WO2010140233A1 - 電池充電率算出装置 - Google Patents

電池充電率算出装置 Download PDF

Info

Publication number
WO2010140233A1
WO2010140233A1 PCT/JP2009/060155 JP2009060155W WO2010140233A1 WO 2010140233 A1 WO2010140233 A1 WO 2010140233A1 JP 2009060155 W JP2009060155 W JP 2009060155W WO 2010140233 A1 WO2010140233 A1 WO 2010140233A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
unit
outputs
voltage value
charging rate
Prior art date
Application number
PCT/JP2009/060155
Other languages
English (en)
French (fr)
Inventor
重水 哲郎
飯田 政巳
西田 健彦
大石 正純
足立 和之
慎治 村上
好広 和田
Original Assignee
三菱重工業株式会社
九州電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 九州電力株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020117030024A priority Critical patent/KR101267213B1/ko
Priority to US13/375,642 priority patent/US8994334B2/en
Priority to EP09845518.1A priority patent/EP2439550B1/en
Priority to PCT/JP2009/060155 priority patent/WO2010140233A1/ja
Priority to CN200980159607.1A priority patent/CN102449495B/zh
Priority to JP2011518125A priority patent/JP5255119B2/ja
Publication of WO2010140233A1 publication Critical patent/WO2010140233A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery charge rate calculation device for calculating a battery charge rate.
  • SOC State Of Charge
  • the SOC calculated based on the current value is referred to as SOCI
  • the SOC calculated based on the voltage value is referred to as SOCV.
  • the conventional battery charge rate calculation device calculates the SOCI by always integrating the current value of the charged / discharged current, and uses this as the SOC of the battery.
  • the SOCI has a problem that it is different from the actual SOC because the measurement error of the current value is accumulated by integrating the current value.
  • the conventional battery charge rate calculation device first corrects the SOC by adopting the SOCI as the SOC and adopting the SOCV calculated in a timely manner as the SOC instead of the SOCI.
  • a voltage drop value hereinafter referred to as an estimated impedance voltage value
  • the apparatus disclosed in Patent Document 1 uses either the SOCV based on the estimated open circuit voltage value calculated in this way or the SOCI based on the integrated current value as the SOC. Was determined as.
  • the battery charging rate calculation device disclosed in Patent Document 2 calculates an estimated open-circuit voltage value by subtracting an estimated impedance voltage based on the measured temperature and measured current value of the battery from the measured voltage value. .
  • the device of Patent Document 2 calculates the SOC using the SOCV based on the estimated open circuit voltage value calculated in this way and the SOCI based on the integrated current value.
  • the estimated impedance voltage value used for calculating the SOC has a larger error as the absolute value thereof is larger.
  • the SOC of the battery is determined regardless of the absolute value of the estimated impedance voltage value. Even in the case of calculating the SOC, there is a problem that the SOC is not accurate by adopting the SOCV.
  • the present invention has been made in view of the above-described points, and an object of the present invention is to provide a battery charge rate calculation device that calculates an accurate SOC.
  • the present invention has been made to solve the above-described problem, and includes a first charging rate calculation unit that outputs a first charging rate calculated based on voltage data, and a first charging rate calculated based on current data.
  • a second charging rate calculating unit that outputs a charging rate of 2
  • an impedance voltage calculating unit that calculates an impedance voltage value based on an effective charging rate, temperature data, and current data, and the impedance voltage value is predetermined.
  • a battery charge rate calculation device comprising: a charge rate determination unit that outputs the first charge rate as the effective charge rate, and otherwise outputs the second charge rate as the effective charge rate.
  • the second charge rate calculation unit integrates current data using the first charge rate as an initial value or the effective charge rate held as a previous value as an initial value. Then, the second charging rate may be calculated.
  • the static determination unit measures the time during which the impedance voltage value is static, and the impedance is determined when the static stabilization time is equal to or longer than a predetermined time. You may determine with the voltage value having settled.
  • the first charge rate calculation unit may calculate the first charge rate from an open-circuit voltage value based on the voltage data and the impedance voltage value. Good.
  • the charge rate determination unit determines the first charge when the difference between the first charge rate and the second charge rate is equal to or greater than a predetermined threshold. May be output as the effective charge rate.
  • the impedance voltage calculation unit may calculate an impedance voltage value based on the effective charge rate, current data, and temperature data.
  • the battery charge rate calculation device determines that the estimated impedance voltage value has settled, and instead of using the SOCI in which the error is accumulated, the SOCV based on the estimated impedance voltage value in which the error is small is used as the SOC. Since it is employed, an accurate SOC can be obtained.
  • the battery charge rate calculation device accurately calculates the SOC, it is possible to prevent overcharging / discharging of the battery. Further, in a secondary battery that has a causal relationship between SOC and cycle life, the battery charge rate calculation device can improve the cycle life of the battery.
  • FIG. 1 is a diagram illustrating a configuration of a battery charging rate calculation apparatus according to a first embodiment of the present invention.
  • the battery charging rate calculation device 100 includes a temperature measurement unit 1, a voltage measurement unit 2, a current measurement unit 3, an SOCV calculation unit 5, an SOCI calculation unit 6, a static determination unit 7, A battery impedance model unit 10 and an SOC determination unit 20 are provided.
  • the temperature measurement unit 1 measures the temperature of a secondary battery (not shown) and outputs temperature data at a predetermined cycle.
  • the voltage measuring unit 2 measures the voltage of a secondary battery (not shown) and outputs voltage data at a predetermined cycle.
  • the current measuring unit 3 measures a current output from a secondary battery (not shown) and outputs current data at a predetermined cycle.
  • the battery impedance model unit 10 outputs estimated impedance voltage data based on SOC data (effective charge rate) output from the switching unit 23 of the SOC determination unit 20 to be described later and temperature data.
  • the battery impedance model unit 10 includes an estimated impedance conversion unit 11 and an estimated impedance voltage calculation unit 12.
