from a first front side 3 to a first rear side 26.
  • the honeycomb bodies 12 also each have a peripheral surface 4 which surrounds the first honeycomb body 12 between the first front side 3 and the first rear side 26.
  • the plurality of electrodes 6 are respectively fitted into the channels 5 of the first honeycomb body 12 and protrude with a first length 8 across the first back side 26.
  • the first length 8 may be different for a part of the electrodes 6 (only three electrodes are shown here for illustration, all of which differ in orientation, shape, length, etc.), but that is not mandatory).
  • the first length 8 of the electrodes 6 is the same.
  • the first rear side 26 is concave-shaped.
  • the inner ends 7 of the electrodes 6 here form a concave shape.
  • a second honeycomb body which has a correspondingly convex shape, to be arranged opposite a first honeycomb body 12 according to FIG. 4, so that the intermediate space between the first honeycomb body 12 and the second honeycomb body is bent.
  • first honeycomb body 12 is convex and the second honeycomb body is correspondingly concave. It is also possible that the second distance between the first honeycomb body 12 and the second honeycomb body varies in the region of the intermediate space and / or the first distance between the electrodes 6 and the second honeycomb body varies. Thus, a desired formation of the electrical field or plasma can be achieved in certain areas of the intermediate space and at the same time a targeted influencing of the flow distribution of the exhaust gas via the honeycomb body.
  • the electrodes can be designed differently.
  • Fig. 3 three different embodiments of the ends 7 of the electrodes 6 are shown.
  • the uppermost electrode 6 has a bend or a kink.
  • the middle electrode 6 has a tapered tip 10.
  • the bottom electrode 6 is a straight, flat, or even blunt end 7 executed.
  • the electrodes 6 may also have jagged ends 7 with a plurality of tips or rounded ends 7.
  • the electrodes 6 each have a diameter 9, which may be different in the electrodes.
  • FIG. 5 shows a plan view of the first rear side 26 of a first honeycomb body 12.
  • first honeycomb body 12 In this first honeycomb body 12, electrodes 6 are respectively inserted into individual channels 5.
  • the first honeycomb body 12 is made up of a plurality of stacks, comprising smooth and structured metal foils 2, which are wound such that all metal foils lie with their opposite edges against the housing of the honeycomb body and are soldered or welded there. It is possible that the first honeycomb body 12 has a first radial zone 23 and a second radial zone 24 and the density of the electrodes 6 in the first radial zone 23 differs from the density of the electrodes in the second radial zone 24.
  • the first length and / or the shape of the ends or tips of the electrodes 6 are designed differently in a first radial zone 23 and a second radial zone 24.
  • the distances 28 of the electrodes 6 may differ from one another in the first radial zone 23 and in the second radial zone 24.
  • different power supplies can be provided for the zones, so that an independent operation of the electrodes in the zones can be performed. By these measures, a variation of the electric field over the cross section of the honeycomb body is possible.
  • FIG. 6 schematically shows a motor vehicle 1, comprising an internal combustion engine 19 and an exhaust gas line 20, wherein an exhaust gas treatment device 11 according to the invention is provided on the exhaust gas line 20.
  • the invention provides an exhaust treatment device which is very compact and therefore suitable for use in the automotive industry. Further, it allows the accurate adjustment of the electric field to a to effect efficient cleaning of the exhaust gases. In particular, the problems mentioned above are hereby overcome.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrostatic Separation (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

Abgasbehandlungsvorrichtung (11) aufweisend wenigstens einen ersten zumindest teilweise elektrisch leitfähigen Wabenkörper (12) mit einer ersten Vorderseite (3) und einer ersten Rückseite (26), einen zweiten zumindest teilweise elektrisch leitfähigen Wabenkörper (13) mit einer zweiten Vorderseite (25) und einer zweiten Rückseite (27), einen Zwischenraum (15) zwischen dem ersten Wabenkörper (12) und dem zweiten Wabenkörper (13), eine Spannungsversorgung (18) zur Ausbildung eines elektrischen Potentials zwischen dem ersten Wabenkörper (12) und dem zweiten Wabenkörper (13), sowie eine Vielzahl von Elektroden (6), die an dem ersten Wabenkörper (12) befestigt sind, sich über die erste Rückseite (26) hinaus mit einer ersten Länge (8) in den Zwischenraum (15) erstrecken und mit einem ersten Abstand (16) zur zweiten Vorderseite (25) des zweiten Wabenkörpers (13) positioniert sind. Weiterhin wird auch ein Verfahren zur Behandlung von Partikel ausweisendem Abgas von Kraftfahrzeugen angegeben.

