WO2011017988A1 - 多输入多输出***中信道质量获取方法和接收端 - Google Patents

多输入多输出***中信道质量获取方法和接收端 Download PDF

Info

Publication number
WO2011017988A1
WO2011017988A1 PCT/CN2010/074838 CN2010074838W WO2011017988A1 WO 2011017988 A1 WO2011017988 A1 WO 2011017988A1 CN 2010074838 W CN2010074838 W CN 2010074838W WO 2011017988 A1 WO2011017988 A1 WO 2011017988A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
channel quality
layer
receiving end
user
Prior art date
Application number
PCT/CN2010/074838
Other languages
English (en)
French (fr)
Inventor
李儒岳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011017988A1 publication Critical patent/WO2011017988A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • the present invention relates to the field of wireless communications, and in particular to a method for calculating a channel quality indicator (CQI) in a multiple input multiple output (MIMO) system.
  • CQI channel quality indicator
  • MIMO multiple input multiple output
  • spatial multiplexing may be used to increase the transmission rate, that is, the transmitting end transmits different data at different antenna positions on the same time-frequency resource.
  • resources of all antennas can be allocated to the same user in the case of a single user.
  • the above transmission form is called single-user MIMO (SU-MIMO).
  • resources of different antenna spaces can be allocated to different users in the case of multiple users.
  • This transmission form is called multi-user MIMO (MU-MIMO).
  • the transmitting end needs to allocate resources and decide the method of transmitting according to the channel information (CSI) of each user.
  • CSI channel information
  • the receiving end channel information between each pair of transmitting and receiving antennas can be obtained through channel estimation, and then the information is fed back to the eNB.
  • the UE In the actual situation, since the feedback requires system resources, the UE generally quantizes the information for feedback.
  • the feedback method of the quantized information mainly includes a Channel Quality Indicator (CQI), a Precoding Matrix Index (PMI), and a rank indication ( Rank Indicator, RI ).
  • the transmitting end may also estimate channel information from other methods, for example, using channel reciprocity to estimate downlink channel information from uplink channel information.
  • the receiver can calculate the Signal to Interference and Noise Ratio (SINR) through channel and interference estimation.
  • SINR Signal to Interference and Noise Ratio
  • the CQI is generally the quantized SINR.
  • the following is the minimum mean square error in the SU-MIMO Spatial Multiplexing scenario. MMSE) The calculation method of SINR at the receiver.
  • the channel between the transmitting end and the receiving end is a 2x2 matrix H, and when the rank is 2, the precoding is also a 2x2 matrix, after precoding processing.
  • the signal received at the receiving end is a 2x1 vector
  • w is also a 2x1 vector representing the interference and noise received by the 2 antennas
  • the sum is the data symbol in the different code substreams:
  • y f x s x + f 2 s 2 + n Equation (2)
  • SINR signal to interference and noise ratio
  • H is inter-cell interference
  • is the transposed matrix of ⁇ ,.
  • N is a white noise of a Gaussian distribution
  • nn k is the interference and noise covariance matrix for the k stream, including the co-channel interference between the code substreams.
  • the precoding is predetermined from the standard codebook.
  • the interference between the code substreams can be accurately known in the SINR calculation, so that the CQI can be calculated more accurately.
  • the precoding is calculated by the receiving end, and the receiving end cannot accurately know the interference between the code substreams.
  • the calculation of CQI may be related to the actual transmission. deviation.
  • the SINR is calculated in a way that the SU-MIMO rank is 2, but each code substream is occupied by a different user, and the interference can be Said to be a multi-user interference.
  • the signal received at the receiver of User 1 is:
  • SINR Signal to Interference Ratio
  • the receiving end cannot accurately know the interference of multiple users in the future, it is also possible to roughly consider the interference caused by multiple users in the CQI calculation.
  • One of the methods is to calculate all SINRs for all precodings that may be paired with them, and then average them. For example, in Release 8, the codebook for two antennas is:
  • each user rank is 1, there are 4 code choices. If the transmitter allows non-orthogonal pairing, then each user has 3 codes to pair, which means there are 3 different interference possibilities. In this case, each possibility can be calculated and then averaged:
  • S is the number of coders, ie equal to 4;
  • is the precoding of the interference. This can make a rough estimate of the interference, but this method can only be used in the case of codebooks. If there is no codebook, the precoding of the interference can have many possibilities, then there is no way to make a prediction. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a channel quality acquisition method and a receiving end in a MIMO system for the receiver to perform channel quality calculation.
  • the present invention provides a channel quality acquisition method in a multiple input multiple output system, in which the receiving end acquires channel quality information, and the method includes: The past interference in a current time interval estimates the impact of the current interference on the channel quality, and the channel quality information is obtained.
  • the estimating comprises estimating by common pilot or demodulation pilot.
  • the step of the receiving end estimating the impact of the current interference on the channel quality according to the past interference includes: calculating an average value of the past interference and estimating the channel quality according to the average value, or by using the Multi-user interference within the time interval is filtered to estimate the channel quality.
  • the channel quality information comprises a signal to interference and noise ratio or a channel quality indicator.
  • the signal to interference and noise ratio S/NR ⁇ is: ⁇ k (k)f (k)*)-X,;
  • the channel quality indicator C3 ⁇ 4 ⁇ . is:
  • T is the time interval, and t is the current time
  • ⁇ ,. indicates inter-cell interference
  • H,.* indicates the transposed matrix of ⁇ ,.
  • I white noise of a Gaussian distribution
  • Uk represents interference generated by the user m after the pre-encoding process obtained according to the demodulation pilot
  • ⁇ ( ⁇ ) indicates that the X operation is performed.
  • is 1, letchel, + ⁇ , f )f — ( ) — , .
  • the receiving end estimates the impact of the current interference on the channel quality according to the past interference
  • the step of acquiring the channel quality information includes: in the multi-user dual-flow beamforming mode, the receiving end is estimated according to the common pilot Channel matrix and obtaining an equivalent channel vector of the first layer according to the channel matrix, obtaining a single-user uninterrupted channel quality indicator CQ/ ⁇ according to the equivalent channel vector of the first layer; calculating according to the demodulation pilot An average of the multi-user interference, based on the average value and obtaining a difference from the multi-user channel quality indicator;
  • the channel quality information includes the difference and the difference.
  • said Q(f; R- strictly); f mt (k)f mt (k)*)- 'f ).
  • the method further comprises:
  • the receiving end feeds back the difference and the difference to the sending end.
  • the receiving end estimates the impact of the current interference on the channel quality according to the past interference
  • the step of acquiring the channel quality information includes: the receiving end obtains the equivalent of the first layer according to the demodulation pilot estimation a channel vector, according to the equivalent channel vector of the first layer, obtaining a channel quality indicator difference having multi-user interference and single-user interference-free according to the common pilot estimation
  • the channel quality information includes the eight ⁇ 4/4 and cg/ ⁇ .
  • the ⁇ 3 ⁇ 4/ ⁇ ( ⁇ 3 ⁇ 4 ⁇ - ⁇ ( ⁇ ⁇ + f mt (k)f mt (k)*) - .
  • the method further comprises: The receiving end feeds back the octave and c / ⁇ to the transmitting end.
  • the / m, m is equal to Hw,, m by the user after the pre-encoding process' equivalent channel vector precoding w, based on codebook selection.
  • the method further comprises:
  • the receiving end feeds back the channel quality information based on the codebook.
  • the receiving end estimates the impact of the current interference on the channel quality according to the past interference
  • the step of acquiring the channel quality information includes: a dual layer transmission for a single user multiple input multiple output system, at a common pilot port
  • the receiving end estimates a channel matrix according to the common pilot, and obtains an equivalent channel vector of the first layer and an equivalent channel vector of the second layer according to the channel matrix, and according to the solution
