WO2010134160A1 - 熱交換器及びその製造方法 - Google Patents

熱交換器及びその製造方法 Download PDF

Info

Publication number
WO2010134160A1
WO2010134160A1 PCT/JP2009/059180 JP2009059180W WO2010134160A1 WO 2010134160 A1 WO2010134160 A1 WO 2010134160A1 JP 2009059180 W JP2009059180 W JP 2009059180W WO 2010134160 A1 WO2010134160 A1 WO 2010134160A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
fins
heat exchanger
base
frame
Prior art date
Application number
PCT/JP2009/059180
Other languages
English (en)
French (fr)
Inventor
正裕 森野
靖治 竹綱
栄作 垣内
悠也 高野
柴田 義範
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/258,204 priority Critical patent/US20120006523A1/en
Priority to EP09844894.7A priority patent/EP2434543B1/en
Priority to CN200980159471.4A priority patent/CN102439715B/zh
Priority to JP2011514240A priority patent/JP5263392B2/ja
Priority to PCT/JP2009/059180 priority patent/WO2010134160A1/ja
Publication of WO2010134160A1 publication Critical patent/WO2010134160A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/14Making other products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/22Making finned or ribbed tubes by fixing strip or like material to tubes
    • B21C37/225Making finned or ribbed tubes by fixing strip or like material to tubes longitudinally-ribbed tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4878Mechanical treatment, e.g. deforming
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components
    • H05K7/20918Forced ventilation, e.g. on heat dissipaters coupled to components the components being isolated from air flow, e.g. hollow heat sinks, wind tunnels or funnels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/16Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat exchanger that cools a heating element such as a semiconductor element by a refrigerant flowing inside the heat exchanger, and a manufacturing method thereof.
  • An inverter device having a power conversion function is used as a power source for a hybrid vehicle or the like.
  • the inverter device includes a plurality of semiconductor elements as switching elements. Since the semiconductor element of this inverter device generates heat with power conversion or the like, it must be actively cooled.
  • a heat exchanger for cooling a heating element such as a semiconductor element for example, by arranging a plurality of linearly extending fins in parallel inside the frame forming the outer frame, the flow path of the refrigerant is set. What was formed is known (for example, refer to Patent Document 1).
  • a heat exchanger (see FIG. 28) has been developed in which a fin member integrally formed by extrusion molding is disposed inside a frame forming an outer frame.
  • the semiconductor element 71 as a heating element is disposed on the outer surface of the first frame member 531 of the frame 530 with the insulating plate 60 interposed therebetween.
  • a coolant for example, water
  • the fin member 520 includes a flat base 521 and a plurality of fins 522 protruding from the back surface 521c (one side) of the base 521. These fins 522 have a flat plate shape extending in the fin extending direction (direction orthogonal to the paper surface in FIG. 28) along the extrusion direction of extrusion molding, and the fin arrangement direction orthogonal to the fin extending direction (left and right direction in FIG. 28). Are arranged in a row with a gap in between.
  • the fin member 520 welds (for example, brazes) the entire surface 521b (surface on which the fins 522 are not disposed) of the base 521 to the first frame member 531 of the frame 530.
  • the gas generated during welding is difficult to be discharged from the welded portion to the outside.
  • gas remains in the welded portion 580 even after welding, which may cause a void 581 (void). Since the void 581 hinders heat conduction from the first frame member 531 to the fin member 520, sufficient cooling performance may not be obtained.
  • the protruding height of the fin it is preferable to increase the protruding height of the fin.
  • increasing the protrusion height H of the fin 522 like the fin member 520 reduces the strength of the extrusion mold for forming the fin member (specifically, the portion of the extrusion mold where the fin is formed is reduced). Since it becomes elongated, the strength of this part is reduced). For this reason, the extrusion mold may be deformed at the time of extrusion molding, and the moldability of the fin member may be reduced. Furthermore, the extrusion mold may be damaged during extrusion.
  • the fin member immediately after the extrusion molding has a high temperature (for example, about 600 ° C.), it is cooled with cooling water or the like.
  • the fin member 520 the fin 522 is easily cooled and the base 521 is not easily cooled. Due to the difference in ease of cooling, the fin member 520 may be warped (curved) as shown in FIG.
  • the present invention has been made in view of the present situation, and has a fin member that has good moldability by extrusion molding and is prevented from being warped (curved), and has a void in a welded portion between the fin member and the frame. It aims at providing the heat exchanger by which generation
  • One embodiment of the present invention is a heat exchanger in which a fin member including a plurality of fins that form a refrigerant flow path is disposed inside a frame that forms an outer frame.
  • the fin member is integrally formed by extrusion molding.
  • a fin member having a rectangular flat plate shape and a fin protruding from a surface of the base, the fin extending in a fin extending direction along an extruding direction of the extrusion, the fin extending A plurality of front surface side fins arranged in a row at intervals in the fin arrangement direction orthogonal to the direction, and the fins protruding from the back surface of the base, the plate extending in the fin extending direction, the fins A plurality of backside fins arranged in a row with a gap in the arrangement direction, and without welding the front surface and the back surface of the base to the frame,
  • One tip least one of the serial front side fins and the back side fins is a heat exchanger formed by welding.
  • the fin member integrally formed by extrusion molding has a rectangular flat plate-shaped base, a plurality of front surface side fins protruding from the surface of the base, and a rear surface side fin protruding from the back surface of the base.
  • a fin member is used.
  • the moldability by extrusion molding is improved as compared with the fin member 520 (see FIG. 28) in which the fins 522 protrude from only the back surface 521c (one side) of the base 521.
  • the reason is that the total height of protrusions from the bases of the front surface side fin and the back surface side fin is made equal to the protrusion height H of the fins 522 (assuming that the fin thickness is equal), thereby improving the cooling performance by the fin member.
  • the protrusion heights of the front-side fins and the back-side fins can be made lower than the protrusion height H of the fins 522 while they can be made equal.
  • strength of an extrusion mold (specifically the part which shape
  • the fin member 520 ( Compared with FIG. 30), generation
  • fins surface side fins and back surface side fins that are easy to cool are arranged on both sides (surface side and back surface side) of the base that is difficult to cool.
  • the fin member described above is a fin member in which warpage (curving) is suppressed.
  • the front and back surfaces of the base are not welded to the frame, and at least one of the front-side fins and the back-side fins is welded.
  • the welding surface (welded portion) can be made extremely small.
  • the above-described heat exchanger is a heat exchanger in which generation of voids at the welded portion between the fin member and the frame is suppressed.
  • the insulating plate 60 is welded (for example, brazed) to the outer surface of the first frame member 531 of the frame 530.
  • the frame 530 is formed using a material having high thermal conductivity (for example, aluminum), and the insulating plate 60 is formed using a material having electrical insulation (for example, ceramic such as alumina). Therefore, the coefficient of linear expansion differs greatly between the frame 530 (first frame member 531) and the insulating plate 60.
  • the front and back surfaces of the base are not welded to the frame, and at least one of the front-end fins and the back-side fins is welded.
  • welding includes brazing using a brazing material, soldering using solder, a method of melting and joining a base material (member to be joined), and joining by heating and melting. How to do.
  • the plurality of fin members having the same shape have a gap in the flow direction of the refrigerant along the fin extending direction with the fin extending directions directed in the same direction.