  • the estimated impedance converter 11 selects an estimated impedance from a conversion table (not shown) based on the SOC data and the temperature data, and outputs estimated impedance data.
  • the conversion table (not shown) is created by previously measuring the relationship among the SOC data, the temperature data, and the estimated impedance.
  • the estimated impedance voltage calculation unit 12 calculates an estimated impedance voltage value by multiplying the estimated impedance data and the current data, and outputs the estimated impedance voltage data at a predetermined cycle.
  • the SOCV calculation unit 5 calculates the SOCV based on the temperature data and the voltage data, and outputs the obtained SOCV as SOCV data.
  • voltage data is input from the voltage measurement unit 2 to the SOCV calculation unit 5.
  • the SOCI calculation unit 6 calculates the SOCI by adding the integral value of the current data to the SOC data output from the switching unit 23 of the SOC determination unit 20 described later.
  • the SOCI is reset with the SOCV data. That is, the SOCI calculation unit 6 adds the integration value of the current data to the reset SOCI, and outputs the obtained SOCI as SOCI data.
  • the stabilization determination unit 7 acquires estimated impedance voltage data at a predetermined cycle, and measures a time (hereinafter referred to as a stabilization time) within which the estimated impedance voltage value is within a range that is distinguished by a predetermined threshold.
  • a stabilization time a time within which the estimated impedance voltage value is within a range that is distinguished by a predetermined threshold.
  • the absolute value of the predetermined threshold is sufficiently small. Therefore, when the absolute value of the estimated impedance voltage value is sufficiently small, the error included in the estimated impedance voltage value is also small. When the error included in the estimated impedance voltage value is small, the voltage data is substantially equal to the estimated open circuit voltage value.
  • the stabilization determination unit 7 When the estimated impedance voltage value is outside the range distinguished by the predetermined threshold value, the stabilization determination unit 7 resets the measurement result of the stabilization time to the value “0”. Further, when the estimated impedance voltage value falls within the range that is distinguished by the predetermined threshold value, the stabilization determination unit 7 restarts the measurement of the stabilization time. The stabilization determination unit 7 outputs a stabilization signal indicating that the estimated impedance voltage value is stabilized when the stabilization time is equal to or longer than a predetermined time, and otherwise does not output the stabilization signal.
  • the SOC determination unit 20 validates the SOC in a procedure to be described later, and outputs the SOC data.
  • the SOC determination unit 20 includes a difference detection unit 21, a switching determination unit 22, and a switching unit 23.
  • the difference detection unit 21 acquires SOCV data and SOCI data, and calculates a difference between the SOCV data and the SOCI data as SOC difference data.
  • the difference detection unit 21 notifies the switching determination unit 22 that the SOCV data has been output from the SOCV calculation unit 5.
  • the difference detection unit 21 outputs a difference determination signal when the absolute value of the SOC difference data is equal to or greater than a predetermined range, and does not output the difference determination signal otherwise.
  • the difference detection unit 21 may continuously output the difference determination signal.
  • the switching determination unit 22 described later outputs an SOC switching signal whenever a static signal is input.
  • the switching determination unit 22 outputs an SOC switching signal until the difference detection unit 21 notifies that the SOCV data is output from the SOCV calculation unit 5. If both the static value signal and the difference determination signal are input after the notification, the switching determination unit 22 outputs the SOC switching signal. In other cases, the switching determination unit 22 does not output the SOC switching signal.
  • the switching unit 23 acquires the SOCV data from the SOCV calculation unit 5, the SOCI data from the SOCI calculation unit 6, and the SOC switching signal from the switching determination unit 22.
  • the switching unit 23 outputs the SOCV data input from the SOCV calculation unit 5 as SOC data (effective charge rate). In other cases, the switching unit 23 outputs the SOCI data input from the SOCI calculation unit 6 as SOC data (effective charge rate).
  • the temperature measurement unit 1 measures the temperature of a secondary battery (not shown) and outputs temperature data.
  • the voltage measuring unit 2 measures the voltage of a secondary battery (not shown) and outputs voltage data.
  • the current measuring unit 3 measures a current output from a secondary battery (not shown) and outputs current data.
  • the SOCV calculation unit 5 calculates the SOCV based on the temperature data and the voltage data, and outputs the SOCV data to the difference detection unit 21 and the switching unit 23.
  • the switching determination unit 22 outputs an SOC switching signal because the difference detection unit 21 has not notified that the SOCV data has been output from the SOCV calculation unit 5. Since the SOC switching signal is input, the switching unit 23 outputs the SOCV data input from the SOCV calculation unit 5 to the SOCI calculation unit 6 and the estimated impedance conversion unit 11.
  • the difference detection unit 21 notifies the switching determination unit 22 that the SOCV data is output from the SOCV calculation unit 5. For this reason, the switching determination unit 22 stops outputting the SOC switching signal.
  • the SOCI calculation unit 6 calculates the SOCI by adding the integrated value of the current data to the SOC data acquired as the initial value. Also, the SOCI calculation unit 6 outputs the obtained SOCI as SOCI data to the difference detection unit 21 and the switching unit 23.
  • the difference detection unit 21 Since the SOC difference data becomes the value “0” because the SOCI data is initialized with the SOCV data, the difference detection unit 21 does not output a difference determination signal. Therefore, the switching unit 23 outputs the SOCI data as the SOC data to the SOCI calculation unit 6 and the estimated impedance conversion unit 11.
  • the estimated impedance conversion unit 11 selects an estimated impedance from a conversion table (not shown) based on the SOC data input from the switching unit 23 and the temperature data input from the temperature measurement unit 1 to perform estimation. Output as impedance data.
  • the estimated impedance voltage calculation unit 12 calculates the estimated impedance voltage value by multiplying the estimated impedance data and the current data, and outputs the estimated impedance voltage value.
  • the stabilization determination unit 7 acquires the estimated impedance voltage value and starts measuring the stabilization time.