Description

Abgasbehandlungsvorrichtung mit zwei Wabenkörpern zur Erzeugung eines elektrischen Potentials Die Erfindung betrifft eine Abgasbehandlungsvorrichtung zur Erzeugung eines elektrischen Potentials bzw. eines elektrischen Feldes und/oder Plasmas. Mit diesem Plasma sollen Rußpartikel in einer Abgasströmung zumindest agglomeriert oder elektrisch aufgeladen werden, so dass eine Ablagerung der Partikel in einem Partikelfilter begünstigt wird. Eine der- artige Abgasbehandlungsvorrichtung kann beispielsweise in einem Kraftfahrzeug eingesetzt werden.
Bei Kraftfahrzeugen mit mobilen Verbrennungskraftmaschinen und insbesondere bei Kraftfahrzeugen mit Dieselantrieb sind regelmäßig Mengen an Rußpartikeln in dem Abgas der Verbrennungskraftmaschine enthalten, welche nicht in die Umwelt abgegeben werden dürfen. Dies ist durch entsprechende Abgasverordnungen vorgegeben, die Grenzwerte für die Anzahl und die Masse an Rußpartikeln pro Abgasgewicht oder Abgasvolumen sowie teilweise auch für ein gesamtes Kraftfahrzeug vorgeben. Ruß- partikel sind insbesondere nicht verbrannte Kohlenstoffe und Kohlenwasserstoffe im Abgas.
Es ist bekannt, dass durch die Bereitstellung eines elektrischen Feldes und/oder eines Plasmas eine Agglomeration von kleinen Rußpartikeln zu größeren Rußpartikeln und/oder eine elektrische Ladung bei Rußpartikeln bewirkt werden. Elektrisch geladene Rußpartikel und/oder größere Rußpartikel sind regelmäßig in einem Filtersystem deutlich einfach abzuscheiden. Rußpartikel- Agglomerate werden aufgrund ihrer größeren Massenträgheit in einer Abgasströmung träger transportiert und lagern sich an Umlenkstellen einer Abgasströmung somit einfacher ab. Elektrisch geladene Rußpartikel werden aufgrund ihrer Ladung hin zu Oberflächen gezogen, an welchen sie anlagern und ihre Ladung abgeben. Auch dies erleichtert die Entfernung von Rußpartikeln aus dem Abgasstrom im Betrieb von Kraftfahrzeugen. Die bereits vorgeschlagenen Systeme zur Erzeugung bzw. (zeitweisen) Aufrechterhaltung eines elektrischen Feldes und/oder Plasmas sind meist technisch sehr komplex und/oder unzureichend hinsichtlich des Wirkungsgrades. Ebenso konnten Probleme bei der Ausbildung eines gleich- mäßigen und/oder gezielt auf die Abgasströmung eingestelltes elektrisches Feld identifiziert werden. Jedenfalls erscheint bisher noch kein System reif für eine Serienfertigung im Automobilbau.
Der hier vorliegenden Erfindung liegen nunmehr die Aufgaben zugrunde, die mit dem Stand der Technik geschilderten Probleme zumindest teilweise zu lösen und insbesondere eine gegenüber dem Stand der Technik verbesserte Vorrichtung zur Erzeugung eines elektrischen Feldes für ein mobiles Abgasbehandlungssystem zu offenbaren. Darüber hinaus soll ein Verfahren zur Behandlung eines Abgases angegeben werden.
Diese Aufgaben werden gelöst mit einer Vorrichtung gemäß den Merkmalen des Patentanspruchs 1 sowie einem Verfahren gemäß den Merkmalen des Patentanspruchs 8. Weitere vorteilhafte Ausgestaltungen der Vorrichtung und des Verfahrens sind in den jeweils abhängig formulierten Pa- tentansprüchen angegeben. Die in den Patentansprüchen einzeln aufgeführten Merkmale sind in beliebiger, technologisch sinnvoller, Weise miteinander kombinierbar und können durch erläuternde Sachverhalte aus der Beschreibung ergänzt werden, wobei weitere Ausführungsvarianten der Erfindung aufgezeigt werden.
Die erfindungsgemäße Vorrichtung ist eine Abgasbehandlungsvorrichtung, aufweisend wenigstens:
einen ersten zumindest teilweise elektrisch leitfähigen Wabenkörper mit einer ersten Vorderseite und einer ersten Rückseite, - einen zweiten zumindest teilweise elektrisch leitfähigen Wabenkörper mit einer zweiten Vorderseite und einer zweiten Rückseite, einen Zwischenraum zwischen dem ersten Wabenkörper und dem zweiten Wabenkörper, eine Spannungsversorgung zur Ausbildung eines elektrischen Potentials zwischen dem ersten Wabenkörper und dem zweiten Wabenkörper, sowie
eine Vielzahl von Elektroden, die an dem ersten Wabenkörper be- festigt sind, sich über die erste Rückseite hinaus mit einer ersten
Länge in den Zwischenraum erstrecken und mit einem ersten Abstand zur zweiten Vorderseite des zweiten Wabenkörpers positioniert sind. Bei einer derartigen Abgasbehandlungsvorrichtung kann ein elektrisches Feld mit Hilfe der Spannungsquelle zwischen den Elektroden (erster Pol) am ersten Wabenkörper und dem zweiten Wabenkörper (zweiter Pol) erzeugt werden. Die Elektroden wirken dabei im Wesentlichen als punktförmige Elektroden gegenüber einer flächigen Elektrode, die mit der zwei- ten Vorderseite des zweiten Wabenkörpers gebildet ist. Eine derartige Anordnung ist zur Erzeugung eines elektrischen Feldes und/oder zur Ausbildung eines Plasmas besonders geeignet, weil an den punktförmig wirkenden Elektroden regelmäßig elektrische Ladungen aufgrund einer starken Konzentration des elektrischen Feldes in diesem Bereich austre- ten. Die Vielzahl der Elektroden verbessert wesentlich die Ausgestaltung eines gezielt vorgegebenen Feldes im Zwischenraum.
Der erste Wabenkörper und/oder der zweite Wabenkörper weisen bevorzugt metallische Komponenten auf, die elektrisch leitfähig sind. Neben extrudierten Wabenkörpern, die zumindest teilweise mit solchen Materialien aufgebaut sind, finden insbesondere Wabenkörper Anwendung, die mit zumindest einer wenigstens teilweise strukturierten Metallfolie aufgebaut sind (ggf. auch aus Stapeln mit abwechselnd glatten und gewellten Metallfolien). Der erste Wabenkörper und/oder der zweite Wabenkörper weist bevorzugt sich von der Vorderseite zur Rückseite erstreckende (gerade und/oder parallel verlaufende) Kanäle auf, die ggf. von durchbrochenen Kanalwänden gebildet sind. Der erste Wabenkörper und/oder der zweite Wabenkörper weisen bevorzugt eine Kanaldichte von zwischen 50 cpsi und 1000 cpsi, vorzugsweise ca. 600 cpsi [Kanäle pro Quadratzoll] auf. Damit werden über den Querschnitt ausreichend Anbindungspunkte für die Elektroden bereitgestellt, so dass die flächige bzw. räumliche Ausprägung des elektrischen Feldes sehr genau eingestellt werden kann. Wenigstens ein Teil der Elektroden, bevorzugt alle Elektroden, sind nach Art von (geradlinigen) metallischen Stiften mit einem Durchmesser von zwischen 0,5 mm und 3 mm, vorzugsweise 1 mm bis 2 mm [Millimeter], ausgebildet.
Ein signifikantes Bauteil dieser Abgasbehandlungsvorrichtung ist daher der erste Wabenkörper, der maßgeblich zur Bereitstellung der gesamten Anordnung zur Ausbildung des elektrischen Feldes ist. Dieser lässt sind demnach unabhängig von der Gesamtanordnung wie folgt beschreiben: Zumindest teilweise elektrisch leitfähiger Wabenkörper mit einer ersten Vorderseite und einer ersten Rückseite, wobei sich eine Vielzahl von Elektroden, die an dem ersten Wabenkörper befestigt sind, über die erste Rückseite hinaus mit einer ersten Länge erstrecken.
Die Elektroden sind bevorzugt mit dem Wabenkörper elektrisch leitend verbunden, z. B. verlötet oder verschweißt. Die Anzahl der Elektroden beträgt bevorzugt mindestens 10 oder sogar mindestens 30.
Bevorzugt ist im Hinblick auf die Bereitstellung der Elektroden, wenn die erste Länge, mit der die Elektroden über die erste Rückseite des ersten Wabenkörpers überstehen, mindestens 2 mm [Millimeter], vorzugsweise mindestens 3 mm beträgt. Die erste Länge sollte zudem maximal 20 mm, vorzugsweise maximal 15 mm und besonders bevorzugt maximal 10 mm betragen. Bevorzugt ist, dass alle Elektroden die obigen Anforderungen erfüllen, wobei gegebenenfalls zumindest für einen Teil der Elektroden gleichwohl unterschiedliche erste Längen vorgesehen sein können. Durch diese Ausprägung der ersten Länge (bzw. des Überstandes) der Elektroden ist einerseits sichergestellt, dass sich das elektrische Feld nur zwischen den Elektroden und dem zweiten Wabenkörper und nicht zwischen dem zweiten Wabenkörper und dem ersten Wabenkörper ausbildet. Gleichzeitig ist eine ausreichende Kompaktheit und mechanische Stabili- tät der Abgasbehandlungsvorrichtung gewährleistet. Die erfindungsge- mäße Abgasbehandlungsvorrichtung hat den Vorteil, dass die Position der Elektroden besonders präzise eingestellt werden kann und somit ein besonders genau definiertes elektrisches Feld bzw. Plasma im Zwischenraum betrieben werden kann. Somit kann die erste Länge (bzw. der Über- stand) der Elektroden in Abhängigkeit der Spannungsversorgung, der zu behandelnden Abgasströmung und/oder den räumlichen Gegebenheiten, gezielt angepasst werden.
Alternativ oder kumulativ zu der Befestigung der Vielzahl der Elektroden und dem ersten Wabenkörper wird vorgeschlagen, dass sich eine Vielzahl von Elektroden, die an dem zweiten Wabenkörper befestigt sind, über die zweite Vorderseite hinaus mit einer zweiten Länge in den Zwischenraum erstrecken und mit einem zweiten Abstand zur ersten Rückseite des ersten Wabenkörpers positioniert sind. Der Betrag der zweiten Länge und/oder der Betrag des zweiten Abstands können sich von dem Betrag der ersten Länge bzw. von dem Betrag des ersten Abstands unterscheiden oder gleich sein.
