WO2011001908A1 - 導電性ペースト用バインダー樹脂、導電性ペースト及び太陽電池素子 - Google Patents

導電性ペースト用バインダー樹脂、導電性ペースト及び太陽電池素子 Download PDF

Info

Publication number
WO2011001908A1
WO2011001908A1 PCT/JP2010/060817 JP2010060817W WO2011001908A1 WO 2011001908 A1 WO2011001908 A1 WO 2011001908A1 JP 2010060817 W JP2010060817 W JP 2010060817W WO 2011001908 A1 WO2011001908 A1 WO 2011001908A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
weight
binder resin
conductive
parts
Prior art date
Application number
PCT/JP2010/060817
Other languages
English (en)
French (fr)
Inventor
山中勲
森口慎太郎
山内健司
平池宏至
大森一弘
杉田大平
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to US13/254,914 priority Critical patent/US20120037223A1/en
Priority to EP10794077.7A priority patent/EP2450385A4/en
Priority to JP2010526498A priority patent/JP4691211B2/ja
Priority to CN201080009832.XA priority patent/CN102341416B/zh
Publication of WO2011001908A1 publication Critical patent/WO2011001908A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a binder resin for a conductive paste that can form a conductive paste having a high dispersibility of conductive powder, a high aspect ratio wiring, and a low carbon component remaining after firing. Moreover, this invention relates to the electrically conductive paste and solar cell element which are manufactured using this binder resin for electrically conductive pastes.
  • a conductive paste is printed on these layers and dried.
  • a method of firing at a predetermined temperature is widely used.
  • the conductive paste used in such a method is manufactured by dispersing conductive metal powder (conductive powder) in a vehicle composition obtained by dissolving a resin component serving as a binder resin in an organic solvent. Is done.
  • Patent Document 1 discloses a paste for a solar battery light-receiving surface electrode containing silver particles having a specific surface area of 0.20 to 0.60 m 2 / g, a glass frit, a resin binder, and a thinner.
  • ethyl cellulose is used.
  • the conductive paste using cellulose resin has insufficient thermal decomposability of the cellulose resin in the baking process, so that the carbon component remains in the resulting wiring, and the conductive powder adheres to the substrate. The problem is that the strength is lowered and the wiring is easily peeled off.
  • Patent Document 2 discloses a method for manufacturing a ceramic electronic component using a conductive paste for external electrodes containing a predetermined acrylic resin.
  • conductive paste using acrylic resin has poor dispersibility of conductive powder and non-uniform viscosity.
  • the paste may sag or bleed during printing.
  • the aspect ratio is the ratio of the cross-sectional height to the cross-sectional width of the wiring (cross-sectional height / cross-sectional width).
  • Patent Document 3 discloses a conductive resin made of a predetermined (meth) acrylamide polymer containing a phosphonate ester group and a binder for a conductive metal paste made of the conductive resin.
  • a phosphoric acid dispersant or a resin having a phosphoric acid side chain is blended, even in a conductive paste using an acrylic resin having relatively good thermal decomposability, the residual carbon component after firing increases, and the wiring It is a problem to affect the performance of.
  • JP 2007-235082 A Japanese Patent No. 4096661 Japanese Patent No. 4248551
  • the present invention provides a binder resin for a conductive paste that can form a conductive paste having a high dispersibility of conductive powder, a wiring with a high aspect ratio, and a low carbon component remaining after firing.
  • the purpose is to provide.
  • this invention aims at providing the electrically conductive paste and solar cell element which are manufactured using this binder resin for electrically conductive pastes.
  • the present invention relates to a binder for conductive paste comprising a polymer having a main chain composed of a segment derived from a (meth) acrylate monomer and having a phosphoric acid component represented by the following general formula (1) at the ⁇ -position. Resin.
  • X represents an oxygen atom or a sulfur atom
  • R 1 and R 2 are each a hydrogen atom, a hydrocarbon group having 1 to 13 carbon atoms, a hydroxyl group-containing compound group having 1 to 13 carbon atoms, or This represents an ester bond-containing compound group having 1 to 13 carbon atoms.
  • the present inventors have a conductive paste comprising a polymer having a main chain composed of a segment derived from a (meth) acrylate monomer, and having a phosphoric acid component represented by the above general formula (1) at the ⁇ position. It was found that by using the binder resin for use, a conductive paste having a high dispersibility of the conductive powder and a small amount of carbon component remaining after firing can be obtained. The present inventors have found that such a conductive paste is excellent in printability and can form wiring with a high aspect ratio, and have completed the present invention.
  • the binder resin for conductive paste of the present invention has a main chain composed of a segment derived from a (meth) acrylate monomer, and a polymer having a phosphoric acid component represented by the following general formula (1) at the ⁇ position Consists of.
  • X represents an oxygen atom or a sulfur atom
  • R 1 and R 2 are a hydrogen atom, a hydrocarbon group having 1 to 13 carbon atoms, and a hydroxyl group-containing compound group having 1 to 13 carbon atoms, respectively. Alternatively, it represents an ester bond-containing compound group having 1 to 13 carbon atoms.
  • the phosphoric acid component represented by the general formula (1) existing at the ⁇ position of the polymer is also simply referred to as a phosphatic acid component at the ⁇ position.
  • the first carbon atom portion of the long-chain alkyl is referred to as ⁇ -position
  • the last carbon atom portion is referred to as ⁇ -position. That is, the ⁇ position means the most terminal portion in the polymer main chain constituting the resin.
  • the binder resin for conductive paste of the present invention has a main chain composed of a segment derived from a (meth) acrylate monomer, so that it has excellent thermal decomposability compared to the cellulose resin, and the binder resin for conductive paste of the present invention is It is possible to produce a conductive paste with little carbon component remaining after firing.
  • the (meth) acrylate monomer is not particularly limited.
  • a resin composed of a polymer having a main chain composed of a segment derived from a (meth) acrylate monomer is superior in thermal decomposability compared to a cellulose resin, but it is difficult to disperse a conductive powder well. It is.
  • the binder resin for conductive paste of the present invention can disperse the conductive powder satisfactorily by having the phosphoric acid component represented by the general formula (1) at the ⁇ position of the polymer.
  • a conductive paste having excellent printability and capable of forming a wiring with a high aspect ratio can be manufactured.
  • the binder resin for conductive pastes of the present invention since the site where the phosphoric acid component represented by the general formula (1) is present is the ⁇ position of the polymer, the phosphoric acid component is introduced. In addition, excellent thermal decomposability can be maintained, and a conductive paste with little carbon component remaining after firing can be produced using the binder resin for conductive paste of the present invention.
  • the binder resin for conductive paste of the present invention when the polymer has a phosphoric acid component in addition to the ⁇ -position phosphoric acid component, the inclusion of a phosphoric acid-based component other than the ⁇ -position phosphoric acid component
  • the amount is preferably less than 5% by weight relative to the total polymer.
  • the method for producing the binder resin for conductive paste of the present invention is not particularly limited.
  • the monomer mixture containing the (meth) acrylate monomer and a compound having a phosphoric acid component and a thiol group is polymerized.
  • the method of obtaining a polymer is mentioned.
  • the polymerization method is not particularly limited, and a method used for polymerization of a normal (meth) acrylate monomer can be used.
  • free radical polymerization method, living radical polymerization method, iniferter polymerization method, anion polymerization method, living room An anionic polymerization method etc. are mentioned.
  • the phosphoric acid component represented by the general formula (1) in addition to the (meth) acrylate monomer, in order to introduce the phosphoric acid component represented by the general formula (1) into the ⁇ position of the obtained polymer, the phosphoric acid component and the thiol group are introduced into the monomer mixture. A compound having is added. The compound having a phosphoric acid component and a thiol group acts as a chain transfer agent and is introduced only into the polymer terminal, and is not introduced into the polymer or into the polymer side chain. Therefore, the phosphoric acid component represented by the general formula (1) is introduced only at the ⁇ position of the obtained polymer. The introduction of the phosphoric acid component represented by the general formula (1) into the polymer can be confirmed by analyzing the presence or absence of phosphorus atoms by fluorescent X-ray analysis.
  • the compound which has the said phosphoric acid type component and a thiol group is not specifically limited,
  • the thiophosphoric acid ester represented by following General formula (2), phosphoric acid represented by following General formula (3) or (4) Examples include esters.
  • X represents an oxygen atom or a sulfur atom
  • R 3 and R 4 are a hydrogen atom, a hydrocarbon group having 1 to 13 carbon atoms, and a hydroxyl group-containing compound group having 1 to 13 carbon atoms, respectively.
  • it represents an ester bond-containing compound group having 1 to 13 carbon atoms.
  • R 5 , R 6 and R 7 are each a hydrogen atom, a hydrocarbon group having 1 to 13 carbon atoms, a hydroxyl group-containing compound group having 1 to 13 carbon atoms or a group having 1 to 13 carbon atoms. Represents an ester bond-containing compound group.
  • R 8 , R 9 and R 10 are each a hydrogen atom, a hydrocarbon group having 1 to 13 carbon atoms, a hydroxyl group-containing compound group having 1 to 13 carbon atoms, or a group having 1 to 13 carbon atoms. Represents an ester bond-containing compound group.
  • the thiophosphate represented by the general formula (2) is not particularly limited.
  • the phosphate ester represented by the general formula (3) is not particularly limited.
  • thioglycolic acid monophosphate ester thioglycolic acid monodimethyl phosphate ester, thioglycolic acid monodiethyl phosphate ester, thioglycolic acid monoester And diethyl hexyl phosphate.
  • the phosphate ester represented by the general formula (4) is not particularly limited, and examples thereof include thiopropionic acid monophosphate ester, thiopropionic acid monodimethyl phosphate ester, thiopropionic acid monodiethyl phosphate ester, and thiopropionic acid monoester. And diethyl hexyl phosphate. These compounds having a phosphoric acid component and a thiol group may be used alone or in combination of two or more.
  • the content of the compound having a phosphoric acid component and a thiol group is not particularly limited. However, a preferable lower limit with respect to 100 parts by weight of the (meth) acrylate monomer is 0.01 part by weight, and a preferable upper limit is 30 parts by weight. Part.
  • the content of the compound having a phosphoric acid component and a thiol group is less than 0.01 parts by weight, the obtained binder resin for conductive paste may not be able to disperse the conductive powder well. In some cases, it is impossible to manufacture a conductive paste capable of forming a wiring having a high aspect ratio.
  • the content of the compound having a phosphoric acid component and a thiol group exceeds 30 parts by weight, a conductive paste with less carbon component remaining after firing is produced using the obtained binder resin for conductive paste. May not be possible.
  • the monomer mixture preferably contains a polymerization initiator.
  • the said polymerization initiator is not specifically limited,
  • polymerization of a normal (meth) acrylate monomer can be used, for example, azo polymerization initiators, such as AIBN, peroxyketal, hydroperoxide And organic peroxide polymerization initiators such as dialkyl peroxide, peroxydicarbonate, diacyl peroxide, and peroxyester.
  • the content of the polymerization initiator is not particularly limited, but a preferable lower limit with respect to 100 parts by weight of the (meth) acrylate monomer is 0.01 parts by weight, and a preferable upper limit is 30 parts by weight. If the content of the polymerization initiator is less than 0.01 parts by weight, the amount as an initiator may be insufficient and the polymerization reaction may not occur. If the content of the polymerization initiator exceeds 30 parts by weight, the initiator residue increases, which may adversely affect the carbon component remaining after firing.
  • the glass transition temperature (Tg) of the binder resin for conductive paste of the present invention is not particularly limited, but the preferred lower limit is 10 ° C. and the preferred upper limit is 80 ° C.
  • the conductive paste binder resin is too soft to support a conductive powder such as silver powder, which will be described later, and a conductive paste that can form a wiring with a high aspect ratio. It may not be possible to manufacture.
