JP2012033366A - Porous separator, lithium ion secondary battery, and method of manufacturing porous separator - Google Patents

Porous separator, lithium ion secondary battery, and method of manufacturing porous separator Download PDF

Info

Publication number
JP2012033366A
JP2012033366A JP2010171441A JP2010171441A JP2012033366A JP 2012033366 A JP2012033366 A JP 2012033366A JP 2010171441 A JP2010171441 A JP 2010171441A JP 2010171441 A JP2010171441 A JP 2010171441A JP 2012033366 A JP2012033366 A JP 2012033366A
Authority
JP
Japan
Prior art keywords
porous separator
active material
secondary battery
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010171441A
Other languages
Japanese (ja)
Inventor
Akio Miura
紀生 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2010171441A priority Critical patent/JP2012033366A/en
Publication of JP2012033366A publication Critical patent/JP2012033366A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a porous separator contributing to a secondary battery having high output, heat resistance, and impact resistance, to provide a lithium ion secondary battery using the porous separator, and to provide a method of manufacturing the porous separator formed by applying.SOLUTION: The porous separator is characterized by being formed by using a coating liquid which contains an organic solvent-soluble polyimide resin and inorganic particulates.

Description

本発明は、多孔質セパレーター、それを用いたリチウムイオン二次電池、及び多孔質セパレーターの製造方法に関する。   The present invention relates to a porous separator, a lithium ion secondary battery using the same, and a method for producing the porous separator.

近年、リチウムイオン二次電池は電気自動車用として出力の増大が求められ、電池セルの大型化が望まれている。   In recent years, lithium-ion secondary batteries are required to have increased output for use in electric vehicles, and it is desired to increase the size of battery cells.

大型化には出力だけでなく、特に電気自動車用途においては、運行時に様々な振動・衝撃・蓄熱を長時間に渡って受けることになり、電力貯蔵用等の定置用途より耐熱性及び安全性の高いものが要求されている。   In addition to output, the increase in size, in particular in electric vehicle applications, is subject to various vibrations, shocks, and heat storage for a long time during operation, which is more heat-resistant and safer than stationary applications such as power storage. A high one is required.

セパレーターは電池を構成する正極と負極の短絡を防ぎ、かつ、電解質のイオン導電性を妨げないという高度な機能を要求される。特に蓄熱や衝撃により変形して電極間の短絡がおこることは致命的であり、近年さまざまな改良がほどこされてきている。   The separator is required to have a sophisticated function of preventing a short circuit between the positive electrode and the negative electrode constituting the battery and not hindering the ionic conductivity of the electrolyte. In particular, it is fatal to cause a short circuit between electrodes due to deformation due to heat storage or impact, and various improvements have been made in recent years.

高出力と安全性の確保のために、絶縁性微粒子とバインダーからなる多孔質層を電極活物質層の表面に直接形成する技術(特許文献1参照。)が開発されており、従来のポリオレフィン系樹脂多孔質膜からなるセパレーター(特許文献2参照。)に対して大きく耐熱性や取り扱い性が改善されてきている。そして、50%以上セパレーター膜厚を薄くできるため、出力の大幅な向上が達成できる利点も有していた。   In order to ensure high output and safety, a technology for directly forming a porous layer composed of insulating fine particles and a binder on the surface of the electrode active material layer (see Patent Document 1) has been developed. Heat resistance and handleability have been greatly improved with respect to separators made of a porous resin membrane (see Patent Document 2). And since the separator film thickness can be reduced by 50% or more, it has an advantage that a significant improvement in output can be achieved.

しかしながら、車載用途では、300℃程度の高温に晒されても、或いは過激な振動・衝撃に晒されても容易に変形せず、セパレーターの機能を維持できる部材が求められている中で、機能と耐熱性、耐衝撃性を両立できる部材が存在しないのが実情であった。   However, in automotive applications, there is a need for a member that can maintain the function of the separator without being easily deformed even when exposed to high temperatures of about 300 ° C. or exposed to extreme vibrations and shocks. In fact, there is no member that can achieve both heat resistance and impact resistance.

特許第3253632号公報Japanese Patent No. 3253632 特開平3−105851号公報JP-A-3-105851

本発明の目的は、高出力を維持し、耐熱性、及び耐衝撃性に優れた二次電池に資する多孔質セパレーター、それを用いたリチウムイオン二次電池及び塗布による多孔質セパレーターの製造方法を提供することにある。   An object of the present invention is to provide a porous separator that contributes to a secondary battery that maintains high output and is excellent in heat resistance and impact resistance, a lithium ion secondary battery using the same, and a method for producing a porous separator by coating It is to provide.

本発明の上記目的は、下記の手段により達成される。   The above object of the present invention is achieved by the following means.

1.有機溶剤可溶なポリイミド樹脂と無機微粒子を含有する塗布液を用いて形成したことを特徴とする多孔質セパレーター。   1. A porous separator formed using a coating liquid containing an organic solvent-soluble polyimide resin and inorganic fine particles.

2.有機溶剤可溶なポリイミド樹脂がテトラカルボン酸ジ無水物とジアミンとを脱水縮合して得られるブロック共重合ポリイミド樹脂であることを特徴とする前記1に記載の多孔質セパレーター。   2. 2. The porous separator according to 1 above, wherein the organic solvent-soluble polyimide resin is a block copolymerized polyimide resin obtained by dehydration condensation of tetracarboxylic dianhydride and diamine.

3.前記1または2に記載の多孔質セパレーターを用いて形成されたリチウムイオン二次電池であって、正極活物質層を有する正極、負極活物質層を有する負極およびリチウムイオンを含む非水系電解質を含有することを特徴とするリチウムイオン二次電池。   3. A lithium ion secondary battery formed using the porous separator according to 1 or 2 above, comprising a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a non-aqueous electrolyte containing lithium ions A lithium ion secondary battery characterized by:

4.前記1または2に記載の多孔質セパレーターの製造方法であって、リチウムイオン二次電池の正極または負極の活物質層上に塗布により形成することを特徴とする多孔質セパレーターの製造方法。   4). 3. The method for producing a porous separator according to 1 or 2, wherein the porous separator is formed by coating on an active material layer of a positive electrode or a negative electrode of a lithium ion secondary battery.

本発明により、高出力で、耐熱性、及び耐衝撃性に優れた二次電池に資する多孔質セパレーター、それを用いたリチウムイオン二次電池及び塗布による多孔質セパレーターの製造方法を提供することができた。   According to the present invention, it is possible to provide a porous separator that contributes to a secondary battery having high output, excellent heat resistance and impact resistance, a lithium ion secondary battery using the same, and a method for producing a porous separator by coating. did it.

以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。   The best mode for carrying out the present invention will be described in detail below, but the present invention is not limited thereto.

本発明は、正極または負極の活物質層上に塗布により直接形成される、有機溶剤可溶なポリイミド樹脂と無機微粒子を含有する多孔質セパレーターを用いることを特徴とし、高出力を維持し、300℃程度の高温下でも耐熱性と耐衝撃性に優れたリチウムイオン二次電池が得られる。   The present invention is characterized by using a porous separator containing an organic solvent-soluble polyimide resin and inorganic fine particles, which is directly formed on an active material layer of a positive electrode or a negative electrode by coating, maintaining a high output, and 300 A lithium ion secondary battery excellent in heat resistance and impact resistance can be obtained even at a high temperature of about ℃.

(多孔質セパレーター)
本発明の多孔性セパレーターは、少なくとも1層の無機微粒子集合体層を有し、該微粒子集合体が、該微粒子同士を結合する本発明の有機溶剤可溶なポリイミド樹脂をバインダーとして含んでおり、且つ少なくとも1層の無機微粒子集合体層が3次元網目空隙構造を有しており、それにより、該多孔性セパレーターに、イオンが通過可能な孔が形成されてなるものである。
(Porous separator)
The porous separator of the present invention has at least one inorganic fine particle aggregate layer, and the fine particle aggregate contains the organic solvent-soluble polyimide resin of the present invention for bonding the fine particles as a binder, Further, at least one inorganic fine particle aggregate layer has a three-dimensional network void structure, whereby pores through which ions can pass are formed in the porous separator.

(多孔質セパレーターの製造方法)
本発明に係る多孔質セパレーターは、ポリイミド樹脂からなるバインダーと無機微粒子を含有する分散液からなる塗布液を、後述する電極の活物質層上に直接塗布乾燥して得られる。
(Method for producing porous separator)
The porous separator according to the present invention is obtained by directly applying and drying a coating liquid composed of a dispersion containing a binder composed of a polyimide resin and inorganic fine particles on an active material layer of an electrode to be described later.

ポリイミド樹脂からなるバインダーと無機微粒子を含有するセパレーター用塗布液(以下分散塗布液ともいう)を調製する方法に特に制限はなく、塗布液の物理的、化学的性質を考慮して公知の分散方法から適切な手法を選択すればよい。   There is no particular limitation on the method of preparing a separator coating liquid (hereinafter also referred to as a dispersion coating liquid) containing a binder made of polyimide resin and inorganic fine particles, and a known dispersion method considering the physical and chemical properties of the coating liquid. An appropriate method may be selected from the above.

例えば、分散液の粘度が高い場合は、攪拌時の泡の混入を防止するために、真空脱泡しながら攪拌することが好ましい。   For example, when the viscosity of the dispersion is high, it is preferable to stir while vacuum degassing in order to prevent mixing of bubbles during stirring.

分散塗布液中のポリイミド樹脂と無機微粒子の配合量は分散塗布液全体に対して5質量%〜50質量%が好ましく、特に10質量%〜40質量%が好ましい。   The blending amount of the polyimide resin and the inorganic fine particles in the dispersion coating liquid is preferably 5% by mass to 50% by mass, and particularly preferably 10% by mass to 40% by mass with respect to the entire dispersion coating liquid.

分散に用いる分散媒は分散液を調製できるものであれば特に制限はないが、プロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテル、プロピレングリコールメチルエーテルアセテート、シクロヘキサノン、ジオキサン、ジオキソラン、アセトン、メチルエチルケトン、メチルイソブチルケトン、N−メチル−2−ピロリドン、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、γ−ブチロラクトンなどが挙げられる。この中でN−メチル−2−ピロリドンが最も好ましい。尚、本発明に用いられる、後述するポリイミド樹脂を溶解する有機溶剤とここで記載の分散媒とは同一で有っても良く、また異なっていても良い。   The dispersion medium used for dispersion is not particularly limited as long as a dispersion liquid can be prepared, but propylene glycol methyl ether, dipropylene glycol methyl ether, propylene glycol methyl ether acetate, cyclohexanone, dioxane, dioxolane, acetone, methyl ethyl ketone, methyl isobutyl. Examples include ketones, N-methyl-2-pyrrolidone, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, and γ-butyrolactone. Of these, N-methyl-2-pyrrolidone is most preferred. In addition, the organic solvent which melt | dissolves the polyimide resin mentioned later used for this invention and the dispersion medium described here may be the same, and may differ.