Weiterhin vorteilhaft ist die Abgasbehandlungsvorrichtung weitergebildet, wenn die erste Länge bei mindestens einer Elektrode von der ersten Länge der übrigen Elektroden verschieden ausgeführt ist. Auf diese Art kann im Bereich der mindestens einen längeren bzw. kürzeren Elektroden ein konzentriertes bzw. aufgeweitetes elektrisches Feld hin zur zweiten Vorderseite des zweiten Wabenkörpers erzeugt werden. Dies kann beispiels- weise im zentralen Bereich der Wabenkörper sinnvoll sein, wo ein erhöhter Abgasstrom auftritt und somit auch mehr Partikel abgelagert werden müssen.
Neben der ersten Länge können sich der Elektroden (alternativ oder ku- mulativ) zumindest hinsichtlich einer der nachstehenden Eigenschaften voneinander unterscheiden:
Material,
Orientierung (zur Strömungsrichtung, zur Vorderseite und/oder Rückseite, etc.),
- Entfernung zur benachbarten Elektrode, Anbindung an den ersten Wabenkörper (Kontaktfläche, Kontaktlänge, Verbindungsmittel, etc.),
Stromzufuhr (Spannungsquellen, elektrische Verbindungsleiter, etc.),
- Form (Stab, Mehrzack, Platte, etc.)
Auch vorteilhaft ist die Abgasbehandlungsvorrichtung, wenn zumindest die erste Rückseite des ersten Wabenkörpers oder zumindest die zweite Vorderseite des zweiten Wabenkörpers eine nicht-plane Form aufweist. Durch eine derartige Anordnung kann die Strömungsverteilung über den Querschnitt durch die Wabenkörper beeinflusst werden. Beispielsweise können die Kanäle der Wabenkörper durch eine nicht-plane Form eines Wabenkörpers unterschiedlich lang ausgebildet sein. Somit kann auch der Aufbau des Wabenkörpers bzw. die herrschende Abgasströmung an das erzeugbare elektrische Feld angepasst werden.
Zudem ist möglich, dass die erste Rückseite des ersten Wabenkörpers und/oder die zweite Vorderseite des zweiten Wabenkörpers eine von einer planen (mit anderen Worten ebenen bzw. in einer Ebene liegenden) Fläche abweichende Form aufweisen, wobei diese Formunterschiede (bzw. über den Querschnitt verschieden lang ausgeführten Zwischenraum) durch eine Variation der ersten Länge der Elektroden ausgeglichen werden. Im Ergebnis kann so gleichwohl der erste Abstand zwischen den Elektroden und dem zweiten Wabenkörper an jeder Stelle gleich einge- stellt sein, obwohl die erste Rückseite des ersten Wabenkörpers von der zweiten Vorderseite des zweiten Wabenkörpers unterschiedlich weit entfernt angeordnet ist.
Bevorzugt ist weiter, dass die mindestens eine Elektrode eine kegelförmig zulaufende Spitze aufweist. Bevorzugt ist weiter, dass alle Elektroden eine solche Spitze aufweisen. Durch eine kegelförmig zulaufende Spitze kann eine größere Konzentration des elektrischen Feldes im Bereich dieser Spitze erreicht werden, wodurch die Bildung eines elektrischen Feldes bzw. Plasmas zwischen den Elektroden und dem zweiten Wabenkörper weiter begünstigt wird. Gleichzeitig können die Stifte, aus denen die Elektroden bestehen, eine gewisse Dicke aufweisen, die größer ist als der Querschnitt der Spitze, wodurch eine hohe mechanische Stabilität der Elektroden und eine gute Befestigung der Elektroden in dem ersten Wabenkörper erreicht wird.
Es ist zudem vorteilhaft, wenn die mindestens eine Elektrode zum Zwischenraum hin abgesetzt ist. Das bedeutet insbesondere, dass sich der Durchmesser der Elektrode zumindest einmal sprunghaft ändert, insbesondere in Richtung des Zwischenraums verkleinert. Auf diese Weise ist auch bei Verschleiß der Elektrode eine sichere Befestigung am ersten Wabenkörper gewährleistet.
Gerade im Hinblick auf die Anwendung im Kraftfahrzeug hat sich als vorteilhaft herausgestellt, dass der erste Abstand zwischen 5 mm und 100 mm beträgt. Ganz besonders bevorzugt ist der Bereich von 25 mm bis 40 mm. Es wurde herausgefunden, dass derartige erste Abstände zur Ausbildung eines elektrischen Feldes bzw. Plasmas besonders vorteilhaft sind. Weiter wird auch vorgeschlagen, dass eine den Zwischenraum umgebende Isolierung vorgesehen ist. Der erste Wabenkörper ist gegen den Rest des Abgassystems und insbesondere auch gegen eine umgebende Abgaslei- tung generell elektrisch zu isolieren, damit eine Spannung (nur) zwischen den Elektroden und dem zweiten Wabenkörper aufgebaut werden kann. Eine elektrische Isolierung, welche den Zwischenraum umgibt, ist auch deswegen vorteilhaft, damit ein elektrisches Feld sich nur zwischen den Elektroden und dem zweiten Wabenkörper und nicht zwischen den Elektroden und der Wandung der Abgasleitung ausbildet. Auch möglich ist ein elektrisches Feld zwischen der Wandung und den Elektroden dadurch zu vermeiden, dass der Abstand von den Elektroden zur Wandung jeweils größer ist als der Abstand von den Elektroden zum zweiten Wabenkörper. Besonders bevorzugt ist als elektrische Isolierung zwischen den beiden Wabenkörpern ein Ring aus Polymethylmethacrylat oder einem ähnlichen Material vorgesehen. Gemäß einer Weiterbildung der Abgasbehandlungsvorrichtung ist der zweite Wabenkörper ringförmig ausgeführt. Insbesondere ist der zweite Wabenkörper ringförmig um die ursprüngliche zentrale Strömungsrichtung des Abgases angeordnete, so dass das Abgas zum Durchströmen des zweiten Wabenkörpers zumindest teilweise abgelenkt wird. Der zweite Wabenkörper kann somit insbesondere auch als ringförmiger Katalysatorträgerkörper eingesetzt werden
Auch möglich ist die elektrische Isolierung zumindest eines Wabenkör- pers aus Glimmer auszuführen. Glimmer ist insbesondere ein klar durchsichtiges Material (Alumino Silikat) mit einem hohen dielektrischen Widerstand; es ist beständig gegen eine konstante Arbeitstemperatur von zumindest 550 C und hat einen Schmelzpunkt von ca. 1250 C. Darüber hinaus ist Glimmer beständig gegen fast alle Medien wie z.B. Alkalien, Che- mikalien, Gasse, öle und Säuren. Die Glimmer-Isolierung kann beispielsweise als Lagermatte so ausgebildet sein, so dass sie gleichzeitig auch Ausdehnungsdifferenzen augrund von Temperaturdifferenzen zwischen erstem Wabenkörper und/oder zweitem Wabenkörper einerseits und der Abgasleitung andererseits kompensiert. Die elektrische Isolierung sollte eine Durchschlagsfestigkeit gegenüber elektrischen Spannungen von zumindest 20 kV [Kilovolt - 20.000 Volt], vorzugsweise von zumindest 30 kV [Kilovolt - 30.000 Volt] aufweisen.
Gemäß einer Weiterbildung der Abgasbehandlungsvorrichtung ist die Spannungsquelle zur Erzeugung einer elektrischen Spannung von maximal zwischen 5 kV [Kilovolt - 5.000 Volt] und 30 kV [Kilovolt - 30.000 Volt] zwischen dem ersten Wabenkörper und dem zweiten Wabenkörper eingerichtet ist. Die Versorgung der Elektroden mit Spannung erfolgt regelmäßig (einzeln, gemeinsam und/oder gruppiert) über den elektrisch leitfähigen ersten Wabenkörper. Damit wird hier insbesondere eine Hochspannungsversorgung vorgeschlagen. Bei einem Abstand zwischen 5 mm und 50 mm und einer Spannung von 5 kV [Kilovolt] können mittlere Feldstärken im Zwischenraum von oberhalb 1 Mio. V/m [Volt pro Meter] erreicht werden. Im Bereich der Elektroden erfolgt aufgrund der punktför- migen Form der Elektroden noch eine Konzentration des elektrischen Feldes, die deutlich über diesen Wert hinausgeht. Derartige elektrische Felder sind zur Ausbildung eines Plasmas besonders geeignet. Die hohe Feldkonzentration im Bereich der Elektroden begünstigt den Austritt von Elektronen aus den Elektroden.
Es wird ferner vorgeschlagen, dass eine Verbindung der Spannungsversorgung mit zumindest dem ersten Wabenkörper oder dem zweiten Wabenkörper zumindest abschnittsweise über ein Koaxialkabel erfolgt. Eine Schirmung des Koaxialkabels kann somit als positiver Leiter zur Verbin- dung der Spannungs Versorgung mit dem ersten Wabenkörper oder dem zweiten Wabenkörper und ein Innenleiter des Koaxialkabels als negativer Leiter zur Verbindung der Spannungsquelle mit dem zweiten Wabenkörper oder dem ersten Wabenkörper dienen. Die Schutzart der Verbindung sollte auch unabhängig von dem Koaxialkabel der Schutzklasse IP68 ge- nügen und somit staubdicht und gegen ständiges Untertauchen geschützt sein.
