WO2011021491A1 - ヘキサフルオロアセトン一水和物の製造方法 - Google Patents

ヘキサフルオロアセトン一水和物の製造方法 Download PDF

Info

Publication number
WO2011021491A1
WO2011021491A1 PCT/JP2010/062878 JP2010062878W WO2011021491A1 WO 2011021491 A1 WO2011021491 A1 WO 2011021491A1 JP 2010062878 W JP2010062878 W JP 2010062878W WO 2011021491 A1 WO2011021491 A1 WO 2011021491A1
Authority
WO
WIPO (PCT)
Prior art keywords
hexafluoroacetone
organic solvent
monohydrate
water
composition
Prior art date
Application number
PCT/JP2010/062878
Other languages
English (en)
French (fr)
Inventor
豊 勝原
達哉 早坂
峰男 渡辺
孝司 久米
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to CN201080036656.9A priority Critical patent/CN102471203B/zh
Priority to US13/384,736 priority patent/US20120136177A1/en
Priority to EP10809836.9A priority patent/EP2468710B1/en
Publication of WO2011021491A1 publication Critical patent/WO2011021491A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • C07C29/82Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation by azeotropic distillation

Definitions

  • the present invention relates to a method for producing hexafluoroacetone monohydrate (1,1,1,3,3,3-hexafluoropropane-2-diol), and more particularly, hexafluoroacetone hydrate is organically synthesized.
  • the present invention relates to a method for dehydration in the presence of a solvent.
  • Hexafluoroacetone is an important compound as a pharmaceutical intermediate or reaction raw material.
  • Hexafluoroacetone is industrially produced by epoxidation of hexafluoropropene followed by isomerization, hexachloroacetone obtained by chlorinating acetone with hydrogen fluoride using a chromium activated carbon supported catalyst, etc.
  • Hexafluoroacetone is a gas having a boiling point of ⁇ 28 ° C. at atmospheric pressure, and therefore, for convenience in handling, hexafluoroacetone trihydrate, which can be handled as a constant boiling point composition at 106 ° C., is used as a raw material in many reactions. Has been or is stored.
  • hexafluoroacetone monohydrate may be required depending on the reaction conditions, target product and other requirements. It is known that hexafluoroacetone monohydrate can introduce, for example, a hexafluoroisopropanol group at the 5-position of uracil (Non-patent Document 1).
  • Hexafluoroacetone monohydrate is a crystal having a gem-diol structure with a melting point of 46 ° C. and decomposes simultaneously with melting to disproportionate to hexafluoroacetone and hexafluoroacetone trihydrate (Patent Document 1), It is an unstable compound that is very difficult to handle and difficult to obtain because it deliquesces immediately with moisture in the air even at low temperatures.
  • hexafluoroacetone monohydrate hexafluoroacetone is absorbed into water in two steps, and hexafluoroacetone monohydrate is obtained as slightly wet needle-like white crystals containing some hexafluoroacetone and water. (Patent Document 1).
  • hexafluoroacetone monohydrate is an unstable compound with deliquescence as described above, even if hexafluoroacetone monohydrate is dissolved in a solvent, water or hexafluoroacetone trihydrate cannot be dissolved. A solution containing hexafluoroacetone monohydrate and a solvent is obtained, which is substantially free of water.
  • the present invention provides a method for producing hexafluoroacetone monohydrate substantially free of water, and also provides a composition of hexafluoroacetone monohydrate in a form that is easy to handle.
  • the present inventors have made hexafluoroacetone monohydrate (1,1,1,3,3) substantially free of water from aqueous solutions containing hydrates such as hexafluoroacetone or hexafluoroacetone trihydrate.
  • 3-Hexafluoropropane-2-diol was studied, and when the molar ratio of hexafluoroacetone to water was adjusted to obtain hexafluoroacetone monohydrate, it was carried out in the presence of an organic solvent.
  • hexafluoroacetone monohydrate was found to exist stably above the melting point, and the present invention was reached. It has also been found that a composition comprising hexafluoroacetone monohydrate and an organic solvent obtained by this production method is useful for various uses and storage.
  • the present invention is as follows.
  • a method for producing hexafluoroacetone monohydrate comprising obtaining a composition comprising hexafluoroacetone monohydrate and an organic solvent as components.
  • Invention 2 The production method of Invention 1, wherein at least one of hexafluoroacetone hydrate and an organic solvent is continuously introduced into a distillation column.
  • Invention 5 The production method of Invention 1, wherein an azeotropic composition of hexafluoroacetone monohydrate and an organic solvent is obtained from a composition containing hexafluoroacetone monohydrate and an organic solvent obtained from the tower bottom.
  • a hexafluoroacetone having a number of moles equal to the total number of moles of water and hexafluoroacetone hydrate present in the system is introduced into a solution system in which water or hexafluoroacetone hydrate coexists with an organic solvent.
  • a method for producing hexafluoroacetone monohydrate comprising obtaining a composition comprising hexafluoroacetone monohydrate and an organic solvent.
  • Invention 10 A process for producing a hexafluoroacetone derivative according to Invention 8 or 9, wherein the organic solvent is an aromatic compound or an ether compound.
  • composition substantially free of water comprising hexafluoroacetone monohydrate and an organic solvent.
  • Invention 12 The composition of Invention 11, wherein the organic solvent is an aromatic compound or an ether compound.
  • FIG. 3 is a 13 C-NMR chart of the composition obtained in Example 1.
  • the production method of the present invention is capable of easily producing hexafluoroacetone monohydrate substantially free of water from a hydrate such as hexafluoroacetone trihydrate without using a special dehydrating agent. Play.
  • composition comprising hexafluoroacetone monohydrate and an organic solvent of the present invention has an effect that hexafluoroacetone monohydrate can be used as a reagent that can be handled as a stable reaction substrate.
  • hexafluoroacetone may be represented as “HFA”.
  • hexafluoroacetone monohydrate may be expressed as “HFA ⁇ W”.
  • hexafluoroacetone trihydrate may be expressed as “HFA ⁇ 3W”.
  • hexafluoroacetone hydrate refers to a hydrate that does not limit the number of hydration or an aqueous solution thereof, and is a concept including “HFA ⁇ 3W”.
  • the organic solvent solution of hexafluoroacetone monohydrate of the present invention is a composition comprising hexafluoroacetone monohydrate and an organic solvent.
  • the organic solvent include aromatic compounds, ether compounds, and halogen solvents that are liquid at room temperature (about 25 ° C.).
  • the aromatic compound is not particularly limited and may be any of monocyclic, ring assembly, and condensed polycyclic, but monocyclic benzene or a hydrogen atom of benzene is a halogen atom, an alkyl group, a fluoroalkyl group, etc. Compounds substituted with are preferred.
  • Examples of such compounds include benzene, toluene, xylene, ethylbenzene, chlorobenzene, benzotrifluoride, 2,4-dichlorobenzotrifluoride, o-, m- or p-bistrifluoromethylbenzene.