  • the settling determination unit 7 immediately after the settling determination unit 7 starts measuring the settling time, the settling determination unit 7 does not output a settling signal because the settling time has not yet reached the predetermined time.
  • the difference detection unit 21 outputs a difference determination signal.
  • the settling time is assumed not to be longer than a predetermined time. For this reason, the switching determination unit 22 does not output the SOC switching signal.
  • the stabilization determination unit 7 outputs a stabilization signal. Since both the stationary signal and the difference determination signal are input, the switching determination unit 22 outputs the SOC switching signal. The switching unit 23 outputs SOCV data as the SOC data. Therefore, the SOCI is reset with the SOCV data that is the SOC data. The SOCI calculation unit 6 outputs the obtained SOCI as SOCI data to the difference detection unit 21 and the switching unit 23.
  • the difference detection unit 21 acquires the SOCV data and the SOCI data, and calculates the SOC difference data as the difference between the SOCV data and the SOCI data.
  • the SOC difference data is a value “0”. For this reason, the difference detection unit 21 does not output a difference determination signal. Therefore, the switching unit 23 outputs the SOCI data as the SOC data to the SOCI calculation unit 6 and the estimated impedance conversion unit 11.
  • the settling determination unit 7 stops the output of the settling signal and resets the measurement result of the settling time to the value “0”. Furthermore, it is assumed that the estimated impedance voltage value is within the range again from outside the range distinguished by the predetermined threshold. For this reason, the settling determination unit 7 restarts the measurement of the settling time. Thereafter, each block repeats the above-described operation, so that the SOC determination unit 20 determines the SOC and outputs the SOC data.
  • the battery charging rate calculation apparatus 100 determines that the estimated impedance voltage value is settled, and instead of the SOCI in which the error is accumulated, the estimated impedance voltage in which the error is reduced. Since the SOCV based on the value is adopted as the SOC, an accurate SOC can be obtained.
  • FIG. 2 is a diagram illustrating a configuration of a battery charge rate calculation apparatus according to the second embodiment of the present invention.
  • the battery charge rate calculation device 100 includes an estimated open-circuit voltage calculation unit 4 in addition to the configuration of the battery charge rate calculation device 100 according to the first embodiment.
  • the estimated open circuit voltage calculation unit 4 acquires the voltage data and the estimated impedance voltage value, and calculates the estimated open circuit voltage value by subtracting the estimated impedance voltage value from the voltage data.
  • the estimated open circuit voltage calculation unit 4 outputs the estimated open circuit voltage value to the SOCV calculation unit 5.
  • the SOCV calculation unit 5 acquires an estimated open-circuit voltage value from the estimated open-circuit voltage calculation unit 4 instead of the voltage data.
  • the SOCV calculation unit 5 calculates the SOCV based on the temperature data and the estimated open circuit voltage value, and outputs the obtained SOCV to the calculation difference detection unit 21 and the switching unit 23 as SOCV data.
  • the SOCV calculation unit 5 of the second embodiment uses the estimated impedance voltage. Since the SOCV is calculated based on the estimated open-circuit voltage value in which the value is taken into account, the SOCV can be calculated with higher accuracy than in the first embodiment. For this reason, the battery charge rate calculation apparatus 100 can obtain a more accurate SOC.
  • the battery charging rate calculation apparatus 100 determines that the estimated impedance voltage value is settled, and instead of the SOCI in which the error is accumulated, the estimated impedance voltage value in which the error is reduced is obtained. Since the based SOCV is adopted as the SOC, an accurate SOC can be obtained.
  • the battery charge rate calculation device accurately calculates the SOC, it is possible to prevent overcharging / discharging of the battery. Further, in a secondary battery that has a causal relationship between SOC and cycle life, the battery charge rate calculation device can improve the cycle life of the battery.
  • the SOCI calculation unit 6 may hold the previous value of the SOCI data, and output the calculated SOCI as the SOCI data by integrating the current data with the previous SOCI data as the initial value. Further, the settling determination unit 7 may output the data “settling” as a settling signal when the settling time exceeds a predetermined time, and output data “unsetted” otherwise. Good.
  • the difference detection unit 21 outputs data “out of range” as the difference determination signal when the absolute value of the SOC difference data is equal to or greater than a predetermined threshold, and outputs data “in range” otherwise. Also good.
  • the switching determination unit 22 may output the SOC switching signal only when the difference determination signal is data “out of range” and the static signal is data “static”. Further, the estimated impedance conversion unit 11 may hold the SOC data at the previous value and select the estimated impedance using the SOC data input last time as an initial value.
  • the battery charging rate calculation device corresponds to the battery charging rate calculation device 100
  • the first charging rate calculation unit corresponds to the SOCV calculation unit 5
  • the second charging rate calculation unit is Corresponding to the SOCI calculating unit 6
  • the impedance voltage calculating unit corresponds to the battery impedance model unit 10
  • the estimated impedance converting unit 11 corresponds to the estimated impedance calculating unit 12
  • the static determination unit is the static determination unit 7.
  • the charging rate determination unit corresponds to the SOC determination unit 20, the difference detection unit 21, the switching determination unit 22, and the switching unit 23.
  • the battery charging rate calculation apparatus 100 determines that the estimated impedance voltage value is settled, and instead of the SOCI in which the error is accumulated, the SOCV based on the estimated impedance voltage value in which the error is reduced. Is adopted as the SOC, so that an accurate SOC can be obtained.
  • the present invention is suitable for a battery charge rate calculation device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 電池充電率算出装置(100)が、電圧データに基づいて算出した第1の充電率を出力するSOCV算出部(5)と、電流データに基づいて算出した第2の充電率を出力するSOCI算出部(6)と、有効充電率と、電流データと、に基づいてインピーダンス電圧値を算出する推定インピーダンス電圧算出部(12)と、前記インピーダンス電圧値が所定の閾値で区別される範囲に所定の時間以上静定したことを判定し、当該判定結果を出力する静定判定部(7)と、前記判定結果に基づいて、前記インピーダンス電圧値が静定した場合に、前記第1の充電率を前記有効充電率として出力し、それ以外の場合に、前記第2の充電率を前記有効充電率として出力するSOC決定部(20)と、を備える。