  • the average frequency of the inter-layer interference is calculated by the pilot frequency; the channel quality indicator of the first layer and the channel of the second layer are obtained according to the equivalent channel vector of the first layer, the equivalent channel vector of the second layer, and the average value Quality indicator.
  • the channel quality indicator CQI ⁇ of the first layer is:
  • T is the time interval, and t is the current time
  • R Dust amount ⁇ HH +N i;
  • Num int indicates the number of interfering cells;
  • ⁇ ,. indicates inter-cell interference
  • I white noise of a Gaussian distribution
  • f int (k) represents inter-layer interference obtained according to the demodulation pilot
  • ⁇ ( ⁇ ) indicates that the X operation is performed.
  • the method further comprises:
  • the receiving end After the receiving end acquires the channel quality information, the receiving end feeds back the ⁇ 3 ⁇ 4/ ⁇ and ⁇ 3 ⁇ 4/ ⁇ 2 to the transmitting end.
  • the receiving end estimates the impact of the current interference on the channel quality according to the past interference
  • the step of acquiring the channel quality information includes: a dual layer transmission for a single user multiple input multiple output system, at a common pilot port
  • the receiving end obtains an equivalent channel vector of the first layer and an equivalent channel vector of the second layer according to the demodulation pilot; and obtains the first channel according to the equivalent channel vector of the first layer.
  • a first layer channel quality indicator difference of one layer without inter-layer interference and inter-layer interference and obtaining a second layer without inter-layer interference and inter-layer interference according to the equivalent channel vector of the second layer Layer 2 channel quality indicator difference.
  • the first layer channel quality indicator difference ACQ/ is:
  • T is the time interval, and t is the current time; Representing an equivalent channel vector of the first layer obtained from the demodulation pilot estimation, and 2 representing an equivalent channel vector of the second layer obtained according to the demodulation pilot estimation;
  • Rrustoulin ⁇ H H +N i ; num int indicates the number of interfering cells;
  • ⁇ ,. indicates inter-cell interference
  • I white noise of a Gaussian distribution
  • f int (k) represents inter-layer interference obtained according to the demodulation pilot
  • ⁇ ( ⁇ ) indicates that the X operation is performed.
  • the method further comprises:
  • the receiving end feeds back the channel quality information to the transmitting end according to the channel quality indicator CQI TXD in the transmit diversity form of Release 8 port 5, the octet and the octet.
  • the step of the receiving end feeding back the channel quality information to the sending end comprises: the receiving end obtaining a channel quality indicator average value ⁇ 3 ⁇ 4/ according to the AC /, and ⁇ 3 ⁇ 4 / 2 , the CQ / ⁇ and the difference of ⁇ 3 ⁇ 4/ is fed back to the transmitting end; or
  • the receiving end feeds back the difference between the C / ⁇ and the difference, and the difference between the C / ⁇ and the ACQI 2 to the sending end;
  • the present invention also provides a receiving end in a multiple input multiple output system, which includes a channel quality acquiring module, and the module is configured to: estimate an impact of current interference on channel quality according to past interference within a current time interval, and obtain Channel quality information.
  • the channel quality information includes a signal to interference and noise ratio or a channel quality indicator.
  • SINR ⁇ i the signal to interference and noise ratio SINR ⁇ i is:
  • the channel quality indicator CQI is: Cu (curtain,);
  • T is the time interval, and t is the current time
  • ⁇ ,. indicates inter-cell interference
  • I white noise of a Gaussian distribution
  • f mt ⁇ (k) represents interference generated by the user m after the pre-encoding process obtained according to the demodulation pilot
  • ⁇ ( ⁇ ) indicates that the X operation is performed.
  • the channel quality obtaining method in the MIMO system proposed by the present invention can obtain more accurate channel quality information and feedback to the transmitting end when there are multiple layers of interference, without the codebook. Can also get a better estimate.
  • FIG. 1 is a schematic flow chart of a first mode in the first embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a second mode in the first embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a fourth mode in the second embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a fifth mode in a second embodiment of the present invention.
  • Figure 5 is a flow chart showing the transmission of the channel quality information fed back by the receiving end according to the present invention.
  • the receiving end of the MIMO system of the present invention includes a channel quality acquiring module, which is configured to: estimate the impact of the current interference on the channel quality according to past interference within a current time interval, and obtain channel quality information.
  • the channel quality information includes CQI or SINR.
  • the receiving end estimates the influence of the current interference on the CQI or SINR according to the past interference, for example, averaging the interference in the past T time interval, according to the average The value is used to estimate the current channel quality information. After the channel quality information is obtained, the obtained channel quality information is fed back to the transmitting end, and the transmitting end performs transmission with the receiving end according to the channel quality information.
  • One of the methods is to estimate the current interference based on past interference.
  • the LTE standard includes a Demodulation Reference Signal (DMRS), which is a dedicated pilot transmitted by a transmitting end (eNB) to each receiving end (UE). This pilot needs to be precoded at the time of transmission. Processing, same as data precoding. Therefore, as long as the UE knows which layers its own channel is located, it can be known that other layers are interference, and interference estimation can be implemented from the DMRS of the interference layer.
  • DMRS Demodulation Reference Signal
  • the following is divided into MU-MIMO and SU-MIMO, respectively, to illustrate the calculation method for estimating CQI by DMRS.
  • the CQI and SINR of the user m ' are:
  • ⁇ ( ⁇ ) in the equation (6) represents a quantization operation on X.
  • * f in m ( H intm (t)
  • w intm (t) is the multi-user interference after the pre-coding process, which can be obtained according to the DMRS.
  • the interference in the period from the current time to the T time period is averaged.
  • a filter can be used to filter the multi-user interference before the current time period T.
  • T can also be equal to 1, that is, without averaging, only the current DMRS is used for interference estimation, and T is equal to 1 (5) ) expressed as: siU :' + DD)*)— ' Equation (5-1)
  • T 1 means that the averaging process is not performed, and the same applies to the SU-MIMO case.
  • interference is mainly co-channel interference generated by other users in the same cell. These interferences are pre-coded, so the size and change of interference depend on the eNB. For different eNBs, different pairing and precoding processes are used, resulting in different interference. By estimating the previous interference, the approximate strength of the interference generated by the eNB can be known, thereby making an estimate of the impact of the CQI.
  • H (t)w 2 (t) is the inter-layer interference after precoding processing, and can be obtained from the DMRS.
  • the interference from the current time to the time period before the T time period is averaged, or a filter can be used to filter the multi-layer interference before the current time T period.
  • the calculation method is the same as the first layer, namely:
  • the signal to interference and noise ratio SINR ⁇ 2 and the channel quality indicator CQI ⁇ 2 of the second layer in the double layer transmission are respectively: Formula (7-1)
  • Rrustoulin ⁇ H H +N i; num int indicates the number of interfering cells;
  • ⁇ ,. indicates inter-cell interference
  • N white noise of a Gaussian distribution
  • ⁇ ( ⁇ ) indicates that the X operation is performed
  • H (t) w, (t) is the inter-layer interference after precoding, which can be obtained from the DMRS.
  • ⁇ f mt (k)f mt (k)' represents the average of multiuser interference during the time interval.
  • T can also be equal to 1, that is, without averaging, only the current DMRS is used for interference estimation.
  • the following describes an example of how to calculate the channel shield by demodulating the pilot.
  • the transmission based on single antenna port 5 belongs to the application of a single stream beamforming (BF) technology.
  • BF single stream beamforming
  • a new transmission mode is proposed in the enhanced version of LTE Release 9, which belongs to a rank of 2
  • the non-codebook spatial multiplexing method that is, the transmission of the two antenna ports using the dual stream BF technology.
  • the eNB can determine the method of precoding processing itself. Although the eNB generally orthogonalizes the two layers of precoding vectors, due to various errors of the actual system, when the signals arrive at the UE, inter-layer interference is difficult to avoid.
  • the UE directly feeds back two CQIs, namely CQI ⁇ and CQI ⁇ .