  • Examples of the ether compound include chain ethers such as dimethyl ether, diethyl ether, isopropyl ether, ethyl isopropyl ether, butyl methyl ether, and ethyl butyl ether, and cyclic ethers such as tetrahydrofuran, pyran, and dioxane.
  • halogen solvent examples include carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, 1,1,2-trichloroethane, and the like.
  • the organic solvent can be appropriately selected depending on the purpose of use, particularly the purpose of reaction. Moreover, these can also be used in combination of 2 or more types.
  • an organic solvent an aromatic compound or an ether compound is preferable, and an aromatic compound is more preferable.
  • the aforementioned organic solvent azeotropic with water is preferable.
  • the concentration of hexafluoroacetone monohydrate may be determined so as to be a desired concentration, but is usually 1 to 1000 parts by mass with respect to 1 part by mass of hexafluoroacetone, and can be determined according to the application.
  • the hexafluoroacetone monohydrate according to the present invention can be produced by the “hydration method” and “dehydration method” described later.
  • Hexafluoroacetone trihydrate is a dihydrate of hexafluoroacetone monohydrate, which is a gem-diol produced by the reaction of hexafluoroacetone and water (herein the dihydrate 2
  • the water corresponding to is called “additional water”), It is a stable liquid having the highest azeotropic composition (boiling point 106 ° C.).
  • hexafluoroacetone monohydrate is a solid having a melting point of 46 ° C., but decomposes to disproportionate to anhydrous hexafluoroacetone and hexafluoroacetone trihydrate above the melting point (Patent Document 1). ).
  • the hexafluoroacetone monohydrate according to the present invention is obtained by adding water in the system (additional water) to a hydrate of hexafluoroacetone, for example, a mixture comprising an aqueous solution containing hexafluoroacetone trihydrate or hexafluoroacetone and an organic solvent. And free water) and an equimolar amount of hexafluoroacetone can be added and dissolved in an organic solvent.
  • hexafluoroacetone trihydrate As hexafluoroacetone hydrate, it is preferable to use hexafluoroacetone trihydrate, which is easily available. It may be a hydrate having a lower hydration number than trihydrate or an aqueous solution of hexafluoroacetone trihydrate. Hexafluoroacetone may be used in such an amount that the number of moles is equal to the amount of water contained in these hexafluoroacetone-related substances, and hexafluoroacetone / water (the sum of added water and free water) is substantially reduced. 1 is preferred, but usually 1 to 1.2. A slight excess amount may be allowed in consideration of operational loss and the like.
  • hexafluoroacetone is excessive, it is not preferable because it is washed away. If insufficient, free water or hexafluoroacetone trihydrate is used. Since it remains in the organic solvent solution, it is not preferable. However, when water remains, the water can be removed by a “dehydration method” to be described later to obtain a target hexafluoroacetone monohydrate solution.
  • the liquid portion in the system When introducing hexafluoroacetone into the system, it is preferable to heat the liquid portion in the system at 40 ° C. or higher and below the boiling temperature of the liquid. This is because a sufficient reaction rate cannot be obtained at a low temperature. As the reaction proceeds, the temperature of the reaction system increases and decreases with the completion of the reaction. Therefore, although the temperature in the system varies depending on the type of organic solvent, it is usually set to a boiling point (106 ° C.) or less of hexafluoroacetone trihydrate.
  • the amount ratio of the organic solvent and hexafluoroacetone may be determined so that the solution of hexafluoroacetone monohydrate has a desired concentration, but is usually 1 to 1000 parts by mass with respect to 1 part by mass of hexafluoroacetone, 1 to 100 parts by mass is preferable. If the organic solvent is too small, depending on the shape and method of the reactor, the produced hexafluoroacetone monohydrate precipitates during production, which makes it difficult to stir or the exothermic removal is not smooth, If it is excessive, there is no problem with stirring, but it is not preferable because it causes disadvantages such as an increase in the size of the apparatus and a small concentration of the produced hexafluoroacetone monohydrate solution.
  • a predetermined amount of hexafluoroacetone trihydrate and an organic solvent according to the purpose are introduced into a closed reaction vessel equipped with a stirrer and a gas inlet.
  • the reaction apparatus is not particularly limited, but is preferably a pressure vessel or a vessel equipped with a condenser, and preferably a stirrer.
  • a pressure vessel or a vessel equipped with a condenser, and preferably a stirrer.
  • a material of the apparatus stainless steel, nickel alloy steel, glass, fluororesin, carbon, polyethylene, or a material lined or clad with these materials can be used.
  • the hexafluoroacetone monohydrate according to the present invention dehydrates an excess amount of water from a mixture of hexafluoroacetone hydrate, for example, hexafluoroacetone trihydrate or an aqueous solution containing hexafluoroacetone and an organic solvent. Thus, it can be obtained in a state dissolved in an organic solvent.
  • hexafluoroacetone hydrate and organic solvent charged in a container are heated to remove excess or free water as a gas phase component, and hexafluoroacetone monohydrate and organic solvent are removed from the liquid phase part.
  • a method for obtaining a composition comprising: The removed water can be removed by azeotroping with an organic solvent.
  • This dehydration method is usually performed using a general distillation apparatus equipped with a distillation can, a distillation column, a condenser and other devices.
  • the distillation apparatus may be of any type, but as the distillation tower, any of simple distillation, packed tower, bubble bell tower, plate tower, etc. can be adopted, and the packing material is not particularly limited. Any of helipac, pole ring, etc. may be used.
  • As the distillation format any of a batch method, a semi-batch method, a semi-continuous method, or a continuous method in which either an organic solvent or hexafluoroacetone hydrate is continuously supplied can be adopted.
  • As the material of the apparatus stainless steel, nickel alloy steel, glass, fluororesin, carbon, polyethylene, or a material lined or clad with these materials can be used.
  • Hexafluoroacetone hydrate and the organic solvent according to the purpose can be mixed in advance or separately introduced into the distillation apparatus.
  • hexafluoroacetone hydrate is pre-treated with an adsorbent such as a chemical substance or molecular sieve generally used as a “dehydrating agent” such as concentrated sulfuric acid, anhydrous sulfuric acid, or phosphorus pentoxide in advance. It may be removed.