分散塗布液の塗布方法には特に制限はなく、従来公知の塗布方法を用いて、塗布し塗膜を形成すればよい。好ましく用いることができる塗布方法としては、ドクターブレードコート、ダイコート、グラビアコート、マイクログラビアコート、ロールコートなどが挙げられる。   There is no restriction | limiting in particular in the coating method of a dispersion coating liquid, What is necessary is just to apply | coat and form a coating film using a conventionally well-known coating method. Examples of the coating method that can be preferably used include doctor blade coating, die coating, gravure coating, micro gravure coating, and roll coating.

塗膜の乾燥は、温風、赤外線、マイクロ波等を用いることができる。乾燥温度としてはポリイミド樹脂と無機微粒子分散液に用いられる溶媒の種類にもよるが、60℃以上、200℃以下が好ましい。その中でも赤外線の照射により加熱する方法が、耐熱性の面で、特に好ましい方法である。赤外線を照射する場所は分散塗布液を塗工した面からでも、裏面からでもよいが、裏面から赤外線照射すると集電体に吸収もしくは反射されてしまうため、好ましくは分散塗布液を塗工した面から赤外線照射によって乾燥することが好ましい。赤外線源の例としては、たとえば通常の赤外線ランプの他に、キセノンフラッシュランプ、キセノンランプ、キセノンショートアークランプ、近赤外線ハロゲンヒーター、赤外LED、赤外線レーザー等を挙げることができる。好ましくはキセノンフラッシュランプ、キセノンランプ、近赤外線ハロゲンヒーター、赤外LED、波長700から1500nmの赤外線を放射する固体レーザーまたは半導体レーザーである。さらに補助的に別の赤外線源を用いても良い。赤外線乾燥装置として用いられる遠赤外線ヒーターとしては、パネル状、管状、ランプ状のものが用いられる。   For drying the coating film, warm air, infrared rays, microwaves, or the like can be used. The drying temperature is preferably 60 ° C. or higher and 200 ° C. or lower, although it depends on the type of solvent used for the polyimide resin and the inorganic fine particle dispersion. Among them, the method of heating by infrared irradiation is a particularly preferable method in terms of heat resistance. The place to irradiate with infrared rays may be from the surface coated with the dispersion coating solution or from the back surface, but when irradiated with infrared rays from the back surface, it is absorbed or reflected by the current collector, and preferably the surface coated with the dispersion coating solution To drying by infrared irradiation. Examples of the infrared source include a normal infrared lamp, a xenon flash lamp, a xenon lamp, a xenon short arc lamp, a near infrared halogen heater, an infrared LED, an infrared laser, and the like. A xenon flash lamp, a xenon lamp, a near-infrared halogen heater, an infrared LED, a solid-state laser or a semiconductor laser emitting infrared light having a wavelength of 700 to 1500 nm is preferable. Further, another infrared source may be used as an auxiliary. As the far-infrared heater used as an infrared drying device, a panel-shaped, tubular, or lamp-shaped heater is used.

本発明に係る多孔質セパレーターが、特に良好な耐熱性と耐衝撃性を示す理由は明確ではないが、塗布されたポリイミド樹脂と無機微粒子分散液が乾燥される過程で、特に赤外線の照射による乾燥の場合、ポリイミド樹脂と無機微粒子分散液全体が厚み方向により均一に昇温されるためポリイミド樹脂と無機微粒子分散液の粘度が全体にわたってより均一に上昇し、ポリイミド樹脂と無機微粒子同士がより密に絡み合い耐熱性を有する多孔質膜(多孔質セパレーター)が形成され、また活物質層との接着がより均一で強固となるためと推測される。   The reason why the porous separator according to the present invention exhibits particularly good heat resistance and impact resistance is not clear, but in the process of drying the applied polyimide resin and the inorganic fine particle dispersion, particularly drying by infrared irradiation. In this case, since the entire temperature of the polyimide resin and the inorganic fine particle dispersion is uniformly increased in the thickness direction, the viscosity of the polyimide resin and the inorganic fine particle dispersion rises more uniformly over the whole, and the polyimide resin and the inorganic fine particles are more densely packed. It is presumed that a porous film (porous separator) having entanglement heat resistance is formed, and adhesion with the active material layer is more uniform and strong.

塗布する塗膜の厚さは、特に制限はなく、作製された多孔質膜である多孔質セパレーターが十分な機械的強度を有し、かつ、二次電池の電極として用いた際に良好なイオン伝導性を有していればよい。   The thickness of the coating film to be applied is not particularly limited, and the porous separator that is the produced porous film has sufficient mechanical strength and is a good ion when used as an electrode of a secondary battery. What is necessary is just to have conductivity.

好ましい多孔質セパレーターの厚みとしては、乾燥後に2μm〜40μmの範囲内にあることであり、より好ましくは4μm〜30μmである。上記の範囲内に入るように多孔質膜を形成することで、十分な機械的強度を有し、かつ、良好なイオン伝導性を有する多孔質セパレーターを形成することができる。   A preferable thickness of the porous separator is 2 μm to 40 μm after drying, and more preferably 4 μm to 30 μm. By forming the porous film so as to fall within the above range, a porous separator having sufficient mechanical strength and good ionic conductivity can be formed.

多孔質膜の平均空孔径は、出力と、耐熱性の面から10nm〜500nmであることが好ましく、より好ましくは50nm〜300nmである。   The average pore diameter of the porous membrane is preferably 10 nm to 500 nm, more preferably 50 nm to 300 nm, from the viewpoints of output and heat resistance.

多孔質膜(多孔質セパレーター)の平均空孔径は窒素吸着法により孔径分布測定機(例えば、ベックマンコールター社製、OMNISORP 100CX)を用いて測定することができる。−196℃で窒素の吸着−脱離等温線を測定し、吸着等温線(脱離側)を用いて空孔径分布を求め、該吸着等温線から平均空孔径を算出できる。なお本発明では電極活物質自身も多孔質膜であるため、電極のみの測定も行い、両者の差分を取ることで平均空孔径が得られる。   The average pore size of the porous membrane (porous separator) can be measured by a nitrogen adsorption method using a pore size distribution measuring device (for example, OMISORP 100CX, manufactured by Beckman Coulter, Inc.). The adsorption-desorption isotherm of nitrogen is measured at −196 ° C., the pore diameter distribution is obtained using the adsorption isotherm (desorption side), and the average pore diameter can be calculated from the adsorption isotherm. In the present invention, since the electrode active material itself is also a porous film, the average pore diameter can be obtained by measuring only the electrode and taking the difference between the two.

平均空孔径は、用いるポリイミド樹脂種と無機微粒子直径、ポリイミド樹脂と無機微粒子分散液の濃度、及び下記するプレス加工などにより調整することができる。本発明においては、ロールプレス加工を施したものが好適に使用できる。   The average pore diameter can be adjusted by the type of polyimide resin used and the diameter of the inorganic fine particles, the concentration of the polyimide resin and the inorganic fine particle dispersion, the press work described below, and the like. In this invention, what gave roll press work can be used conveniently.

ロールプレス加工は、例えば、金属ロール、弾性ロール、加熱ロール等を用いて行なう。プレスを行う際には定位プレス、定圧プレスいずれを行っても良い。加圧の際の圧力は、多孔質膜(多孔質セパレーター)の均質性、機械的損傷防止の面から、線圧で100〜700kg/cmとすることが好ましく、特に好ましい圧力は、200〜550kg/cmである。   Roll press processing is performed using a metal roll, an elastic roll, a heating roll, etc., for example. When performing the pressing, either a stereotaxic press or a constant pressure press may be performed. The pressure at the time of pressurization is preferably 100 to 700 kg / cm as a linear pressure from the viewpoint of the homogeneity of the porous membrane (porous separator) and mechanical damage prevention, and the particularly preferable pressure is 200 to 550 kg. / Cm.

多孔質セパレーターを圧延する一対のプレスロールの間隙は、集電体厚さ以上、且つ、集電体厚さと電極活物質層、多孔質膜(多孔質セパレーター)の厚さとの和よりも小さい距離に調節することが好ましい。   The gap between the pair of press rolls for rolling the porous separator is equal to or greater than the current collector thickness and smaller than the sum of the current collector thickness and the thickness of the electrode active material layer and the porous membrane (porous separator). It is preferable to adjust to.

多孔質セパレーターは、一回のプレスで所定の厚さにしてもよく、均質性を向上させる目的で数回に分けてプレスしてもよい。また、ロールの温度は、特に限定されるものではなく、室温から200℃までの温度に加温して使用される。プレス速度としては、0.1〜50m/分が好ましい。   The porous separator may have a predetermined thickness by a single press, or may be pressed in several times for the purpose of improving homogeneity. Moreover, the temperature of a roll is not specifically limited, It heats and uses it to the temperature from room temperature to 200 degreeC. The pressing speed is preferably 0.1 to 50 m / min.

本発明においては、上記の多孔質セパレーターの形成と、活物質層の形成とを同時に行なってもよい。例えば、所謂重層塗布により塗布膜を形成し、乾燥することにより多孔質セパレーターと活物質層とを同時に形成することができ、本発明においては好ましい態様である。   In the present invention, the porous separator and the active material layer may be formed at the same time. For example, a porous separator and an active material layer can be formed simultaneously by forming a coating film by so-called multilayer coating and drying, which is a preferred embodiment in the present invention.

(無機微粒子)
無機微粒子としては、酸化物〔例えば、LiO、BeO、B、NaO、MgO、Al、SiO、P、CaO、Cr、Fe、ZnO、ZrO及びTiO等〕、ゼオライト〔M2/nO・Al・xSiO・yHO(式中、MはNa、K、Ca及びBa等の金属原子、nは金属陽イオンMn+の電荷に相当する数、x及びyはSiO及びHOのモル数であり2≦x≦10、2≦y≦)〕、窒化物〔例えば、BN、AlN、Si及びBa等〕、炭化ケイ素(SiC)、ジルコン(ZrSiO)、炭酸塩〔例えば、MgCO及びCaCO等〕、硫酸塩〔例えば、CaSO及びBaSO等〕及びこれらの複合体〔例えば、磁器の一種である、ステアタイト(MgO・SiO)、フォルステライト(2MgO・SiO)及び、コージェライト(2MgO・2Al・5SiO)〕が挙げられる。
(Inorganic fine particles)
Examples of the inorganic fine particles include oxides [for example, Li 2 O, BeO, B 2 O 3 , Na 2 O, MgO, Al 2 O 3 , SiO 2 , P 2 O 5 , CaO, Cr 2 O 3 , Fe 2 O]. 3, ZnO, ZrO 2 and TiO 2, etc.], zeolite [M 2 / n O · Al 2 O 3 · xSiO 2 · yH 2 O ( wherein, M is Na, K, metal atom such as Ca and Ba, n Is the number corresponding to the charge of the metal cation M n + , x and y are the number of moles of SiO 2 and H 2 O and 2 ≦ x ≦ 10, 2 ≦ y ≦)], nitrides (eg BN, AlN, Si 3 N 4 and Ba 3 N 2 etc.], silicon carbide (SiC), zircon (ZrSiO 4 ), carbonates [eg MgCO 3 and CaCO 3 etc.], sulfates [eg CaSO 4 and BaSO 4 etc.] and These composites [for example, a kind of porcelain , Steatite (MgO · SiO 2 ), forsterite (2MgO · SiO 2 ), and cordierite (2MgO · 2Al 2 O 3 · 5SiO 2 )].