  • the said glass transition temperature exceeds 80 degreeC, binder resin for electrically conductive pastes will become hard and may have a bad influence on the printability of an electrically conductive paste.
  • the number average molecular weight of the binder resin for conductive paste of the present invention is not particularly limited, but the preferred lower limit of the number average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC) is 5000, and the preferred upper limit is 30,000.
  • GPC gel permeation chromatography
  • the binder resin for conductive paste becomes too soft and cannot support conductive powder such as silver powder to be described later, and a conductive paste that can form wiring with a high aspect ratio. It may not be possible to manufacture.
  • the adhesive property of the binder resin for conductive paste becomes too strong, and when it is made into a paste, it adversely affects the printability of the conductive paste, such as stringing and deterioration of plate separation.
  • An example of a column for measuring the number average molecular weight in terms of polystyrene by gel permeation chromatography is a column LF-804 manufactured by SHOKO.
  • the binder resin for conductive paste of the present invention preferably has a residual carbon component of 1% by weight or less when heated to 600 ° C. at a rate of temperature increase of 10 ° C./min.
  • the residual carbon component can be measured by analysis using a carbon-sulfur analyzer (EMIA-820) after firing.
  • the use of the binder resin for conductive paste of the present invention is not particularly limited, and by mixing with other components such as conductive powder and organic solvent, electrodes such as solar cell elements and ceramic electronic parts, conductive layers, conductive It can be used as a conductive paste for forming wiring or the like. Especially, it is preferable to use as a conductive paste for forming the conductive layer or conductive wiring of a solar cell element.
  • the conductive paste containing the binder resin for conductive paste of the present invention, conductive powder and organic solvent is also one aspect of the present invention.
  • the content of the binder resin for the conductive paste of the present invention is not particularly limited and is preferably as small as possible, but the preferred lower limit for the entire conductive paste is 1% by weight, A preferred upper limit is 20% by weight.
  • the content of the binder resin for an electrically conductive paste of the present invention is less than 1% by weight, the dispersibility of the electrically conductive powder in the obtained electrically conductive paste may be lowered.
  • the content of the binder resin for conductive paste of the present invention exceeds 20% by weight, the carbon component remaining after firing the resulting conductive paste increases, and the performance of wiring formed using the conductive paste May be affected.
  • the conductive paste of the present invention contains a conductive powder.
  • the conductive powder is a component that imparts conductivity to the paste.
  • the said electroconductive powder is not specifically limited,
  • the electroconductive powder used normally can be used, For example, silver powder, copper powder, nickel powder, and these oxides, carbonate, acetic oxide, etc. are mentioned. Of these, silver powder is preferred. These may be used independently and 2 or more types may be used together.
  • the content of the conductive powder is not particularly limited, and the preferable lower limit with respect to the entire conductive paste is 10% by weight, and the preferable upper limit is 95% by weight.
  • the content of the conductive powder is less than 10% by weight, the resulting conductive paste may have poor printability and may not be able to form a wiring with a high aspect ratio. If the content of the conductive powder exceeds 95% by weight, pasting may become difficult.
  • the conductive paste of the present invention contains an organic solvent.
  • the organic solvent has a preferred lower limit of boiling point at 1 atm of 150 ° C. and a preferred upper limit of 350 ° C. By satisfying such a range, volatilization of the organic solvent during printing is suppressed, the viscosity of the conductive paste is stabilized, the printability is improved, and a wiring with a high aspect ratio can be formed.
  • the organic solvent whose lower limit of the boiling point is 150 ° C. and whose upper limit is 350 ° C. is not particularly limited, and examples thereof include glycol solvents, glycol ester solvents, carbitol solvents, and terpineol solvents.
  • the glycol solvent is not particularly limited, and examples thereof include ethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, propylene glycol, phenylpropylene glycol, tripropylene glycol, and benzyl glycol.
  • the glycol ester solvent is not particularly limited.
  • the carbitol-based solvent is not particularly limited, and examples thereof include octaethylene glycol monododecyl ether butyl carbitol and butyl carbitol acetate.
  • the terpineol-based solvent is not particularly limited, and examples thereof include terpineol, terpine acetate, dihydroterpineol, dihydroterpineol acetate and the like.
  • Examples of the organic solvent having a lower limit of the boiling point of 150 ° C. and an upper limit of 350 ° C. include, for example, texanol, benzyl acetate, isophorone, butyl lactate, dioctyl phthalate, dioctyl adipate, benzyl alcohol, cresol, methyl phenylacetate, and ethyl phenylacetate. Also, ethyl benzoate, methyl benzoate, benzyl alcohol, and the like can be used. These organic solvents having a boiling point lower limit of 150 ° C. and an upper limit of 350 ° C. may be used alone or in combination of two or more.
  • the content of the organic solvent is not particularly limited, and a preferable lower limit with respect to the entire conductive paste is 5% by weight, and a preferable upper limit is 90% by weight.
  • the resulting conductive paste may have poor printability and cannot form a wiring with a high aspect ratio.
  • the conductive paste of the present invention may contain glass frit. By adding the glass frit, it is possible to improve adhesion when a conductive paste is printed and baked to form a wiring. In particular, in the production of solar cell elements, when an antireflection layer is formed on a semiconductor layer and then wiring is formed using the conductive paste of the present invention, by adding the glass frit, In addition to good adhesion, the antireflection layer is eroded by the interaction between the conductive powder and the glass frit, and the electrical contact between the wiring and the semiconductor layer can be made well.
  • the said glass frit is not specifically limited,
  • the glass frit used for a normal electrically conductive paste can be used,
  • a borosilicate glass frit etc. are mentioned.
  • a lead borosilicate glass frit having a softening temperature of 300 ° C. or higher and a firing temperature or lower can be used.
  • As said baking temperature 800 degreeC is mentioned, for example.
  • the content of the glass frit is not particularly limited, and the preferable lower limit with respect to the entire conductive paste is 0.1% by weight, and the preferable upper limit is 20% by weight.
  • the content of the glass frit is less than 0.1% by weight, for example, when the wiring of a solar cell element is formed using the obtained conductive paste, the antireflection layer cannot be eroded, and the conductive May decrease.
  • the content of the glass frit exceeds 20% by weight, the ratio of the conductive powder in the obtained conductive paste decreases, and the conductivity of the formed wiring or the like may decrease.
  • the conductive paste of the present invention may contain a material having a thickening effect.
  • the material having the thickening effect is not particularly limited, and examples thereof include thickeners such as fatty acid amides and castor oil, and resins such as acrylic fine particles and ethyl cellulose.
  • the upper limit with preferable content of the material which has the said thickening effect is 3 weight% with respect to the whole electrically conductive paste. When the content of the material having the thickening effect exceeds 3% by weight, the carbon component remaining after firing increases, and the conductivity may deteriorate.
  • the conductive paste of the present invention may contain a surface conditioner.
  • the type of the surface conditioner is not particularly limited.
  • the surface conditioner has a high hydroxyl group such as 2,2-dimethyl-1,3-propanediol and 2- (hydroxymethyl) -2-ethyl-1,3-propanediol.
  • Examples include polar organic compounds.
  • the upper limit with preferable content of the said surface conditioning agent is 30 weight% with respect to the whole electrically conductive paste. When the content of the surface conditioner exceeds 30% by weight, the drying speed is slowed down, so that the paste flows during the drying process, and the aspect ratio after printing and drying may be lowered.
  • the conductive paste of the present invention is not limited to the above thickening material and surface conditioner, but also a dispersant such as a surfactant, and a plastic such as a phthalate ester.
  • a dispersant such as a surfactant
  • a plastic such as a phthalate ester.
  • the method for producing the conductive paste of the present invention is not particularly limited, and the binder resin for the conductive paste of the present invention, the conductive powder, the organic solvent, and other components added as necessary are conventionally known stirring methods.
  • the method of stirring with is mentioned.
  • the stirring method is not particularly limited, and examples thereof include a method using three rolls and a method using a bead mill.
  • the use of the conductive paste of the present invention is not particularly limited, and can be used as a conductive paste for forming electrodes, conductive layers, conductive wirings, and the like of solar cell elements and ceramic electronic components.
  • the conductive paste of the present invention if used, a wiring with a high aspect ratio can be formed, and a solar cell element having a high lighting rate and excellent energy conversion efficiency can be obtained. That is, it is preferably used as a conductive paste for forming a conductive layer or conductive wiring on the light receiving surface.
  • a solar cell element having a conductive layer or conductive wiring formed by firing the conductive paste of the present invention is also one aspect of the present invention.
  • a binder for conductive paste that can form a conductive paste with a high dispersibility of conductive powder, a high aspect ratio, and a low carbon component remaining after firing can be obtained.
  • a resin can be provided.
  • the electrically conductive paste and solar cell element which are manufactured using this binder resin for electrically conductive pastes can be provided.
  • Example 1 Production of binder resin for conductive paste (methacrylic resin) In a 2 L separable flask equipped with a stirrer, cooler, thermometer, hot water bath and nitrogen gas inlet, 50 parts by weight of methyl methacrylate (MMA) and isobutyl Mixing 50 parts by weight of methacrylate (IBMA), 3 parts by weight of bis (2-ethylhexyl) dithiophosphate (SC Organic Chemical Co., “Poslex DT-8”) and 100 parts by weight of butyl acetate as an organic solvent A mixture was obtained.
  • MMA methyl methacrylate
  • IBMA methacrylate
  • IBMA methacrylate
  • SC Organic Chemical Co. “Poslex DT-8”
  • the obtained monomer mixture was bubbled with nitrogen gas for 20 minutes to remove dissolved oxygen, and then the temperature inside the separable flask system was replaced with nitrogen gas and heated until the hot water bath boiled with stirring. Subsequently, a solution obtained by diluting diacyl peroxide (manufactured by NOF Corporation, “Perroll 355”) with butyl acetate as a polymerization initiator was added. Further, a butyl acetate solution containing a polymerization initiator was added several times during the polymerization. A total of 3 parts by weight of the polymerization initiator was added to 100 parts by weight of the (meth) acrylate monomer. Seven hours after the start of polymerization, the polymerization was terminated by cooling to room temperature.
  • Example 2 Binder for conductive paste was produced in the same manner as in Example 1 except that diethyl dithiophosphate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of bis (2-ethylhexyl) dithiophosphate in the production of binder resin for conductive paste. Resin and conductive paste were obtained.
  • Example 3 Binder for conductive paste was produced in the same manner as in Example 1 except that dipropyl dithiophosphate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of bis (2-ethylhexyl) dithiophosphate in the production of binder resin for conductive paste. Resin and conductive paste were obtained.
  • Example 4 In the production of the binder resin for conductive paste, instead of 50 parts by weight of methyl methacrylate and 50 parts by weight of isobutyl methacrylate, 80 parts by weight of isobutyl methacrylate and 20 parts by weight of methoxypolyethylene glycol monomethacrylate (manufactured by Kyoeisha Chemical Co., Ltd., “Light Ester 041MA”) A binder resin for conductive paste and a conductive paste were obtained in the same manner as in Example 1 except that was used.
  • Example 5 In the production of the binder resin for conductive paste, the binder resin for conductive paste was obtained in the same manner as in Example 1 except that the addition amount of bis (2-ethylhexyl) dithiophosphate was changed from 3 parts by weight to 0.01 parts by weight. And a conductive paste was obtained.