Description

電池充電率算出装置
 本発明は、電池の充電率を算出する、電池充電率算出装置に関する。
 近年、燃料電池自動車やハイブリッド自動車に用いる二次電池のさらなる性能向上が期待されている。そこで、二次電池の過充電と過放電を防止し、またサイクル寿命を向上させるために、電池の充電率(以下、SOC(State Of Charge)と称する)を正確に算出する技術が求められている。
 以下、電流値に基づいて算出されたSOCをSOCIと、電圧値に基づいて算出されたSOCをSOCVと称する。従来の電池充電率算出装置は、充放電された電流の電流値を常に積分することによりSOCIを算出し、これを電池のSOCとしていた。しかし、SOCIは、電流値が積分されることで電流値の測定誤差が蓄積されてしまうため、実際のSOCと異なってしまうという問題があった。
 そこで、従来の電池充電率算出装置は、まずSOCIをSOCとして採用し、適時に算出されるSOCVをSOCIの代わりにSOCとして採用することで、SOCを補正していた。例えば特許文献1に開示された電池充電率算出装置は、電池の充電と放電の切り替わりを検出した際に、電池の内部抵抗による降下電圧値(以下、推定インピーダンス電圧値と称する)を実測電流値と実測電圧値から算出し、この推定インピーダンス電圧値と実測電圧値から推定開放電圧値を算出していた。特許文献1の当該装置は、電池の充電と放電の切り替わりを検出した際に、このように算出した推定開放電圧値に基づくSOCVと、積分された電流値に基づくSOCIと、のいずれかをSOCとして決定していた。
 また、例えば特許文献2に開示された電池充電率算出装置は、電池の実測温度と実測電流値とに基づく推定インピーダンス電圧を実測電圧値から減算することで、推定開放電圧値を算出していた。特許文献2の当該装置は、このように算出した推定開放電圧値に基づくSOCVと、積分された電流値に基づくSOCIと、を用いてSOCを算出していた。
特許第3767150号公報 特開2006-58114号公報
 このようにSOCの算出に用いられる推定インピーダンス電圧値は、その絶対値が大きいほど含まれる誤差も大きいことが知られている。しかし、例えば特許文献1に開示された電池充電率算出装置では、推定インピーダンス電圧値の絶対値に関わらず電池のSOCを決定しているので、大きな誤差を含んだ推定インピーダンス電圧値を用いてSOCVを算出した場合にもSOCVを採用してしまうことで、正確なSOCにならないという問題があった。
 また、例えば特許文献2に開示された電池充電率算出装置では、電池の実測温度と実測電流値の測定精度が悪い場合、大きな誤差を含んだ推定インピーダンス電圧値を用いてSOCVを算出した場合にもSOCVを採用してしまうことで、正確なSOCにならないという問題があった。
 このように従来の電池充電率算出装置は、推定インピーダンス電圧値に含まれる誤差が小さくなったことを判断していなかったため、正確なSOCVが算出されたことを判断することができなかった。
 本発明は、前記の諸点に鑑みてなされたものであり、正確なSOCを算出する電池充電率算出装置を提供することを目的とする。
 本発明は、上記の課題を解決するためになされたものであり、電圧データに基づいて算出した第1の充電率を出力する第1の充電率算出部と、電流データに基づいて算出した第2の充電率を出力する第2の充電率算出部と、有効充電率と、温度データと、電流データと、に基づいてインピーダンス電圧値を算出するインピーダンス電圧算出部と、前記インピーダンス電圧値が所定の閾値で区別される範囲に所定の時間以上静定したことを判定し、当該判定結果を出力する静定判定部と、前記判定結果に基づいて、前記インピーダンス電圧値が静定した場合に、前記第1の充電率を前記有効充電率として出力し、それ以外の場合に、前記第2の充電率を前記有効充電率として出力する充電率決定部と、を備える電池充電率算出装置である。
 本発明の電池充電率算出装置においては、前記第2の充電率算出部が、前記第1の充電率を初期値として、または前値ホールドされた前記有効充電率を初期値として電流データを積分し、前記第2の充電率を算出してもよい。
 本発明の電池充電率算出装置においては、前記静定判定部が、前記インピーダンス電圧値が静定している時間を計測し、前記静定時間が所定の時間以上となった場合に、前記インピーダンス電圧値が静定したと判定してもよい。
 本発明の電池充電率算出装置においては、前記第1の充電率算出部が、前記電圧データと、前記インピーダンス電圧値と、に基づいた開放電圧値から前記第1の充電率を算出してもよい。
 本発明の電池充電率算出装置においては、前記充電率決定部が、前記第1の充電率と、前記第2の充電率と、の差が所定の閾値以上となった場合に、前記第1の充電率を前記有効充電率として出力してもよい。
 本発明の電池充電率算出装置においては、前記インピーダンス電圧算出部が、有効充電率と、電流データと、温度データと、に基づいてインピーダンス電圧値を算出してもよい。
 本発明によれば、電池充電率算出装置が、推定インピーダンス電圧値が静定したことを判断し、誤差が蓄積したSOCIの代わりに、誤差が小さくなった推定インピーダンス電圧値に基づくSOCVをSOCとして採用するので、正確なSOCを得ることができる。
 また、電池充電率算出装置がSOCを正確に算出するので、電池の過充放電を防止することができる。さらに、SOCとサイクル寿命に因果関係のある二次電池においては、電池充電率算出装置が電池のサイクル寿命を向上させることができる。
本発明の第1の実施形態による電池充電率算出装置の構成を示した図である。 本発明の第2の実施形態による電池充電率算出装置の構成を示した図である。
  [第1の実施の形態]
 本発明を実施するための第1の実施形態について説明する。図1は、本発明の第1の実施形態による電池充電率算出装置の構成を示した図である。図1において、当該電池充電率算出装置100は、温度測定部1と、電圧測定部2と、電流測定部3と、SOCV算出部5と、SOCI算出部6と、静定判定部7と、電池インピーダンスモデル部10と、SOC決定部20と、を備える。
 温度測定部1は、二次電池(不図示)の温度を測定し、温度データを所定の周期で出力する。電圧測定部2は、二次電池(不図示)の電圧を測定し、電圧データを所定の周期で出力する。電流測定部3は、二次電池(不図示)から出力される電流を測定し、電流データを所定の周期で出力する。