  • the fins adjacent to each other in the fin extending direction are arranged such that the arrangement interval of the front surface side fins and the arrangement interval of the back surface side fins in the fin arrangement direction are equal and constant.
  • the fins on the front surface side of the member are arranged so as to be shifted in the fin arrangement direction by half the arrangement interval, and the fins on the back surface of the fin member adjacent to the fin extending direction are arranged in the fin arrangement by half the arrangement interval. It is preferable to use a heat exchanger that is displaced in the direction.
  • the heat-collected fins mainly exchange heat only with the refrigerant in the boundary layer formed around the fins, and heat exchange with the refrigerant flowing in the region other than the boundary layer is performed. Almost never done. As a result, there is a problem that heat cannot be effectively exchanged with the refrigerant flowing inside the heat exchanger, and a high cooling effect cannot be obtained.
  • the fins on the surface side of the fin member adjacent to the fin extension direction are arranged so as to be shifted by half in the fin arrangement direction.
  • the surface side fins of the fin members adjacent in the fin extension direction are offset in the fin arrangement direction.
  • the fins on the back side of the fin members adjacent to each other in the fin extending direction are also displaced in the fin arrangement direction by half of the arrangement interval. In other words, the fins on the back side of the fin members adjacent in the fin extension direction are also offset in the fin arrangement direction.
  • the refrigerant flowing through the flow path (for example, the flow path on the surface side of the fin member) is caused to collide with the upstream end face (for example, the upstream end face of the surface side fin) located on the downstream side,
  • Two flow paths (for example, two flow paths adjacent to each other in the fin arrangement direction with the front-side fins sandwiched) and the opposite side (for example, the back-face side) with the base sandwiched between the side fins or the back-side fins It can be divided into a flow path.
  • a turbulent flow is generated in the flow of the refrigerant, and the formation of the boundary layer can be effectively suppressed.
  • coolant which flows through the inside of a heat exchanger can be used effectively, and a high cooling effect can be acquired.
  • a plurality of fin members having the same shape have a gap in a flow direction of the refrigerant along the fin extending direction with the fin extending directions directed in the same direction.
  • the fin member has an arrangement interval of the front surface side fins and an arrangement interval of the back surface side fins in the fin arrangement direction that is equal and constant, and the front surface side fin and the back surface side fin Is a fin member that is displaced in the fin arrangement direction by half of the arrangement interval, and the plurality of fin members are arranged so that the directions of the front surface and the back surface of the base are alternately opposite to each other.
  • a heat exchanger arranged in the flow direction may be used.
  • a fin member in which the front side fin and the back side fin are arranged so as to be shifted in the fin arrangement direction by half the fin arrangement interval is used as the fin member. Further, these fin members are arranged in the refrigerant flow direction (fin extension direction) with the directions of the front surface and the back surface of the base alternately reversed. Thereby, the front surface side fin and back surface side fin of the fin member adjacent to a fin extension direction can be shifted and arranged in the fin arrangement direction by a half of the arrangement interval.
  • the refrigerant flowing through the flow path (for example, the flow path on the surface side of the fin member) is caused to collide with the upstream end face (for example, the upstream end face of the surface side fin) located on the downstream side,
  • Two flow paths (for example, two flow paths adjacent to each other in the fin arrangement direction with the front-side fins sandwiched) and the opposite side (for example, the back-face side) with the base sandwiched between the side fins or the back-side fins It can be divided into a flow path.
  • a turbulent flow is generated in the flow of the refrigerant, and the formation of the boundary layer can be effectively suppressed.
  • coolant which flows through the inside of a heat exchanger can be used effectively, and a high cooling effect can be acquired.
  • the back side fin does not exist at a position symmetrical to the front side fin with respect to the base, and further, the front side fin does not exist at a position symmetrical to the back side fin with respect to the base.
  • the refrigerant flowing through the flow path (for example, the flow path on the front surface side of the fin member) is downstream as compared with the heat exchanger using the fin member in which the back surface side fin exists at a position symmetrical to the front surface side fin.
  • the refrigerant When it collides with the upstream end surface of the fin member located on the side (for example, the upstream end surface of the front surface side fin), the refrigerant easily splits into the flow channel located on the opposite side (for example, the back surface side) across the base. Become. Thereby, the turbulent flow of the refrigerant can be promoted and the formation of the boundary layer can be further suppressed.
  • the plurality of fin members having the same shape are arranged in a row in the flow direction of the refrigerant along the fin extending direction with the fin extending directions facing each other in the same direction.
  • the plurality of front side fins have the same shape
  • the plurality of back side fins have the same shape
  • the projection height of the front side fin and the projection height of the back side fin are
  • the fin members are different fin members, and the plurality of fin members may be heat exchangers arranged in the refrigerant flow direction with the front and back surfaces of the base being alternately reversed.
  • the plurality of front surface side fins have the same shape
  • the plurality of back surface side fins have the same shape
  • the protrusion height of the front surface side fin and the protrusion height of the back surface side fin are different.
  • the member is used.
  • these fin members are arranged in the refrigerant flow direction (fin extension direction) with the directions of the front surface and the back surface of the base alternately reversed. Thereby, in the fin member adjacent to the fin extending direction, the base of the fin member can be offset (the base is shifted in a direction orthogonal to the surface of the base).
  • the refrigerant flowing in the flow path easily collides with the upstream end face of the base of the fin member located on the downstream side, and the refrigerant is divided into two flow paths located on the front side and the back side across the base. Easier to flow.
  • the turbulent flow of the refrigerant can be promoted and the formation of the boundary layer can be suppressed, the refrigerant flowing inside the heat exchanger can be effectively used to obtain a high cooling effect.
  • the fin member may be a heat exchanger in which the front side fin and the back side fin are symmetrical fin members with respect to the base.
  • a fin member in which the front side fin and the back side fin are symmetrical with respect to the base is used as the fin member.
  • the moldability by extrusion molding is particularly good as compared with the fin member 520 (see FIG. 28) in which the fins 522 protrude only from the back surface 521c (one side) of the base 521.
  • the reason is that the total height of protrusions from the bases of the front surface side fin and the back surface side fin is made equal to the protrusion height H of the fins 522 (assuming that the fin thickness is equal), thereby improving the cooling performance by the fin member.
  • each of the front surface side fin and the back surface side fin can be made half of the protrusion height H of the fin 522, while it can be made equivalent.
  • strength of an extrusion mold (specifically the part which shape
  • the fin member is extruded and cooled, the occurrence of warping (curving) can be prevented.
  • the front-side fin and the back-side fin having the same shape are arranged at symmetrical positions with respect to the base.
  • the ease of cooling of a fin member becomes equivalent by the surface side and the back surface side of a base, the curvature (curving) of a fin member can be prevented. Therefore, the fin member is a fin member that is prevented from warping (curving).
  • the plurality of fin members having the same shape are arranged in a row in the flow direction of the refrigerant along the fin extending direction with the fin extending directions facing each other in the same direction.
  • the fin member is a fin member in which the front surface side fin and the back surface side fin are inclined and protrude toward the same side in the fin arrangement direction, and the plurality of fin members are The front surface side fin and the back surface side fin are arranged in a direction inclined to the same side, and one end surface of the base in the fin arrangement direction is a flat inner wall surface of one side wall of the frame in the fin arrangement direction. It is preferable to use a heat exchanger that comes into contact.