  • Example 6 In the production of the binder resin for conductive paste, the binder resin for conductive paste and the conductive resin were obtained in the same manner as in Example 1 except that the addition amount of bis (2-ethylhexyl) dithiophosphate was changed from 3 parts by weight to 30 parts by weight. Sex paste was obtained.
  • Example 7 In the production of the binder resin for conductive paste, except that 50 parts by weight of methyl methacrylate and 50 parts by weight of isobutyl methacrylate were used, 15 parts by weight of methyl methacrylate, 60 parts by weight of isobutyl methacrylate and 25 parts by weight of methoxypolyethylene glycol monomethacrylate were used. In the same manner as in Example 1, a binder resin for conductive paste and a conductive paste were obtained.
  • Example 8 In the production of the binder resin for conductive paste, 70 parts by weight of methyl methacrylate and 30 parts by weight of isobutyl methacrylate are used instead of 50 parts by weight of methyl methacrylate and 50 parts by weight of isobutyl methacrylate, and dithiophosphorus is substituted for bis (2-ethylhexyl) dithiophosphate.
  • a binder resin for conductive paste was obtained in the same manner as in Example 1 except that diethyl acid was used.
  • this binder resin for conductive paste 85 parts by weight of silver powder (average particle size: 1.0 ⁇ m) as conductive powder, 3 parts by weight of glass frit, and 9 parts by weight of texanol as an organic solvent are mixed.
  • a conductive paste was obtained by kneading with a stirrer and three rolls.
  • Example 9 Binder for conductive paste was produced in the same manner as in Example 1 except that diethyl dithiophosphate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of bis (2-ethylhexyl) dithiophosphate in the production of binder resin for conductive paste. A resin was obtained.
  • 3 parts by weight of the binder resin for conductive paste 85 parts by weight of silver powder (average particle size 1.0 ⁇ m) as conductive powder, 4 parts by weight of glass frit, 7 parts by weight of butyl carbitol acetate as an organic solvent, fatty acid 1 part by weight of amide (manufactured by Enomoto Kasei Co., Ltd., “Disparon 6300”) was mixed and kneaded with a high-speed stirrer and three rolls to obtain a conductive paste.
  • silver powder average particle size 1.0 ⁇ m
  • glass frit 7 parts by weight of butyl carbitol acetate as an organic solvent
  • fatty acid 1 part by weight of amide manufactured by Enomoto Kasei Co., Ltd., “Disparon 6300”
  • Example 10 In the production of the binder resin for conductive paste, 40 parts by weight of methyl methacrylate and 60 parts by weight of isobutyl methacrylate are used instead of 50 parts by weight of methyl methacrylate and 50 parts by weight of isobutyl methacrylate, and dithiophosphorus is substituted for bis (2-ethylhexyl) dithiophosphate.
  • a binder resin for conductive paste was obtained in the same manner as in Example 1 except that diethyl acid was used.
  • this binder resin for conductive paste 5 parts by weight of this binder resin for conductive paste, 83 parts by weight of silver powder (average particle size 1.0 ⁇ m) as conductive powder, 3 parts by weight of glass frit, 8 parts by weight of butyl carbitol acetate as an organic solvent, castor oil 1 part by weight (manufactured by Enomoto Kasei Co., Ltd., “Disparon 308”) was mixed and kneaded with a high-speed stirrer and three rolls to obtain a conductive paste.
  • silver powder average particle size 1.0 ⁇ m
  • glass frit 3 parts by weight of glass frit
  • butyl carbitol acetate 8 parts by weight of butyl carbitol acetate as an organic solvent
  • castor oil 1 part by weight manufactured by Enomoto Kasei Co., Ltd., “Disparon 308”
  • Example 11 In the production of the binder resin for conductive paste, 40 parts by weight of methyl methacrylate and 60 parts by weight of isobutyl methacrylate are used instead of 50 parts by weight of methyl methacrylate and 50 parts by weight of isobutyl methacrylate, and dithiophosphorus is substituted for bis (2-ethylhexyl) dithiophosphate.
  • a binder resin for conductive paste was obtained in the same manner as in Example 1 except that diethyl acid was used.
  • this binder resin for conductive paste 85 parts by weight of silver powder (average particle size: 1.0 ⁇ m) as conductive powder, 2 parts by weight of glass frit, 7 parts by weight of texanol as organic solvent, and acrylic fine particles (tech 2 parts by weight of polymer MBX-5) was mixed and kneaded with a high-speed stirrer and three rolls to obtain a conductive paste.
  • Example 12 In the production of the binder resin for conductive paste, 10 parts by weight of methyl methacrylate and 90 parts by weight of isobutyl methacrylate were used instead of 50 parts by weight of methyl methacrylate and 50 parts by weight of isobutyl methacrylate, and 3 parts by weight of bis (2-ethylhexyl) dithiophosphate. Instead, a binder resin for conductive paste was obtained in the same manner as in Example 1 except that 2 parts by weight of diethyl dithiophosphate was used.
  • this binder resin for conductive paste 4 parts by weight of this binder resin for conductive paste, 84 parts by weight of silver powder (average particle size 1.0 ⁇ m) as conductive powder, 3 parts by weight of glass frit, 8 parts by weight of benzyl alcohol as an organic solvent, and ethyl cellulose resin ( 1 part by weight of “STD-10” manufactured by Dow Chemical Co., Ltd. was mixed and kneaded with a high-speed stirrer and three rolls to obtain a conductive paste.
  • Example 13 In production of binder resin for conductive paste, 100 parts by weight of isobutyl methacrylate was used instead of 50 parts by weight of methyl methacrylate and 50 parts by weight of isobutyl methacrylate, and diethyl dithiophosphate was used instead of bis (2-ethylhexyl) dithiophosphate. Produced a binder resin for conductive paste in the same manner as in Example 1.
  • this binder resin for conductive paste 2 parts by weight of this binder resin for conductive paste, 86 parts by weight of silver powder (average particle size 1.0 ⁇ m) as conductive powder, 4 parts by weight of glass frit, 5 parts by weight of texanol as organic solvent, 3 parts by weight of dimethyl-1,3-propanediol was mixed and kneaded with a high-speed stirrer and three rolls to obtain a conductive paste.
  • Example 14 3 parts by weight of the binder resin for conductive paste obtained in Example 1, 85 parts by weight of silver powder (average particle diameter 1.0 ⁇ m) as the conductive powder, 3 parts by weight of glass frit, and phenylpropylene glycol 7 as the organic solvent Part by weight and 2 parts by weight of 2- (hydroxymethyl) -2-ethyl-1,3-propanediol were mixed and kneaded with a high-speed stirrer and three rolls to obtain a conductive paste.
  • Binder resin for conductive paste was produced in the same manner as in Example 1 except that 0.5 part by weight of dodecyl mercaptan was used instead of 3 parts by weight of bis (2-ethylhexyl) dithiophosphate in the production of binder resin for conductive paste. And a conductive paste was obtained.
  • Binder resin for conductive paste was produced in the same manner as in Example 1 except that 0.5 part by weight of dodecyl mercaptan was used instead of 3 parts by weight of bis (2-ethylhexyl) dithiophosphate in the production of binder resin for conductive paste. Got. In addition, in the production of the conductive paste, the amount of terpineol added was changed from 11 parts by weight to 10 parts by weight, and 1 part by weight of a phosphoric acid dispersant (BIC Chemie, “BYK-111”) was added. Except for this, a conductive paste was obtained in the same manner as in Example 1.
  • Example 15 (1) Production of binder resin for conductive paste (methacrylic resin) In a 2 L separable flask equipped with a stirrer, cooler, thermometer, hot water bath and nitrogen gas inlet, 50 parts by weight of methyl methacrylate (MMA) and isobutyl 50 parts by weight of methacrylate (IBMA), 0.5 parts by weight of bis (2-ethylhexyl) dithiophosphate (manufactured by SC Organic Chemical Co., “Poslex DT-8”) and 50 parts by weight of butyl acetate as an organic solvent are mixed. A monomer mixture was obtained.
  • MMA methyl methacrylate
  • IBMA methacrylate
  • IBMA methacrylate
  • 0.5 parts by weight of bis (2-ethylhexyl) dithiophosphate manufactured by SC Organic Chemical Co., “Poslex DT-8”
  • the obtained monomer mixture was bubbled with nitrogen gas for 20 minutes to remove dissolved oxygen, and then the temperature inside the separable flask system was replaced with nitrogen gas and heated until the hot water bath boiled with stirring.
  • a polymerization initiator a solution obtained by diluting diacyl peroxide (manufactured by NOF Corporation, "Perroll 355") with butyl acetate was added. Further, a butyl acetate solution containing a polymerization initiator was added several times during the polymerization. A total of 3 parts by weight of the polymerization initiator was added to 100 parts by weight of the (meth) acrylate monomer. Seven hours after the start of polymerization, the polymerization was terminated by cooling to room temperature.
  • a butyl acetate solution of a binder resin for conductive paste was obtained.
  • the obtained resin was analyzed by gel permeation chromatography using a column “LF-804” manufactured by SHOKO as a column.
  • the number average molecular weight in terms of polystyrene was 30,000.
  • Example 16 In the production of the binder resin for conductive paste, the addition amount of bis (2-ethylhexyl) dithiophosphate was changed from 0.5 to 20 parts by weight, and the addition amount of butyl acetate was changed from 50 to 200 parts by weight. Except for this, a binder resin for conductive paste and a conductive paste were obtained in the same manner as Example 15.
  • Example 17 In the production of the binder resin for conductive paste, a binder resin for conductive paste and a conductive paste were obtained in the same manner as in Example 15 except that the amount of butyl acetate added was changed from 50 parts by weight to 20 parts by weight.
  • Example 18 In the production of the binder resin for conductive paste, the addition amount of bis (2-ethylhexyl) dithiophosphate was changed from 0.5 to 20 parts by weight, and the addition amount of butyl acetate was changed from 50 to 400 parts by weight. Except for this, a binder resin for conductive paste and a conductive paste were obtained in the same manner as Example 15.
  • Example 19 After drying the butyl acetate solution of the binder resin for conductive paste obtained in Example 15, 3 parts by weight of the binder resin for conductive paste and 85 weight of silver powder (average particle size 1.0 ⁇ m) as the conductive powder. Part, 3 parts by weight of glass frit, and 9 parts by weight of terpineol as an organic solvent were kneaded with a high-speed stirrer and three rolls to obtain a conductive paste.
  • Example 20 After drying the butyl acetate solution of the binder resin for conductive paste obtained in Example 16, 4 parts by weight of the binder resin for conductive paste and 85 weight of silver powder (average particle size: 1.0 ⁇ m) as the conductive powder. Part, 3 parts by weight of glass frit, and 8 parts by weight of terpineol as an organic solvent were kneaded with a high-speed stirrer and three rolls to obtain a conductive paste.
  • Example 21 After drying the butyl acetate solution of the binder resin for conductive paste obtained in Example 17, 3 parts by weight of the binder resin for conductive paste and 85 weight of silver powder (average particle size 1.0 ⁇ m) as the conductive powder. Part, 3 parts by weight of glass frit, and 9 parts by weight of terpineol as an organic solvent were kneaded with a high-speed stirrer and three rolls to obtain a conductive paste.
  • Example 22 After drying the butyl acetate solution of the binder resin for conductive paste obtained in Example 18, 4 parts by weight of the binder resin for conductive paste and 85 weight of silver powder (average particle size: 1.0 ⁇ m) as the conductive powder. Part, 3 parts by weight of glass frit, and 8 parts by weight of terpineol as an organic solvent were kneaded with a high-speed stirrer and three rolls to obtain a conductive paste.
  • Tables 1 and 2 show the monomer composition, glass transition temperature, and number average molecular weight of the binder resin for conductive pastes obtained in each Example and Comparative Example. Moreover, the composition of the electrically conductive paste obtained by each Example and the comparative example was shown to Table 3, 4.
  • the produced binder resin for conductive paste (methacrylic resin) or ethyl cellulose (STD10) as the binder resin, terpineol as the organic solvent, and the phosphate dispersant (BYK-111, manufactured by Big Chemie) was mixed to prepare a vehicle, and the obtained vehicle was dried at 150 ° C. for 2 hours to obtain a resin.
  • the obtained resin was measured by TG-DTA and evaluated according to the following criteria. ⁇ : When heated to 600 ° C., the residual carbon component was 1% by weight or less.
  • X When heated to 600 ° C., a carbon component exceeding 1% by weight remained.
  • a binder for conductive paste that can form a conductive paste with a high dispersibility of conductive powder, a high aspect ratio, and a low carbon component remaining after firing can be obtained.
  • a resin can be provided.
  • the electrically conductive paste and solar cell element which are manufactured using this binder resin for electrically conductive pastes can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明は、導電性粉末の分散性が高く、アスペクト比の高い配線を形成することができ、かつ、焼成後に残留する炭素成分が少ない導電性ペーストを得ることができる導電性ペースト用バインダー樹脂を提供することを目的とする。また、本発明は、該導電性ペースト用バインダー樹脂を用いて製造される導電性ペースト及び太陽電池素子を提供することを目的とする。 本発明は、(メタ)アクリレートモノマーに由来するセグメントからなる主鎖を有し、かつ、ω位に下記一般式(1)で表されるリン酸系成分を有するポリマーからなる導電性ペースト用バインダー樹脂である。 一般式(1)中、Xは酸素原子又は硫黄原子を表し、R及びRは、それぞれ、水素原子、炭素数1~13の炭化水素基、炭素数1~13の水酸基含有化合物基又は炭素数1~13のエステル結合含有化合物基を表す。