一般に、無機微粒子としては硬度の高いものを用いるのが好ましい。そのような粒子を用いると活物質層の体積が膨脹するなどしてセパレーターに圧力が加わっても粒子が変形しないためセパレーターの空隙が潰されるといった不利がない。そのため電解質が存在できる部分が常に確保されるためイオン伝導性が低下することがなく、電池の耐熱性が向上する。   In general, it is preferable to use inorganic particles having high hardness. When such particles are used, the volume of the active material layer expands and the particles are not deformed even when pressure is applied to the separator. Therefore, a portion where the electrolyte can exist is always ensured, so that the ion conductivity is not lowered and the heat resistance of the battery is improved.

上記無機微粒子の粒径としては、平均粒径が5nm〜100μmであることが好ましく、5nm〜10μmであることがより好ましく、5nm〜1μmであることが更に好ましい。   The average particle size of the inorganic fine particles is preferably 5 nm to 100 μm, more preferably 5 nm to 10 μm, still more preferably 5 nm to 1 μm.

(有機溶剤に可溶なポリイミド樹脂)
本発明の多孔質セパレーターは、無機微粒子と無機微粒子同士を結合する、有機溶剤可溶なポリイミド樹脂を含むものである。
(Polyimide resin soluble in organic solvents)
The porous separator of the present invention includes an organic solvent-soluble polyimide resin that binds inorganic fine particles to each other.

有機溶剤可溶なポリイミド樹脂の好ましい具体例としては、特開2003−119285号公報及び、特開2006−2163号公報に記載されているテトラカルボン酸無水物とジアミンを脱水縮合して得られるブロック共重合ポリイミド樹脂が挙げられる。   Preferable specific examples of the organic resin-soluble polyimide resin include blocks obtained by dehydration condensation of tetracarboxylic acid anhydride and diamine described in JP-A No. 2003-119285 and JP-A No. 2006-2163. Examples include copolymerized polyimide resins.

本発明に用いられるポリイミド樹脂は有機溶剤に可溶で、本発明のセパレーターは塗布により形成されることを特徴とする。該有機溶剤としては、常温、常圧下で沸点が30℃以上270℃以下であることが好ましい。   The polyimide resin used in the present invention is soluble in an organic solvent, and the separator of the present invention is formed by coating. The organic solvent preferably has a boiling point of 30 ° C. or higher and 270 ° C. or lower at normal temperature and normal pressure.

有機溶剤の好ましい具体例としては、メチルエチルケトン、メチルプロピルケトン、メチルイソプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、メチルn−ヘキシルケトン、ジエチルケトン、ジイソプロピルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン、アセチルアセトン、ジアセトンアルコール、シクロヘキセン−1−オン、テトラヒドロフラン、テトラヒドロピラン、アニソール、フェネトール、N−メチルピロリドン(NMP)、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド等が挙げられる。   Preferable specific examples of the organic solvent include methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl butyl ketone, methyl isobutyl ketone, methyl n-hexyl ketone, diethyl ketone, diisopropyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, and methylcyclohexanone. , Acetylacetone, diacetone alcohol, cyclohexen-1-one, tetrahydrofuran, tetrahydropyran, anisole, phenetole, N-methylpyrrolidone (NMP), N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide and the like. .

本発明のポリイミド樹脂は有機溶剤に10質量%以上溶解することが好ましく、40質量%以上溶解することが特に好ましい。   The polyimide resin of the present invention is preferably dissolved in an organic solvent in an amount of 10% by mass or more, and particularly preferably 40% by mass or more.

「テトラカルボン酸無水物」
上記テトラカルボン酸無水物の実例としては、3,3′,4,4′−ビフェニルテトラカルボン酸ジ無水物、3,3′,4,4′−ベンゾフェノンテトラカルボン酸ジ無水物、3,3′,4,4′−ビフェニルエーテルテトラカルボン酸ジ無水物、3,3′,4,4′−ジフェニルスルホンテトラカルボン酸ジ無水物、ビシクロ(2,2,2)−オクト−7−エン−2,3,5,6−テトラカルボン酸ジ無水物、1,2,4,5−シクロヘキサンテトラカルボン酸ジ無水物、2,2−ビス(3,4−ジカルボンキシフェニル)ヘキサフルオロプロパンジ無水物、ピロメリット酸ジ無水物、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物があげられ、これらを単独または2種類以上組み合わせてもよい。
"Tetracarboxylic anhydride"
Examples of the tetracarboxylic acid anhydride include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyl ether tetracarboxylic dianhydride, 3,3', 4,4'-diphenylsulfone tetracarboxylic dianhydride, bicyclo (2,2,2) -oct-7-ene- 2,3,5,6-tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxylicoxyphenyl) hexafluoropropane dianhydride , Pyromellitic dianhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, and these may be used alone or in two kinds It may be combined above.

「ジアミン」
上記ジアミンの実例としては、シリコーンジアミン、ビス(3−アミノプロピル)エーテルエタン、N,N−ビス(3−アミノプロピル)エーテル、1,4−ビス(3−アミノプロピル)ピペラジン、イソホロンジアミン、1,3′−ビス(アミノメチル)シクロヘキサン、3,3′−ジメチル−4,4′−ジアミノジシクロヘキシルメタン、4,4′−メチレンビス(シクロヘキシルアミン)、4,4′−(又は、3,4′−、3,3′−、2,4′−)ジアミノ−ビフェニルエーテル、4,4′−(又は3,4′−、3,3′−)ジアミノ−ジフェニルメタン、4,4′−(又は、3,4′−、3,3′−)ジアミノ−ジフェニルスルホン、4,4′−(又は、3,4′−、3,3′−)ジアミノ−ジフェニルサルファイド、2,4−(又は2,5−)ジアミノトルエン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、ビス〔4−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(3−アミノフェノキシ)フェニル〕スルホン、4,4′−ビス(4−アミノフェノキシ)ビフェニル、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4′−ジアミノジフェニルスルフィド、3,3′−ジアミノ−4,4′−ジヒドロキシビフェニルスルホンがあげられ、これらを単独または2種類以上組み合わせてもよい。
"Diamine"
Examples of the diamine include silicone diamine, bis (3-aminopropyl) ether ethane, N, N-bis (3-aminopropyl) ether, 1,4-bis (3-aminopropyl) piperazine, isophorone diamine, 1 , 3'-bis (aminomethyl) cyclohexane, 3,3'-dimethyl-4,4'-diaminodicyclohexylmethane, 4,4'-methylenebis (cyclohexylamine), 4,4'- (or 3,4 ' -, 3,3'-, 2,4 '-) diamino-biphenyl ether, 4,4'-(or 3,4'-, 3,3 '-) diamino-diphenylmethane, 4,4'-(or 3,4'-, 3,3 '-) diamino-diphenylsulfone, 4,4'-(or 3,4'-, 3,3 '-) diamino-diphenyl sulfide, 2,4- ( 2,5-) diaminotoluene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl ] Propane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone 4,4'-bis (4-aminophenoxy) biphenyl, 1,4-bis (4-aminophenoxy) benzene, 4,4'-diaminodiphenyl sulfide, 3,3'-diamino-4,4'-dihydroxy Biphenyl sulfone is mentioned, and these may be used alone or in combination of two or more.

「製造方法」
本発明に好ましく用いられるブロック共重合ポリイミド樹脂は、酸触媒の存在下に上述のテトラカルボン酸ジ無水物とジアミンをケトン及び/又はエーテル溶媒中で160℃〜200℃加熱し、ポリイミドのオリゴマーを作り、ついでテトラカルボン酸ジ無水物及び/またはジアミンを全テトラカルボン酸ジ無水物と全ジアミンのモル比が0.95〜1.05になるように加え、逐次反応で3成分以上のブロック共重合ポリイミドを合成する方法で製造されることが好ましい。ブッロク共重合ポリイミドの重量平均分子量は10,000〜200,000であることが好ましい(ゲルパーミエーションクロマトグラフィ法により測定し、標準ポリスチレンに換算)。
"Production method"
The block copolymerized polyimide resin preferably used in the present invention is obtained by heating the above tetracarboxylic dianhydride and diamine in a ketone and / or ether solvent in the presence of an acid catalyst at 160 ° C. to 200 ° C. Next, tetracarboxylic dianhydride and / or diamine is added so that the molar ratio of total tetracarboxylic dianhydride and total diamine is 0.95 to 1.05. It is preferable to manufacture by the method of synthesize | combining a polymerization polyimide. The weight-average molecular weight of the block copolymerized polyimide is preferably 10,000 to 200,000 (measured by gel permeation chromatography and converted to standard polystyrene).

次に本発明で用いられる特に好ましい有機溶剤可溶なポリイミド樹脂の具体例を列挙するが、本発明はこれらに限定されるものではない。   Next, specific examples of particularly preferred organic solvent-soluble polyimide resins used in the present invention are listed, but the present invention is not limited to these.

「具体例」
BAPP:特開2003−119285公報実施例1に記載のポリイミド樹脂
2BPDA+Si:同公報実施例2に記載のポリイミド樹脂
BCD+2イソホロンジアミン:同公報実施例3に記載のポリイミド樹脂
BPDA+0.5Si+0.5m−TPE+m−DADE:同公報実施例4に記載のポリイミド樹脂
H−PMDA+2m−BAPS:同公報実施例5に記載のポリイミド樹脂
(リチウムイオン二次電池)
本発明で好ましく用いられるリチウムイオン二次電池は正極活物質を有する正極、負極活物質を有する負極、非水系電解質、及び本発明の多孔質セパレーターを含有することを特徴とする。
"Concrete example"
BAPP: Polyimide resin described in Example 1 of JP-A-2003-119285 2BPDA + Si: Polyimide resin described in Example 2 of the same publication BCD + 2 isophoronediamine: Polyimide resin described in Example 3 of the same publication BPDA + 0.5Si + 0.5m-TPE + m− DADE: polyimide resin described in Example 4 of the same publication H-PMDA + 2m-BAPS: polyimide resin described in Example 5 of the same publication (lithium ion secondary battery)
The lithium ion secondary battery preferably used in the present invention includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, a non-aqueous electrolyte, and the porous separator of the present invention.