  • the above-described heat exchanger is a heat exchanger in which a plurality of fin members having the same shape are arranged in a row in the flow direction of the refrigerant along the fin extending direction with the fin extending directions in the same direction.
  • the plurality of fin members are required to be arranged in a straight line in the refrigerant flow direction without being displaced in the fin arrangement direction (direction orthogonal to the refrigerant flow direction).
  • one end surface in the fin arrangement direction of the base is applied in the fin arrangement direction of the frame with respect to the plurality of fin members arranged in a row in the refrigerant flow direction along the fin extension direction. It is made to contact
  • coolant is arranged in a straight line along the flat inner wall face of the one side wall of a flame
  • the plurality of fin members are arranged in a straight line in the refrigerant flow direction without being displaced in the fin arrangement direction (direction orthogonal to the refrigerant flow direction).
  • abut on the flat inner wall surface of the one side wall of a frame concerning a fin arrangement direction is as follows.
  • frame while a front-end
  • the front side fin and the back side fin are compressed and deformed, and the base end portions (the base side portion and the opposite side portion of the tip portion) of the front side fin and the back side fin are placed on the front side in the fin arrangement direction.
  • a force for moving the fin and the back fin to the side opposite to the inclined side can be applied. Accordingly, the base is moved to the side opposite to the side where the front side fin and the rear side fin are inclined in the fin arrangement direction, and the fin arrangement direction of the base (specifically, the front side fin and the fin side in the fin arrangement direction).
  • a frame applied to one end surface on the side opposite to the side on which the back side fin is inclined) in the fin arrangement direction (specifically, on the side opposite to the side on which the front side fin and the back side fin are inclined in the fin arrangement direction). Can be brought into contact with the flat inner wall surface of one side wall.
  • a heat exchanger manufacturing method in which a fin member including a plurality of fins forming a refrigerant flow path is disposed inside a frame forming an outer frame, and the fin member is extruded.
  • the extrusion step includes a rectangular flat plate-like base and the fin protruding from the surface of the base, the flat plate extending in the fin extension direction along the extrusion direction of the extrusion A plurality of front surface side fins arranged in a row with a gap in the fin arrangement direction perpendicular to the fin extending direction, and the fins protruding from the back surface of the base.
  • the joining step includes heat for welding at least one of the front-side fins and the back-side fins without welding the front surface and the back surface of the base to the frame. It is a manufacturing method of an exchanger.
  • a fin member having a flat base, a plurality of surface side fins protruding from the surface of the base, and a back surface side fin protruding from the back surface of the base is integrally formed by extrusion molding. Extruding the fin member in such a form has better formability than when extruding the fin member 520 (see FIG. 28) in which the fins 522 protrude from only the back surface 521c (one side) of the base 521. Can be. The reason is as described above. Furthermore, by forming the fin member as described above, when the fin member is extruded and cooled, the generation (curvature) of the warp can be suppressed as compared with the fin member 520 (see FIG. 30). it can. The reason is as described above.
  • the front end portion of at least one of the front surface side fin and the rear surface side fin is welded to the frame without welding the front surface and the back surface of the base.
  • the welding surface (welded portion) can be made extremely small.
  • the gas generated at the time of welding (for example, brazing) between the frame and the fin member is easily discharged from the welded portion, generation of voids (voids) in the welded portion between the fin member and the frame is suppressed. Can do. Thereby, the heat conduction from the frame to the fin member can be improved.
  • a welding method in the joining step for example, a method of brazing the frame and the fin member, a method of soldering the frame and the fin member, and a method of melting and joining the joint portion of the frame and the fin member ( Laser welding, electron beam welding, resistance welding, etc.).
  • the extrusion molding step includes a fin member in which the arrangement interval of the front surface side fins and the arrangement interval of the back surface side fins in the fin arrangement direction are equal and constant.
  • the plurality of fin members having the same shape are formed in a single piece by extrusion molding, with the fin extending direction in the same direction and a gap in the refrigerant flow direction along the fin extending direction. And disposing the surface side fins of the fin members adjacent to each other in the fin extending direction by shifting the fins in the fin arranging direction by a half of the arrangement interval. If the fins on the back side of the fin members adjacent to each other are arranged to be shifted in the fin arrangement direction by half the arrangement interval, There.
  • the fin-side direction of the fins on the surface side of the fin member adjacent in the fin extension direction is half the arrangement interval. It is arranged to shift to.
  • the surface side fins of the fin members adjacent in the fin extending direction are offset in the fin arrangement direction.
  • the fins on the back side of the fin members adjacent to each other in the fin extending direction are also shifted in the fin arrangement direction by half of the arrangement interval.
  • the back side fins of the fin members adjacent in the fin extension direction are also offset in the fin arrangement direction.
  • the refrigerant flowing through the flow path (for example, the flow path on the surface side of the fin member) is caused to collide with the upstream end face (for example, the upstream end face of the surface side fin) located on the downstream side,
  • Two flow paths (for example, two flow paths adjacent to each other in the fin arrangement direction with the front-side fins sandwiched) and the opposite side (for example, the back-face side) with the base sandwiched between the side fins or the back-side fins It can be divided into a flow path. For this reason, a turbulent flow can be generated in the flow of the refrigerant to effectively suppress the formation of the boundary layer.
  • coolant which flows through the inside of a heat exchanger can be used effectively, and a high cooling effect can be acquired.
  • the arrangement interval of the front side fins and the arrangement interval of the back side fins in the fin arrangement direction are equal and constant, and the front side A fin member in which the fin and the back surface side fin are arranged so as to be shifted in the fin arrangement direction by half of the arrangement interval is integrally formed by extrusion molding, and the arranging step includes a plurality of fin members having the same shape.
  • a method of manufacturing a heat exchanger in which the directions of the front surface and the back surface are alternately reversed and arranged in a straight line in the flow direction of the refrigerant is preferable.
  • the fin member in which the front side fin and the back side fin are arranged so as to be shifted in the fin arrangement direction by half the fin arrangement interval is integrally formed by extrusion molding. Further, these fin members are arranged in a straight line in the refrigerant flow direction (fin extension direction) with the directions of the front surface and back surface of the base alternately reversed. Thereby, the front surface side fin and back surface side fin of the fin member adjacent to a fin extension direction can be arrange
  • the refrigerant flowing through the flow path (for example, the flow path on the surface side of the fin member) is caused to collide with the upstream end face (for example, the upstream end face of the surface side fin) located on the downstream side,
  • Two flow paths (for example, two flow paths adjacent to each other in the fin arrangement direction with the front-side fins sandwiched) and the opposite side (for example, the back-face side) with the base sandwiched between the side fins or the back-side fins It can be divided into a flow path.
  • a turbulent flow is generated in the flow of the refrigerant, and the formation of the boundary layer can be effectively suppressed.
  • coolant which flows through the inside of a heat exchanger can be used effectively, and a high cooling effect can be acquired.
  • the back side fin does not exist at a position symmetrical to the front side fin with respect to the base, and further, the front side fin does not exist at a position symmetrical to the back side fin with respect to the base.