 電池インピーダンスモデル部10は、後述するSOC決定部20の切替部23から出力されるSOCデータ(有効充電率)と、温度データと、に基づいて推定インピーダンス電圧データを出力する。電池インピーダンスモデル部10は、推定インピーダンス変換部11と、推定インピーダンス電圧算出部12と、を備える。
 推定インピーダンス変換部11は、SOCデータと温度データに基づいて変換表(不図示)から推定インピーダンスを選択し、推定インピーダンスデータを出力する。ここで変換表(不図示)は、SOCデータと温度データと推定インピーダンスとの関係が予め実測されることによって作成されているものとする。推定インピーダンス電圧算出部12は、推定インピーダンスデータと電流データとを乗算することで推定インピーダンス電圧値を算出し、推定インピーダンス電圧データとして所定の周期で出力する。
 SOCV算出部5は、温度データと電圧データに基づいてSOCVを算出し、得られたSOCVをSOCVデータとして出力する。ここでSOCV算出部5には、電圧測定部2から電圧データが入力される。
 SOCI算出部6は、後述するSOC決定部20の切替部23から出力されるSOCデータに、電流データの積分値を加算することでSOCIを算出する。ここで、切替部23からSOCデータとしてSOCVデータが出力された場合、SOCIはSOCVデータでリセットされる。すなわちSOCI算出部6は、リセットしたSOCIに電流データの積分値を加算し、得られたSOCIをSOCIデータとして出力する。
 静定判定部7は、推定インピーダンス電圧データを所定の周期で取得し、推定インピーダンス電圧値が所定の閾値で区別される範囲に収まっている時間(以下、静定時間と称する)を計測する。ここで所定の閾値の絶対値は、充分に小さいものとする。したがって、推定インピーダンス電圧値の絶対値が充分に小さい場合、推定インピーダンス電圧値に含まれる誤差も小さい。また、推定インピーダンス電圧値に含まれる誤差が小さい場合、電圧データは推定開放電圧値とほぼ等しいものとする。
 推定インピーダンス電圧値が所定の閾値で区別される範囲外にある場合、静定判定部7は、静定時間の計測結果を値「0」にリセットする。また、推定インピーダンス電圧値がその所定の閾値で区別される範囲外から範囲内になった場合、静定判定部7は、静定時間の計測を再開する。静定判定部7は、静定時間が所定の時間以上となった場合に、推定インピーダンス電圧値が静定したことを示す静定信号を出力し、それ以外では静定信号を出力しない。
 SOC決定部20は、後述する手順でSOCを有効にし、SOCデータを出力する。SOC決定部20は、差分検出部21と、切替判定部22と、切替部23と、を備える。差分検出部21は、SOCVデータとSOCIデータを取得し、SOCVデータとSOCIデータとの差をSOC差分データとして算出する。差分検出部21は、SOCV算出部5からSOCVデータが出力されたことを、切替判定部22に通知する。
 差分検出部21は、SOC差分データの絶対値が所定の範囲以上である場合に差分判定信号を出力し、それ以外では差分判定信号を出力しない。ここで、この所定の範囲を値「0」とすることで、差分検出部21は差分判定信号を常に出力し続ける、としてもよい。この場合、後述する切替判定部22は、静定信号が入力されると常にSOC切替信号を出力する。
 SOCV算出部5からSOCVデータが出力されたことを差分検出部21から通知されるまで、切替判定部22はSOC切替信号を出力する。通知された以降、静定信号と差分判定信号の両方が入力されている場合、切替判定部22はSOC切替信号を出力する。それ以外の場合、切替判定部22はSOC切替信号を出力しない。
 切替部23は、SOCV算出部5からSOCVデータと、SOCI算出部6からSOCIデータと、切替判定部22からSOC切替信号と、を取得する。SOC切替信号が入力された場合、切替部23はSOCV算出部5から入力されたSOCVデータをSOCデータ(有効充電率)として出力する。それ以外の場合、切替部23はSOCI算出部6から入力されたSOCIデータをSOCデータ(有効充電率)として出力する。
 次に、電池充電率算出装置100の動作を説明する。温度測定部1は、二次電池(不図示)の温度を測定し、温度データを出力する。電圧測定部2は、二次電池(不図示)の電圧を測定し、電圧データを出力する。電流測定部3は、二次電池(不図示)から出力される電流を測定し、電流データを出力する。
 また、SOCV算出部5は、温度データと電圧データに基づいてSOCVを算出し、差分検出部21と、切替部23と、にSOCVデータを出力する。
 一方、切替判定部22は、SOCV算出部5からSOCVデータが出力されたことを差分検出部21から通知されていないので、SOC切替信号を出力する。切替部23は、SOC切替信号が入力されているため、SOCV算出部5から入力されたSOCVデータをSOCI算出部6と推定インピーダンス変換部11とに出力する。
 次に、差分検出部21は、SOCV算出部5からSOCVデータが出力されたことを切替判定部22に通知する。このため、切替判定部22はSOC切替信号の出力を停止する。SOCI算出部6は、初期値として取得したSOCデータに電流データの積分値を加算し、SOCIを算出する。またSOCI算出部6は、得られたSOCIをSOCIデータとして差分検出部21と切替部23に出力する。
 SOCIデータがSOCVデータで初期化されたことにより、SOC差分データは値「0」となるため、差分検出部21は差分判定信号を出力しない。したがって切替部23は、SOCI算出部6と推定インピーダンス変換部11に、SOCデータとしてSOCIデータを出力する。
 次に、推定インピーダンス変換部11は、切替部23から入力されたSOCデータと、温度測定部1から入力された温度データと、に基づいて変換表(不図示)から推定インピーダンスを選択し、推定インピーダンスデータとして出力する。推定インピーダンス電圧算出部12は、推定インピーダンスデータと電流データを乗算して推定インピーダンス電圧値を算出し、推定インピーダンス電圧値を出力する。
 次に、静定判定部7は、推定インピーダンス電圧値を取得し、静定時間の計測を開始する。ここで、静定判定部7が静定時間の計測を開始した直後は、まだ静定時間が所定の時間以上となっていないので、静定判定部7は静定信号を出力しない。
 次に、電流値が積分されることでSOCIに誤差が蓄積され、SOC差分データの絶対値が所定の範囲以上になったとする。このため差分検出部21は、差分判定信号を出力する。一方、静定時間は所定の時間以上になっていないものとする。このため、切替判定部22はSOC切替信号を出力しない。
 次に、静定時間が所定の時間以上になったとする。このため静定判定部7は静定信号を出力する。静定信号と差分判定信号の両方が入力されるようになったので、切替判定部22はSOC切替信号を出力する。また切替部23は、SOCデータとしてSOCVデータを出力する。このため、SOCIはSOCデータであるSOCVデータでリセットされる。SOCI算出部6は、得られたSOCIをSOCIデータとして差分検出部21と切替部23に出力する。
 次に、差分検出部21は、SOCVデータとSOCIデータを取得し、SOCVデータとSOCIデータとの差として、SOC差分データを算出する。ここで、SOCIデータがSOCVデータで初期化されているため、SOC差分データは値「0」である。このため、差分検出部21は差分判定信号を出力しない。したがって切替部23は、SOCI算出部6と推定インピーダンス変換部11に、SOCデータとしてSOCIデータを出力する。
 次に、説明のため、推定インピーダンス電圧値が所定の閾値で区別される範囲外になったとする。このため静定判定部7は、静定信号の出力を停止し、静定時間の計測結果を値「0」にリセットする。さらに、推定インピーダンス電圧値がその所定の閾値で区別される範囲外から再び範囲内になったとする。このため静定判定部7は、静定時間の計測を再開する。以降は各ブロックが前述の動作を繰り返すことにより、SOC決定部20はSOCを決定し、SOCデータを出力する。
 以上、本発明の第1の実施形態により、電池充電率算出装置100が、推定インピーダンス電圧値が静定したことを判断し、誤差が蓄積したSOCIの代わりに、誤差が小さくなった推定インピーダンス電圧値に基づくSOCVをSOCとして採用するので、正確なSOCを得ることができる。
 [第2の実施の形態]
 本発明を実施するための第2の実施形態について説明する。図2は、本発明の第2の実施形態による電池充電率算出装置の構成を示した図である。図2において、当該電池充電率算出装置100は、第1の実施形態による電池充電率算出装置100の構成に加え、推定開放電圧算出部4を備える。
 推定開放電圧算出部4は、電圧データと推定インピーダンス電圧値を取得し、推定インピーダンス電圧値を電圧データから減算することで、推定開放電圧値を算出する。推定開放電圧算出部4は、推定開放電圧値をSOCV算出部5に出力する。SOCV算出部5は、推定開放電圧算出部4から電圧データの代わりに推定開放電圧値を取得する。
 SOCV算出部5は、温度データと推定開放電圧値に基づいてSOCVを算出し、算出差分検出部21と切替部23に、得られたSOCVをSOCVデータとして出力する。
 推定開放電圧算出部4が追加されているため、第1に実施形態と比較して第2の実施形態は構成が複雑となるが、第2の実施形態のSOCV算出部5は、推定インピーダンス電圧値が考慮された推定開放電圧値に基づいてSOCVを算出するので、第1の実施形態よりも精度よくSOCVを算出することができる。このため、電池充電率算出装置100は、さらに正確なSOCを得ることができる。
 以上、本発明の実施の形態により、電池充電率算出装置100が、推定インピーダンス電圧値が静定したことを判断し、誤差が蓄積したSOCIの代わりに、誤差が小さくなった推定インピーダンス電圧値に基づくSOCVをSOCとして採用するので、正確なSOCを得ることができる。
 また、電池充電率算出装置がSOCを正確に算出するので、電池の過充放電を防止することができる。さらに、SOCとサイクル寿命に因果関係のある二次電池においては、電池充電率算出装置が電池のサイクル寿命を向上させることができる。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 例えば、SOCI算出部6はSOCIデータを前値ホールドし、前回のSOCIデータを初期値として電流データを積分することで算出したSOCIをSOCIデータとして出力する、としてもよい。また静定判定部7は、静定時間が所定の時間以上となった場合に、静定信号としてデータ「静定」を出力し、それ以外ではデータ「未静定」を出力する、としてもよい。
 また例えば、差分検出部21は、SOC差分データの絶対値が所定の閾値以上である場合に差分判定信号としてデータ「範囲外」を出力し、それ以外ではデータ「範囲内」を出力する、としてもよい。また切替判定部22は、差分判定信号がデータ「範囲外」で、かつ静定信号がデータ「静定」である場合にのみ、SOC切替信号を出力するとしてもよい。さらに、推定インピーダンス変換部11はSOCデータを前値ホールドし、前回入力されたSOCデータを初期値として推定インピーダンスを選択する、としてもよい。
 また、本発明に記載の電池充電率算出装置は、電池充電率算出装置100に対応し、第1の充電率算出部は、SOCV算出部5に対応し、第2の充電率算出部は、SOCI算出部6に対応し、インピーダンス電圧算出部は、電池インピーダンスモデル部10と、推定インピーダンス変換部11と、推定インピーダンス算出部12と、に対応し、静定判定部は、静定判定部7に対応し、充電率決定部は、SOC決定部20と、差分検出部21と、切替判定部22と、切替部23と、に対応にする。
 上述した実施形態によれば、電池充電率算出装置100が、推定インピーダンス電圧値が静定したことを判断し、誤差が蓄積したSOCIの代わりに、誤差が小さくなった推定インピーダンス電圧値に基づくSOCVをSOCとして採用するので、正確なSOCを得ることができる。本発明は、電池充電率算出装置に好適である。
 1 温度測定部
 2 電圧測定部
 3 電流測定部
 4 推定開放電圧算出部
 5 SOCV算出部
 6 SOCI算出部
 7 静定判定部
 10 電池インピーダンスモデル部
 11 推定インピーダンス変換部
 12 推定インピーダンス算出部
 20 SOC決定部
 21 差分検出部
 22 切替判定部
 23 切替部
 100 電池充電率算出装置

