WO2011024848A1 - Process for production of solid electrolyte, and secondary battery - Google Patents

Process for production of solid electrolyte, and secondary battery Download PDF

Info

Publication number
WO2011024848A1
WO2011024848A1 PCT/JP2010/064357 JP2010064357W WO2011024848A1 WO 2011024848 A1 WO2011024848 A1 WO 2011024848A1 JP 2010064357 W JP2010064357 W JP 2010064357W WO 2011024848 A1 WO2011024848 A1 WO 2011024848A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
inorganic oxide
functional group
secondary battery
producing
Prior art date
Application number
PCT/JP2010/064357
Other languages
French (fr)
Japanese (ja)
Inventor
三好 正紀
晃純 木村
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011528818A priority Critical patent/JP5533875B2/en
Publication of WO2011024848A1 publication Critical patent/WO2011024848A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • H01M2300/0022Room temperature molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a solid electrolyte and a secondary battery using the same, more specifically, a method for producing a solid electrolyte having high ion conductivity, high strength, and excellent production quality.
  • the present invention relates to an applied excellent secondary battery.
  • a battery using a gel electrolyte as an electrolyte as a thin and high energy density electrolyte has been put into practical use. They do not leak, have a shape that is free, can be thin with a large area, and have characteristics that are not available in conventional cylindrical and square shapes.
  • the gel electrolyte is a product obtained by gelling an organic solvent and does not leak, but has flammability, and safety is not essentially solved. Furthermore, since the strength is low and a separator must be used between the electrodes, there is almost no cost merit.
  • This flame retardant electrolyte is an electrolyte having a certain degree of gel strength by gelling an ionic liquid with inorganic fine particles and further adding a polymer to supplement the gel strength.
  • the gel strength is not sufficient, and a separator is required to prevent a short circuit between the electrodes, and there is no cost merit.
  • the compatibility between the inorganic fine particles and the polymer is poor, and the inorganic fine particles and the polymer are not homogeneously dispersed to form a phase separation structure. Due to the state, there was a problem that stable ionic conductivity could not be obtained in mass production.
  • an object of the present invention is to provide a flame retardant electrolyte having high ionic conductivity, high strength, and excellent mass production stability.
  • a secondary battery comprising a solid electrolyte formed by the method for producing a solid electrolyte according to any one of 1 to 6 above.
  • the solid electrolyte of the present invention has high ionic conductivity, high strength, and excellent manufacturing quality.
  • the ionic liquid in the present invention is a compound formed by an onium cation selected from ammonium, phosphonium, and iodonium and an anion, and a substance that exhibits a liquid state in an environment of 0 ° C. or higher and 200 ° C. or lower is used.
  • the onium cation is preferably ammonium and is selected from aliphatic, alicyclic, aromatic, and heterocyclic quaternary ammonium cations.
  • the anion portion is preferably an anion containing a fluorine atom, and typical anions include imide anion, borate anion, and phosphate anion.
  • Preferred cations in the present invention include, for example, 1-ethyl-3-methyl-imidazolium (EMI), N, N-diethyl-N-methyl-N- (2-methylethyl) ammonium (DEME), N-methyl- N-propylpyrrolidinium (P13), N-methyl-N-propylperidium (PP13), N-ethyl-N-butylpyrrolidinium (P24), etc. may be used alone or in combination, and within the battery operating voltage range. As long as it has a simple structure, the structure is not particularly limited.
  • Preferred anion groups in the present invention include, for example, bis (fluorsulfolyl) imide (FSI), (fluorosulfolyl) (trifluoretylsulfideyl) imide (FTI), bis (trifluorformylsulfideyl), bis (trifluorformylsulfimylsulfideyl).
  • a typical example of the ionic liquid of the present invention is a combination of the above cation group and anion group, and can be used at any mixing ratio.
  • the content of the ionic liquid of the present invention is not particularly limited, but is preferably 2 parts by mass or more and 80 parts by mass or less, and more preferably 3 parts by mass or more and 40 parts by mass or less in the total solid electrolyte.
  • Inorganic oxide particles As the composition of the inorganic oxide particles, a known material can be used. Specifically, for example, silica (SiO 2 ), alumina (Al 2 O 3 ), zirconium oxide (ZrO 2 ), zeolite, Titanium oxide (TiO 2 ), aluminum nitride (AlN), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), barium titanate (BaTiO 3 ), strontium titanate (SrTiO 3 ), calcium titanate (CaTiO 3) ), Aluminum borate, boronite, iron oxide, calcium carbonate, barium carbonate, lead oxide, tin oxide, cerium oxide, calcium oxide, trimanganese tetroxide, magnesium oxide, niobium oxide, tantalum oxide, tungsten oxide, antimony oxide, Aluminum phosphate, cerium zirconate, calcium silicate , Zirconium silicate, ITO, titanium silicates,
  • neutral to acidic inorganic oxide particles are effective in improving ion conductivity.
  • Iron oxide, zirconium oxide, montmorillonite, saponite, vermiculite, hydrotalcite, kaolinite, kanemite, tin oxide, oxidation Tungsten, titanium oxide, aluminum phosphate, silica, zinc oxide, alumina and the like correspond to this, and silica particles are particularly suitable in the present invention.
  • Silica particles are preferably used because they are inexpensive and easily available industrially, and also have high reactivity with metal alkoxides of functional group blocks.
  • the inorganic oxide particles in the present invention are preferably porous.
  • the porous inorganic oxide particles are oxide particles having innumerable fine holes in the particle surface and inside, and the specific surface area is preferably 500 to 1000 m 2 / g.
  • the specific surface area can be measured by a conventional mercury intrusion method or gas adsorption method (BET method), and the BET method can be suitably used in the present invention.
  • the BET method is a method in which a specific surface area of a sample is obtained from the amount of a molecule (for example, N 2 ) whose adsorption occupation area is known adsorbed on the particle surface at the temperature of liquid nitrogen.
  • a pore diameter that is another index of porosity it is preferable to have a pore diameter in the meso region.
  • the meso region is a region of 2 to 50 nm to which Kelvin's capillary condensation theory can be applied. If it is larger than 2 nm, the ionic conductivity of the solid electrolyte tends to be improved, and if it is smaller than 50 nm, the strength of the solid electrolyte tends to be improved.
  • the pore diameter can be obtained from the median diameter of the pore distribution calculated by analyzing the hysteresis pattern of the adsorption / desorption isotherm obtained by the gas adsorption method using a pore diameter distribution measuring device, or by a transmission electron microscope (TEM). You can also know by observation.
  • TEM transmission electron microscope
  • inorganic oxide particles for example, as described in JP-A-7-133105, a nanometer-sized composite oxide having a low refractive index, in which the surface of porous inorganic oxide fine particles is coated with silica or the like.
  • low-refractive-index nanometer-sized silica-based fine particles composed of silica and inorganic oxides other than silica and having cavities inside are also suitable. .
  • the average particle size of the inorganic oxide particles of the present invention is preferably 1 nm to 20 ⁇ m.
  • the average particle size is larger than 1 nm, the strength of the solid electrolyte tends to be improved, and when the average particle size is smaller than 20 ⁇ m, the ionic conductivity tends to be improved.
  • the average particle diameter is a volume average value of the diameter (sphere converted particle diameter) when each particle is converted into a sphere having the same volume, and this value can be obtained by observation with an electron microscope. That is, from observation of an electron microscope of a solid electrolyte composition or porous inorganic fine particles, measure 200 or more porous inorganic fine particles within a certain visual field, obtain a sphere equivalent particle diameter of each particle, and obtain an average value thereof. Is the value obtained by
  • the inorganic oxide particles of the present invention may be surface-treated with an organic functional group.
  • an organic functional group such as hexamethyldisilazane, trimethylmethoxysilane, trimethylethoxysilane, and trimethylchlorosilane can be used.
  • the surface treatment method there are a dry method in which powder is directly sprayed on a powder and heat-fixed, and a wet method in which particles are dispersed in a solution and a surface treatment agent is added to carry out the surface treatment.
  • a wet method of dispersing is preferred.
  • particles treated by a wet method using a technique as described in Japanese Patent Application Laid-Open No. 2007-264581 have high dispersibility and can be used in the present invention.
  • the content of the inorganic oxide particles of the present invention is not particularly limited, but is preferably 2 to 80 parts by mass, more preferably 3 to 40 parts by mass in the all solid electrolyte.
  • the polymer having a functional group block capable of binding to the surface of the inorganic oxide particle in the present invention is a polymer in which a functional group block having affinity for inorganic oxide fine particles is substituted on the polymer main chain, and a metal alkoxide is substituted on the functional group block. By having the part, the affinity of the inorganic oxide fine particles is expressed.
  • the polymer part includes electrochemical and chemical stability such as oxidation resistance, reduction resistance, solvent resistance, low water absorption and flame resistance, temperature characteristics such as heat resistance and cold resistance, and mechanical characteristics (strong There is no particular limitation as long as the polymer is excellent in elongation and flexibility.
  • silicone polymers fluorine polymers such as polytetrafluoroethylene and polyvinylidene fluoride, polyolefins such as polyethylene and polypropylene, vinyl polymers such as polyacrylonitrile, polymethyl methacrylate, polystyrene and polyacrylamide, polysulfone, polyethersulfone, etc.
  • Polysulfone polymers, polyether ketone polymers such as polyether ketone, and polyimide polymers such as polyether imide, polyamide imide, and polyimide. Copolymers of these can also be used.
  • Preferred polymer parts are silicone polymers, acrylic polymers, and polyimide polymers, and particularly preferred are silicone polymers, polymethyl methacrylate, polyamideimide, and copolymers thereof.
  • the molecular weight is 2,000 to 2,000,000, preferably 10,000 to 1500,000 as a weight average molecular weight.
  • the functional group block that can be bonded to the surface of the inorganic oxide particles has a metal alkoxide part.
  • the metal alkoxide may be directly substituted on the polymer main chain, or the polymer main chain may be substituted with a metal alkoxide on the oligomer terminal via a metal oxide oligomer or the like.
  • bonded is called a functional group block in this invention.
  • the metal alkoxide in the present invention is relatively easily controlled as a reactive group, is stable for industrial use, and is excellent in storage stability.
  • Preferred examples of the metal constituting the metal alkoxide include metals such as Al, Ti, Si, and Zr. Among these, Si is particularly preferable.
  • Si alkoxide Si-methoxide, Si-ethoxide, Si-propoxide, and Si-isopropoxide are preferably used.
  • the functional group block in the present invention may be substituted by one block per molecule of the polymer main chain, but it is preferable that two or more blocks are substituted. By substituting two or more blocks, it becomes possible to connect between the inorganic oxide particles, and a solid electrolyte with higher strength can be obtained.
  • the content of the polymer having a functional group block capable of binding to the inorganic oxide particle surface of the present invention is not particularly limited as long as it reacts with the inorganic oxide particle surface and a satisfactory solid electrolytic strength is obtained.
  • 0.5 mass part or more and 70 mass parts or less in a solid electrolyte are preferable, More preferably, they are 2 mass parts or more and 50 mass parts or less.
  • a supporting electrolyte can be used, and any one can be used, but a salt of a metal ion belonging to Group Ia or IIa of the periodic table is preferably used.
  • a salt of a metal ion belonging to Group Ia or IIa of the periodic table is preferably used.
  • the metal ions belonging to Group Ia or Group IIa of the periodic table ions of lithium, sodium and potassium are preferable.
  • halide ions I ⁇ , Cl ⁇ , Br ⁇ etc.
  • PF 6 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, (CF 3 SO 2) (FSO 2) N -, (CF 3 CF 2 SO 2) 2 N ⁇ , (CF 3 SO 2 ) 3 C ⁇ , and CF 3 SO 3 — are more preferable.
  • Typical supporting electrolyte salts include LiCF 3 SO 3 , LiPF 6 , LiClO 4 , LiI, LiBF 4 , LiCF 3 CO 2 , LiSCN, LiN (CF 3 SO 2 ) 2 , Li (FSO 2 ) 2 N ⁇ , Examples thereof include Li (CF 3 SO 2 ) (FSO 2 ) N, NaI, NaCF 3 SO 3 , NaClO 4 , NaBF 4 , NaAsF 6 , KCF 3 SO 3 , KSCN, KPF 6 , KClO 4 , and KAsF 6 . More preferred is the above Li salt. These may be used alone or in combination.
  • the blending amount of the supporting electrolyte salt in the solid electrolyte is preferably 5 to 40% by mass, particularly preferably 10 to 30% by mass.
  • solvent In the present invention, it is possible to use a solvent up to 50% by mass together with the above solid electrolyte component. However, from the viewpoint of storage stability, it is more preferable not to use a solvent.
  • the solvent used in the electrolyte of the present invention is desirably a compound that has a low viscosity and improves ionic conductivity, or has a high dielectric constant and improved effective carrier concentration, and can exhibit excellent ionic conductivity. .
  • solvents examples include carbonate compounds such as ethylene carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, ether compounds such as dioxane and diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene Chain ethers such as glycol dialkyl ether and polypropylene glycol dialkyl ether, nitrile compounds such as acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, and benzonitrile, esters such as carboxylic acid ester, phosphoric acid ester and phosphonic acid ester And aprotic polar substances such as dimethyl sulfoxide and sulfolane.
  • carbonate compounds such as ethylene carbonate and propylene carbonate
  • heterocyclic compounds such as 3-methyl-2-oxazolidinone
  • ether compounds such as dioxane and diethyl ether
  • carbonate compounds such as ethylene carbonate and propylene carbonate
  • heterocyclic compounds such as 3-methyl-2-oxazolidinone
  • nitrile compounds such as acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, and benzonitrile
  • esters are particularly preferred. preferable. These may be used alone or in combination of two or more.
  • the solvent preferably has a boiling point of 200 ° C. or higher at normal pressure (1 atm), more preferably 250 ° C. or higher, and even more preferably 270 ° C. or higher.
  • An ionic liquid, an inorganic oxide particle, a polymer having a functional group block capable of binding to the surface of the inorganic oxide particle, and a lithium salt are dissolved in a suitable solvent such as N-methylpyrrolidone, and this solution is dissolved in a glass or polyester film
  • a thin film of solid electrolyte can be obtained by casting or coating on a substrate, drying and reacting, and peeling off the obtained coating film from the substrate.
  • one of the preferred modes of the reaction between the surface of the inorganic oxide particles and the polymer having a functional group block capable of binding to the surface of the inorganic oxide particles is the progress of the reaction by heating during coating and drying.
  • the heating means a method in which hot air, vacuum, infrared rays, far infrared rays, electron beams and low-humidity air are used alone or in combination can be used.
  • the method for producing a solid electrolyte of the present invention preferably has a step of treating at a temperature of 80 to 350 ° C., more preferably 100 to 250 ° C.
  • a metal chelate catalyst such as zirconium (Zr) or tin (Sn), or an acid catalyst such as hydrochloric acid or acetic acid may be used.
  • the production method of the solid electrolyte of the present invention is preferably a coating method, a press method, etc., but is particularly preferably produced by coating.
  • a solid electrolyte by coating apply a solid electrolyte precursor solution on a glass substrate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), etc.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • a substrate that can be peeled off is preferred.
  • the secondary battery can also be produced by a method of applying directly on the electrode, a method of applying to a glass substrate, a plastic substrate or the like, peeling and bonding the electrodes.
  • a press method that does not use coating there is a method of heating a solid electrolyte precursor to obtain a bulk solid electrolyte.
  • the secondary battery can be produced by sandwiching between the positive electrode and the negative electrode and performing a calendering process.
  • the use of coating increases the interfacial adhesive force between the solid electrolyte and the electrode, and also suppresses the electrical resistance at the interface.
  • the solid electrolyte produced by coating has no voids inside the solid and tends to suppress electrical resistance.
  • solid electrolyte coating method examples include reverse roll method, bar coating method, slot die coating method, direct roll method, blade method, knife method, extrusion method, curtain method, gravure method, bar method, dip method and squeeze method. Etc. are preferable. Among these, a blade method, a knife method, a slot die coating method and an extrusion method are preferable.
  • the coating is preferably performed at a speed of 0.1 to 100 m / min.
  • the surface state of a favorable application layer can be obtained by selecting the said application
  • the application may be performed one side at a time or both sides simultaneously.
  • the application may be continuous, intermittent or striped.
  • a base material can also be heated at the time of application
  • the solid electrolyte of the present invention can be obtained by applying to a substrate heated to 100 to 200 ° C. and cooling.
  • the thickness, length and width of the coating layer are determined by the shape and size of the battery, but the thickness of the coating layer on one side is preferably 1 to 2000 ⁇ m after drying.
  • a method for drying and dehydrating the solid electrolyte coating a method in which hot air, vacuum, infrared, far infrared, electron beam, and low-humidity air are used alone or in combination can be used.
  • the water content is preferably 2000 ppm or less for the entire battery, and preferably 500 ppm or less for the solid electrolyte.
  • Preparation of a solid electrolyte by the pressing method can be obtained by sandwiching the solid electrolyte between a glass substrate, a plastic substrate, an electrode of a secondary battery, etc., and applying pressure. It is possible to heat to 100 ° C. to 200 ° C. during pressurization and pressurize under vacuum.
  • the solid electrolyte of the present invention takes a form in which inorganic oxide fine particles are uniformly dispersed in a coating film. By this homogeneous dispersion, an ion conduction path through which ions can move is formed, and stable ion conductivity can be secured at a high level.
  • the solid electrolyte of the present invention is sandwiched between opposing electrodes of an electrochemical device such as a lithium ion battery, a fuel cell, a dye-sensitized solar cell, or an electrolytic capacitor.
  • an electrochemical device such as a lithium ion battery, a fuel cell, a dye-sensitized solar cell, or an electrolytic capacitor.
  • Positive electrode active material examples include an inorganic active material, an organic active material, and a composite thereof.
  • the energy density of an inorganic active material or a composite of an inorganic active material and an organic active material is particularly large. It is preferable from the point.
  • x is preferably in the range of 0-1.
  • fluorine-based compounds such as FeF 3 , Li 3 FeF 6 , and Li 2 TiF 6
  • metal sulfides such as Li 2 FeS 2 , TiS 2 , MoS 2 , and FeS
  • composite oxides of these compounds and lithium can be given.
  • organic active material examples include conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, and polyparaphenylene, organic disulfide compounds, organic sulfur compounds DMcT (2,5-dimercapto-1,3,4-thiadiazole). ), Benzoquinone compound PDBM (poly 2,5-dihydroxy-1,4-benzoquinone-3,6-methylene), carbon disulfide, sulfur-based positive electrode materials such as active sulfur, and organic radical compounds.
  • conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, and polyparaphenylene
  • organic disulfide compounds organic sulfur compounds DMcT (2,5-dimercapto-1,3,4-thiadiazole).
  • DMcT organic sulfur compounds
  • Benzoquinone compound PDBM poly 2,5-dihydroxy-1,4-benzoquinone-3,6-methylene
  • carbon disulfide sulfur-based positive
  • the surface of the positive electrode active material is coated with an inorganic oxide from the viewpoint of extending the life of the battery.
  • a method of coating the surface of the positive electrode active material is preferable. Examples of the coating method include a method of coating using a surface modifying apparatus such as a hybridizer.
  • inorganic oxides include group IIA to VA groups such as magnesium oxide, silicon oxide, alumina, zirconia, and titanium oxide, transition metals, IIIB and IVB oxides, barium titanate, calcium titanate, lead titanate, Examples thereof include ⁇ -LiAlO 2 and LiTiO 3 , and silicon oxide is particularly preferable.
  • group IIA to VA groups such as magnesium oxide, silicon oxide, alumina, zirconia, and titanium oxide, transition metals, IIIB and IVB oxides, barium titanate, calcium titanate, lead titanate, Examples thereof include ⁇ -LiAlO 2 and LiTiO 3 , and silicon oxide is particularly preferable.
  • a powder made of graphite or tin alloy can be applied on a current collector as a paste together with a binder such as styrene butadiene rubber or polyvinylidene fluoride, dried, and press-molded.
  • a silicon-based thin film negative electrode in which a 3 to 5 micron silicon-based thin film is directly formed on a current collector by physical vapor deposition (such as sputtering or vacuum deposition) can also be used.
  • a copper foil having a 10 to 30 micron lithium foil adhered thereto is suitable. From the viewpoint of increasing the capacity, it is preferable to be composed of a silicon-based thin film negative electrode or a lithium metal negative electrode.
  • Electrode mixture examples of the electrode mixture used in the present invention include those added with a lithium salt, an aprotic organic solvent, etc. in addition to a conductive agent, a binder, a filler, and the like.
  • any material can be used as long as it is an electron conductive material that does not cause a chemical change in the constructed secondary battery.
  • natural graphite scale-like graphite, scale-like graphite, earth-like graphite, etc.
  • artificial graphite carbon black, acetylene black, ketjen black, carbon fiber and metal powder (copper, nickel, aluminum, silver (Japanese Patent Laid-Open No. Sho 63-63)) 148554), etc.
  • conductive fibers such as metal fibers or polyphenylene derivatives (described in JP-A-59-20971), or a mixture thereof.
  • the addition amount of the conductive agent is preferably 1 to 50% by mass, and more preferably 2 to 30% by mass. In the case of carbon or graphite, 2 to 15% by mass is particularly preferable.
  • a binder for holding the electrode mixture can be used.
  • a binder include polysaccharides, thermoplastic resins, and polymers having rubber elasticity. Among them, for example, starch, carboxymethylcellulose, cellulose, diacetylcellulose, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, Water-soluble polymers such as sodium alginate, polyacrylic acid, sodium polyacrylate, polyvinyl phenol, polyvinyl methyl ether, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylonitrile, polyacrylamide, polyhydroxy (meth) acrylate, styrene-maleic acid copolymer , Polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinyl Redene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, vinyl
  • the binder can be used alone or in combination of two or more.
  • the amount of the binder added is small, the holding power and cohesive force of the electrode mixture are weakened. If the amount is too large, the electrode volume increases and the electrode unit volume or the capacity per unit mass decreases. For this reason, the addition amount of the binder is preferably 1 to 30% by mass, and more preferably 2 to 10% by mass.
  • the filler can be any fibrous material that does not cause a chemical change in the secondary battery of the present invention.
  • olefin polymers such as polypropylene and polyethylene, fibers such as glass and carbon are used.
  • the amount of filler added is not particularly limited, but is preferably 0 to 30% by mass.
  • the positive / negative current collector an electron conductor that does not cause a chemical change in the secondary battery of the present invention is used.
  • the current collector of the positive electrode in addition to aluminum, stainless steel, nickel, titanium, etc., the surface of aluminum or stainless steel is preferably treated with carbon, nickel, titanium, or silver. Among them, aluminum and aluminum alloys are preferable. More preferred.
  • the negative electrode current collector copper, stainless steel, nickel, and titanium are preferable, and copper or a copper alloy is more preferable.
  • a film sheet is usually used, but a porous body, a foam, a molded body of a fiber group, and the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • the shape of the secondary battery of the present invention can be applied to any shape such as a sheet, a corner, and a cylinder.
  • the electrode mixture of the positive electrode active material and the negative electrode active material is mainly used after being applied (coated), dried and compressed on the current collector.
  • Preferred examples of the electrode mixture coating method include a reverse roll method, a direct roll method, a blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, a dip method, and a squeeze method. .
  • a blade method, a knife method, and an extrusion method are preferable.
  • the coating is preferably performed at a speed of 0.1 to 100 m / min.
  • the surface state of a favorable application layer can be obtained by selecting the said application
  • the application may be performed one side at a time or both sides simultaneously. Furthermore, the application may be continuous, intermittent or striped.
  • the thickness, length and width of the coating layer are determined by the shape and size of the battery, but the thickness of the coating layer on one side is preferably 1 to 2000 ⁇ m in the compressed state after drying.
  • a method for drying and dehydrating the electrode sheet coated material a method in which hot air, vacuum, infrared, far infrared, electron beam, and low-humidity air are used alone or in combination can be used.
  • the drying temperature is preferably 80 to 350 ° C, more preferably 100 to 250 ° C.
  • the water content is preferably 2000 ppm or less for the entire battery, and preferably 500 ppm or less for each of the positive electrode mixture, the negative electrode mixture and the electrolyte.
  • a sheet pressing method As a sheet pressing method, a generally adopted method can be used, but a calendar pressing method is particularly preferable.
  • the pressing pressure is not particularly limited, but is preferably 0.2 to 3 t / cm 2 .
  • the pressing speed of the calendar press method is preferably 0.1 to 50 m / min, and the pressing temperature is preferably room temperature to 200 ° C.
  • the ratio of the negative electrode sheet width to the positive electrode sheet is preferably 0.9 to 1.1, particularly preferably 0.95 to 1.0.
  • the content ratio of the positive electrode active material and the negative electrode active material varies depending on the compound type and the electrode mixture formulation.
  • the form of the secondary battery of the present invention is not particularly limited, but can be enclosed in various battery cells such as coins, sheets, cylinders, and the like.
  • the use of the secondary battery of the present invention is not particularly limited.
  • a notebook computer a pen input personal computer, a mobile personal computer, an electronic book player, a cellular phone, a cordless phone, a pager, a handy terminal, a portable fax machine.
  • Others for consumer use include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder grinders, etc.). Furthermore, it can be used for various military purposes and space. Moreover, it can also combine with a solar cell.
  • Example 1 Synthesis of 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) amide [abbreviated as EMI-FSI] 21.9 g (0.1 mol) of potassium bis (fluorosulfonyl) amide (K-FSI) in 70 ml of water A solution prepared by dissolving 14.6 g (0.1 mol) of 1-ethyl-3-methylimidazolium chloride in 50 ml of water was added dropwise and mixed in 15 minutes while stirring at 50 ° C. and stirring at 50 ° C. After further metathesis reaction for 2 hours with vigorous stirring at 50 ° C., the produced oil layer was separated.
  • EMI-FSI 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) amide
  • EMI-FSI 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) amide
  • EMI-TFSI 1-ethyl-3-methylimidazolium bis [(trifluoromethyl) sulfonyl] amide
  • N-ethyl-N-butylpyrrolidinium bis (fluorosulfonyl) amide [abbreviated as P24-FSI] 21.9 g (0.1 mol) of potassium bis (fluorosulfonyl) amide (K-FSI) in 100 ml of water
  • K-FSI potassium bis (fluorosulfonyl) amide
  • a solution prepared by dissolving 19.1 g (0.1 mol) of N-ethyl-N-butylpyrrolidinium chloride in 50 ml of water was added dropwise and mixed in 15 minutes while stirring at 70 ° C. and stirring at 50 ° C. After further metathesis reaction for 2 hours with vigorous stirring at 50 ° C., the produced oil layer was separated.
  • Nanogel TLD201 Surface organic modified porous silica particles made by Cabot, specific surface area 800 m 2 / g, pore diameter 3 nm, average particle diameter 8 ⁇ m
  • Silysia Fluji Silysia Chemical Co., Ltd. porous silica particles, specific surface area 900 m 2 / g, pore diameter 4 nm, average particle diameter 6 ⁇ m
  • Fuji Balloon Fluji Silysia Chemical Co., Ltd. non-porous silica particles average particle size 8.5 ⁇ m
  • AEROSIL300 Nippon Aerosil Co., Ltd.
  • JC40 Mozusawa Chemical Co., Ltd. non-porous silica alumina particles average particle size 4 ⁇ m
  • Sunsphere H-32 Alignid Co., Ltd. porous silica alumina particles average particle size 3 ⁇ m
  • A34 Nippon Light Metal Co., Ltd. non-porous alumina particles average particle size 4 ⁇ m
  • the specific surface area and pore diameter were measured using an automatic specific surface area / pore distribution measuring apparatus BELSORP-miniII manufactured by Nippon Bell Co., Ltd.
  • the average particle size was obtained by measuring 200 or more particles with a scanning electron microscope and determining the average value of the sphere equivalent particle size of each particle.
  • the following was used as the polymer of the present invention having a functional group block capable of binding to the surface of the inorganic oxide particles.
  • HPC7506 manufactured by JSR, polyfunctional, acrylic polymer
  • H901-2 Arakawa Chemical Co., Ltd., multifunctional, amideimide polymer
  • HBAA-02 Arakawa Chemical Co., Ltd., multifunctional, silicone imide polymer
  • ACRYDIC A-405 (acrylic resin made by DIC) SOLEF1013 (PVDF resin made by Solvay) ⁇ Preparation of solid electrolyte>
  • EMI-FSI lithium bis ⁇ (trifluoromethyl) sulfonyl ⁇ amide
  • Li-TFSI lithium bis ⁇ (trifluoromethyl) sulfonyl ⁇ amide
  • 3.0 g of the above Nanogel TLD201 and 3.0 g of HPC7506 were added and stirred vigorously to prepare a solid electrolyte precursor coating solution 001.
  • the ionic liquid, inorganic oxide particles, and polymer were changed as shown in Table 1 to prepare solid electrolyte precursor coating solutions 002 to 011 and 021.
  • a solid electrolyte precursor coating solution 017 containing no inorganic oxide fine particles, solid electrolyte precursor coating solutions 018 and 019 added with a polymer having no functional group, and a solid electrolyte precursor coating solution 020 containing no polymer were prepared. (Table 1).
  • composition in which no N-methylpyrrolidone is added to the solid electrolyte precursor coating solution 010 is prepared, kneaded in an agate mortar, sandwiched between slide glasses, heated at 150 ° C. for 10 minutes, and pressed to a thickness of 25 ⁇ m. A solid electrolyte film 016 was obtained.
  • ⁇ Preparation of positive electrode> It is obtained by adding 43 parts by mass of LiCoO 2 as a positive electrode active material, 2 parts by mass of flaky graphite, 2 parts by mass of acetylene black, and 3 parts by mass of polyacrylonitrile as a binder, and kneading 100 parts by mass of acrylonitrile as a medium.
  • the slurry was coated on an aluminum foil with a thickness of 20 ⁇ m using an extrusion type coater, dried and compression-molded with a calendar press machine, and then welded with an aluminum lead plate at the end, with a thickness of 95 ⁇ m,
  • a positive electrode sheet having a width of 54 mm and a length of 49 mm was prepared and dehydrated and dried at 230 ° C. for 30 minutes in dry air having a dew point of ⁇ 40 ° C. or lower.
  • the solid electrolyte precursor coating solution 001 to 011 is coated with a wire bar on a dehydrated and dried positive electrode sheet having a width of 54 mm and a length of 49 mm, heated at 120 ° C. for 15 minutes with a hot air dryer, and dried. Polymerization was performed to form a layer having a thickness of 25 ⁇ m (for sheet type batteries 001 to 011 and 021).
  • solid electrolyte layers were obtained in the same manner using the solid electrolyte precursor coating solutions 017 to 020 (for sheet type batteries 017 to 020).
  • solid electrolyte precursor coating solution 010 a composition in which no N-methylpyrrolidone was added was prepared, kneaded in an agate mortar, sandwiched between the positive electrode and a slide glass, heated at 150 ° C. for 10 minutes, and pressed to a thickness of 25 ⁇ m. The slide glass was peeled off (for sheet type battery 016).
  • a negative electrode sheet (lithium-laminated copper foil (lithium film thickness 30 ⁇ m, copper foil film thickness 20 ⁇ m)) 55 mm wide ⁇ 50 mm long welded to the above lead plate was laminated and heated to 80 ° C. under reduced pressure for 3 hours. Thereafter, an exterior material made of a laminate film of polyethylene (50 ⁇ m) -polyethylene terephthalate (50 ⁇ m) was used, and the four edges were heat-sealed under vacuum to form a sheet-type battery 001-021.
  • the solid electrolyte of the present invention has high ionic conductivity, high strength, little variation, good production quality, and excellent mass production stability. Further, it can be seen that the secondary battery having the present solid electrolyte has good cycle characteristics, high capacity retention, and excellent durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Secondary Cells (AREA)