  • FIG. 1 is a schematic flowchart of a first manner in which a receiving end feeds back channel quality information to a transmitting end in a SU-MIMO system when the number of common pilot signal ports (ports) is not less than the number of transmitting antennas.
  • the process mainly includes the following steps:
  • Step S110 the UE estimates a channel matrix H according to a common pilot CRS (Common Reference Signal);
  • CRS Common Reference Signal
  • Step S120 The UE obtains two feature vectors according to the channel matrix H.
  • Step S130 the UE obtains an equivalent channel vector/i and a first layer of the first layer according to the two feature vectors.
  • Step S140 The UE calculates an average value of inter-layer interference according to the DMRS.
  • Step S150 the UE acquires a first layer channel quality indicator and a layer 2 channel quality indicator according to the average value and the sum / 2 ;
  • Step S160 The UE feeds back the CQI ⁇ and the sender to the sender.
  • the first mode is based on the fact that the UE can learn the channels of all the antennas.
  • the number of CRS ports is not less than the number of transmit antennas. For example, the number of maximum CRSs in Release 8 is four. If there are eight antennas at the transmitting end, The first method described above does not apply.
  • the CQI (represented by CQI TXD ) is fed back by the transmit diversity form of the transmission of Release 8 port 5 (the CQI TXD is used here), and then the CQI is adjusted based on the average inter-layer interference.
  • the equivalent channel vector_ of the first layer and the equivalent channel vector / 2 of the second layer, where the equivalent channel vector and the second layer of the first layer estimated according to the DMRS are respectively used and represented respectively
  • the equivalent channel vector / 2 so the SINR of the first layer when there is interlayer interference is: curtain; ( ⁇ ⁇ + f mt (k)f mt (k) * rt (13)
  • the first layer of CQI difference in the first layer without inter-layer interference and inter-layer interference is:
  • CQI 2 Q(f Rj 2 -f (R nn ⁇ f mt (k)f mt (k)*) (15)
  • CQI E CQI TXD - ACQI (17)
  • the receiving end feeds back the CQI estimate ⁇ 3 ⁇ 4/ to the transmitting end, so that the estimated inter-layer interference can be reflected in the ⁇ 3 ⁇ 4/ s calculation process.
  • the transmitting end eNB After receiving the ⁇ 3 ⁇ 4/, the transmitting end eNB performs the adjustment of the CQI between different layers according to the two feature vectors of the eNB's own estimated channel.
  • 2 is a schematic flow chart of the second aspect of the present invention. As shown in Figure 2, the process mainly includes the following steps:
  • Step S210 The UE estimates a channel quality indicator in the form of transmit diversity of Release 8 port 5 according to the common pilot CRS;
  • Step S220 the UE estimates the equivalent channel vector of the first layer and the equivalent channel vector of the second layer according to the DMRS.
  • Step S230 the UE calculates, according to the first layer, the first layer CQI difference AC ⁇ of the first layer without inter-layer interference and inter-layer interference;
  • Step S240 the UE calculates, according to the second layer, the second layer CQI difference ⁇ ⁇ / 2 without inter-layer interference and inter-layer interference;
  • Step S260 The UE obtains a CQI estimate according to the CQ/ ⁇ and CQI average ACQ/
  • CQI E CQI TXD - ACQI is fed back to the sender.
  • the third mode obtains: according to the first layer CQI difference value and the second layer CQI difference value, and the CQI TXD :
  • the estimated value of a layer of CQI is:
  • CQI 2E CQI TXD - ACQI 2 (19)
  • the receiving end feeds the first layer CQI estimate ⁇ 3 ⁇ 4/ ⁇ and the second layer CQI estimate to the transmitting end.
  • Dual-stream BF can also support multi-user MIMO, with each user occupying only one stream (rank 1).
  • the first embodiment requires that the rank of the single-user channel is 2, and if the rank of the channel is 1, multi-user MIMO is required for spatial multiplexing. If the rank of the channel is 1 and no user is paired, then a single-user single-flow BF is required.
  • this embodiment uses a differential CQI feedback method.
  • the receiver will After the eNB, if the eNB finds that the two users are paired, it can calculate C ⁇ CQ/ ⁇ -ACQ/ ⁇ of the multi-user from ⁇ and ACQ/. If there is no user to pair, use CQI ⁇ to perform single-user transmission. .
  • the feedback CQI is taken as an example
  • the following four methods are included:
  • the CQI is fed back in a differential manner, and dynamic single-user and multi-user switching is supported.
  • the single-user interference-free CQI is:
  • ⁇ 3 ⁇ 4/ ⁇ is a positive number.
  • a bit less than CQI can be used for feedback.
  • C / ⁇ 1 is 5 Bit quantity It can be quantized with 3 bits.
  • FIG. 3 is a schematic flow chart of the fourth aspect of the present invention. As shown in Figure 3, the process mainly includes the following steps:
  • Step S310 the UE estimates the channel matrix H according to the common pilot CRS
  • Step S320 the UE obtains a strongest feature vector according to the channel matrix H;
  • Step S330 the UE obtains an equivalent channel vector f of the first layer according to the strongest feature vector, and in step S340, the UE calculates an average value of multi-user interference according to the DMRS, f ⁇ f mt (k)f mt (k)*;
  • Step S350 the UE acquires a single-user interference-free channel quality indicator according to the
  • Step S360 the UE obtains a difference CQI ⁇ of the single-user interference-free channel quality indicator CQI ⁇ and the multi-user CQI according to the average value and the;
  • Step S370 The UE feeds back the CQI ⁇ and the sender to the sender.
  • the equivalent channel vector of the first layer can be estimated according to the DMRS. This is used to indicate the amount estimated from the DMRS, so the difference from the single-user non-interference C0/ OT 1 is:
  • CQI SM Q(f; R- - f; (R nn ⁇ f mt (k)f mt ( k)*rt) (24)
  • the receiving end feeds back to the transmitting end the CQI TXD in the form of transmit diversity of the transmission with Release 8 port 5 and the CQl ⁇ .
  • FIG. 4 is a schematic flow chart of the fifth aspect of the present invention. As shown in Figure 4, the process mainly includes the following steps:
  • Step S410 the UE estimates a channel quality indicator in the form of transmit diversity of Release 8 port 5 according to the common pilot CRS;
  • Step S420 the UE estimates an equivalent channel vector of the first layer according to the DMRS.
  • Step S430 the UE calculates, according to the equivalent channel vector of the first layer, a CQI difference without multi-user interference and multi-user interference;
  • Step S440 the UE sends the CQI TXD and the feedback to the sending end.
  • FIG. 2 is a schematic diagram of a process in which the transmitting end performs transmission according to the channel quality information fed back by the receiving end when the highest channel rank is 2. As shown in FIG. 2, when the first embodiment and the second embodiment are mixed, the transmitting end performs transmission according to the channel quality fed back by the receiving end, and mainly includes the following steps:
  • Step S210 The receiving end UE calculates a rank of the channel.
  • Step S220 determining whether the rank of the channel is 1 or not, then proceeding to step S230, otherwise proceeding to step S250;
  • Step S230 the UE calculates a single-user interference-free channel quality indicator
  • Step S240 the UE calculates a difference ⁇ 3 ⁇ 4/ between the single-user uninterrupted channel quality indicator C0/ OT 1 and the multi-user channel quality indicator, and feeds the single-user uninterrupted channel quality indicator and the difference ACQ/ The transmitting end eNB, step S260;
  • Step S250 the UE calculates the channel quality of the dual layer, obtains the first layer channel quality indicator CQ/ ⁇ and the layer 2 channel quality indicator CQ/ ⁇ 2 , and sets the first layer channel quality indicator CQ/ ⁇ and the The layer 2 channel quality indicator ⁇ 3 ⁇ 4/ ⁇ 2 is fed back to the transmitting end, and the process goes to step S290;
  • Step S260 the sender tries to perform multi-user pairing, and determines whether the pairing is successful. If yes, the process goes to step S270, otherwise the process goes to step S280;
  • Step S270 the transmitting end uses multi-user dual-flow BF for information transmission;
  • Step S280 the sending end uses a single user single stream BF for information transmission
  • step S290 the transmitting end uses a single-user dual-stream BF for information transmission.
  • Mode 5 of LTE Release 8 supports codebook-based multi-user MIMO transmission.
  • the UE may also be based on the codebook when feeding back CQI and PMI, but in order to enhance the performance of MU-MIMO, the eNB transmits It is still possible to support non-codebook multi-user MIMO transmission.
  • H intm (t (0 is the interference generated from the user m after the precoding process
  • the average of the time is averaged by an estimate of the interference between now and T, or a filter can be used to filter the previous multiuser interference.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, or may be implemented in the form of a software function module.
  • the invention is not limited to any specific form of combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