Description

導電性ペースト用バインダー樹脂、導電性ペースト及び太陽電池素子
本発明は、導電性粉末の分散性が高く、アスペクト比の高い配線を形成することができ、かつ、焼成後に残留する炭素成分が少ない導電性ペーストを得ることができる導電性ペースト用バインダー樹脂に関する。また、本発明は、該導電性ペースト用バインダー樹脂を用いて製造される導電性ペースト及び太陽電池素子に関する。
太陽電池素子等の電極、配線等を形成する方法として、例えば、半導体基板の表面又は裏面にそれぞれ必要な種々の層を積層した後、導電性ペーストをこれらの層の上に印刷して乾燥させ、所定の温度で焼成する方法が広く用いられている。このような方法に用いられる導電性ペーストは、バインダー樹脂となる樹脂成分を有機溶剤に溶解して得られるビヒクル組成物中に、導電性を有する金属粉末(導電性粉末)を分散させることによって製造される。
従来、導電性ペーストに用いられるバインダー樹脂として、エチルセルロース、ニトロセルロース等のセルロース系樹脂が用いられてきた。例えば、特許文献1には、比表面積が0.20~0.60m/gである銀粒子、ガラスフリット、樹脂バインダー及びシンナーを含む太陽電池受光面電極用ペーストが開示されており、樹脂バインダーとしてエチルセルロースが用いられている。
しかしながら、セルロース系樹脂を用いた導電性ペーストは、焼成工程でのセルロース系樹脂の熱分解性が不充分であることから、得られる配線に炭素成分が残留し、導電性粉末の基板への接着強度が低下して、配線に剥離が生じやすいことが問題である。
この問題を解決するために、バインダー樹脂として、比較的熱分解性の良いアクリル系樹脂が用いられている。例えば、特許文献2には、所定のアクリル系樹脂を含有する外部電極用導電性ペーストを用いて、セラミック電子部品を製造する方法が開示されている。
しかしながら、アクリル系樹脂を用いた導電性ペーストは導電性粉末の分散性が悪く、粘度が不均一であり、例えば、太陽電池素子の配線を形成する場合、印刷時にペーストが垂れたり滲んだりして、得られる配線のアスペクト比が小さくなってしまう。アスペクト比とは、配線の断面幅に対する断面高さの比(断面高さ/断面幅)であり、アスペクト比が小さくなると、太陽電池素子の採光率が悪化してエネルギー変換効率が低下する。
導電性粉末の分散性を向上させるためには、一般に、リン酸系分散剤を添加することや、リン酸系側鎖を有する樹脂を用いることが知られている。例えば、特許文献3には、所定のホスホン酸エステル基含有(メタ)アクリルアミド系重合体からなる導電性樹脂、及び、該導電性樹脂からなる導電性金属ペースト用バインダーが開示されている。
しかしながら、リン酸系分散剤又はリン酸系側鎖を有する樹脂を配合すると、比較的熱分解性の良いアクリル系樹脂を用いた導電性ペーストにおいても、焼成後の残留炭素成分が増加し、配線の性能に影響を与えることが問題である。
特開2007-235082号公報 特許第4096661号公報 特許第4248551号公報
本発明は、導電性粉末の分散性が高く、アスペクト比の高い配線を形成することができ、かつ、焼成後に残留する炭素成分が少ない導電性ペーストを得ることができる導電性ペースト用バインダー樹脂を提供することを目的とする。また、本発明は、該導電性ペースト用バインダー樹脂を用いて製造される導電性ペースト及び太陽電池素子を提供することを目的とする。
本発明は、(メタ)アクリレートモノマーに由来するセグメントからなる主鎖を有し、かつ、ω位に下記一般式(1)で表されるリン酸系成分を有するポリマーからなる導電性ペースト用バインダー樹脂である。
Figure JPOXMLDOC01-appb-C000002
一般式(1)中、Xは酸素原子又は硫黄原子を表し、R及びRは、それぞれ、水素原子、炭素数1~13の炭化水素基、炭素数1~13の水酸基含有化合物基又は炭素数1~13のエステル結合含有化合物基を表す。
以下に本発明を詳述する。
本発明者らは、(メタ)アクリレートモノマーに由来するセグメントからなる主鎖を有し、かつ、ω位に上記一般式(1)で表されるリン酸系成分を有するポリマーからなる導電性ペースト用バインダー樹脂を用いることで、導電性粉末の分散性が高く、かつ、焼成後に残留する炭素成分が少ない導電性ペーストが得られることを見出した。本発明者らは、このような導電性ペーストは印刷性に優れ、アスペクト比の高い配線を形成できることを見出し、本発明を完成させるに至った。
本発明の導電性ペースト用バインダー樹脂は、(メタ)アクリレートモノマーに由来するセグメントからなる主鎖を有し、かつ、ω位に下記一般式(1)で表されるリン酸系成分を有するポリマーからなる。
Figure JPOXMLDOC01-appb-C000003
上記一般式(1)中、Xは酸素原子又は硫黄原子を表し、R及びRは、それぞれ、水素原子、炭素数1~13の炭化水素基、炭素数1~13の水酸基含有化合物基又は炭素数1 ~13のエステル結合含有化合物基を表す。
なお、本明細書中、ポリマーのω位に存在する上記一般式(1)で表されるリン酸系成分を、単に、ω位のリン酸系成分ともいう。また、本明細書中、長鎖アルキルの最初の炭素原子部分をα位というのに対して、最後尾の炭素原子部分をω位という。即ち、ω位とは、樹脂を構成するポリマー主鎖における最末端部分を意味する。
本発明の導電性ペースト用バインダー樹脂は、(メタ)アクリレートモノマーに由来するセグメントからなる主鎖を有することによりセルロース系樹脂に比べて熱分解性に優れ、本発明の導電性ペースト用バインダー樹脂を用いて、焼成後に残留する炭素成分が少ない導電性ペーストを製造することができる。
上記(メタ)アクリレートモノマーは特に限定されず、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、ポリオキシプロピレン(メタ)アクリレート等が挙げられる。これらは単独で用いられてもよく、2種以上が併用されてもよい。なお、本明細書中、(メタ)アクリレートとは、アクリレート又はメタクリレートのどちらでもよいことを意味するが、メタクリレートであることが好ましい。
また、一般に、(メタ)アクリレートモノマーに由来するセグメントからなる主鎖を有するポリマーからなる樹脂は、セルロース系樹脂に比べて熱分解性には優れるものの、導電性粉末を良好に分散させることが困難である。これに対して、本発明の導電性ペースト用バインダー樹脂は、ポリマーのω位に上記一般式(1)で表されるリン酸系成分を有することにより、導電性粉末を良好に分散させることができ、本発明の導電性ペースト用バインダー樹脂を用いて、印刷性に優れ、アスペクト比の高い配線を形成できる導電性ペーストを製造することができる。
更に、本発明の導電性ペースト用バインダー樹脂においては、上記一般式(1)で表されるリン酸系成分が存在する部位がポリマーのω位であることから、リン酸系成分を導入しても優れた熱分解性を維持することができ、本発明の導電性ペースト用バインダー樹脂を用いて、焼成後に残留する炭素成分が少ない導電性ペーストを製造することができる。
本発明の導電性ペースト用バインダー樹脂において、上記ω位のリン酸系成分以外にポリマー中にリン酸系成分を有する場合には、該ω位のリン酸系成分以外のリン酸系成分の含有量は、ポリマー全体に対して5重量%未満であることが好ましい。上記ω位のリン酸系成分以外のリン酸系成分の含有量が5重量%以上であると、導電性ペースト用バインダー樹脂の熱分解性が低下し、焼成後に残留する炭素成分が少ない導電性ペーストを製造することができないことがある。
本発明の導電性ペースト用バインダー樹脂を製造する方法は特に限定されず、例えば、上記(メタ)アクリレートモノマー、及び、リン酸系成分とチオール基とを有する化合物を含有するモノマー混合物を重合してポリマーを得る方法が挙げられる。
上記重合方法は特に限定されず、通常の(メタ)アクリレートモノマーの重合に用いられる方法を用いることができ、例えば、フリーラジカル重合法、リビングラジカル重合法、イニファーター重合法、アニオン重合法、リビングアニオン重合法等が挙げられる。
上記モノマー混合物には、上記(メタ)アクリレートモノマーに加えて、得られるポリマーのω位に上記一般式(1)で表されるリン酸系成分を導入するために、リン酸系成分とチオール基とを有する化合物が添加される。
上記リン酸系成分とチオール基とを有する化合物は、連鎖移動剤として作用し、ポリマー末端にのみ導入され、ポリマー中やポリマーの側鎖に導入されることはない。そのため、得られるポリマーのω位にのみ上記一般式(1)で表されるリン酸系成分が導入される。なお、ポリマー中に上記一般式(1)で表されるリン酸系成分が導入されたことは、蛍光X線分析によりリン原子の有無を分析することによって確認することができる。
上記リン酸系成分とチオール基とを有する化合物は特に限定されず、例えば、下記一般式(2)で表されるチオリン酸エステル、下記一般式(3)又は(4)で表されるリン酸エステル等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
上記一般式(2)中、Xは酸素原子又は硫黄原子を表し、R及びRは、それぞれ、水素原子、炭素数1~13の炭化水素基、炭素数1~13の水酸基含有化合物基又は炭素数1~13のエステル結合含有化合物基を表す。
Figure JPOXMLDOC01-appb-C000005
上記一般式(3)中、R、R及びRは、それぞれ、水素原子、炭素数1~13の炭化水素基、炭素数1~13の水酸基含有化合物基又は炭素数1~13のエステル結合含有化合物基を表す。
Figure JPOXMLDOC01-appb-C000006
上記一般式(4)中、R、R及びR10は、それぞれ、水素原子、炭素数1~13の炭化水素基、炭素数1~13の水酸基含有化合物基又は炭素数1~13のエステル結合含有化合物基を表す。
上記一般式(2)で表されるチオリン酸エステルは特に限定されず、例えば、チオリン酸ビス(2-エチルヘキシル)、チオリン酸ジエチル、チオリン酸ジメチル、ジチオリン酸ビス(2-エチルヘキシル)、ジチオリン酸ジエチル、ジチオリン酸ジメチル等が挙げられる。
上記一般式(3)で表されるリン酸エステルは特に限定されず、例えば、チオグリコール酸モノリン酸エステル、チオグリコール酸モノジメチルリン酸エステル、チオグリコール酸モノジエチルリン酸エステル、チオグリコール酸モノジエチルヘキシルリン酸エステル等が挙げられる。
上記一般式(4)で表されるリン酸エステルは特に限定されず、例えば、チオプロピオン酸モノリン酸エステル、チオプロピオン酸モノジメチルリン酸エステル、チオプロピオン酸モノジエチルリン酸エステル、チオプロピオン酸モノジエチルヘキシルリン酸エステル等が挙げられる。
これらのリン酸系成分とチオール基とを有する化合物は、単独で用いられてもよく、2種以上が併用されてもよい。
上記モノマー混合物において、上記リン酸系成分とチオール基とを有する化合物の含有量は特に限定されないが、上記(メタ)アクリレートモノマー100重量部に対する好ましい下限は0.01重量部、好ましい上限は30重量部である。上記リン酸系成分とチオール基とを有する化合物の含有量が0.01重量部未満であると、得られる導電性ペースト用バインダー樹脂は、導電性粉末を良好に分散させることができないことがあり、アスペクト比の高い配線を形成できる導電性ペーストを製造することができないことがある。上記リン酸系成分とチオール基とを有する化合物の含有量が30重量部を超えると、得られる導電性ペースト用バインダー樹脂を用いて、焼成後に残留する炭素成分が少ない導電性ペーストを製造することができないことがある。
上記モノマー混合物は、重合開始剤を含有することが好ましい。
上記重合開始剤は特に限定されず、通常の(メタ)アクリレートモノマーの重合に用いられる重合開始剤を用いることができ、例えば、AIBN等のアゾ系重合開始剤や、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシジカーボネート、ジアシルパーオキサイド、パーオキシエステル等の有機過酸化物系重合開始剤等が挙げられる。
上記モノマー混合物において、上記重合開始剤の含有量は特に限定されないが、上記(メタ)アクリレートモノマー100重量部に対する好ましい下限は0.01重量部、好ましい上限は30重量部である。上記重合開始剤の含有量が0.01重量部未満であると、開始剤としての量が不足し、重合反応が起きないことがある。上記重合開始剤の含有量が30重量部を超えると、開始剤の残渣が多くなり、焼成後に残留する炭素成分に悪影響を与えることがある。
本発明の導電性ペースト用バインダー樹脂のガラス転移温度(Tg)は特に限定されないが、好ましい下限は10℃、好ましい上限は80℃である。上記ガラス転移温度が10℃未満であると、導電性ペースト用バインダー樹脂が軟らかすぎて、後述する銀粉等の導電性粉末を支えることができず、アスペクト比の高い配線を形成できる導電性ペーストを製造することができないことがある。上記ガラス転移温度が80℃を超えると、導電性ペースト用バインダー樹脂が硬くなり、導電性ペーストの印刷性に悪影響を与えることがある。
本発明の導電性ペースト用バインダー樹脂の数平均分子量は特に限定されないが、ゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算による数平均分子量の好ましい下限は5000、好ましい上限は3万である。上記数平均分子量が5000未満であると、導電性ペースト用バインダー樹脂が軟らかくなりすぎて、後述する銀粉等の導電性粉末を支えることができず、アスペクト比の高い配線を形成できる導電性ペーストを製造することができないことがある。上記数平均分子量が3万を超えると、導電性ペースト用バインダー樹脂の粘着性が強くなりすぎ、ペーストにした際、糸引きや版離れの悪化等、導電性ペーストの印刷性に悪影響を与えることがある。
なお、ゲルパーミエーションクロマトグラフィーよってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、SHOKO社製カラムLF-804等が挙げられる。