Abstract

Disclosed is a flame-retardant electrolyte having a high ionic conductivity, high strength and excellent mass-production stability. Also disclosed is a process for producing a solid electrolyte which is formed using a coating solution comprising at least an ionic liquid, inorganic oxide particles, and a polymer having a functional group block capable of binding to the surfaces of the inorganic oxide particles. The process is characterized in that the functional group block contains a metal alkoxide moiety.

Description

固体電解質の製造方法および二次電池Method for producing solid electrolyte and secondary battery
 本発明は固体電解質の製造方法とそれを用いた二次電池であり、さらに詳しくはイオン伝導性の高い、高強度、さらには製造品質の優れた固体電解質の製造方法であり、その固体電解質を適用した優れた二次電池に関するものである。 The present invention relates to a method for producing a solid electrolyte and a secondary battery using the same, more specifically, a method for producing a solid electrolyte having high ion conductivity, high strength, and excellent production quality. The present invention relates to an applied excellent secondary battery.
 近年、ノートパソコン、携帯電話、PDA(Personal Digital Assistants)などの携帯端末の普及が著しい。かかる携帯端末は、より快適な携帯性が求められ、小型化、薄型化、軽量化、高性能化が急速に進んでいる。そして、かかる携帯端末の電源には、二次電池として、リチウム二次電池が多用されており、電池に対しても同様に小型化、薄型化、軽量化、高性能化の要求が高まっている。 In recent years, mobile terminals such as notebook computers, mobile phones, and PDAs (Personal Digital Assistants) have been widely used. Such portable terminals are required to have more comfortable portability, and are rapidly becoming smaller, thinner, lighter, and higher in performance. And as a power source of such a portable terminal, a lithium secondary battery is frequently used as a secondary battery, and the demand for a smaller, thinner, lighter and higher performance is similarly increased for the battery. .
 このような要望の中、現在のリチウム二次電池は、高性能になっているが、可燃性の有機電解液を用いるために、液漏れ、揮発性、引火性等、安全性の面で問題が残る。さらに溶液を密封するために金属容器を用いる必要があり、電池形状の自由度を持たせることが困難であった。 Under these demands, current lithium secondary batteries have high performance, but use of flammable organic electrolytes causes problems in terms of safety such as liquid leakage, volatility, and flammability. Remains. Furthermore, it was necessary to use a metal container to seal the solution, and it was difficult to give the battery shape flexibility.
 このような課題を解決すべく、薄型、高エネルギー密度電解質として電解質にゲル電解質を用いた電池が実用化されてきた。それらは液漏れが無く、形状自由で大面積で薄型に出来るなど、今までの円筒型、角型には無い特徴を持っている。 In order to solve such a problem, a battery using a gel electrolyte as an electrolyte as a thin and high energy density electrolyte has been put into practical use. They do not leak, have a shape that is free, can be thin with a large area, and have characteristics that are not available in conventional cylindrical and square shapes.
 しかしながら、ゲル電解質は有機溶媒をゲル化してなる物であり、液漏れがないが、引火性を持っており、安全性は本質的に解決されていない。さらに強度が低く、電極間にセパレータを使用しなければならないためコストメリットはほとんど無い。 However, the gel electrolyte is a product obtained by gelling an organic solvent and does not leak, but has flammability, and safety is not essentially solved. Furthermore, since the strength is low and a separator must be used between the electrodes, there is almost no cost merit.
 これに対して、難燃性の電解質であるイオン液体を利用した難燃性電解質についての技術が開示されている(特許文献1、2参照)。この難燃性電解質はイオン液体を無機微粒子でゲル化させ、さらにゲル強度を補うためにポリマーを添加し、ある程度のゲル強度をもった電解質である。 On the other hand, the technique about the flame retardant electrolyte using the ionic liquid which is a flame retardant electrolyte is disclosed (refer patent documents 1 and 2). This flame retardant electrolyte is an electrolyte having a certain degree of gel strength by gelling an ionic liquid with inorganic fine particles and further adding a polymer to supplement the gel strength.
 しかしながら、ポリマーを利用してもゲル強度が十分ではなく、電極間の短絡を防止するためにセパレータが必要となり、コストメリットが無い。さらには、無機微粒子とポリマーの相溶性が乏しく無機微粒子とポリマーそれぞれが均質分散せず、相分離構造を形成してしまい、十分なイオン伝導度が得られないばかりでなく、その不安定な分散状態のため量産において安定したイオン伝導度が得られないという問題があった。 However, even if a polymer is used, the gel strength is not sufficient, and a separator is required to prevent a short circuit between the electrodes, and there is no cost merit. Furthermore, the compatibility between the inorganic fine particles and the polymer is poor, and the inorganic fine particles and the polymer are not homogeneously dispersed to form a phase separation structure. Due to the state, there was a problem that stable ionic conductivity could not be obtained in mass production.
特開2003-157719号公報JP 2003-157719 A 特開2003-257476号公報JP 2003-257476 A
 即ち、本発明の目的は、イオン伝導度が高く、高強度であり、量産安定性に優れた、難燃性電解質を提供することにある。 That is, an object of the present invention is to provide a flame retardant electrolyte having high ionic conductivity, high strength, and excellent mass production stability.
 上記状況において発明者らが検討の結果、イオン液体を利用した電解質に関し、無機微粒子と、無機微粒子表面と結合しうる官能基ブロックを有するポリマーを利用することで、イオン伝導度、固体電解質強度、量産品質の安定化を解決できることが分かった。官能基ブロックを有することで、無機粒子とポリマーの親和性の向上、強度向上、また無機微粒子がポリマー中に均質に分散でき、イオン伝導パスが形成され、高いイオン伝導度が得られる。さらに均質分散、分散の安定化により量産品質を飛躍的に向上させることが出来ることが分かった。 As a result of investigations by the inventors in the above situation, regarding an electrolyte using an ionic liquid, by using a polymer having an inorganic fine particle and a functional group block capable of binding to the surface of the inorganic fine particle, ion conductivity, solid electrolyte strength, It was found that stabilization of mass production quality can be solved. By having a functional group block, the affinity between the inorganic particles and the polymer is improved, the strength is improved, and the inorganic fine particles can be homogeneously dispersed in the polymer, an ion conduction path is formed, and high ionic conductivity is obtained. Furthermore, it was found that mass production quality can be dramatically improved by homogenous dispersion and stabilization of dispersion.
 上記課題は、下記の本発明の構成により達成することができた。 The above-mentioned problems could be achieved by the following configuration of the present invention.
 1.少なくとも、イオン液体、無機酸化物粒子、及び無機酸化物粒子表面と結合しうる官能基ブロックを有するポリマーを含有する塗布液を用いて形成された固体電解質の製造方法であって、上記官能基ブロックが金属アルコキシド部を含有することを特徴とする固体電解質の製造方法。 1. A method for producing a solid electrolyte formed using a coating solution containing at least an ionic liquid, inorganic oxide particles, and a polymer having a functional group block capable of binding to the surface of the inorganic oxide particles, the functional group block Contains a metal alkoxide part, The manufacturing method of the solid electrolyte characterized by the above-mentioned.
 2.前記無機酸化物粒子がシリカ粒子であることを特徴とする前記1に記載の固体電解質の製造方法。 2. 2. The method for producing a solid electrolyte as described in 1 above, wherein the inorganic oxide particles are silica particles.
 3.前記無機酸化物粒子が多孔質粒子であることを特徴とする前記1または2に記載の固体電解質の製造方法。 3. 3. The method for producing a solid electrolyte as described in 1 or 2 above, wherein the inorganic oxide particles are porous particles.
 4.前記官能基ブロックの金属アルコキシド部を構成する金属がAl、Ti、Si、Zrから選ばれる少なくとも1種であることを特徴とする前記1~3の何れか1項に記載の固体電解質の製造方法。 4. 4. The method for producing a solid electrolyte according to any one of 1 to 3, wherein the metal constituting the metal alkoxide part of the functional group block is at least one selected from Al, Ti, Si, and Zr. .
 5.前記官能基ブロックを分子中に複数個有することを特徴とする前記1~4の何れか1項に記載の固体電解質の製造方法。 5. 5. The method for producing a solid electrolyte according to any one of 1 to 4, wherein a plurality of the functional group blocks are included in the molecule.
 6.80℃以上350℃以下の温度で処理する工程を有することを特徴とする前記1~5の何れか1項に記載の固体電解質の製造方法。 6. The method for producing a solid electrolyte as described in any one of 1 to 5 above, which comprises a step of treating at a temperature of from 80 ° C. to 350 ° C.
 7.前記1~6の何れか1項に記載の固体電解質の製造方法により形成された固体電解質を有することを特徴とする二次電池。 7. 7. A secondary battery comprising a solid electrolyte formed by the method for producing a solid electrolyte according to any one of 1 to 6 above.
 本発明の固体電解質において、高いイオン伝導度を有し、高強度でありさらには製造品質に優れた効果を示す。 The solid electrolyte of the present invention has high ionic conductivity, high strength, and excellent manufacturing quality.
 以下に本発明を詳細に説明する。 The present invention will be described in detail below.
 (イオン液体)
 本発明におけるイオン液体とは、アンモニウム、ホスホニウム、ヨードニウムから選ばれるオニウムカチオンとアニオンとで形成される化合物であり、0℃以上、200℃以下の環境下で液体状態を呈する物が用いられる。
(Ionic liquid)
The ionic liquid in the present invention is a compound formed by an onium cation selected from ammonium, phosphonium, and iodonium and an anion, and a substance that exhibits a liquid state in an environment of 0 ° C. or higher and 200 ° C. or lower is used.
 オニウムカチオンとしてはアンモニウムが好適であり脂肪族、脂環族、芳香族、複素環の4級アンモニウムカチオンから選ばれ、代表的にはイミダゾリウム、ピリジニウム、ピペリジニウム、チアゾリウム、ピロリウム、ピラゾリウム、ベンズイミダゾリウム、インドリウム、カルバゾリウム、キノリニウム、ピロリジニウム、ピペラジニウム、アルキルアンモニウム等が挙げられる。それぞれに置換基がついていてもかまわない。 The onium cation is preferably ammonium and is selected from aliphatic, alicyclic, aromatic, and heterocyclic quaternary ammonium cations. Typically, imidazolium, pyridinium, piperidinium, thiazolium, pyrrolium, pyrazolium, benzimidazolium , Indolium, carbazolium, quinolinium, pyrrolidinium, piperazinium, alkylammonium and the like. Each group may have a substituent.
 またアニオン部はフッ素原子を含有するアニオンが好ましく、代表的なアニオンとしてはイミドアニオン、ボレートアニオン、ホスフェートアニオンが挙げられる。 Further, the anion portion is preferably an anion containing a fluorine atom, and typical anions include imide anion, borate anion, and phosphate anion.
 本発明で好ましいカチオン群としては、例えば、1-ethyl-3-methyl-imidazolium(EMI)、N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium(DEME)、N-Methyl-N-propyl pyrrolidinium(P13)、N-Methyl-N-propylpiperidinium(PP13)、N-ethyl-N-buthyl pyrrolidinium(P24)等を単独、もしくは混合して用いてもよく、電池作動電圧範囲内で安定な構造を有するのであれば、特に構造を限定するものではない。 Preferred cations in the present invention include, for example, 1-ethyl-3-methyl-imidazolium (EMI), N, N-diethyl-N-methyl-N- (2-methylethyl) ammonium (DEME), N-methyl- N-propylpyrrolidinium (P13), N-methyl-N-propylperidium (PP13), N-ethyl-N-butylpyrrolidinium (P24), etc. may be used alone or in combination, and within the battery operating voltage range. As long as it has a simple structure, the structure is not particularly limited.
 本発明で好ましいアニオン群としては、例えばbis(fluorosulfonyl)imide(FSI)、(fluorosulfonyl)(trifluoromethylsulfonyl)imide(FTI)、bis(trifluoromethylsulfonyl)imide(TFSI)、bis(pentafluoroethylsufonyl)amide(BETI)、tetrafluoroborate(BF)、trifluoromethyltrifluoroborate(CFBF)、pentafluoroethyltrifluoroborate(CFCFBF)、hexafluorophospate(PF)等を単独、もしくは混合して用いてもよく、電池作動電圧範囲内で安定な構造を有するのであれば、特に構造を限定するものではない。 Preferred anion groups in the present invention include, for example, bis (fluorsulfolyl) imide (FSI), (fluorosulfolylyl) (trifluoretylsulfideyl) imide (FTI), bis (trifluorformylsulfideyl), bis (trifluorformylsulfimylsulfideyl). BF 4), trifluoromethyltrifluoroborate (CF 3 BF 3), pentafluoroethyltrifluoroborate (CF 3 CF 2 BF 3), alone hexafluorophospate (PF 6), etc., or it is used by mixing Ku, if having a stable structure in the battery operating voltage range, is not particularly limited to the structure.
 本発明のイオン液体の代表的な例は、上記カチオン群、アニオン群の組み合わせであり、任意の混合率で使用できる。 A typical example of the ionic liquid of the present invention is a combination of the above cation group and anion group, and can be used at any mixing ratio.
 本発明のイオン液体の含有量は特に限定はないが、全固体電解質中の、2質量部以上80質量部以下が好ましく、更に好ましくは3質量部以上40質量部以下である。 The content of the ionic liquid of the present invention is not particularly limited, but is preferably 2 parts by mass or more and 80 parts by mass or less, and more preferably 3 parts by mass or more and 40 parts by mass or less in the total solid electrolyte.
 (無機酸化物粒子)
 無機酸化物粒子の組成は、公知の材質からなる物を用いることが出来るが、具体的には、例えばシリカ(SiO)、アルミナ(Al)、酸化ジルコニウム(ZrO)、ゼオライト、酸化チタン(TiO)、窒化アルミ(AlN)、炭化ケイ素(SiC)、窒化ケイ素(Si)、チタン酸バリウム(BaTiO)、チタン酸ストロンチウム(SrTiO)、チタン酸カルシウム(CaTiO)、ホウ酸アルミニウム、ボロンナイト、酸化鉄、炭酸カルシウム、炭酸バリウム、酸化鉛、酸化スズ、酸化セリウム、酸化カルシウム、四酸化三マンガン、酸化マグネシウム、酸化ニオブ、酸化タンタル、酸化タングステン、酸化アンチモン、リン酸アルミニウム、セリウムジルコネイト、カルシウムシリケート、ジルコニウムシリケート、ITO、チタンシリケート、FSM16、MCM41、モンモリロナイト、サポナイト、バーミキュライト、ハイドロタルサイト、カオリナイト、カネマイト、アイラライト、マガディアイト、ケニアイトであり、これらの複合酸化物も好ましく使用できる。中でも中性~酸性の無機酸化物粒子がイオン伝導度向上の点で効果的であり、酸化鉄、酸化ジルコニウム、モンロリロナイト、サポナイト、バーミキュライト、ハイドロタルサイト、カオリナイト、カネマイト、酸化スズ、酸化タングステン、酸化チタン、リン酸アルミニウム、シリカ、酸化亜鉛、アルミナなどがこれに相当し、本発明において特に適しているのはシリカ粒子である。シリカ粒子は、工業上も安価で容易に入手できること、また官能基ブロックが有する金属アルコキシドとの反応性も富むため、好適に用いられる。
(Inorganic oxide particles)
As the composition of the inorganic oxide particles, a known material can be used. Specifically, for example, silica (SiO 2 ), alumina (Al 2 O 3 ), zirconium oxide (ZrO 2 ), zeolite, Titanium oxide (TiO 2 ), aluminum nitride (AlN), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), barium titanate (BaTiO 3 ), strontium titanate (SrTiO 3 ), calcium titanate (CaTiO 3) ), Aluminum borate, boronite, iron oxide, calcium carbonate, barium carbonate, lead oxide, tin oxide, cerium oxide, calcium oxide, trimanganese tetroxide, magnesium oxide, niobium oxide, tantalum oxide, tungsten oxide, antimony oxide, Aluminum phosphate, cerium zirconate, calcium silicate , Zirconium silicate, ITO, titanium silicates, FSM16, MCM41, montmorillonite, saponite, and vermiculite, hydrotalcite, kaolinite, kanemite, Ira lights, magadiite, kenyaite, is also preferably used a composite oxide thereof. Among them, neutral to acidic inorganic oxide particles are effective in improving ion conductivity. Iron oxide, zirconium oxide, montmorillonite, saponite, vermiculite, hydrotalcite, kaolinite, kanemite, tin oxide, oxidation Tungsten, titanium oxide, aluminum phosphate, silica, zinc oxide, alumina and the like correspond to this, and silica particles are particularly suitable in the present invention. Silica particles are preferably used because they are inexpensive and easily available industrially, and also have high reactivity with metal alkoxides of functional group blocks.