多输入多输出***中信道质量获取方法和接收端
技术领域
本发明涉及无线通信领域, 具体涉及一种多输入多输出 (MIMO ) *** 中信道质量指示符(CQI ) 的计算方法。
背景技术
在无线通信中, 如果在发送端 (基站 eNB )使用多根天线, 则可以釆取 空间复用的方式来提高传输速率, 即发送端在相同的时频资源上的不同天线 位置发射不同的数据。 在接收端(用户设备 UE )也使用多根天线, 则在单用 户的情况下可以将所有天线的资源都分配给同一用户。 以上的这传输形式称 之为单用户 MIMO ( SU-MIMO )。 另外亦可在多用户的情况下将不同天线空 间的资源分配给不同用户, 这传输形式叫做多用户 MIMO ( MU-MIMO ) 。
上述单用户 MIMO和多用户 MIMO这两种情况,发送端都需要根据各用 户的信道信息( CSI )来分配资源和决定发射的方法。 在接收端可以通过信道 估计获取出各个收发天线对之间的信道信息, 然后将信息反馈给 eNB。
在实际的情况下, 由于反馈是需要用***资源的, 一般 UE都将信息进 行量化才作反馈。 在长期演进(Long Time Evolution, LTE ) ***中, 量化后 的信息的反馈方式, 主要包括信道质量指示符 (Channel Quality Indicator, CQI ) , 预编码矩阵索引 (Precoding Matrix Index, PMI )和秩指示 (Rank Indicator, RI )。 另外, 发送端也可以从其它方式来估计信道信息, 例如用信 道互易性从上行的信道信息来估计下行的信道信息。
接收端可以通过信道和干扰估计计算出信干噪比(SINR ) , CQI—般就 是量化后的 SINR, 以下是在 SU-MIMO空间复用 ( Spatial Multiplexing )的场 景下, 用最小均方误差 (MMSE )接收机时 SINR的计算方法。
在发送端和接收端都有 2根天线时, 发送端和接收端之间的信道是一个 2x2的矩阵 H , 而在秩为 2的时候, 预编码 也是一个 2x2的矩阵, 预编码 处理后的信道则是: ^ = [/i /2] = ^ 式(1 ) 其中, 为第一层的等效信道向量, /2为第二层的等效信道向量。
接收端收到的信号是一个 2x1的向量 , w也是一个 2x1的向量, 代表 2 根天线接收的干扰和噪音, 而 和 则分别是在不同码子流的数据符号: y = fxsx + f2s2 + n 式( 2 ) 在使用 MMSE接收机情况下, 码子流(stream ) 1和码子流 2的信干噪 比 (SINR )分别是:
stream 1 式(3 ) stream 2 = f2¾f2 式(4 ) 其中,
R„„^ = ∑ H H * +f,f +NGI , num int表示干 4尤小区的数目;
H,是小区间干扰 ( inter-cell interference ) ;
Η,是 Η,.的转置矩阵; N。I是高斯分布的白噪声;
nn k是对于 k流的干扰和噪声协方差矩阵, 包括码子流之间的同道干 扰 。
对于 Release 8( R8 )的 LTE,预编码都是从标准的码本预定,在 SU-MIMO 的情况下, SINR计算时可以准确知道码子流之间的干扰, 这样亦能比较准确 计算 CQI。 但是在 Release 9 ( R9 ) 支持的双流波束赋形 ( Beamforming ) 下, 预编码是接收端计算出来的,接收端便不能准确知道码子流之间的干扰, CQI 的计算可能与实际发射时会有偏差。 在多用户双流 Beamforming场景下, 当有两个用户做空间复用时, SINR 的计算方式跟 SU-MIMO秩为 2的时候相比, 只是每个码子流是由不同的用 户占有, 干扰就可以说成多用户的干扰。
在用户 1接收端收到的信号是:
Figure imgf000004_0001
在用户 1用 MMSE接收机时, 用户 1的信干噪比 (SINR )是:
numlnt
MMSE SINR for User 1 = Α ^1 , 其中 „„,k =∑ K + f k + N0l 。 因为发射端在相同的时频资源上的不同天线位置, 向多用户发射不同的 数据, 各用户都会对其它用户产生干扰。 虽然可以用一些方法(例如破零等) 来降低各用户的干扰, 但在实际的情况下, 因为量化和其它各种的误差, 在 接收端都会有一定的多用户干扰存在。 在有多用户干扰的情况下, 因为多用 户的配对是在发射端进行, 接收端一般很难作未来干扰的预测, 所以 CQI的 准确度一般都较低。
在 MU-MIMO的情况下,虽然接收端不可能准确知道未来多用户的干扰, 但是亦可在 CQI计算时粗略考虑多用户带来的干扰。 其中一个方法是把所有 有可能跟自己配对的预编码都来作一个 SINR的计算, 然后作平均。 例如在 Release 8中, 2根天线的码本是:
Figure imgf000005_0002
在每个用户秩为 1的时候, 有 4个码子的选择。 如果发射端容许非正交 配对, 则每个用户便有 3个码子可作配对, 也就是说有 3个不同干扰的可能 性。 在这个情况下, 可以计算每一个可能性然后再作平均:
SINRMU = 其中 = H!H N。I。
Figure imgf000005_0001
其中 S是码子的数量, 即等于 4; ^是干扰的预编码。 这样可以将干扰 作一个大概的估计, 但是这个方法只可以用于***本的情况, 如果没***本 的话, 干扰的预编码可以有很多可能性, 那便没法作一个预测。 发明内容
本发明所要解决的技术问题, 在于需要提供一种多输入多输出***中信 道质量获取方法及接收端, 以用于接收端进行信道质量的计算。
为了解决上述技术问题, 本发明提供了一种多输入多输出***中信道质 量获取方法, 用于所述多输入多输出***中接收端获取信道质量信息, 其包 括: 所述接收端根据截止到当前的一个时间间隔内的过往干扰估算当前干扰 对信道质量的影响, 获取所述信道质量信息。
优选地, 所述估算包括通过公共导频或解调导频来估算。
优选地, 所述接收端根据所述过往干扰估算当前干扰对信道质量的影响 的步骤包括: 计算所述过往干扰的平均值并根据所述平均值来估算所述信道 质量, 或者通过对所述时间间隔内的多用户干扰进行过滤来估算所述信道质 量。
优选地, 所述信道质量信息包括信干噪比或者信道质量指示符。
优选地, 在多用户多输入多输出***中, 对于 M个用户中的用户 m', 信 干噪比 S/NR^,.为: 篇 ΜΟΆΊ (k)f (k)*)-X,;
Figure imgf000006_0001
信道质量指示符 C¾^.为:
cu (簾 ,);
其中,
T为所述时间间隔, t为当前时刻;
/m,为层 m'的等效信道向量;
R„„= ∑ H H + N i ; num int表示干扰小区的数目
Η,.表示小区间干扰; H,.*表示 Η,.的转置矩阵;
N。I表示高斯分布的白噪声;
Uk)表示根据所述解调导频得到的经过预编码处理之后的用户 m产生 的干扰;
β(χ)表示对 X进行量化运算。
Μ
优选地, 所述 τ为 1时, 讓„, + ∑ ,f )f— ( )— ,。
m=\,m≠m
优选地,所述接收端根据所述过往干扰估算当前干扰对信道质量的影响, 获取所述信道质量信息的步骤包括: 在多用户双流波束赋形模式下, 所述接 收端根据公共导频估计信道矩阵并根据所述信道矩阵获得第一层的等效信道 向量 , 根据所述第一层的等效信道向量 获得单用户无干扰信道质量指示 符 CQ/^ ; 根据所述解调导频计算多用户干扰的平均值, 根据所述平均值及 获得所述 与多用户信道质量指示符的差值;
所述信道质量信息是包括所述 与差值。
优选地, 所述 = Q(f;R-„ ); fmt(k)fmt (k)*)- 'f )。
Figure imgf000007_0001
优选地, 该方法还包括:
所述接收端将所述 及差值反馈给所述发送端。
优选地,所述接收端根据所述过往干扰估算当前干扰对信道质量的影响, 获取所述信道质量信息的步骤包括: 所述接收端根据所述解调导频估计获得 第一层的等效信道向量 ,根据所述第一层的等效信道向量 ^获得有多用户干 扰与单用户无干扰的信道质量指示符差值 根据所述公共导频估计
Release 8端口 5的发射分集形式的信道质量指示符 Cg/^;
所述信道质量信息是包括所述八^¾/^与 cg/^。 优选地, 所述 Δί¾/ = ρ(ίί¾ΐ - ίί(έηη + fmt(k)fmt (k)*) - 。
1 k=t- (T-l)
优选地, 该方法还包括: 所述接收端将所述八^¾/^与 c /^反馈给所述发送端。
优选地, 所述 /m,等于 Hwm, , 是通过预编码处理之后的用户 m'的等效信 道向量,预编码 w ,基于码本选择。
优选地, 该方法还包括:
所述接收端基于码本反馈所述信道质量信息。
优选地,所述接收端根据所述过往干扰估算当前干扰对信道质量的影响, 获取所述信道质量信息的步骤包括: 对于单用户多输入多输出***的双层传 输, 在公共导频端口的数量不少于发射天线数时, 所述接收端根据公共导频 估计信道矩阵, 根据所述信道矩阵获得第一层的等效信道向量和第二层的等 效信道向量, 并根据所述解调导频计算层间干扰的平均值; 根据所述第一层 的等效信道向量、 第二层的等效信道向量以及平均值, 获得第一层的信道质 量指示符和第二层的信道质量指示符。
优选地, 第一层的信干噪比 S/NROT1为: 簾 =f; ∑ fmt(k)fmt(k)*)- A,
1 k=t- (T-l)
所述第一层的信道质量指示符 CQI^为:
CQIsu,=Q(SINRsui); 第二层的信干噪比 simsul为:
Figure imgf000008_0001
所述第二层的信道质量指示符 c¾/^2为: CQISU2=Q{SINRsu^, 其中:
T为所述时间间隔, t为当前时刻;
;为层 i的等效信道向量;
num int
R„„= ∑ H H +N i; num int表示干扰小区的数目;
Η,.表示小区间干扰;
表示 Η,.的转置矩阵;
N。I表示高斯分布的白噪声;
fint (k)表示根据所述解调导频得到的层间干扰;
β(χ)表示对 X进行量化运算。
优选地, 所述 Τ为 1时,
簾 ^ = ( )*) ;
簾 2 = f;(Ann (^ ^。
优选地, 该方法还包括:
所述接收端获取所述信道质量信息后, 将所述 ί¾/ ^及 ^¾/^2反馈给所 述发送端。
优选地,所述接收端根据所述过往干扰估算当前干扰对信道质量的影响, 获取所述信道质量信息的步骤包括: 对于单用户多输入多输出***的双层传 输, 在公共导频端口的数量少于发射天线数时, 所述接收端根据解调导频获 得第一层的等效信道向量和第二层的等效信道向量; 并根据所述第一层的等 效信道向量获得第一层在没有层间干扰和有层间干扰的第一层信道质量指示 符差值, 根据所述第二层的等效信道向量获得第二层在没有层间干扰和有层 间干扰的第二层信道质量指示符差值。