本発明の導電性ペースト用バインダー樹脂は、10℃/分の昇温速度で600℃まで加熱したときの残留炭素成分が、1重量%以下であることが好ましい。上記残留炭素成分が1重量%を超えると、導電性ペースト用バインダー樹脂を用いて、焼成後に残留する炭素成分が少ない導電性ペーストを製造することができないことがある。
なお、上記残留炭素成分は、焼成後に炭素-硫黄分析装置(EMIA-820)を用いて分析することによって測定することができる。
本発明の導電性ペースト用バインダー樹脂の用途は特に限定されず、導電性粉末、有機溶剤等の他の成分と混合することにより、太陽電池素子、セラミック電子部品等の電極、導電層、導電性配線等を形成するための導電性ペーストとして用いることができる。なかでも、太陽電池素子の導電層又は導電性配線を形成するための導電性ペーストとして用いることが好ましい。
本発明の導電性ペースト用バインダー樹脂、導電性粉末及び有機溶剤を含有する導電性ペーストもまた、本発明の1つである。
本発明の導電性ペーストにおいて、本発明の導電性ペースト用バインダー樹脂の含有量は特に限定されず、印刷可能な限り少量であることが好ましいが、導電性ペースト全体に対する好ましい下限は1重量%、好ましい上限は20重量%である。本発明の導電性ペースト用バインダー樹脂の含有量が1重量%未満であると、得られる導電性ペーストにおける導電性粉末の分散性が低下することがある。本発明の導電性ペースト用バインダー樹脂の含有量が20重量%を超えると、得られる導電性ペーストを焼成した後に残留する炭素成分が増加して、導電性ペーストを用いて形成される配線の性能に影響を与えることがある。
本発明の導電性ペーストは、導電性粉末を含有する。
上記導電性粉末は、ペーストに導電性を付与する成分である。上記導電性粉末は特に限定されず、通常用いられる導電性粉末を用いることができ、例えば、銀粉末、銅粉末、ニッケル粉末、及び、これらの酸化物、炭酸化物、酢酸化物等が挙げられる。なかでも、銀粉末が好ましい。これらは単独で用いられてもよく、2種以上が併用されてもよい。
本発明の導電性ペーストにおいて、上記導電性粉末の含有量は特に限定されず、導電性ペースト全体に対する好ましい下限は10重量%、好ましい上限は95重量%である。上記導電性粉末の含有量が10重量%未満であると、得られる導電性ペーストは、印刷性が低下して、アスペクト比の高い配線を形成することができないことがある。上記導電性粉末の含有量が95重量%を超えると、ペースト化が困難になることがある。
本発明の導電性ペーストは、有機溶剤を含有する。
上記有機溶剤は、1気圧下での沸点の好ましい下限が150℃、好ましい上限が350℃である。このような範囲を満たすことで、印刷時の有機溶剤の揮発が抑制され、導電性ペーストの粘度が安定して印刷性が向上し、アスペクト比の高い配線を形成することができる。
上記沸点の下限が150℃、上限が350℃である有機溶剤は特に限定されず、例えば、グリコール系溶剤、グリコール系エステル溶剤、カルビトール系溶剤、ターピネオール系溶剤等が挙げられる。
上記グリコール系溶剤は特に限定されず、例えば、エチレングリコール、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、プロピレングリコール、フェニルプロピレングリコール、トリプロピレングリコール、ベンジルグリコール等が挙げられる。
上記グリコール系エステル溶剤は特に限定されず、例えば、エチレングリコールモノメチルエーテル、エチレングリコールエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールドデシルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールドデシルエーテルアセテート、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、エチレングリコールエチルメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノnブチルエーテル、ジエチレングリコールモノイソブチルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノオレエート、ジエチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノnブチルエーテルアセテート、ジエチレングリコールモノイソブチルエーテルアセテート、ジエチレングリコールモノヘキシルエーテルアセテート、ジエチレングリコールモノオレエートアセテート、ジエチレングリコールモノフェニルエーテルアセテート、ジエチレングリコールモノラウレート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジ-n-ブチルエーテル、トリエチレングリコールジアセタート、トリエチレングリコールジメチルエーテル、トリエチレングリコールモノブチルエーテル、トリエチレングリコールモノステアレート、トリエチレングリコールモノベンジルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールジアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノプロピルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテルアセテートテトラエチレングリコール、テトラエチレングリコールドデシルエーテル、テトラエチレングリコールモノオクチルエーテル、テトラエチレングリコールモノメチルエーテル、ペンタエチレングリコールドデシルエーテル、ヘプタエチレングリコールドデシルエーテル、ヘキサエチレングリコールドデシルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノフェニルエーテル、エチレングリコールモノベンジルエーテル、ジエチレングリコールモノベンジルエーテル、プロピレングリコールモノフェニルエーテル等が挙げられる。
上記カルビトール系溶剤は特に限定されず、例えば、オクタエチレングリコールモノドデシルエーテルブチルカルビトール、ブチルカルビトールアセテート等が挙げられる。
上記ターピネオール系溶剤は特に限定されず、例えば、テルピネオール、ターピネアセテート、ジヒドロターピネオール、ジヒドロターピネオールアセテート等が挙げられる。
また、上記沸点の下限が150℃、上限が350℃である有機溶剤として、例えば、テキサノール、ベンジルアセテート、イソホロン、乳酸ブチル、ジオクチルフタレート、ジオクチルアジペート、ベンジルアルコール、クレゾール、フェニル酢酸メチル、フェニル酢酸エチル、安息香酸エチル、安息香酸メチル、ベンジルアルコール等を用いることもできる。
これらの沸点の下限が150℃、上限が350℃である有機溶剤は、単独で用いられてもよく、2種以上が併用されてもよい。
本発明の導電性ペーストにおいて、上記有機溶剤の含有量は特に限定されず、導電性ペースト全体に対する好ましい下限は5重量%、好ましい上限は90重量%である。上記有機溶剤の含有量が上記範囲を外れると、得られる導電性ペーストは、印刷性が低下して、アスペクト比の高い配線を形成することができないことがある。
本発明の導電性ペーストは、ガラスフリットを含有してもよい。
上記ガラスフリットを添加することにより、導電性ペーストを印刷し、焼成して配線を形成する際の密着性を向上させることができる。特に、太陽電池素子の製造において、半導体層上に反射防止層を形成した後、本発明の導電性ペーストを用いて配線を形成する場合には、上記ガラスフリットを添加することにより、物理的な接着を良好に行うことに加えて、上記導電性粉末と上記ガラスフリットとの相互作用により反射防止層を侵食し、配線と半導体層との電気的コンタクトを良好に行うことができる。
上記ガラスフリットは特に限定されず、通常の導電性ペーストに用いられるガラスフリットを用いることができ、例えば、ホウケイ酸ガラスフリット等が挙げられる。また、上記ガラスフリットとして、軟化温度が300℃以上かつ焼成温度以下のホウケイ酸鉛ガラスフリットを用いることもできる。上記焼成温度として、例えば、800℃が挙げられる。
本発明の導電性ペーストにおいて、上記ガラスフリットの含有量は特に限定されず、導電性ペースト全体に対する好ましい下限は0.1重量%、好ましい上限は20重量%である。上記ガラスフリットの含有量が0.1重量%未満であると、例えば、得られる導電性ペーストを用いて太陽電池素子の配線を形成する場合、反射防止層を侵食することができず、導電性が低下することがある。上記ガラスフリットの含有量が20重量%を超えると、得られる導電性ペースト中の導電性粉末の割合が少なくなることで、形成する配線等の導電性が低下することがある。
本発明の導電性ペーストは、増粘効果を有する材料を含有してもよい。
上記増粘効果を有する材料は特に限定されず、例えば、脂肪酸アミド、ひまし油等の増粘剤や、アクリル微粒子、エチルセルロース等の樹脂が挙げられる。
上記増粘効果を有する材料の含有量の好ましい上限は、導電性ペースト全体に対して3重量%である。上記増粘効果を有する材料の含有量が3重量%を超えると、焼成後に残留する炭素成分が多くなり、導電性が悪化することがある。
本発明の導電性ペーストは、表面調整剤を含有してもよい。
上記表面調整剤の種類は特に限定されず、例えば、2,2-ジメチル-1,3-プロパンジオール、2-(ヒドロキシメチル)-2-エチル-1,3-プロパンジオール等の水酸基を持つ高極性有機化合物が挙げられる。
上記表面調整剤の含有量の好ましい上限は、導電性ペースト全体に対して30重量%である。上記表面調整剤の含有量が30重量%を超えると、乾燥速度が遅くなるため乾燥工程中にペーストが流動し、印刷乾燥後のアスペクト比が低くなる場合がある。
本発明の導電性ペーストは、焼成後に残留する炭素成分が増加しない程度であれば、上記増粘効果を有する材料及び表面調整剤の他、界面活性剤等の分散剤、フタル酸エステル等の可塑剤等、従来導電性ペーストの添加剤として知られている各種添加剤を含有してもよい。
本発明の導電性ペーストの製造方法は特に限定されず、本発明の導電性ペースト用バインダー樹脂、上記導電性粉末、上記有機溶剤及び必要に応じて添加する他の成分を、従来公知の攪拌方法で攪拌する方法が挙げられる。
上記攪拌方法は特に限定されず、例えば、3本ロールを用いる方法、ビーズミルを用いる方法等が挙げられる。
本発明の導電性ペーストの用途は特に限定されず、太陽電池素子、セラミック電子部品等の電極、導電層、導電性配線等を形成するための導電性ペーストとして用いることできる。なかでも、本発明の導電性ペーストを用いればアスペクト比の高い配線を形成することができ、採光率が高く、エネルギー変換効率に優れた太陽電池素子が得られることから、太陽電池素子の表面、即ち受光面の導電層又は導電性配線を形成するための導電性ペーストとして用いることが好ましい。
本発明の導電性ペーストを焼成してなる導電層又は導電性配線を有する太陽電池素子もまた、本発明の1つである。
本発明によれば、導電性粉末の分散性が高く、アスペクト比の高い配線を形成することができ、かつ、焼成後に残留する炭素成分が少ない導電性ペーストを得ることができる導電性ペースト用バインダー樹脂を提供することができる。また、本発明によれば、該導電性ペースト用バインダー樹脂を用いて製造される導電性ペースト及び太陽電池素子を提供することができる。
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例1)
(1)導電性ペースト用バインダー樹脂(メタクリル樹脂)の製造
攪拌機、冷却器、温度計、湯浴及び窒素ガス導入口を備えた2Lセパラプルフラスコに、メチルメタクリレート(MMA)50重量部と、イソブチルメタクリレート(IBMA)50重量部と、ジチオリン酸ビス(2-エチルヘキシル)(SC有機化学社製、「Poslex DT-8」)3重量部と、有機溶剤として酢酸ブチル100重量部とを混合し、モノマー混合液を得た。
得られたモノマー混合液を、窒素ガスを用いて20分間バブリングすることにより溶存酸素を除去した後、セパラブルフラスコ系内を窒素ガスで置換し攪拌しながら湯浴が沸騰するまで昇温した。次いで、重合開始剤としてジアシルパーオキサイド(日油社製、「パーロール355」)を酢酸ブチルで希釈した溶液を加えた。また、重合中に重合開始剤を含む酢酸ブチル溶液を数回添加した。重合開始剤は(メタ)アクリレートモノマー100重量部に対して全部で3重量部添加した。
重合開始から7時間後、室温まで冷却し重合を終了させた。これにより、導電性ペースト用バインダー樹脂の酢酸ブチル溶液を得た。得られた樹脂について、カラムとしてSHOKO社製カラムLF-804を用い、ゲルパーミエーションクロマトグラフィーによる分析を行ったところ、ポリスチレン換算による数平均分子量は15000であった。
(2)導電性ペーストの製造
得られた導電性ペースト用バインダー樹脂の酢酸ブチル溶液を乾燥した後、この導電性ペースト用バインダー樹脂6重量部と、導電性粉末として銀粉(平均粒子径1.0μm)80重量部と、ガラスフリット3重量部と、有機溶剤としてテルピネオール11重量部とを混合し、高速攪拌機と三本ロールで混練して、導電性ペーストを得た。
(実施例2)
導電性ペースト用バインダー樹脂の製造において、ジチオリン酸ビス(2-エチルヘキシル)に代えてジチオリン酸ジエチル(和光純薬工業社製)を用いた以外は実施例1と同様にして、導電性ペースト用バインダー樹脂及び導電性ペーストを得た。
(実施例3)
導電性ペースト用バインダー樹脂の製造において、ジチオリン酸ビス(2-エチルヘキシル)に代えてジチオリン酸ジプロピル(和光純薬工業社製)を用いた以外は実施例1と同様にして、導電性ペースト用バインダー樹脂及び導電性ペーストを得た。
(実施例4)
導電性ペースト用バインダー樹脂の製造において、メチルメタクリレート50重量部及びイソブチルメタクリレート50重量部に代えてイソブチルメタクリレート80重量部及びメトキシポリエチレングリコールモノメタクリレート(共栄社化学社製、「ライトエステル041MA」)20重量部を用いた以外は実施例1と同様にして、導電性ペースト用バインダー樹脂及び導電性ペーストを得た。
(実施例5)