Weiter wird als vorteilhaft angesehen, wenn der erste Wabenkörper zumindest eine wenigstens teilweise strukturierte Metallfolie und der zweite Wabenkörper zumindest ein Filtermaterial aufweist. Eine teilweise strukturierte Metallfolie kann auch im zweiten Wabenkörper vorgesehen sein. Eine zumindest teilweise strukturierte Metallfolie ist regelmäßig elektrisch leitfähig und kann somit die Spannungsversorgung der Elektroden gewährleisten. Die zumindest teilweise strukturierte Metallfolie kann zu dem Wabenkörper gewunden, gewickelt und/oder gestapelt sein. Das Filtermaterial des zweiten Wabenkörpers ermöglicht eine effektive Ablagerung der agglomerierten bzw. der elektrisch geladenen Rußpartikel im zweiten Wabenkörper. Als Filtermaterial kommt hier bevorzugt ein metallisches Gewebe und/oder Vlies in Betracht, das mit einer Vielzahl von (miteinander verschweißten bzw. verlöteten) Drahtfilamenten gebildet ist. Der zweite Wabenkörper kann dann insbesondere nach Art eines offenen Partikelabscheiders ausgeführt sein, bei dem die Kanäle teilweise mit einer Metallfolie mit Umlenkungen und Öffnungen einerseits und dem Filtermaterial andererseits begrenzt sind, wobei die Kanäle von der zweiten Vorderseite bis hin zur zweiten Rückseite keinen Verschluss aufweisen, dafür aber mehrere Umlenkungen bzw. Öffnungen, mit denen das Abgas mit den Partikeln hin zum Filtermaterial (oder in einen benachbarten Kanal) gelenkt werden. Zudem wird auch ein Verfahren zur Behandlung von Rußpartikeln im Abgas mit einer erfindungsgemäßen Abgasbehandlungsvorrichtung vorgeschlagen, wobei wenigstens zeitweise ein elektrisches Feld zwischen dem ersten Wabenkörper und dem zweiten Wabenkörper angelegt wird, so dass wenigstens ein Teil der die Abgasbehandlungsvorrichtung durch- strömenden Rußpartikel zumindest ionisiert oder agglomeriert und auf dem zweiten Wabenkörper abgelagert wird.
Dabei ist bevorzugt, dass das Abgas zunächst den ersten Wabenkörper passiert und dabei ggf. mit einem ersten Katalysator in Kontakt gebracht wird, dann den Zwischenraum durchströmt, in dem das elektrische Feld ausgebildet ist, so dass dort eine Ionisierung bzw. Agglomerierung der Rußpartikel einsetzt, und schließlich auf den zweiten Wabenkörper trifft, wo bevorzugt die Rußpartikel abgeschieden werden. Das gereinigte Abgas verlässt dann die Abgasbehandlungsvorrichtung nach dem Austreten aus der zweiten Rückseite.
Es ist ferner bevorzugt, wenn die Spannungsversorgung so betrieben wird, dass ein Strom zwischen dem ersten Wabenkörper und dem zweiten Wabenkörper auf 0,005 mA [Milliampere] bis 0,5 mA, bevorzugt auf 0,01 mA bis 0,1 mA geregelt wird. Ein Strom entsteht im Betrieb der Abgasbehandlungsvorrichtung durch eine Übertragung von Ladungen auf die Rußpartikel. Die Regelung des Stromes auf den vorgeschlagenen Wertebereich ermöglicht eine ausreichende Beladung der Rußpartikel, verhindert aber auch die Ausbildung einer Funkenentladung.
Das erfindungsgemäße Verfahren ist weiterhin vorteilhaft, wenn das elektrische Feld mit einer Wiederholrate von zwischen 2 und 30.000 Hz [1/Sekunde], vorzugsweise zwischen 2 und 2.000 Hz und besonders bevorzugt zwischen 50 und 2.000 Hz aktiviert und deaktiviert wird. Eine derartige Wiederholrate ermöglicht eine besonders effektive Erzeugung eines elektrischen Feldes, so dass Rußpartikel zumindest ionisiert werden oder agglomerieren.
Auch vorteilhaft ist das Verfahren, wenn die Wiederholrate in Abhängig- keit der Abgastemperatur geregelt wird. Liefert die Verbrennungskraftmaschine bereits Abgas mit einer Temperatur, welche beispielsweise für eine katalytische Umsetzung geeignet ist, kann die Wiederholrate und/oder der Betrag der Potentialdifferenz reduziert werden. Es ist auch bevorzugt, wenn das elektrische Feld mit einer ansteigenden Rampe aktiviert wird. Das bedeutet beispielsweise, dass insbesondere beim Betrieb der Spannungsversorgung mit einer Wiederholrate die Spannung bzw. der Strom in einer Zeit von höchstens der Hälfte des Kehrwerts der Wiederholrate auf das Betriebsniveau erhöht wird. Es hat sich gezeigt, dass auf diese Weise eine höhere Endspannung erreicht werden kann, ohne dass es zu einer Funkenentladung kommt.
Zudem wird auch eine Ausführungsvariante des Verfahrens vorgeschlagen, bei der ein erster Teil der Elektroden von einem zweiten Teil der Elektroden verschieden betrieben wird. So können die Elektroden beispielsweise mit getrennten Stromkreisen betrieben werden, also mit anderen Spannungen und/oder Betriebszeiten aktiviert bzw. deaktiviert werden. Somit lässt sich das elektrische Feld in Abhängigkeit der tatsächlichen Abgasströmung anhand von vorgegebenen, berechneten und/oder gemessenen Parametern regeln.
Zur Verhinderung der Ablagerung von Rußpartikeln kann der erfindungsgemäßen Abgasbehandlungsvorrichtung auch ein zusätzlicher Wabenkörper vorgeschaltet sein, der eine durchströmende Abgasströmung vergleichmäßigt und/oder sogar laminarisiert, damit beim Durchströmen der nachgeordneten erfindungsgemäßen Abgasbehandlungsvorrichtung keine Strömungswirbel mit Totzonen auftreten, die eine Ablagerung von Rußpartikeln begünstigen. Auch erfindungsgemäß ist ein Kraftfahrzeug, aufweisend eine Verbrennungskraftmaschine sowie eine erfindungsgemäße Abgasbehandlungsvorrichtung zur Behandlung von Abgasen der Verbrennungskraftmaschine.
Die für die erfindungsgemäße Abgasbehandlungsvorrichtung geschilderten Vorteile und besonderen Ausgestaltungen sowie die für das erfindungsgemäße Verfahren erläuterten besonderen Verfahrensweisen und Vorteile sind in analoger und technologisch sinnvoller Weise im Rahmen der Erfindung aufeinander übertragbar.
Die Erfindung sowie das technische Umfeld werden nachfolgend anhand der Figuren näher erläutert. Die Figuren zeigen besonders bevorzugte Ausführungsbeispiele, auf die die Erfindung jedoch nicht begrenzt ist. Insbesondere ist darauf hinzuweisen, dass die Figuren und insbesondere die dargestellten Größenverhältnisse nur schematisch sind. Es zeigen:
Fig. 1: eine erste Ausgestaltung einer erfindungsgemäßen Abgasbehandlungsvorrichtung,
Fig. 2: eine zweite Ausgestaltung einer erfindungsgemäßen Abgasbehandlungsvorrichtung,
Fig. 3: eine weitere Ausgestaltung eines ersten Wabenkörpers,
Fig. 4: eine zusätzliche Ausgestaltung eines ersten Wabenkörpers, eine Draufsicht auf einen ersten Wabenkörper, und Fig. 6: ein Kraftfahrzeug, aufweisend eine erfindungsgemäße Abgasbehandlungsvorrichtung.
In den Fig. 1 und 2 sind jeweils erfindungsgemäße Abgasbehandlungsvorrichtungen 11 dargestellt. Die Abgasbehandlungsvorrichtungen 11 weisen einen ersten Wabenkörper 12 sowie einen zweiten Wabenkörper 13 auf. Der erste Wabenkörper 12 hat sich von einer ersten Vorderseite 3 zu einer ersten Rückseite 26 erstreckende Kanäle 5. Ebenso hat der zweite Wabenkörper 13 sich von einer zweiten Vorderseite 25 zu einer zweiten Rückseite 27 erstreckende Kanäle 5. Am ersten Wabenkörper 12 sind stiftförmige Elektroden 6 vorgesehen. Die Elektroden 6 stecken mit einer zweiten Länge 21 in Kanälen 5 des ersten Wabenkörpers 12, wobei diese bevorzugt (aber nicht zwingend) so bemessen ist, dass die (Enden 7 der) Elektroden nicht über die erste Vorderseite 3 überstehen. Die zweite Länge 21 kann zumindest für einen Teil der Elektroden 6 verschieden ausge- führt sein, so dass zum Beispiel unterschiedliche (elektrische) Kontaktierungen realisiert sind. Der erste Wabenkörper 12 ist vorzugsweise aus glatten und strukturierten Metallfolien 2 hergestellt. Die Elektroden 6 können an den Metallfolien 2 mittels Löten und/oder Schweißen befestigt sein. Vorzugsweise verschließen die Elektroden 6 diejenigen Kanäle 5, in welche sie stecken, nicht vollständig. Die Metallfolien 2 dienen hier zumindest teilweise als elektrische Leiter, mit denen der Strom (getrennt oder gemeinsam) hin zu den Elektroden geführt wird.
Der zweite Wabenkörper 13 ist in den Ausführungsvarianten aus den Fig. 1 und 2 ebenfalls teilweise mit strukturierten Metallfolien 2 aufgebaut, wobei diese hier Umlenkstrukturen 30 aufweisen. Bevorzugt ist eine Ausgestaltung, bei der mehrere Umlenkstrukturen 30 in jedem Kanal 5 angeordnet sind. Zudem weist der zweite Wabenkörper 13 Filtermaterialien 29 auf, vorzugsweise (katalytisch beschichtete) metallische Vliese. In der Abgasströmung enthaltene Rußpartikel können in den Filtermaterialien 29 abgelagert werden. Eine Ablagerung erfolgt insbesondere deshalb (auch ohne wechselweise Verschlüsse der Kanäle), weil eine den zweiten Wabenkörper 13 durchströmende Abgasströmung durch die Umlenkstrukturen 30 wiederholt in Richtung des Filtermaterials 29 abgelenkt wird. Die Umlenkstrukturen 30 verschließen die Kanäle 5 des zweiten Wabenkörpers 13 nur teilweise.
Zwischen dem ersten Wabenkörper 12 und dem zweiten Wabenkörper 13 ist jeweils ein Zwischenraum 15 vorgesehen, in welchem im Betrieb ein elektrisches Feld bzw. Plasma erzeugt werden kann. Der erste Wabenkör- per 12 und der zweite Wabenkörper 13 sind mit der ersten Rückseite 26 und der zweiten Vorderseite 25 zueinander (gegenüberliegend) mit einem zweiten Abstand 22 beabstandet. Die Elektroden 6 stehen mit einer ersten Länge 8 aus dem ersten Wabenkörper 12 hervor, so dass zwischen den Elektroden 6 und der zweiten Vorderseite 25 des zweiten Wabenkörpers ein erster Abstand 16 vorliegt. Die Elektroden 6 weisen zudem Spitzen 10 auf, die vorzugsweise kegelförmig sind, um eine verstärkte Konzentration eines elektrischen Feldes im Betrieb an den Spitzen 10 zu erreichen.