优选地, 所述第一层信道质量指示符差值 ACQ/,为:
1 k=t- (T-1)
所述第二层信道质量指示符差值 Δί¾/2为: CQI2 = Q(f Rj2 -f (Rnn ∑ fmt(k)fmt(k)*) ;
1 k=t- (T-1)
其中:
T为所述时间间隔, t为当前时刻; 表示根据所述解调导频估算获得的所述第一层的等效信道向量, 2表示 根据所述解调导频估算获得的所述第二层的等效信道向量;
num int
R„„= ∑ H H +N i ; num int表示干扰小区的数目;
Η,.表示小区间干扰;
表示 Η,.的转置矩阵;
N。I表示高斯分布的白噪声;
fint (k)表示根据所述解调导频得到的层间干扰;
β(χ)表示对 X进行量化运算。
优选地, 该方法还包括:
所述接收端根据 Release 8 端口 5 的发射分集形式的信道质量指示符 CQITXD、 所述八^:^及八^^^ , 向所述发送端反馈所述信道质量信息。
优选地, 所述接收端向所述发送端反馈所述信道质量信息的步骤包括: 所述接收端根据所述 AC /,与 Δί¾/2获得信道质量指示符平均值 Δί¾/ ,将所述 CQ/^与所述 Δί¾/的差值反馈给所述发送端; 或者
所述接收端将所述 C /^与所述 的差值, 以及所述 C /^与所述 ACQI2的差值反馈给所述发送端;
其中所述 ACQI = (ACQI, + ACQI2、11。
本发明还提供一种多输入多输出***中的接收端, 其包括信道质量获取 模块, 该模块设置为: 根据截止到当前的一个时间间隔内的过往干扰估算当 前干扰对信道质量的影响, 获取信道质量信息。
优选的, 所述信道质量信息包括信干噪比或者信道质量指示符, 在多用 户多输入多输出***中,对于 M个用户中的用户 m' ,所述信干噪比 SINR^ i为:
1 t M
篇 ΜΟΆΊ +^ ∑ ∑ f (k)f (k)*)-X,; 所述信道质量指示符 CQI 为: cu (簾 ,);
其中,
T为所述时间间隔, t为当前时刻;
/m,为层 m'的等效信道向量; R„„= ∑ Η Η + ^ΐ ; num int表示干扰小区的数目;
Η,.表示小区间干扰;
表示 Η,.的转置矩阵;
N。I表示高斯分布的白噪声;
fmt∞(k)表示根据所述解调导频得到的经过预编码处理之后的用户 m产生 的干扰;
ρ(χ)表示对 X进行量化运算。
与现有技术相比,本发明提出的多输入多输出***中信道质量获取方法, 接收端能够在有多层干扰时获得较准确的信道质量信息并反馈给发送端, 在 没***本情况下也能获得较好的估算效果。 附图概述
图 1是本发明第一实施例中第一方式的流程示意图;
图 2是本发明第一实施例中第二方式的流程示意图;
图 3是本发明第二实施例中第四方式的流程示意图;
图 4为本发明第二实施例中第五方式的流程示意图;
图 5是本发明发送端根据接收端反馈的信道质量信息进行传输的流程示 意图。 本发明的较佳实施方式
以下将结合附图及实施例来详细说明本发明的实施方式, 借此对本发明 如何应用技术手段来解决技术问题, 并达成技术效果的实现过程能充分理解 并据以实施。
本发明的多输入多输出***中的接收端包括信道质量获取模块, 其设置 为: 根据截止到当前的一个时间间隔内的过往干扰估算当前干扰对信道质量 的影响, 获取信道质量信息。 所述信道质量信息包括 CQI或 SINR。
本发明中接收端在计算及反馈 CQI或 SINR时, 根据过往的干扰来估算 当前干 4尤对 CQI或 SINR的影响, 比如对过往截止到当前一个 T时间间隔内 的干扰进行平均, 根据该平均值来估算当前信道质量信息。 获取信道质量信 息后, 将获取的信道质量信息反馈给发送端, 发送端根据该信道质量信息进 行与接收端的传输。
根据过往干扰来估算当前干扰, 其中一种方法是通过导频来测量估算。
LTE的标准中包含一种解调导频( Demodulation Reference Signal, DMRS ) , 是发射端 (eNB )对每个接收端 (UE )发射的专用导频, 这种导频在发射时 需要经过预编码处理, 同数据预编码一样。 因此只要 UE知道自己的信道位 于哪几层,就可得知其它层都是干扰,可以从干扰层的 DMRS实现干扰估计。
以下分为 MU-MIMO和 SU-MIMO分别说明通过 DMRS估算 CQI的计 算方法。
对于 MU-MIMO情形
在 MU-MIMO的情况下, 如果共有 M个用户, 则用户 m '的 CQI及 SINR 分别为:
SINRMu
Figure imgf000012_0001
∑ (k)f (k)*)- , 式(5 )
CU (簾 ,) 式(ό ) 其中, t表示当前时间, T表示时间间隔;
= Hint m (t)wint m (t) ; 其中,丄 Z Z f1 m(k)fmt m(k)*表示 T时间间隔内多用户干扰的平均值。
T
式(6 ) 中的 ρ(χ)表示对 X进行量化运算。 * fin m( = Hintm(t)wintm(t)是经过预编码处理之后的多用户干扰,可以根 据 DMRS得到。对当前时刻到 T时间段之前的这一段时间内的干扰进行平均 处理,或者可以用滤波器来过滤当前时刻 T时间段之前的多用户干扰。 当然, T也可以等于 1, 即不做平均, 只根据当前的 DMRS来做干扰估计, 既 T等 于 1时式(5)表示为: siU :' + DD)*)— ' 式(5-1)
Figure imgf000013_0001
需要说明的是, 通过滤波器进行干扰滤波, 以及 T等于 1表示不做平均 处理, 同样适用于 SU-MIMO情形。
在多用户的场景下, 干扰主要是同小区其他用户产生的同道干扰, 这些 干扰都是经过预编码处理的, 所以干扰的大小与变化都取决于 eNB。 对于不 同 eNB, 釆用不同的配对及预编码处理, 从而产生不同的干扰。 通过对之前 干扰的统计, 可以知道 eNB产生干扰的大概强度, 从而对 CQI的影响作一个 估计。
对于 SU-MIMO情形
在 SU-MIMO的情况下, 如果是双层传输的话, 第一层的 CQI及 SINR 的计算可以写成: 簾 =f;(Rnn ∑ fmt(k)fmt(k)*)- ^ 式( 7 )
1 k=t- (T-1)
CQIsu,=Q{SINRsui) 式(8) 其中^ )=11 ( 2 ) 。 其中, 丄 ^ fmt(k)fmt(k)*表示 T时间间隔内多用户干扰的平均值。
T k=t— (T-1)
其中, H (t)w2 (t)是通过预编码处理后的层间干扰,可以从 DMRS来得到。 和多用户的场景一样, 对当前时刻到 T时间段之前的这一段时间内的干扰进 行平均处理, 或者可以用滤波器来过滤当前时刻 T时间段之前的多层干扰。
对于第二层, 计算方法同第一层一样, 即:
双层传输中第二层的信干噪比 SINR^ 2及信道质量指示符 CQI^ 2分别为: 式(7-1 )
Figure imgf000014_0001
CQIsu =Q、SINRsu ) 式(8-1 ) 其中:
;为层 i的等效信道向量;
num int
R„„= ∑ H H +N i; num int表示干扰小区的数目;
Η,.表示小区间干扰;
Η,表示 Η,.的转置矩阵;
N 表示高斯分布的白噪声;
ρ(χ)表示对 X进行量化运算;
其中 fint(t) = H O t) , H (t)w,(t)是通过预编码处理后的层间干扰, 可以 从 DMRS来得到。 其中, 丄 fmt(k)fmt(k)'表示 Τ时间间隔内多用户干扰的平均值。
T k=t—(T-i)
当然, T也可以等于 1, 即不做平均, 只根据当前的 DMRS来做干扰估 计, 既 T等于 1时式(7)表示为: 雄 】=f (Rnn+fmt(t)fmt(t)*)— 'f, 式( 7-2 ) 式(7-1 )表示为: 簾 =f;( nn+fmt(t)fmt(t)*)- 'f2 式( 7-3 )
下面利用实施例对说明如何通过解调导频来计算信道盾量。
第一实施例
在 LTE Release 8中, 基于单天线端口 5的传输, 属于一种单流波束赋形 (Beamforming, BF)技术的应用。 为了增强下行的非码本传输方式的性能, 在 LTE的增强版本 Release 9中提出了一种新的传输方式, 属于一种秩为 2 的非码本空间复用方式, 也就是釆用了双流 BF技术的两天线端口的传输。 在单用户双流 BF场景下, 因为不是基于码本的方式, eNB可以自己决 定预编码处理的方法。 虽然 eNB—般都使两层的预编码向量正交化, 但是由 于实际***的各种误差, 当信号到达 UE的时候, 层间的干扰是很难避免的,
第一层的 CQI是: 簾 ∑ fmt(k)fmt(k)*)- 'ί 式( 9 )
Figure imgf000015_0001
k=t-(T-l)
CQI^^QiSINR^) 式(10) 其中^ )=11 )^ ) 。 第二层的 CQI是: 式(11)
Figure imgf000015_0002
CQIsu =Q{SINRsu^ 式(12) 其中^ )=11 (0^ ) 。 在接收端反馈 SINR或者 CQI时(以反馈 CQI为例进行说明 ) , 包含有 以下第一、 第二及第三共三种方式: 第一方式
UE直接反馈两个 CQI , 即 CQI^和 CQI^。
图 1是在公共导频 CRS ( Common Reference Signal )端口 ( port )的数量 不少于发射天线数时, SU-MIMO***中接收端反馈信道质量信息给发送端的 第一方式的流程示意图。 如图 1所示, 该流程主要包括如下步骤:
步骤 S110, UE根据公共导频 CRS ( Common Reference Signal )估计信道 矩阵 H;
步骤 S120, UE根据该信道矩阵 H获得两个特征向量;
步骤 S130, UE根据该两个特征向量获得第一层的等效信道向量/ i和第 二层的等效信道向量/ 2 ;
步骤 S140, UE根据 DMRS计算层间干扰的平均值;
步骤 S150, UE根据该平均值以及该 和 /2 , 获取第一层信道质量指示 符 和第二层信道质量指示符 ;
步骤 S 160 , UE将该 CQI^和 反馈给发送端。
第二方式
上述第一方式是基于 UE可以获知所有天线的信道, 这需要 CRS port的 数量不少于发射天线数, 例如在 Release 8中最大 CRS的数量是 4个, 如果 发送端有 8根天线, 此时上述第一方式则不适用。