 本発明における無機酸化物粒子は多孔性を持つことが好ましい。多孔性無機酸化物粒子とは粒子表面、内部に無数の微細な穴があいている酸化物粒子であり、その比表面積は好ましくは500~1000m/gである。比表面積が500m/gより大きいと固体電解質のイオン伝導度が向上する傾向にあり、また1000m/gより小さいと固体電解質の強度が向上する傾向にある。比表面積は従来ある水銀圧入法やガス吸着法(BET法)により測定することが出来、本発明においてはBET法を好適に利用することが出来る。BET法とは粒子表面に吸着占有面積の分かった分子(例えばN)を液体窒素の温度で吸着させ、その量から試料の比表面積を求める方法である。また多孔性のもう一つの指標となる細孔径としては、メソ領域に細孔径を有することが好ましい。メソ領域とはケルビンの毛管凝縮理論が適応できる、2~50nmの領域である。2nmより大きいと固体電解質のイオン伝導度が向上する傾向であり、50nmより小さいと固体電解質の強度が向上する傾向にある。細孔径は細孔径分布測定装置によりガス吸着法で得た吸脱着等温線のヒステリシスパターンを解析することで算出した細孔分布のメディアン径で知ることも出来るし、透過型電子顕微鏡(TEM)での観察により知ることも出来る。 The inorganic oxide particles in the present invention are preferably porous. The porous inorganic oxide particles are oxide particles having innumerable fine holes in the particle surface and inside, and the specific surface area is preferably 500 to 1000 m 2 / g. When the specific surface area is larger than 500 m 2 / g, the ionic conductivity of the solid electrolyte tends to be improved, and when it is smaller than 1000 m 2 / g, the strength of the solid electrolyte tends to be improved. The specific surface area can be measured by a conventional mercury intrusion method or gas adsorption method (BET method), and the BET method can be suitably used in the present invention. The BET method is a method in which a specific surface area of a sample is obtained from the amount of a molecule (for example, N 2 ) whose adsorption occupation area is known adsorbed on the particle surface at the temperature of liquid nitrogen. In addition, as a pore diameter that is another index of porosity, it is preferable to have a pore diameter in the meso region. The meso region is a region of 2 to 50 nm to which Kelvin's capillary condensation theory can be applied. If it is larger than 2 nm, the ionic conductivity of the solid electrolyte tends to be improved, and if it is smaller than 50 nm, the strength of the solid electrolyte tends to be improved. The pore diameter can be obtained from the median diameter of the pore distribution calculated by analyzing the hysteresis pattern of the adsorption / desorption isotherm obtained by the gas adsorption method using a pore diameter distribution measuring device, or by a transmission electron microscope (TEM). You can also know by observation.
 無機酸化物粒子としては、例えば特開平7-133105号公報に記載されているように、多孔性の無機酸化物微粒子の表面をシリカ等で被覆した、低屈折率のナノメーターサイズの複合酸化物微粒子、また特開2001-233611号公報に記載されているように、シリカとシリカ以外の無機酸化物からなり、内部に空洞を有する低屈折率のナノメーターサイズのシリカ系微粒子等も適している。 As the inorganic oxide particles, for example, as described in JP-A-7-133105, a nanometer-sized composite oxide having a low refractive index, in which the surface of porous inorganic oxide fine particles is coated with silica or the like. As described in JP-A-2001-233611, low-refractive-index nanometer-sized silica-based fine particles composed of silica and inorganic oxides other than silica and having cavities inside are also suitable. .
 本発明の無機酸化物粒子の平均粒径は1nm~20μmであることが好ましい。平均粒径が1nmより大きいと固体電解質の強度が向上する傾向にあり、平均粒径が20μmより小さいと、イオン伝導度が向上する傾向にある。 The average particle size of the inorganic oxide particles of the present invention is preferably 1 nm to 20 μm. When the average particle size is larger than 1 nm, the strength of the solid electrolyte tends to be improved, and when the average particle size is smaller than 20 μm, the ionic conductivity tends to be improved.
 平均粒径は、各粒子を同体積の球に換算した時の直径(球換算粒径)の体積平均値であり、この値は電子顕微鏡観察により求めることが出来る。すなわち固体電解質組成物、または多孔質無機微粒子の電子顕微鏡観察から、一定の視野内にある多孔質無機微粒子を200個以上測定し、各粒子の球換算粒径を求め、その平均値を求めることにより得られた値である。 The average particle diameter is a volume average value of the diameter (sphere converted particle diameter) when each particle is converted into a sphere having the same volume, and this value can be obtained by observation with an electron microscope. That is, from observation of an electron microscope of a solid electrolyte composition or porous inorganic fine particles, measure 200 or more porous inorganic fine particles within a certain visual field, obtain a sphere equivalent particle diameter of each particle, and obtain an average value thereof. Is the value obtained by
 さらに本発明の無機酸化物粒子は有機官能基で表面処理されていてもよい。表面処理剤としては、ヘキサメチルジシラザン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルクロロシランなどの、公知のシランカップリング剤を用いることが出来る。 Furthermore, the inorganic oxide particles of the present invention may be surface-treated with an organic functional group. As the surface treatment agent, known silane coupling agents such as hexamethyldisilazane, trimethylmethoxysilane, trimethylethoxysilane, and trimethylchlorosilane can be used.
 表面処理方法としては、直接粉体に噴霧して加熱定着させる乾式法、溶液中に粒子を分散させておき、表面処理剤を添加して表面処理する湿式法とあるが、より均一に粒子が分散する湿式法が好ましい。例を挙げると特開2007-264581号公報に記載されているような手法で、湿式で処理した粒子は高い分散性を持つため本発明に利用できる。 As the surface treatment method, there are a dry method in which powder is directly sprayed on a powder and heat-fixed, and a wet method in which particles are dispersed in a solution and a surface treatment agent is added to carry out the surface treatment. A wet method of dispersing is preferred. For example, particles treated by a wet method using a technique as described in Japanese Patent Application Laid-Open No. 2007-264581 have high dispersibility and can be used in the present invention.
 本発明の無機酸化物粒子の含有量は特に限定はないが、全固体電解質中の、2質量部以上80質量部が好ましく、更に好ましくは3質量部以上40質量部以下である。 The content of the inorganic oxide particles of the present invention is not particularly limited, but is preferably 2 to 80 parts by mass, more preferably 3 to 40 parts by mass in the all solid electrolyte.
 (無機酸化物粒子表面と結合しうる官能基ブロックを有するポリマー)
 本発明における無機酸化物粒子表面と結合しうる官能基ブロックを有するポリマーとは、ポリマー主鎖に無機酸化物微粒子と親和性のある官能基ブロックを置換したポリマーであり、官能基ブロックに金属アルコキシド部を有することで無機酸化物微粒子の親和性が発現する。
(Polymer having functional group block capable of binding to inorganic oxide particle surface)
The polymer having a functional group block capable of binding to the surface of the inorganic oxide particle in the present invention is a polymer in which a functional group block having affinity for inorganic oxide fine particles is substituted on the polymer main chain, and a metal alkoxide is substituted on the functional group block. By having the part, the affinity of the inorganic oxide fine particles is expressed.
 ポリマー部としては耐酸化性、耐還元性、耐溶剤性、低吸水性、難燃性などの電気化学的、化学的安定性や、耐熱性、耐寒性などの温度特性、さらに力学特性(強伸度、柔軟性)に優れたポリマーであれば特に限定はない。例えばシリコーン系ポリマー、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系ポリマー、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアクリロニトリル、ポリメチルメタクリレート、ポリスチレン、ポリアクリルアミドなどのビニル系ポリマー、ポリスルフォン、ポリエーテルスルフォンなどのポリスルフォン系ポリマー、ポリエーテルケトンなどのポリエーテルケトン系ポリマー、ポリエーテルイミド、ポリアミドイミド、ポリイミドなどのポリイミド系ポリマー等であり、これらの共重合ポリマーも使用できる。 The polymer part includes electrochemical and chemical stability such as oxidation resistance, reduction resistance, solvent resistance, low water absorption and flame resistance, temperature characteristics such as heat resistance and cold resistance, and mechanical characteristics (strong There is no particular limitation as long as the polymer is excellent in elongation and flexibility. For example, silicone polymers, fluorine polymers such as polytetrafluoroethylene and polyvinylidene fluoride, polyolefins such as polyethylene and polypropylene, vinyl polymers such as polyacrylonitrile, polymethyl methacrylate, polystyrene and polyacrylamide, polysulfone, polyethersulfone, etc. Polysulfone polymers, polyether ketone polymers such as polyether ketone, and polyimide polymers such as polyether imide, polyamide imide, and polyimide. Copolymers of these can also be used.
 好ましいポリマー部としてはシリコーン系ポリマー、アクリル系ポリマー、ポリイミド系ポリマーであり、特に好ましいのはシリコーン系、ポリメチルメタクリレート、ポリアミドイミド、その共重合ポリマーである。その分子量は重量平均分子量として2000~2000000、好ましくは10000~1500000である。 Preferred polymer parts are silicone polymers, acrylic polymers, and polyimide polymers, and particularly preferred are silicone polymers, polymethyl methacrylate, polyamideimide, and copolymers thereof. The molecular weight is 2,000 to 2,000,000, preferably 10,000 to 1500,000 as a weight average molecular weight.
 また無機酸化物粒子表面と結合しうる官能基ブロックは金属アルコキシド部を有している。金属アルコキシドが、上記ポリマー主鎖に直接置換していても良いし、ポリマー主鎖に金属酸化物オリゴマー等を介して、オリゴマー末端に金属アルコキシドが置換している形態でもかまわない。このようにポリマー主鎖から金属アルコキシドを有する置換基が結合した部分を本発明では官能基ブロックと称する。 Moreover, the functional group block that can be bonded to the surface of the inorganic oxide particles has a metal alkoxide part. The metal alkoxide may be directly substituted on the polymer main chain, or the polymer main chain may be substituted with a metal alkoxide on the oligomer terminal via a metal oxide oligomer or the like. Thus, the part which the substituent which has a metal alkoxide from the polymer principal chain couple | bonded is called a functional group block in this invention.
 本発明においての金属アルコキシドは、反応性基としては比較的反応制御しやすく、工業的用途として安定、また保存性に優れている。金属アルコキシドを構成する金属として、好ましくはAl、Ti、Si、Zr等の金属を挙げることができる。これらの中でも特に好ましくはSiである。SiのアルコキシドとしてはSi-メトキシド、Si-エトキシド、Si-プロポキシド、Si-イソプロポキシドが好適に用いられる。 The metal alkoxide in the present invention is relatively easily controlled as a reactive group, is stable for industrial use, and is excellent in storage stability. Preferred examples of the metal constituting the metal alkoxide include metals such as Al, Ti, Si, and Zr. Among these, Si is particularly preferable. As the Si alkoxide, Si-methoxide, Si-ethoxide, Si-propoxide, and Si-isopropoxide are preferably used.
 また本発明における官能基ブロックは、ポリマー主鎖1分子につき、1ブロック置換されていれば良いが、好ましくは2ブロック以上複数個置換されていることが好ましい。2ブロック以上置換されていることで、無機酸化物粒子間を連結することが可能になり、より高強度な固体電解質が得られる。 In addition, the functional group block in the present invention may be substituted by one block per molecule of the polymer main chain, but it is preferable that two or more blocks are substituted. By substituting two or more blocks, it becomes possible to connect between the inorganic oxide particles, and a solid electrolyte with higher strength can be obtained.
 本発明の無機酸化物粒子表面と結合しうる官能基ブロックを有するポリマーの含有量としては、無機酸化物粒子表面と反応し、満足な固体電解強度が得られる範囲であれば特に制限無いが、固体電解質中の0.5質量部以上、70質量部以下が好ましく、更に好ましくは2質量部以上、50質量部以下である。 The content of the polymer having a functional group block capable of binding to the inorganic oxide particle surface of the present invention is not particularly limited as long as it reacts with the inorganic oxide particle surface and a satisfactory solid electrolytic strength is obtained. 0.5 mass part or more and 70 mass parts or less in a solid electrolyte are preferable, More preferably, they are 2 mass parts or more and 50 mass parts or less.
 (支持電解質塩)
 本発明ではイオン伝導度の観点から、支持電解質を使用することが出来、任意のものを用いることができるが、好ましくは周期律表Ia族またはIIa族に属する金属イオンの塩が用いられる。周期律表Ia族またはIIa族に属する金属イオンとしては、リチウム、ナトリウム、カリウムのイオンが好ましい。金属イオンの塩のアニオンとしては、ハロゲン化物イオン(I、Cl、Br等)、SCN、BF 、PF 、ClO 、SbF 、(CFSO、(FSO、(CFSO)(FSO)N、(CFCFSO、Ph、(C、(CFSO、CFCOO、CFSO 、CSO 等が挙げられる。その中でもBF 、PF 、(CFSO、(FSO、(CFSO)(FSO)N、(CFCFSO、(CFSO、CFSO がより好ましい。
(Supporting electrolyte salt)
In the present invention, from the viewpoint of ionic conductivity, a supporting electrolyte can be used, and any one can be used, but a salt of a metal ion belonging to Group Ia or IIa of the periodic table is preferably used. As the metal ions belonging to Group Ia or Group IIa of the periodic table, ions of lithium, sodium and potassium are preferable. As anions of metal ion salts, halide ions (I , Cl , Br etc.), SCN , BF 4 , PF 6 , ClO 4 , SbF 6 , (CF 3 SO 2 ) 2 N , (FSO 2 ) 2 N , (CF 3 SO 2 ) (FSO 2 ) N , (CF 3 CF 2 SO 2 ) 2 N , Ph 4 B , (C 2 H 4 O 2 ) 2 B , (CF 3 SO 2 ) 3 C , CF 3 COO , CF 3 SO 3 , C 6 F 5 SO 3 — and the like can be mentioned. BF 4 Among them -, PF 6 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, (CF 3 SO 2) (FSO 2) N -, (CF 3 CF 2 SO 2) 2 N , (CF 3 SO 2 ) 3 C , and CF 3 SO 3 are more preferable.
 代表的な支持電解質塩としては、LiCFSO、LiPF、LiClO、LiI、LiBF、LiCFCO、LiSCN、LiN(CFSO、Li(FSO、Li(CFSO)(FSO)N、NaI、NaCFSO、NaClO、NaBF、NaAsF、KCFSO、KSCN、KPF、KClO、KAsFなどが挙げられる。更に好ましくは、上記Li塩である。これらは一種または二種以上を混合してもよい。 Typical supporting electrolyte salts include LiCF 3 SO 3 , LiPF 6 , LiClO 4 , LiI, LiBF 4 , LiCF 3 CO 2 , LiSCN, LiN (CF 3 SO 2 ) 2 , Li (FSO 2 ) 2 N , Examples thereof include Li (CF 3 SO 2 ) (FSO 2 ) N, NaI, NaCF 3 SO 3 , NaClO 4 , NaBF 4 , NaAsF 6 , KCF 3 SO 3 , KSCN, KPF 6 , KClO 4 , and KAsF 6 . More preferred is the above Li salt. These may be used alone or in combination.
 固体電解質中の支持電解質塩の配合量は、5~40質量%とすることが好ましく、特に10~30質量%とすることが好ましい。 The blending amount of the supporting electrolyte salt in the solid electrolyte is preferably 5 to 40% by mass, particularly preferably 10 to 30% by mass.
 (溶媒)
 本発明では、上記の固体電解質構成要素とともに最大で50質量%まで溶媒を使用することができる。しかし、保存安定性の観点からは溶媒を用いないほうがより好ましい。
(solvent)
In the present invention, it is possible to use a solvent up to 50% by mass together with the above solid electrolyte component. However, from the viewpoint of storage stability, it is more preferable not to use a solvent.
 本発明の電解質に使用する溶媒は、粘度が低くイオン伝導性を向上したり、または誘電率が高く有効キャリアー濃度を向上したりして、優れたイオン伝導性を発現できる化合物であることが望ましい。 The solvent used in the electrolyte of the present invention is desirably a compound that has a low viscosity and improves ionic conductivity, or has a high dielectric constant and improved effective carrier concentration, and can exhibit excellent ionic conductivity. .
 このような溶媒としては、エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物、3-メチル-2-オキサゾリジノンなどの複素環化合物、ジオキサン、ジエチルエーテルなどのエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテルなどの鎖状エーテル類、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物、カルボン酸エステル、リン酸エステル、ホスホン酸エステル等のエステル類、ジメチルスルフォキシド、スルフォランなど非プロトン極性物質などが挙げられる。 Examples of such solvents include carbonate compounds such as ethylene carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, ether compounds such as dioxane and diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene Chain ethers such as glycol dialkyl ether and polypropylene glycol dialkyl ether, nitrile compounds such as acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, and benzonitrile, esters such as carboxylic acid ester, phosphoric acid ester and phosphonic acid ester And aprotic polar substances such as dimethyl sulfoxide and sulfolane.
 この中でも、エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物、3-メチル-2-オキサゾリジノンなどの複素環化合物、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物、エステル類が特に好ましい。これらは単独で用いても2種以上を併用してもよい。 Among these, carbonate compounds such as ethylene carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, nitrile compounds such as acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, and benzonitrile, and esters are particularly preferred. preferable. These may be used alone or in combination of two or more.