  • the refrigerant flowing through the flow path (for example, the flow path on the front surface side of the fin member) is downstream as compared with the heat exchanger using the fin member in which the back surface side fin exists at a position symmetrical to the front surface side fin.
  • the refrigerant When it collides with the upstream end surface of the fin member located on the side (for example, the upstream end surface of the front surface side fin), the refrigerant easily splits into the flow channel located on the opposite side (for example, the back surface side) across the base. Become. Thereby, the turbulent flow of the refrigerant can be promoted and the formation of the boundary layer can be further suppressed.
  • the extrusion step includes a plurality of the front surface side fins having the same shape, a plurality of the back surface side fins having the same shape, and the protrusion of the front surface side fin.
  • Fin members having different heights and protrusion heights of the back-side fins are integrally formed by extrusion molding, and in the arranging step, a plurality of fin members having the same shape are oriented in the same direction with respect to each other.
  • a method of manufacturing a heat exchanger arranged in the flow direction of the refrigerant is preferable.
  • a plurality of front surface fins having the same shape and a plurality of back surface side fins having the same shape and having different protrusion heights of the front surface fins and the back surface fins are extruded. Is integrally molded. Further, these fin members are arranged in the refrigerant flow direction (fin extension direction) with the directions of the front surface and back surface of the base alternately reversed. Thereby, in the fin member adjacent to the fin extending direction, the base of the fin member can be offset (the base is shifted in a direction orthogonal to the surface of the base).
  • the refrigerant flowing in the flow path easily collides with the upstream end face of the base of the fin member located on the downstream side, and the refrigerant is divided into two flow paths located on the front side and the back side across the base. Easier to flow.
  • the turbulent flow of the refrigerant can be promoted and the formation of the boundary layer can be suppressed, the refrigerant flowing inside the heat exchanger can be effectively used to obtain a high cooling effect.
  • heat exchange is performed by integrally forming a fin member in which the front side fin and the back side fin are symmetrical with respect to the base by extrusion molding. It is good to use the manufacturing method of the vessel.
  • the fin members whose front side fins and back side fins are symmetrical with respect to the base are integrally formed by extrusion molding.
  • the moldability by extrusion molding is particularly good as compared with the fin member 520 (see FIG. 28) in which the fins 522 protrude only from the back surface 521c (one side) of the base 521.
  • the reason is as described above.
  • the above-described fin member is extruded and cooled, the occurrence of warping (curving) can be prevented. The reason is as described above.
  • the extrusion molding step includes a fin member in which the front surface side fin and the back surface side fin are inclined and protrude toward the same side in the fin arrangement direction.
  • the plurality of fin members having the same shape are arranged in a row in the refrigerant flow direction along the fin extending direction, with the fin extending directions in the same direction.
  • Disposing the plurality of fin members inside the frame such that the front-side fins and the back-side fins are inclined to the same side, and the joining step is performed through the frame.
  • the front end portions of the front surface side fins are pressed against the front surface side of the base and the back surface side fins are pressed.
  • the one end surface of the base in the fin arrangement direction is brought into contact with the flat inner wall surface of the one side wall in the fin arrangement direction of the frame.
  • a method of manufacturing a heat exchanger for welding the frame and the fin member may be used.
  • the plurality of fin members having the same shape are arranged in a row in the refrigerant flow direction along the fin extending direction with the fin extending directions in the same direction.
  • the plurality of fin members are required to be arranged in a straight line in the refrigerant flow direction without being displaced in the fin arrangement direction (direction orthogonal to the refrigerant flow direction).
  • the fin member in which the front side fin and the rear side fin are inclined and protrude toward the same side in the fin arrangement direction is integrally formed by extrusion molding. And these fin members are arrange
  • the front side fin and the back side fin are compressed and deformed, and the base end portions (the base side portion and the opposite side portion of the tip portion) of the front side fin and the back side fin are placed on the front side in the fin arrangement direction.
  • a force for moving the fin and the back fin to the side opposite to the inclined side can be applied. Accordingly, the base is moved to the side opposite to the side where the front side fin and the rear side fin are inclined in the fin arrangement direction, and the fin arrangement direction of the base (specifically, the front side fin and the fin side in the fin arrangement direction).
  • a frame applied to one end surface on the side opposite to the side on which the back side fin is inclined) in the fin arrangement direction (specifically, on the side opposite to the side on which the front side fin and the back side fin are inclined in the fin arrangement direction). Can be brought into contact with the flat inner wall surface of one side wall.
  • the plurality of fin members arranged in a line in the flow direction of the refrigerant can be arranged in a straight line along the flat inner wall surface of one side wall of the frame.
  • the frame and the fin member are welded in this state, so that “the plurality of fin members are not displaced in the fin arrangement direction (the direction orthogonal to the refrigerant flow direction) and the refrigerant flow It is possible to produce “heat exchangers” arranged in a straight line in the direction.
  • FIG. 1 is a cross-sectional view of an extrusion mold according to Example 1.
  • FIG. 1 is a figure explaining the extrusion molding process concerning Example 1.
  • FIG. It is a figure (sectional drawing) explaining the arrangement
  • FIG. It is a figure explaining the joining process concerning Example 1, and is equivalent to the M section enlarged view of FIG. 1 is a perspective view of a semiconductor device according to Example 1.
  • FIG. It is a figure explaining the flow of the refrigerant
  • FIG. It is a perspective view of the fin member of the same heat exchanger. It is sectional drawing of the same heat exchanger. It is a figure explaining the flow of the refrigerant
  • FIG. It is a perspective view of the heat exchanger concerning Example 4.
  • FIG. It is a perspective view of the fin member of the same heat exchanger. It is a figure explaining the flow of the refrigerant
  • FIG. It is a figure explaining the extrusion molding process concerning Example 4.
  • FIG. It is a perspective view of the heat exchanger concerning Example 5.
  • FIG. It is a front view of the fin member of the heat exchanger. It is sectional drawing of the same heat exchanger. It is a figure explaining the extrusion molding process concerning Example 5.
  • FIG. It is a figure explaining the arrangement
  • FIG. It is a figure explaining the arrangement
  • FIG. It is a figure explaining the joining process concerning Example 5.
  • FIG. It is sectional drawing of the heat exchanger different from this invention. It is a figure explaining generation
  • the heat exchanger 10 includes a frame 30 that forms an outer frame, and a fin member 20 that is accommodated in the frame 30.
  • the frame 30 and the fin member 20 are joined by brazing.
  • the A direction indicates the flow direction of the refrigerant (for example, water) that flows inside the heat exchanger 10.
  • the C direction is the fin extending direction of the fin member 20
  • the D direction is a direction orthogonal to the fin extending direction C and indicates the fin arrangement direction of the fin member 20.
  • the A direction is a direction along the C direction.
  • the fin member 20 is made of aluminum, and as shown in FIG. 2, a base 21 having a rectangular flat plate shape, and a plurality (ten in the first embodiment) of surface side fins 22 protruding from the surface 21b of the base 21; A plurality of (10 in the first embodiment) back surface side fins 23 projecting from the back surface 21c of the base 21 are provided.
  • the fin member 20 is integrally formed by extrusion molding.