在 CRS端口 ( port ) 的数量少于发射天线数时, 用近似 Release 8端口 5 的传输的发射分集形式来反馈 CQI (我们这里用 CQITXD来代表), 然后基于 平均的层间干扰把 CQI调低,根据 DMRS获取第一层的等效信道向量 _;和第 二层的等效信道向量 /2 , 在此分别用 和 表示根据 DMRS估算出来的第一 层的等效信道向量 和第二层的等效信道向量/ 2 , 所以第一层在有层间干扰 时的 SINR是: 簾 ;(έηη + fmt(k)fmt(k)*rt 式(13 )
1 k=t-(T-l)
第一层在没有层间干扰和有层间干扰的第一层 CQI差值是:
^ QIX = Q( - ( ∑ fmt(k)fmt(k)*rt) 式( 14 )
1 k=t-(T-l)
运用与第一层一样的过程, 可以获得第二层在没有层间干扰和有层间干 扰时的第二层 CQI差值为: CQI2 = Q(f Rj2 -f (Rnn ∑ fmt(k)fmt(k)*) 式(15 )
1 k=t-(T-l)
计算第一层 CQI差值与第二层 CQI差值的 CQI平均值:
ACQI = (ACQI, + ACQI2 )12 式( 16 ) 根据 CQITXD及该 CQI平均值获得 CQI估计值:
CQIE = CQITXD - ACQI 式( 17 ) 接收端将该 CQI估计值 ^¾/反馈给发送端, 这样便可把估计出来的层间 干扰都反映在 <¾/s计算过程中。 发送端 eNB收到 <¾/后再根据 eNB 自己估 计信道的两个特征向量做不同层之间 CQI的调整。 图 2为本发明上述第二方 式的流程示意图。 如图 2所示, 该流程主要包括如下步骤:
步骤 S210, UE根据公共导频 CRS估计 Release 8端口 5的发射分集形式 的信道质量指示符 ;
步骤 S220, UE根据 DMRS估计第一层的等效信道向量 ^和第二层的等 效信道向量
步骤 S230 , UE根据该 计算第一层在没有层间干扰和有层间干扰的第一 层 CQI差值 AC^ ;
步骤 S240 , UE根据该 计算第二层在没有层间干扰和有层间干扰的第二 层 CQI差值 Δ ρ/2 ;
步骤 S250, 根据该第一层 CQI差值 ACQ/,与第二层 CQI差值 Δί¾/2获得 CQI平均值 ACQI = (ACQI, + ACQI2 )12
步骤 S260 , UE 根据该 CQ/^及 CQI 平均值 ACQ/获得 CQI 估计值
CQIE = CQITXD - ACQI反馈给发送端。
第三方式
与前述的第二方式相比, 第三方式在获得第一层 CQI差值与第二层 CQI 差值之后, 根据第一层 CQI差值与第二层 CQI差值, 以及 CQITXD获得: 第一层 CQI估计值为:
CQI H ACQI 式(18 ) 第二层 CQI估计值为:
CQI2E = CQITXD - ACQI2 式( 19 ) 接收端将该第一层 CQI估计值 ^¾/^及第二层 CQI估计值 馈给发 送端。 第二实施例
双流 BF也可以支持多用户 MIMO, 每一个用户只占一个流(秩为 1 ) 。 第一实施例要求单用户信道的秩为 2, 如果信道的秩为 1, 则需要多用户 MIMO来做空间复用。 如果信道的秩为 1又没有用户做配对的话, 则需要釆 用单用户的单流 BF。 在这个单流 BF模式, 要支持动态单用户单流 BF和多 用户 BF的切换, 本实施例釆用差分 CQI的反馈方法。
首先计算单流 BF的 CQI:
CQISUA = Q(SINRSU, ) = Q(KR; ) 式( 20 ) 然后再计算单流 BF和双流 BF之间的差值 t Ql^:
ACQISD=CQISU,-Q(SINR
= QIsu,-Q(l( ^ ∑ fmt(k)fmt(k)*)— ) 式(21 )
T k=t- (τ-1)
接收端将该
Figure imgf000018_0001
eNB后, eNB如果找到两用户做配对的 话, 可以从 ^和 ACQ/ 计算多用户的 C^^^CQ/^-ACQ/^, 如果没有用 户做配对的话就用 CQI^来做单用户的传输。
在接收端反馈 SINR或者 CQI时(以反馈 CQI为例进行说明 ) , 包含有 以下第四和第五共两种方式: 第四方式
本方式是利用差分的方式反馈 CQI, 支持动态单用户和多用户的切换, 例如在秩为 1的情况下, 因为只有一层, 没有多层的干扰, 单用户无干扰的 CQI是:
CQISUA = Q(SINRSU, ) = Q(KR; ) 式( 22 ) 其与多用户 CQI的差值是:
ACQI^=CQISU,-Q(SINR
= CQISU, -Qi i ∑ fmt(k)fmt(k)*)- ) 式( 23 )
T k=t- (τ-1)
因为多用户的 CQI是低于单用户的 CQI, 因此八^¾/^是正数, 在量化 八^¾/^时可以用比 CQI少一点的比特来作反馈, 例如 C /∞1是用 5比特来量 化, 可以用 3比特来量化。
图 3为本发明上述第四方式的流程示意图。 如图 3所示, 该流程主要包 括如下步骤:
步骤 S310, UE根据公共导频 CRS估计信道矩阵 H;
步骤 S320, UE根据该信道矩阵 H获得一个最强的特征向量;
步骤 S330, UE根据该最强的特征向量获得第一层的等效信道向量 f , 步骤 S340, UE根据 DMRS计算多用户干扰的平均值丄 ^ fmt(k)fmt(k)*;
T k=t-(T-i)
步骤 S350, UE根据该 , 获取单用户无干扰信道质量指示符
步骤 S360, UE根据该平均值以及该 , 获取该单用户无干扰信道质量 指示符 CQI^与多用户 CQI的差值 CQI^;
步骤 S370 , UE将该 CQI^和 反馈给发送端。
第五方式
本方式是在 UE无法从 CRS取得第一层的等效信道向量 的情况下 (比 如 CRS port的数量不少于发射天线数), 可以根据 DMRS来估计获得第一层 的等效信道向量 , 在此用 来表示根据 DMRS估计出来的量, 所以与单用 户无干扰 C0/OT 1的差值为: CQISM = Q(f;R- -f;(Rnn ∑ fmt(k)fmt(k)*rt) 式( 24 )
1 k=t-(T-l)
在这种情况下,接收端向发送端反馈用 Release 8端口 5的传输的发射分 集形式的 CQITXD以及该 CQl^。
图 4为本发明上述第五方式的流程示意图。 如图 4所示, 该流程主要包 括如下步骤:
步骤 S410, UE根据公共导频 CRS估计 Release 8端口 5的发射分集形式 的信道质量指示符 ;
步骤 S420, UE根据 DMRS估计第一层的等效信道向量 ; 步骤 S430, UE根据该第一层的等效信道向量 计算在没有多用户干扰和 有多用户干扰的 CQI差值 ;
步骤 S440 , UE将该 CQITXD以及该 反馈给发送端。
需要说明的是, 上述第一实施例和第二实施例可以混用, 图 2即为信道 最高秩为 2时, 发送端根据接收端反馈的信道质量信息进行传输的流程示意 图。 如图 2所示, 第一实施例和第二实施例混用时, 发送端根据接收端反馈 的信道质量进行传输主要包括如下步骤:
步骤 S210, 接收端 UE计算信道的秩;
步骤 S220, 判断该信道的秩是否为 1 , 是为 1则转步骤 S230, 否则转步 骤 S250;
步骤 S230, UE计算单用户无干扰信道质量指示符 ;
步骤 S240 , UE计算该单用户无干扰信道质量指示符 C0/OT 1与多用户信道 质量指示符的差值 Δί¾/ , 并将该单用户无干扰信道质量指示符 以及该 差值 ACQ/反馈给发送端 eNB, 转步骤 S260;
步骤 S250, UE计算双层的信道质量,获得第一层信道质量指示符 CQ/^ 以及第二层信道质量指示符 CQ/^2 ,并将该第一层信道质量指示符 CQ/^以及 第二层信道质量指示符 ί¾/^2反馈给发送端, 转步骤 S290;
步骤 S260, 发送端尝试进行多用户配对, 并判断配对是否成功, 成功则 转步骤 S270, 否则转步骤 S280;
步骤 S270, 发送端釆用多用户双流 BF进行信息传输;
步骤 S280, 发送端釆用单用户单流 BF进行信息传输;
步骤 S290, 发送端釆用单用户双流 BF进行信息传输。
第三实施例
LTE的 Release 8的模式 5 , 支持基于码本的多用户 MIMO的传输。 在增 强长期演进(LTE-Advanced ) 的 Release 10 ( R10 )版本中, UE在反馈 CQI 和 PMI的时候也可以基于码本,但为了增强 MU-MIMO的性能, eNB传输的 时候仍然可以支持非码本多用户 MIMO的传输。 在这个模式下, 因为也是应 用 DMRS来解调, 所以多用户双流 BF的实施方式, 也可以同样釆用 DMRS 来估计干扰。 和多用户双流 BF不同之处, 主要是可以复用多于两个用户。 以 下就是当有 M个用户的情况下, 用户 的 CQI计算方法: SINRMU = (RNN + - ∑ ∑ f (k)f (k)*)-X, 式(25 )
1
CU (簾 ,) 式(26 ) 其中 fint ) = Hint»intm(0。
其中 Hintm(t (0是通过预编码处理之后的从用户 m产生的干扰, 可以 根据 DMRS获得。把所有用户的干扰加起来,然后再作时间的平均(如式( 25 ) 中丄 ^ 所示即为时间的平均处理) , 获得如式(26 ) 所示的信道质量信
T
息。 时间的平均是通过现在跟 T以前之间的干扰的估计算一个平均, 或者可 以用滤波器来过滤之前的多用户干扰。
当然, 时间间隔 T为 1时, 式( 25 )为:
Figure imgf000021_0001
= (έηη + f (k)fmt (k)*) , 式( 25-1 ) 其中 fw, = Hw 是通过预编码处理之后的用户 的等效信道向量,预编 码 w ,是基于码本来选择的。
虽然本发明所揭露的实施方式如上, 但所述的内容只是为了便于理解本 发明而釆用的实施方式, 并非用以限定本发明。 任何本发明所属技术领域内 的技术人员, 在不脱离本发明所揭露的精神和范围的前提下, 可以在实施的 形式上及细节上作任何的修改与变化, 但本发明的专利保护范围, 仍须以所 附的权利要求书所界定的范围为准。 本领域普通技术人员可以理解上述方法 中的全部或部分步骤可通过程序来指令相关硬件完成, 所述程序可以存储于 计算机可读存储介质中, 如只读存储器、 磁盘或光盘等。 可选地, 上述实施 例的全部或部分步骤也可以使用一个或多个集成电路来实现。 相应地, 上述 实施例中的各模块 /单元可以釆用硬件的形式实现, 也可以釆用软件功能模块 的形式实现。 本发明不限制于任何特定形式的硬件和软件的结合。 工业实用性 与现有技术相比,本发明提出的多输入多输出***中信道质量获取方法, 接收端能够在有多层干扰时获得较准确的信道质量信息并反馈给发送端, 在 没***本情况下也能获得较好的估算效果。