導電性ペースト用バインダー樹脂の製造において、ジチオリン酸ビス(2-エチルヘキシル)の添加量を3重量部から0.01重量部に変えた以外は実施例1と同様にして、導電性ペースト用バインダー樹脂及び導電性ペーストを得た。
(実施例6)
導電性ペースト用バインダー樹脂の製造において、ジチオリン酸ビス(2-エチルヘキシル)の添加量を3重量部から30重量部に変えた以外は実施例1と同様にして、導電性ペースト用バインダー樹脂及び導電性ペーストを得た。
(実施例7)
導電性ペースト用バインダー樹脂の製造において、メチルメタクリレート50重量部及びイソブチルメタクリレート50重量部に代えてメチルメタクリレート15重量部、イソブチルメタクリレート60重量部及びメトキシポリエチレングリコールモノメタクリレート25重量部を用いた以外は実施例1と同様にして、導電性ペースト用バインダー樹脂及び導電性ペーストを得た。
(実施例8)
導電性ペースト用バインダー樹脂の製造において、メチルメタクリレート50重量部及びイソブチルメタクリレート50重量部に代えてメチルメタクリレート70重量部及びイソブチルメタクリレート30重量部を用い、ジチオリン酸ビス(2-エチルヘキシル)に代えてジチオリン酸ジエチルを用いた以外は実施例1と同様にして、導電性ペースト用バインダー樹脂を得た。この導電性ペースト用バインダー樹脂3重量部と、導電性粉末として銀粉(平均粒子径1.0μm)85重量部と、ガラスフリット3重量部と、有機溶剤としてテキサノール9重量部とを混合し、高速攪拌機と三本ロールで混練して、導電性ペーストを得た。
(実施例9)
導電性ペースト用バインダー樹脂の製造において、ジチオリン酸ビス(2-エチルヘキシル)に代えてジチオリン酸ジエチル(和光純薬工業社製)を用いた以外は実施例1と同様にして、導電性ペースト用バインダー樹脂を得た。この導電性ペースト用バインダー樹脂3重量部と、導電性粉末として銀粉(平均粒子径1.0μm)85重量部と、ガラスフリット4重量部と、有機溶剤としてブチルカルビトールアセテート7重量部と、脂肪酸アミド(楠本化成社製、「ディスパロン6300」)1重量部とを混合し、高速攪拌機と三本ロールで混練して、導電性ペーストを得た。
(実施例10)
導電性ペースト用バインダー樹脂の製造において、メチルメタクリレート50重量部及びイソブチルメタクリレート50重量部に代えてメチルメタクリレート40重量部及びイソブチルメタクリレート60重量部を用い、ジチオリン酸ビス(2-エチルヘキシル)に代えてジチオリン酸ジエチルを用いた以外は実施例1と同様にして、導電性ペースト用バインダー樹脂を得た。この導電性ペースト用バインダー樹脂5重量部と、導電性粉末として銀粉(平均粒子径1.0μm)83重量部と、ガラスフリット3重量部と、有機溶剤としてブチルカルビトールアセテート8重量部と、ひまし油(楠本化成社製、「ディスパロン308」)1重量部とを混合し、高速攪拌機と三本ロールで混練して、導電性ペーストを得た。
(実施例11)
導電性ペースト用バインダー樹脂の製造において、メチルメタクリレート50重量部及びイソブチルメタクリレート50重量部に代えてメチルメタクリレート40重量部及びイソブチルメタクリレート60重量部を用い、ジチオリン酸ビス(2-エチルヘキシル)に代えてジチオリン酸ジエチルを用いた以外は実施例1と同様にして、導電性ペースト用バインダー樹脂を得た。この導電性ペースト用バインダー樹脂4重量部と、導電性粉末として銀粉(平均粒子径1.0μm)85重量部と、ガラスフリット2重量部と、有機溶剤としてテキサノール7重量部と、アクリル微粒子(テクポリマーMBX-5)2重量部とを混合し、高速攪拌機と三本ロールで混練して、導電性ペーストを得た。
(実施例12)
導電性ペースト用バインダー樹脂の製造において、メチルメタクリレート50重量部及びイソブチルメタクリレート50重量部に代えてメチルメタクリレート10重量部及びイソブチルメタクリレート90重量部を用い、ジチオリン酸ビス(2-エチルヘキシル)3重量部に代えてジチオリン酸ジエチル2重量部を用いた以外は実施例1と同様にして、導電性ペースト用バインダー樹脂を得た。この導電性ペースト用バインダー樹脂4重量部と、導電性粉末として銀粉(平均粒子径1.0μm)84重量部と、ガラスフリット3重量部と、有機溶剤としてベンジルアルコール8重量部と、エチルセルロース樹脂(ダウケミカル社製、「STD-10」)1重量部とを混合し、高速攪拌機と三本ロールで混練して、導電性ペーストを得た。
(実施例13)
導電性ペースト用バインダー樹脂の製造において、メチルメタクリレート50重量部及びイソブチルメタクリレート50重量部に代えてイソブチルメタクリレート100重量部を用い、ジチオリン酸ビス(2-エチルヘキシル)に代えてジチオリン酸ジエチルを用いた以外は実施例1と同様にして、導電性ペースト用バインダー樹脂を得た。この導電性ペースト用バインダー樹脂2重量部と、導電性粉末として銀粉(平均粒子径1.0μm)86重量部と、ガラスフリット4重量部と、有機溶剤としてテキサノール5重量部と、2,2-ジメチル-1,3-プロパンジオール3重量部とを混合し、高速攪拌機と三本ロールで混練して、導電性ペーストを得た。
(実施例14)
実施例1で得られた導電性ペースト用バインダー樹脂3重量部と、導電性粉末として銀粉(平均粒子径1.0μm)85重量部と、ガラスフリット3重量部と、有機溶剤としてフェニルプロピレングリコール7重量部と、2-(ヒドロキシメチル)-2-エチル-1,3-プロパンジオール2重量部とを混合し、高速攪拌機と三本ロールで混練して、導電性ペーストを得た。
(比較例1)
導電性ペーストの製造において、製造した導電性ペースト用バインダー樹脂(メタアクリル樹脂)の代わりにエチルセルロース(ダウケミカル社製、「STD-10」)4重量部を用い、テルピネオールの添加量を11重量部から13重量部に変えた以外は実施例1と同様にして、導電性ペーストを得た。
(比較例2)
導電性ペースト用バインダー樹脂の製造において、ジチオリン酸ビス(2-エチルヘキシル)3重量部に代えてドデシルメルカプタン0.5重量部を用いた以外は実施例1と同様にして、導電性ペースト用バインダー樹脂及び導電性ペーストを得た。
(比較例3)
導電性ペースト用バインダー樹脂の製造において、メチルメタクリレートの添加量を50重量部から44重量部に変えて、下記式(5)で表されるリン酸2-(メタクリロイルオキシ)エチル(ユニケミカル社製、「PhosmerM」)6重量部を更に添加し、ジチオリン酸ビス(2-エチルヘキシル)3重量部に代えてドデシルメルカプタン0.5重量部を用いた以外は実施例1と同様にして、導電性ペースト用バインダー樹脂及び導電性ペーストを得た。
Figure JPOXMLDOC01-appb-C000007
(比較例4)
導電性ペースト用バインダー樹脂の製造において、ジチオリン酸ビス(2-エチルヘキシル)3重量部に代えてドデシルメルカプタン0.5重量部を用いた以外は実施例1と同様にして、導電性ペースト用バインダー樹脂を得た。
また、導電性ペーストの製造において、テルピネオールの添加量を11重量部から10重量部に変え、更に、リン酸系分散剤(ビック・ケミー社製、「BYK-111」)を1重量部添加した以外は実施例1と同様にして、導電性ペーストを得た。
(実施例15)
(1)導電性ペースト用バインダー樹脂(メタクリル樹脂)の製造
攪拌機、冷却器、温度計、湯浴及び窒素ガス導入口を備えた2Lセパラプルフラスコに、メチルメタクリレート(MMA)50重量部と、イソブチルメタクリレート(IBMA)50重量部と、ジチオリン酸ビス(2-エチルヘキシル)(SC有機化学社製、「Poslex DT-8」)0.5重量部と、有機溶剤として酢酸ブチル50重量部とを混合し、モノマー混合液を得た。
得られたモノマー混合液を、窒素ガスを用いて20分間バブリングすることにより溶存酸素を除去した後、セパラブルフラスコ系内を窒素ガスで置換し攪拌しながら湯浴が沸騰するまで昇温した。重合開始剤としてジアシルパーオキサイド(日油社製、「パーロール355」)を酢酸ブチルで希釈した溶液を加えた。また重合中に重合開始剤を含む酢酸ブチル溶液を数回添加した。重合開始剤は(メタ)アクリレートモノマー100重量部に対して全部で3重量部添加した。
重合開始から7時間後、室温まで冷却し重合を終了させた。これにより、導電性ペースト用バインダー樹脂の酢酸ブチル溶液を得た。得られた樹脂について、カラムとしてSHOKO社製カラム「LF-804」を用い、ゲルパーミエーションクロマトグラフィーによる分析を行ったところ、ポリスチレン換算による数平均分子量は3万であった。
(2)導電性ペーストの製造
得られた導電性ペースト用バインダー樹脂の酢酸ブチル溶液を乾燥した後、この導電性ペースト用バインダー樹脂6重量部と、導電性粉末として銀粉(平均粒子径1.0μm)80重量部と、ガラスフリット3重量部と、有機溶剤としてテルピネオール11重量部とを混合し、高速攪拌機と三本ロールで混練して、導電性ペーストを得た。
(実施例16)
導電性ペースト用バインダー樹脂の製造において、ジチオリン酸ビス(2-エチルヘキシル)の添加量を0.5重量部から20重量部に変え、酢酸ブチルの添加量を50重量部から200重量部に変えた以外は実施例15と同様にして、導電性ペースト用バインダー樹脂及び導電性ペーストを得た。
(実施例17)
導電性ペースト用バインダー樹脂の製造において、酢酸ブチルの添加量を50重量部から20重量部に変えた以外は実施例15と同様にして、導電性ペースト用バインダー樹脂及び導電性ペーストを得た。
(実施例18)
導電性ペースト用バインダー樹脂の製造において、ジチオリン酸ビス(2-エチルヘキシル)の添加量を0.5重量部から20重量部に変え、酢酸ブチルの添加量を50重量部から400重量部に変えた以外は実施例15と同様にして、導電性ペースト用バインダー樹脂及び導電性ペーストを得た。
(実施例19)
実施例15で得られた導電性ペースト用バインダー樹脂の酢酸ブチル溶液を乾燥させた後、この導電性ペースト用バインダー樹脂3重量部と、導電性粉末として銀粉(平均粒子径1.0μm)85重量部と、ガラスフリット3重量部と、有機溶剤としてテルピネオール9重量部とを混合し、高速攪拌機と三本ロールで混練して、導電性ペーストを得た。
(実施例20)
実施例16で得られた導電性ペースト用バインダー樹脂の酢酸ブチル溶液を乾燥させた後、この導電性ペースト用バインダー樹脂4重量部と、導電性粉末として銀粉(平均粒子径1.0μm)85重量部と、ガラスフリット3重量部と、有機溶剤としてテルピネオール8重量部とを混合し、高速攪拌機と三本ロールで混練して、導電性ペーストを得た。
(実施例21)
実施例17で得られた導電性ペースト用バインダー樹脂の酢酸ブチル溶液を乾燥させた後、この導電性ペースト用バインダー樹脂3重量部と、導電性粉末として銀粉(平均粒子径1.0μm)85重量部と、ガラスフリット3重量部と、有機溶剤としてテルピネオール9重量部とを混合し、高速攪拌機と三本ロールで混練して、導電性ペーストを得た。
(実施例22)
実施例18で得られた導電性ペースト用バインダー樹脂の酢酸ブチル溶液を乾燥させた後、この導電性ペースト用バインダー樹脂4重量部と、導電性粉末として銀粉(平均粒子径1.0μm)85重量部と、ガラスフリット3重量部と、有機溶剤としてテルピネオール8重量部とを混合し、高速攪拌機と三本ロールで混練して、導電性ペーストを得た。
各実施例及び比較例で得られた導電性ペースト用バインダー樹脂のモノマー組成、ガラス転移温度及び数平均分子量を表1、2に示した。また、各実施例及び比較例で得られた導電性ペーストの組成を表3、4に示した。
(評価)
実施例及び比較例で得られた導電性ペーストについて以下の評価を行った。結果を表3、4に示した。
(1)分散性
実施例及び比較例で得られた導電性ペーストを24時間放置した後、竹串を用いて導電性ペーストを攪拌することにより導電性粉末の分散又は沈殿状態を確認し、以下の基準で評価した。
◎:導電粉末は分散しており、底部に沈殿は見られなかった
○:導電粉末は沈殿していたが、再分散させることができた
×:導電粉末は沈殿し、固化しており、再分散させることができなかった
(2)印刷性
実施例及び比較例で得られた導電性ペーストを用いて、印刷機でライン/スペースが100μm/150μmのラインパターンのスクリーン印刷を行い、得られたラインパターンの状態を以下の基準で評価した。
○:正確なラインが引けている
△:ラインに断線や隣接するラインとの接触はないが、ライン幅にむらがある
×:ラインが断線しているか、又は、隣接するラインと接触している
(3)印刷ラインアスペクト比評価
実施例及び比較例で得られた導電性ペーストを用いて、印刷機でガラス基板上にライン/スペースが100μm/150μmのラインパターンのスクリーン印刷を行い、得られたラインパターンのライン高さとライン幅とをレーザー顕微鏡にて測定し、以下の基準で評価した。
○:ライン幅が120μm以下であり、かつ、ライン高さが20μm以上である
△:ライン幅が120μm以下であり、かつ、ライン高さの平均が20μm以上であるが、ライン高さにむらがあり、20μm未満の部分がある
×:ライン幅が120μmを超えるか、又は、ライン高さの平均が20μm未満である
(4)焼成評価
実施例及び比較例に示す組成に従って、バインダー樹脂として、製造した導電性ペースト用バインダー樹脂(メタアクリル樹脂)又はエチルセルロース(STD10)と、有機溶剤としてテルピネオールと、リン酸系分散剤(ビック・ケミー社製、「BYK-111」)とを混合してビヒクルを作製し、得られたビヒクルを150℃で2時間乾燥させて樹脂を得た。得られた樹脂をTG-DTAで測定し、以下の基準で評価した。
○:600℃まで加熱したとき、残留炭素成分は1重量%以下であった
×:600℃まで加熱したとき、1重量%を超える炭素成分が残留した
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
本発明によれば、導電性粉末の分散性が高く、アスペクト比の高い配線を形成することができ、かつ、焼成後に残留する炭素成分が少ない導電性ペーストを得ることができる導電性ペースト用バインダー樹脂を提供することができる。また、本発明によれば、該導電性ペースト用バインダー樹脂を用いて製造される導電性ペースト及び太陽電池素子を提供することができる。