  • the surface-side fins 22 have a rectangular flat plate shape extending in the fin extension direction C along the extrusion direction of extrusion, and are arranged in a row with a certain gap in the fin arrangement direction D perpendicular to the fin extension direction C. .
  • the back-side fins 23 also have a rectangular flat plate shape (the same shape as the front-side fins 22) extending in the fin extension direction C, and are arranged in a row with a certain gap in the fin arrangement direction D orthogonal to the fin extension direction C. Yes.
  • the arrangement interval (pitch) of the front surface side fins 22 and the arrangement interval (pitch) of the back surface side fins 23 are the same arrangement interval P.
  • the thickness of the front surface side fin 22 and the thickness of the back surface side fin 23 are set to the equal thickness W.
  • the fin member 20 has a certain width between the front surface side fins 22 adjacent to each other in the fin arrangement direction D and between the rear surface side fins 23 adjacent to the fin arrangement direction D, and extends along the fin extension direction C.
  • a refrigerant flow path 25 for guiding the refrigerant in the refrigerant flow direction A is formed.
  • the moldability by extrusion molding is improved as compared with the fin member 520 (see FIG. 28) in which the fin 522 protrudes only from the back surface 521c (one side) of the base 521.
  • the reason is that the total protrusion height (H1 + H2) of the front surface side fin 22 and the rear surface side fin 23 from the base 21 is equal to the protrusion height H of the fin 522 (assuming that the fin thickness W is equal).
  • the protruding heights H1 and H2 of the front surface side fin 22 and the back surface side fin 23 can be made lower than the protruding height H of the fin 522. It is.
  • the fin member 20 of the first embodiment has a form in which the front surface side fins 22 and the rear surface side fins 23 are symmetrical with respect to the base 21 (vertically symmetrical in FIG. 2).
  • the moldability by extrusion molding is particularly good as compared with the fin member 520 (see FIG. 28) in which the fins 522 protrude from only the back surface 521c (one side) of the base 521.
  • the reason is that the total protrusion height (H1 + H2) from the base of the front surface side fin 22 and the rear surface side fin 23 is equal to the protrusion height H of the fin 522 (assuming that the fin thickness W is equal).
  • the protruding heights H1 and H2 of the front surface side fin 22 and the back surface side fin 23 can be made half of the protruding height H of the fin 522. is there.
  • molds a fin member (specifically the part which shape
  • the fin member 20 of the first embodiment is a fin member in which warpage (curvature) is suppressed as compared with the fin member 520 (see FIG. 30). This is because when the fin member is extruded and cooled, the occurrence (curvature) of warpage can be suppressed as compared with the fin member 520 (see FIG. 30). The reason for this is that in the fin member 20 of the first embodiment, the fins (surface side fins 22 and back surface side fins 23) that are easy to cool are arranged on both sides (the front surface 21b side and the back surface 21c side) of the base 21 that is difficult to cool. Because.
  • the fin member 20 has a shape in which the front side fin 22 and the rear side fin 23 are symmetrical with respect to the base 21 (vertically symmetrical in FIG. 2). That is, the front-side fins 22 and the back-side fins 23 having the same shape (therefore equal ease of cooling) are arranged in symmetrical positions with respect to the base 21.
  • the ease of cooling of a fin member becomes equivalent by the surface 21b side and the back surface 21c side of the base 21, the curvature (curvature) of a fin member can be prevented. Therefore, the fin member 20 of the first embodiment is a fin member that is prevented from warping (curving).
  • the frame 30 has an aluminum first frame member 31 having a rectangular flat plate shape and an aluminum second frame member 32 having a U-shaped cross section (see FIGS. 1 and 6).
  • the first frame member 31 and the second frame member 32 are joined by brazing. Thereby, the frame 30 forms a rectangular cylinder shape.
  • one end in the longitudinal direction (direction matching the A direction) is an inlet 30 a for introducing the refrigerant, and the other end in the longitudinal direction (direction matching the A direction) is the discharge port 30 b for discharging the refrigerant. It becomes.
  • the fin member 20 is welded (brazed in the first embodiment) to the first frame member 31 of the frame 30 at the tip end portion 22b of the front surface side fin 22. (See FIG. 7). That is, the front end portion 22b of the front surface side fin 22 is welded (brazed in the first embodiment) without welding the front surface 21b and the back surface 21c of the base 21 to the frame 30.
  • the welding surface (welded portion 81) can be made extremely small.
  • the generated gas 81 is likely to be discharged to the outside from the welded portion 80, so that the voids in the welded portion 80 between the fin member 20 and the frame 30 ( Generation of voids) can be suppressed.
  • the heat exchanger 10 of the first embodiment is a heat exchanger in which generation of voids in the welded portion 80 between the fin member 20 and the frame 30 is suppressed. Thereby, the heat conduction from the frame 30 to the fin member 20 can be improved.
  • the heat exchanger 10 of the first embodiment can be used for cooling a semiconductor element, for example.
  • the heat exchanger 10 the insulating plates 60 disposed at four locations on the outer surface 31 f of the first frame member 31, and the semiconductor disposed on the surface of the insulating plate 60.
  • the semiconductor device 1 is configured by the elements 71 to 74.
  • the insulating plate 60 is made of an electrically insulating member (for example, ceramic such as alumina) and has a rectangular flat plate shape.
  • the four insulating plates 60 are arranged in a line in the longitudinal direction of the first frame member 31 (a direction coinciding with the A direction) with an equal gap therebetween. These insulating plates 60 are joined to the outer surface 31f of the first frame member 31 by brazing.
  • the semiconductor elements 71 to 74 are soldered to the surface of the insulating plate 60.
  • the linear expansion coefficient is different between the insulating plate 60 and the frame 30 (first frame member 31).
  • the coefficient of linear expansion is about 7 ⁇ 10 ⁇ 6 / ° C.
  • the linear expansion coefficient of the frame 30 (first frame member 31) made of aluminum is about 23 ⁇ 10 ⁇ 6 / ° C.
  • the linear expansion coefficient of the frame 30 (first frame member 31) is three times or more the linear expansion coefficient of the insulating plate 60.
  • the frame and the insulating plate contract when the frame and the insulating plate are heated and then cooled.
  • Warpage may occur due to a difference in coefficient (linear expansion coefficient).
  • the first frame member 531 of the frame 530 and the base 521 of the fin member 520 are integrated by welding (for example, brazing). The strength of the part to be welded is high. Thereby, the warp (curvature) as described above is likely to occur.
  • FIG. 6 is a cross-sectional view of the heat exchanger 10 cut in a direction orthogonal to the A direction.
  • the semiconductor elements 71 to 74 generate heat with use. These heats are transferred to the frame 30 (first frame member 31) through the insulating plate 60, and further transferred to the front-side fins 22 and the back-side fins 23 of the fin member 20 housed in the frame 30. .
  • a refrigerant for example, water
  • the refrigerant introduced into the frame 30 passes through the flow paths 25 formed between the front surface side fins 22 and the back surface side fins 23 in the direction along the fin arrangement direction D in the A direction (fin extension direction). (Direction along C).
  • the front surface side fins 22 and the back surface side fins 23 of the fin member 20 can perform heat exchange with the refrigerant flowing through the flow path 25. That is, the heat transferred from the semiconductor elements 71 to 74 to the front surface side fins 22 and the back surface side fins 23 can be released to the refrigerant flowing through the flow path 25.