Claims

权 利 要 求 书
1、 一种多输入多输出***中信道质量获取方法,用于所述多输入多输出 ***中接收端获取信道质量信息, 其包括: 所述接收端根据截止到当前的一 个时间间隔内的过往干扰估算当前干扰对信道质量的影响, 获取所述信道质 量信息。
2、 如权利要求 1所述的方法, 其中:
所述估算包括通过公共导频或解调导频来估算。
3、 如权利要求 2所述的方法, 其中:
所述接收端根据所述过往干扰估算当前干扰对信道质量的影响的步骤包 括: 计算所述过往干扰的平均值并根据所述平均值来估算所述信道质量, 或 者通过对所述时间间隔内的多用户干扰进行过滤来估算所述信道质量。
4、 如权利要求 2所述的方法, 其中:
所述信道质量信息包括信干噪比或者信道质量指示符。
5、 如权利要求 4所述的方法, 其中:
在多用户多输入多输出***中,对于 M个用户中的用户 m', 所述信干噪 比 S/NR^,.为: 篇 ΜΟΆΊ (k)f (k)*)-X,;
Figure imgf000023_0001
所述信道质量指示符 为:
cu (簾 ,);
其中,
T为所述时间间隔, t为当前时刻;
/m,为层 m'的等效信道向量;
R„„= ∑ H H + N i ; num int表示干扰小区的数目;
Η,.表示小区间干扰;
表示 Η,.的转置矩阵;
N。I表示高斯分布的白噪声;
fmt∞(k)表示根据所述解调导频得到的经过预编码处理之后的用户 产生 的干扰;
β(χ)表示对 X进行量化运算。
6、 如权利要求 5所述的方法, 其中:
Μ
所述 Τ为 1时, SINR; ( + ∑ ,f )f— ,。
m=\,m≠m 7、 如权利要求 5所述的方法, 其中:
所述接收端根据所述过往干扰估算当前干扰对信道质量的影响 , 获取所 述信道质量信息的步骤包括: 在多用户双流波束赋形模式下, 所述接收端根 据公共导频估计信道矩阵并根据所述信道矩阵获得第一层的等效信道向量 根据所述第一层的等效信道向量 获得单用户无干扰信道质量指示符 CQI^; 根据所述解调导频计算多用户干扰的平均值, 根据所述平均值及/ 1 获得所述 与多用户信道质量指示符的差值;
所述信道质量信息是包括所述 与所述差值。
8、 如权利要求 7所述的方法, 其中:
所述 CQ/^^ ^f^^) ;
fmt(k)fmt(k)*)- 'f )。
Figure imgf000024_0001
9、 如权利要求 7所述的方法, 该方法还包括:
所述接收端将所述 及差值反馈给所述发送端。
10、 如权利要求 5所述的方法, 其中:
所述接收端根据所述过往干扰估算当前干扰对信道质量的影响, 获取所 述信道质量信息的步骤包括: 所述接收端根据所述解调导频估计获得第一层 的等效信道向量 ,根据所述第一层的等效信道向量 ^获得有多用户干扰与单 用户无干扰的信道质量指示符差值 CQI^; 根据所述公共导频估计 Release 8 端口 5的发射分集形式的信道质量指示符 C /^;
所述信道质量信息是包括所述 与 CQITXD
11、 如权利要求 10所述的方法, 其中: 所述 Δ^¾^ = ρ(ίί¾ΐ - ίί(έηη + fmt(k)fmt(km)。
1 k=t- (T-l)
12、 如权利要求 10所述的方法, 该方法还包括:
所述接收端将所述八^¾/^与 C /^反馈给所述发送端。
13、 如权利要求 5所述的方法, 其中:
所述 /m,等于 Hwm/, 是通过预编码处理之后的用户 m'的等效信道向量, 预编码 w ,基于码本选择。
14、 如权利要求 13所述的方法, 该方法还包括:
所述接收端基于码本反馈所述信道质量信息。
15、 如权利要求 4所述的方法, 其中:
所述接收端根据所述过往干扰估算当前干扰对信道质量的影响 , 获取所 述信道质量信息的步骤包括: 对于单用户多输入多输出***的双层传输, 在 公共导频端口的数量不少于发射天线数时, 所述接收端根据公共导频估计信 道矩阵, 根据所述信道矩阵获得第一层的等效信道向量和第二层的等效信道 向量, 并根据所述解调导频计算层间干扰的平均值; 根据所述第一层的等效 信道向量、 第二层的等效信道向量以及平均值, 获得第一层的信道质量指示 符和第二层的信道质量指示符。
16、 如权利要求 15所述的方法, 其中:
第一层的信干噪比 SINR^ ,为: 簾 ,
Figure imgf000026_0001
所述第一层的信道质量指示符 为:
CQIsu,=Q(SINRsui);
第二层的信干噪比 simsul为:
Figure imgf000026_0002
所述第二层的信道质量指示符 C2/^2为:
CQIsu =Q(SINRsu2);
其中:
T为所述时间间隔, t为当前时刻;
;为层 i的等效信道向量;
num int
R„„ = ∑ H H +N i; num int表示干扰小区的数目;
Η,.表示小区间干扰;
表示 Η,.的转置矩阵;
N。I表示高斯分布的白噪声;
fint (k)表示根据所述解调导频得到的层间干扰;
β(χ)表示对 X进行量化运算。
17、 如权利要求 16所述的方法, 其中:
所述 Τ为 1时,
簾 ^= ( )*) ; 簾 2 =f;(Ann (^ ^。
18、 如权利要求 16所述的方法, 该方法还包括:
所述接收端获取所述信道质量信息后, 将所述 ί¾/ ^及 ^¾/^2反馈给所 述发送端。
19、 如权利要求 4所述的方法, 其中:
所述接收端根据所述过往干扰估算当前干扰对信道质量的影响 , 获取所 述信道质量信息的步骤包括: 对于单用户多输入多输出***的双层传输, 在 公共导频端口的数量少于发射天线数时, 所述接收端根据解调导频获得第一 层的等效信道向量和第二层的等效信道向量; 并根据所述第一层的等效信道 向量获得第一层在没有层间干扰和有层间干扰的第一层信道质量指示符差 值, 根据所述第二层的等效信道向量获得第二层在没有层间干扰和有层间干 扰的第二层信道质量指示符差值。
20、 如权利要求 19所述的方法, 其中:
所述第一层信道质量指示符差值 C X为:
1 k=t- (T-1)
所述第二层信道质量指示符差值 Δί¾/2为: CQI2 = Q(f Rj2 -f (Rnn ∑ fmt(k)fmt(k)*) ;
1 k=t- (T-1)
其中:
T为所述时间间隔, t为当前时刻;
表示根据所述解调导频估算获得的所述第一层的等效信道向量, 2表示 根据所述解调导频估算获得的所述第二层的等效信道向量;
num int
R„„= ∑ H H +N i ; num int表示干扰小区的数目;
Η,.表示小区间干扰;
表示 Η,.的转置矩阵;
N。I表示高斯分布的白噪声;
fint (k)表示根据所述解调导频得到的层间干扰; β(Χ)表示对 X进行量化运算。
21、 如权利要求 20所述的方法, 其中, 该方法还包括:
所述接收端根据 Release 8 端口 5 的发射分集形式的信道质量指示符 CQITXD、 所述八^:^及八^^^ , 向所述发送端反馈所述信道质量信息。
22、 如权利要求 21所述的方法,其中, 所述接收端向所述发送端反馈所 述信道质量信息的步骤包括:
所述接收端根据所述 Δ ρ/,与 Δί¾/2获得信道质量指示符平均值 Δί¾/ ,将 所述 CQ/^与所述 Δί¾/的差值反馈给所述发送端; 或者
所述接收端将所述 C /^与所述 的差值, 以及所述 C /^与所述 ACQI2的差值反馈给所述发送端;
其中所述 ACQI = (ACQI, + ACQI2、11。
23、 一种多输入多输出***中的接收端, 其包括:
信道质量获取模块, 其设置为: 根据截止到当前的一个时间间隔内的过 往干扰估算当前干扰对信道质量的影响 , 获取信道质量信息。
24、 如权利要求 23所述的接收端,其中: 所述信道质量信息包括信干噪 比或者信道质量指示符, 在多用户多输入多输出***中, 对于 M个用户中的 用户 m ' , 所述信干噪比 SINR^ i为:
t M
篇 ΜΟΆΊ +^ ∑ ∑ f (k)f (k)*)-X,; 所述信道质量指示符 为:
CU (簾 ,); 其中,
T为所述时间间隔, t为当前时刻;
/m,为层 m'的等效信道向量;
num int
R„„= ∑ H H +N i ; num int表示干扰小区的数目;
Η,.表示小区间干扰;
Η,表示 Η,.的转置矩阵;
N0l表示高斯分布的白噪声;
fmt,(k)表示根据所述解调导频得到的经过预编码处理之后的用户 产生 的干扰;
PCT/CN2010/074838 2009-08-12 2010-06-30 多输入多输出***中信道质量获取方法和接收端 WO2011017988A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910167323.9A CN101630967B (zh) 2009-08-12 2009-08-12 多输入多输出***中信道质量获取方法
CN200910167323.9 2009-08-12