Claims (6)

  1.  電圧データに基づいて算出した第1の充電率を出力する第1の充電率算出部と、
     電流データに基づいて算出した第2の充電率を出力する第2の充電率算出部と、
     有効充電率と、電流データと、に基づいてインピーダンス電圧値を算出するインピーダンス電圧算出部と、
     前記インピーダンス電圧値が所定の閾値で区別される範囲に所定の時間以上静定したことを判定し、当該判定結果を出力する静定判定部と、
     前記判定結果に基づいて、前記インピーダンス電圧値が静定した場合に、前記第1の充電率を前記有効充電率として出力し、それ以外の場合に、前記第2の充電率を前記有効充電率として出力する充電率決定部と、
     を備える電池充電率算出装置。
  2.  前記第2の充電率算出部は、前記第1の充電率を初期値として、または前値ホールドされた前記有効充電率を初期値として電流データを積分し、前記第2の充電率を算出する請求項1に記載の電池充電率算出装置。
  3.  前記静定判定部は、前記インピーダンス電圧値が静定している時間を計測し、前記静定時間が所定の時間以上となった場合に、前記インピーダンス電圧値が静定したと判定する請求項1から請求項2のいずれか1つに記載の電池充電率算出装置。
  4.  前記第1の充電率算出部は、前記電圧データと、前記インピーダンス電圧値と、に基づいた開放電圧値から前記第1の充電率を算出する請求項1から請求項3のいずれか1つに記載の電池充電率算出装置。
  5.  前記充電率決定部は、前記第1の充電率と、前記第2の充電率と、の差が所定の閾値以上となった場合に、前記第1の充電率を前記有効充電率として出力する請求項1から請求項4のいずれか1つに記載の電池充電率算出装置。
  6.  前記インピーダンス電圧算出部は、有効充電率と、電流データと、温度データと、に基づいてインピーダンス電圧値を算出する請求項1から請求項5のいずれか1つに記載の電池充電率算出装置。
PCT/JP2009/060155 2009-06-03 2009-06-03 電池充電率算出装置 WO2010140233A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020117030024A KR101267213B1 (ko) 2009-06-03 2009-06-03 전지 충전율 산출 장치
US13/375,642 US8994334B2 (en) 2009-06-03 2009-06-03 Battery state-of-charge calculation device
EP09845518.1A EP2439550B1 (en) 2009-06-03 2009-06-03 Battery state of charge calculation device
PCT/JP2009/060155 WO2010140233A1 (ja) 2009-06-03 2009-06-03 電池充電率算出装置
CN200980159607.1A CN102449495B (zh) 2009-06-03 2009-06-03 电池充电率计算装置
JP2011518125A JP5255119B2 (ja) 2009-06-03 2009-06-03 電池充電率算出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/060155 WO2010140233A1 (ja) 2009-06-03 2009-06-03 電池充電率算出装置

Publications (1)

Publication Number Publication Date
WO2010140233A1 true WO2010140233A1 (ja) 2010-12-09

Family

ID=43297380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060155 WO2010140233A1 (ja) 2009-06-03 2009-06-03 電池充電率算出装置

Country Status (6)

Country Link
US (1) US8994334B2 (ja)
EP (1) EP2439550B1 (ja)
JP (1) JP5255119B2 (ja)
KR (1) KR101267213B1 (ja)
CN (1) CN102449495B (ja)
WO (1) WO2010140233A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149948A (ja) * 2011-01-18 2012-08-09 Calsonic Kansei Corp バッテリの充電率推定装置
WO2017094432A1 (ja) * 2015-12-01 2017-06-08 オムロン株式会社 バッテリ残量推定システムおよびバッテリ残量推定方法
US10518640B2 (en) 2015-11-17 2019-12-31 Omron Corporation Battery remaining capacity display device, battery system, and battery remaining capacity display method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102066964B (zh) 2009-07-23 2015-08-05 德克萨斯仪器股份有限公司 用于确定蓄电池充电状态的***和方法
EP2860539B1 (en) * 2012-06-05 2018-11-28 Kabushiki Kaisha Toyota Jidoshokki State-of-charge estimation method and state-of-charge estimation device
KR101547006B1 (ko) * 2012-10-26 2015-08-24 주식회사 엘지화학 배터리 잔존 용량 추정 장치 및 방법
CN103499794B (zh) * 2013-10-14 2016-05-11 北京华电天仁电力控制技术有限公司 一种储能电池剩余容量估算方法及装置
JP2016220450A (ja) * 2015-05-22 2016-12-22 三菱重工業株式会社 電源制御装置、電源システム、電源制御方法およびプログラム
US20190094305A1 (en) * 2016-04-18 2019-03-28 Sumitomo Electric Industries, Ltd. Amount of charge calculation device, recording medium, and amount of charge calculation method
KR102515606B1 (ko) * 2017-10-31 2023-03-28 삼성에스디아이 주식회사 배터리 충전량 표시 방법 및 이를 수행하는 배터리 팩 및 전자 기기
CN110687468B (zh) * 2018-06-19 2021-01-15 华为技术有限公司 一种电池荷电状态的估计方法及装置
US11345254B2 (en) * 2019-12-19 2022-05-31 Ford Global Technologies, Llc EKF state relay strategy in battery online identification
CN113864133B (zh) * 2020-06-30 2022-11-15 北京金风科创风电设备有限公司 超级电容器的电容特性检测方法、装置以及变桨***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058114A (ja) 2004-08-19 2006-03-02 Toyota Motor Corp 制御システムおよび推定システムならびにそれを用いた電池の残存容量推定システムおよび残存容量推定方法
JP3767150B2 (ja) 1998-01-09 2006-04-19 日産自動車株式会社 電池の残存容量検出装置
WO2008026476A1 (fr) * 2006-08-29 2008-03-06 Nec Corporation Procédé et dispositif pour estimer une valeur d'état de charge de batterie secondaire et procédé et dispositif de jugement de dégradation