  • distillation since dehydration is performed by azeotropic distillation, it is an organic solvent azeotropic with water.
  • the tower top temperature is determined by the azeotropic temperature of water and the organic solvent, and varies depending on the type of organic solvent.
  • this temperature range is also referred to as an azeotropic temperature in this specification.
  • the azeotropic temperature of water and organic solvent includes water / benzene 69.25 ° C., water / toluene 85.0 ° C., water / m-xylene 94.5 ° C., water / ethylbenzene 92 ° C., etc.
  • the distillation operation can be carried out in the range of about 5 ° C. up and down.
  • the water and the organic solvent recovered from the top of the column are condensed, they are separated into a layer containing the organic solvent as a main component and a layer containing water.
  • the organic solvent can be used again in the process of the present invention.
  • the layer containing water may contain hexafluoroacetone hydrate, hexafluoroacetone trihydrate can be recovered therefrom and used again in the method of the present invention.
  • the column bottom temperature may be a temperature at which distillation can be maintained, and is 50 ° C. to 120 ° C.
  • Hexafluoroacetone monohydrate is known to decompose at 48 ° C. alone, but even when the column bottom temperature is 50 ° C. or higher, hexafluoroacetone monohydrate does not decompose, Acetone monohydrate is stably present at the bottom of the column as an organic solvent solution.
  • the amount of the organic solvent required for hexafluoroacetone trihydrate varies depending on the type, but it is required to be more than the amount that azeotropically removes water.
  • the solution of hexafluoroacetone monohydrate is determined so as to have a desired concentration, but it is usually 1 to 1000 parts by weight, preferably 1 to 100 parts by weight with respect to 1 part by weight of hexafluoroacetone.
  • the dehydration method can be performed under reduced pressure or under pressurized conditions. It is preferable to carry out at normal pressure. Below, the case where it carries out by a normal pressure (0 Mpa-G (gauge pressure)) is demonstrated. It is also within the scope of the present invention to perform under other pressure conditions.
  • a new reflux is observed at a temperature determined by the azeotropic composition of hexafluoroacetone monohydrate and organic solvent, and a mixture of hexafluoroacetone monohydrate and organic solvent distills from the top of the column. In some cases, it may be obtained as an azeotropic composition. In this way, a component composed of hexafluoroacetone monohydrate and an organic solvent and a component composed of water and an organic solvent are obtained separately. The composition of water and organic solvent recovered from the top of the column is separated into two layers, and the organic solvent from which water has been separated and removed can be used again in this process.
  • the dehydration method of the present invention can be applied to a method for producing a hexafluoroacetone derivative.
  • an organic solvent is added to hexafluoroacetone trihydrate or its aqueous solution, which is usually readily available prior to the reaction, and the organic solvent and water are removed by azeotropic distillation by applying the dehydration method described above.
  • hexafluoroacetone monohydrate containing no water can be used as a reaction reagent.
  • hexafluoroacetone trihydrate or an aqueous solution thereof and an organic solvent, which are usually easily available are added to the reaction vessel, and the above-described dehydration method is applied during the reaction to share the organic solvent and water. By removing by boiling distillation, the reaction concerning hexafluoroacetone monohydrate not containing water can be performed.
  • Example 1 Hydrolysis method A stirrer, a dry ice / acetone cooled reflux condenser, a thermometer, and a gas inlet are provided, and the opening of the reflux condenser is made of a closed system with a balloon. 86 g (100 mL) and 22 g (0.1 mol) of HFA ⁇ 3W were added, and 32 g (0.2 mol) of HFA was gradually introduced from the gas inlet while the outside was ice-cooled. After confirming that the temperature of the solution became room temperature or lower, the reaction was terminated to obtain 139 g of a colorless transparent solution having a specific gravity of 1.05 (yield 98%).
  • Example 2 Hydrolysis method Hexafluoroacetone monohydrate was produced in the same manner as in Example 1 except that 72.5 g of isopropyl ether was used instead of toluene. After completion of the reaction, 127 g of a colorless transparent solution having a specific gravity of 1.00 was obtained (yield 100%).
  • Example 3 Dehydration method HFA ⁇ 3W 22 g (0.1 mol) and benzene 38 g (0.49 mol) were placed in a 100 mL eggplant-shaped flask equipped with a glass reflux distillation column and a 20 cm distillation column (empty column). The mixture was heated in an oil bath while stirring with a stir bar. The water / benzene azeotrope (white turbidity at the time of condensation) distilled at 69 ° C. to 71 ° C., and the distillation was temporarily stopped when the distillation temperature at the top of the column rose to 73 ° C.
  • the distillate was separated into two layers, and a benzene layer was formed in the upper layer and an aqueous layer was formed in the lower layer (benzene layer: 6.8 g, specific gravity 0.87, aqueous layer: 3.6 g, specific gravity 1.15). Since the specific gravity of the aqueous layer was larger than 1, it was suggested that some HFA components were mixed. Further distillation continued to distill a new azeotropic composition at 73.8-74.0 ° C. Distilled 40 g of a uniform, colorless and transparent liquid having a specific gravity of 1.04 was obtained by hexafluoroacetone monohydrate (1,1,1) in benzene by NMR ( 13 C, H, F) and FR-IR measurement.
  • Example 4 Dehydration Method Hexafluoroacetone monohydrate was produced by the same dehydration method as Example 3 except that 54 g of metaxylene was used instead of benzene. Distillation of the azeotropic composition began at 94 ° C., which is the lowest azeotropic temperature of meta-xylene and water, and distillation of a liquid that became cloudy when condensed continued to a distillation temperature of 97 ° C. The distilled liquid was separated into two layers, and a metaxylene layer was formed in the upper layer and an aqueous layer was formed in the lower layer (metaxylene layer: 1.2 g, specific gravity 0.86, aqueous layer: 7.4 g, specific gravity 1.37). ).
  • the specific gravity of the aqueous layer was considerably larger than 1, suggesting that the HFA component was mixed.
  • a uniform, colorless and transparent liquid with a specific gravity of 1.03 of 67.4 g remaining in the kettle is a meta-xylene solution of HFA ⁇ W 29.9% by mass, measured by NMR ( 13 C, H, F) and FR-IR measurement.
  • Only hexafluoroacetone monohydrate (1,1,1,3,3,3-hexafluoropropane-2-diol) is present in xylene, and moisture is measured with a Karl Fischer moisture analyzer. The ratio of water to water was confirmed to be 1: 1.
  • the yield of hexafluoroacetone monohydrate by this dehydration method was 70.4%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