 溶媒としては、耐揮発性による耐久性向上の観点から、常圧(1気圧)における沸点が200℃以上のものが好ましく、250℃以上のものがより好ましく、270℃以上のものが更に好ましい。 From the viewpoint of improving durability due to volatility, the solvent preferably has a boiling point of 200 ° C. or higher at normal pressure (1 atm), more preferably 250 ° C. or higher, and even more preferably 270 ° C. or higher.
 (固体電解質の製造方法)
 以下にリチウム二次電池に使用される固体電解質の調製方法について、例を説明する。
(Method for producing solid electrolyte)
An example of a method for preparing a solid electrolyte used for a lithium secondary battery will be described below.
 イオン液体、無機酸化物粒子、無機酸化物粒子表面と結合しうる官能基ブロックを有するポリマー、リチウム塩をN-メチルピロリドンのような適切な溶媒に溶かし、この溶液をガラスやポリエステルフィルムのような基材に流延または塗布し、乾燥、反応させ、得られた塗膜を基材から剥離することで固体電解質の薄膜を得ることができる。 An ionic liquid, an inorganic oxide particle, a polymer having a functional group block capable of binding to the surface of the inorganic oxide particle, and a lithium salt are dissolved in a suitable solvent such as N-methylpyrrolidone, and this solution is dissolved in a glass or polyester film A thin film of solid electrolyte can be obtained by casting or coating on a substrate, drying and reacting, and peeling off the obtained coating film from the substrate.
 本発明においては無機酸化物粒子表面と無機酸化物粒子表面と結合しうる官能基ブロックを有するポリマーとの反応の好ましい形態の一つは塗布乾燥時の加熱による反応進行である。加熱手段としては、熱風、真空、赤外線、遠赤外線、電子線及び低湿風を単独あるいは組み合わせた方法を用いることできる。本発明の固体電解質の製造方法においては、80~350℃の温度で処理する工程を有することが好ましく、100~250℃がより好ましい。反応を制御するためにジルコニウム(Zr)、スズ(Sn)等の金属キレート触媒、塩酸、酢酸等の酸触媒を用いることもできる。 In the present invention, one of the preferred modes of the reaction between the surface of the inorganic oxide particles and the polymer having a functional group block capable of binding to the surface of the inorganic oxide particles is the progress of the reaction by heating during coating and drying. As the heating means, a method in which hot air, vacuum, infrared rays, far infrared rays, electron beams and low-humidity air are used alone or in combination can be used. The method for producing a solid electrolyte of the present invention preferably has a step of treating at a temperature of 80 to 350 ° C., more preferably 100 to 250 ° C. In order to control the reaction, a metal chelate catalyst such as zirconium (Zr) or tin (Sn), or an acid catalyst such as hydrochloric acid or acetic acid may be used.
 本発明の固体電解質の製造方法は、塗布方式、プレス方式等が好ましいが、特に塗布により製造することが好ましい。固体電解質を塗布で得るには、ガラス基材、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)等の基材上に固体電解質プリカーサー溶液を塗布、乾燥後、固体電解質を単体として剥がすことが出来る基材が好ましい。二次電池として使用する場合は、電極の上に直接塗布する方法、ガラス基板、プラスチック基材等に塗布し剥離、電極を貼り合わせる方法等で二次電池を作製することも出来る。塗布を用いない、プレス方式の例としては、固体電解質プリカーサーを加熱し、バルク固体電解質を得る方法がある。これを二次電池として使用する場合は正極、負極で挟み込み、カレンダリング処理することで二次電池を作製することが出来る。しかし、塗布を用いることで、固体電解質と電極との界面接着力が増し、また界面の電気抵抗も抑えられることから、塗布により製造することが好ましい。塗布で製造された固体電解質は、固体内部での空隙が無く、電気抵抗が抑えられる傾向にある。 The production method of the solid electrolyte of the present invention is preferably a coating method, a press method, etc., but is particularly preferably produced by coating. To obtain a solid electrolyte by coating, apply a solid electrolyte precursor solution on a glass substrate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), etc. A substrate that can be peeled off is preferred. When used as a secondary battery, the secondary battery can also be produced by a method of applying directly on the electrode, a method of applying to a glass substrate, a plastic substrate or the like, peeling and bonding the electrodes. As an example of a press method that does not use coating, there is a method of heating a solid electrolyte precursor to obtain a bulk solid electrolyte. When this is used as a secondary battery, the secondary battery can be produced by sandwiching between the positive electrode and the negative electrode and performing a calendering process. However, the use of coating increases the interfacial adhesive force between the solid electrolyte and the electrode, and also suppresses the electrical resistance at the interface. The solid electrolyte produced by coating has no voids inside the solid and tends to suppress electrical resistance.
 固体電解質の塗布方法としては、例えば、リバースロール法、バーコート法、スロットダイコート法、ダイレクトロール法、ブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法及びスクイーズ法等が好適に挙げられる。その中でも、ブレード法、ナイフ法、スロットダイコート法及びエクストルージョン法が好ましい。 Examples of the solid electrolyte coating method include reverse roll method, bar coating method, slot die coating method, direct roll method, blade method, knife method, extrusion method, curtain method, gravure method, bar method, dip method and squeeze method. Etc. are preferable. Among these, a blade method, a knife method, a slot die coating method and an extrusion method are preferable.
 また、塗布は0.1~100m/分の速度で実施されることが好ましい。この際、固体電解質プリカーサー液の溶液物性、乾燥性に合わせて、上記塗布方法を選定することにより、良好な塗布層の表面状態を得ることができる。塗布は片面ずつ逐時でも、両面同時に行ってもよい。更に、前記塗布は連続でも間欠でもストライプでもよい。また、塗布時に基材を加熱することも出来る。例えば100~200℃に加熱された基材に塗布し冷却することで、本発明の固体電解質が得られる。 Also, the coating is preferably performed at a speed of 0.1 to 100 m / min. Under the present circumstances, the surface state of a favorable application layer can be obtained by selecting the said application | coating method according to the solution physical property of a solid electrolyte precursor liquid, and dryness. The application may be performed one side at a time or both sides simultaneously. Furthermore, the application may be continuous, intermittent or striped. Moreover, a base material can also be heated at the time of application | coating. For example, the solid electrolyte of the present invention can be obtained by applying to a substrate heated to 100 to 200 ° C. and cooling.
 その塗布層の厚み、長さ及び巾は、電池の形状や大きさにより決められるが、片面の塗布層の厚みはドライ後の状態で1~2000μmが好ましい。 The thickness, length and width of the coating layer are determined by the shape and size of the battery, but the thickness of the coating layer on one side is preferably 1 to 2000 μm after drying.
 前記固体電解質塗布物の乾燥及び脱水方法としては、熱風、真空、赤外線、遠赤外線、電子線及び低湿風を単独あるいは組み合わせた方法を用いることできる。含水量としては、電池全体で2000ppm以下が好ましく、固体電解質としては500ppm以下にすることが好ましい。 As a method for drying and dehydrating the solid electrolyte coating, a method in which hot air, vacuum, infrared, far infrared, electron beam, and low-humidity air are used alone or in combination can be used. The water content is preferably 2000 ppm or less for the entire battery, and preferably 500 ppm or less for the solid electrolyte.
 プレス法での固体電解質作製は、固体電解質をガラス基板、プラスチック基材、二次電池の電極等で挟み、加圧することで得られる。加圧時に100℃~200℃に加熱、真空下で加圧することも出来る。 Preparation of a solid electrolyte by the pressing method can be obtained by sandwiching the solid electrolyte between a glass substrate, a plastic substrate, an electrode of a secondary battery, etc., and applying pressure. It is possible to heat to 100 ° C. to 200 ° C. during pressurization and pressurize under vacuum.
 本発明の固体電解質は無機酸化物微粒子が塗膜内で均質に分散した形態をとる。この均質分散により、イオンが移動できるイオン伝導パスを形成し、高い次元で安定したイオン伝導度を確保できる。 The solid electrolyte of the present invention takes a form in which inorganic oxide fine particles are uniformly dispersed in a coating film. By this homogeneous dispersion, an ion conduction path through which ions can move is formed, and stable ion conductivity can be secured at a high level.
 本発明の固体電解質は、例えばリチウムイオン電池、燃料電池、色素増感太陽電池、電解キャパシタなどの電気化学デバイスの対向する電極間にサンドイッチされる。 The solid electrolyte of the present invention is sandwiched between opposing electrodes of an electrochemical device such as a lithium ion battery, a fuel cell, a dye-sensitized solar cell, or an electrolytic capacitor.
 (二次電池の作製について)
 本発明の固体電解質についてリチウムイオン二次電池として利用する場合の、正極活物質、負極活物質、電極合剤、集電体、二次電池の作製方法について記載する。
(About production of secondary battery)
A method for producing a positive electrode active material, a negative electrode active material, an electrode mixture, a current collector, and a secondary battery when the solid electrolyte of the present invention is used as a lithium ion secondary battery will be described.
 (正極活物質)
 正極活物質としては、無機系活物質、有機系活物質、これらの複合体が例示できるが、無機系活物質あるいは無機系活物質と有機系活物質の複合体が、特にエネルギー密度が大きくなる点から好ましい。
(Positive electrode active material)
Examples of the positive electrode active material include an inorganic active material, an organic active material, and a composite thereof. However, the energy density of an inorganic active material or a composite of an inorganic active material and an organic active material is particularly large. It is preferable from the point.
 無機系活物質として、例えば、Li0.2MnO、LiMn12、V、LiCoO、LiMn、LiNiO、LiFePO、LiCo1/2Ni1/2Mn1/2、Li1.2(Fe0.5Mn0.50.8、Li1.2(Fe0.4Mn0.4Ti0.20.8、Li1+x(Ni0.5Mn0.51-x、LiNi0.5Mn1.5、LiMnO、Li0.76Mn0.51Ti0.49、LiNi0.8Co0.15Al0.05、Fe、等の金属酸化物、LiFePO、LiCoPO、LiMnPO、LiMPOF(M=Fe、Mn)、LiMn0.875Fe0.125PO、LiFeSiO、Li2-xMSi1-x(M=Fe、Mn)、LiMBO(M=Fe、Mn)などのリン酸、ケイ酸、ホウ酸系が挙げられる。なお、これらの化学式中、xは0~1の範囲であることが好ましい。 Examples of the inorganic active material include Li 0.2 MnO 2 , Li 4 Mn 5 O 12 , V 2 O 5 , LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiFePO 4 , LiCo 1/2 Ni 1/2 Mn 1/2 O 2 , Li 1.2 (Fe 0.5 Mn 0.5 ) 0.8 O 2 , Li 1.2 (Fe 0.4 Mn 0.4 Ti 0.2 ) 0.8 O 2 , Li 1 + x (Ni 0.5 Mn 0.5 ) 1-x O 2 , LiNi 0.5 Mn 1.5 O 4 , Li 2 MnO 3 , Li 0.76 Mn 0.51 Ti 0.49 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , Fe 2 O 3 , etc., metal oxides such as LiFePO 4 , LiCoPO 4 , LiMnPO 4 , Li 2 MPO 4 F (M = Fe, Mn), LiMn 0. 875 Fe 0 125 PO 4, Li 2 FeSiO 4 , Li 2-x MSi 1-x P x O 4 (M = Fe, Mn), LiMBO 3 (M = Fe, Mn) phosphoric acids such as silicic acid, boric acid-based Can be mentioned. In these chemical formulas, x is preferably in the range of 0-1.
 更に、FeF、LiFeF、LiTiFなどのフッ素系、LiFeS、TiS、MoS、FeS等の金属硫化物、これらの化合物とリチウムの複合酸化物が挙げられる。 Further, fluorine-based compounds such as FeF 3 , Li 3 FeF 6 , and Li 2 TiF 6 , metal sulfides such as Li 2 FeS 2 , TiS 2 , MoS 2 , and FeS, and composite oxides of these compounds and lithium can be given.
 有機系活物質としては、例えば、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリパラフェニレン、等の導電性高分子、有機ジスルフィド化合物、有機イオウ化合物DMcT(2,5-ジメルカプト-1,3,4-チアジアゾール)、ベンゾキノン化合物PDBM(ポリ2,5-ジヒドロキシ-1,4-ベンゾキノン-3,6-メチレン)、カーボンジスルフィド、活性イオウ等のイオウ系正極材料、有機ラジカル化合物等が用いられる。 Examples of the organic active material include conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, and polyparaphenylene, organic disulfide compounds, organic sulfur compounds DMcT (2,5-dimercapto-1,3,4-thiadiazole). ), Benzoquinone compound PDBM (poly 2,5-dihydroxy-1,4-benzoquinone-3,6-methylene), carbon disulfide, sulfur-based positive electrode materials such as active sulfur, and organic radical compounds.
 また、正極活物質の表面には、無機酸化物が被覆されていることが電池の寿命を延ばす点で好ましい。無機酸化物を被覆するに当たっては、正極活物質の表面にコーティングする方法が好ましく、コーティングする方法としては、例えば、ハイブリタイザーなどの表面改質装置を用いてコーティングする方法などが挙げられる。 In addition, it is preferable that the surface of the positive electrode active material is coated with an inorganic oxide from the viewpoint of extending the life of the battery. In coating the inorganic oxide, a method of coating the surface of the positive electrode active material is preferable. Examples of the coating method include a method of coating using a surface modifying apparatus such as a hybridizer.
 かかる無機酸化物としては、例えば、酸化マグネシウム、酸化ケイ素、アルミナ、ジルコニア、酸化チタン等のIIA~VA族、遷移金属、IIIB、IVBの酸化物、チタン酸バリウム、チタン酸カルシウム、チタン酸鉛、γ-LiAlO、LiTiO等が挙げられ、特に酸化ケイ素が好ましい。 Examples of such inorganic oxides include group IIA to VA groups such as magnesium oxide, silicon oxide, alumina, zirconia, and titanium oxide, transition metals, IIIB and IVB oxides, barium titanate, calcium titanate, lead titanate, Examples thereof include γ-LiAlO 2 and LiTiO 3 , and silicon oxide is particularly preferable.
 (負極活物質)
 負極については特に制限はなく、集電体に負極活物質を密着させたものが利用できる。黒鉛系やスズ合金系などの粉末を、スチレンブタジエンゴムやポリフッ化ビニリデンなどの結着材とともにペースト状として集電体上に塗布して、乾燥後、プレス成形して作製したものが利用できる。物理蒸着(スパッタリング法や真空蒸着法など)によって、3~5ミクロンのシリコン系薄膜を集電体上に直接形成したシリコン系薄膜負極なども利用できる。
(Negative electrode active material)
There is no restriction | limiting in particular about a negative electrode, What adhered the negative electrode active material to the electrical power collector can be utilized. A powder made of graphite or tin alloy can be applied on a current collector as a paste together with a binder such as styrene butadiene rubber or polyvinylidene fluoride, dried, and press-molded. A silicon-based thin film negative electrode in which a 3 to 5 micron silicon-based thin film is directly formed on a current collector by physical vapor deposition (such as sputtering or vacuum deposition) can also be used.
 リチウム金属負極の場合は、銅箔上に10~30ミクロンのリチウム箔を付着させたものが好適である。高容量化の観点からは、シリコン系薄膜負極やリチウム金属負極からなるものであることが好ましい。 In the case of a lithium metal negative electrode, a copper foil having a 10 to 30 micron lithium foil adhered thereto is suitable. From the viewpoint of increasing the capacity, it is preferable to be composed of a silicon-based thin film negative electrode or a lithium metal negative electrode.
 (電極合剤)
 本発明に用いられる電極合剤としては、導電剤、結着剤やフィラーなどの他に、リチウム塩、非プロトン性有機溶媒等が添加されたものが挙げられる。
(Electrode mixture)
Examples of the electrode mixture used in the present invention include those added with a lithium salt, an aprotic organic solvent, etc. in addition to a conductive agent, a binder, a filler, and the like.
 前記導電剤は、構成された二次電池において、化学変化を起こさない電子伝導性材料であれば何を用いてもよい。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維や金属粉(銅、ニッケル、アルミニウム、銀(特開昭63-148554号公報に記載)等)、金属繊維あるいはポリフェニレン誘導体(特開昭59-20971号公報に記載)などの導電性材料を1種またはこれらの混合物として含ませることができる。 As the conductive agent, any material can be used as long as it is an electron conductive material that does not cause a chemical change in the constructed secondary battery. Usually, natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber and metal powder (copper, nickel, aluminum, silver (Japanese Patent Laid-Open No. Sho 63-63)) 148554), etc.), conductive fibers such as metal fibers or polyphenylene derivatives (described in JP-A-59-20971), or a mixture thereof.