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539640A1 (en) * 1991-10-30 1993-05-05 Texas Instruments Limited Improvements in or relating to batteries
US6167309A (en) * 1997-09-15 2000-12-26 Cardiac Pacemakers, Inc. Method for monitoring end of life for battery
US5869950A (en) * 1997-10-30 1999-02-09 Lockheed Martin Corp. Method for equalizing the voltage of traction battery modules of a hybrid electric vehicle
KR100395516B1 (ko) * 1998-11-19 2003-12-18 금호석유화학 주식회사 비선형등가회로모형을이용한축전장치의특성인자수치화방법및장치
JP2000209788A (ja) * 1999-01-11 2000-07-28 Sony Corp 充電装置
US6366056B1 (en) * 1999-06-08 2002-04-02 Enrev Corporation Battery charger for lithium based batteries
TW535308B (en) 2000-05-23 2003-06-01 Canon Kk Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detecting method, and instrument provided with said
US6522102B1 (en) 2001-12-14 2003-02-18 Zinc Matrix Power, Inc. Multiple plateau battery charging method and system to charge to the second plateau
US6943529B2 (en) 2001-12-16 2005-09-13 Zinc Matrix Power, Inc. Battery charging system
JP4157317B2 (ja) * 2002-04-10 2008-10-01 株式会社日立製作所 状態検知装置及びこれを用いた各種装置
JP4130425B2 (ja) * 2003-07-29 2008-08-06 パナソニックEvエナジー株式会社 二次電池の充放電電気量推定方法および装置、二次電池の分極電圧推定方法および装置、並びに二次電池の残存容量推定方法および装置
JP4075762B2 (ja) 2003-10-10 2008-04-16 トヨタ自動車株式会社 二次電池における残存容量の算出装置および算出方法
EP1820039A1 (fr) * 2004-11-30 2007-08-22 Renault Trucks Procede d'evaluation de l'etat de charge d'une batterie electrique
GB0502274D0 (en) * 2005-02-04 2005-03-09 Xipower Ltd Battery management system
JP4767558B2 (ja) * 2005-03-07 2011-09-07 日立ビークルエナジー株式会社 電源装置用状態検知装置,電源装置及び電源装置に用いられる初期特性抽出装置
JP4571000B2 (ja) * 2005-03-29 2010-10-27 富士重工業株式会社 蓄電デバイスの残存容量演算装置
KR100793616B1 (ko) * 2005-06-13 2008-01-10 주식회사 엘지화학 배터리 잔존량 추정 장치 및 방법
JP4830382B2 (ja) 2005-07-19 2011-12-07 日産自動車株式会社 二次電池の充電率推定装置
WO2007032382A1 (ja) * 2005-09-16 2007-03-22 The Furukawa Electric Co., Ltd 二次電池劣化判定方法、二次電池劣化判定装置、及び電源システム
JP4532416B2 (ja) * 2006-01-12 2010-08-25 古河電気工業株式会社 バッテリ放電能力判定方法、バッテリ放電能力判定装置、及び電源システム
JP4690223B2 (ja) * 2006-02-24 2011-06-01 株式会社デンソー バッテリの状態量演算装置
EP2012134A4 (en) * 2006-04-25 2013-03-13 Nippon Telegraph & Telephone DEVICE AND METHOD FOR DETERMINING THE CHANGE OF A MEMORY BATTERY
ATE553394T1 (de) * 2006-08-22 2012-04-15 Delphi Tech Inc Batterieüberwachungssystem

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767150B2 (ja) 1998-01-09 2006-04-19 日産自動車株式会社 電池の残存容量検出装置
JP2006058114A (ja) 2004-08-19 2006-03-02 Toyota Motor Corp 制御システムおよび推定システムならびにそれを用いた電池の残存容量推定システムおよび残存容量推定方法
WO2008026476A1 (fr) * 2006-08-29 2008-03-06 Nec Corporation Procédé et dispositif pour estimer une valeur d'état de charge de batterie secondaire et procédé et dispositif de jugement de dégradation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2439550A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149948A (ja) * 2011-01-18 2012-08-09 Calsonic Kansei Corp バッテリの充電率推定装置
US10518640B2 (en) 2015-11-17 2019-12-31 Omron Corporation Battery remaining capacity display device, battery system, and battery remaining capacity display method
WO2017094432A1 (ja) * 2015-12-01 2017-06-08 オムロン株式会社 バッテリ残量推定システムおよびバッテリ残量推定方法
JP2017103898A (ja) * 2015-12-01 2017-06-08 オムロン株式会社 バッテリ残量推定システムおよびバッテリ残量推定方法
US10684328B2 (en) 2015-12-01 2020-06-16 Omron Corporation Remaining battery charge estimation system and remaining battery charge estimation method

Also Published As

Publication number Publication date
US20120086405A1 (en) 2012-04-12
CN102449495B (zh) 2014-12-31
EP2439550A1 (en) 2012-04-11
KR20120024777A (ko) 2012-03-14
JP5255119B2 (ja) 2013-08-07
KR101267213B1 (ko) 2013-05-24
EP2439550B1 (en) 2017-08-23
EP2439550A4 (en) 2014-07-16
US8994334B2 (en) 2015-03-31
CN102449495A (zh) 2012-05-09
JPWO2010140233A1 (ja) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5255119B2 (ja) 電池充電率算出装置
JP6823162B2 (ja) バッテリーの充電状態をキャリブレーションするためのバッテリー管理装置及び方法
EP2700966B1 (en) Apparatus and method for estimating battery state
JP6119402B2 (ja) 内部抵抗推定装置及び内部抵抗推定方法
JP5960063B2 (ja) 電池の満充電容量検出方法
US7800345B2 (en) Battery management system and method of operating same
JP5393956B2 (ja) 電池の満充電容量検出方法
JP2008241358A (ja) 電池の満充電容量検出方法
JP5287844B2 (ja) 二次電池の残存容量演算装置
KR101983392B1 (ko) 배터리 충전 상태 추정 장치 및 그 방법
JP6138757B2 (ja) 電池パックおよび電池パックの電力量算出方法
JPWO2011004550A1 (ja) サイクル数計数回路、電池パック、及び電池システム
JP2010223768A (ja) 電池異常検出回路、及び電源装置
JP4997358B2 (ja) 満充電容量補正回路、充電システム、電池パック、及び満充電容量補正方法
JP6958965B2 (ja) バッテリーsoc推定装置及び方法
KR20140052839A (ko) 축전 상태 검출 장치
JP2011069782A (ja) 電圧監視回路、及び電池電源装置
WO2017085869A1 (ja) 容量維持率推定装置又は容量維持率推定方法
KR100836391B1 (ko) 하이브리드 전기자동차용 배터리의 잔존용량 추정방법
US20110311850A1 (en) Secondary battery device
WO2010140230A1 (ja) 電池充電率算出装置
JP2006177764A (ja) 電池の学習容量補正方法
JP4686140B2 (ja) バッテリ充電状態演算装置
JP2011130528A (ja) 充電電気量算出回路、電池パック、及び電池搭載システム
JP2003051341A (ja) 電池の残容量計

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159607.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845518

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011518125

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13375642

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009845518

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009845518

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117030024

Country of ref document: KR

Kind code of ref document: A