開示されているのは、(1)有機溶媒中、ヘキサフルオロアセトンを水若しくはヘキサフルオロアセトン水和物に吸収させる(加水法)こと、又は、(2)ヘキサフルオロアセトン水和物を有機溶媒と混合し蒸留する簡便な方法により収率よく水と有機溶媒の混合物を低沸点組成物として除き、ヘキサフルオロアセトン一水和物と有機溶媒の混合物を高沸点組成物として得る(脱水法)ことによりヘキサフルオロアセトン一水和物を製造する方法である。

Description

ヘキサフルオロアセトン一水和物の製造方法
 本発明は、ヘキサフルオロアセトン一水和物(1,1,1,3,3,3-ヘキサフルオロプロパン-2-ジオール)を製造する方法に関し、より詳しくは、ヘキサフルオロアセトン水和物を有機溶媒の存在下に脱水する方法に関する。
発明の背景
 ヘキサフルオロアセトンは、医薬品中間体あるいは反応原料として重要な化合物である。ヘキサフルオロアセトンは、工業的にはヘキサフルオロプロペンのエポキシ化とそれに続く異性化による方法、アセトンを塩素化して得られるヘキサクロロアセトンをクロム活性炭担持触媒等によりフッ化水素で置換フッ素化する方法などで製造される。ヘキサフルオロアセトンは大気圧で沸点が-28℃の気体であることから取り扱い上の便宜を図るため、106℃の定沸点組成物として取り扱えるヘキサフルオロアセトン三水和物が多くの反応において原料として使用されており、あるいは保存に供される。しかしながら、反応条件、目的物その他の要求によってはヘキサフルオロアセトン一水和物が要求される場合がある。ヘキサフルオロアセトン一水和物は、例えば、ウラシルの5位へヘキサフルオロイソプロパノール基を導入できることが知られている(非特許文献1)。
ヘキサフルオロアセトン一水和物はgem-ジオールの構造をもつ融点46℃の結晶で融解と同時に分解してヘキサフルオロアセトンとヘキサフルオロアセトン三水和物に不均化する(特許文献1)一方、低温でも空気中の水分で直ちに潮解するため、非常に取り扱いの困難な、また入手し難い不安定な化合物である。
Figure JPOXMLDOC01-appb-C000001
 ヘキサフルオロアセトン一水和物に関して、水へヘキサフルオロアセトンを二段階に分けて吸収させて、ヘキサフルオロアセトン一水和物が若干のヘキサフルオロアセトンと水を含むやや湿った針状白色結晶として得られることが知られている(特許文献1)。
 また、ヘキサフルオロアセトンが有機溶媒に溶解するとの記載(例えば、特許文献1)やヘキサフルオロアセトンの水溶液をエーテルで抽出することの記載(非特許文献2)が文献に見られる。
米国特許第3374273号明細書
ケミカルアブストラクト 95:151089 (All-Union Cancer Res. Cent., Moscow, USSR.Bioorganicheskaya Khimiya (1981), 7(7), 1047-53.) Canadian Journal of Chemistry (1955), 33 453-7.
 (1)特許文献1からも窺えるように、ヘキサフルオロアセトンに等しいモル数の水を付加させようとすると固体のヘキサフルオロアセトン一水和物が生成するため、水またはヘキサフルオロアセトン三水和物を含まない形でヘキサフルオロアセトン一水和物を製造することは困難である。(2)これとは逆に、ヘキサフルオロアセトン三水和物などのヘキサフルオロアセトン水和物またはその水溶液から過剰分の水を脱水するには通常濃硫酸、五酸化リンなどの脱水剤が使われるが、その場合無水のヘキサフルオロアセトンが得られヘキサフルオロアセトン一水和物は得られない。
また、ヘキサフルオロアセトン一水和物は前述の通り潮解性のある不安定な化合物であるので、ヘキサフルオロアセトン一水和物を溶媒に溶解しても、水またはヘキサフルオロアセトン三水和物を含む溶液が得られ、ヘキサフルオロアセトン一水和物と溶媒からなる実質的に水を含まない組成物は得られない。
 そこで、本発明は、実質的に水を含まないヘキサフルオロアセトン一水和物の製造方法を提供し、併せて、取り扱いの容易な形態のヘキサフルオロアセトン一水和物の組成物を提供する。
 本発明者らは、ヘキサフルオロアセトンまたはヘキサフルオロアセトン三水和物などの水和物を含む水溶液から実質的に水を含まないヘキサフルオロアセトン一水和物(1,1,1,3,3,3-ヘキサフルオロプロパン-2-ジオール)を製造する方法について検討したところ、ヘキサフルオロアセトンと水のモル比を調節してヘキサフルオロアセトン一水和物とするに際して、有機溶媒の存在下で行うとヘキサフルオロアセトン一水和物の融点以上においても安定に存在することを見出し、本発明に至った。また、この製造方法において得られるヘキサフルオロアセトン一水和物と有機溶媒からなる組成物が各種の用途、保存等に有用であることも判明した。
 本発明は、次の通りである。
[発明1]ヘキサフルオロアセトン水和物と有機溶媒をあらかじめ混合してまたは別々に蒸留塔に導入し、低沸点成分として塔頂から有機溶媒と水を含む組成物を得、塔底から高沸点成分としてヘキサフルオロアセトン一水和物および有機溶媒を含む組成物を得ることからなるヘキサフルオロアセトン一水和物の製造方法。
 [発明2]ヘキサフルオロアセトン水和物と有機溶媒のうちの少なくともいずれかを連続的に蒸留塔に導入する発明1の製造方法。
 [発明3]塔底または塔頂から得られる組成物のうち少なくともいずれかを連続的に蒸留塔から取り出す発明1または2の製造方法。
 [発明4]ヘキサフルオロアセトン水和物がヘキサフルオロアセトン三水和物(HFA・3W)である発明1~3の製造方法。
 [発明5]塔底から得られるヘキサフルオロアセトン一水和物および有機溶媒を含む組成物から、ヘキサフルオロアセトン一水和物と有機溶媒の共沸組成物を取得する発明1の製造方法。
 [発明6]水またはヘキサフルオロアセトン水和物が有機溶媒と共存する溶液系へ、系中に存在する水とヘキサフルオロアセトン水和物の合計モル数と等しいモル数のヘキサフルオロアセトンを導入し、ヘキサフルオロアセトン一水和物および有機溶媒を含む組成物として得ることからなるヘキサフルオロアセトン一水和物の製造方法。
 [発明7]有機溶媒が、芳香族化合物またはエーテル化合物である発明6の製造方法。
 [発明8]ヘキサフルオロアセトン一水和物を反応基質とする反応系において、反応系の温度を高めて有機溶媒と水を共沸組成物として反応系から過剰の水を除去することからなるヘキサフルオロアセトン一水和物を反応基質とするヘキサフルオロアセトン誘導体の製造方法。
 [発明9]ヘキサフルオロアセトン一水和物の反応により発生する過剰の水を有機溶媒と水の共沸組成物として反応系から除去しながら反応を行うヘキサフルオロアセトン誘導体の製造方法。
 [発明10]有機溶媒が、芳香族化合物またはエーテル化合物である発明8または9のヘキサフルオロアセトン誘導体の製造方法。
 [発明11]ヘキサフルオロアセトン一水和物と有機溶媒からなる実質的に水を含まない組成物。
 [発明12]有機溶媒が、芳香族化合物またはエーテル化合物である発明11の組成物。
実施例1で得られた組成物の13C-NMRのチャートである。
詳細な説明
 本発明の製造方法は、特別な脱水剤等を用いることなくヘキサフルオロアセトン三水和物等の水和物から実質的に水を含まないヘキサフルオロアセトン一水和物を容易に製造できるという効果を奏する。
 本発明のヘキサフルオロアセトン一水和物と有機溶媒からなる組成物は、ヘキサフルオロアセトン一水和物を安定な反応基質として取り扱える試薬として用いることができるという効果を奏する。
 以下、本発明を詳細に説明する。
 特許請求の範囲および明細書において、ヘキサフルオロアセトンを「HFA」と表すことがある。
 特許請求の範囲および明細書において、ヘキサフルオロアセトン一水和物を「HFA・W」と表すことがある。
 特許請求の範囲および明細書において、ヘキサフルオロアセトン三水和物を「HFA・3W」と表すことがある。
 特許請求の範囲および明細書において、ヘキサフルオロアセトン水和物は水和数を限定しない水和物またはその水溶液をいい、「HFA・3W」を含む概念である。
 本発明のヘキサフルオロアセトン一水和物の有機溶媒溶液は、ヘキサフルオロアセトン一水和物と有機溶媒からなる組成物である。有機溶媒としては、常温(約25℃)で液体である芳香族化合物、エーテル化合物、ハロゲン系溶媒などが挙げられる。芳香族化合物としては、特に限定されず、単環式、環集合式、縮合多環式の何れでもよいが、単環式のベンゼンまたはベンゼンの水素原子がハロゲン原子、アルキル基、フルオロアルキル基などで置換した化合物が好ましい。そのような化合物としては、ベンゼン、トルエン、キシレン、エチルベンゼン、クロロベンゼン、ベンゾトリフルオライド、2,4-ジクロロベンゾトリフルオライド、o-、m-もしくはp-ビストリフルオロメチルベンゼンなどがあげられる。エーテル化合物としては、ジメチルエーテル、ジエチルエーテル、イソプロピルエーテル、エチルイソプロピルエーテル、ブチルメチルエーテル、エチルブチルエーテルなどの鎖式のエーテル、テトラヒドロフラン、ピラン、ジオキサンなどの環状エーテルが挙げられる。ハロゲン系溶媒としては、四塩化炭素、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、シス-1,2-ジクロロエチレン、トランス-1,2-ジクロロエチレン、1,1,2-トリクロロエタンなどが挙げられる。有機溶媒は、その使用の目的、特に反応の目的により適宜選択することができる。またこれらは2種以上を併せて使用することもできる。有機溶媒としては、芳香族化合物またはエーテル化合物が好ましく、芳香族化合物がより好ましい。加水法においては水と共沸する前記した有機溶媒が好ましい。ヘキサフルオロアセトン一水和物の濃度は所望の濃度となるように決めればよいが、通常ヘキサフルオロアセトン1質量部に対し1~1000質量部であり、用途に応じて定めることができる。
 本発明にかかるヘキサフルオロアセトン一水和物は、後記する「加水法」および「脱水法」により製造することができる。
 ヘキサフルオロアセトン三水和物は、ヘキサフルオロアセトンと水が反応して生成したgem-ジオールであるヘキサフルオロアセトン一水和物の2水和物(本明細書で、この2水和物の2に相当する水を「付加水」という。)であって、
Figure JPOXMLDOC01-appb-C000002
で表される化学物質であり、最高共沸組成(沸点106℃)を持つ安定した液体である。
 これに対し、ヘキサフルオロアセトン一水和物は、融点46℃の固体であるが、融点以上では分解して無水のヘキサフルオロアセトンとヘキサフルオロアセトン三水和物に不均化する(特許文献1)。
 [加水法]
 本発明にかかるヘキサフルオロアセトン一水和物は、ヘキサフルオロアセトンの水和物、例えばヘキサフルオロアセトン三水和物またはヘキサフルオロアセトンを含む水溶液と有機溶媒からなる混合物へ系内の水(付加水とフリーの水)と当モルのヘキサフルオロアセトンを添加することで有機溶媒に溶解した状態で得ることができる。
 ヘキサフルオロアセトンの水和物としては、入手が容易であるヘキサフルオロアセトン三水和物を用いるのが好ましい。三水和物よりも水和数の少ないものやヘキサフルオロアセトン三水和物の水溶液であってもかまわない。ヘキサフルオロアセトンは、これらのヘキサフルオロアセトン関連物質に含まれる水の量と等しいモル数となる量を使用すればよく、ヘキサフルオロアセトン/水(付加水とフリーの水の合計)を実質的に1とするのが好ましいが、通常1~1.2とすればよい。操作上のロス等を考慮して若干の過剰量は許容してよいが、ヘキサフルオロアセトンが過剰の場合、流失するので好ましくなく、不足する場合、フリーの水またはヘキサフルオロアセトン三水和物が有機溶媒溶液中に残存するので好ましくない。しかし、水が残存する場合は、後記する「脱水法」により水を除去して目的とするヘキサフルオロアセトン一水和物の溶液とすることもできる。
 系内にヘキサフルオロアセトンを導入するときは、系内にある液体部分を40℃以上で液体の沸騰温度以下に加温しておくことが好ましい。低温においては十分な反応速度が得られないからである。反応が進むに従い反応系の温度は上昇し、反応の完了と共に低下する。したがって、系内の温度は、有機溶媒の種類によって異なるが通常ヘキサフルオロアセトン三水和物の沸点(106℃)以下とする。
 有機溶媒とヘキサフルオロアセトンの量比は、ヘキサフルオロアセトン一水和物の溶液が所望の濃度となるように決めればよいが、通常ヘキサフルオロアセトン1質量部に対し1~1000質量部であり、1~100質量部が好ましい。有機溶媒が過少であると反応装置の形状、方法によっては生成したヘキサフルオロアセトン一水和物が製造中に析出して攪拌が困難になったり、発熱の除去が円滑でないなどの不都合が生じ、過剰であると攪拌については問題はないが、装置の大型化や生成したヘキサフルオロアセトン一水和物溶液の濃度が小さいなどの不都合が生じるのでそれぞれ好ましくない。
 加水法の処理手順の例を説明する。攪拌装置およびガス導入口を備えた密閉反応容器に所定量のヘキサフルオロアセトン三水和物と前記目的に応じた有機溶媒を導入する。
 急速に反応が進むと昇温するので、外部から冷却しながら反応容器中の混合物を攪拌し、ヘキサフルオロアセトンと水(付加水とフリーの水)のモル比が1:1になる量のヘキサフルオロアセトンを徐々に反応容器のガス導入口から導入する。この時、開口部が気相部であっても有機溶媒液相部であってもヘキサフルオロアセトン一水和物の析出によりガス導入口の閉塞が起こらないよう留意する。所定量のヘキサフルオロアセトンの導入が終了した後も攪拌を続け、反応液温が低下し圧力が低下した時点で反応終了とし、高収率でヘキサフルオロアセトン一水和物の有機溶媒溶液が得られる。
 反応装置は、特に限定されないが、耐圧容器または凝縮器を備えた容器が好ましく、攪拌器を備えるのが好ましい。装置の材質は、ステンレス鋼、ニッケル合金鋼、ガラス、フッ素樹脂、炭素、ポリエチレンまたはこれらの材質でライニングされもしくはクラッドされた材料が使用できる。
[脱水法]
 本発明にかかるヘキサフルオロアセトン一水和物は、ヘキサフルオロアセトンの水和物、例えばヘキサフルオロアセトン三水和物またはヘキサフルオロアセトンを含む水溶液と有機溶媒からなる混合物から過剰量の水を脱水することで有機溶媒に溶解した状態で得ることができる。
 脱水法は、容器に仕込まれたヘキサフルオロアセトン水和物と有機溶媒を加熱して、過剰またはフリーの水を気相成分として除去し、液相部からヘキサフルオロアセトン一水和物と有機溶媒からなる組成物を得る方法である。除去される水は有機溶媒と共沸させて除去することができる。
 この脱水法は、通常、蒸留缶、蒸留カラム、凝縮器及びその他の装置を備えた一般的な蒸留装置を用いて行う。蒸留装置はどのような形式のものであってもかまわないが、蒸留塔としては単蒸留、充填塔、泡鐘塔、棚段塔などの何れも採用でき、充填材も特に限定されず、ラシヒリング、ヘリパック、ポールリングなど何れを使用してもよい。蒸留形式は、バッチ式、有機溶媒またはヘキサフルオロアセトン水和物のいずれかを連続的に供給する半バッチ式もしくは半連続式、連続式の何れでも採用できる。装置の材質は、ステンレス鋼、ニッケル合金鋼、ガラス、フッ素樹脂、炭素、ポリエチレンまたはこれらの材質でライニングされもしくはクラッドされた材料が使用できる。
 ヘキサフルオロアセトン水和物と目的に応じた前記有機溶媒はあらかじめ混合してまたは別々に蒸留装置に導入することができる。ここで、ヘキサフルオロアセトン水和物は、予め濃硫酸、無水硫酸、五酸化リンなどの一般的に「脱水剤」として用いられる化学物質やモレキュラーシーブなどの吸着剤による前処理で過剰の水を除去しておいてもよい。
 以下において、蒸留はバッチ式で行う場合の条件について説明するが、半バッチ式、連続式の蒸留での条件はこの説明に基づいて当業者は容易に選択をなしうる。
 蒸留において、脱水は共沸蒸留により行うため、水と共沸する有機溶媒である。塔頂温度は水と有機溶媒の共沸温度で決まり、有機溶媒の種類により異なる。また、蒸留効率の低い蒸留塔を使用したり操業効率を高めるために若干の温度範囲において共沸成分は留出するので、本明細書ではこの温度範囲も共沸温度と称する。