 その中でも、黒鉛とアセチレンブラックの併用が特に好ましい。前記導電剤の添加量としては1~50質量%が好ましく、2~30質量%がより好ましい。カーボンや黒鉛の場合は、2~15質量%が特に好ましい。 Of these, the combined use of graphite and acetylene black is particularly preferred. The addition amount of the conductive agent is preferably 1 to 50% by mass, and more preferably 2 to 30% by mass. In the case of carbon or graphite, 2 to 15% by mass is particularly preferable.
 本発明では電極合剤を保持するための結着剤を用いることができる。このような結着剤としては、多糖類、熱可塑性樹脂及びゴム弾性を有するポリマーなどが挙げられ、その中でも、例えば、でんぷん、カルボキシメチルセルロース、セルロース、ジアセチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリロニトリル、ポリアクリルアミド、ポリヒドロキシ(メタ)アクリレート、スチレン-マレイン酸共重合体等の水溶性ポリマー、ポリビニルクロリド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフロロエチレン-ヘキサフロロプロピレン共重合体、ビニリデンフロライド-テトラフロロエチレン-ヘキサフロロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチルメタアクリレート、2-エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル-アクリロニトリル共重合体、ビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョンが好ましく、ポリアクリル酸エステル系のラテックス、カルボキシメチルセルロース、ポリテトラフロロエチレン、ポリフッ化ビニリデンがより好ましい。 In the present invention, a binder for holding the electrode mixture can be used. Examples of such a binder include polysaccharides, thermoplastic resins, and polymers having rubber elasticity. Among them, for example, starch, carboxymethylcellulose, cellulose, diacetylcellulose, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, Water-soluble polymers such as sodium alginate, polyacrylic acid, sodium polyacrylate, polyvinyl phenol, polyvinyl methyl ether, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylonitrile, polyacrylamide, polyhydroxy (meth) acrylate, styrene-maleic acid copolymer , Polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinyl Redene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, polyvinyl acetal resin, methyl methacrylate, 2-ethylhexyl acrylate, etc. ) (Meth) acrylic ester copolymer containing acrylic ester, (meth) acrylic ester-acrylonitrile copolymer, polyvinyl ester copolymer containing vinyl ester such as vinyl acetate, styrene-butadiene copolymer , Acrylonitrile-butadiene copolymer, polybutadiene, neoprene rubber, fluoro rubber, polyethylene oxide, polyester polyurethane resin, polyether polyurethane resin, polycarbonate DOO polyurethane resins, polyester resins, phenolic resins, emulsion (latex) or a suspension such as an epoxy resin is preferable, a latex of polyacrylate, carboxymethyl cellulose, polytetrafluoroethylene, polyvinylidene fluoride is more preferable.
 前記結着剤は、一種単独または二種以上を混合して用いることができる。結着剤の添加量が少ないと、電極合剤の保持力、凝集力が弱くなる。多すぎると、電極体積が増加し電極単位体積あるいは単位質量あたりの容量が減少する。このような理由で結着剤の添加量は1~30質量%が好ましく、2~10質量%がより好ましい。 The binder can be used alone or in combination of two or more. When the amount of the binder added is small, the holding power and cohesive force of the electrode mixture are weakened. If the amount is too large, the electrode volume increases and the electrode unit volume or the capacity per unit mass decreases. For this reason, the addition amount of the binder is preferably 1 to 30% by mass, and more preferably 2 to 10% by mass.
 前記フィラーは、本発明の二次電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの繊維が用いられる。フィラーの添加量は特に限定されないが、0~30質量%が好ましい。 The filler can be any fibrous material that does not cause a chemical change in the secondary battery of the present invention. Usually, olefin polymers such as polypropylene and polyethylene, fibers such as glass and carbon are used. The amount of filler added is not particularly limited, but is preferably 0 to 30% by mass.
 (集電体)
 正・負極の集電体としては、本発明の二次電池において化学変化を起こさない電子伝導体が用いられる。正極の集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンなどの他にアルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、その中でも、アルミニウム、アルミニウム合金がより好ましい。負極の集電体としては、銅、ステンレス鋼、ニッケル、チタンが好ましく、銅あるいは銅合金がより好ましい。
(Current collector)
As the positive / negative current collector, an electron conductor that does not cause a chemical change in the secondary battery of the present invention is used. As the current collector of the positive electrode, in addition to aluminum, stainless steel, nickel, titanium, etc., the surface of aluminum or stainless steel is preferably treated with carbon, nickel, titanium, or silver. Among them, aluminum and aluminum alloys are preferable. More preferred. As the negative electrode current collector, copper, stainless steel, nickel, and titanium are preferable, and copper or a copper alloy is more preferable.
 前記集電体の形状としては、通常フィルムシート状のものが使用されるが、多孔質体、発泡体、繊維群の成形体なども用いることができる。前記集電体の厚みとしては、特に限定されないが、1~500μmが好ましい。また、集電体表面は表面処理により凹凸を付けることも好ましい。 As the shape of the current collector, a film sheet is usually used, but a porous body, a foam, a molded body of a fiber group, and the like can also be used. The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm. Moreover, it is also preferable that the current collector surface is roughened by surface treatment.
 (二次電池の作製)
 ここでは、本発明の好ましい実施態様である非水電解質二次電池の作製について説明する。本発明の二次電池の形状としては、シート、角、シリンダーなどいずれの形にも適用できる。正極活物質や負極活物質の電極合剤は、集電体の上に塗布(コート)、乾燥、圧縮されて、主に用いられる。
(Production of secondary battery)
Here, production of a nonaqueous electrolyte secondary battery which is a preferred embodiment of the present invention will be described. The shape of the secondary battery of the present invention can be applied to any shape such as a sheet, a corner, and a cylinder. The electrode mixture of the positive electrode active material and the negative electrode active material is mainly used after being applied (coated), dried and compressed on the current collector.
 前記電極合剤の塗布方法としては、例えば、リバースロール法、ダイレクトロール法、ブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法及びスクイーズ法等が好適に挙げられる。その中でも、ブレード法、ナイフ法及びエクストルージョン法が好ましい。 Preferred examples of the electrode mixture coating method include a reverse roll method, a direct roll method, a blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, a dip method, and a squeeze method. . Among these, a blade method, a knife method, and an extrusion method are preferable.
 また、塗布は0.1~100m/分の速度で実施されることが好ましい。この際、電極合剤の溶液物性、乾燥性に合わせて、上記塗布方法を選定することにより、良好な塗布層の表面状態を得ることができる。塗布は片面ずつ逐時でも、両面同時に行ってもよい。更に、前記塗布は連続でも間欠でもストライプでもよい。 Also, the coating is preferably performed at a speed of 0.1 to 100 m / min. Under the present circumstances, the surface state of a favorable application layer can be obtained by selecting the said application | coating method according to the solution physical property and drying property of an electrode mixture. The application may be performed one side at a time or both sides simultaneously. Furthermore, the application may be continuous, intermittent or striped.
 その塗布層の厚み、長さ及び巾は、電池の形状や大きさにより決められるが、片面の塗布層の厚みはドライ後の圧縮された状態で1~2000μmが好ましい。 The thickness, length and width of the coating layer are determined by the shape and size of the battery, but the thickness of the coating layer on one side is preferably 1 to 2000 μm in the compressed state after drying.
 前記電極シート塗布物の乾燥及び脱水方法としては、熱風、真空、赤外線、遠赤外線、電子線及び低湿風を単独あるいは組み合わせた方法を用いることできる。乾燥温度は80~350℃が好ましく、100~250℃がより好ましい。含水量としては、電池全体で2000ppm以下が好ましく、正極合剤、負極合剤や電解質では、それぞれ500ppm以下にすることが好ましい。 As a method for drying and dehydrating the electrode sheet coated material, a method in which hot air, vacuum, infrared, far infrared, electron beam, and low-humidity air are used alone or in combination can be used. The drying temperature is preferably 80 to 350 ° C, more preferably 100 to 250 ° C. The water content is preferably 2000 ppm or less for the entire battery, and preferably 500 ppm or less for each of the positive electrode mixture, the negative electrode mixture and the electrolyte.
 シートのプレス法は、一般に採用されている方法を用いることができるが、特にカレンダープレス法が好ましい。プレス圧は特に限定されないが、0.2~3t/cmが好ましい。前記カレンダープレス法のプレス速度としては、0.1~50m/分が好ましく、プレス温度は室温~200℃が好ましい。正極シートに対する負極シート幅の比としては、0.9~1.1が好ましく、0.95~1.0が特に好ましい。正極活物質と負極活物質との含有量比は、化合物種類や電極合剤処方により異なる。 As a sheet pressing method, a generally adopted method can be used, but a calendar pressing method is particularly preferable. The pressing pressure is not particularly limited, but is preferably 0.2 to 3 t / cm 2 . The pressing speed of the calendar press method is preferably 0.1 to 50 m / min, and the pressing temperature is preferably room temperature to 200 ° C. The ratio of the negative electrode sheet width to the positive electrode sheet is preferably 0.9 to 1.1, particularly preferably 0.95 to 1.0. The content ratio of the positive electrode active material and the negative electrode active material varies depending on the compound type and the electrode mixture formulation.
 本発明の二次電池の形態は特に限定されないが、コイン、シート、円筒等、種々の電池セルに封入することができる。 The form of the secondary battery of the present invention is not particularly limited, but can be enclosed in various battery cells such as coins, sheets, cylinders, and the like.
 本発明の二次電池の用途は特に限定されないが、例えば、電子機器としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。 The use of the secondary battery of the present invention is not particularly limited. For example, as an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a cellular phone, a cordless phone, a pager, a handy terminal, a portable fax machine. Portable copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, mini-disc, electric shaver, transceiver, electronic notebook, calculator, memory card, portable tape recorder, radio, backup power supply, memory card, etc. Is mentioned.
 その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。 Others for consumer use include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder grinders, etc.). Furthermore, it can be used for various military purposes and space. Moreover, it can also combine with a solar cell.
 以下、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によって、何ら限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 実施例1
 〈イオン液体の合成〉
 1-エチル-3-メチルイミダゾリウム ビス(フルオロスルフォニル)アミド〔EMI-FSIと略す〕の合成
 カリウムビス(フルオロスルフォニル)アミド(K-FSI)21.9g(0.1mol)を100mlの水に70℃で溶解し、50℃で攪拌しながら、1-エチル-3-メチルイミダゾリウムクロライド 14.6g(0.1mol)を50mlの水に溶解した溶液を15分で滴下・混合した。50℃で激しく攪拌しながら更に2時間、複分解反応を行った後、生成した油層を分離した。生成物を各50mlの水で2回洗浄した後、60℃、133Paで2時間乾燥し、1-エチル-3-メチルイミダゾリウム ビス(フルオロスルフォニル)アミド〔EMI-FSIと略す〕24.7g(収率85%)を得た。
Example 1
<Synthesis of ionic liquid>
Synthesis of 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) amide [abbreviated as EMI-FSI] 21.9 g (0.1 mol) of potassium bis (fluorosulfonyl) amide (K-FSI) in 70 ml of water A solution prepared by dissolving 14.6 g (0.1 mol) of 1-ethyl-3-methylimidazolium chloride in 50 ml of water was added dropwise and mixed in 15 minutes while stirring at 50 ° C. and stirring at 50 ° C. After further metathesis reaction for 2 hours with vigorous stirring at 50 ° C., the produced oil layer was separated. The product was washed twice with 50 ml each of water and then dried at 60 ° C. and 133 Pa for 2 hours, and 14.7 g of 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) amide (abbreviated as EMI-FSI) ( Yield 85%).
 1-エチル-3-メチルイミダゾリウム ビス〔(トリフルオロメチル)スルフォニル〕アミド〔EMI-TFSIと略す〕の合成
 カリウムビス〔(トリフルオロメチル)スルフォニル〕アミド(K-TFSI)31.9g(0.1mol)を100mlの水に70℃で溶解し、50℃で攪拌しながら、1-エチル-3-メチルイミダゾリウムクロライド 14.6g(0.1mol)を50mlの水に溶解した溶液を15分で滴下・混合した。50℃で激しく攪拌しながら更に2時間、複分解反応を行った後、生成した油層を分離した。生成物を各50mlの水で2回洗浄した後、60℃、133Paで2時間乾燥し、1-エチル-3-メチルイミダゾリウム ビス〔(トリフルオロメチル)スルフォニル〕アミド〔EMI-TFSIと略す〕33.2g(収率85%)を得た。
Synthesis of 1-ethyl-3-methylimidazolium bis [(trifluoromethyl) sulfonyl] amide [abbreviated as EMI-TFSI] Potassium bis [(trifluoromethyl) sulfonyl] amide (K-TFSI) 31.9 g (0. 1 mol) was dissolved in 100 ml of water at 70 ° C. and stirred at 50 ° C., a solution of 14.6 g (0.1 mol) of 1-ethyl-3-methylimidazolium chloride dissolved in 50 ml of water in 15 minutes. Dropped and mixed. After further metathesis reaction for 2 hours with vigorous stirring at 50 ° C., the produced oil layer was separated. The product was washed twice with 50 ml each of water and then dried at 60 ° C. and 133 Pa for 2 hours, and 1-ethyl-3-methylimidazolium bis [(trifluoromethyl) sulfonyl] amide (abbreviated as EMI-TFSI). 33.2 g (yield 85%) was obtained.
 1-エチル-3-メチルイミダゾリウム テトラフルオロボレート〔EMI-BFと略す〕の合成
 カリウムテトラフルオロボレート(KBF)12.6g(0.1mol)を100mlの水に70℃で溶解し、50℃で攪拌しながら、1-エチル-3-メチルイミダゾリウムクロライド 14.6g(0.1mol)を50mlの水に溶解した溶液を15分で滴下・混合した。50℃で激しく攪拌しながら更に2時間、複分解反応を行った後、生成した油層を分離した。生成物を各50mlの水で2回洗浄した後、60℃、133Paで2時間乾燥し、1-エチル-3-メチルイミダゾリウム テトラフルオロボレート〔EMI-BFと略す〕16.8g(収率85%)を得た。
Synthesis of 1-ethyl-3-methylimidazolium tetrafluoroborate [abbreviated as EMI-BF 4 ] 12.6 g (0.1 mol) of potassium tetrafluoroborate (KBF 4 ) was dissolved in 100 ml of water at 70 ° C. While stirring at 0 ° C., a solution of 14.6 g (0.1 mol) of 1-ethyl-3-methylimidazolium chloride dissolved in 50 ml of water was added dropwise and mixed in 15 minutes. After further metathesis reaction for 2 hours with vigorous stirring at 50 ° C., the produced oil layer was separated. The product was washed twice with 50 ml of water and dried at 60 ° C. and 133 Pa for 2 hours, and 16.8 g of 1-ethyl-3-methylimidazolium tetrafluoroborate [abbreviated as EMI-BF 4 ] (yield) 85%).
 1-エチル-3-メチルイミダゾリウム パーフルオロエチルトリフルオロボレート〔EMI-CBFと略す〕の合成
 カリウムパーフルオロエチルトリフルオロボレート(K-CBF)22.6g(0.1mol)を100mlの水に70℃で溶解し、50℃で攪拌しながら、1-エチル-3-メチルイミダゾリウムクロライド 14.6g(0.1mol)を50mlの水に溶解した溶液を15分で滴下・混合した。50℃で激しく攪拌しながら更に2時間、複分解反応を行った後、生成した油層を分離した。生成物を各50mlの水で2回洗浄した後、60℃、133Paで2時間乾燥し、1-エチル-3-メチルイミダゾリウム パーフルオロエチルトリフルオロボレート〔EMI-CBFと略す〕25.3g(収率85%)を得た。
Synthesis of 1-ethyl-3-methylimidazolium perfluoroethyl trifluoroborate [abbreviated as EMI-C 2 F 5 BF 3 ] 22.6 g of potassium perfluoroethyl trifluoroborate (KC 2 F 5 BF 3 ) 0.1 mol) was dissolved in 100 ml of water at 70 ° C., and a solution obtained by dissolving 14.6 g (0.1 mol) of 1-ethyl-3-methylimidazolium chloride in 50 ml of water was stirred at 50 ° C. Dropped and mixed in minutes. After further metathesis reaction for 2 hours with vigorous stirring at 50 ° C., the produced oil layer was separated. The product was washed twice with 50 ml of water and dried at 60 ° C. and 133 Pa for 2 hours, and 1-ethyl-3-methylimidazolium perfluoroethyl trifluoroborate [abbreviated as EMI-C 2 F 5 BF 3]. ] 25.3 g (yield 85%) was obtained.
 N-エチル-N-ブチルピロリジニウム ビス(フルオロスルフォニル)アミド〔P24-FSIと略す〕の合成