(正極及び負極)
本発明で好ましく用いられる正極は、集電体上に正極活物質を有し、負極は、集電体上に負極活物質を有する。
(Positive electrode and negative electrode)
The positive electrode preferably used in the present invention has a positive electrode active material on the current collector, and the negative electrode has a negative electrode active material on the current collector.

「集電体」
本発明で好ましく用いられる集電体としては、二次電池において化学的に安定な電子伝導体が用いられる。正極に用いることのできる集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンなどの金属板などの他に、アルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させた含有または被覆させた合金を好ましく用いることができる。その中でも、アルミニウム、およびアルミニウム合金がより好ましく用いることができる。
"Current collector"
As the current collector preferably used in the present invention, a chemically stable electron conductor in the secondary battery is used. Current collectors that can be used for the positive electrode include aluminum, stainless steel, nickel, titanium, and other metal plates, as well as aluminum or stainless steel surfaces treated with carbon, nickel, titanium, or silver. The alloy made into can be used preferably. Among these, aluminum and aluminum alloys can be used more preferably.

負極に用いられる集電体としては、銅、ステンレス鋼、ニッケル、チタンが好ましく、銅あるいは銅合金がより好ましい。   The current collector used for the negative electrode is preferably copper, stainless steel, nickel, or titanium, and more preferably copper or a copper alloy.

集電体の形状としては、通常フィルムシート状のものが使用されるが、多孔質体、発泡体、繊維群の成形体なども用いることができる。前記集電体の厚みとしては、特に限定されないが、1〜500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。   As the shape of the current collector, a film sheet is usually used, but a porous body, a foam, a molded body of a fiber group, and the like can also be used. Although it does not specifically limit as thickness of the said electrical power collector, 1-500 micrometers is preferable. Moreover, it is also preferable that the current collector surface is roughened by surface treatment.

(正極活物質)
正極活物質としては、無機系活物質、有機系活物質又は両者の複合体のいずれも好ましく用いることができる。無機系活物質、又は無機系活物質と有機系活物質の複合体を用いることで、電池のエネルギー密度が大きくなるため、特に好ましく用いることができる。
(Positive electrode active material)
As the positive electrode active material, any of an inorganic active material, an organic active material, or a composite of both can be preferably used. Since the energy density of the battery is increased by using an inorganic active material or a composite of an inorganic active material and an organic active material, it can be particularly preferably used.

好ましく用いることの出来る無機系活物質としては、金属酸化物、複酸化物、リン酸物、ケイ酸物、ホウ酸物が挙げられる。   Examples of inorganic active materials that can be preferably used include metal oxides, double oxides, phosphates, silicates, and borates.

正極活物質として用いることのできる金属酸化物、複酸化物としては、Li0.3MnO、LiMn12、V5、LiCoO、LiMn、LiNiO、LiFePO、LiCo1/3Ni1/3Mn1/3、Li1.2(Fe0.5Mn0.50.8、Li1.2(Fe0.4Mn0.4Ti0.20.8、Li1+x(Ni0.5Mn0.51−x、LiNi0.5Mn1.5、LiMnO、Li0.76Mn0.51Ti0.49、LiNi0.8Co0.15Al0.05、Feなどが挙げられる。これらの化学式中、xは0〜1の範囲である。 As metal oxides and double oxides that can be used as the positive electrode active material, Li 0.3 MnO 2 , Li 4 Mn 5 O 12 , V 2 O 5, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiFePO 4 LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1.2 (Fe 0.5 Mn 0.5 ) 0.8 O 2 , Li 1.2 (Fe 0.4 Mn 0.4 Ti 0.2 ) 0.8 O 2 , Li 1 + x (Ni 0.5 Mn 0.5 ) 1-x O 2 , LiNi 0.5 Mn 1.5 O 4 , Li 2 MnO 3 , Li 0.76 Mn 0 .5 1Ti 0.49 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , Fe 2 O 3 and the like. In these chemical formulas, x is in the range of 0-1.

正極活物質として用いることのできるリン酸物、ケイ酸物、ホウ酸物としては、LiFePO、LiCoPO、LiMnPO、LiMPOF(M=Fe,Mn)、LiMn0.875Fe0.125PO、LiFeSiO、Li2−xMSi1−x(M=Fe,Mn)、LiMBO(M=Fe,Mn)などがあげられる。なお、これらの化学式中、xは0〜1の範囲である。さらに、FeF、LiFeF、LiTiFなどの金属フッ化物、LiFeS、TiS、MoS、FeS等の金属硫化物、およびこれらの化合物とリチウムの複合酸化物も正極活物質として用いることができる。 Examples of phosphates, silicates, and borates that can be used as the positive electrode active material include LiFePO 4 , LiCoPO 4 , LiMnPO 4 , Li 2 MPO 4 F (M = Fe, Mn), LiMn 0.875 Fe 0. .125 PO 4, Li 2 FeSiO 4 , Li 2-x MSi 1-x P x O 4 (M = Fe, Mn), LiMBO 3 (M = Fe, Mn) and the like. In these chemical formulas, x is in the range of 0-1. Furthermore, metal fluorides such as FeF 3 , Li 3 FeF 6 and Li 2 TiF 6 , metal sulfides such as Li 2 FeS 2 , TiS 2 , MoS 2 and FeS, and composite oxides of these compounds and lithium are also positive electrodes. It can be used as an active material.

有機系活物質としては、導電性高分子、硫黄系正極材料、有機ラジカル化合物が挙げられる。   Examples of the organic active material include conductive polymers, sulfur-based positive electrode materials, and organic radical compounds.

正極活物質として用いることのできる導電性高分子としては、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリパラフェニレンが挙げられる。有機ジスルフィド化合物、有機イオウ化合物DMcT(2,5−ジメルカプト−1,3,4−チアジアゾール)、ベンゾキノン化合物PDBM(ポリ2,5−ジヒドロキシ−1,4−ベンゾキノン−3,6−メチレン)、カーボンジスルフィド、活性硫黄等の硫黄系正極材料、有機ラジカル化合物等が用いられる。   Examples of the conductive polymer that can be used as the positive electrode active material include polyacetylene, polyaniline, polypyrrole, polythiophene, and polyparaphenylene. Organic disulfide compound, organic sulfur compound DMcT (2,5-dimercapto-1,3,4-thiadiazole), benzoquinone compound PDBM (poly 2,5-dihydroxy-1,4-benzoquinone-3,6-methylene), carbon disulfide Sulfur-based positive electrode materials such as active sulfur, organic radical compounds, and the like are used.

正極活物質の表面は、無機酸化物によって被覆されていることが電池の寿命を延ばす点で好ましい。無機酸化物を被覆する方法としては、正極活物質の表面にコーティングする方法が好ましく、コーティングする方法としては、ハイブリタイザーなどの表面改質装置を用いてコーティングする方法などが挙げられる。表面被覆に用いることのできる無機酸化物としては、酸化マグネシウム、酸化ケイ素、アルミナ、ジルコニア、酸化チタンの酸化物、チタン酸バリウム、チタン酸カルシウム、チタン酸鉛、γ−LiAlO、LiTiO等が挙げられ、特に酸化ケイ素によって被覆することが好ましい。 The surface of the positive electrode active material is preferably coated with an inorganic oxide from the viewpoint of extending the battery life. As a method of coating the inorganic oxide, a method of coating the surface of the positive electrode active material is preferable, and as a method of coating, a method of coating using a surface modifying apparatus such as a hybridizer can be mentioned. Examples of inorganic oxides that can be used for the surface coating include magnesium oxide, silicon oxide, alumina, zirconia, titanium oxide oxide, barium titanate, calcium titanate, lead titanate, γ-LiAlO 2 , LiTiO 3, and the like. In particular, it is preferable to coat with silicon oxide.

(負極活物質)
負極活物質は、特に制限は無く公知の負極活物質が利用できる。本発明の二次電池に好ましく用いることのできる負極活物質としては、黒鉛やスズ合金と結着剤の混合物、シリコン薄膜、リチウム箔が挙げられる。
(Negative electrode active material)
The negative electrode active material is not particularly limited, and a known negative electrode active material can be used. Examples of the negative electrode active material that can be preferably used in the secondary battery of the present invention include graphite, a mixture of a tin alloy and a binder, a silicon thin film, and a lithium foil.

黒鉛やスズ合金と結着剤の負極活物質は、黒鉛やスズ合金などの粉末とスチレンブタジエンゴムやポリフッ化ビニリデンなどの結着剤と混合したにペーストを乾燥させることにより得ることができる。シリコン薄膜の負極活物質は、集電体上にシリコン薄膜を物理蒸着(スパッタリング法や真空蒸着法など)することにより得ることができる。シリコン薄膜の負極活物質層の厚さに特に制限はないが、3〜5μm程度であることが好ましい。リチウム箔の負極活物質は、集電体に厚さ10〜30μmのリチウム箔を貼合させたものを用いることができる。高容量化が可能であり、電極合材を必須としないことから、シリコン系薄膜負極やリチウム金属負極からなる負極活物質を用いることが好ましい。   The negative electrode active material of graphite or tin alloy and a binder can be obtained by mixing a powder such as graphite or tin alloy with a binder such as styrene butadiene rubber or polyvinylidene fluoride and drying the paste. The negative electrode active material of a silicon thin film can be obtained by physical vapor deposition (such as sputtering or vacuum vapor deposition) of a silicon thin film on a current collector. Although there is no restriction | limiting in particular in the thickness of the negative electrode active material layer of a silicon thin film, It is preferable that it is about 3-5 micrometers. As the negative electrode active material of the lithium foil, a current collector obtained by bonding a lithium foil having a thickness of 10 to 30 μm can be used. It is preferable to use a negative electrode active material composed of a silicon-based thin film negative electrode or a lithium metal negative electrode because the capacity can be increased and an electrode mixture is not essential.

「活物質層添加剤」
活物質層は、上記正極活物質または負極活物質を含有するが、さらに導電剤および結着剤を含有することが好ましく、その他の材料として、フィラー、リチウム塩、非プロトン性有機溶媒等が添加されていても良い。
"Active material layer additive"
The active material layer contains the positive electrode active material or the negative electrode active material, but preferably further contains a conductive agent and a binder. Other materials include filler, lithium salt, aprotic organic solvent, etc. May be.

導電剤は、構成された二次電池において、化学変化を起こさない電子伝導性材料であれば、特に制限はない。本発明で好ましく用いることのできる導電剤としては、天然黒鉛、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維や金属粉、金属繊維あるいはポリフェニレン誘導体などから選ばれる1種の導電性材料、または2種以上の混合物があげられる。その中でも、黒鉛とアセチレンブラックの混合物を用いることが特に好ましい。   The conductive agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the configured secondary battery. As the conductive agent that can be preferably used in the present invention, one kind of conductive material selected from natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder, metal fiber, polyphenylene derivative, and the like is used. Or a mixture of two or more. Among these, it is particularly preferable to use a mixture of graphite and acetylene black.