例えば、水と有機溶媒の共沸温度は、水/ベンゼン69.25℃、水/トルエン85.0℃、水/m-キシレン94.5℃、水/エチルベンゼン92℃などが挙げられるが、これらは何れも上下5℃程度の範囲をもって蒸留操作を行うことができる。塔頂から回収される水と有機溶媒は凝縮させると有機溶媒を主成分とする層と水を含む層とに分離する。有機溶媒は再度本発明の方法に使用することができる。また、水を含む層にはヘキサフルオロアセトン水和物を含むことがあるが、これからヘキサフルオロアセトン三水和物を回収して、再度本発明の方法に使用することもできる。
 一方、塔底温度は、蒸留が維持できる温度であればよく、50℃~120℃とする。ヘキサフルオロアセトン一水和物は単体では48℃で分解することが知られているが、塔底温度が50℃以上になっても、ヘキサフルオロアセトン一水和物の分解は起こらず、ヘキサフルオロアセトン一水和物は安定に有機溶媒溶液として塔底に存在する。
 ヘキサフルオロアセトン一水和物と有機溶媒が共沸する場合には、このヘキサフルオロアセトン一水和物の溶液から共沸組成物を有するヘキサフルオロアセトン一水和物と有機溶媒からなる組成物を得ることができる。
 脱水法において、ヘキサフルオロアセトン三水和物に対して必要な有機溶媒の量はその種類により異なるが、水を共沸して除去する量以上必要である。また、ヘキサフルオロアセトン一水和物の溶液が所望の濃度となるように決めるが、通常ヘキサフルオロアセトン1質量部に対し1~1000質量部であり、1~100質量部が好ましい。有機溶媒が過少であると脱水の効果や蒸留の操業が安定せず、過剰であれば脱水の効果においては問題ないが、ユーティリティの消費が大きくなったり、塔底に生成したヘキサフルオロアセトン一水和物の濃度が低くなったり、装置の大型化を伴いそれぞれ好ましくない。
 脱水法は、減圧下または加圧条件でも実施できる。常圧で行うのが好ましい。以下では、常圧(0MPa-G(ゲージ圧))で行う場合について説明する。他の圧力条件で行うことも本発明の範囲に属する。
 塔底温度を水と有機溶媒の共沸点を越すまで高めると、塔頂では蒸気が凝縮器で液化されて還流が始まる。還流液を徐々に抜き出すと水と有機溶媒の共沸は終了する。この時点で蒸留を終了すると塔底にはヘキサフルオロアセトン一水和物が有機溶媒溶液として回収される。
さらに蒸留を続けると、ヘキサフルオロアセトン一水和物と有機溶媒の共沸組成により決まる温度で新たな還流が観測され、ヘキサフルオロアセトン一水和物と有機溶媒の混合物が塔頂から留出することもあり、共沸組成物として得られることもある。このようにして、ヘキサフルオロアセトン一水和物と有機溶媒の組成からなる成分と水及び有機溶媒からなる成分が分離して得られる。塔頂から回収された水と有機溶媒の組成物は2層分離し、水を分離除去した有機溶媒は再度本プロセスに使用することができる。
 本発明の脱水法は、ヘキサフルオロアセトン誘導体の製造方法に適用できる。反応容器中において、反応に先立ち通常容易に入手しうるヘキサフルオロアセトン3水和物またはその水溶液に有機溶媒を添加して前述の脱水法を適用して有機溶媒と水を共沸蒸留で除去することで、水を含まないヘキサフルオロアセトン一水和物を反応試剤として使用することできる。また、反応開始前に反応容器中へ通常容易に入手しうるヘキサフルオロアセトン3水和物またはその水溶液と有機溶媒を添加し、反応中に前述の脱水法を適用して有機溶媒と水を共沸蒸留で除去することで、水を含まないヘキサフルオロアセトン一水和物にかかる反応を行うことができる。
 以下に、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]加水法
 攪拌装置、ドライアイス/アセトン冷却還流器、温度計、ガス導入口を備え、還流器の開口部は風船で閉鎖系としたガラス製の200mL四つ口反応装置にトルエン86g(100mL)、HFA・3W 22g(0.1モル)を入れ、外部を氷冷しながらガス導入口からHFA 32g(0.2モル)を徐々に導入し、所定量導入した後、反応液の温度が室温以下になったことを確認して反応を終了し、比重 1.05の無色透明溶液139gを得た(収率98%)。
NMR(13C、H、F)、およびFT-IR測定によりトルエン中でヘキサフルオロアセトン一水和物(1,1,1,3,3,3-ヘキサフルオロプロパン-2-ジオール)のみが存在すること、またカールフィッシャ水分測定装置で水分を測定し、ヘキサフルオロアセトンと水のモル比が1:1であることを確認した。なお、カールフィッシャ水分測定条件では、ヘキサフルオロアセトン一水和物(1,1,1,3,3,3-ヘキサフルオロプロパン-2-ジオール)から定量的に生成した水が測定される。 
13C-NMRスペクトル(標準:重クロロホルム、外部標準法)のチャートを図1に示す。δ 18.9、123.5~136.2ppmのピークはトルエンに帰属し、その他のすべてのピークはヘキサフルオロアセトン一水和物に帰属される。
 [実施例2]加水法
 トルエンの代わりにイソプロピルエーテル72.5gを用いたほかは実施例1と同様の方法にてヘキサフルオロアセトン一水和物を製造した。反応終了後に、比重 1.00の無色透明溶液127gを得た(収率100%)。
NMR(13C、H、F)、およびFT-IR測定によりイソプロピルエーテル中でヘキサフルオロアセトン一水和物(1,1,1,3,3,3-ヘキサフルオロプロパンー2-ジオール)のみが存在すること、またカールフィッシャ水分測定装置で水分を測定し、ヘキサフルオロアセトンと水のモル比が1:1であることを確認した。
 [実施例3]脱水法
 ガラス製還流蒸留塔、20cmの蒸留カラム(空塔)を備えた100mLナス型フラスコにHFA・3W 22g(0.1モル)、ベンゼン38g(0.49モル)を入れ、攪拌子にて攪拌しながらオイルバスにて加熱した。69℃-71℃で水/ベンゼンの共沸組成物(凝縮時に白濁した。)が留出し、塔頂の留出温度が73℃に上昇した時点で蒸留を一旦停止した。留出した液は2層に分離し、上層にベンゼン層、下層に水層が形成された(ベンゼン層:6.8g、比重0.87、水層:3.6g、比重1.15)。水層の比重が1より大きいことから若干のHFA成分が混入したことが示唆された。さらに蒸留を継続すると、73.8℃-74.0℃で新たな共沸組成物が留出した。留出した40gの均一、無色透明な比重1.04の液は、NMR(13C、H、F)、およびFR-IR測定によりベンゼン中でヘキサフルオロアセトン一水和物(1,1,1,3,3,3-ヘキサフルオロプロパン-2-ジオール)のみが存在すること、またカールフィッシャ水分測定装置で水分を測定し、HFAと水の比が1:1であること、また共沸組成はHFA・W39質量%のベンゼン溶液であることが判明した。また、釜残4.6gの均一、無色透明な比重1.37の液はHFA・W44質量%のベンゼン溶液であることが、NMR(13C、H、F)、FT-IR、カールフィッシャ水分測定で確認された。本脱水法によるヘキサフルオロアセトン一水和物の収率は96%であった。
 [実施例4]脱水法
 ベンゼンの代わりにメタキシレン54gを用いたほかは実施例3と同様の脱水法にてヘキサフルオロアセトン一水和物を製造した。メタキシレンと水との最低共沸温度である94℃にて共沸組成物の留出がはじまり、凝縮すると白濁する液の留出が留出温度97℃まで続いた。留出した液は2層に分離し、上層にメタキシレン層、下層に水層が形成された(メタキシレン層:1.2g、比重0.86、水層:7.4g、比重1.37)。水層の比重が1よりかなり大きいことからHFA成分が混入したことが示唆された。釜残67.4gの均一、無色透明な比重1.03の液はHFA・W29.9質量%のメタキシレン溶液であって、NMR(13C、H、F)、およびFR-IR測定によりメタキシレン中でヘキサフルオロアセトン一水和物(1,1,1,3,3,3-ヘキサフルオロプロパン-2-ジオール)のみが存在すること、またカールフィッシャ水分測定装置で水分を測定し、HFAと水の比が1:1であることが確認された。本脱水法によるヘキサフルオロアセトン一水和物の収率は70.4%であった。