 カリウム ビス(フルオロスルフォニル)アミド(K-FSI)21.9g(0.1mol)を100mlの水に70℃で溶解し、50℃で攪拌しながら、N-エチル-N-ブチルピロリジニウムクロライド 19.1g(0.1mol)を50mlの水に溶解した溶液を15分で滴下・混合した。50℃で激しく攪拌しながら更に2時間、複分解反応を行った後、生成した油層を分離した。生成物を各50mlの水で2回洗浄した後、60℃、133Paで2時間乾燥し、N-エチル-N-ブチルピロリジニウム ビス(フルオロスルフォニル)アミド〔P24-FSIと略す〕28.6g(収率85%)を得た。
Synthesis of N-ethyl-N-butylpyrrolidinium bis (fluorosulfonyl) amide [abbreviated as P24-FSI] 21.9 g (0.1 mol) of potassium bis (fluorosulfonyl) amide (K-FSI) in 100 ml of water A solution prepared by dissolving 19.1 g (0.1 mol) of N-ethyl-N-butylpyrrolidinium chloride in 50 ml of water was added dropwise and mixed in 15 minutes while stirring at 70 ° C. and stirring at 50 ° C. After further metathesis reaction for 2 hours with vigorous stirring at 50 ° C., the produced oil layer was separated. The product was washed twice with 50 ml each of water, dried at 60 ° C. and 133 Pa for 2 hours, and 28.6 g of N-ethyl-N-butylpyrrolidinium bis (fluorosulfonyl) amide (abbreviated as P24-FSI). (Yield 85%) was obtained.
 1-エチル-3-メチルイミダゾリウム (フルオロスルフォニル)(トリフルオロメチルスルフォニル)アミド〔EMI-FTIと略す〕の合成
 カリウム(フルオロスルフォニル)(トリフルオロメチルスルフォニル)アミド(K-FTI)26.9g(0.1mol)を100mlの水に70℃で溶解し、50℃で攪拌しながら、1-エチル-3-メチルイミダゾリウムクロライド 14.6g(0.1mol)を50mlの水に溶解した溶液を15分で滴下・混合した。50℃で激しく攪拌しながら更に2時間、複分解反応を行った後、生成した油層を分離した。生成物を各50mlの水で2回洗浄した後、60℃、133Paで2時間乾燥し、1-エチル-3-メチルイミダゾリウム (フルオロスルフォニル)(トリフルオロメチルスルフォニル)アミド〔EMI-FTIと略す〕29.0g(収率85%)を得た。
Synthesis of 1-ethyl-3-methylimidazolium (fluorosulfonyl) (trifluoromethylsulfonyl) amide [abbreviated as EMI-FTI] Potassium (fluorosulfonyl) (trifluoromethylsulfonyl) amide (K-FTI) 26.9 g ( 0.1 mol) was dissolved in 100 ml of water at 70 ° C., and a solution obtained by dissolving 14.6 g (0.1 mol) of 1-ethyl-3-methylimidazolium chloride in 50 ml of water was stirred at 50 ° C. Dropped and mixed in minutes. After further metathesis reaction for 2 hours with vigorous stirring at 50 ° C., the produced oil layer was separated. The product was washed twice with 50 ml each of water, dried at 60 ° C. and 133 Pa for 2 hours, and 1-ethyl-3-methylimidazolium (fluorosulfonyl) (trifluoromethylsulfonyl) amide [abbreviated as EMI-FTI]. ] 29.0 g (yield 85%) was obtained.
 〈無機酸化物粒子〉
 無機酸化物粒子としては以下を用いた。
<Inorganic oxide particles>
The following were used as the inorganic oxide particles.
 Nanogel TLD201(キャボット社製 表面有機修飾多孔質シリカ粒子 比表面積800m/g 細孔径3nm 平均粒径8μm)
 サイリシア(富士シリシア化学社製 多孔質シリカ粒子 比表面積900m/g 細孔径4nm 平均粒径6μm)
 富士バルーン(富士シリシア化学社製 非多孔質シリカ粒子 平均粒径8.5μm)
 AEROSIL300(日本アエロジル社製 非多孔質シリカ粒子 平均粒径300nm)
 JC40(水澤化学工業社製 非多孔質シリカアルミナ粒子 平均粒径4μm)
 サンスフェア H-32(旭硝子社製 多孔質シリカアルミナ粒子 平均粒径3μm)
 A34(日本軽金属社製 非多孔質アルミナ粒子 平均粒径4μm)
 比表面積及び細孔径は、日本ベル(株)製の自動比表面積/細孔分布測定装置BELSORP-miniIIを用いて測定した。平均粒径は、走査型電子顕微鏡により200個以上の粒子を測定し、各粒子の球換算粒径の平均値を求めることにより得た。
Nanogel TLD201 (Surface organic modified porous silica particles made by Cabot, specific surface area 800 m 2 / g, pore diameter 3 nm, average particle diameter 8 μm)
Silysia (Fuji Silysia Chemical Co., Ltd. porous silica particles, specific surface area 900 m 2 / g, pore diameter 4 nm, average particle diameter 6 μm)
Fuji Balloon (Fuji Silysia Chemical Co., Ltd. non-porous silica particles average particle size 8.5 μm)
AEROSIL300 (Nippon Aerosil Co., Ltd. non-porous silica particles average particle size 300 nm)
JC40 (Mizusawa Chemical Co., Ltd. non-porous silica alumina particles average particle size 4 μm)
Sunsphere H-32 (Asahi Glass Co., Ltd. porous silica alumina particles average particle size 3μm)
A34 (Nippon Light Metal Co., Ltd. non-porous alumina particles average particle size 4μm)
The specific surface area and pore diameter were measured using an automatic specific surface area / pore distribution measuring apparatus BELSORP-miniII manufactured by Nippon Bell Co., Ltd. The average particle size was obtained by measuring 200 or more particles with a scanning electron microscope and determining the average value of the sphere equivalent particle size of each particle.
 無機酸化物粒子表面と結合しうる官能基ブロックを有する本発明のポリマーとして以下を用いた。 The following was used as the polymer of the present invention having a functional group block capable of binding to the surface of the inorganic oxide particles.
 HPC7506 (JSR社製、多官能、アクリルポリマー)
 H901-2 (荒川化学社製、多官能、アミドイミドポリマー)
 HBAA-02 (荒川化学社製、多官能、シリコーンイミドポリマー)
 SI 003 (アルテック社製、単官能、エチレンオキシドポリマー:(CHO)(CH(OCHCHOH、n=1900~2000))
 また官能基ブロックを有さないポリマーとして以下を用いた。
HPC7506 (manufactured by JSR, polyfunctional, acrylic polymer)
H901-2 (Arakawa Chemical Co., Ltd., multifunctional, amideimide polymer)
HBAA-02 (Arakawa Chemical Co., Ltd., multifunctional, silicone imide polymer)
SI 003 (manufactured by Altec, monofunctional, ethylene oxide polymer: (CH 3 O) 3 (CH 2 ) 3 (OCH 2 CH 2 ) n OH, n = 1900 to 2000))
Moreover, the following was used as a polymer which does not have a functional group block.
 ACRYDIC A-405 (DIC社製 アクリル樹脂)
 SOLEF1013 (Solvay社製 PVDF樹脂)
 〈固体電解質の作製〉
 EMI-FSI 8.0gをN-メチルピロリドン100gに溶解した後、リチウム ビス{(トリフルオロメチル)スルフォニル}アミド〔Li-TFSI〕 2.0gを溶解した。さらに上記Nanogel TLD201を3.0g添加、HPC7506を3.0g添加し強攪拌し、固体電解質プリカーサー塗布液001を作製した。同様の方法で上記イオン液体、無機酸化物粒子、ポリマーを表1のように変え、固体電解質プリカーサー塗布液002~011および021を作製した。
ACRYDIC A-405 (acrylic resin made by DIC)
SOLEF1013 (PVDF resin made by Solvay)
<Preparation of solid electrolyte>
After dissolving 8.0 g of EMI-FSI in 100 g of N-methylpyrrolidone, 2.0 g of lithium bis {(trifluoromethyl) sulfonyl} amide [Li-TFSI] was dissolved. Furthermore, 3.0 g of the above Nanogel TLD201 and 3.0 g of HPC7506 were added and stirred vigorously to prepare a solid electrolyte precursor coating solution 001. In the same manner, the ionic liquid, inorganic oxide particles, and polymer were changed as shown in Table 1 to prepare solid electrolyte precursor coating solutions 002 to 011 and 021.
 比較例としては無機酸化物微粒子を含有しない固体電解質プリカーサー塗布液017、官能基を有さないポリマーを添加した固体電解質プリカーサー塗布液018、019、ポリマーを含有しない固体電解質プリカーサー塗布液020を作製した(表1)。 As comparative examples, a solid electrolyte precursor coating solution 017 containing no inorganic oxide fine particles, solid electrolyte precursor coating solutions 018 and 019 added with a polymer having no functional group, and a solid electrolyte precursor coating solution 020 containing no polymer were prepared. (Table 1).
 これら塗布液を厚さ188μmのポリエステルフィルム(帝人製メリネックスシリーズ)上にワイヤーバーで塗布し、温風乾燥機で120℃、15分加熱し、乾燥と反応を行った。出来たフィルムはポリエステルフィルムから剥がし、厚さ25μmの固体電解質フィルム001~011および021を得た。また同様の手法で比較例として固体電解質フィルム017~020を作製した。 These coating solutions were applied on a 188 μm-thick polyester film (Meijinx series manufactured by Teijin) with a wire bar, heated with a hot air dryer at 120 ° C. for 15 minutes, and then dried and reacted. The resulting film was peeled from the polyester film to obtain solid electrolyte films 001 to 011 and 021 having a thickness of 25 μm. In addition, solid electrolyte films 017 to 020 were produced by the same method as comparative examples.
 また、固体電解質プリカーサー塗布液002、006、009、010それぞれについて、10.0gをサンプル瓶に入れ、120℃のオーブンに20分入れ、バルク状固体電解質を得た。これをスライドガラスに適量挟み厚さ25μm厚までプレスすることで、固体電解質フィルム012、013、014、015を得た。 In addition, 10.0 g of each of the solid electrolyte precursor coating solutions 002, 006, 009, and 010 was placed in a sample bottle and placed in an oven at 120 ° C. for 20 minutes to obtain a bulk solid electrolyte. Solid electrolyte films 012, 013, 014, and 015 were obtained by sandwiching an appropriate amount between the glass slides and pressing to a thickness of 25 μm.
 さらに、上記固体電解質プリカーサー塗布液010について、N-メチルピロリドンを全く加えない組成物を作製し、メノウ乳鉢で混練し、これをスライドガラスに挟み150℃で10分加熱、25μm厚にプレスすることで固体電解質フィルム016を得た。 Further, a composition in which no N-methylpyrrolidone is added to the solid electrolyte precursor coating solution 010 is prepared, kneaded in an agate mortar, sandwiched between slide glasses, heated at 150 ° C. for 10 minutes, and pressed to a thickness of 25 μm. A solid electrolyte film 016 was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (固体電解質フィルムのイオン伝導度測定)
 固体電解質フィルム001~021を各100枚作製し、それぞれについて1cmの円形にくりぬき、同じく円形1cmの白金電極間に試料を挟み、室温、50%RHで交流インピーダンス法(0.1V、周波数1Hz~10MHz)により膜抵抗を測定し、イオン伝導度を算出した。それぞれ100枚のイオン伝導度の平均値と、品質安定性の評価として平均値から±10%に収まるイオン伝導度を示したサンプルの枚数をカウントした。
(Measurement of ionic conductivity of solid electrolyte film)
100 pieces of solid electrolyte films 001 to 021 were prepared, each of which was hollowed into a 1 cm 2 circle, and the sample was sandwiched between platinum electrodes of 1 cm 2 in the same manner, and the AC impedance method (0.1 V, frequency at 50% RH) at room temperature. The membrane resistance was measured at 1 Hz to 10 MHz), and the ionic conductivity was calculated. The average number of ionic conductivities of 100 sheets each and the number of samples showing ionic conductivity falling within ± 10% from the average value as an evaluation of quality stability were counted.
 (固体電解質フィルムの突刺試験測定)
 得られた固体電解質フィルム001~021を、圧縮試験器(カトーテック社製KES-G5)を用いて、針径1.0mm、先端の曲率半径0.5mmの針を用いて突刺速度2mm/sで突刺試験を行い、最大突刺加重(g)を突刺強度とした。
(Measurement of piercing test of solid electrolyte film)
Using the compression tester (KES-G5 manufactured by Kato Tech Co., Ltd.), the obtained solid electrolyte films 001 to 021 were pierced at a puncture speed of 2 mm / s using a needle having a needle diameter of 1.0 mm and a tip curvature radius of 0.5 mm. The puncture test was conducted with the maximum puncture load (g) as the puncture strength.
 〈正極の作製〉
 正極活物質として、LiCoOを43質量部、鱗片状黒鉛2質量部、アセチレンブラック2質量部、更に結着剤としてポリアクリロニトリル3質量部を加え、アクリロニトリル100質量部を媒体として混練して得られたスラリーを厚さ20μmのアルミニウム箔に、エクストルージョン式塗布機を使って塗設し、乾燥後カレンダープレス機により圧縮成形した後、端部にアルミニウム製のリード板を溶接し、厚さ95μm、幅54mm×長さ49mmの正極シートを作製、露点-40℃以下の乾燥空気中、230℃で30分脱水乾燥した。
<Preparation of positive electrode>
It is obtained by adding 43 parts by mass of LiCoO 2 as a positive electrode active material, 2 parts by mass of flaky graphite, 2 parts by mass of acetylene black, and 3 parts by mass of polyacrylonitrile as a binder, and kneading 100 parts by mass of acrylonitrile as a medium. The slurry was coated on an aluminum foil with a thickness of 20 μm using an extrusion type coater, dried and compression-molded with a calendar press machine, and then welded with an aluminum lead plate at the end, with a thickness of 95 μm, A positive electrode sheet having a width of 54 mm and a length of 49 mm was prepared and dehydrated and dried at 230 ° C. for 30 minutes in dry air having a dew point of −40 ° C. or lower.
 〈シート型電池の作製〉
 ドライボックス中で、幅54mm×長さ49mmの脱水乾燥済み正極シート上に、上記固体電解質プリカーサー塗布液001~011をワイヤーバーで塗布し、熱風乾燥機で120℃、15分加熱し、乾燥と重合をおこなうことで膜厚25μmの層を形成した(シート型電池001~011および021用)。
<Production of sheet type battery>
In a dry box, the solid electrolyte precursor coating solution 001 to 011 is coated with a wire bar on a dehydrated and dried positive electrode sheet having a width of 54 mm and a length of 49 mm, heated at 120 ° C. for 15 minutes with a hot air dryer, and dried. Polymerization was performed to form a layer having a thickness of 25 μm (for sheet type batteries 001 to 011 and 021).
 比較用として上記固体電解質プリカーサー塗布液017~020を用い、同様の手法で固体電解質層を得た(シート型電池017~020用)。 For comparison, solid electrolyte layers were obtained in the same manner using the solid electrolyte precursor coating solutions 017 to 020 (for sheet type batteries 017 to 020).
 また固体電解質プリカーサー塗布液002、006、009、010それぞれについて、10.0gをサンプル瓶に入れ、120℃のオーブンに20分入れ、バルク状固体電解質を得た。これを上記正極とスライドガラスに挟み厚さ25μm厚までプレスし、スライドガラスを剥がした(シート型電池012、013、014、015用)。 In addition, 10.0 g of each of the solid electrolyte precursor coating solutions 002, 006, 009, and 010 was placed in a sample bottle and placed in an oven at 120 ° C. for 20 minutes to obtain a bulk solid electrolyte. This was sandwiched between the positive electrode and the slide glass and pressed to a thickness of 25 μm, and the slide glass was peeled off (for sheet type batteries 012, 013, 014, and 015).
 さらに固体電解質プリカーサー塗布液010について、N-メチルピロリドンを全く加えない組成物を作製し、メノウ乳鉢で混練し、これを上記正極とスライドガラス挟み150℃で10分加熱、25μm厚にプレスし、スライドガラスを剥がした(シート型電池016用)。 Further, for the solid electrolyte precursor coating solution 010, a composition in which no N-methylpyrrolidone was added was prepared, kneaded in an agate mortar, sandwiched between the positive electrode and a slide glass, heated at 150 ° C. for 10 minutes, and pressed to a thickness of 25 μm. The slide glass was peeled off (for sheet type battery 016).
 更に上記のリード板を溶接した幅55mm×長さ50mmの負極シート(リチウム張り合わせ銅箔(リチウム膜厚30μm、銅箔の膜厚20μm))を積層し、減圧下で80℃に3時間加熱した。その後、ポリエチレン(50μm)-ポリエチレンテレフタレート(50μm)のラミネートフィルムよりなる外装材を使用し、4縁を真空下で熱融着して密閉し、シート型電池001~021を作製した。 Furthermore, a negative electrode sheet (lithium-laminated copper foil (lithium film thickness 30 μm, copper foil film thickness 20 μm)) 55 mm wide × 50 mm long welded to the above lead plate was laminated and heated to 80 ° C. under reduced pressure for 3 hours. . Thereafter, an exterior material made of a laminate film of polyethylene (50 μm) -polyethylene terephthalate (50 μm) was used, and the four edges were heat-sealed under vacuum to form a sheet-type battery 001-021.
 (シート電池の充放電特性)
 得られたシート型リチウム二次電池について、計測器センター製の充放電測定装置を用いて、0.2mA/cmの電流で電圧2Vから4.2Vまで充電し、10分間の休止後、0.2mA/cmの電流で電池電圧3Vまで放電した。この充放電を50サイクル繰り返した。初期と、50サイクル目の容量保持率(%)を測定し、充放電特性の評価とした。
(Charge / discharge characteristics of sheet battery)
The obtained sheet-type lithium secondary battery was charged from a voltage of 2 V to 4.2 V at a current of 0.2 mA / cm 2 using a charge / discharge measuring device manufactured by Keiki Center, and after a pause of 10 minutes, 0 The battery voltage was discharged to 3 V with a current of 2 mA / cm 2 . This charging / discharging was repeated 50 cycles. The capacity retention rate (%) at the initial stage and the 50th cycle was measured to evaluate the charge / discharge characteristics.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果より、本発明の固体電解質は、高いイオン伝導度、高強度で、バラツキが少なく、製造品質が良好で、量産安定性に優れることが分かる。また本固体電解質を有する二次電池はサイクル特性が良好で、容量保持率が高く耐久性に優れていることが分かる。 From the results of Table 2, it can be seen that the solid electrolyte of the present invention has high ionic conductivity, high strength, little variation, good production quality, and excellent mass production stability. Further, it can be seen that the secondary battery having the present solid electrolyte has good cycle characteristics, high capacity retention, and excellent durability.