導電剤の添加量としては、1〜50質量%が好ましく、2〜30質量%がより好ましい。カーボンや黒鉛の場合は、2〜15質量%が特に好ましい。   As addition amount of a electrically conductive agent, 1-50 mass% is preferable and 2-30 mass% is more preferable. In the case of carbon or graphite, 2 to 15% by mass is particularly preferable.

結着剤は、構成された二次電池において、化学変化を起こさない材料であれば特に制限はない。このような結着剤としては、多糖類、熱可塑性樹脂およびゴム弾性を有するポリマーなどが挙げられ例えば、でんぷん、カルボキシメチルセルロース、セルロース、ジアセチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリロニトリル、ポリアクリルアミド、ポリヒドロキシ(メタ)アクリレート、スチレン−マレイン酸共重合体等の水溶性ポリマー、ポリビニルクロリド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ビニリデンフロライド−テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチルメタアクリレート、2−エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル−アクリロニトリル共重合体、ビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョンがあげられる。   The binder is not particularly limited as long as it is a material that does not cause a chemical change in the constituted secondary battery. Examples of such a binder include polysaccharides, thermoplastic resins, and polymers having rubber elasticity.For example, starch, carboxymethyl cellulose, cellulose, diacetyl cellulose, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, sodium alginate, poly Water-soluble polymers such as acrylic acid, sodium polyacrylate, polyvinyl phenol, polyvinyl methyl ether, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylonitrile, polyacrylamide, polyhydroxy (meth) acrylate, styrene-maleic acid copolymer, polyvinyl chloride, Polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene furo (Meth) acrylic such as id-tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, polyvinyl acetal resin, methyl methacrylate, 2-ethylhexyl acrylate (Meth) acrylic acid ester copolymer containing acid ester, (meth) acrylic acid ester-acrylonitrile copolymer, polyvinyl ester copolymer containing vinyl ester such as vinyl acetate, styrene-butadiene copolymer, acrylonitrile -Butadiene copolymer, polybutadiene, neoprene rubber, fluoro rubber, polyethylene oxide, polyester polyurethane resin, polyether polyurethane resin, polycarbonate polyurethane Down resins, polyester resins, phenolic resins, emulsion (latex) or a suspension such as an epoxy resin.

これらの結着剤の中でも、ポリアクリル酸エステル系のラテックス、カルボキシメチルセルロース、ポリテトラフロロエチレン、ポリフッ化ビニリデンがより好ましい。本発明で用いることのできる結着剤は、一種単独または二種以上を混合して用いることができる。結着剤の添加量が少ないと、電極合剤の保持力・凝集力が弱くなる。多すぎると電極体積が増加し、電極単位体積あるいは単位質量あたりの容量が減少する。このような理由で、結着剤の添加量は1〜30質量%が好ましく、2〜10質量%がより好ましい。   Among these binders, polyacrylate latex, carboxymethyl cellulose, polytetrafluoroethylene, and polyvinylidene fluoride are more preferable. The binder which can be used by this invention can be used individually by 1 type or in mixture of 2 or more types. When the amount of the binder added is small, the holding power and cohesive force of the electrode mixture are weakened. If the amount is too large, the electrode volume increases and the electrode unit volume or the capacity per unit mass decreases. For these reasons, the amount of the binder added is preferably 1 to 30% by mass, and more preferably 2 to 10% by mass.

フィラーは、本発明の二次電池において、化学変化を起こさない繊維状材料であれば、何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの繊維が用いられる。フィラーの添加量は特に限定されないが、0〜30質量%が好ましい。   Any filler can be used as long as it is a fibrous material that does not cause a chemical change in the secondary battery of the present invention. Usually, olefin polymers such as polypropylene and polyethylene, fibers such as glass and carbon are used. Although the addition amount of a filler is not specifically limited, 0-30 mass% is preferable.

「電極の作製方法」
本発明の二次電池は、シート型、角型、シリンダー型などいずれの形状にも適用でき、電極の形状も用いられる二次電池の形状に合わせて、最適な形状を選択することができる。
"Production method of electrode"
The secondary battery of the present invention can be applied to any shape such as a sheet type, a square type, and a cylinder type, and an optimal shape can be selected in accordance with the shape of the secondary battery used.

正極活物質からなる層および負極活物質からなる層は、集電体の上に設けられる。正極活物質層および負極活物質層は、集電体の片面に設けても、両面に設けても良く、両面に設けた電極を用いることがより好ましい。   The layer made of the positive electrode active material and the layer made of the negative electrode active material are provided on the current collector. The positive electrode active material layer and the negative electrode active material layer may be provided on one side or both sides of the current collector, and it is more preferable to use electrodes provided on both sides.

正極板に対する負極板の大きさの割合に特に制限はない。好ましい正極板の面積は、負極板の面積1に対し、0.9〜1.1が好ましく、0.95〜1.0が特に好ましい。   There is no restriction | limiting in particular in the ratio of the magnitude | size of the negative electrode plate with respect to a positive electrode plate. The area of the positive electrode plate is preferably 0.9 to 1.1, particularly preferably 0.95 to 1.0, with respect to the area 1 of the negative electrode plate.

電極は、活物質を含有する塗布液を集電体表面に塗布し、乾燥し、さらにプレスして、活物質層を形成することで得られる。   The electrode is obtained by applying a coating solution containing an active material to the surface of a current collector, drying, and pressing to form an active material layer.

塗布液としては、例えば、必要に応じ、上記導電助剤、バインダーおよびN−メチル−2−ピロリドン(NMP)、水、トルエンなどの分散媒を含むスラリー状の塗布液が用いられる。   As the coating solution, for example, a slurry-like coating solution containing a dispersion medium such as the above-mentioned conductive auxiliary agent, a binder, N-methyl-2-pyrrolidone (NMP), water, and toluene is used as necessary.

塗布方法としては、リバースロール法、ダイレクトロール法、ブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法およびスクイーズ法が挙げられる。その中でも、ブレード法、ナイフ法およびエクストルージョン法が好ましい。また、塗布速度は、0.1〜100m/分で行われることが好ましい。この際、塗布液の溶液物性、乾燥性に合わせて、上記塗布方法を選定することにより、良好な塗布層の表面状態を得ることができる。塗布液の塗布は、片面ずつ逐時でも、両面同時に行ってもよい。   Examples of the coating method include a reverse roll method, a direct roll method, a blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, a dip method, and a squeeze method. Of these, the blade method, knife method and extrusion method are preferred. Further, the coating speed is preferably 0.1 to 100 m / min. Under the present circumstances, the surface state of a favorable coating layer can be obtained by selecting the said coating method according to the solution physical property and drying property of a coating liquid. Application of the coating solution may be performed one side at a time or both sides simultaneously.

さらに、塗布液の塗布は、連続でも間欠でもストライプでもよい。活物質層の厚み、長さおよび巾は、電池の形状や大きさにより適宜決められる。好ましい活物質層の厚みは、乾燥後の片面膜厚が1〜2000μmの範囲にあることが好ましい。   Furthermore, the application of the coating solution may be continuous, intermittent or striped. The thickness, length and width of the active material layer are appropriately determined depending on the shape and size of the battery. The thickness of the active material layer is preferably such that the single-sided film thickness after drying is in the range of 1 to 2000 μm.

塗布により形成された活物質層の乾燥および脱水方法としては特に制限はなく、熱風、真空、赤外線、遠赤外線、電子線および低湿風を、単独あるいは組み合わせた方法を用いることできる。乾燥温度は80〜350℃が好ましく、100〜250℃がより好ましい。また、形成された活物質層は圧着して、密着性および活物質層の密度を高めることが好ましい。活物質層の圧着方法は、一般に採用されている方法を用いることができるが、特にロールプレス法が好ましい。プレス圧は特に限定されないが、20〜300MPaが好ましい。プレス速度としては、0.1〜50m/分が好ましく、プレス時の温度は室温〜200℃が好ましい。   The method for drying and dehydrating the active material layer formed by coating is not particularly limited, and a method in which hot air, vacuum, infrared rays, far infrared rays, electron beams and low-humidity air are used alone or in combination can be used. The drying temperature is preferably 80 to 350 ° C, more preferably 100 to 250 ° C. The formed active material layer is preferably pressure-bonded to increase the adhesion and the density of the active material layer. As a method for pressing the active material layer, a generally adopted method can be used, and a roll press method is particularly preferable. Although a press pressure is not specifically limited, 20-300 Mpa is preferable. The pressing speed is preferably 0.1 to 50 m / min, and the temperature during pressing is preferably room temperature to 200 ° C.

(非水系電解質)
本発明で好ましく用いられる非水系電解質とは、有機の媒質に溶けて、その溶液がイオン伝導性を示す物質をいう。
(Non-aqueous electrolyte)
The non-aqueous electrolyte preferably used in the present invention refers to a substance that dissolves in an organic medium and the solution exhibits ion conductivity.

本発明ではLiイオンを含む電解質塩を含有する。Liイオン以外のカチオンとしては周期律表I族又はII族の金属イオンを含むことが可能であり、ナトリウム塩、カリウム塩が特に好ましく用いられる。   In this invention, the electrolyte salt containing Li ion is contained. As cations other than Li ions, metal ions of Group I or II of the Periodic Table can be included, and sodium salts and potassium salts are particularly preferably used.

電解質塩のアニオンとしては、ハロゲン化物イオン(I、Cl、Br等)、SCN、BF 、PF 、ClO 、SbF 、(FSO、(CFSO、(CFCFSO、Ph、(C、(CFSO、CFCOO、CFSO 、CSO 等が挙げられる。これらのアニオンの中でも、SCN、BF 、PF 、ClO 、SbF 、(FSO、(CFSO、(CFCFSO、(CFSO、CFSO がより好ましい。 Examples of the anion of the electrolyte salt include halide ions (I , Cl , Br − and the like), SCN , BF 4 , PF 6 , ClO 4 , SbF 6 , (FSO 2 ) 2 N , ( CF 3 SO 2) 2 N - , (CF 3 CF 2 SO 2) 2 N -, Ph 4 B -, (C 2 H 4 O 2) 2 B -, (CF 3 SO 2) 3 C -, CF 3 COO , CF 3 SO 3 , C 6 F 5 SO 3 — and the like can be mentioned. Among these anions, SCN , BF 4 , PF 6 , ClO 4 , SbF 6 , (FSO 2 ) 2 N , (CF 3 SO 2 ) 2 N , (CF 3 CF 2 SO 2) ) 2 N , (CF 3 SO 2 ) 3 C , and CF 3 SO 3 are more preferable.