Claims (8)

  1. (メタ)アクリレートモノマーに由来するセグメントからなる主鎖を有し、かつ、ω位に下記一般式(1)で表されるリン酸系成分を有するポリマーからなることを特徴とする導電性ペースト用バインダー樹脂。
    Figure JPOXMLDOC01-appb-C000001
    一般式(1)中、Xは酸素原子又は硫黄原子を表し、R及びRは、それぞれ、水素原子、炭素数1~13の炭化水素基、炭素数1~13の水酸基含有化合物基又は炭素数1~13のエステル結合含有化合物基を表す。
  2. 数平均分子量が5000~3万であることを特徴とする請求項1記載の導電性ペースト用バインダー樹脂。
  3. ガラス転移温度が10~80℃であることを特徴とする請求項1又は2記載の導電性ペースト用バインダー樹脂。
  4. 10℃/分の昇温速度で600℃まで加熱したときの残留炭素成分は、1重量%以下であることを特徴とする請求項1、2又は3記載の導電性ペースト用バインダー樹脂。
  5. ω位のリン酸系成分以外のリン酸系成分の含有量は、ポリマー全体に対して5重量%未満であることを特徴とする請求項1、2、3又は4記載の導電性ペースト用バインダー樹脂。
  6. 請求項1、2、3、4又は5記載の導電性ペースト用バインダー樹脂、導電性粉末及び有機溶剤を含有する導電性ペースト。
  7. 導電性粉末は、銀粉末であることを特徴とする請求項6記載の導電性ペースト。
  8. 請求項6又は7記載の導電性ペーストを焼成してなる導電層又は導電性配線を有することを特徴とする太陽電池素子。
PCT/JP2010/060817 2009-07-01 2010-06-25 導電性ペースト用バインダー樹脂、導電性ペースト及び太陽電池素子 WO2011001908A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/254,914 US20120037223A1 (en) 2009-07-01 2010-06-25 Binder resin for conductive paste, conductive paste, and solar cell element
EP10794077.7A EP2450385A4 (en) 2009-07-01 2010-06-25 BINDER RESIN FOR CONDUCTIVE PASTE, CONDUCTIVE PASTE, AND SOLAR CELL ELEMENT
JP2010526498A JP4691211B2 (ja) 2009-07-01 2010-06-25 導電性ペースト用バインダー樹脂、導電性ペースト及び太陽電池素子
CN201080009832.XA CN102341416B (zh) 2009-07-01 2010-06-25 导电性糊剂用粘合剂树脂、导电性糊剂及太阳能电池元件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-156997 2009-07-01
JP2009156997 2009-07-01
JP2009229896 2009-10-01
JP2009-229896 2009-10-01

Publications (1)

Publication Number Publication Date
WO2011001908A1 true WO2011001908A1 (ja) 2011-01-06

Family

ID=43410984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060817 WO2011001908A1 (ja) 2009-07-01 2010-06-25 導電性ペースト用バインダー樹脂、導電性ペースト及び太陽電池素子

Country Status (7)

Country Link
US (1) US20120037223A1 (ja)
EP (1) EP2450385A4 (ja)
JP (1) JP4691211B2 (ja)
KR (1) KR20120037364A (ja)
CN (1) CN102341416B (ja)
TW (1) TW201111462A (ja)
WO (1) WO2011001908A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204817A (ja) * 2011-03-28 2012-10-22 Daicel Corp 積層セラミック部品製造用溶剤組成物
JP2013008759A (ja) * 2011-06-23 2013-01-10 Toyo Aluminium Kk ペースト組成物、太陽電池素子の製造方法および太陽電池素子
WO2013061923A1 (ja) * 2011-10-28 2013-05-02 デクセリアルズ株式会社 導電性接着剤、太陽電池モジュール、及び太陽電池モジュールの製造方法
CN103236281A (zh) * 2012-01-17 2013-08-07 E.I.内穆尔杜邦公司 在半导体装置的制造中用于细线条高纵横比丝网印刷的导电浆料
WO2014014114A1 (ja) * 2012-07-19 2014-01-23 日立化成株式会社 パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池
CN103597547A (zh) * 2011-03-29 2014-02-19 太阳化学公司 含有蜡触变胶的可高纵横比丝网印刷的厚膜糊剂组合物
EP2749620A1 (en) * 2011-08-23 2014-07-02 Dexerials Corporation Conductive adhesive and solar cell module
CN104488089A (zh) * 2012-07-19 2015-04-01 日立化成株式会社 钝化层形成用组合物、带钝化层的半导体基板、带钝化层的半导体基板的制造方法、太阳能电池元件、太阳能电池元件的制造方法及太阳能电池
JP2018517271A (ja) * 2015-04-22 2018-06-28 サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. 太陽電池電極形成用組成物及び当該組成物から製造された電極
WO2019171968A1 (ja) 2018-03-07 2019-09-12 ナガセケムテックス株式会社 アクリル樹脂およびその製造方法、ならびに金属微粒子分散体