Claims (7)

  1. 少なくとも、イオン液体、無機酸化物粒子、及び無機酸化物粒子表面と結合しうる官能基ブロックを有するポリマーを含有する塗布液を用いて形成された固体電解質の製造方法であって、上記官能基ブロックが金属アルコキシド部を含有することを特徴とする固体電解質の製造方法。 A method for producing a solid electrolyte formed using a coating solution containing at least an ionic liquid, inorganic oxide particles, and a polymer having a functional group block capable of binding to the surface of the inorganic oxide particles, the functional group block Contains a metal alkoxide part, The manufacturing method of the solid electrolyte characterized by the above-mentioned.
  2. 前記無機酸化物粒子がシリカ粒子であることを特徴とする請求項1に記載の固体電解質の製造方法。 The method for producing a solid electrolyte according to claim 1, wherein the inorganic oxide particles are silica particles.
  3. 前記無機酸化物粒子が多孔質粒子であることを特徴とする請求項1または2に記載の固体電解質の製造方法。 The method for producing a solid electrolyte according to claim 1, wherein the inorganic oxide particles are porous particles.
  4. 前記官能基ブロックの金属アルコキシド部を構成する金属がAl、Ti、Si、Zrから選ばれる少なくとも1種であることを特徴とする請求項1~3の何れか1項に記載の固体電解質の製造方法。 The solid electrolyte production according to any one of claims 1 to 3, wherein the metal constituting the metal alkoxide portion of the functional group block is at least one selected from Al, Ti, Si, and Zr. Method.
  5. 前記官能基ブロックを分子中に複数個有することを特徴とする請求項1~4の何れか1項に記載の固体電解質の製造方法。 5. The method for producing a solid electrolyte according to claim 1, wherein a plurality of the functional group blocks are included in the molecule.
  6. 80℃以上350℃以下の温度で処理する工程を有することを特徴とする請求項1~5の何れか1項に記載の固体電解質の製造方法。 6. The method for producing a solid electrolyte according to claim 1, further comprising a step of treating at a temperature of 80 ° C. or higher and 350 ° C. or lower.
  7. 請求項1~6の何れか1項に記載の固体電解質の製造方法により形成された固体電解質を有することを特徴とする二次電池。 A secondary battery comprising a solid electrolyte formed by the method for producing a solid electrolyte according to any one of claims 1 to 6.
PCT/JP2010/064357 2009-08-28 2010-08-25 Process for production of solid electrolyte, and secondary battery WO2011024848A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011528818A JP5533875B2 (en) 2009-08-28 2010-08-25 Method for producing solid electrolyte and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009197886 2009-08-28
JP2009-197886 2009-08-28