Claims (12)

  1. ヘキサフルオロアセトン水和物と有機溶媒をあらかじめ混合してまたは別々に蒸留塔に導入し、低沸点成分として塔頂から有機溶媒と水を含む組成物を得、塔底から高沸点成分としてヘキサフルオロアセトン一水和物および有機溶媒を含む組成物を得ることからなるヘキサフルオロアセトン一水和物の製造方法。
  2. ヘキサフルオロアセトン水和物と有機溶媒のうちの少なくともいずれかを連続的に蒸留塔に導入することからなる請求項1に記載のヘキサフルオロアセトン一水和物の製造方法。
  3. 塔底または塔頂から得られる組成物のうち少なくともいずれかを連続的に蒸留塔から取り出すことからなる請求項1または2に記載のヘキサフルオロアセトン一水和物の製造方法。
  4. ヘキサフルオロアセトン水和物がヘキサフルオロアセトン三水和物(HFA・3W)である請求項1~3のいずれか1項に記載のヘキサフルオロアセトン一水和物の製造方法。
  5. 塔底から得られるヘキサフルオロアセトン一水和物および有機溶媒を含む組成物から、ヘキサフルオロアセトン一水和物と有機溶媒の共沸組成物を取得する請求項1に記載のヘキサフルオロアセトン一水和物の製造方法。
  6. 水またはヘキサフルオロアセトン水和物が有機溶媒と共存する溶液系へ、系中に存在する水とヘキサフルオロアセトン水和物の合計モル数と等しいモル数のヘキサフルオロアセトンを導入し、ヘキサフルオロアセトン一水和物および有機溶媒を含む組成物として得ることからなるヘキサフルオロアセトン一水和物の製造方法。
  7. 有機溶媒が、芳香族化合物またはエーテル化合物である請求項1~6のいずれか1項に記載のヘキサフルオロアセトン一水和物の製造方法。
  8. ヘキサフルオロアセトン一水和物を反応基質とする反応系において、反応系の温度を高めて有機溶媒と水を共沸組成物として反応系から過剰の水を除去することからなるヘキサフルオロアセトン一水和物を反応基質とするヘキサフルオロアセトン誘導体の製造方法。
  9. ヘキサフルオロアセトン一水和物の反応により発生する過剰の水を有機溶媒と水の共沸組成物として反応系から除去しながら反応を行うヘキサフルオロアセトン誘導体の製造方法。
  10. 有機溶媒が、芳香族化合物またはエーテル化合物である請求項8または9に記載のヘキサフルオロアセトン誘導体の製造方法。
  11. ヘキサフルオロアセトン一水和物と有機溶媒からなる実質的に水を含まない組成物。
  12. 有機溶媒が、芳香族化合物またはエーテル化合物である請求項11に記載の組成物。
PCT/JP2010/062878 2009-08-18 2010-07-30 ヘキサフルオロアセトン一水和物の製造方法 WO2011021491A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080036656.9A CN102471203B (zh) 2009-08-18 2010-07-30 六氟丙酮一水合物的制造方法
US13/384,736 US20120136177A1 (en) 2009-08-18 2010-07-30 Process for Preparation of Hexafluoroacetone Monohydrate
EP10809836.9A EP2468710B1 (en) 2009-08-18 2010-07-30 Process for preparation of hexafluoroacetone monohydrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-189347 2009-08-18
JP2009189347A JP5482013B2 (ja) 2009-08-18 2009-08-18 ヘキサフルオロアセトン一水和物の製造方法

Publications (1)

Publication Number Publication Date
WO2011021491A1 true WO2011021491A1 (ja) 2011-02-24

Family

ID=43606946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062878 WO2011021491A1 (ja) 2009-08-18 2010-07-30 ヘキサフルオロアセトン一水和物の製造方法

Country Status (5)

Country Link
US (1) US20120136177A1 (ja)
EP (1) EP2468710B1 (ja)
JP (1) JP5482013B2 (ja)
CN (1) CN102471203B (ja)
WO (1) WO2011021491A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020701A1 (ja) * 2010-08-12 2012-02-16 セントラル硝子株式会社 ヘキサフルオロアセトン一水和物の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106699504A (zh) * 2015-11-18 2017-05-24 浙江蓝天环保高科技股份有限公司 一种2,2-双(3,4-二甲苯基)六氟丙烷的制备方法
CN106699509A (zh) * 2015-11-18 2017-05-24 浙江蓝天环保高科技股份有限公司 一种2-(3,4-二甲苯基)-1,1,1,3,3,3-六氟-2-丙醇的制备方法
US11344761B2 (en) 2018-10-15 2022-05-31 Honeywell International Inc. Azeotrope or azeotrope-like compositions of trifluoroiodomethane (CF3I) and 1,1,1,2,2,3,3,-heptafluoropropane (HFC-227ca)
US11318338B2 (en) 2018-10-15 2022-05-03 Honeywell International Inc. Azeotrope or azeotrope-like compositions of trifluoroidomethane (CF3I) and 1,1,1,3,3,3-hexafluoropropane (HFC-236fa)
US10662135B2 (en) * 2018-10-15 2020-05-26 Honeywell International Inc. Azeotrope or azeotrope-like compositions of trifluoroiodomethane (CF3I) and hexafluoroacetone (HFA)
CN111018683B (zh) * 2019-12-19 2024-04-02 天津市长芦化工新材料有限公司 六氟丙酮水合物的制备装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3234172A (en) * 1961-12-13 1966-02-08 Du Pont Polyvinyl fluoride/polyfluoroalcohol compositions
US3433838A (en) * 1966-09-21 1969-03-18 Allied Chem Purification of perhaloacetones
JPS59181235A (ja) * 1983-03-30 1984-10-15 Central Glass Co Ltd カルボニル化合物の製造方法
JPH01203339A (ja) * 1988-02-05 1989-08-16 Nippon Mektron Ltd ヘキサフルオロアセトンまたはその水和物の製造法
JP2000063316A (ja) * 1998-08-20 2000-02-29 Sumitomo Chem Co Ltd ジハロトリフルオロアセトンの精製方法
WO2009028584A1 (ja) * 2007-08-29 2009-03-05 Central Glass Company, Limited ヘキサフルオロアセトン水和物の脱水方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3520929A (en) * 1966-10-19 1970-07-21 Exxon Research Engineering Co Hexafluoro-2-propanol-2-amines
FR1590725A (ja) * 1968-10-18 1970-04-20
US4885398A (en) * 1987-07-21 1989-12-05 Nippon Mektron Limited Process for producing hexafluoroacetone or its hydrate
CN1321962C (zh) * 2005-11-07 2007-06-20 上海三爱富新材料股份有限公司 六氟丙酮水合物的脱水方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3234172A (en) * 1961-12-13 1966-02-08 Du Pont Polyvinyl fluoride/polyfluoroalcohol compositions
US3433838A (en) * 1966-09-21 1969-03-18 Allied Chem Purification of perhaloacetones
JPS59181235A (ja) * 1983-03-30 1984-10-15 Central Glass Co Ltd カルボニル化合物の製造方法
JPH01203339A (ja) * 1988-02-05 1989-08-16 Nippon Mektron Ltd ヘキサフルオロアセトンまたはその水和物の製造法
JP2000063316A (ja) * 1998-08-20 2000-02-29 Sumitomo Chem Co Ltd ジハロトリフルオロアセトンの精製方法
WO2009028584A1 (ja) * 2007-08-29 2009-03-05 Central Glass Company, Limited ヘキサフルオロアセトン水和物の脱水方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DIWAKAR M. PAWAR ET AL.: "Conformational Equilibria in Formic Acid and the Adduct of Formic Acid and Hexafluoroacetone, HC02C(CF3) 20H", JOURNAL OF ORGANIC CHEMISTRY, vol. 72, 2007, pages 2003 - 2007, XP008154203 *
GRZEGORZ MLOSTON ET AL.: "Reactions of 2- Unsubstituted 1H-Imidazole 3-Oxides with 2,2- Bis(trifluoromethyl)ethene-1,1-dicarbonitrile: A Stepwisel,3-Dipolar Cycloaddition", HELVETICA CHIMICA ACTA, vol. 89, 2006, pages 1304 - 1316, XP008154202 *
W. J. MIDDLETON ET AL.: "Hydrogen Bonding in Fluoro Alcohols", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 86, no. 22, 1964, pages 4948 - 4952, XP008154205 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020701A1 (ja) * 2010-08-12 2012-02-16 セントラル硝子株式会社 ヘキサフルオロアセトン一水和物の製造方法

Also Published As

Publication number Publication date
JP2011037804A (ja) 2011-02-24
CN102471203A (zh) 2012-05-23
EP2468710A1 (en) 2012-06-27
CN102471203B (zh) 2014-08-06
US20120136177A1 (en) 2012-05-31
EP2468710B1 (en) 2017-03-01
JP5482013B2 (ja) 2014-04-23
EP2468710A4 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
WO2011021491A1 (ja) ヘキサフルオロアセトン一水和物の製造方法
JP5668319B2 (ja) 2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパンの製造方法
JP5434236B2 (ja) フルオロメチルヘキサフルオロイソプロピルエーテルの製造方法
JP5034784B2 (ja) ヘキサフルロアセトン水和物の脱水方法
JP4722327B2 (ja) アセチレンジオール化合物の製造方法
KR20230117260A (ko) 1-(3,5-디클로로페닐)-2,2,2-트리플루오로에타논 및그의 유도체의 제조 방법
EP2522648B1 (en) Process for producing difluorocyclopropane compound
JP2010037286A (ja) 酢酸−n−プロピルの製造方法
JP7088025B2 (ja) 3-クロロ-1,1,2,2-テトラフルオロプロパンの製造方法
JP2017530997A (ja) ハロ置換トリフルオロアセトフェノンを調製する方法
JP6074670B2 (ja) ペルフルオロアルケニルオキシ基含有アレーン化合物の製造法
JP5521625B2 (ja) ジフルオロ酢酸エステルの製造方法
RU2398756C2 (ru) СПОСОБ ПОЛУЧЕНИЯ ДИ-(β-ХЛОРЭТИЛ)ФОРМАЛЯ
JP2004285068A (ja) α,β−ジカルボニル化合物のアセタールを連続的に製造する方法
JP2001322955A (ja) 2−ブロモ−3,3,3−トリフルオロプロペンの製造方法
JP5896220B2 (ja) エリスリタンの製造方法
JP5585291B2 (ja) ヘキサフルオロアセトン一水和物の製造方法
WO2012085195A1 (en) Environmental friendly purification of an organic solution of etfbo
JP3332207B2 (ja) 3,3−ジクロロ−1,1,1−トリフルオロアセトンの蒸留方法
WO2007063939A1 (ja) テトラフルオロシクロブテノンの製造方法
KR20240027683A (ko) 플루오르화 수소를 사용한 n,n-디알킬, n,n-디알케닐, n,n-디알키닐, 및 관련된 사이클릭, 설파모일 플루오라이드 화합물의 합성
JP4518247B2 (ja) α,α−ジフルオロメチル化合物の製造方法
JP2001342167A (ja) シッフ塩基の製造法
JPS6172791A (ja) ジアルコキシジフエニルシランの製法
JP2004002466A (ja) 1,1,1,5,5,5−ヘキサフルオロアセチルアセトン・二水和物の精製方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080036656.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809836

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13384736

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010809836

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010809836

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 620/KOLNP/2012

Country of ref document: IN