本発明で好ましく用いることのできる電解質塩としては、LiCFSO、LiPF、LiClO、LiI、LiBF、LiCFCO、LiSCN、LiN(SOCF、LiN(SOF)、NaI、NaCFSO、NaClO、NaBF、NaAsF、KCFSO、KSCN、KPF、KClO、KAsFなどが挙げられる。更に好ましくはLiCFSO、LiPF、LiPF(C(2k+1)(6−n)(n=1〜5、k=1〜8の整数)、LiClO、LiI、LiBF、LiCFCO、LiSCN、LiN(SOCFおよびLiN(SOF)等のリチウム塩が挙げられ、最も好ましくは、LiPF、LiBF、LiPF(C(2k+1)(6−n)、LiN(SOCFおよびLiN(SOから選ばれるリチウム塩である。これらの電解質塩は一種または二種以上を混合してもよいが、少なくとも一種は、上述したイオン液体と同じアニオンを用いるのが好ましい。 Examples of the electrolyte salt that can be preferably used in the present invention include LiCF 3 SO 3 , LiPF 6 , LiClO 4 , LiI, LiBF 4 , LiCF 3 CO 2 , LiSCN, LiN (SO 2 CF 3 ) 2 , LiN (SO 2 F ) 2 , NaI, NaCF 3 SO 3 , NaClO 4 , NaBF 4 , NaAsF 6 , KCF 3 SO 3 , KSCN, KPF 6 , KClO 4 , KAsF 6 and the like. More preferably, LiCF 3 SO 3 , LiPF 6 , LiPF n (C k F (2k + 1) ) (6-n) (n = 1 to 5, k = 1 to 8), LiClO 4 , LiI, LiBF 4 , Examples include lithium salts such as LiCF 3 CO 2 , LiSCN, LiN (SO 2 CF 3 ) 2 and LiN (SO 2 F) 2 , most preferably LiPF 6 , LiBF 4 , LiPF n (C k F (2k + 1) ) (6-n) , a lithium salt selected from LiN (SO 2 CF 3 ) 2 and LiN (SO 2 C 2 F 5 ) 2 . These electrolyte salts may be used alone or in combination of two or more, but at least one of them preferably uses the same anion as the ionic liquid described above.

「有機の媒質」
本発明で用いられる有機の媒質は、セパレーターを変形・溶解せず、電解質塩を溶解し、かつ電解質となりうる媒質であれば特に制限はない。
"Organic medium"
The organic medium used in the present invention is not particularly limited as long as it is a medium that does not deform / dissolve the separator, dissolves the electrolyte salt, and can be an electrolyte.

具体的には、カーボネート化合物、複素環化合物、エーテル化合物、鎖状エーテル類、ニトリル化合物、エステル類などが挙げられる。   Specific examples include carbonate compounds, heterocyclic compounds, ether compounds, chain ethers, nitrile compounds, and esters.

カーボネート化合物としては、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートが挙げられる。複素環化合物としては、3−メチル−2−オキサゾリジノンなどが挙げられる。エーテル化合物としては、ジオキサン、ジエチルエーテルが挙げられる。鎖状エーテル類としては、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテルが挙げられる。ニトリル化合物としては、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルが挙げられる。エステル類としては、カルボン酸エステル、リン酸エステル、ホスホン酸エステルが挙げられる。また、これらの有機の媒質は単独で用いても2種以上を併用してもよい。   Examples of the carbonate compound include ethylene carbonate, propylene carbonate, vinylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate. Examples of the heterocyclic compound include 3-methyl-2-oxazolidinone. Examples of the ether compound include dioxane and diethyl ether. Examples of chain ethers include ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, and polypropylene glycol dialkyl ether. Examples of nitrile compounds include acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, and benzonitrile. Esters include carboxylic acid esters, phosphoric acid esters, and phosphonic acid esters. These organic media may be used alone or in combination of two or more.

これらの有機の媒質の中でも、エチレンカーボネート、プロピレンカーボネート、3−メチル−2−オキサゾリジノン、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルが特に好しく用いることができる。   Among these organic media, ethylene carbonate, propylene carbonate, 3-methyl-2-oxazolidinone, acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, and benzonitrile can be particularly preferably used.

有機の媒質としては、耐揮発性による耐熱性向上の観点から、常圧(1気圧)における沸点が200℃以上のものが好ましく、250℃以上のものがより好ましく、270℃以上のものが更に好ましい。   The organic medium preferably has a boiling point of 200 ° C. or higher, more preferably 250 ° C. or higher, more preferably 270 ° C. or higher, from the viewpoint of improving heat resistance due to volatility. preferable.

本発明では、より安全性を高める目的でイオン液体を用いることができる。用いることのできるイオン液体は、塩化ナトリウムなどの通常の塩に比べ、非常に低い融点を有しているものであれば特に制限はない。本発明で用いられるイオン液体の融点は、80℃以下であることが好ましく、より好ましくは60℃以下、さらに好ましくは30℃以下のいわゆる常温溶融塩である。本発明で好ましく用いることのできるイオン液体としては、アルキルアンモニウム塩、ピロリジニウム塩、ピペリジニウム塩、イミダゾリウム塩、ピリジニウム塩、スルホニウム塩、ホスホニウム塩などが挙げられる。特に好ましくは、下記一般式(1)で表されるイミダゾリウム塩が挙げられる。   In the present invention, an ionic liquid can be used for the purpose of improving safety. The ionic liquid that can be used is not particularly limited as long as it has a very low melting point compared to a normal salt such as sodium chloride. The melting point of the ionic liquid used in the present invention is preferably 80 ° C. or less, more preferably 60 ° C. or less, and still more preferably 30 ° C. or less, so-called room temperature molten salt. Examples of the ionic liquid that can be preferably used in the present invention include alkyl ammonium salts, pyrrolidinium salts, piperidinium salts, imidazolium salts, pyridinium salts, sulfonium salts, and phosphonium salts. Particularly preferred is an imidazolium salt represented by the following general formula (1).

Figure 2012033366
Figure 2012033366

上記一般式(1)中、RおよびRは、それぞれ独立に、置換基を有していても良い炭素数1〜20の炭化水素基を示し、R、RおよびRは、それぞれ独立に、水酸基、アミノ基、ニトロ基、シアノ基、カルボキシル基、エーテル基、もしくはアルデヒド基を有していてもよい炭素数1〜10の炭化水素基又は水素原子を示し、Xは一価のアニオンを表し、具体的には塩素、臭素、ヨウ素、BF 、BF 、PF ,NO 、CFCO 、CFSO 、(FSO、(CFSO、(CFSO、(CSO、AlCl 、AlCl などが挙げられる。 In the general formula (1), R 1 and R 3 each independently represent an optionally substituted hydrocarbon group having 1 to 20 carbon atoms, and R 2 , R 4 and R 5 are Each independently represents a hydroxyl group, amino group, nitro group, cyano group, carboxyl group, ether group, or hydrocarbon group having 1 to 10 carbon atoms which may have an aldehyde group or a hydrogen atom, and X is monovalent Specifically, chlorine, bromine, iodine, BF 4 , BF 3 C 2 F 5 , PF 6 , NO 3 , CF 3 CO 2 , CF 3 SO 3 , (FSO 2) ) 2 N , (CF 3 SO 2 ) 2 N , (CF 3 SO 2 ) 3 C , (C 2 F 5 SO 2 ) 2 N , AlCl 4 , Al 2 Cl 7 − and the like. .

一般式(1)で示される化合物の具体例としては、例えば、1−イソプロピル−2,3−ジメチルイミダゾリウムビストリフルオロメタンスルホニル塩、1−エチル−2,3−ジメチルイミダゾリウムビストリフルオロメタンスルホニル塩、1−ブチル−2,3−ジメチルイミダゾリウムビストリフルオロメタンスルホニル塩、1−ヘキシル−2,3−ジメチルイミダゾリウムビストリフルオロメタンスルホニル塩、1−オクチル−2,3−ジメチルイミダゾリウムビストリフルオロメタンスルホニル塩、および、上記ビストリフルオロメタンスルホニルアニオン部分をそれぞれビスフルオロスルホニルアニオンにした塩等が挙げられ、中でもイオン導電率の点で1−エチル−2,3−ジメチルイミダゾリウムビスフルオロスルホニル塩が好ましく用いることができる。   Specific examples of the compound represented by the general formula (1) include, for example, 1-isopropyl-2,3-dimethylimidazolium bistrifluoromethanesulfonyl salt, 1-ethyl-2,3-dimethylimidazolium bistrifluoromethanesulfonyl salt. 1-butyl-2,3-dimethylimidazolium bistrifluoromethanesulfonyl salt, 1-hexyl-2,3-dimethylimidazolium bistrifluoromethanesulfonyl salt, 1-octyl-2,3-dimethylimidazolium bistrifluoromethanesulfonyl Salts, and salts having the bistrifluoromethanesulfonyl anion moiety as bisfluorosulfonyl anions, among which 1-ethyl-2,3-dimethylimidazolium bisfluorosulfonyl salt is preferred in terms of ionic conductivity. It can be used properly.

本発明において、電解液中の支持電解質塩の存在量は、5〜40質量%とすることが好ましく、特に、10〜30質量%の範囲になるように調整することが好ましい。   In the present invention, the amount of the supporting electrolyte salt in the electrolytic solution is preferably 5 to 40% by mass, and particularly preferably adjusted to be in the range of 10 to 30% by mass.

[リチウムイオン二次電池の製造方法]
本発明のリチウム得イオン二次電池は、本発明に係るセパレーターの一つの面に前記正極活物資層を有し、他の面に負極活物質層を有する積層体構造を有し、多孔質セパレーターは下述する支持電解質塩を含有する電解液を含浸する。積層体構造としては、単に一層積層された形態に限定されるものでなく、この積層体構造を複数有する多層積層体構造、集電体の両面に積層したものを組み合わせた形態、さらにこれらを巻回した形態が挙げられる。本発明の二次電池の用途は、特に限定されない。一例としては、電子機器としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどに用いることができる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
[Method for producing lithium ion secondary battery]
The lithium-ion secondary battery of the present invention has a laminate structure having the positive electrode active material layer on one surface of the separator according to the present invention and the negative electrode active material layer on the other surface, and is a porous separator. Impregnates an electrolytic solution containing a supporting electrolyte salt described below. The laminated structure is not limited to a single layered form, but a multi-layered structure having a plurality of laminated structures, a form in which layers stacked on both sides of a current collector are combined, and these are wound. A rotated form is mentioned. The application of the secondary battery of the present invention is not particularly limited. As an example, electronic devices include notebook computers, pen input computers, mobile computers, electronic book players, mobile phones, cordless phones, pagers, handy terminals, mobile faxes, mobile copy, mobile printers, headphone stereos, and video movies. , LCD TVs, handy cleaners, portable CDs, minidiscs, electric shavers, transceivers, electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, memory cards, and the like. Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.