Publications (1)

Publication Number Publication Date
WO2011017988A1 true WO2011017988A1 (zh) 2011-02-17

Family

ID=41575940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074838 WO2011017988A1 (zh) 2009-08-12 2010-06-30 多输入多输出***中信道质量获取方法和接收端

Country Status (2)

Country Link
CN (1) CN101630967B (zh)
WO (1) WO2011017988A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9743304B2 (en) 2011-03-31 2017-08-22 Sun Patent Trust Method of feeding back MU-CQI in a communication system, transmission point device, and user equipment
CN111031609A (zh) * 2018-10-10 2020-04-17 鹤壁天海电子信息***有限公司 一种信道的选择方法及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630967B (zh) * 2009-08-12 2015-06-03 中兴通讯股份有限公司 多输入多输出***中信道质量获取方法
CN101630966B (zh) * 2009-08-20 2015-04-01 中兴通讯股份有限公司 多输入多输出***中信道质量的反馈方法
CN102611526B (zh) 2011-11-08 2015-03-25 华为技术有限公司 Mimo***中发送数据流的方法和装置
WO2014089836A1 (zh) * 2012-12-14 2014-06-19 华为技术有限公司 信道质量指示反馈方法、装置和用户设备
CN104702543B (zh) * 2013-12-04 2018-05-29 华为技术有限公司 预编码方法及装置
CN105071876B (zh) * 2015-08-26 2017-11-24 华为技术有限公司 干扰估计方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207890A (zh) * 2006-12-18 2008-06-25 中兴通讯股份有限公司 一种降低高速上行分组接入***中小区过载率的方法
CN101442388A (zh) * 2008-12-29 2009-05-27 北京邮电大学 一种多输入多输出***中的预编码方法和装置
CN101630966A (zh) * 2009-08-20 2010-01-20 中兴通讯股份有限公司 多输入多输出***中信道质量的反馈方法
CN101630967A (zh) * 2009-08-12 2010-01-20 中兴通讯股份有限公司 多输入多输出***中信道质量获取方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100956833B1 (ko) * 2001-05-14 2010-05-11 인터디지탈 테크날러지 코포레이션 다운링크 자원 할당을 위한 채널 품질 측정값 제공 방법, 무선 디지털 통신 시스템 및 사용자 장치
US7522555B2 (en) * 2005-01-21 2009-04-21 Intel Corporation Techniques to manage channel prediction
KR101297950B1 (ko) * 2005-08-24 2013-08-19 인터디지탈 테크날러지 코포레이션 업링크 용량을 증가시키기 위해 채널 품질 표시자 피드백 주기를 조정하는 방법 및 장치
CN100571099C (zh) * 2006-03-24 2009-12-16 华为技术有限公司 一种反馈控制方法、装置及收发信机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207890A (zh) * 2006-12-18 2008-06-25 中兴通讯股份有限公司 一种降低高速上行分组接入***中小区过载率的方法
CN101442388A (zh) * 2008-12-29 2009-05-27 北京邮电大学 一种多输入多输出***中的预编码方法和装置
CN101630967A (zh) * 2009-08-12 2010-01-20 中兴通讯股份有限公司 多输入多输出***中信道质量获取方法
CN101630966A (zh) * 2009-08-20 2010-01-20 中兴通讯股份有限公司 多输入多输出***中信道质量的反馈方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9743304B2 (en) 2011-03-31 2017-08-22 Sun Patent Trust Method of feeding back MU-CQI in a communication system, transmission point device, and user equipment
CN111031609A (zh) * 2018-10-10 2020-04-17 鹤壁天海电子信息***有限公司 一种信道的选择方法及装置
CN111031609B (zh) * 2018-10-10 2023-10-31 鹤壁天海电子信息***有限公司 一种信道的选择方法及装置

Also Published As

Publication number Publication date
CN101630967A (zh) 2010-01-20
CN101630967B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
US10827375B2 (en) Configuration of coordinated multipoint transmission hypotheses for channel state information reporting
CN108370266B (zh) 在无线通信***中发送和接收信道状态信息的方法和设备
US9985700B2 (en) Channel state feedback enhancement in downlink multiuser superposition transmission
WO2011020394A1 (zh) 多输入多输出***中信道质量的反馈方法及用户设备
KR101584689B1 (ko) 다중 안테나 시스템에서 다중 사용자 간섭 제거 방법 및 장치
JP5880925B2 (ja) マルチユーザーmimoのための改良チャネルフィードバック
JP6380683B2 (ja) 通信システム及び方法、基地局、及びユーザ端末
US8442139B2 (en) Apparatus and method for transmitting and receiving in a multi-antenna system
WO2011017988A1 (zh) 多输入多输出***中信道质量获取方法和接收端
WO2010053664A2 (en) Employing cell-specific and user entity-specific reference symbols in an orthogonal frequency division multiple access
WO2016165652A1 (zh) 信道信息反馈方法及装置
WO2017076347A1 (zh) 一种信道状态信息量化反馈方法及终端
KR20100041662A (ko) 미모 무선 통신 시스템에서 오버헤드를 줄이기 위한 장치 및 방법
CN106233816B (zh) 解调参考信号的传输方法及设备
WO2010091647A1 (en) System and method for wireless communications using spatial multiplexing with incomplete channel information
WO2013033919A1 (zh) 数据传输方法、***、发射机和接收机
CN115428354A (zh) 使用角度和延迟互易性的增强型新无线电(nr)ii型信道状态信息(csi)反馈
EP2878083A1 (en) Adaptive precoder cycling
WO2014023727A1 (en) Method and apparatus providing inter-transmission point phase relationship feedback for joint transmission comp
CN105515725A (zh) 导频发送方法、信道信息测量反馈方法、发送端及接收端
CN103391129A (zh) 用于对接收信号进行解码的装置和方法
KR20130073021A (ko) 무선 통신 시스템에서 채널 정보 피드백 및 수신을 위한 방법, 수신장치 및 송신장치
KR20100110196A (ko) 다중 셀 통신 시스템에서 셀 가장자리 사용자의 에러를 최소화하기 위한 장치 및 방법
WO2016145952A1 (zh) 信道状态测量导频的处理方法及装置
CN106712820B (zh) 自干扰抑制的多流分集bd预编码方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10807933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10807933

Country of ref document: EP

Kind code of ref document: A1