Der erste Wabenkörper 12 und der zweite Wabenkörper 13 sind gegeneinander mit einer elektrischen Isolierung 14 isoliert. Zudem existiert eine Spannungsversorgung 18, mittels welcher eine elektrische Spannung zwischen dem ersten Wabenkörper 12 (bzw. den vielen Elektroden) und dem zweiten Wabenkörper 13 (bzw. dessen zweite Vorderfläche) erzeugt werden kann.
Es gibt verschiedene Ausgestaltungsmöglichkeiten, wie der erste Wabenkörper 12 und der zweite Wabenkörper 13 gegeneinander isoliert sein können. Der erste Wabenkörper 12 und der zweite Wabenkörper 13 können - wie in Fig. 1 gezeigt - mit einer Isolierung 14 versehen sein, welche die gesamte Abgasbehandlungsvorrichtung 11 elektrisch trennt. Gegebenenfalls sind dann ähnliche Isolierungen auch noch vor dem ersten Wabenkörper bzw. nach dem zweiten Wabenkörper ausgebildet, um die üb- rige Abgasanlage elektrisch zu entkoppeln, wenn z. B. der erste Wabenkörper über das Gehäuse mit elektrischer Energie versorgt wird.
Gemäß der Ausgestaltung in Fig. 2 kann der erste Wabenkörper 12 aber auch mit einer Isolierung 14 von der Abgasanlage getrennt sein, so dass die Stromversorgung durch das Gehäuse bzw. die Abgasleitung 20 hindurch mittels eines elektrisch isolierten Anschluss erfolgt. Zur Eingrenzung des elektrischen Feldes bzw. des Zwischenraumes 15 kann ebenfalls eine Isolierung 14 vorgesehen sein, z. B. nach Art eines umlaufenden Ringes, wie in Fig. 2 angedeutet. Durch eine derartige ringförmige Isolierung 14 kann verhindert werden, dass zwischen der Abgasleitung 20 und den Elektroden 6 ein elektrisches Feld erzeugt wird.
Gemäß der Ausgestaltung in Fig. 1 kann für die Isolierung 14 auch eine Abdeckung 17 vorgesehen sein, durch welche eine Anströmung der Isolierung 14 mit Abgas bzw. Rußpartikeln zumindest teilweise verhindert werden kann. So kann verhindert werden, dass sich Rußpartikel im Bereich der Isolierung 14 ablagern und einen Kurzschluss-Pfad ausbilden.
Eine elektrische Isolierung 14 kann im Betrieb der Abgasbehandlungsvorrichtung 11 regelmäßig von Ablagerungen befreit werden, indem ein kurzer und starker Stromimpuls auf die elektrische Isolierung 14 gegeben wird, der zu einer Erhitzung und schließlich einem Abbrand der Rußpar- tikel führt. Es können auch mehrere derartige Stromimpulse ausgelöst werden. Beispielweise ist es möglich, eine derartige Abfolge von Stromimpulsen regelmäßig vor Beginn oder zum Beginn der Inbetriebnahme einer erfindungsgemäßen Abgasbehandlungsvorrichtung auszulösen. Ein derartiger Stromimpuls kann durch einen kurzen Spannungspeak ausgelöst werden, der über die Isolierung 14 bzw. zwischen erstem Wabenkörper 12 und zweitem Wabenkörper 13 angelegt wird. Ein solcher Spannungspeak kann deutlich oberhalb der normalen Betriebsspannung liegen, also beispielsweise deutlich oberhalb von 30 kV [Kilovolt - 30.000 Volt] und insbesondere deutlich oberhalb von 50 kV [Kilovolt - 50.000 Volt]. Bei derartig hohen Spannungen wird eine elektrische Leitfähigkeit des abgelagerten Rußes auf der elektrischen Isolierung erzeugt, so dass sich ein Stromimpuls bildet. Wichtig ist, dass der Spannungspeak bzw. der Stromimpuls zeitlich sehr kurz sind, so dass nur Ablagerungen von Rußpartikeln abgebrannt werden, aber die Isolierung 14 nicht geschädigt wird.
Die Fig. 3 und Fig. 4 zeigen weitere Ausgestaltungen bzw. Details von ersten Wabenkörpern 12 einer Abgasbehandlungsvorrichtung. Auch diese ersten Wabenkörper 12 weisen Metallfolien 2 auf, die Kanäle 5 definieren, die sich von einer ersten Vorderseite 3 hin zu einer ersten Rückseite 26 erstrecken. Die Wabenkörper 12 weisen jeweils auch eine Umfangsfläche 4 auf, die die ersten Wabenkörper 12 zwischen der ersten Vorderseite 3 und der ersten Rückseite 26 umgibt. Die Vielzahl von Elektroden 6 ist jeweils in die Kanäle 5 des ersten Wabenkörpers 12 eingepasst und steht mit einer ersten Länge 8 über die erste Rückseite 26 hervor.
Gemäß der Ausgestaltung in Fig. 3 kann die erste Länge 8 bei einem Teil der Elektroden 6 verschieden sein (dargestellt sind hier zur Veranschauli- chung nur 3 Elektroden, die sich alle unterscheiden (Orientierung, Form, Länge, etc.), das ist aber nicht erforderlich). Bei der Ausgestaltung gemäß der Fig. 4 ist die erste Länge 8 der Elektroden 6 gleich. Allerdings ist gemäß der Fig. 4 die erste Rückseite 26 konkav geformt. Auch die innen liegenden Enden 7 der Elektroden 6 bilden hier eine konkave Form. Es ist beispielsweise möglich, dass gegenüberliegend zu einem ersten Wabenkörper 12 gemäß Fig. 4 ein zweiter Wabenkörper angeordnet ist, der eine entsprechend konvexe Form aufweist, so dass der Zwischenraum zwischen dem ersten Wabenkörper 12 und dem zweiten Wabenkörper gebogen ist. Ebenso ist möglich, dass der erste Wabenkörper 12 konvex ist und der zweite Wabenkörper entsprechend konkav ausgebildet ist. Auch möglich ist, dass der zweite Abstand zwischen erstem Wabenkörper 12 und zweitem Wabenkörper im Bereich des Zwischenraumes variiert und/oder der erste Abstand zwischen den Elektroden 6 und dem zweiten Wabenkörper variiert. So können eine gewünschte Ausbildung des elektri- sehen Feldes bzw. Plasmas in bestimmten Bereichen des Zwischenraumes und gleichzeitig eine gezielte Beeinflussung der Strömungsverteilung des Abgases über die Wabenkörper erreicht werden.
Die Elektroden können verschiedenartig ausgestaltet sein. In Fig. 3 sind drei verschiedene Ausgestaltungen der Enden 7 der Elektroden 6 dargestellt. Die oberste Elektrode 6 weist eine Biegung bzw. einen Knick auf. Die mittlere Elektrode 6 hat eine kegelförmig zulaufende Spitze 10. Alternativ ist möglich, dass eine Elektrode 6 auch eine nach Art eines Schraubenziehers geformte Spitze aufweist, die in Form einer abgeflach- ten Linie endet. Die unterste Elektrode 6 ist mit einem geraden, platten, oder auch stumpfen Ende 7 ausgeführt. In weiteren, hier nicht dargestellten Ausführungsformen, können die Elektroden 6 auch zackig ausgestaltete Enden 7 mit mehreren Spitzen oder abgerundete Enden 7 aufweisen. Die Elektroden 6 haben jeweils einen Durchmesser 9, wobei dieser bei den Elektroden verschieden ausgeführt sein kann.
Fig. 5 zeigt eine Draufsicht auf die erste Rückseite 26 eines ersten Wabenkörpers 12. In diesem ersten Wabenkörper 12 sind in einzelne Kanäle 5 jeweils Elektroden 6 eingebracht. Der erste Wabenkörper 12 ist aus mehreren Stapeln, umfassend glatte und strukturierte Metallfolien 2, aufgebaut, die so gewunden sind, dass alle Metallfolien mit ihren gegenüberliegenden Kanten an dem Gehäuse des Wabenkörpers anliegen und dort verlötet bzw. verschweißt sind. Es ist möglich, dass der erste Wabenkörper 12 eine erste radiale Zone 23 und eine zweite radiale Zone 24 auf- weist und die Dichte der Elektroden 6 sich in der ersten radialen Zone 23 von der Dichte der Elektroden in der zweiten radialen Zone 24 unterscheidet. Auch möglich ist, dass beispielsweise die erste Länge und/oder die Form der Enden bzw. Spitzen der Elektroden 6 in einer ersten radialen Zone 23 und einer zweiten radialen Zone 24 verschieden ausgeführt sind. Insbesondere können sich die Distanzen 28 der Elektroden 6 zueinander in der ersten radialen Zone 23 und in der zweiten radialen Zone 24 voneinander unterscheiden. Ebenso können für die Zonen unterschiedliche Spannungsversorgungen vorgesehen sein, so dass ein unabhängiger Betrieb der Elektroden in den Zonen durchgeführt werden kann. Durch die- se Maßnahmen ist eine Variation des elektrischen Feldes über den Querschnitt der Wabenkörper möglich.
Fig. 6 zeigt schematisch ein Kraftfahrzeug 1, aufweisend eine Verbrennungskraftmaschine 19 und eine Abgasleitung 20, wobei an der Abgaslei- tung 20 eine erfindungsgemäße Abgasbehandlungsvorrichtung 11 vorgesehen ist.
Die Erfindung stellt eine Abgasbehandlungsvorrichtung bereit, die sehr kompakt und damit für den Einsatz im Automobilbau geeignet ist. Weiter ermöglicht sie die genaue Einstellung des elektrischen Feldes, um eine effiziente Reinigung der Abgase zu bewirken. Insbesondere werden die eingangs genannten Probleme hiermit überwunden.
Bezugszeichenliste
1 Kraftfahrzeug
2 Metallfolie
3 erste Vorderseite
4 Umfangsfläche
5 Kanal
6 Elektrode
7 Ende
8 erste Länge
9 Durchmesser
10 Spitze
11 Abgasbehandlungsvorrichtung
12 erster Wabenkörper
13 zweiter Wabenkörper
14 Isolierung
15 Zwischenraum
16 erster Abstand
17 Abdeckung
18 Spannungsversorgung
19 Verbrennung skr af tmas chine
20 Abgasleitung
21 zweite Länge
22 zweiter Abstand
23 erste radiale Zone
24 zweite radiale Zone
25 zweite Vorderseite
26 erste Rückseite
27 zweite Rückseite
28 Distanz
29 Filtermaterial
30 Umlenkstruktur

Claims

Patentansprüche 1. Abgasbehandlungsvorrichtung (11) aufweisend wenigstens einen ersten zumindest teilweise elektrisch leitfähigen Wabenkörper (12) mit einer ersten Vorderseite (3) und einer ersten Rückseite (26), einen zweiten zumindest teilweise elektrisch leitfähigen Wabenkörper (13) mit einer zweiten Vorderseite (25) und einer zweiten Rückseite (27), einen Zwischenraum (15) zwischen dem ersten Wabenkörper (12) und dem zweiten Wabenkörper (13), eine Spannungsversorgung (18) zur Ausbildung eines elektrischen Potentials zwischen dem ersten Wabenkörper (12) und dem zweiten Wabenkörper (13), sowie eine Vielzahl von Elektroden (6), die an dem ersten Wabenkörper (12) befestigt sind, sich über die erste Rückseite (26) hinaus mit einer ersten Länge (8) in den Zwischenraum (15) erstrecken und mit einem ersten Abstand (16) zur zweiten Vorderseite (25) des zweiten Wabenkörpers (13) positioniert sind.
Abgasbehandlungsvorrichtung (11) nach Patentanspruch 1, wobei die erste Länge (8) bei mindestens einer Elektrode (6) von der ersten Länge (8) der übrigen Elektroden (6) verschieden ausgeführt ist.
3. Abgasbehandlungsvorrichtung (11), nach einem der vorhergehenden Patentansprüche, wobei zumindest die erste Rückseite (26) des ersten Wabenkörpers (12) oder zumindest die zweite Vorderseite (25) des zweiten Wabenkörpers (13) eine nicht-plane Form aufweisen.
Abgasbehandlungsvorrichtung (11) nach einem der vorhergehenden Patentansprüche, wobei der erste Abstand (16) zwischen 5 mm und 50 mm beträgt.
5. Abgasbehandlungsvorrichtung (11) nach einem der vorhergehenden Patentansprüche, wobei eine den Zwischenraum (15) umgebende Isolierung (14) vorgesehen ist.
Abgasbehandlungsvorrichtung (11) nach einem der vorhergehenden Patentansprüche, wobei die Spannungsversorgung (18) zur Erzeugung einer elektrischen Spannung von mehr als 5 kV zwischen dem ersten Wabenkörper (12) und dem zweiten Wabenkörper (13) eingerichtet ist.
Abgasbehandlungsvorrichtung (11) nach einem der vorhergehenden Patentansprüche, wobei der erste Wabenkörper (12) zumindest eine wenigstens teilweise strukturierte Metallfolie (2) und der zweite Wabenkörper (13) zumindest ein Filtermaterial (29) aufweist.
Verfahren zur Behandlung von Rußpartikel aufweisendem Abgas mit einer Abgasbehandlungsvorrichtung (11) gemäß einem der vorhergehenden Patentansprüche, wobei wenigstens zeitweise ein elektrisches Feld zwischen dem ersten Wabenkörper (12) und dem zweiten Wabenkörper (13) angelegt wird, so dass wenigstens ein Teil der die Abgasbehandlungsvorrichtung (11) durchströmenden Rußpartikel zumindest ionisiert oder agglomeriert wird und auf dem zweiten Wabenkörper (13) abgelagert wird.
Verfahren nach Patentanspruch 8, wobei ein erster Teil der Elektroden von einem zweiten Teil der Elektroden (6) verschieden betrieben wird.
Kraftfahrzeug (1), aufweisend eine Verbrennungskraftmaschine (19) sowie eine Abgasbehandlungsvorrichtung (11) nach einem der Patentansprüche 1 bis 7 zur Behandlung von Abgasen der Verbrennungskraftmaschine (19).
PCT/EP2010/062464 2009-09-14 2010-08-26 Abgasbehandlungsvorrichtung mit zwei wabenkörpern zur erzeugung eines elektrischen potentials WO2011029728A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020127009388A KR101319139B1 (ko) 2009-09-14 2010-08-26 전위를 생성시키는 두 개의 허니콤몸체를 구비한 배기 가스 처리 장치
CN2010800407662A CN102498269B (zh) 2009-09-14 2010-08-26 具有两个用于产生电位的蜂窝体的排气处理装置
RU2012114687/06A RU2496012C1 (ru) 2009-09-14 2010-08-26 Устройство для очистки отработавшего газа с двумя сотовыми телами для создания электрического потенциала
EP10745646.9A EP2478194B1 (de) 2009-09-14 2010-08-26 Abgasbehandlungsvorrichtung mit zwei wabenkörpern zur erzeugung eines elektrischen potentials
IN1833DEN2012 IN2012DN01833A (de) 2009-09-14 2010-08-26
JP2012528306A JP6045346B2 (ja) 2009-09-14 2010-08-26 電位を生成するための2つのハニカムボディを有する排ガス処理デバイス
US13/419,636 US8628606B2 (en) 2009-09-14 2012-03-14 Exhaust gas treatment device having two honeycomb bodies for generating an electric potential, method for treating exhaust gas and motor vehicle having the device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009041092A DE102009041092A1 (de) 2009-09-14 2009-09-14 Abgasbehandlungsvorrichtung mit zwei Wabenkörpern zur Erzeugung eines elektrischen Potentials
DE102009041092.9 2009-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/419,636 Continuation US8628606B2 (en) 2009-09-14 2012-03-14 Exhaust gas treatment device having two honeycomb bodies for generating an electric potential, method for treating exhaust gas and motor vehicle having the device

Publications (1)

Publication Number Publication Date
WO2011029728A1 true WO2011029728A1 (de) 2011-03-17

Family

ID=43217060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/062464 WO2011029728A1 (de) 2009-09-14 2010-08-26 Abgasbehandlungsvorrichtung mit zwei wabenkörpern zur erzeugung eines elektrischen potentials

Country Status (9)

Country Link
US (1) US8628606B2 (de)
EP (1) EP2478194B1 (de)
JP (1) JP6045346B2 (de)
KR (1) KR101319139B1 (de)
CN (1) CN102498269B (de)
DE (1) DE102009041092A1 (de)
IN (1) IN2012DN01833A (de)
RU (1) RU2496012C1 (de)
WO (1) WO2011029728A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035033A1 (de) * 2010-09-15 2012-03-22 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur erzeugung eines elektrischen feldes in einem abgassystem
WO2013127806A1 (de) * 2012-03-02 2013-09-06 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur behandlung eines von einem zentralbereich radial nach aussen strömenden gasstroms
DE102013100798A1 (de) * 2013-01-28 2014-07-31 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung und Verfahren zur Behandlung eines Partikel aufweisenden Abgases
EP2616646B1 (de) * 2010-09-15 2016-07-13 Continental Automotive GmbH VORRICHTUNG ZUR BEHANDLUNG VON RUßPARTIKEL ENTHALTENDEM ABGAS

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010051655A1 (de) * 2010-11-17 2012-05-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Behandlung von Rußpartikel enthaltendem Abgas
DE102011110057A1 (de) * 2011-08-12 2013-02-14 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Regeln einer Ionisationseinrichtung von einer Abgasnachbehandlungsvorrichtung
US20140218535A1 (en) 2011-09-21 2014-08-07 Magna Electronics Inc. Vehicle vision system using image data transmission and power supply via a coaxial cable
DE102011115228A1 (de) * 2011-09-28 2013-03-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Halterung mit mindestens einer Elektrode
US10099614B2 (en) 2011-11-28 2018-10-16 Magna Electronics Inc. Vision system for vehicle
US10089537B2 (en) 2012-05-18 2018-10-02 Magna Electronics Inc. Vehicle vision system with front and rear camera integration
US10567705B2 (en) 2013-06-10 2020-02-18 Magna Electronics Inc. Coaxial cable with bidirectional data transmission
DOU2014000190U (es) * 2014-08-18 2016-08-31 Inst Tecnológico De Santo Domingo Intec Catalizador de calentamiento automatico en motores de combustion interna
DE102014115923A1 (de) 2014-10-31 2016-05-04 Continental Automotive Gmbh Wabenkörper mit elektrischer Heizvorrichtung
WO2017022522A1 (ja) * 2015-07-31 2017-02-09 中国電力株式会社 石炭火力発電設備
CN105927326B (zh) * 2016-06-17 2020-06-23 浙江大学 船舶柴油机dpf自动再生装置及再生方法
JP6692267B2 (ja) * 2016-09-20 2020-05-13 株式会社東芝 集塵装置および空気調和装置
DE102018200464A1 (de) 2018-01-12 2019-07-18 Continental Automotive Gmbh Vorrichtung und Verfahren zum Beheizen einer Vorrichtung zur Abgasnachbehandlung
BR112021007589A2 (pt) * 2018-10-22 2021-07-27 Shanghai Bixiufu Enterprise Management Co., Ltd. método e sistema de remoção de poeira do ar
FR3092365B1 (fr) * 2019-02-01 2022-08-05 Faurecia Systemes Dechappement Volume, dispositif, ligne d’échappement et véhicule, procédé de pilotage du volume
RU199195U1 (ru) * 2020-03-12 2020-08-21 Общество с ограниченной ответственностью "Научные развлечения" Плазменный нейтрализатор токсичных газов
DE102022213319B3 (de) * 2022-12-08 2024-03-21 Vitesco Technologies GmbH Vorrichtung zur Abgasnachbehandlung und Verfahren zur Herstellung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1632654A1 (de) * 2003-05-22 2006-03-08 Hino Motors, Ltd. Abgasreinigungsvorrichtungen
EP1669563A1 (de) * 2003-09-11 2006-06-14 Hino Motors, Ltd. Abgasreinigungsvorrichtung
EP1840938A1 (de) * 2006-03-30 2007-10-03 Ngk Insulators, Ltd. Plasmareaktor

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57321A (en) * 1980-06-03 1982-01-05 Matsushita Electric Ind Co Ltd Dust collector for exhaust gas of internal combustion engine
JPH0763650B2 (ja) * 1985-10-01 1995-07-12 閃一 増田 コロナ式送風器およびこれを利用した電気集塵装置
JPS63268911A (ja) * 1987-04-24 1988-11-07 Mazda Motor Corp エンジンの排気浄化装置
US4979364A (en) * 1988-03-11 1990-12-25 Fleck Carl M Diesel fuel exhaust gas filter
US5271906A (en) * 1991-10-28 1993-12-21 Toyota Jidosha Kabushiki Kaisha Exhaust emission control apparatus using catalytic converter with hydrocarbon absorbent
JPH05146713A (ja) * 1991-12-02 1993-06-15 Koichiro Kitagawa 電気集じん機
RU2026751C1 (ru) * 1992-05-13 1995-01-20 Елена Владимировна Володина Устройство для стерилизации и тонкой фильтрации газа
US5465573A (en) * 1992-07-29 1995-11-14 Ngk Insulators, Ltd. Multi-stage honeycomb heater
DE4434673A1 (de) * 1994-09-28 1996-04-04 Emitec Emissionstechnologie Elektrisch beheizbarer Katalysator
JP2698804B2 (ja) * 1995-10-24 1998-01-19 株式会社オーデン 電気的制御によるディーゼルエンジンの排気微粒子捕集装置
DE19602266A1 (de) * 1996-01-23 1997-07-24 Bayerische Motoren Werke Ag Elektrisch beheizbarer Abgas-Katalysator einer Brennkraftmaschine
US5733360A (en) * 1996-04-05 1998-03-31 Environmental Elements Corp. Corona discharge reactor and method of chemically activating constituents thereby
US5695549A (en) * 1996-04-05 1997-12-09 Environmental Elements Corp. System for removing fine particulates from a gas stream
JP3709953B2 (ja) * 1997-09-12 2005-10-26 本田技研工業株式会社 内燃機関の排気浄化装置
JP3575687B2 (ja) * 1999-05-20 2004-10-13 インスティテュート・フォー・アドバンスト・エンジニアリング 内燃機関の排ガス浄化装置
GB0015952D0 (en) * 2000-06-30 2000-08-23 Aea Technology Plc Plasma assisted reactor
DE10130163B4 (de) * 2000-11-21 2012-01-12 Siemens Ag Anordnung zur Verminderung kohlenstoffhaltiger Partikelemissionen von Dieselmotoren
JP2002213228A (ja) * 2001-01-19 2002-07-31 Denso Corp 内燃機関の排気浄化装置
JP4371607B2 (ja) * 2001-05-17 2009-11-25 株式会社東芝 光触媒反応装置
JP3969082B2 (ja) * 2001-08-10 2007-08-29 株式会社デンソー 車両用送風装置
JP4603763B2 (ja) * 2002-11-28 2010-12-22 株式会社オーデン 電気集塵ユニット
JP2004346772A (ja) * 2003-05-20 2004-12-09 Toyota Motor Corp 排気浄化装置及び方法
JP4329466B2 (ja) * 2003-09-22 2009-09-09 トヨタ自動車株式会社 排気浄化装置
JP4174767B2 (ja) * 2003-10-20 2008-11-05 トヨタ自動車株式会社 排ガス浄化装置
JP2005149901A (ja) * 2003-11-14 2005-06-09 Kenichi Hasegawa 空気清浄装置
JP2005232972A (ja) * 2004-02-17 2005-09-02 Isuzu Motors Ltd 排気ガス浄化装置
JP2005232970A (ja) * 2004-02-17 2005-09-02 Isuzu Motors Ltd 排気ガス浄化装置
JP2006026483A (ja) * 2004-07-13 2006-02-02 Toyota Motor Corp 排ガス浄化装置
JP2006026537A (ja) * 2004-07-15 2006-02-02 Toyota Motor Corp 排ガス浄化装置、および排ガス浄化装置の製造方法
US7316106B2 (en) * 2004-09-07 2008-01-08 Gm Daewoo Auto & Technology Company Method for processing combustion exhaust gas containing soot particles and NOx
DE102005000890A1 (de) * 2005-01-07 2006-08-31 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Entfernen von Partikeln aus Abgasen sowie Faserlage und Partikelfilter dazu
JP3897798B2 (ja) * 2005-06-08 2007-03-28 日新電機株式会社 排ガス浄化方法及び排ガス浄化装置
AT501888B1 (de) * 2005-06-08 2006-12-15 Fleck Carl M Dr Wabenfilter mit planaren elektroden
DE102005028031A1 (de) * 2005-06-17 2006-12-21 Emitec Gesellschaft Für Emissionstechnologie Mbh Wabenkörper-Herstellung mit einem metallischen Vlies
JP4479610B2 (ja) * 2005-07-01 2010-06-09 トヨタ自動車株式会社 排ガス浄化装置
RU56965U1 (ru) * 2005-12-15 2006-09-27 ФГОУ ВПО Рязанская государственная сельскохозяйственная академия им. проф. П.А. Костычева Устройство для очистки отработавших газов и снижения уровня шума двигателей внутреннего сгорания
DE102006001831A1 (de) * 2006-01-13 2007-09-20 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren und Vorrichtung zur Verringerung der Partikelanzahl im Abgas einer Verbrennungskraftmaschine
DE102006026324A1 (de) * 2006-06-02 2007-12-06 Emitec Gesellschaft Für Emissionstechnologie Mbh Nebenstromfilter mit verbessertem Filterwirkungsgrad
RU59153U1 (ru) * 2006-07-13 2006-12-10 ФГОУ ВПО Рязанская государственная сельскохозяйственная академия имени профессора П.А. Костычева Электрический фильтр для очистки от сажи отработавших газов двигателя внутреннего сгорания
US8003058B2 (en) * 2006-08-09 2011-08-23 Airinspace B.V. Air purification devices
DE102008035561A1 (de) * 2008-07-30 2010-02-04 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betrieb einer Vorrichtung aufweisend zumindest einen elektrisch beheizbaren Wabenkörper

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1632654A1 (de) * 2003-05-22 2006-03-08 Hino Motors, Ltd. Abgasreinigungsvorrichtungen
EP1669563A1 (de) * 2003-09-11 2006-06-14 Hino Motors, Ltd. Abgasreinigungsvorrichtung
EP1840938A1 (de) * 2006-03-30 2007-10-03 Ngk Insulators, Ltd. Plasmareaktor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035033A1 (de) * 2010-09-15 2012-03-22 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur erzeugung eines elektrischen feldes in einem abgassystem
US8790448B2 (en) 2010-09-15 2014-07-29 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Device for producing an electrical field in an exhaust gas system
EP2616646B1 (de) * 2010-09-15 2016-07-13 Continental Automotive GmbH VORRICHTUNG ZUR BEHANDLUNG VON RUßPARTIKEL ENTHALTENDEM ABGAS
WO2013127806A1 (de) * 2012-03-02 2013-09-06 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur behandlung eines von einem zentralbereich radial nach aussen strömenden gasstroms
US9476332B2 (en) 2012-03-02 2016-10-25 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Device for treating a gas stream flowing radially outwardly from a central area
DE102013100798A1 (de) * 2013-01-28 2014-07-31 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung und Verfahren zur Behandlung eines Partikel aufweisenden Abgases
US9657617B2 (en) 2013-01-28 2017-05-23 Continental Automotive Gmbh Device and method for treating an exhaust gas containing particles

Also Published As

Publication number Publication date
EP2478194B1 (de) 2018-08-01
US20120186447A1 (en) 2012-07-26
IN2012DN01833A (de) 2015-06-05
CN102498269B (zh) 2013-11-06
RU2496012C1 (ru) 2013-10-20
US8628606B2 (en) 2014-01-14
JP6045346B2 (ja) 2016-12-14
JP2013504412A (ja) 2013-02-07
KR101319139B1 (ko) 2013-10-17
EP2478194A1 (de) 2012-07-25
DE102009041092A1 (de) 2011-03-24
CN102498269A (zh) 2012-06-13
KR20120053076A (ko) 2012-05-24

Similar Documents

Publication Publication Date Title
EP2478194B1 (de) Abgasbehandlungsvorrichtung mit zwei wabenkörpern zur erzeugung eines elektrischen potentials
WO2006050546A1 (de) Verfahren und filteranordnung zum abscheiden von russpartikeln
WO2012065800A2 (de) VORRICHTUNG ZUR BEHANDLUNG VON RUßPARTIKEL ENTHALTENDEM ABGAS
EP2616646A1 (de) VORRICHTUNG ZUR BEHANDLUNG VON RUßPARTIKEL ENTHALTENDEM ABGAS
EP2948253A1 (de) Vorrichtung und verfahren zur behandlung eines partikel aufweisenden abgases
EP2603678B1 (de) Verfahren und vorrichtung zur verringerung von russpartikeln im abgas einer verbrennungskraftmaschine
DE10229881B4 (de) Plasma-Russfilter
DE4230631A1 (de) Verfahren zur Entfernung von elektrisch leitenden Teilchen aus einem Gasstrom sowie Vorrichtung zur Durchführung des Verfahrens
EP2742216A1 (de) Verfahren zum regeln einer ionisationseinrichtung in einer abgasnachbehandlungsvorrichtung
EP2616648B1 (de) Anordnung für eine stromversorgung einer komponente in einem abgassystem
EP2153902B1 (de) Elektrostatischer Abscheider und Heizungssystem
EP2761145B1 (de) Halterung mit mindestens einer elektrode
DE102010052003A1 (de) Vorrichtung zur Behandlung von Rußpartikel enthaltendem Abgas
EP2616181B1 (de) Vorrichtung zur erzeugung eines elektrischen feldes in einem abgassystem
EP2603677B1 (de) Halterung für zumindest eine elektrode in einer abgasleitung
EP2612000B1 (de) VORRICHTUNG MIT EINER RINGFÖRMIGEN ELEKTRODE ZUR VERRINGERUNG VON RUßPARTIKELN IM ABGAS EINER VERBRENNUNGSKRAFTMASCHINE
EP1888206A1 (de) Verfahren und vorrichtung zum abbau von stickstoffoxiden in einem abgasstrom
DE102009059933A1 (de) Verfahren und Vorrichtung zur Agglomeration von Partikeln in einem Abgassystem

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040766.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10745646

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012528306

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1833/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010745646

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127009388

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012114687

Country of ref document: RU