  • the refrigerant that has absorbed the heat between the front surface side fins 22 and the back surface side fins 23 while flowing through the flow path 25 is discharged to the outside of the frame 30 through the discharge port 30b. In this way, the semiconductor elements 71 to 74 that have generated heat can be appropriately cooled.
  • the fin member 20 is integrally formed by extrusion molding. Specifically, as shown in FIG. 3, using an extrusion molding machine 50 including an extrusion mold 51 having a through-hole 51b, aluminum softened by heating is extruded and cooled to integrally form the fin member 20. To do. Accordingly, the base 21 having a rectangular flat plate shape, a plurality (ten in the first embodiment) of the surface-side fins 22 protruding from the surface 21b of the base 21, and a plurality of (this embodiment) protruding from the back surface 21c of the base 21 are used. The fin member 20 having 10 back surface side fins 23 can be obtained.
  • the through-hole 51 b of the extrusion mold 51 has a shape corresponding to a cross section of the fin member 20 (a cross section obtained by cutting the fin member 20 in a direction perpendicular to the fin extending direction C, see FIG. 6). I am doing.
  • Extrusion molding of the fin member 20 having such a form is more formable than the case of extruding the fin member 520 (see FIG. 28) in which the fins 522 protrude from only the back surface 521c (one side) of the base 521. Can be good.
  • the reason is that the total protrusion height (H1 + H2) of the front surface side fin 22 and the rear surface side fin 23 from the base 21 is equal to the protrusion height H of the fin 522 (assuming that the fin thickness W is equal).
  • the protruding heights H1 and H2 of the front surface side fin 22 and the back surface side fin 23 can be made lower than the protruding height H of the fin 522. It is.
  • the front-side fin 22 and the back-side fin are configured so that the front-side fin 22 and the back-side fin 23 are symmetrical with respect to the base 21 (vertically symmetrical in FIG. 2).
  • the projecting heights H1 and H2 of each of the 23 can be half of the projecting height H of the fins 522.
  • the fin member 20 when aluminum is extruded and cooled, the occurrence (curvature) of warpage can be suppressed as compared to the fin member 520 (see FIG. 30) ( (See FIG. 5).
  • the fins surface side fins 22 and back surface side fins 23
  • the fin member 20 is configured such that the front-side fins 22 and the back-side fins 23 are symmetrical with respect to the base 21 (vertically symmetrical in FIG. 2).
  • the front-side fins 22 and the back-side fins 23 having the same shape are arranged in symmetrical positions with respect to the base 21.
  • the ease of cooling of a fin member becomes equivalent by the surface 21b side and the back surface 21c side of the base 21, as shown in FIG. 5, the curvature (curving) of the fin member 20 can be prevented.
  • first frame member 31 made of aluminum and having a rectangular flat plate shape and a second frame member 32 made of aluminum and having a U-shaped cross section are prepared.
  • the second frame member 32 can be manufactured by pressing a rectangular flat aluminum plate into a U-shape.
  • the process proceeds to an arrangement step, and the fin member 20 is arranged inside the frame 30 including the first frame member 31 and the second frame member 32 as shown in FIG. Specifically, the four fin members 20 are arranged in a row on the bottom surface 32 h of the second frame member 32. Specifically, the four fin members 20 are arranged in a line with a certain gap in the refrigerant flow direction A along the fin extension direction C with the fin extension direction C facing each other (FIG. 1). reference). Thereafter, the first frame member 31 is arranged on the upper end surface 32d of the second frame member so as to cover the first frame member 31 (see FIG. 6).
  • a brazing material (melting point: 600 ° C.) is applied in advance to the inner surface 31 h of the first frame member 31 and the upper end surface 32 d of the second frame member.
  • the process proceeds to the joining process, and the combination (combined body) of the fin member 20, the first frame member 31, and the second frame member 32 in the arranging process is accommodated in an electric furnace (not shown).
  • the temperature in the electric furnace is raised to 600 ° C. to melt the brazing material.
  • the combination is taken out from the electric furnace and cooled to cure the brazing material.
  • the fin member 20, the 1st frame member 31, and the 2nd frame member 32 can be joined by brazing.
  • the heat exchanger 10 of Example 1 is completed.
  • the fin member 20 is welded (brazed in the first embodiment) to the first frame member 31 of the frame 30 at the front end portion 22b of the front surface side fin 22 (FIG. 6, FIG. 7). That is, the front end portion 22b of the front surface side fin 22 is welded (brazed in the first embodiment) without welding the front surface 21b and the back surface 21c of the base 21 to the frame 30.
  • the welding surface (welded portion 81) can be made extremely small. For this reason, as shown in FIG. 7, when the frame 30 and the fin member 20 are welded (for example, brazed), the generated gas 81 is easily discharged from the welded portion 80 to the outside. Generation of voids (voids) in the welded portion 80 can be suppressed. Thereby, in the heat exchanger 10 of the first embodiment, heat conduction from the frame 30 to the fin member 20 can be improved.
  • Embodiment 2 of the present invention will be described with reference to the drawings.
  • the heat exchanger 110 according to the second embodiment (see FIG. 9) is different from the heat exchanger 10 according to the first embodiment in the arrangement form of the fin members 20, and the rest is the same. Therefore, here, the description will focus on the points different from the first embodiment, and the description of the same points will be omitted or simplified.
  • the four fin members 20 are made of the refrigerant along the fin extension direction C with the fin extension direction C facing each other in the same direction. Are arranged in a line with a certain gap in the flow direction A (see FIG. 9). However, unlike the heat exchanger 10 of the first embodiment, the fin members 20 adjacent to each other in the fin extension direction C (vertical direction in FIG. 10) are shifted in the fin arrangement direction D (horizontal direction in FIG. 10). (See FIGS. 9 and 10). 10 is a cross-sectional view of the heat exchanger 110 cut along the refrigerant flow direction A at a position between the first frame member 31 and the base 21 of the fin member 20.
  • the fin member 20 adjacent to the fin extension direction C (adjacent to the upstream side (lower side in FIG. 10) and the downstream side (upper side in FIG. 10) of the flow path 25 extending along the fin extension direction D).
  • the surface side fins 22 are arranged so as to be shifted in the fin arrangement direction D (left and right direction in FIG. 10) by half of the arrangement interval P.
  • the surface side fins 22 of the fin members 20 adjacent to each other in the fin extension direction C (vertical direction in FIG. 10) are offset in the fin arrangement direction D.
  • the back surface side fins 23 of the fin members 20 adjacent to each other in the fin extension direction C are also arranged so as to be shifted in the fin arrangement direction D by half of the arrangement interval P.
  • the back-side fins 23 of the fin members 20 adjacent in the fin extension direction C are also offset in the fin arrangement direction D.
  • the heat-collected fins mainly exchange heat only with the refrigerant in the boundary layer formed around the fins, and heat exchange with the refrigerant flowing in the region other than the boundary layer is performed. Almost never done. As a result, there is a problem that heat cannot be effectively exchanged with the refrigerant flowing inside the heat exchanger, and a high cooling effect cannot be obtained.
  • the surface side fins 22 of the fin members 20 adjacent to each other in the fin extension direction C have a fin arrangement direction D (see FIG. 10 in the left-right direction).
  • the back surface side fins 23 of the fin members 20 adjacent to each other in the fin extension direction C are also arranged so as to be shifted in the fin arrangement direction D by half of the arrangement interval P.
  • the refrigerant flowing through the flow path 25 on the surface 21 b side of the base 21 of the fin member 20 is caused to flow on the surface of the fin member 20 located on the downstream side (upper side in FIG. 10).
  • Two flow paths 25b and 25c that collide with the upstream end face 22c of the side fins 22 and branch off by the front side fins 22 two flow paths 25b and 25c adjacent in the fin arrangement direction D across the front side fins 22
  • the flow path 25d and 25e located in the back surface 21c side on both sides of the base 21 can be shunted.
  • the refrigerant flowing in the flow path 25 on the back surface 21b side of the base 21 of the fin member 20 is also turbulent in the flow of the refrigerant in the same manner as the refrigerant flowing in the flow path 25 on the front surface 21b side of the base 21.
  • the formation of the boundary layer can be effectively suppressed.
  • coolant which flows through the inside of the heat exchanger 110 can be utilized effectively, and the high cooling effect can be acquired.
  • the fin member 20 is integrally formed by extrusion molding (see FIG. 3). Further, similarly to the first embodiment, a first frame member 31 made of aluminum and having a rectangular flat plate shape and a second frame member 32 made of aluminum and having a U-shaped cross section are prepared.
  • the process proceeds to an arrangement step, and the fin member 20 is arranged inside the frame 30 including the first frame member 31 and the second frame member 32 as shown in FIGS. 9 and 10.
  • the four fin members 20 are arranged in a row on the bottom surface 32 h of the second frame member 32.
  • the four fin members 20 are arranged in a line with a certain gap in the refrigerant flow direction A along the fin extension direction C with the fin extension direction C facing each other (FIG. 9). And FIG. 10).
  • the fin members 20 adjacent to each other in the fin extension direction C are shifted in the fin arrangement direction D (left and right direction in FIG. 10) (see FIGS. 9 and 10).
  • the front side fins 22 and the rear side fins 23 of the fin members 20 adjacent to each other in the fin extension direction C are shifted so as to be shifted in the fin arrangement direction D (left and right direction in FIG. 10) by half of the arrangement interval P.
  • the two fin members 20 are arranged in the fin extending direction C.
  • the first frame member 31 is arranged on the upper end surface 32d of the second frame member so as to cover the first frame member 31 (see FIG. 9).
  • a brazing material (melting point: 600 ° C.) is applied in advance to the inner surface 31 h of the first frame member 31 and the upper end surface 32 d of the second frame member.
  • the process proceeds to the joining step, and the fin member 20, the first frame member 31, and the second frame member 32 are joined by brazing in the same manner as in the first embodiment. In this way, the heat exchanger 110 of the second embodiment is completed.
  • the heat exchanger 110 of the second embodiment can also be used for cooling semiconductor elements in the same manner as the heat exchanger 10 of the first embodiment.
  • the semiconductor elements 71 to 74 are arranged on the outer surface 31f of the first frame member 31 with the insulating plate 60 interposed therebetween (see FIG. 8) to constitute the semiconductor device.
  • the semiconductor elements 71 to 74 can be cooled by the heat exchanger 110.
  • Embodiment 3 of the present invention will be described with reference to the drawings.
  • the heat exchanger 210 (see FIG. 12) of the third embodiment is different from the heat exchanger 10 of the first embodiment in the fin members and the arrangement form thereof, and is otherwise the same. Therefore, here, the description will focus on the points different from the first embodiment, and the description of the same points will be omitted or simplified.
  • the fin member 220 according to the third embodiment is made of aluminum and has a base 221 having a rectangular flat plate shape, a plurality of (ten in the third embodiment) surface side fins 222 protruding from the surface 221b of the base 221, and the base 221.
  • a plurality of (10 in the third embodiment) rear surface side fins 223 project from the rear surface 221c of the rear surface 221c (see FIG. 13).
  • the fin member 220 is also integrally formed by extrusion molding.
  • the front surface side fin 222 and the back surface side fin 223 are shifted in the fin arrangement direction D by half of the arrangement interval P. Are arranged.
  • the fin member 220 having the above-described configuration is changed in the refrigerant flow direction A (fin extension direction C) with the directions of the front surface 221b and the back surface 221c of the base 221 being alternately reversed. They are arranged in a straight line (see FIGS. 12 and 14). Thereby, the fin arrangement direction D (left and right direction in FIG. 14) of the front surface side fin 222 and the back surface side fin 223 of the fin member 220 adjacent to each other in the fin extension direction C (up and down direction in FIG. 14) is arranged. ). 14 is a cross-sectional view of the heat exchanger 210 cut along the refrigerant flow direction A at a position between the first frame member 31 and the base 221 of the fin member 220.
  • the refrigerant flowing through the flow path 225 on the back surface 221 c side of the base 221 of the fin member 220 is located on the downstream side (upper side in FIG. 14).
  • the two flow paths 225b and 225c (two flow paths 225b adjacent to each other in the fin arrangement direction D across the surface-side fins 222) that collide with the upstream end face 222c of the surface-side fins 222 and branch off by the surface-side fins 222.
  • 225c and the flow path 225d located on the back surface 221c side with the base 221 in between.
  • the refrigerant flowing through the flow path 225 on the front surface 221b side of the base 221 of the fin member 220 is also turbulent in the flow of the refrigerant, similarly to the refrigerant flowing through the flow path 225 on the back surface 221c side of the base 221. It is possible to effectively suppress the formation of the boundary layer. Thereby, the refrigerant
  • the back surface side fin 223 does not exist at a position symmetrical to the front surface side fin 222 (a position directly below in FIGS. 13 and 15) with respect to the base 221, and further, with respect to the base 221.
  • the front-side fins 222 do not exist at positions symmetrical to the back-side fins 223 (positions directly above in FIGS. 13 and 15).
  • the heat exchanger for example, heat exchanger 110 of Example 2
  • the fin member for example, fin member 20
  • the back side fin exists in a position symmetrical with the surface side fin about the base
  • the upstream end face of the fin member 220 for example, the upstream end face of the front surface side fin 222) where the refrigerant flowing through the flow path 225 (for example, the flow path 225 on the back surface 221c side of the base 221 of the fin member 220) is located downstream.
  • the refrigerant can easily flow into the flow path 225 located on the opposite side (for example, the back surface 221c side) with the base 221 in between. Thereby, the turbulent flow of the refrigerant can be promoted and the formation of the boundary layer can be further suppressed.
  • the fin member 220 of the third embodiment includes the front surface side fin 222 and the back surface side fin 223, the fin is formed only from the rear surface 521 c (one surface) of the base 521, as in the fin member 20 of the first embodiment.
  • the moldability by extrusion molding is improved. The reason is that the strength of the extrusion mold 251 for molding the fin member 220 (specifically, the portion of the extrusion mold 251 where the fin is molded, see FIG. 16) can be increased. This is because the deformation of 251 can be suppressed.
  • the fin member 220 of the third embodiment is a fin member in which warpage (curvature) is suppressed compared to the fin member 520 (see FIG. 30). This is because when the fin member is extruded and cooled, the occurrence (curvature) of warpage can be suppressed as compared with the fin member 520 (see FIG. 30).