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101814014B1 (ko) 2011-03-25 2018-01-03 삼성전자주식회사 도전성 페이스트, 상기 도전성 페이스트를 사용하여 형성된 전극을 포함하는 전자 소자 및 태양 전지
KR102100291B1 (ko) 2011-11-11 2020-04-13 삼성전자주식회사 도전성 페이스트, 상기 도전성 페이스트를 사용하여 형성된 전극을 포함하는 전자 소자 및 태양 전지
KR101985929B1 (ko) 2011-12-09 2019-06-05 삼성전자주식회사 도전성 페이스트, 상기 도전성 페이스트를 사용하여 형성된 전극을 포함하는 전자 소자 및 태양 전지
JP2013151591A (ja) * 2012-01-24 2013-08-08 Taiyo Holdings Co Ltd 無機粒子含有ペーストおよび無機回路
DK2880662T3 (en) * 2012-07-30 2017-10-16 Ceram Gmbh Method of Metallization of Dotted Holes
GB2504957A (en) * 2012-08-14 2014-02-19 Henkel Ag & Co Kgaa Curable compositions comprising composite particles
JP2015082554A (ja) * 2013-10-22 2015-04-27 日東電工株式会社 軟磁性樹脂組成物、および、軟磁性フィルム
TW201529655A (zh) * 2013-12-11 2015-08-01 Heraeus Precious Metals North America Conshohocken Llc 用於導電性糊料之含有丙烯酸系樹脂之有機載體
JP5957546B2 (ja) * 2015-01-07 2016-07-27 株式会社ノリタケカンパニーリミテド 導電性組成物
KR101816236B1 (ko) 2015-04-28 2018-01-08 삼성에스디아이 주식회사 전극 형성용 조성물 및 이로부터 제조된 전극과 태양전지
JP6804255B2 (ja) 2015-12-15 2020-12-23 三星エスディアイ株式会社Samsung SDI Co., Ltd. 電極形成用組成物ならびにこれを用いて製造された電極および太陽電池
KR101974839B1 (ko) * 2015-12-15 2019-05-03 삼성에스디아이 주식회사 전극 형성용 조성물 및 이로부터 제조된 전극과 태양전지
JP6103126B1 (ja) * 2016-01-29 2017-03-29 東洋インキScホールディングス株式会社 導電性組成物、その製造方法、および導電性材料
KR20190068352A (ko) * 2017-12-08 2019-06-18 삼성에스디아이 주식회사 태양전지 셀
CN116314369B (zh) * 2023-02-14 2024-06-18 英利能源发展(保定)有限公司 一种用于改善N型TOPCon晶硅电池背面印刷效果的银浆及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233112A (ja) * 1984-05-07 1985-11-19 Idemitsu Petrochem Co Ltd 水酸基含有ジエン系重合体の製造方法
WO2005123830A1 (ja) * 2004-06-21 2005-12-29 Sekisui Chemical Co., Ltd. バインダー樹脂組成物、ペースト及びグリーンシート
JP2006509883A (ja) * 2002-12-13 2006-03-23 ビオメリュー 制御ラジカル重合法
JP2007235082A (ja) 2006-02-02 2007-09-13 E I Du Pont De Nemours & Co 太陽電池電極用ペースト
JP2008045044A (ja) * 2006-08-17 2008-02-28 Sekisui Chem Co Ltd 無機微粒子分散ペースト組成物
JP2008050594A (ja) * 2006-07-26 2008-03-06 Sekisui Chem Co Ltd バインダー樹脂組成物
JP4096661B2 (ja) 2002-08-22 2008-06-04 株式会社村田製作所 セラミック電子部品、およびセラミック電子部品の製造方法
JP4248551B2 (ja) 2006-02-09 2009-04-02 ユニケミカル株式会社 リン系酸エステル残基含有(メタ)アクリルアミド組成物、それを用いた重合体とそれらの用途、及びそれらの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175044A (ja) * 1984-02-20 1985-09-09 Toyobo Co Ltd リスフィルム用感光性組成物
AT385764B (de) * 1986-09-01 1988-05-10 Vianova Kunstharz Ag Verfahren zur herstellung wasserverduennbarer, phosphorsaeuremodifizierter bindemittel und deren verwendung fuer einbrennlacke
JPH0620261A (ja) * 1992-06-30 1994-01-28 Hitachi Maxell Ltd 磁気記録媒体
DE4306537A1 (de) * 1993-03-03 1994-09-08 Goldschmidt Ag Th Polymethacrylsäureester, deren Estergruppen in alpha- und gegebenenfalls zusätzlich in omega-Stellung von den in der Kette befindlichen Estergruppen abweichen
DE4437673C2 (de) * 1994-10-21 1996-09-12 Goldschmidt Ag Th Unterschiedlich endmodifizierte alpha,omega-Polymethacrylatdicarbonsäuren, deren Herstellung und Verwendung als Dicarbonsäurekomponente zur Herstellung oder Modifizierung von Polyestern, Polyurethanen oder Polyepoxiden
CA2392227C (en) * 1999-11-22 2010-02-16 Kuraray Co., Ltd. Three component-containing acrylic adhesive composition
CN100547028C (zh) * 2004-06-21 2009-10-07 积水化学工业株式会社 粘合剂树脂组合物、糊以及生片
GB2451233A (en) * 2007-07-21 2009-01-28 Leigh S Paints Intumescent coating composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233112A (ja) * 1984-05-07 1985-11-19 Idemitsu Petrochem Co Ltd 水酸基含有ジエン系重合体の製造方法
JP4096661B2 (ja) 2002-08-22 2008-06-04 株式会社村田製作所 セラミック電子部品、およびセラミック電子部品の製造方法
JP2006509883A (ja) * 2002-12-13 2006-03-23 ビオメリュー 制御ラジカル重合法
WO2005123830A1 (ja) * 2004-06-21 2005-12-29 Sekisui Chemical Co., Ltd. バインダー樹脂組成物、ペースト及びグリーンシート
JP2007235082A (ja) 2006-02-02 2007-09-13 E I Du Pont De Nemours & Co 太陽電池電極用ペースト
JP4248551B2 (ja) 2006-02-09 2009-04-02 ユニケミカル株式会社 リン系酸エステル残基含有(メタ)アクリルアミド組成物、それを用いた重合体とそれらの用途、及びそれらの製造方法
JP2008050594A (ja) * 2006-07-26 2008-03-06 Sekisui Chem Co Ltd バインダー樹脂組成物
JP2008045044A (ja) * 2006-08-17 2008-02-28 Sekisui Chem Co Ltd 無機微粒子分散ペースト組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2450385A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204817A (ja) * 2011-03-28 2012-10-22 Daicel Corp 積層セラミック部品製造用溶剤組成物
US20140124713A1 (en) * 2011-03-29 2014-05-08 Diptarka Majumdar High-aspect ratio screen printable thick film paste compositions containing wax thixotropes
KR102011477B1 (ko) * 2011-03-29 2019-08-16 썬 케미칼 코포레이션 왁스 요변체를 함유하는 고-종횡비 스크린 인쇄성 후막 페이스트 조성물
JP2016183342A (ja) * 2011-03-29 2016-10-20 サン ケミカル コーポレイション ワックスチクソトロープ剤を含有する高いアスペクト比のスクリーン印刷可能な厚膜ペースト組成物
JP2014515160A (ja) * 2011-03-29 2014-06-26 サン ケミカル コーポレイション ワックスチクソトロープ剤を含有する高いアスペクト比のスクリーン印刷可能な厚膜ペースト組成物
CN103597547A (zh) * 2011-03-29 2014-02-19 太阳化学公司 含有蜡触变胶的可高纵横比丝网印刷的厚膜糊剂组合物
KR20140033021A (ko) * 2011-03-29 2014-03-17 썬 케미칼 코포레이션 왁스 요변체를 함유하는 고-종횡비 스크린 인쇄성 후막 페이스트 조성물
JP2013008759A (ja) * 2011-06-23 2013-01-10 Toyo Aluminium Kk ペースト組成物、太陽電池素子の製造方法および太陽電池素子
EP2749620A1 (en) * 2011-08-23 2014-07-02 Dexerials Corporation Conductive adhesive and solar cell module
EP2749620A4 (en) * 2011-08-23 2015-04-29 Dexerials Corp CONDUCTIVE ADHESIVE AND SOLAR CELL MODULE
JP2013098230A (ja) * 2011-10-28 2013-05-20 Dexerials Corp 導電性接着剤、太陽電池モジュール、及び太陽電池モジュールの製造方法
WO2013061923A1 (ja) * 2011-10-28 2013-05-02 デクセリアルズ株式会社 導電性接着剤、太陽電池モジュール、及び太陽電池モジュールの製造方法
CN103236281A (zh) * 2012-01-17 2013-08-07 E.I.内穆尔杜邦公司 在半导体装置的制造中用于细线条高纵横比丝网印刷的导电浆料
WO2014014114A1 (ja) * 2012-07-19 2014-01-23 日立化成株式会社 パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池
CN104488089A (zh) * 2012-07-19 2015-04-01 日立化成株式会社 钝化层形成用组合物、带钝化层的半导体基板、带钝化层的半导体基板的制造方法、太阳能电池元件、太阳能电池元件的制造方法及太阳能电池
CN104508830A (zh) * 2012-07-19 2015-04-08 日立化成株式会社 钝化层形成用组合物、带钝化层的半导体基板、带钝化层的半导体基板的制造方法、太阳能电池元件、太阳能电池元件的制造方法及太阳能电池
JPWO2014014114A1 (ja) * 2012-07-19 2016-07-07 日立化成株式会社 パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池
JP2018517271A (ja) * 2015-04-22 2018-06-28 サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. 太陽電池電極形成用組成物及び当該組成物から製造された電極
WO2019171968A1 (ja) 2018-03-07 2019-09-12 ナガセケムテックス株式会社 アクリル樹脂およびその製造方法、ならびに金属微粒子分散体
KR20200130286A (ko) 2018-03-07 2020-11-18 나가세케무텍쿠스가부시키가이샤 아크릴 수지 및 그 제조 방법과 금속 미립자 분산체

Also Published As

Publication number Publication date
US20120037223A1 (en) 2012-02-16
KR20120037364A (ko) 2012-04-19
EP2450385A1 (en) 2012-05-09
CN102341416A (zh) 2012-02-01
JP4691211B2 (ja) 2011-06-01
EP2450385A4 (en) 2014-09-03
CN102341416B (zh) 2014-06-04
JPWO2011001908A1 (ja) 2012-12-13
TW201111462A (en) 2011-04-01

Similar Documents

Publication Publication Date Title
JP4691211B2 (ja) 導電性ペースト用バインダー樹脂、導電性ペースト及び太陽電池素子
KR101647523B1 (ko) 금속 산화물 미립자 분산 슬러리
JP2010135180A (ja) 導電性ペースト
EP2204391B1 (en) Binder resin, vehicle composition, and paste composition having inorganic microparticle dispersed therein
JP7167262B2 (ja) 導電性ペースト組成物およびそれによって製造された半導体デバイス
JP6438538B2 (ja) 無機微粒子分散ペースト組成物、無機微粒子分散シート及び無機微粒子分散シートの製造方法
CN102473476A (zh) 低温烧成用热固性电极糊剂
KR20120052374A (ko) 무기 미립자 분산 페이스트
JP5126816B2 (ja) 有機ビヒクルの製造方法およびその有機ビヒクルを含有したペースト
TWI540592B (zh) 用於形成可低溫燒成之電極或配線的糊組成物
JP2007211146A (ja) リン系酸エステル残基含有(メタ)アクリルアミド組成物、それを用いた重合体とそれらの用途、及びそれらの製造方法
CN103979793A (zh) 用于分散玻璃组合物的有机媒介物和分散方法
JP5410242B2 (ja) 導電性微粒子分散ペースト
JP2009108203A (ja) ガラスペースト組成物、及び、プラズマディスプレイパネルの製造方法
JP5108437B2 (ja) 非鉛系ガラス微粒子分散ペースト組成物
JP2013235678A (ja) 導電ペースト、太陽電池セル及び太陽電池パネル
JP2012107176A (ja) 無機微粒子分散ペースト
JP2012038625A (ja) 導電性微粒子分散ペースト
JP2014027256A (ja) 導電性アルミニウム分散ペースト、太陽電池の製造方法および太陽電池
KR101348732B1 (ko) 인쇄특성이 우수한 태양전지 전극 페이스트용 아크릴 바인더 및 이를 이용한 태양전지 전극 페이스트
JP2012167236A (ja) 無機微粒子分散ペースト
JP2013093468A (ja) 導電性微粒子分散ペースト、太陽電池セル及び太陽電池パネル
JP5215696B2 (ja) 無機微粒子分散ペースト
JP2013213079A (ja) 導電ペースト
KR101854742B1 (ko) 전극 형성용 조성물 및 이로부터 제조된 전극과 태양전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009832.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010526498

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117020193

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010794077

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13254914

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE