WO2011020394A1 - 多输入多输出***中信道质量的反馈方法及用户设备 - Google Patents

多输入多输出***中信道质量的反馈方法及用户设备 Download PDF

Info

Publication number
WO2011020394A1
WO2011020394A1 PCT/CN2010/075122 CN2010075122W WO2011020394A1 WO 2011020394 A1 WO2011020394 A1 WO 2011020394A1 CN 2010075122 W CN2010075122 W CN 2010075122W WO 2011020394 A1 WO2011020394 A1 WO 2011020394A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
interference
channel quality
inter
receiving end
Prior art date
Application number
PCT/CN2010/075122
Other languages
English (en)
French (fr)
Inventor
李儒岳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011020394A1 publication Critical patent/WO2011020394A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a channel quality feedback method and user equipment in a multiple input multiple output (MIMO) system.
  • MIMO multiple input multiple output
  • the spatial multiplexing mode can be used to increase the transmission rate, that is, the transmitting end transmits different data at different positions on the same time-frequency resource.
  • the spatial multiplexing mode can be used to increase the transmission rate, that is, the transmitting end transmits different data at different positions on the same time-frequency resource.
  • resources of all antennas can be allocated to the same user in the case of a single user.
  • the above transmission form is called single-user MIMO (SU-MIMO).
  • SU-MIMO single-user MIMO
  • resources of different antenna spaces can be allocated to different users in the case of multiple users.
  • This transmission form is called multi-user MIMO (MU-MIMO).
  • the transmitting end needs to allocate resources and decide the method of transmitting according to the channel information (CSI) of each user.
  • CSI channel information
  • the receiving end channel information between each pair of transmitting and receiving antennas can be obtained through channel estimation, and then the information is fed back to the eNB.
  • the UE In the actual situation, since the feedback requires system resources, the UE generally quantizes the information for feedback.
  • the feedback manner of the quantized information mainly includes a Channel Quality Indicator (CQI), a Precoding Matrix Index (PMI), and a rank indication ( Rank Indicator, RI ).
  • the transmitting end may also estimate channel information from other methods, for example, using channel reciprocity to estimate downlink channel information from uplink channel information.
  • the receiver can calculate the Signal to Interference and Noise Ratio (SINR) through channel and interference estimation.
  • SINR Signal to Interference and Noise Ratio
  • the CQI is generally the quantized SINR.
  • the following is the minimum mean square error in the SU-MIMO Spatial Multiplexing scenario. MMSE) The calculation method of SINR at the receiver.
  • the channel between the transmitting end and the receiving end is a 2x2 matrix H, and when the rank is 2, the precoding is also a 2x2 matrix, after precoding processing.
  • the signal received at the receiving end is a 2x1 vector
  • w is also a 2x1 vector representing the interference and noise received by the two antennas
  • the sum is the data symbols in the different code substreams:
  • the signal-to-interference-and-noise ratio (SINR) of the code stream (stream) 1 and code stream 2 are:
  • H is inter-cell interference
  • is the transposed matrix of ⁇ ,.
  • I is a white noise of a Gaussian distribution
  • nn k is the interference and noise covariance matrix for the k stream, including the co-channel interference between the code substreams.
  • the precoding is predetermined from the standard codebook.
  • the interference between the code substreams can be accurately known in the SINR calculation, so that the CQI can be calculated more accurately.
  • the precoding is calculated by the receiving end, and the receiving end cannot accurately know the interference between the code substreams. The calculation of CQI may deviate from the actual transmission.
  • the SINR is calculated in a way that the SU-MIMO rank is 2, but each code substream is occupied by a different user, and the interference can be Said to be a multi-user interference.
  • the signal received at the receiver of User 1 is:
  • SINR Signal to Interference Ratio
  • the receiving end cannot accurately know the interference of multiple users in the future, it is also possible to roughly consider the interference caused by multiple users in the CQI calculation.
  • One of the methods is to calculate all SINRs for all precodings that may be paired with them, and then average them. For example, in Release 8, the codebook for two antennas is:
  • each user rank is 1, there are 4 code choices. If the sender allows non-orthogonal pairing, then each user has 3 code pairs to pair, which means there are 3 different interference possibilities. In this case, each possibility can be calculated and then averaged:
  • S is the number of coders, ie equal to 4;
  • is the precoding of the interference. This can make a rough estimate of the interference, but this method can only be used in the case of codebooks. If there is no codebook, the precoding of the interference can have many possibilities, then there is no way to make a prediction. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a method for feeding back channel quality in a MIMO system and a user equipment for feeding back channel quality information to a transmitting end or a base station.
  • the present invention provides a method for feeding back channel quality in a MIMO system, in which the receiving end feeds back channel quality information to a transmitting end, and the method includes:
  • the receiving end estimates the impact of the current interference on the channel quality according to the past interference within a time interval of the current time and obtains the channel quality information, and feeds back the channel quality information to the transmitting end.
  • the step of the receiving end estimating the impact of the current interference on the channel quality according to the past interference and obtaining the channel quality information includes:
  • the average of the past interferences is calculated and the channel quality information is estimated based on the average, or the channel quality information is estimated by filtering multi-user interference over the time interval.
  • the step of estimating the channel quality information comprises: estimating the channel quality information according to a common pilot and a demodulation pilot.
  • the step of estimating channel quality information according to the common pilot and the demodulation pilot comprises: for dual-layer transmission of a single-user multiple-input multiple-output system, when the number of common pilot ports is less than the number of transmit antennas,
  • the receiving end estimates a channel quality indicator in the form of transmit diversity of the version 8 port 5 according to the common pilot;
  • the receiving end obtains an equivalent channel vector of the first layer and an equivalent channel vector of the second layer according to the demodulation pilot estimation;
  • the receiving end obtains, according to the equivalent channel vector of the first layer, a first layer channel quality indicator difference ACQ/ of the first layer without inter-layer interference and inter-layer interference;
  • the receiving end obtains a second layer channel quality indicator difference ⁇ 3 ⁇ 4/ 2 of the second layer without inter-layer interference and inter-layer interference according to the equivalent channel vector of the second layer;
  • the receiving end obtains a channel quality indicator average value ⁇ 3 ⁇ 4/ according to the ⁇ /, and ⁇ 3 ⁇ 4/ 2 ;
  • the receiving end feeds back the C / ⁇ and ⁇ 3 ⁇ 4/ to the sending end;
  • ⁇ 3 ⁇ 4/ 2 ⁇ ( ⁇ 2 - ( ⁇ ⁇ + f mt (k)f mt (km);
  • the ACQI (ACQI, + ACQI 2 ) 12
  • T is the time interval, and t is the current time
  • is an equivalent channel vector of the first layer obtained according to the demodulation pilot estimation
  • f 2 is an equivalent channel vector of the second layer obtained according to the demodulation pilot estimation
  • Rrustoulin ⁇ H H +N i; num int indicates the number of interfering cells;
  • ⁇ ,. indicates inter-cell interference
  • I white noise of a Gaussian distribution
  • f int (k) represents inter-layer interference obtained according to the demodulation pilot
  • ⁇ ( ⁇ ) indicates that the X operation is performed.
  • the receiving end feeds back the rank indication RI to the sending end.
  • the step of the receiving end estimating the impact of the current interference on the channel quality according to the past interference and obtaining the channel quality information includes:
  • the receiving end estimates a channel quality indicator in the form of transmit diversity of version 8 port 5 according to the common pilot;
  • the receiving end obtains an equivalent channel vector of the first layer and an equivalent channel vector of the second layer according to the demodulation pilot estimation;
  • the receiving end obtains, according to the equivalent channel vector of the first layer, a first layer channel quality indicator difference ACQ/ of the first layer without inter-layer interference and inter-layer interference;
  • the receiving end obtains a second layer channel quality indicator difference ⁇ 3 ⁇ 4/ 2 of the second layer without inter-layer interference and inter-layer interference according to the equivalent channel vector of the second layer;
  • the receiving end obtains a channel quality indicator average value ⁇ 3 ⁇ 4/ according to the ⁇ /, and ⁇ 3 ⁇ 4/ 2 ;
  • the RI that the receiving end feeds back to the sending end is 1, and simultaneously feeds back the C / ⁇ ; or the RI that the receiving end feeds back to the sending end is 2, and simultaneously feeds back the CQ / ⁇ and the difference of the ACQ / CQI E ;
  • ⁇ 3 ⁇ 4/ 2 ⁇ ( ⁇ 2 - ( ⁇ ⁇ + f mt (k)f mt (km);
  • the ACQI (ACQI, + ACQI 2 ) 12
  • the ⁇ 3 ⁇ 44 ⁇ 3 ⁇ 4/ ⁇ - ACQ/; T is the time interval, and t is the current time;
  • is an equivalent channel vector of the first layer obtained according to the demodulation pilot estimation
  • f 2 is an equivalent channel vector of the second layer obtained according to the demodulation pilot estimation
  • ⁇ ,. indicates inter-cell interference
  • I white noise of a Gaussian distribution
  • f int (k) represents inter-layer interference obtained according to the demodulation pilot; ⁇ ( ⁇ ) indicates that the X operation is performed.
  • the step of the receiving end estimating the impact of the current interference on the channel quality according to the past interference and obtaining the channel quality information includes:
  • the receiving end estimates a channel quality indicator in the form of transmit diversity of the version 8 port 5 according to the common pilot;
  • the receiving end obtains an equivalent channel vector of the first layer according to the demodulation pilot estimation; the receiving end obtains channel quality without multi-user interference and multi-user interference according to the equivalent channel vector of the first layer.
  • T is the time interval, and t is the current time
  • ⁇ ,. indicates inter-cell interference
  • I white noise of a Gaussian distribution
  • f int (k) represents inter-layer interference obtained according to the demodulation pilot
  • ⁇ ( ⁇ ) indicates that the X operation is performed.
  • the present invention provides a user equipment, where the user equipment is configured to estimate the impact of current interference on channel quality according to past interference within a time interval of the current time and obtain the channel quality information. And feeding back the channel quality information to the base station.
  • the user equipment is configured to calculate an average value of the past interference and according to the The average is used to estimate the channel quality information, or the channel quality information is estimated by filtering multi-user interference during the time interval.
  • said user equipment is arranged to estimate said channel quality information based on a common pilot and a demodulation pilot.
  • the user equipment is configured to perform dual-layer transmission for a single-user multiple-input multiple-output system.
  • the version 8 port 5 is estimated according to the common pilot.
  • a channel quality indicator CQ/ ⁇ in the form of transmit diversity obtaining an equivalent channel vector of the first layer and an equivalent channel vector of the second layer according to the demodulation pilot estimation; obtaining the first channel according to the equivalent channel vector of the first layer a layer 1 channel quality indicator difference ACQ/ without inter-layer interference and inter-layer interference; obtaining a second layer according to the equivalent channel vector of the second layer without inter-layer interference and inter-layer the second layer channel quality indicator difference ⁇ 3 ⁇ 4 interference / 2; in accordance with the ⁇ ⁇ /, with eight ⁇ 3 ⁇ 4 / 2 to obtain the average channel quality indicator ⁇ 3 ⁇ 4 /; the Cg / ⁇ and ⁇ 3 ⁇ 4 / back to the Base station
  • the ACQI (ACQI, + ACQI 2 ) 12
  • T is the time interval, and t is the current time
  • is an equivalent channel vector of the first layer obtained according to the demodulation pilot estimation
  • f 2 is an equivalent channel vector of the second layer obtained according to the demodulation pilot estimation
  • ⁇ ,. indicates inter-cell interference
  • I white noise of a Gaussian distribution
  • f int (k) represents inter-layer interference obtained according to the demodulation pilot; ⁇ ( ⁇ ) indicates that the X operation is performed.
  • the user equipment is further configured to feed back the rank indication RI to the base station.
  • the user equipment is configured to perform dual-layer transmission for a single-user multiple-input multiple-output system.
  • the version 8 port 5 is estimated according to the common pilot.
  • a channel quality indicator CQ/ ⁇ in the form of transmit diversity obtaining an equivalent channel vector of the first layer and an equivalent channel vector of the second layer according to the demodulation pilot estimation; obtaining the first channel according to the equivalent channel vector of the first layer a layer 1 channel quality indicator difference ACQ/ without inter-layer interference and inter-layer interference; obtaining a second layer according to the equivalent channel vector of the second layer without inter-layer interference and inter-layer the second layer channel quality indicator difference ⁇ 3 ⁇ 4 interference / 2; in accordance with the ⁇ ⁇ /, with eight ⁇ 3 ⁇ 4 / 2 to obtain the average channel quality indicator ⁇ 3 ⁇ 4 /; the RI is fed back to the base station 1, And simultaneously feeding back the CQI ⁇ ; or the RI fed back to the base station is 2,
  • T is the time interval, t is the current time;
  • is the equivalent channel vector of the first layer obtained according to the demodulation pilot estimation;
  • f 2 is obtained according to the demodulation pilot estimation The equivalent channel vector of the second layer;
  • ⁇ ,. indicates inter-cell interference
  • H,.* indicates the transposed matrix of ⁇ ,.
  • I white noise of a Gaussian distribution
  • f int (k) inter-layer interference obtained according to the demodulation pilot
  • ⁇ ( ⁇ ) quantization operation on X.
  • T is the time interval, and t is the current time
  • Rrustoulin ⁇ H H +N i ; num int indicates the number of interfering cells;
  • ⁇ ,. indicates inter-cell interference; indicates ⁇ , the transposed matrix; N.
  • I represents white noise of a Gaussian distribution;
  • f int (k) represents inter-layer interference obtained according to the demodulation pilot;
  • ⁇ ( ⁇ ) represents quantization operation on X.
  • the channel quality feedback method in the MIMO system proposed by the present invention can obtain more accurate channel quality information and feedback to the transmitting end when there are multiple layers of interference, and the receiving end does not A better estimation effect can also be obtained in the case of a codebook; the user provided by the present invention The device can obtain more accurate channel quality information and feedback to the base station when there are multiple layers of interference, and the user equipment can obtain a better estimation effect without the codebook.
  • FIG. 1 is a schematic flow chart of a first mode in the first embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a second mode in the first embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a fourth mode in the second embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a fifth mode in a second embodiment of the present invention.
  • 5 is a schematic flow chart of transmitting by the transmitting end according to channel quality information fed back by the receiving end;
  • FIG. 6 is a schematic flow chart of a fourth embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of a fifth embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of a sixth embodiment of the present invention. Preferred embodiment of the invention
  • the receiving end estimates the influence of the current interference on the CQI or SINR according to the past interference, for example, averaging the interference in the past T time interval, according to the average value. Estimate current channel quality information. After the channel quality information is obtained, the obtained channel quality information is fed back to the transmitting end, and the transmitting end performs transmission with the receiving end according to the channel quality information.
  • the LTE standard includes a Demodulation Reference Signal (DMRS), which is a dedicated pilot transmitted by a transmitting end (eNB) to each receiving end (UE). This pilot needs to be precoded at the time of transmission. Processing, same as data precoding. So as long as the UE knows its own channel bit At which layers, it can be known that other layers are interference, and interference estimation can be implemented from the DMRS of the interference layer.
  • DMRS Demodulation Reference Signal
  • the CQI and SINR of the user m' are: ⁇ f (k)f (k)*)- , , (5)
  • ⁇ ( ⁇ ) in the equation (6) represents a quantization operation on X.
  • T can also be equal to 1, that is, without averaging, only the current DMRS is used for interference estimation, that is, T is equal to 1 (5) ) expressed as: siU :' + DD)*)- ' Equation (5-1) It should be noted that interference filtering by the filter, and T equal to 1 means no averaging, and the same applies to the SU-MIMO case.
  • interference is mainly co-channel interference generated by other users in the same cell. These interferences are pre-coded, so the size and change of interference depend on the eNB. For different eNBs, different pairing and precoding processes are used, resulting in different interference. By counting the previous interference statistics, the approximate strength of the interference generated by the eNB can be known, thereby making an estimate of the impact of the CQI. For SU-MIMO
  • H(t)w 2 (0 is the inter-layer interference after precoding processing, which can be obtained from the DMRS.
  • the current time to the time before the T period is 4
  • the averaging process is performed, or a filter can be used to filter the multi-layer interference before the current time period T.
  • the calculation method is the same as the first layer, namely: the signal-to-interference ratio SIN ' of the second layer in the double layer transmission, and the channel quality indicator are:
  • R Dust matter ⁇ ⁇ ⁇ + ⁇ ; num int indicates the number of interfering cells;
  • ⁇ ,. indicates inter-cell interference
  • ⁇ , * indicates the transposed matrix of ⁇ , .
  • I white noise of a Gaussian distribution
  • ⁇ ( ⁇ ) indicates that the X operation is performed
  • f int (t) H () Wl (t)
  • H (t) w, (t) is the inter-layer interference after precoding processing, Get it from DMRS.
  • ⁇ f mt (k)f mt (k)' represents the average of multiuser interference during the time interval.
  • the following uses an embodiment to illustrate how channel quality is calculated by demodulating pilots.
  • the transmission based on single antenna port 5 belongs to the application of a single stream beamforming (BF) technology.
  • BF beamforming
  • a new transmission mode is proposed in the enhanced version of LTE Release 9, which belongs to a non-codebook spatial multiplexing mode with rank 2, that is, dual stream is used. Transmission of two antenna ports of BF technology.
  • the eNB can determine the method of precoding processing itself. Although the eNB generally orthogonalizes the two layers of precoding vectors, due to various errors in the actual system, when the signal arrives at the UE, inter-layer interference is difficult to avoid.
  • the UE directly feeds back two CQIs, namely CQI ⁇ and CQI ⁇ .
  • FIG. 1 is a schematic flowchart of a first manner in which a receiving end feeds back channel quality information to a transmitting end in a SU-MIMO system when the number of common pilot signal ports (ports) is not less than the number of transmitting antennas.
  • the process mainly includes the following steps:
  • Step S110 the UE estimates a channel matrix H according to a common pilot CRS (Common Reference Signal);
  • CRS Common Reference Signal
  • Step S120 The UE obtains two feature vectors according to the channel matrix H.
  • Step S130 the UE obtains an equivalent channel vector /i of the first layer and an equivalent channel vector / 2 of the second layer according to the two feature vectors;
  • Step S140 The UE calculates an average value of inter-layer interference according to the DMRS.
  • Step S150 the UE acquires a first layer channel quality indicator and a layer 2 channel quality indicator according to the average value and the sum / 2 ;
  • Step S160 The UE feeds back the CQI ⁇ and the sender to the sender.
  • the first mode is based on the fact that the UE can learn the channels of all the antennas.
  • the number of CRS ports is not less than the number of transmit antennas. For example, the number of maximum CRSs in Release 8 is four. If there are eight antennas at the transmitting end, The first method described above does not apply.
  • the CQI (represented by CQI TXD ) is fed back by the transmit diversity form of the transmission of Release 8 port 5 (the CQI TXD is used here), and then the CQI is adjusted based on the average inter-layer interference.
  • the equivalent channel vector of the first layer and the equivalent channel vector / 2 of the second layer are obtained, where the equivalent channel vector and the second layer of the first layer estimated according to the DMRS are respectively used and represented. Effect channel vector / 2 , so the first layer has inter-layer interference
  • the SINR is: curtain; ( ⁇ ⁇ + f mt (k)f mt (k)*rt (13)
  • the first layer of CQI difference in the first layer without inter-layer interference and inter-layer interference is:
  • CQI 2 Q(f Rj 2 -f (R nn ⁇ f mt (k)f mt (k)V 2 ) (15)
  • the receiver sends the CQI estimate ⁇ 3 ⁇ 4/ to the sender, so that the estimated inter-layer interference can be reflected in the ⁇ 3 ⁇ 4/ s calculation process.
  • the transmitting end eNB After receiving the ⁇ 3 ⁇ 4/, the transmitting end eNB performs the adjustment of the CQI between different layers according to the two feature vectors of the eNB's own estimated channel.
  • 2 is a schematic flow chart of the second aspect of the present invention. As shown in Figure 2, the process mainly includes the following steps:
  • Step S210 The UE estimates a channel quality indicator in the form of transmit diversity of Release 8 port 5 according to the common pilot CRS;
  • Step S220 the UE estimates the equivalent channel vector of the first layer and the equivalent channel vector of the second layer according to the DMRS.
  • Step S230 the UE calculates, according to the first layer, the first layer CQI difference ⁇ / in the first layer without inter-layer interference and inter-layer interference;
  • Step S240 the UE calculates, according to the second layer, the second layer CQI difference ⁇ ⁇ / 2 without inter-layer interference and inter-layer interference;
  • the third mode obtains: according to the first layer CQI difference value and the second layer CQI difference value, and the CQI TXD :
  • the estimated value of a layer of CQI is:
  • CQI 2E CQI TXD - ACQI 2 (19)
  • the receiving end feeds the first layer CQI estimate ⁇ 3 ⁇ 4/ ⁇ and the second layer CQI estimate to the transmitting end.
  • Dual-stream BF can also support multi-user MIMO, with each user occupying only one stream (rank 1).
  • the first embodiment requires that the rank of the single-user channel is 2, and if the rank of the channel is 1, multi-user MIMO is required for spatial multiplexing. If the rank of the channel is 1 and no user is paired, then a single-user single-flow BF is required.
  • this embodiment uses a differential CQI feedback method.
  • the receiver will After the eNB, if the eNB finds that the two users are paired, it can calculate the C ⁇ CQ/ ⁇ -ACQ/ ⁇ of the multi-user from ⁇ and ⁇ / ⁇ . If there is no user to pair, use CQI ⁇ to make a single user. Transmission. When the SINR or CQI is fed back at the receiving end (the feedback CQI is taken as an example), the following four methods are included:
  • the CQI is fed back in a differential manner, and dynamic single-user and multi-user switching is supported.
  • the single-user interference-free CQI is:
  • ⁇ 3 ⁇ 4/ ⁇ is a positive number.
  • a bit less than CQI can be used for feedback.
  • C / ⁇ is 5 bits.
  • FIG. 3 is a schematic flow chart of the fourth aspect of the present invention. As shown in Figure 3, the process mainly includes the following steps:
  • Step S310 the UE estimates the channel matrix H according to the common pilot CRS
  • Step S320 the UE obtains a strongest feature vector according to the channel matrix H;
  • Step S330 the UE obtains an equivalent channel vector f of the first layer according to the strongest feature vector, and in step S340, the UE calculates an average value of multi-user interference according to the DMRS, f ⁇ f mt (k)f mt (k)*;
  • Step S350 the UE acquires a single-user interference-free channel quality indicator according to the
  • Step S360 the UE obtains a difference CQI ⁇ of the single-user interference-free channel quality indicator CQI ⁇ and the multi-user CQI according to the average value and the;
  • Step S370 the UE feeds back the CQI ⁇ ⁇ to the transmitting end.
  • the receiving end feeds back to the transmitting end the CQI TXD in the form of transmit diversity of the transmission with Release 8 port 5 and the same.
  • FIG. 4 is a schematic flow chart of the fifth aspect of the present invention. As shown in Figure 4, the process mainly includes the following steps:
  • Step S410 the UE estimates a channel quality indicator in the form of transmit diversity of Release 8 port 5 according to the common pilot CRS;
  • Step S420 the UE estimates an equivalent channel vector of the first layer according to the DMRS.
  • Step S430 the UE calculates a CQI difference without multi-user interference and multi-user interference according to the equivalent channel vector of the first layer.
  • Step S440 the UE sets the CQI TXD and the Feedback to the sender.
  • FIG. 2 is a schematic diagram of a process in which the transmitting end performs transmission according to the channel quality information fed back by the receiving end when the highest channel rank is 2. As shown in FIG. 5, when the first embodiment and the second embodiment are mixed, the transmitting end performs transmission according to the channel quality fed back by the receiving end, and mainly includes the following steps:
  • Step S510 The receiving end UE calculates a rank of the channel.
  • Step S520 determining whether the rank of the channel is 1 or not, then proceeding to step S530, otherwise proceeding to step S550;
  • Step S530 the UE calculates a single-user uninterrupted channel quality indicator
  • Step S540 The UE calculates a difference ⁇ 3 ⁇ 4/ between the single-user uninterrupted channel quality indicator C0/ OT 1 and the multi-user channel quality indicator, and the single-user uninterrupted channel quality indicator and the difference ⁇ 3 ⁇ 4/ Feedback to the transmitting end eNB, go to step S560;
  • Step S550 the UE calculates the channel quality of the two layers, and obtains the first layer channel quality indicator CQ/ ⁇ And the second layer channel quality indicator CQ / ⁇ 2 , and the first layer channel quality indicator CQ / ⁇ and the second layer channel quality indicator ⁇ 3 ⁇ 4 / ⁇ 2 feedback to the sender, go to step S590;
  • Step S560 the sender tries to perform multi-user pairing, and determines whether the pairing is successful. If yes, the process goes to step S570, otherwise the process goes to step S580;
  • Step S570 the transmitting end uses the multi-user dual-stream BF to transmit information, and ends;
  • Step S580 the sending end uses a single user single stream BF to transmit information, and ends;
  • step S590 the transmitting end uses a single-user dual-stream BF for information transmission, and ends.
  • Mode 8 of LTE Release 8 supports codebook-based multi-user MIMO transmission.
  • the UE can also be based on the codebook when feeding back CQI and PMI, but in order to enhance the performance of MU-MIMO, the eNB can still support non-codebook multi-user when transmitting. MIMO transmission.
  • the implementation of multi-user dual-stream BF can also use DMRS to estimate interference. Different from multi-user dual-flow BF, it is mainly possible to reuse more than two users. The following is the CQI calculation method for the user when there are M users:
  • H intm (t (0 is the interference generated from the user m after the precoding process
  • the average of the time is averaged by an estimate of the interference between now and T, or a filter can be used to filter the previous multiuser interference.
  • another feedback method is to reuse the feedback mode of mode 3 in LTE Release 8, and adjust the original format in mode 3.
  • the data fed back by the UE is RI and CQI.
  • the recommended transmission mode of the UE is Transmit diversity.
  • the recommended transmission mode of the UE is open loop.
  • the UE feeds back a CQI regardless of any RI.
  • CQI E CQI TXD - ACQI is the second mode of the foregoing first embodiment.
  • the UE feeds back CQ/ ⁇ or CQI E at different times, and then uses RI to inform the eNB that this is ⁇ 3 ⁇ 4/ ⁇ or (3 ⁇ 4/ s .
  • the eNB can have two CQIs of single stream BF and dual stream BF, and then the eNB can estimate channel characteristic values according to the two CQIs and eNBs. Perform rank adaptation processing together, and then select the single-flow BF or dual-stream BF transmission mode.
  • FIG. 6 is a schematic flow chart of a fourth embodiment of the present invention. As shown in FIG. 6, the fourth embodiment of the present invention mainly includes the following steps:
  • Step S610 The UE estimates a channel quality indicator cg/ ⁇ in the form of transmit diversity of Release 8 port 5 according to the common pilot CRS;
  • Step S620 The UE estimates an equivalent channel vector of the first layer and an equivalent channel vector of the second layer according to the DMRS.
  • Step S630 the UE calculates, according to the first layer, the first layer CQI difference ⁇ ⁇ / of the first layer without inter-layer interference and inter-layer interference;
  • Step S640 the UE calculates, according to the second layer, the second layer CQI difference ⁇ ⁇ / 2 without inter-layer interference and inter-layer interference;
  • Step S680 the eNB selects the actual transmitted rank and Modulation Coding Scheme (MCS) according to the channel data (such as channel characteristic value) estimated by the eNB itself, and CQ/ ⁇ or CQ/ S .
  • MCS Modulation Coding Scheme
  • FIG. 7 is a flow chart showing a fifth embodiment of the present invention. As shown in FIG. 7, the fifth embodiment of the present invention mainly includes the following steps:
  • Step S710 the UE estimates a channel quality indicator in the form of transmit diversity of Release 8 port 5 according to the common pilot CRS;
  • Step S720 the UE estimates the equivalent channel vector of the first layer and the equivalent channel vector of the second layer according to the DMRS.
  • Step S730 the UE calculates, according to the first layer, the first layer CQI difference ⁇ ⁇ / of the first layer without inter-layer interference and inter-layer interference;
  • Step S740 the UE calculates, according to the second layer, a second layer CQI difference ⁇ 3 ⁇ 4/ 2 in the absence of inter-layer interference and inter-layer interference;
  • Step S760 the UE feeds back the eNB to the eNB;
  • Step S770 the eNB may select the actually transmitted rank and MCS according to the channel data (e.g., channel characteristic value) estimated by the eNB itself according to ⁇ 3 ⁇ 4/ ⁇ , ⁇ 3 ⁇ 4/.
  • the channel data e.g., channel characteristic value
  • the foregoing fourth embodiment can also be used in a multi-user scenario, and also reuses the LTE Release 8 mode.
  • FIG. 8 is a schematic flow chart of a sixth embodiment of a method according to the present invention. As shown in FIG. 8, the sixth embodiment of the present invention mainly includes the following steps:
  • Step S810 the UE estimates a channel quality indicator in a transmit diversity form of Release 8 port 5 according to the common pilot CRS;
  • Step S820 the UE estimates an equivalent channel vector of the first layer according to the DMRS.
  • Step S830 the UE calculates a CQI difference without multi-user interference and multi-user interference according to the equivalent channel vector of the first layer.
  • Step S860 the eNB may select the actually transmitted rank and MCS by lCQ TXD or CQ-CQI ⁇ according to the channel data (for example, channel characteristic value) estimated by itself.
  • the channel data for example, channel characteristic value
  • the invention also discloses a user equipment, wherein the user equipment is configured to estimate the influence of the current interference on the channel quality according to the past interference within a time interval of the current time and obtain the channel quality information, and feed back the channel quality to the base station. information.
  • the user equipment is configured to calculate an average value of the past interferences and estimate the channel quality information according to the average value, or estimate the channel quality information by filtering multi-user interference in the time interval.
  • the user equipment is configured to estimate the channel quality information based on the common pilot and the demodulation pilot.
  • the user equipment is configured to perform dual-layer transmission for a single-user multiple-input multiple-output system.
  • the transmit diversity of version 8 port 5 is estimated according to the common pilot.
  • Formal channel quality indicator CQ/ ⁇ obtained from demodulation pilot estimates An equivalent channel vector of the first layer and an equivalent channel vector of the second layer; obtaining a first layer channel quality indicator of the first layer without inter-layer interference and inter-layer interference according to the equivalent channel vector of the first layer a difference ACQ/,; obtaining a second layer channel quality indicator difference ⁇ 3 ⁇ 4/ 2 of the second layer without inter-layer interference and inter-layer interference according to the equivalent channel vector of the second layer; according to the above ACQ/, 8 ⁇ 3 ⁇ 4/ 2 obtains the channel quality indicator average value ⁇ 3 ⁇ 4/; feeds the above CQ/ ⁇ and ⁇ 3 ⁇ 4/ to the above base station;
  • T is the above time interval, and t is the current time
  • Rrustoulate ⁇ H H + N i ; num int indicates the number of interfering cells;
  • ⁇ ,. indicates inter-cell interference
  • I white noise of a Gaussian distribution
  • f int (k) represents inter-layer interference obtained according to the above demodulation pilot
  • ⁇ ( ⁇ ) indicates that the X operation is performed.
  • the user equipment is further configured to feed back the rank indication RI to the base station.
  • the user equipment is configured to perform dual-layer transmission for a single-user multiple-input multiple-output system.
  • the transmit diversity of version 8 port 5 is estimated according to the common pilot.
  • channel quality indicator CQ/ ⁇ a form of channel quality indicator CQ/ ⁇ ; obtaining an equivalent channel vector of the first layer and an equivalent channel vector of the second layer according to the demodulation pilot estimation; obtaining the first layer according to the equivalent channel vector of the first layer First layer channel quality indicator difference without inter-layer interference and inter-layer interference a value AC ⁇ ; obtaining a second layer channel quality indicator difference ⁇ 3 ⁇ 4/ 2 of the second layer without inter-layer interference and inter-layer interference according to the equivalent channel vector of the second layer; according to the above ACQ/, and ⁇ 3 ⁇ 4/ 2 obtaining the channel quality indicator average value ⁇ 3 ⁇ 4/; the RI fed back to the base station is 1 and feeding back the COI TXD ; or the RI fed back to the base station is 2, and simultaneously feeding back the Cg/ ⁇ and the above ⁇ ( The difference of / where: f mt (k)f mt (k)*)- ;
  • T is the above time interval, and t is the current time
  • f 2 is an equivalent channel vector of the second layer obtained according to the demodulation pilot estimation described above;
  • Rrustoulin ⁇ HH +Ni; num int indicates the number of dry 4 special cells;
  • ⁇ ,. indicates inter-cell interference
  • f mt (k) denotes inter-layer interference obtained based on the above demodulation pilot
  • Q(x) denotes quantization operation on JC.
  • the user equipment is configured to, according to the common pilot estimation version 8 port 5, a channel diversity indicator C ⁇ / ⁇ in the form of transmit diversity; obtain the first according to the demodulation pilot estimation.
  • the equivalent channel vector of the layer obtaining a channel quality indicator difference without multi-user interference and multi-user interference according to the equivalent channel vector of the first layer;
  • the RI fed back to the base station is 1 and simultaneously feeding back the CQ / ⁇ ; or the above-mentioned RI fed back to the base station is 2, and simultaneously feedback CQI TXD -ACQI;
  • ⁇ 3 ⁇ 4 ⁇ ⁇ ( ⁇ 3 ⁇ 4 ⁇ - ⁇ ( ⁇ ⁇ + f mt (k)f mt (km) ;
  • T is the above time interval, and t is the current time
  • Rrustoulin ⁇ H H +N i ; num int indicates the number of interfering cells;
  • ⁇ ,. indicates inter-cell interference; indicates ⁇ , the transposed matrix; N.
  • I represents white noise of Gaussian distribution;
  • f int (k) represents inter-layer interference obtained according to the above demodulation pilot;
  • ⁇ ( ⁇ ) represents quantization operation on X.
  • the user equipment has the same function as the receiving end in the method embodiment, and is not described in detail herein.
  • the user equipment provided by the invention can obtain more accurate channel quality information and feedback to the base station when there are multiple layers of interference, and the user equipment can obtain a better estimation effect without the codebook.
  • the present invention discloses a channel quality feedback method and a user equipment in a multiple input multiple output system, so that a receiving end or a user equipment can obtain more accurate channel quality information and feedback to a transmitting end or multiple layers of interference.
  • the base station and in the absence of a codebook, can also obtain better estimation results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种多输入多输出***中信道质量的反馈方法及用户设备,以用于接收端向发送端反馈信道质量信息。该方法包括:所述接收端根据截止到当前时间的一个时间间隔内的过往干扰估算当前干扰对信道质量的影响并获得所述信道质量信息,向所述发送端反馈所述信道质量信息。本发明多输入多输出***中信道质量的反馈方法及用户设备,能够在有多层干扰时获得较准确的信道质量信息并反馈给发送端。

Description

多输入多输出***中信道质量的反馈方法及用户设备
技术领域
本发明涉及无线通信领域, 具体涉及一种多输入多输出 (MIMO ) *** 中信道质量的反馈方法及用户设备。
背景技术
在无线通信中, 如果在发送端 (eNB )使用多根天线, 则可以釆取空间 复用的方式来提高传输速率, 即发送端在相同的时频资源上的不同位置天线 发射不同的数据。 在接收端(UE )也使用多根天线, 则在单用户的情况下可 以将所有天线的资源都分配给同一用户。 以上的这种传输形式称之为单用户 MIMO ( SU-MIMO ) 。 另外亦可在多用户的情况下将不同天线空间的资源分 配给不同用户, 这种传输形式叫做多用户 MIMO ( MU-MIMO ) 。
上述单用户 MIMO和多用户 MIMO这两种情况,发送端都需要根据各用 户的信道信息( CSI )来分配资源和决定发射的方法。 在接收端可以通过信道 估计获取出各个收发天线对之间的信道信息, 然后将信息反馈给 eNB。
在实际的情况下, 由于反馈是需要用***资源的, 一般 UE都将信息进 行量化才作反馈。 在长期演进(Long Time Evolution, LTE ) ***中, 量化后 的信息的反馈方式, 主要包括信道质量指示符 (Channel Quality Indicator, CQI ) 、 预编码矩阵索引 (Precoding Matrix Index, PMI )和秩指示 (Rank Indicator, RI )。 另外, 发送端也可以从其它方式来估计信道信息, 例如用信 道互易性从上行的信道信息来估计下行的信道信息。
接收端可以通过信道和干扰估计计算出信干噪比(SINR ) , CQI—般就 是量化后的 SINR, 以下是在 SU-MIMO空间复用 ( Spatial Multiplexing )的场 景下, 用最小均方误差 (MMSE )接收机时 SINR的计算方法。
在发送端和接收端都有 2根天线时, 发送端和接收端之间的信道是一个 2x2的矩阵 H , 而在秩为 2的时候, 预编码 也是一个 2x2的矩阵, 预编码 处理后的信道则是: ^ = [/i /2] = ^ 式(1 ) 其中, 为第一层的等效信道向量, /2为第二层的等效信道向量。
接收端收到的信号是一个 2x1的向量 , w也是一个 2x1的向量, 代表 2 根天线接收的干扰和噪音, 而 和 则分别是在不同码子流的数据符号:
y = fxsx + f2s2 + n 式( 2 ) 在使用 MMSE接收机情况下, 码子流(stream ) 1和码子流 2的信干噪 比 (SINR )分别是:
stream 1 式(3 ) stream 2 = f2¾f2 式(4 ) 其中,
R„„^ = ∑ H H * +f,f +NGI , num int表示干 4尤小区的数目;
H,是小区间干扰 ( inter-cell interference ) ;
Η,是 Η,.的转置矩阵;
N。I是高斯分布的白噪声;
nn k是对于 k流的干扰和噪声协方差矩阵, 包括码子流之间的同道干 扰 。
对于版本(Release ) 8 的 LTE , 预编码都是从标准的码本预定, 在 SU-MIMO的情况下, SINR计算时可以准确知道码子流之间的干扰, 这样亦 能比较准确计算 CQI。 但是在 Release 9支持的双流波束赋形 ( Beamforming ) 下, 预编码是接收端计算出来的,接收端便不能准确知道码子流之间的干扰, CQI的计算可能与实际发射时会有偏差。
在多用户双流 Beamforming场景下, 当有两个用户做空间复用时, SINR 的计算方式跟 SU-MIMO秩为 2的时候相比, 只是每个码子流是由不同的用 户占有, 干扰就可以说成多用户的干扰。
在用户 1接收端收到的信号是:
Figure imgf000004_0001
在用户 1用 MMSE接收机时, 用户 1的信干噪比 (SINR )是:
numlnt
MMSE SINR for User 1 = Α ^1 , 其中 „„,k =∑ K + f k + N0l 。 因为发送端在相同的时频资源上的不同天线位置, 向多用户发射不同的 数据, 各用户都会对其它用户产生干扰。 虽然可以用一些方法(例如破零等) 来降低各用户的干扰, 但在实际的情况下, 因为量化和其它各种误差, 在接 收端都会有一定的多用户干扰存在。 在有多用户干扰的情况下, 因为多用户 的配对是在发送端进行, 接收端一般很难作未来干扰的预测, 所以 CQI的准 确度一般都较低。
在 MU-MIMO的情况下,虽然接收端不可能准确知道未来多用户的干扰, 但是亦可在 CQI计算时粗略考虑多用户带来的干扰。 其中一个方法是把所有 有可能跟自己配对的预编码都来作一个 SINR的计算, 然后作平均。 例如在 Release 8中, 2根天线的码本是:
Figure imgf000005_0002
在每个用户秩为 1的时候, 有 4个码子的选择。 如果发送端容许非正交 配对, 则每个用户便有 3个码子可作配对, 也就是说有 3个不同干扰的可能 性。 在这个情况下, 可以计算每一个可能性然后再作平均:
SINRMU = 其中 = H!H N。I。
Figure imgf000005_0001
其中 S是码子的数量, 即等于 4; ^是干扰的预编码。 这样可以将干扰 作一个大概的估计, 但是这个方法只可以用于***本的情况, 如果没***本 的话, 干扰的预编码可以有很多可能性, 那便没法作一个预测。 发明内容
本发明所要解决的技术问题, 在于需要提供一种多输入多输出***中信 道质量的反馈方法及用户设备, 以用于向发送端或基站反馈信道质量信息。
为了解决上述技术问题, 本发明提供了一种多输入多输出***中信道质 量的反馈方法, 用于所述多输入多输出***中接收端向发送端反馈信道质量 信息, 所述方法包括:
所述接收端根据截止到当前时间的一个时间间隔内的过往干扰估算当前 干扰对信道质量的影响并获得所述信道质量信息 , 向所述发送端反馈所述信 道质量信息。
优选地, 所述接收端根据所述过往干扰估算当前干扰对信道质量的影响 并获得所述信道质量信息的步骤包括:
计算所述过往干扰的平均值并根据所述平均值来估算所述信道质量信 息, 或者通过对所述时间间隔内的多用户干扰进行过滤来估算所述信道质量 信息。
优选地, 所述估算所述信道质量信息的步骤包括: 根据公共导频和解调 导频估算所述信道质量信息。
优选地, 所述根据公共导频和解调导频估算信道质量信息的步骤包括: 对于单用户多输入多输出***的双层传输, 在公共导频端口的数量少于 发射天线数时,
所述接收端根据所述公共导频估计版本 8端口 5的发射分集形式的信道 质量指示符 ;
所述接收端根据解调导频估计获得第一层的等效信道向量和第二层的等 效信道向量;
所述接收端根据所述第一层的等效信道向量获得第一层在没有层间干扰 和有层间干扰的第一层信道质量指示符差值 ACQ/,;
所述接收端根据所述第二层的等效信道向量获得第二层在没有层间干扰 和有层间干扰的第二层信道质量指示符差值 Δί¾/2; 所述接收端根据所述 Δ ρ/,与 Δί¾/2获得信道质量指示符平均值 Δί¾/;以 及
所述接收端将所述 C /^及 Δί¾/反馈给所述发送端;
其中: fmt(k)fmt(k)*)- );
Figure imgf000007_0001
所述 Δί¾/2=ρ( ί2- (έηη+ fmt(k)fmt(km);
丄 k=t— (T-l)
所述 ACQI = (ACQI, + ACQI2 )12
T为所述时间间隔, t为当前时间;
ΐ,为根据所述解调导频估算获得的所述第一层的等效信道向量;
f2为根据所述解调导频估算获得的所述第二层的等效信道向量;
num int
R„„= ∑ H H +N i; num int表示干扰小区的数目;
Η,.表示小区间干扰;
表示 Η,.的转置矩阵;
N。I表示高斯分布的白噪声;
fint (k)表示根据所述解调导频得到的层间干扰;
β(χ)表示对 X进行量化运算。
优选地, 所述接收端向所述发送端反馈秩指示 RI。
优选地, 所述接收端根据所述过往干扰估算当前干扰对信道质量的影响 并获得所述信道质量信息的步骤, 包括:
对于单用户多输入多输出***的双层传输, 在公共导频端口的数量少于 发射天线数时,
所述接收端根据所述公共导频估计版本 8端口 5的发射分集形式的信道 质量指示符 ; 所述接收端根据解调导频估计获得第一层的等效信道向量和第二层的等 效信道向量;
所述接收端根据所述第一层的等效信道向量获得第一层在没有层间干扰 和有层间干扰的第一层信道质量指示符差值 ACQ/,;
所述接收端根据所述第二层的等效信道向量获得第二层在没有层间干扰 和有层间干扰的第二层信道质量指示符差值 Δί¾/2
所述接收端根据所述 Δ ρ/,与 Δί¾/2获得信道质量指示符平均值 Δί¾/; 以 及
所述接收端向所述发送端反馈的所述 RI为 1, 并同时反馈所述 C /^; 或者所述接收端向所述发送端反馈的所述 RI为 2, 并同时反馈所述 CQ/^与 所述 ACQ/的差值 CQIE
其中: 所述 fmt(k)fmt(k)*)- );
Figure imgf000008_0001
所述 Δί¾/2=ρ( ί2- (έηη+ fmt(k)fmt(km);
丄 k=t— (T-l)
所述 ACQI = (ACQI, + ACQI2 )12
所述 ^¾4=^¾/^- ACQ/; T为所述时间间隔, t为当前时间;
ΐ,为根据所述解调导频估计获得的所述第一层的等效信道向量;
f2为根据所述解调导频估计获得的所述第二层的等效信道向量;
num int
„„= ∑ Η Η +^ΟΙ; num int表示干扰小区的数目;
Η,.表示小区间干扰;
表示 Η,.的转置矩阵;
N。I表示高斯分布的白噪声;
fint (k)表示根据所述解调导频得到的层间干扰; β(Χ)表示对 X进行量化运算。
优选地, 所述接收端根据所述过往干扰估算当前干扰对信道质量的影响 并获得所述信道质量信息的步骤, 包括:
所述接收端根据所述公共导频估计版本 8端口 5的发射分集形式的信道 质量指示符 ;
所述接收端根据所述解调导频估计获得第一层的等效信道向量; 所述接收端根据所述第一层的等效信道向量获得没有多用户干扰与有多 用户干扰的信道质量指示符差值 以及 所述接收端向所述发送端反馈的所述 RI为 1 , 并同时反馈所述 C /^; 或者所述接收端向所述发送端反馈的所述 RI 为 2 , 并同时反馈 CQITXD -ACQI ; 其中: Δ^¾^ = ρ(ίί¾ΐ— ίί(έηη + fmt(k)fmt(km) ;
1 k=t- (T-l)
T为所述时间间隔, t为当前时间;
为根据所述解调导频估计获得第一层的等效信道向量;
num int
„„ = ∑ Η Η + ^ΟΙ ; num int表示干扰小区的数目;
Η,.表示小区间干扰;
表示 Η,.的转置矩阵;
N。I表示高斯分布的白噪声;
fint (k)表示根据所述解调导频得到的层间干扰;
β(χ)表示对 X进行量化运算。
为了解决上述技术问题, 本发明提供了一种用户设备, 所述用户设备设 置为, 根据截止到当前时间的一个时间间隔内的过往干扰估算当前干扰对信 道质量的影响并获得所述信道质量信息 , 向基站反馈所述信道质量信息。
优选地, 所述用户设备是设置为, 计算所述过往干扰的平均值并根据所 述平均值来估算所述信道质量信息, 或者通过对所述时间间隔内的多用户干 扰进行过滤来估算所述信道质量信息。
优选地, 所述用户设备是设置为, 根据公共导频和解调导频估算所述信 道质量信息。
优选地, 所述用户设备是设置为, 对于单用户多输入多输出***的双层 传输, 在公共导频端口的数量少于发射天线数时, 根据所述公共导频估计版 本 8端口 5的发射分集形式的信道质量指示符 CQ/^;根据解调导频估计获得 第一层的等效信道向量和第二层的等效信道向量; 根据所述第一层的等效信 道向量获得第一层在没有层间干扰和有层间干扰的第一层信道质量指示符差 值 ACQ/,;根据所述第二层的等效信道向量获得第二层在没有层间干扰和有层 间干扰的第二层信道质量指示符差值 Δί¾/2;根据所述 Δ β/,与八^¾/2获得信道 质量指示符平均值 Δί¾/; 将所述 Cg/^及 Δί¾/反馈给所述基站;
其中: 所述 Δ ρ/^ ^ίί^ΐ - ίί(έηη + fmt(k)fmt(k)*)- ) ;
1 k=t- (T-l) 所述 Δί¾/2 = ρ( ί2 - (έηη + fmt(k)fmt(km) ;
丄 k=t— (T-l)
所述 ACQI = (ACQI, + ACQI2 )12
T为所述时间间隔, t为当前时间;
ΐ,为根据所述解调导频估计获得的所述第一层的等效信道向量;
f2为根据所述解调导频估计获得的所述第二层的等效信道向量;
num int
„„ = ∑ Η Η + ^ΟΙ ; num int表示干扰小区的数目;
Η,.表示小区间干扰;
表示 Η,.的转置矩阵;
N。I表示高斯分布的白噪声;
fint (k)表示根据所述解调导频得到的层间干扰; β(Χ)表示对 X进行量化运算。
优选地, 所述用户设备还设置为向所述基站反馈秩指示 RI。
优选地, 所述用户设备是设置为, 对于单用户多输入多输出***的双层 传输, 在公共导频端口的数量少于发射天线数时, 根据所述公共导频估计版 本 8端口 5的发射分集形式的信道质量指示符 CQ/^;根据解调导频估计获得 第一层的等效信道向量和第二层的等效信道向量; 根据所述第一层的等效信 道向量获得第一层在没有层间干扰和有层间干扰的第一层信道质量指示符差 值 ACQ/,;根据所述第二层的等效信道向量获得第二层在没有层间干扰和有层 间干扰的第二层信道质量指示符差值 Δί¾/2;根据所述 Δ β/,与八^¾/2获得信道 质量指示符平均值 Δί¾/; 向所述基站反馈的所述 RI为 1, 并同时反馈所述 CQI^; 或者向所述基站反馈的所述 RI为 2, 并同时反馈所述 Cg/^与所述 ACQ/的差值 C(¾; 其中: 所述 Δ ρ/^^ίί^ΐ- ίί(έηη+ fmt(k)fmt(k)*)- );
1 k=t- (T-l) 所述 Δί¾/2 = ρ( ί2- (έηη+ fmt(k)fmt(km);
丄 k=t— (T-l)
所述 ACQI = (ACQI, + ACQI2 )12 所述 ^¾4=^¾/^- ACQ/;
T为所述时间间隔, t为当前时间; ΐ,为根据所述解调导频估计获得的所述第一层的等效信道向量; f2为根据所述解调导频估计获得的所述第二层的等效信道向量;
num int
R„„= ∑ H H +N i; num int表示干扰小区的数目
Η,.表示小区间干扰; H,.*表示 Η,.的转置矩阵;
N。I表示高斯分布的白噪声; fint (k)表示根据所述解调导频得到的层间干扰; β(χ)表示对 X进行量化运算。
优选地, 所述用户设备是设置为, 根据所述公共导频估计版本 8端口 5 的发射分集形式的信道质量指示符 C^/^; 根据所述解调导频估计获得第一 层的等效信道向量; 根据所述第一层的等效信道向量获得没有多用户干扰与 有多用户干扰的信道质量指示符差值 ;向所述基站反馈的所述 RI为 1 , 并同时反馈所述 Cg/^; 或者向所述基站反馈的所述 RI 为 2 , 并同时反馈 CQITXD -ACQI ; 其中: Δ^¾^ = ρ(ίί¾ΐ— ίί(έηη + fmt(k)fmt(km) ;
1 k=t- (T-l)
T为所述时间间隔, t为当前时间;
为根据所述解调导频估计获得第一层的等效信道向量;
num int
R„„= ∑ H H +N i ; num int表示干扰小区的数目;
Η,.表示小区间干扰; 表示 Η,.的转置矩阵; N。I表示高斯分布的白噪声; fint (k)表示根据所述解调导频得到的层间干扰; β(χ)表示对 X进行量化运算。
与现有技术相比, 本发明提出的多输入多输出***中信道质量的反馈方 法 ,接收端能够在有多层干扰时获得较准确的信道质量信息并反馈给发送端 , 而且接收端在没***本情况下也能获得较好的估算效果; 本发明提供的用户 设备, 能够在有多层干扰时获得较准确的信道质量信息并反馈给基站, 而且 用户设备在没***本情况下也能获得较好的估算效果。 附图概述
图 1是本发明第一实施例中第一方式的流程示意图;
图 2是本发明第一实施例中第二方式的流程示意图;
图 3是本发明第二实施例中第四方式的流程示意图;
图 4为本发明第二实施例中第五方式的流程示意图;
图 5是本发明发送端根据接收端反馈的信道质量信息进行传输的流程示 意图;
图 6为本发明第四实施例的流程示意图;
图 7为本发明第五实施例的流程示意图;
图 8为本发明第六实施例的流程示意图。 本发明的较佳实施方式
以下将结合附图及实施例来详细说明本发明的实施方式, 借此对本发明 如何应用技术手段来解决技术问题, 并达成技术效果的实现过程能充分理解 并据以实施。
本发明中接收端在计算及反馈 CQI或 SINR时, 根据过往的干扰来估算 当前干扰对 CQI或 SINR的影响 , 比如对过往截止到当前一个 T时间间隔内 的干扰进行平均, 根据该平均值来估算当前信道质量信息。 获取信道质量信 息后, 将获取的信道质量信息反馈给发送端, 发送端根据该信道质量信息进 行与接收端的传输。
根据过往干扰来估算当前干扰, 其中一种方法是通过导频来测量估算。 LTE的标准中包含一种解调导频( Demodulation Reference Signal, DMRS ) , 是发送端 (eNB )对每个接收端 (UE )发射的专用导频, 这种导频在发射时 需要经过预编码处理, 同数据预编码一样。 因此只要 UE知道自己的信道位 于哪几层,就可得知其它层都是干扰,可以从干扰层的 DMRS实现干扰估计。 以下针对 MU-MIMO和 SU-MIMO分别说明通过 DMRS估算 CQI的计 算方法。
对于 MU-MIMO情形
在 MU-MIMO的情况下, 如果共有 M个用户, 则用户 m '的 CQI及 SINR 分别为:
Figure imgf000014_0001
∑ f (k)f (k)*)- , 式(5)
CU (簾 ,) 式(ό) 其中, t表示当前时间, T表示时间间隔;
,)=H m(t); 其中, Λ ∑ ∑ fm„(k)fmu„(l^表示 Τ时间间隔内多用户干扰的平均值。
T
式(6) 中的 ρ(χ)表示对 X进行量化运算。
* fin m( = Hintm(t)wintm(t)是经过预编码处理之后的多用户干扰,可以根 据 DMRS得到。对当前时刻到 T时间段之前的这一段时间内的干扰进行平均 处理,或者可以用滤波器来过滤当前时刻 T时间段之前的多用户干扰。 当然, T也可以等于 1, 即不做平均, 只根据当前的 DMRS来做干扰估计, 即 T等 于 1时式(5)表示为: siU :' +
Figure imgf000014_0002
DD)*)— ' 式(5-1) 需要说明的是, 通过滤波器进行干扰滤波, 以及 T等于 1表示不做平均 处理, 同样适用于 SU-MIMO情形。
在多用户的场景下, 干扰主要是同小区其他用户产生的同道干扰, 这些 干扰都是经过预编码处理的, 所以干扰的大小与变化都取决于 eNB。 对于不 同 eNB, 釆用不同的配对及预编码处理, 从而产生不同的干扰。 通过对之前 干扰的统计, 可以知道 eNB产生干扰的大概强度, 从而对 CQI的影响作一个 估计。 对于 SU-MIMO情
在 SU-MIMO的情况下, 如果是双层传输的话, 第一层的 CQI及 SINR 的计算可以写成:
S/ ?^, =f;(Rnn +- ∑ fint(k)fmt(k)*)-〗f, 式 (7 ) 丄 k=t-(T-l)
CQIsu,=Q(SINRsui) 式 (8) 其中^ )=11 ( 2 )
∑ fint(k)fmt(l ^表示 T时间间隔内多用户干扰的平均值 (
-(T-1)
其中, H (t)w2(0是通过预编码处理后的层间干扰,可以从 DMRS来得到。 和多用户的场景一样, 对当前时刻到 T时间段之前的这一段时间内的干 4尤进 行平均处理, 或者可以用滤波器来过滤当前时刻 T时间段之前的多层干扰。
对于第二层, 计算方法同第一层一样, 即: 双层传输中第二层的信干噪比 SIN ',及信道质量指示符 ,分别为:
SINR 577,2 ∑ fmt(k)fmt(k)*)- 'f2 式(7-1 )
1 k=t-(T-l)
CQIsu =Q(SINR^ 式( 8-1 ) 其中:
为层 i的等效信道向量;
num int
R„„= ∑ Η Η +^ΐ; num int表示干扰小区的数目;
Η,.表示小区间干扰;
Η,*表示 Η,.的转置矩阵;
N。I表示高斯分布的白噪声;
β(χ)表示对 X进行量化运算;
其中 fint(t) = H ()Wl(t) , H (t)w,(t)是通过预编码处理后的层间干扰, 可以 从 DMRS来得到。 其中, 丄 fmt(k)fmt(k)'表示 Τ时间间隔内多用户干扰的平均值。
T k=t-(T-i)
当然, T也可以等于 1, 即不做平均, 只根据当前的 DMRS来做干扰估 计, 即 T等于 1时式(7)表示为: SINR^ =f;(Rnn+fmt( fmt( *)"1f1 式( 7-2 ) 式(7-1 )表示为:
S/NR^2=f (Rnn +fmt(t)fmt(t)y 式( 7-3 )
下面利用实施例来说明如何通过解调导频计算信道质量。
第一实施例
在 LTE Release 8中, 基于单天线端口 5的传输, 属于一种单流波束赋形 (Beamforming, BF)技术的应用。 为了增强下行的非码本传输方式的性能, 在 LTE的增强版本 Release 9中提出了一种新的传输方式, 属于一种秩为 2 的非码本空间复用方式, 也就是釆用了双流 BF技术的两天线端口的传输。
在单用户双流 BF场景下, 因为不是基于码本的方式, eNB可以自己决 定预编码处理的方法。 虽然 eNB—般都使两层的预编码向量正交化, 但是由 于实际***的各种误差, 当信号到达 UE的时候, 层间的干扰是很难避免的, 第一层的 CQI是: 簾 ^ =d + ∑ fmt(k)fmt(k)*)"1f1 式( 9 )
1 k=t-(T-l)
CQI^^QiSINR^) 式(10) 其中^ )=11 ( 2 ) 。 第二层的 CQI是: 式(11)
Figure imgf000016_0001
CQIsu = Q(SINRsu 2) 式(12 ) 其中^ ) = 11 (0^ ) 。 在接收端反馈 SINR或者 CQI时(以反馈 CQI为例进行说明 ) , 包含有 以下第一、 第二及第三共三种方式:
第一方式
UE直接反馈两个 CQI , 即 CQI^和 CQI^。
图 1是在公共导频 CRS ( Common Reference Signal )端口 ( port )的数量 不少于发射天线数时, SU-MIMO***中接收端反馈信道质量信息给发送端的 第一方式的流程示意图。 如图 1所示, 该流程主要包括如下步骤:
步骤 S110, UE根据公共导频 CRS ( Common Reference Signal )估计信道 矩阵 H;
步骤 S120, UE根据该信道矩阵 H获得两个特征向量;
步骤 S130, UE根据该两个特征向量获得第一层的等效信道向量/ i和第 二层的等效信道向量/ 2
步骤 S140, UE根据 DMRS计算层间干扰的平均值;
步骤 S150, UE根据该平均值以及该 和 /2 , 获取第一层信道质量指示 符 和第二层信道质量指示符 ;
步骤 S 160 , UE将该 CQI^和 反馈给发送端。
第二方式
上述第一方式是基于 UE可以获知所有天线的信道, 这需要 CRS port的 数量不少于发射天线数, 例如在 Release 8中最大 CRS的数量是 4个, 如果 发送端有 8根天线, 此时上述第一方式则不适用。
在 CRS端口 (port ) 的数量少于发射天线数时, 用近似 Release 8端口 5 的传输的发射分集形式来反馈 CQI (我们这里用 CQITXD来代表), 然后基于 平均的层间干扰把 CQI调低,根据 DMRS获取第一层的等效信道向量 和第 二层的等效信道向量 /2 , 在此分别用 和 表示根据 DMRS估算出来的第一 层的等效信道向量 和第二层的等效信道向量/ 2 , 所以第一层在有层间干扰 时的 SINR是: 簾 ;(έηη+ fmt(k)fmt(k)*rt 式(13)
1 k=t-(T-l)
第一层在没有层间干扰和有层间干扰的第一层 CQI差值是:
^ QIX =Q( - ( + ∑ fmt(k)fmt(k)*rt) 式( 14 )
1 k=t-(T-l)
运用与第一层一样的过程, 可以获得第二层在没有层间干扰和有层间干 扰时的第二层 CQI差值为: CQI2=Q(f Rj2-f (Rnn ∑ fmt(k)fmt(k)V2) 式(15)
1 k=t-(T-l)
计算第一层 CQI差值与第二层 CQI差值的 CQI平均值:
ACQI = (ACQI, + ACQI2 )12 式( 16 ) 根据 CQITXD及该 CQI平均值获得 CQI估计值:
CQI^CQI^-ACQI 式( 17 ) 接收端将该 CQI估计值 ^¾/反馈给发送端, 这样便可把估计出来的层间 干扰都反映在 <¾/s计算过程中。 发送端 eNB收到 <¾/后再根据 eNB 自己估 计信道的两个特征向量做不同层之间 CQI的调整。 图 2为本发明上述第二方 式的流程示意图。 如图 2所示, 该流程主要包括如下步骤:
步骤 S210, UE根据公共导频 CRS估计 Release 8端口 5的发射分集形式 的信道质量指示符 ;
步骤 S220, UE根据 DMRS估计第一层的等效信道向量 ^和第二层的等 效信道向量
步骤 S230,UE根据该 计算第一层在没有层间干扰和有层间干扰的第一 层 CQI差值 Δ β/,;
步骤 S240 , UE根据该 计算第二层在没有层间干扰和有层间干扰的第二 层 CQI差值 Δ ρ/2;
步骤 S250, 根据该第一层 CQI差值 ACQ/,与第二层 CQI差值 Δί¾/2获得 CQI平均值 ACQI = (ACQI, + ACQI2 )12 步骤 S260, UE 根据该 CQ/^及 CQI 平均值 ACQ/获得 CQI 估计值 CQIE = CQITXD - ACQI反馈给发送端。
第三方式
与前述的第二方式相比, 第三方式在获得第一层 CQI差值与第二层 CQI 差值之后, 根据第一层 CQI差值与第二层 CQI差值, 以及 CQITXD获得: 第一层 CQI估计值为:
CQI H ACQI 式(18) 第二层 CQI估计值为:
CQI2E = CQITXD - ACQI2 式( 19 ) 接收端将该第一层 CQI估计值 ^¾/^及第二层 CQI估计值 馈给发 送端。
第二实施例
双流 BF也可以支持多用户 MIMO, 每一个用户只占一个流(秩为 1 ) 。 第一实施例要求单用户信道的秩为 2, 如果信道的秩为 1, 则需要多用户 MIMO来做空间复用。 如果信道的秩为 1又没有用户做配对的话, 则需要釆 用单用户的单流 BF。 在这个单流 BF模式, 要支持动态单用户单流 BF和多 用户 BF的切换, 本实施例釆用差分 CQI的反馈方法。
首先计算单流 BF的 CQI:
CQIsu l
Figure imgf000019_0001
式( 20 ) 然后再计算单流 BF和双流 BF之间的差值 h Ql^:
ACQISD=CQISU,-Q(SINR
= CQIsul-Q(f;(Rnn ∑ fmt(k)fmt(k)*)- ) 式(21)
1 k=t- (T-1)
接收端将该
Figure imgf000019_0002
eNB后, eNB如果找到两用户做配对的 话, 可以从 ^和 Δί^/^计算多用户的 C^^^CQ/^-ACQ/^, 如果没有用 户做配对的话就用 CQI^来做单用户的传输。 在接收端反馈 SINR或者 CQI时(以反馈 CQI为例进行说明) , 包含有 以下第四和第五共两种方式: 第四方式
本方式是利用差分的方式反馈 CQI, 支持动态单用户和多用户的切换, 例如在秩为 1的情况下, 因为只有一层, 没有多层的干扰, 单用户无干扰的 CQI是:
CQISUA = Q(SINRSU, ) = Q(KR; ) 式( 22 ) 其与多用户 CQI的差值是:
ACQI^ = CQISU, -Q(SINR
= CQISU, -Qi i + ∑ fmt(k)fmt(k)*)- ) 式( 23 )
1 k=t-(T-l)
因为多用户的 CQI是低于单用户的 CQI, 因此八^¾/^是正数, 在量化 八^¾/^时可以用比 CQI少一点的比特来作反馈, 例如 C /^是用 5比特来量 化, 可以用 3比特来量化。
图 3为本发明上述第四方式的流程示意图。 如图 3所示, 该流程主要包 括如下步骤:
步骤 S310, UE根据公共导频 CRS估计信道矩阵 H;
步骤 S320, UE根据该信道矩阵 H获得一个最强的特征向量;
步骤 S330, UE根据该最强的特征向量获得第一层的等效信道向量 f , 步骤 S340, UE根据 DMRS计算多用户干扰的平均值丄 ^ fmt(k)fmt(k)*;
T k=t— (T-1)
步骤 S350, UE根据该 , 获取单用户无干扰信道质量指示符
步骤 S360, UE根据该平均值以及该 , 获取该单用户无干扰信道质量 指示符 CQI^与多用户 CQI的差值 CQI^;
步骤 S370 , UE将该 CQI^ λ和 反馈给发送端。
第五方式 本方式是在 UE无法从 CRS取得第一层的等效信道向量 的情况下 (比 如 CRS port的数量不少于发射天线数), 可以根据 DMRS来估计获得第一层 的等效信道向量 , 在此用 来表示根据 DMRS估计出来的量, 所以与单用 户无干扰 C0/OT 1的差值为: ^ QISM = Q(f;R- -f;(Rnn ∑ fmt(k)fmt(k)*rt) 式(24 )
1 k=t-(T-l)
在这种情况下,接收端向发送端反馈用 Release 8端口 5的传输的发射分 集形式的 CQITXD以及该 。
图 4为本发明上述第五方式的流程示意图。 如图 4所示, 该流程主要包 括如下步骤:
步骤 S410, UE根据公共导频 CRS估计 Release 8端口 5的发射分集形式 的信道质量指示符 ;
步骤 S420, UE根据 DMRS估计第一层的等效信道向量 ;
步骤 S430, UE根据该第一层的等效信道向量 ^计算在没有多用户干扰和 有多用户干扰的 CQI差值 ;
步骤 S440 , UE将该 CQITXD以及该
Figure imgf000021_0001
反馈给发送端。
需要说明的是, 上述第一实施例和第二实施例可以混用, 图 2即为信道 最高秩为 2时, 发送端根据接收端反馈的信道质量信息进行传输的流程示意 图。 如图 5所示, 第一实施例和第二实施例混用时, 发送端根据接收端反馈 的信道质量进行传输主要包括如下步骤:
步骤 S510, 接收端 UE计算信道的秩;
步骤 S520, 判断该信道的秩是否为 1 , 是为 1则转步骤 S530, 否则转步 骤 S550;
步骤 S530, UE计算单用户无干扰信道质量指示符 ;
步骤 S540 , UE计算该单用户无干扰信道质量指示符 C0/OT 1与多用户信道 质量指示符的差值 Δί¾/, 并将该单用户无干扰信道质量指示符 以及该 差值 Δ<¾/反馈给发送端 eNB, 转步骤 S560;
步骤 S550, UE计算双层的信道质量,获得第一层信道质量指示符 CQ/^ 以及第二层信道质量指示符 CQ/^2 ,并将该第一层信道质量指示符 CQ/^以及 第二层信道质量指示符 ί¾/^2反馈给发送端, 转步骤 S590;
步骤 S560, 发送端尝试进行多用户配对, 并判断配对是否成功, 成功则 转步骤 S570, 否则转步骤 S580;
步骤 S570, 发送端釆用多用户双流 BF进行信息传输, 结束;
步骤 S580, 发送端釆用单用户单流 BF进行信息传输, 结束;
步骤 S590, 发送端釆用单用户双流 BF进行信息传输, 结束。
第三实施例
LTE的 Release 8的模式 5, 支持基于码本的多用户 MIMO的传输。 在增 强长期演进( LTE-Advanced ) 的 Release 10版本中, UE在反馈 CQI和 PMI 的时候也可以基于码本, 但为了增强 MU-MIMO的性能, eNB传输的时候仍 然可以支持非码本多用户 MIMO的传输。在这个模式下,因为也是应用 DMRS 来解调, 所以多用户双流 BF的实施方式, 也可以同样釆用 DMRS来估计干 扰。 和多用户双流 BF不同之处, 主要是可以复用多于两个用户。 以下就是当 有 M个用户的情况下, 用户 的 CQI计算方法:
t M
讓 Mu m' = ' + ∑ ∑ f (k)f (k)*)-X, 式(25 )
CU (簾 ,) 式(26 ) 其中 fint ) = Hint»intm(0。
其中 Hintm(t (0是通过预编码处理之后的从用户 m产生的干扰, 可以 根据 DMRS获得。把所有用户的干扰加起来,然后再作时间的平均(如式( 25 ) 中丄 ^ 所示即为时间的平均处理) , 获得如式(26 ) 所示的信道质量信
T k=t— (T-1)
息。 时间的平均是通过现在跟 T以前之间的干扰的估计算一个平均, 或者可 以用滤波器来过滤之前的多用户干扰。
当然, 时间间隔 T为 1时, 式( 25 )为: 簾 ' = ( ηη + ifmt (k)fmt (k)*)- ' 式( 25-1 ) 其中 fw, = Hw 是通过预编码处理之后的用户 m'的等效信道向量, 预编 码 W ,是基于码本来选择的。
第四实施例
在单用户 BF的场景下, 另一种反馈方式是重用 LTE Release 8中模式 3 的反馈模式, 对模式 3中原来的格式作出调整。
在模式 3中, UE反馈的数据是有 RI和 CQI, 当 RI是 1的时候, UE的 建议传输模式是发射分集( Transmit diversity ) , 当 RI是 2的时候, UE的建 议传输模式是开环空间复用 ( Open loop spatial multiplexing ) , UE无论在任 何 RI都是反馈一个 CQI。
在单用户双流 BF场景下, 如果要支持动态单流 BF和双流 BF的切换, eNB最好有 CQITXD及 CQIE ,其中 CQIE = CQITXD - ACQI是用前述第一实施例的第 二方式来计算获得的。 通过重用模式 3的格式, UE在不同的时间反馈 CQ/^ 或 CQIE , 然后用 RI来通知 eNB这个是 <¾/^或者 (¾/s。 当 RI=1的时候, UE 反馈的是 CQ/^; 当 RI=2的时候, UE反馈的就是 CQ/S。 这样 eNB就可以有 单流 BF和双流 BF相对的两个 CQI, 然后 eNB可以根据这两个 CQI和 eNB 估计的信道特征值一起做秩自适应 (rank adaptation )处理, 然后再选择单流 BF或双流 BF的传输模式。
图 6为本发明第四实施例的流程示意图。 如图 6所示, 本发明第四实施 例主要包括如下步骤:
步骤 S610 , UE根据公共导频 CRS估计 Release 8端口 5的发射分集形式 的信道质量指示符 cg/^;
步骤 S620 , UE根据 DMRS估计第一层的等效信道向量 ^和第二层的等 效信道向量
步骤 S630 , UE根据该 计算第一层在没有层间干扰和有层间干扰的第一 层 CQI差值 Δ ρ/, ;
步骤 S640 , UE根据该 计算第二层在没有层间干扰和有层间干扰的第二 层 CQI差值 Δ ρ/2 ;
步骤 S650 , 根据该第一层 CQI差值 ACQ/,与第二层 CQI差值 Δί¾/2获得 CQI平均值 ACQI = (ACQI, + ACQI2 )12; 步骤 S660, UE根据该 <¾/^反馈给发送端, 同时也反馈 RI=1通知 eNB 该 CQITXD是单流 BF的 CQI;
步骤 S670, 在另外一个时间(例如下一个反馈周期), UE根据该 CQ/^ 及 CQI平均值 Δ(¾/获得 CQI估计值 CQIE = CQITXD - ACQI ,将该 CQIE反馈给发 送端 , 同时也反馈 RI=2 , 通知 eNB该 CQIE是双流 BF的 CQI;
步骤 S680, eNB根据 eNB自己估计的信道数据 (例如信道特征值 ) , 以 及 CQ/^或者 CQ/S选择实际传输的秩和调制编码方案 ( Modulation Coding Scheme, MCS ) 。
第五实施例
本实施例中的反馈方式釆用新的反馈模式, UE同时反馈 <¾/^和 Δ<¾/。 图 7是本发明第五实施例的流程示意图。 如图 7所示, 本发明第五实施例主 要包括如下步骤:
步骤 S710, UE根据公共导频 CRS估计 Release 8端口 5的发射分集形式 的信道质量指示符 ;
步骤 S720, UE根据 DMRS估计第一层的等效信道向量 ^和第二层的等 效信道向量
步骤 S730 , UE根据该 计算第一层在没有层间干扰和有层间干扰的第一 层 CQI差值 Δ ρ/, ;
步骤 S740 , UE根据该 计算第二层在没有层间干扰和有层间干扰的第二 层 CQI差值 Δ<¾/2 ;
步骤 S750, 根据该第一层 CQI差值 ACQ/,与第二层 CQI差值 Δί¾/2获得 CQI平均值 ACQI = (ACQI, + ACQI2 )12
步骤 S760 , UE将该 和 反馈给 eNB;
步骤 S770, eNB可以根据 <¾/^、 Δ<¾/和 eNB自己估计的信道数据 (例 如信道特征值 )选择实际传输的秩和 MCS。
第六实施例
前述第四实施例也可以用在多用户的场景,同样重用 LTE Release 8 中模 式 3的反馈模式。 当 RI=1的时候, UE反馈的就是 ; 当 RI=2的时候, UE反馈的就是 CQ/^ - , ACQ/ 代表多用户干扰对 CQI带来的影响, 是用第二实施例第五方式的同样计算方式获得。
图 8为本发明方法第六实施例的流程示意图。 如图 8所示, 本发明第六 实施例主要包括如下步骤:
步骤 S810 , UE根据公共导频 CRS估计 Release 8端口 5的发射分集形式 的信道质量指示符 ;
步骤 S820 , UE根据 DMRS估计第一层的等效信道向量 ;
步骤 S830 , UE根据该第一层的等效信道向量 ^计算在没有多用户干扰和 有多用户干扰的 CQI差值 ;
步骤 S840 , UE将该 CQ/^反馈给发送端, 同时也反馈 RI=1 , 通知 eNB 这个 C^/^是单用户单流 BF的 CQI;
步骤 S850 , 在另外一个时间 (例如下一个反馈周期) , UE 将该 CQITXD - ACQI^反馈给发送端,同时也反馈 RI=2 ,通知 eNB这个 - ACQI^ 是多用户的 CQI;
步骤 S860 , eNB可以根据自己估计的信道数据(例如信道特征值) , 以 lCQ TXD或者 CQ - CQI^选择实际传输的秩和 MCS。
本发明还公开了一种用户设备, 上述用户设备设置为, 根据截止到当前 时间的一个时间间隔内的过往干扰估算当前干扰对信道质量的影响并获得上 述信道质量信息, 向基站反馈上述信道质量信息。
优选地, 上述用户设备是设置为, 计算上述过往干扰的平均值并根据上 述平均值来估算上述信道质量信息, 或者通过对上述时间间隔内的多用户干 扰进行过滤来估算上述信道质量信息。
优选地, 上述用户设备是设置为, 根据公共导频和解调导频估算上述信 道质量信息。
优选地, 上述用户设备是设置为, 对于单用户多输入多输出***的双层 传输, 在公共导频端口的数量少于发射天线数时, 根据上述公共导频估计版 本 8端口 5的发射分集形式的信道质量指示符 CQ/^;根据解调导频估计获得 第一层的等效信道向量和第二层的等效信道向量; 根据上述第一层的等效信 道向量获得第一层在没有层间干扰和有层间干扰的第一层信道质量指示符差 值 ACQ/,;根据上述第二层的等效信道向量获得第二层在没有层间干扰和有层 间干扰的第二层信道质量指示符差值 Δί¾/2;根据上述 ACQ/,与八^¾/2获得信道 质量指示符平均值 Δί¾/ ; 将上述 CQ/^及 Δί¾/反馈给上述基站;
其中: fmt(k)fmt(k )- ) ;
Figure imgf000026_0001
上述 Ac¾/2 =e( 2 2 - (έηη + fmt(k)fmt(k)*)- 丄 k=t— (T-l)
上述 ACQI = (ACQI, + ACQI2 )12
T为上述时间间隔, t为当前时间;
为根据上述解调导频估算获得的上述第一层的等效信道向量; 为根据上述解调导频估算获得的上述第二层的等效信道向量;
num int
R„„ = ∑ H H + N i ; num int表示干扰小区的数目;
Η,.表示小区间干扰;
表示 Η,.的转置矩阵;
N。I表示高斯分布的白噪声;
fint (k)表示根据上述解调导频得到的层间干扰;
β(χ)表示对 X进行量化运算。
优选地, 上述用户设备还设置为向上述基站反馈秩指示 RI。
优选地, 上述用户设备是设置为, 对于单用户多输入多输出***的双层 传输, 在公共导频端口的数量少于发射天线数时, 根据上述公共导频估计版 本 8端口 5的发射分集形式的信道质量指示符 CQ/^;根据解调导频估计获得 第一层的等效信道向量和第二层的等效信道向量; 根据上述第一层的等效信 道向量获得第一层在没有层间干扰和有层间干扰的第一层信道质量指示符差 值 AC^;根据上述第二层的等效信道向量获得第二层在没有层间干扰和有层 间干扰的第二层信道质量指示符差值 Δί¾/2;根据上述 ACQ/,与 Δί¾/2获得信道 质量指示符平均值 Δί¾/; 向上述基站反馈的上述 RI为 1, 并同时反馈上述 COITXD; 或者向上述基站反馈的上述 RI为 2, 并同时反馈上述 Cg/^与上述 Δ( /的差值 其中: 上述 fmt(k)fmt(k)*)- ;
Figure imgf000027_0001
上述 Δί¾/2 = ρ( ί2_ ;(έηη+ ± fmt(k)fmt(km);
丄 k=t— (T-l)
上述 ACQI = (ACQI, + ACOI2 )12 ci^CQIE=CQITXD -ACQI;
T为上述时间间隔, t为当前时间;
为根据上述解调导频估算获得的上述第一层的等效信道向量; f2为根据上述解调导频估算获得的上述第二层的等效信道向量;
num int
R„„ = ∑ HH +Ni; num int表示干 4尤小区的数目;
Η,.表示小区间干扰;
表示 Η,.的转置矩阵; N。I表示高斯分布的白噪声;
fmt (k)表示根据上述解调导频得到的层间干扰; Q(x)表示对 JC进行量化运算。
优选地, 上述用户设备是设置为, 根据上述公共导频估计版本 8端口 5 的发射分集形式的信道质量指示符 C^/^; 根据上述解调导频估计获得第一 层的等效信道向量; 根据上述第一层的等效信道向量获得没有多用户干扰与 有多用户干扰的信道质量指示符差值 ;向上述基站反馈的上述 RI为 1 , 并同时反馈上述 CQ/^; 或者向上述基站反馈的上述 RI 为 2 , 并同时反馈 CQITXD -ACQI ; 其中: Δ^¾^ = ρ(ίί¾ΐ— ίί(έηη + fmt(k)fmt(km) ;
1 k=t- (T-l)
T为上述时间间隔, t为当前时间;
为根据上述解调导频估计获得第一层的等效信道向量;
num int
R„„= ∑ H H +N i ; num int表示干扰小区的数目;
Η,.表示小区间干扰; 表示 Η,.的转置矩阵; N。I表示高斯分布的白噪声; fint (k)表示根据上述解调导频得到的层间干扰; β(χ)表示对 X进行量化运算。
该用户设备与方法实施例中接收端的功能一样, 在此不详述。
本发明提供的用户设备, 能够在有多层干扰时获得较准确的信道质量信 息并反馈给基站,而且用户设备在没***本情况下也能获得较好的估算效果。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
虽然本发明所揭露的实施方式如上, 但所述的内容只是为了便于理解本 发明而釆用的实施方式, 并非用以限定本发明。 任何本发明所属技术领域内 的技术人员, 在不脱离本发明所揭露的精神和范围的前提下, 可以在实施的 形式上及细节上作任何的修改与变化, 但本发明的专利保护范围, 仍须以所 附的权利要求书所界定的范围为准。
工业实用性 本发明公开了一种多输入多输出***中信道质量的反馈方法及用户设 备, 使得接收端或用户设备能够在有多层干扰时获得较准确的信道质量信息 并反馈给发送端或基站, 而且在没***本情况下也能获得较好的估算效果。

Claims

权 利 要 求 书
1、一种多输入多输出***中信道质量的反馈方法, 用于所述多输入多输 出***中接收端向发送端反馈信道质量信息, 所述方法包括:
所述接收端根据截止到当前时间的一个时间间隔内的过往干扰估算当前 干扰对信道质量的影响并获得所述信道质量信息, 向所述发送端反馈所述信 道质量信息。
2、 如权利要求 1所述的方法, 其中,
所述接收端根据所述过往干扰估算当前干扰对信道质量的影响并获得所 述信道质量信息的步骤包括:
计算所述过往干扰的平均值并根据所述平均值来估算所述信道质量信 息, 或者通过对所述时间间隔内的多用户干扰进行过滤来估算所述信道质量 信息。
3、 如权利要求 2所述的方法, 其中:
所述估算所述信道质量信息的步骤包括: 根据公共导频和解调导频估算 所述信道质量信息。
4、 如权利要求 3所述的方法, 其中, 所述根据公共导频和解调导频估算 信道质量信息的步骤包括:
对于单用户多输入多输出***的双层传输, 在公共导频端口的数量少于 发射天线数时,
所述接收端根据所述公共导频估计版本 8端口 5的发射分集形式的信道 质量指示符 ;
所述接收端根据解调导频估计获得第一层的等效信道向量和第二层的等 效信道向量;
所述接收端根据所述第一层的等效信道向量获得第一层在没有层间干扰 和有层间干扰的第一层信道质量指示符差值 ACQ/,;
所述接收端根据所述第二层的等效信道向量获得第二层在没有层间干扰 和有层间干扰的第二层信道质量指示符差值 Δί¾/2; 所述接收端根据所述 Δ ρ/,与 Δί¾/2获得信道质量指示符平均值 Δί¾/;以 及
所述接收端将所述 C /^及 Δί¾/反馈给所述发送端;
其中: 所述 Δ ρ/^^ίί^ΐ- ίί(έηη+ fmt(k)fmt(k)*)- );
1 k=t- (T-l) 所述 Δί¾/2=ρ( ί2- (έηη+ fmt(k)fmt(km);
丄 k=t— (T-l)
所述 ACQI = (ACQI, + ACQI2 )12
T为所述时间间隔, t为当前时间;
ΐ,为根据所述解调导频估计获得的所述第一层的等效信道向量;
为根据所述解调导频估计获得的所述第二层的等效信道向量;
num int
R„„= ∑ H H +N i; num int表示干扰小区的数目;
Η,.表示小区间干扰;
表示 Η,.的转置矩阵;
N。I表示高斯分布的白噪声;
fint (k)表示根据所述解调导频得到的层间干扰;
β(χ)表示对 X进行量化运算。
5、 如权利要求 3所述的方法, 所述方法还包括:
所述接收端向所述发送端反馈秩指示 RI。
6、 如权利要求 5所述的方法, 其中, 所述接收端根据所述过往干扰估算 当前干扰对信道质量的影响并获得所述信道质量信息的步骤包括:
对于单用户多输入多输出***的双层传输, 在公共导频端口的数量少于 发射天线数时,
所述接收端根据所述公共导频估计版本 8端口 5的发射分集形式的信道 质量指示符 ;
所述接收端根据解调导频估计获得第一层的等效信道向量和第二层的等 效信道向量;
所述接收端根据所述第一层的等效信道向量获得第一层在没有层间干扰 和有层间干扰的第一层信道质量指示符差值 ACQ/,;
所述接收端根据所述第二层的等效信道向量获得第二层在没有层间干扰 和有层间干扰的第二层信道质量指示符差值 Δί¾/2
所述接收端根据所述 Δ ρ/,与 Δί¾/2获得信道质量指示符平均值 Δί¾/; 以 及 所述接收端向所述发送端反馈的所述 RI为 1, 并同时反馈所述 C /^; 或者所述接收端向所述发送端反馈的所述 RI为 2, 并同时反馈所述 CQ/^与 所述 ACQ/的差值 CQIE; 其中: 所述 fmt(k)fmt(k)*)- );
Figure imgf000032_0001
所述 Δί¾/2=ρ( ί2- (έηη+ fmt(k)fmt(km);
丄 k=t— (T-l)
所述 ACQI = (ACQI, + ACQI2 )12 所述 ^¾4=^¾/^- ACQ/;
T为所述时间间隔, t为当前时间; ΐ,为根据所述解调导频估计获得的所述第一层的等效信道向量;
f2为根据所述解调导频估计获得的所述第二层的等效信道向量;
num int
R„„= ∑ H H +N i; num int表示干扰小区的数目;
Η,.表示小区间干扰; H,.*表示 Η,.的转置矩阵;
N。I表示高斯分布的白噪声; fint (k)表示根据所述解调导频得到的层间干扰; β(χ)表示对 X进行量化运算。
7、 如权利要求 5所述的方法, 其中, 所述接收端根据所述过往干扰估算 当前干扰对信道质量的影响并获得所述信道质量信息的步骤包括:
所述接收端根据所述公共导频估计版本 8端口 5的发射分集形式的信道 质量指示符 ; 所述接收端根据所述解调导频估计获得第一层的等效信道向量; 所述接收端根据所述第一层的等效信道向量获得没有多用户干扰与有多 用户干扰的信道质量指示符差值 以及 所述接收端向所述发送端反馈的所述 RI为 1 , 并同时反馈所述 C /^; 或者所述接收端向所述发送端反馈的所述 RI 为 2 , 并同时反馈 CQITXD -ACQI ; 其中: Δ^¾^ = ρ(ίί¾ΐ— ίί(έηη + fmt(k)fmt(km) ;
1 k=t- (T-l)
T为所述时间间隔, t为当前时间;
为根据所述解调导频估计获得第一层的等效信道向量;
num int
R„„= ∑ H H +N i ; num int表示干扰小区的数目;
Η,.表示小区间干扰; 表示 Η,.的转置矩阵; N。I表示高斯分布的白噪声; fint (k)表示根据所述解调导频得到的层间干扰; β(Χ)表示对 X进行量化运算。
8、 一种用户设备, 所述用户设备设置为, 根据截止到当前时间的一个时 间间隔内的过往干扰估算当前干扰对信道质量的影响并获得所述信道质量信 息, 向基站反馈所述信道质量信息。
9、 如权利要求 8所述的用户设备, 所述用户设备是设置为, 计算所述过 往干扰的平均值并根据所述平均值来估算所述信道质量信息, 或者通过对所 述时间间隔内的多用户干扰进行过滤来估算所述信道质量信息。
10、 如权利要求 9所述的用户设备, 所述用户设备是设置为, 根据公共 导频和解调导频估算所述信道质量信息。
11、 如权利要求 10所述的用户设备, 所述用户设备是设置为, 对于单用 户多输入多输出***的双层传输,在公共导频端口的数量少于发射天线数时, 根据所述公共导频估计版本 8 端口 5 的发射分集形式的信道质量指示符 CQI^; 根据解调导频估计获得第一层的等效信道向量和第二层的等效信道 向量; 根据所述第一层的等效信道向量获得第一层在没有层间干扰和有层间 干扰的第一层信道质量指示符差值 ACQ/,;根据所述第二层的等效信道向量获 得第二层在没有层间干扰和有层间干扰的第二层信道质量指示符差值 Δί¾/2; 根据所述 Δί^/,与 Δί¾/2获得信道质量指示符平均值 Δί¾/; 将所述 Cg/^及 Δί¾/反馈给所述基站; 其中: 所述 Δ ρ/^ ^ίί^ΐ - ίί(έηη + fmt(k)fmt(k)*)- ) ;
1 k=t- (T-l) 所述 Δί¾/2 = ρ( ί2 - (έηη + fmt(k)fmt(km) ;
丄 k=t— (T-l)
所述 ACQI = (ACQI, + ACQI2 )12
T为所述时间间隔, t为当前时间;
ΐ,为根据所述解调导频估计获得的所述第一层的等效信道向量;
为根据所述解调导频估计获得的所述第二层的等效信道向量; num int
R„„= ∑ H H +N i; num int表示干扰小区的数目;
Η,.表示小区间干扰;
表示 Η,.的转置矩阵;
N。I表示高斯分布的白噪声;
fint (k)表示根据所述解调导频得到的层间干扰;
β(χ)表示对 X进行量化运算。
12、如权利要求 10所述的用户设备, 所述用户设备还设置为向所述基站 反馈秩指示 RI。
13、 如权利要求 12所述的用户设备, 所述用户设备是设置为, 对于单用 户多输入多输出***的双层传输,在公共导频端口的数量少于发射天线数时, 根据所述公共导频估计版本 8 端口 5 的发射分集形式的信道质量指示符 CQI^; 根据解调导频估计获得第一层的等效信道向量和第二层的等效信道 向量; 根据所述第一层的等效信道向量获得第一层在没有层间干扰和有层间 干扰的第一层信道质量指示符差值 ACQ/,;根据所述第二层的等效信道向量获 得第二层在没有层间干扰和有层间干扰的第二层信道质量指示符差值 Δί¾/2; 根据所述 AC /,与 Δί¾/2获得信道质量指示符平均值 Δί¾/;向所述基站反馈的 所述 RI为 1, 并同时反馈所述 Cg/^; 或者向所述基站反馈的所述 RI为 2, 并同时反馈所述 Cg/^与所述 Q1的差值 CQIE; 其中: fmt(k)fmt(k)*)- );
Figure imgf000035_0001
所述 Δί¾/2=ρ( ί2- (έηη+ fmt(k)fmt(km);
丄 k=t— (T-l)
所述 ACQI = (ACQI, + ACQI2 )12; 所述 ^¾4=^¾/^- ACQ/; T为所述时间间隔, t为当前时间; ΐ,为根据所述解调导频估计获得的所述第一层的等效信道向量; f2为根据所述解调导频估计获得的所述第二层的等效信道向量;
num int
R„„= ∑ H H +N i ; num int表示干扰小区的数目;
Η,.表示小区间干扰;
表示 Η,.的转置矩阵; N。I表示高斯分布的白噪声; fint (k)表示根据所述解调导频得到的层间干扰; ρ(χ)表示对 X进行量化运算。
14、 如权利要求 12所述的用户设备, 所述用户设备是设置为, 根据所述 公共导频估计版本 8端口 5的发射分集形式的信道质量指示符 CQ/^; 根据 所述解调导频估计获得第一层的等效信道向量; 根据所述第一层的等效信道 向量获得没有多用户干扰与有多用户干扰的信道质量指示符差值 ; 向 所述基站反馈的所述 RI为 1 , 并同时反馈所述 Cg/^; 或者向所述基站反馈 的所述 RI为 2 , 并同时反馈 CQITXD - ACQI^; 其中: Δ^¾^ = ρ(ίί¾ΐ— ίί(έηη + fmt(k)fmt(km) ;
1 k=t- (T-l)
T为所述时间间隔, t为当前时间;
为根据所述解调导频估计获得第一层的等效信道向量;
num int
„„ = ∑ Η Η + ^ΟΙ ; num int表示干扰小区的数目;
Η,.表示小区间干扰; H表示 Η,.的转置矩阵;
N。I表示高斯分布的白噪声; fint (k)表示根据所述解调导频得到的层间干扰; Q(x)表示对 进行量化运算。
PCT/CN2010/075122 2009-08-20 2010-07-13 多输入多输出***中信道质量的反馈方法及用户设备 WO2011020394A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910167122.9A CN101630966B (zh) 2009-08-20 2009-08-20 多输入多输出***中信道质量的反馈方法
CN200910167122.9 2009-08-20

Publications (1)

Publication Number Publication Date
WO2011020394A1 true WO2011020394A1 (zh) 2011-02-24

Family

ID=41575939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075122 WO2011020394A1 (zh) 2009-08-20 2010-07-13 多输入多输出***中信道质量的反馈方法及用户设备

Country Status (2)

Country Link
CN (1) CN101630966B (zh)
WO (1) WO2011020394A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112702287A (zh) * 2020-12-21 2021-04-23 比科奇微电子(杭州)有限公司 用于信道估计的数据处理方法、装置、存储介质和处理器

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630967B (zh) * 2009-08-12 2015-06-03 中兴通讯股份有限公司 多输入多输出***中信道质量获取方法
CN101630966B (zh) * 2009-08-20 2015-04-01 中兴通讯股份有限公司 多输入多输出***中信道质量的反馈方法
CN102158302B (zh) * 2010-02-11 2013-09-18 电信科学技术研究院 一种信息指示的方法及设备
CN102237961A (zh) * 2010-05-04 2011-11-09 株式会社Ntt都科摩 一种多输入多输出相关信息传输方法
CN102244564B (zh) * 2010-05-11 2014-12-10 中兴通讯股份有限公司 多输入多输出mimo***的下行传输方法和基站
CN102457361B (zh) * 2010-10-27 2014-09-10 中兴通讯股份有限公司 一种支持多种发射方式的方法和基站
CN102523074B (zh) * 2011-12-22 2015-04-01 北京北方烽火科技有限公司 一种无线通信***自适应编码调制方法与装置
CN102595385B (zh) * 2012-03-02 2014-06-18 电信科学技术研究院 一种下行传输方法及装置
KR102061700B1 (ko) * 2012-11-02 2020-01-02 삼성전자주식회사 무선 통신 시스템에서 간섭 인지 검출 방법 및 장치
CN104579544B (zh) * 2013-10-25 2018-03-06 联芯科技有限公司 Lte tm3模式下的cqi或ri选择方法及***
WO2016168998A1 (zh) 2015-04-22 2016-10-27 华为技术有限公司 Mimo***中多用户调度的方法和装置
CN106888062B (zh) * 2015-12-10 2020-04-10 电信科学技术研究院 Cqi估计、sinr确定方法及相关设备
CN107534883B (zh) * 2016-01-25 2020-07-14 诸暨易和项目投资有限公司 下行信道状态信息的获取方法和装置
CN107370556A (zh) * 2016-05-12 2017-11-21 株式会社Ntt都科摩 信道质量反馈方法、用户终端、信道质量测量的控制方法及基站
CN109428639B (zh) * 2017-08-24 2021-04-09 上海诺基亚贝尔股份有限公司 用于确定信道状态信息的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232690A (zh) * 2007-01-23 2008-07-30 华为技术有限公司 时分双工***中综合应用双向信道质量指示的方法及***
CN101370240A (zh) * 2007-08-15 2009-02-18 上海贝尔阿尔卡特股份有限公司 多用户mimo通信***中基于用户反馈的调度方法和装置
CN101630966A (zh) * 2009-08-20 2010-01-20 中兴通讯股份有限公司 多输入多输出***中信道质量的反馈方法
CN101630967A (zh) * 2009-08-12 2010-01-20 中兴通讯股份有限公司 多输入多输出***中信道质量获取方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101378281B (zh) * 2007-08-30 2012-09-26 中兴通讯股份有限公司 一种多输入多输出***信号处理方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232690A (zh) * 2007-01-23 2008-07-30 华为技术有限公司 时分双工***中综合应用双向信道质量指示的方法及***
CN101370240A (zh) * 2007-08-15 2009-02-18 上海贝尔阿尔卡特股份有限公司 多用户mimo通信***中基于用户反馈的调度方法和装置
CN101630967A (zh) * 2009-08-12 2010-01-20 中兴通讯股份有限公司 多输入多输出***中信道质量获取方法
CN101630966A (zh) * 2009-08-20 2010-01-20 中兴通讯股份有限公司 多输入多输出***中信道质量的反馈方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112702287A (zh) * 2020-12-21 2021-04-23 比科奇微电子(杭州)有限公司 用于信道估计的数据处理方法、装置、存储介质和处理器
CN112702287B (zh) * 2020-12-21 2022-07-05 比科奇微电子(杭州)有限公司 用于信道估计的数据处理方法、装置、存储介质和处理器

Also Published As

Publication number Publication date
CN101630966B (zh) 2015-04-01
CN101630966A (zh) 2010-01-20

Similar Documents

Publication Publication Date Title
WO2011020394A1 (zh) 多输入多输出***中信道质量的反馈方法及用户设备
Love et al. An overview of limited feedback in wireless communication systems
EP3248301B1 (en) Methods and devices for quantizing beam phases for a precoder
Wang et al. Worst-case robust MIMO transmission with imperfect channel knowledge
US8934565B2 (en) Reference signaling scheme using compressed feedforward codebooks for multi-user, multiple-input multiple-output (MU-MIMO) systems
EP2891260B1 (en) Method and wireless terminal for mitigating downlink interference
US8442139B2 (en) Apparatus and method for transmitting and receiving in a multi-antenna system
JP5705843B2 (ja) 協調ビーム成形のためのアンテナ設定
US8582672B2 (en) System and method for wireless communications using spatial multiplexing with incomplete channel information
WO2010053664A2 (en) Employing cell-specific and user entity-specific reference symbols in an orthogonal frequency division multiple access
WO2011017988A1 (zh) 多输入多输出***中信道质量获取方法和接收端
DK2932621T3 (en) DISTRIBUTION OF TRANSMISSION EFFECT TO MIMO COMMUNICATIONS AT LIMITED MULTIPLICATIVE NOISE
KR20140130482A (ko) 무선 통신 시스템에서의 방법 및 장치
Nguyen et al. MMSE precoding for multiuser MISO downlink transmission with non-homogeneous user SNR conditions
Schwarz et al. Single-user MIMO versus multi-user MIMO in distributed antenna systems with limited feedback
EP2266211B1 (en) Apparatus and method for transmitting pilot signal in wireless communication system
CN105515725A (zh) 导频发送方法、信道信息测量反馈方法、发送端及接收端
TW200913537A (en) A method for communicating in a MIMO context
KR20140023371A (ko) 다중 입력 다중 출력(mimo)에 대한 공간 채널 상태 정보 피드백 방법 및 시스템
KR20100110196A (ko) 다중 셀 통신 시스템에서 셀 가장자리 사용자의 에러를 최소화하기 위한 장치 및 방법
US9059757B2 (en) Communication method and apparatus for use in multiple antenna system
KR20110091999A (ko) 다중 사용자 다중 안테나 시스템에서 널 코드북 기반의 프리코딩 장치 및 방법
Huang et al. Multiuser MIMO
CN117678163A (zh) 用于端口选择码本增强的方法和装置
WO2016067319A1 (en) Communication system and method, base station, and user terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809527

Country of ref document: EP

Kind code of ref document: A1