Publications (1)

Publication Number Publication Date
WO2011024848A1 true WO2011024848A1 (en) 2011-03-03

Family

ID=43627948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064357 WO2011024848A1 (en) 2009-08-28 2010-08-25 Process for production of solid electrolyte, and secondary battery

Country Status (2)

Country Link
JP (1) JP5533875B2 (en)
WO (1) WO2011024848A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164877A (en) * 2015-02-26 2016-09-08 国立大学法人東京工業大学 Molten salt composition, electrolyte including the same, and method for increase in viscosity of liquefied molten salt
WO2017030154A1 (en) * 2015-08-18 2017-02-23 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for manufacturing all-solid-state secondary battery
US20170222244A1 (en) * 2016-02-03 2017-08-03 Samsung Electronics Co., Ltd. Solid electrolyte and lithium battery comprising the solid electrolyte
JPWO2017111131A1 (en) * 2015-12-25 2018-09-20 富士フイルム株式会社 All-solid secondary battery, particles for all-solid secondary battery, solid electrolyte composition for all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and production method thereof
TWI643223B (en) * 2018-01-12 2018-12-01 國立高雄科技大學 Composition for manufacturing a polymer electrolyte membrane and method for manufacturing the polymer electrolyte membrane
CN110710044A (en) * 2017-06-01 2020-01-17 日立化成株式会社 Electrolyte composition, secondary battery, and method for manufacturing electrolyte sheet
KR20200006270A (en) * 2018-07-10 2020-01-20 주식회사 엘지화학 Solid electrolyte composition for secondary battery and solid electrolyte
JPWO2019088196A1 (en) * 2017-11-02 2020-09-24 アイメック・ヴェーゼットウェーImec Vzw Method for manufacturing solid electrolyte, electrode, power storage element and solid electrolyte
CN112174894A (en) * 2019-07-04 2021-01-05 天津工业大学 Preparation and application of imidazole ionic liquid containing fluorine ether group
WO2021166975A1 (en) 2020-02-20 2021-08-26 国立大学法人静岡大学 Solid electrolyte, secondary battery and capacitor
US11699810B2 (en) 2017-04-24 2023-07-11 Imec Vzw Solid nanocomposite electrolyte materials
US11710850B2 (en) 2017-11-02 2023-07-25 Imec Vzw Solid electrolyte, electrode, power storage device, and method for producing solid electrolytes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102216570B1 (en) * 2018-01-12 2021-02-17 인천대학교 산학협력단 Solvent for solid electrolytes synthesis including onium composite and solid electrolytes synthesis method using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131414A (en) * 1997-07-10 1999-02-02 Showa Denko Kk Polymerizable composition and use thereof
JPH1131415A (en) * 1997-07-10 1999-02-02 Showa Denko Kk Polymer solid electrolyte and use thereof
JP2001319691A (en) * 2000-05-08 2001-11-16 Kagawa Industry Support Foundation Composite electrolyte
JP2003157719A (en) * 2001-11-22 2003-05-30 Hitachi Maxell Ltd Cold melted-salt type solid electrolyte and totally solid electrochemical element
JP2005146176A (en) * 2003-11-18 2005-06-09 Ebara Corp Organic-silica composite film and its manufacturing method
JP2009059659A (en) * 2007-09-03 2009-03-19 Kyoto Univ Solid polymer electrolyte using ionic liquid polymer fine composite particle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131414A (en) * 1997-07-10 1999-02-02 Showa Denko Kk Polymerizable composition and use thereof
JPH1131415A (en) * 1997-07-10 1999-02-02 Showa Denko Kk Polymer solid electrolyte and use thereof
JP2001319691A (en) * 2000-05-08 2001-11-16 Kagawa Industry Support Foundation Composite electrolyte
JP2003157719A (en) * 2001-11-22 2003-05-30 Hitachi Maxell Ltd Cold melted-salt type solid electrolyte and totally solid electrochemical element
JP2005146176A (en) * 2003-11-18 2005-06-09 Ebara Corp Organic-silica composite film and its manufacturing method
JP2009059659A (en) * 2007-09-03 2009-03-19 Kyoto Univ Solid polymer electrolyte using ionic liquid polymer fine composite particle

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164877A (en) * 2015-02-26 2016-09-08 国立大学法人東京工業大学 Molten salt composition, electrolyte including the same, and method for increase in viscosity of liquefied molten salt
WO2017030154A1 (en) * 2015-08-18 2017-02-23 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for manufacturing all-solid-state secondary battery
JPWO2017030154A1 (en) * 2015-08-18 2017-12-28 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JPWO2017111131A1 (en) * 2015-12-25 2018-09-20 富士フイルム株式会社 All-solid secondary battery, particles for all-solid secondary battery, solid electrolyte composition for all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and production method thereof
US20170222244A1 (en) * 2016-02-03 2017-08-03 Samsung Electronics Co., Ltd. Solid electrolyte and lithium battery comprising the solid electrolyte
US11699810B2 (en) 2017-04-24 2023-07-11 Imec Vzw Solid nanocomposite electrolyte materials
CN110710044B (en) * 2017-06-01 2023-08-18 株式会社Lg新能源 Electrolyte composition, secondary battery, and method for producing electrolyte sheet
CN110710044A (en) * 2017-06-01 2020-01-17 日立化成株式会社 Electrolyte composition, secondary battery, and method for manufacturing electrolyte sheet
JPWO2019088196A1 (en) * 2017-11-02 2020-09-24 アイメック・ヴェーゼットウェーImec Vzw Method for manufacturing solid electrolyte, electrode, power storage element and solid electrolyte
EP3706226A4 (en) * 2017-11-02 2020-12-16 IMEC vzw Solid electrolyte, electrode, electric power storage element, and method for manufacturing solid electrolyte
JP7134948B2 (en) 2017-11-02 2022-09-12 アイメック・ヴェーゼットウェー Solid electrolyte, electrode, storage element, and method for producing solid electrolyte
US11557789B2 (en) 2017-11-02 2023-01-17 Imec Vzw Solid electrolyte, electrode, power storage device, and method for producing solid electrolytes
US11710850B2 (en) 2017-11-02 2023-07-25 Imec Vzw Solid electrolyte, electrode, power storage device, and method for producing solid electrolytes
TWI643223B (en) * 2018-01-12 2018-12-01 國立高雄科技大學 Composition for manufacturing a polymer electrolyte membrane and method for manufacturing the polymer electrolyte membrane
KR20200006270A (en) * 2018-07-10 2020-01-20 주식회사 엘지화학 Solid electrolyte composition for secondary battery and solid electrolyte
KR102590176B1 (en) * 2018-07-10 2023-10-16 주식회사 엘지에너지솔루션 Solid electrolyte composition for secondary battery and solid electrolyte
CN112174894A (en) * 2019-07-04 2021-01-05 天津工业大学 Preparation and application of imidazole ionic liquid containing fluorine ether group
WO2021166975A1 (en) 2020-02-20 2021-08-26 国立大学法人静岡大学 Solid electrolyte, secondary battery and capacitor

Also Published As

Publication number Publication date
JP5533875B2 (en) 2014-06-25
JPWO2011024848A1 (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5533875B2 (en) Method for producing solid electrolyte and secondary battery
JP5359440B2 (en) Electrolyte and secondary battery
JP5391940B2 (en) Solid electrolyte, method for producing the same, and secondary battery
JP5381636B2 (en) Solid electrolyte for battery and lithium ion secondary battery
CN108370061B (en) Solid electrolyte composition, binder particle, all-solid-state secondary battery, sheet, electrode sheet, and method for producing same
JP2011113906A (en) Solid electrolyte, method of manufacturing the same, and secondary battery using the same
JP2012069457A (en) Porous layer and lithium ion secondary battery
JP2012099385A (en) Electrode with heat-resistant porous layer, manufacturing method thereof, and secondary battery
JP6621532B2 (en) SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET, ELECTRODE SHEET FOR ALL-SOLID SECONDARY BATTERY AND ALL-SOLID SECONDARY BATTERY, AND SOLID ELECTROLYTE-CONTAINING SHEET, ELECTRODE SHEET FOR ALL-SOLID SECONDARY BATTERY
JP2011187274A (en) Separator for battery, and lithium ion battery
JP2011119053A (en) Electrolyte composition, and secondary battery using the same
JPWO2011037060A1 (en) Electrolyte composition and lithium ion secondary battery
JP2011134459A (en) Electrolytic composition, secondary battery, and compound
JP5499868B2 (en) Method for producing electrode for lithium ion secondary battery
WO2016199723A1 (en) Solid electrolyte composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
WO2010092897A1 (en) Electrolyte composition, and secondary battery
JP2012033366A (en) Porous separator, lithium ion secondary battery, and method of manufacturing porous separator
JP2011054463A (en) Electrolyte composition, method of manufacturing the same, and secondary battery
JP2011070997A (en) Electrolyte composition, and secondary battery
JP2012089399A (en) Electrode plate for lithium-ion secondary battery and lithium-ion secondary battery
JP5397140B2 (en) Solid electrolyte and secondary battery
JP5533871B2 (en) Lithium secondary battery having solid electrolyte and solid electrolyte
JP5564930B2 (en) Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP2007280658A (en) Solid polymer electrolyte
JP2011124121A (en) Electrolyte composition and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811897

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528818

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811897

Country of ref document: EP

Kind code of ref document: A1