以下、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によって、何ら限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
(セパレーター作製用分散液1の作製:特許第3253632号公報の実施例1)
〔使用材料〕
無機微粒子:平均粒径0.5μmのα−Al(粒子A)
樹脂バインダー:フッ素ゴム〔商品名ミラフロン、旭化成工業(株)製〕
溶媒:酢酸エチルとエチルセロソルブの体積比1:3の混合溶媒
上記のミラフロンを酢酸エチルとエチルセロソルブの混合溶媒に溶解させて4.3質量%のミラフロン溶液を調整し、このミラフロン溶液にα−Al粉体を混合して固形分率45.3質量%のスラリーを得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
(Preparation of Separator Preparation Dispersion 1: Example 1 of Japanese Patent No. 3253632)
[Materials used]
Inorganic fine particles: α-Al 2 O 2 (particle A) having an average particle size of 0.5 μm
Resin binder: Fluoro rubber [trade name Miracron, manufactured by Asahi Kasei Corporation]
Solvent: Mixed solvent of ethyl acetate and ethyl cellosolve in a volume ratio of 1: 3 The above-mentioned milaflon was dissolved in a mixed solvent of ethyl acetate and ethyl cellosolve to prepare a 4.3 mass% milaflon solution, and α- Al 2 O 3 powder was mixed to obtain a slurry having a solid content of 45.3% by mass.

(セパレーター作製用分散液2の作製:特許第3253632号公報の実施例2)
〔使用材料〕
無機微粒子:平均粒径1.0μmのα−Al(粒子B)
樹脂バインダー:ポリフッ化ビニリデン(PVDA)KF#1100〔呉羽化学工業(株)製〕
溶媒:1−メチル−2−ピロリドン(NMP)
上記のα−Al粉体とPVDA粉体を質量比100:5で粉体状態のまま混合し、それにNMPを加えてさらに混合し、固形分率56.8質量%のスラリーを得た。
(Preparation of Separator Preparation Dispersion 2: Example 2 of Japanese Patent No. 3253632)
[Materials used]
Inorganic fine particles: α-Al 2 O 3 (particles B) having an average particle size of 1.0 μm
Resin binder: Polyvinylidene fluoride (PVDA) KF # 1100 [manufactured by Kureha Chemical Industry Co., Ltd.]
Solvent: 1-methyl-2-pyrrolidone (NMP)
The above α-Al 2 O 3 powder and PVDA powder are mixed at a mass ratio of 100: 5 while being in a powder state, and NMP is added thereto and further mixed to obtain a slurry having a solid content of 56.8% by mass. It was.

(セパレーター作製用分散液3の作製:特許第3253632号公報の実施例4)
〔使用材料〕
無機微粒子:SiO/Al=29の分子数比のゼオライト(粒子C)
樹脂バインダー:ポリフッ化ビニリデン(PVDA)KF#1100〔呉羽化学工業(株)製〕
溶媒:1−メチル−2−ピロリドン(NMP)
上記のゼオライト粉体とPVDA粉体を質量比100:5で粉体状態のまま混合し、それにNMPを加えてさらに混合し、固形分率55.0質量%のスラリーを得た。
(Preparation of separator preparation dispersion 3: Example 4 of Japanese Patent No. 3253632)
[Materials used]
Inorganic fine particles: Zeolite having a molecular number ratio of SiO 2 / Al 2 O 3 = 29 (particle C)
Resin binder: Polyvinylidene fluoride (PVDA) KF # 1100 [manufactured by Kureha Chemical Industry Co., Ltd.]
Solvent: 1-methyl-2-pyrrolidone (NMP)
The above zeolite powder and PVDA powder were mixed at a mass ratio of 100: 5 while being in a powder state, and NMP was added thereto and further mixed to obtain a slurry having a solid content of 55.0% by mass.

(セパレーター作製用分散液4〜13の作製:本発明)
〔使用材料〕
無機微粒子:平均粒径1.0μmのα−Al(粒子A)
樹脂バインダー:BAPP
溶媒:1−メチル−2−ピロリドン(NMP)
上記のα−Al粉体とBAPP粉体を質量比100:5で粉体状態のまま混合し、それにNMPを加えてさらに混合し、固形分率56.8質量%のスラリーを得た。これをセパレーター作製用分散液4とする。
(Preparation of separator preparation dispersions 4 to 13: the present invention)
[Materials used]
Inorganic fine particles: α-Al 2 O 3 (particle A) having an average particle size of 1.0 μm
Resin binder: BAPP
Solvent: 1-methyl-2-pyrrolidone (NMP)
The above α-Al 2 O 3 powder and BAPP powder are mixed at a mass ratio of 100: 5 while being in a powder state, and NMP is added thereto and further mixed to obtain a slurry having a solid content of 56.8% by mass. It was. This is designated as a separator-preparing dispersion 4.

前記セパレーター作製用分散液4の作製に代えて、無機微粒子、樹脂バインダー、溶媒、及び固形分比を表1に記載したものに変更した以外は、前記分散液4と同様にして、分散液5〜13を作製した。尚、固形分率は塗布厚を調整するために変更したものである。   In place of the preparation of the separator-preparing dispersion 4, the dispersion 5 is the same as the dispersion 4 except that the inorganic fine particles, the resin binder, the solvent, and the solid content ratio are changed to those described in Table 1. ~ 13 were made. Note that the solid content is changed to adjust the coating thickness.

(電極の作製)
以下の方法に従って、正電極および負電極を作製した。
(Production of electrodes)
A positive electrode and a negative electrode were produced according to the following method.

(正電極の作製)
90部のリン酸鉄リチウム(LiFePO)と、6部のグラファイト粉末を混合した粉末に、4部のポリフッ化ビニリデン(PVDA)KF#1100〔呉羽化学工業(株)製〕と1−メチル−2−ピロリドンとを加え、スラリーを調製した。このスラリーを、厚さ20μmのアルミニウム箔の両面に、乾燥後の厚みが100μmの厚さとなるように塗布した。この正電極前駆体を、130℃で5分間温風乾燥後、ロールプレスすることにより正電極を作製した。
(Preparation of positive electrode)
To a powder obtained by mixing 90 parts of lithium iron phosphate (LiFePO 4 ) and 6 parts of graphite powder, 4 parts of polyvinylidene fluoride (PVDA) KF # 1100 (manufactured by Kureha Chemical Industry Co., Ltd.) and 1-methyl- 2-Pyrrolidone was added to prepare a slurry. This slurry was applied to both surfaces of an aluminum foil having a thickness of 20 μm so that the thickness after drying was 100 μm. This positive electrode precursor was hot-air dried at 130 ° C. for 5 minutes and then roll-pressed to produce a positive electrode.

(負電極の作製)
96部のグラファイト、2部のスチレンブタジエン共重合体ラテックス、2部のカルボキシメチルセルロースおよび水を混合し、スラリーを調製した。このスラリーを厚さ15μmの銅箔の両面に乾燥後の厚みが100μmの厚さとなるように塗布した。この負電極前駆体を130℃で5分間温風乾燥後、ロールプレスすることにより負電極を作製した。
(Production of negative electrode)
A slurry was prepared by mixing 96 parts graphite, 2 parts styrene butadiene copolymer latex, 2 parts carboxymethylcellulose and water. This slurry was applied to both sides of a 15 μm thick copper foil so that the thickness after drying was 100 μm. The negative electrode precursor was hot-air dried at 130 ° C. for 5 minutes and then roll-pressed to produce a negative electrode.

(リチウムイオン二次電池セル1〜13の作製)
負電極上の両面にセパレーター作製用分散液1を乾燥後の厚みが20μmになるようにダイコータにて塗布した後に、130℃で温風乾燥し、多孔質膜(多孔質セパレーター)を形成し、負電極のセパレーター付き二次電池用電極を得た。
(Production of lithium ion secondary battery cells 1 to 13)
The separator preparation dispersion 1 was applied to both surfaces of the negative electrode with a die coater so that the thickness after drying was 20 μm, and then dried with warm air at 130 ° C. to form a porous film (porous separator). An electrode for a secondary battery with an electrode separator was obtained.

続いて、正電極、該負電極それぞれの未塗布部に電流端子(タブ)を超音波溶接した後に、正電極を該負電極上に重ね、巻回機にて巻回してから円筒缶に入れた。これを120℃で減圧乾燥後、酸素濃度10ppm以下、露点−60℃以下の乾燥空気で満たされたドライブース内で、この円筒缶にエチレンカーボネート(EC)とジエチルカーボネート(DEC)が体積比率3:7の混合溶媒にLiPFが1mol/Lの濃度で溶解された電解液を注入し、封口してリチウムイオン二次電池セル1を製造した。 Subsequently, current terminals (tabs) were ultrasonically welded to the uncoated portions of the positive electrode and the negative electrode, and then the positive electrode was stacked on the negative electrode, wound with a winding machine, and then put into a cylindrical can . This was dried under reduced pressure at 120 ° C., and ethylene carbonate (EC) and diethyl carbonate (DEC) were in a volume ratio of 3 in a dry can filled with dry air having an oxygen concentration of 10 ppm or less and a dew point of −60 ° C. or less. The electrolyte solution in which LiPF 6 was dissolved at a concentration of 1 mol / L was injected into the mixed solvent of No. 7 and sealed to manufacture the lithium ion secondary battery cell 1.

リチウムイオン二次電池セル1の製造において、セパレーター作製用分散液1を2〜13に変えた以外は、リチウムイオン二次電池セル1の製造と同様にして、表1に記載の二次電池セル2〜13を作製した。   In the production of the lithium ion secondary battery cell 1, the secondary battery cell shown in Table 1 was prepared in the same manner as in the production of the lithium ion secondary battery cell 1, except that the separator preparation dispersion 1 was changed to 2-13. 2 to 13 were produced.

(出力特性の評価)
得られた二次電池セルを23℃の環境下において、電圧2.0V〜4.0Vの範囲で、それぞれ理論容量に対して12分間で充放電が終わるレートの電流(5C)で充放電を行い、0.2Cで充放電を行った時の容量保持率について以下のランクで評価した。
(Evaluation of output characteristics)
The obtained secondary battery cell was charged / discharged at a current (5C) at a rate at which charging / discharging ended in 12 minutes with respect to the theoretical capacity in a voltage range of 2.0V to 4.0V in an environment of 23 ° C. The capacity retention when charging / discharging at 0.2 C was evaluated with the following rank.

◎:95%以上の容量を保持
○:90%以上、95%未満の容量を保持
△:80%以上、90%未満の容量を保持
×:80%未満の容量を保持
(耐熱性の評価)
得られた二次電池セルを300℃の恒温槽にて1分間加熱し、自然放冷したのち、23℃の環境下において、電圧2.0V〜4.0Vの範囲で、それぞれ理論容量に対して12分間で充放電が終わるレートの電流(5C)で充放電を行い、0.2Cで充放電を行った時の容量保持率について以下のランクで評価した。
◎: Holds a capacity of 95% or more ○: Holds a capacity of 90% or more and less than 95% △: Holds a capacity of 80% or more and less than 90% ×: Holds a capacity of less than 80% (Evaluation of heat resistance)
The obtained secondary battery cell was heated in a 300 ° C. constant temperature bath for 1 minute, allowed to cool naturally, and then at a voltage of 2.0 V to 4.0 V in a 23 ° C. environment with respect to the theoretical capacity. Then, charging / discharging was performed at a current (5C) at a rate at which charging / discharging ended in 12 minutes, and capacity retention when charging / discharging at 0.2C was evaluated in the following rank.

◎:90%以上の容量を保持
○:85%以上、90%未満の容量を保持
△:75%以上、85%未満の容量を保持
×:75%未満の容量を保持
(耐衝撃性の評価)
得られた二次電池セルを20Gで、50Hzのパルス幅の振動を10時間加える振動試験に供した。振動試験前の放電容量に対する振動試験後の放電容量の比を百分率値として表した値を放電容量比として以下のランクで評価した。
◎: Retains 90% or more capacity ○: Retains 85% or more and less than 90% capacity △: Retains 75% or more and less than 85% capacity x: Retains less than 75% capacity (Evaluation of impact resistance )
The obtained secondary battery cell was subjected to a vibration test in which vibration with a pulse width of 50 Hz was applied for 10 hours at 20G. The ratio of the discharge capacity after the vibration test to the discharge capacity before the vibration test as a percentage value was evaluated as the discharge capacity ratio in the following rank.

◎:95%以上の容量を保持
○:90%以上、95%未満の容量を保持
△:80%以上、90%未満の容量を保持
×:80%未満の容量を保持
評価結果を表1に示す。
◎: Retains a capacity of 95% or more. ○: Retains a capacity of 90% or more and less than 95%. △: Retains a capacity of 80% or more and less than 90%. X: Retains a capacity of less than 80%. Show.

Figure 2012033366
Figure 2012033366

表1から、本発明の多孔質セパレーターを用いたリチウムイオン2次電池は高出力を維持し、耐熱性、及び耐衝撃性に優れていることが分かった。   From Table 1, it was found that the lithium ion secondary battery using the porous separator of the present invention maintained high output and was excellent in heat resistance and impact resistance.

Claims (4)

有機溶剤可溶なポリイミド樹脂と無機微粒子を含有する塗布液を用いて形成したことを特徴とする多孔質セパレーター。   A porous separator formed using a coating liquid containing an organic solvent-soluble polyimide resin and inorganic fine particles. 有機溶剤可溶なポリイミド樹脂がテトラカルボン酸ジ無水物とジアミンとを脱水縮合して得られるブロック共重合ポリイミド樹脂であることを特徴とする請求項1に記載の多孔質セパレーター。   The porous separator according to claim 1, wherein the organic solvent-soluble polyimide resin is a block copolymerized polyimide resin obtained by dehydration condensation of tetracarboxylic dianhydride and diamine. 請求項1または2に記載の多孔質セパレーターを用いて形成されたリチウムイオン二次電池であって、正極活物質層を有する正極、負極活物質層を有する負極およびリチウムイオンを含む非水系電解質を含有することを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery formed using the porous separator according to claim 1, wherein a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a non-aqueous electrolyte containing lithium ions. A lithium ion secondary battery containing the lithium ion secondary battery. 請求項1または2に記載の多孔質セパレーターの製造方法であって、リチウムイオン二次電池の正極または負極の活物質層上に塗布により形成することを特徴とする多孔質セパレーターの製造方法。   The method for producing a porous separator according to claim 1, wherein the method is formed by coating on an active material layer of a positive electrode or a negative electrode of a lithium ion secondary battery.
JP2010171441A 2010-07-30 2010-07-30 Porous separator, lithium ion secondary battery, and method of manufacturing porous separator Pending JP2012033366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010171441A JP2012033366A (en) 2010-07-30 2010-07-30 Porous separator, lithium ion secondary battery, and method of manufacturing porous separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010171441A JP2012033366A (en) 2010-07-30 2010-07-30 Porous separator, lithium ion secondary battery, and method of manufacturing porous separator

Publications (1)

Publication Number Publication Date
JP2012033366A true JP2012033366A (en) 2012-02-16

Family

ID=45846568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010171441A Pending JP2012033366A (en) 2010-07-30 2010-07-30 Porous separator, lithium ion secondary battery, and method of manufacturing porous separator

Country Status (1)

Country Link
JP (1) JP2012033366A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104904034A (en) * 2012-10-10 2015-09-09 无限科技全球公司 Printed energy storage device
WO2016031335A1 (en) * 2014-08-29 2016-03-03 日東電工株式会社 Lithium metal secondary battery
US9397341B2 (en) 2012-10-10 2016-07-19 Nthdegree Technologies Worldwide Inc. Printed energy storage device
US9786926B2 (en) 2013-07-17 2017-10-10 Printed Energy Pty Ltd Printed silver oxide batteries
US9825305B2 (en) 2012-07-18 2017-11-21 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10221071B2 (en) 2012-07-18 2019-03-05 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10396365B2 (en) 2012-07-18 2019-08-27 Printed Energy Pty Ltd Diatomaceous energy storage devices
US11024879B2 (en) 2017-09-20 2021-06-01 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
JP7398128B2 (en) 2021-11-01 2023-12-14 株式会社スリーダムアライアンス High durability lithium secondary battery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11063265B2 (en) 2012-07-18 2021-07-13 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10109864B2 (en) 2012-07-18 2018-10-23 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10396365B2 (en) 2012-07-18 2019-08-27 Printed Energy Pty Ltd Diatomaceous energy storage devices
US11962017B2 (en) 2012-07-18 2024-04-16 Printed Energy Pty Ltd Diatomaceous energy storage devices
US11673811B2 (en) 2012-07-18 2023-06-13 Printed Energy Pty Ltd Diatomaceous energy storage devices
US11637292B2 (en) 2012-07-18 2023-04-25 Printed Energy Pty Ltd Diatomaceous energy storage devices
US11066306B2 (en) 2012-07-18 2021-07-20 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10770733B2 (en) 2012-07-18 2020-09-08 Printed Energy Pty Ltd Diatomaceous energy storage devices
US9825305B2 (en) 2012-07-18 2017-11-21 Printed Energy Pty Ltd Diatomaceous energy storage devices
US10221071B2 (en) 2012-07-18 2019-03-05 Printed Energy Pty Ltd Diatomaceous energy storage devices
EP2907178A4 (en) * 2012-10-10 2016-08-03 Nthdegree Tech Worldwide Inc Printed energy storage device
US11502311B2 (en) 2012-10-10 2022-11-15 Printed Energy Pty Ltd Printed energy storage device
US9397341B2 (en) 2012-10-10 2016-07-19 Nthdegree Technologies Worldwide Inc. Printed energy storage device
US10658679B2 (en) 2012-10-10 2020-05-19 Printed Energy Pty Ltd Printed energy storage device
US9917309B2 (en) 2012-10-10 2018-03-13 Printed Energy Pty Ltd Printed energy storage device
US10686197B2 (en) 2012-10-10 2020-06-16 Printed Energy Pty Ltd Printed energy storage device
US9520598B2 (en) 2012-10-10 2016-12-13 Nthdegree Technologies Worldwide Inc. Printed energy storage device
US10020516B2 (en) 2012-10-10 2018-07-10 Printed Energy Pty Ltd Printed energy storage device
CN104904034A (en) * 2012-10-10 2015-09-09 无限科技全球公司 Printed energy storage device
US9786926B2 (en) 2013-07-17 2017-10-10 Printed Energy Pty Ltd Printed silver oxide batteries
US10673077B2 (en) 2013-07-17 2020-06-02 Printed Energy Pty Ltd Printed silver oxide batteries
WO2016031335A1 (en) * 2014-08-29 2016-03-03 日東電工株式会社 Lithium metal secondary battery
JP2016051614A (en) * 2014-08-29 2016-04-11 日東電工株式会社 Lithium metal secondary battery
US11024879B2 (en) 2017-09-20 2021-06-01 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
JP7398128B2 (en) 2021-11-01 2023-12-14 株式会社スリーダムアライアンス High durability lithium secondary battery

Similar Documents

Publication Publication Date Title
JP2012033366A (en) Porous separator, lithium ion secondary battery, and method of manufacturing porous separator
JP6451732B2 (en) Binder composition for secondary battery porous membrane, slurry for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery
JP5787818B2 (en) Non-aqueous electrolyte battery separator binder containing 2-cyanoethyl group-containing polymer, separator using the same, and battery
JPWO2017099248A1 (en) Solid electrolyte composition, binder particles, sheet for all-solid secondary battery, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, and production method thereof
KR101634416B1 (en) Binder for separator of non-aqueous electrolyte battery comprising 2-cyanoethyl group-containing polymer and separator and battery using the same
JP5499868B2 (en) Method for producing electrode for lithium ion secondary battery
KR101730671B1 (en) Binder for separator of non-aqueous electrolyte battery comprising 2-cyanoethyl group-containing polymer and separator and battery using the same
JP6684901B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet and all solid state secondary battery, and method for producing solid electrolyte containing sheet and all solid state secondary battery
JP2012099385A (en) Electrode with heat-resistant porous layer, manufacturing method thereof, and secondary battery
KR20100116199A (en) Binder composition for electrode of nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2011108499A (en) Solid electrolyte and lithium ion secondary battery
JP2011108516A (en) Electrode sheet for nonaqueous secondary battery, and nonaqueous secondary battery employing the same
JP2011210413A (en) Separator for electrochemical element and nonaqueous electrolyte secondary battery
WO2016199723A1 (en) Solid electrolyte composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
WO2019208347A1 (en) Solid electrolyte-including sheet, electrode sheet for fully solid-state secondary battery, fully solid-state secondary battery, electronic device, electric vehicle, and manufacturing methods for these
WO2016063838A1 (en) Secondary battery and production method therefor
JPWO2014196436A1 (en) Porous membrane slurry composition for lithium ion secondary battery, separator for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2011054463A (en) Electrolyte composition, method of manufacturing the same, and secondary battery
JP6764881B2 (en) All-solid-state secondary batteries, particles for all-solid-state secondary batteries, solid electrolyte compositions for all-solid-state secondary batteries, electrode sheets for all-solid-state secondary batteries, and methods for producing them.
WO2013136441A1 (en) Non-aqueous electrolyte secondary battery
WO2019208346A1 (en) Solid electrolyte-including sheet, electrode sheet for fully solid-state secondary battery, fully solid-state secondary battery, electronic device, electric vehicle, and manufacturing methods for these
JP2011243344A (en) Method for manufacturing electrode with separator, electrode with separator, and secondary battery
JP2011216318A (en) Separator for nonaqueous secondary battery
JP6740350B2 (en) Solid electrolyte composition, solid electrolyte containing sheet and all solid state secondary battery, and solid electrolyte containing sheet and all solid state secondary battery manufacturing method
JP2016012478A (en) Separator and lithium ion secondary battery