  • the reason is that in the fin member 220, fins (surface-side fins 222 and back-side fins 223) that are easy to cool are arranged on both sides (the front surface 221 b side and the back surface 221 c side) of the base 221 that is difficult to cool. Thereby, since the difference in the ease of cooling (cooling rate) of the fin member between the front surface 221b side and the back surface 221c side of the base 221 is reduced, warping (curving) of the fin member can be suppressed.
  • the fin member 220 is welded (brazed) to the first frame member 31 of the frame 30 at the front end portion 222b of the front surface side fin 222. That is, the front end portion 222 b of the front surface side fin 222 is welded (brazed) to the frame 30 without welding the front surface 221 b and the back surface 221 c of the base 221.
  • the frame 30 and the fin member 220 are welded (for example, brazing)
  • the generated gas is easily discharged from the welded portion to the outside, so that voids (voids) in the welded portion between the fin member 220 and the frame 30 are eliminated. Occurrence can be suppressed.
  • the fin member 220 is integrally formed by extrusion molding. Specifically, as shown in FIG. 16, using an extrusion molding machine 250 including an extrusion mold 251 having a through hole 251b, aluminum softened by heating is extruded and cooled to integrally form the fin member 220. To do. Accordingly, the arrangement interval P of the front surface side fins 222 and the arrangement interval P of the rear surface side fins 223 in the fin arrangement direction D are equal and constant, and the front surface side fins 222 and the rear surface side fins 223 are fins by a half of the arrangement interval P.
  • the fin member 220 (refer FIG.
  • the through hole 251b of the extrusion mold 251 has a shape corresponding to a cross section of the fin member 220 (a cross section obtained by cutting the fin member 220 in a direction perpendicular to the fin extending direction C).
  • a first frame member 31 made of aluminum and having a rectangular flat plate shape and a second frame member 32 made of aluminum and having a U-shaped cross section are prepared.
  • the fin member 220 is arrange
  • the four fin members 220 are arranged in a row on the bottom surface 32 h of the second frame member 32.
  • the four fin members 20 are arranged in a line with a certain gap in the refrigerant flow direction A along the fin extension direction C with the fin extension direction C facing each other (FIG. 12). And FIG. 14).
  • the four fin members 220 are arranged in a straight line in the refrigerant flow direction A (fin extension direction C) with the directions of the front surface 221b and the back surface 221c of the base 221 being alternately opposite (see FIGS. 12 and 14). ).
  • the fin arrangement direction D left and right direction in FIG. 14
  • the front surface side fin 222 and the back surface side fin 223 of the fin member 220 adjacent to each other in the fin extension direction C up and down direction in FIG. 14
  • the first frame member 31 is arranged on the upper end surface 32d of the second frame member so as to cover the first frame member 31 (see FIG. 12).
  • the front end portion 222b of the front surface side fin 222 and the inner surface 31h of the first frame member 31 come into contact with each other.
  • a brazing material (melting point: 600 ° C.) is applied in advance to the inner surface 31 h of the first frame member 31 and the upper end surface 32 d of the second frame member. Then, it progresses to a joining process and it joins the fin member 220, the 1st frame member 31, and the 2nd frame member 32 by brazing similarly to Example 1.
  • FIG. In this way, the heat exchanger 210 of the third embodiment is completed.
  • the heat exchanger 210 of the third embodiment can also be used for cooling semiconductor elements in the same manner as the heat exchanger 10 of the first embodiment.
  • the semiconductor elements 71 to 74 are arranged on the outer surface 31f of the first frame member 31 with the insulating plate 60 interposed therebetween (see FIG. 8) to constitute the semiconductor device. Thereby, the semiconductor elements 71 to 74 can be cooled by the heat exchanger 210.
  • Example 4 a fourth embodiment of the present invention will be described with reference to the drawings.
  • the heat exchanger 310 according to the fourth embodiment is different from the heat exchanger 10 according to the first embodiment in the fin members and the arrangement form thereof, and the others are the same (see FIG. 17). Therefore, here, the description will focus on the points different from the first embodiment, and the description of the same points will be omitted or simplified.
  • the fin member 320 according to the fourth embodiment is made of aluminum and has a base 321 that has a rectangular flat plate shape, a plurality of (ten in the fourth embodiment) surface-side fins 322 that protrude from the surface 321b of the base 321, and the base 321. A plurality of (10 in the fourth embodiment) rear surface side fins 323 projecting from the rear surface 321c (see FIG. 18).
  • the fin member 320 is also integrally formed by extrusion. As shown in FIG.
  • the protrusion height H1 of the front surface side fin 322 and the protrusion height H2 of the back surface side fin 323 are different from those of the fin member 20 of the first embodiment (H1 ⁇ H2) Only the point is different.
  • the fin member 320 having the above-described configuration is changed in the refrigerant flow direction A (fin extension direction C) with the directions of the front surface 321b and the back surface 321c of the base 321 being alternately reversed. They are arranged in a line (see FIGS. 17 and 19).
  • the base 321 of the fin member 320 can be offset.
  • the base 321 can be shifted in a direction perpendicular to the surface 321b of the base 321 (vertical direction in FIGS. 17 and 19).
  • FIG. 19 is an enlarged view of a part of the plurality of fin members 320 arranged in FIG.
  • the refrigerant flowing through the flow path 325 is caused to collide with the upstream end surface 321 d of the base 321 of the fin member 320 located on the downstream side (the diagonally upper right side in FIG. 19).
  • the refrigerant can be divided into the two flow paths 325b and 325c located on the front surface 321b side and the back surface 321c side with the 321 interposed therebetween.
  • the turbulent flow of the refrigerant can be promoted and the formation of the boundary layer can be suppressed. Therefore, a high cooling effect can be obtained by effectively using the refrigerant flowing inside the heat exchanger 310.
  • the fin member 320 of the fourth embodiment includes the front surface side fin 322 and the back surface side fin 323, the fin member 520 from which the fin 522 protrudes only from the back surface 521c (one surface) of the base 521 (see FIG. 28). ),
  • the moldability by extrusion molding is improved.
  • the reason is that the strength of the extrusion mold 351 for molding the fin member 320 (specifically, the portion of the extrusion mold 351 where the fin is molded, see FIG. 20) can be increased. This is because the deformation of 351 can be suppressed.
  • the fin member 320 of the fourth embodiment is a fin member in which warpage (curvature) is suppressed compared to the fin member 520 (see FIG. 30). This is because when the fin member is extruded and cooled, the occurrence (curvature) of warpage can be suppressed as compared with the fin member 520 (see FIG. 30).
  • the reason is that in the fin member 320, fins (surface-side fins 322 and back-side fins 323) that are easy to cool are disposed on both sides (the front surface 321 b side and the back surface 321 c side) of the base 321 that is difficult to cool. Thereby, since the difference in the ease of cooling (cooling speed) of the fin member between the front surface 321b side and the back surface 321c side of the base 321 is reduced, warping (curving) of the fin member can be suppressed.
  • the fin member 320 is welded (brazed) to the first frame member 31 of the frame 30 at the front end portion 322b of the surface-side fin 322. That is, the front end portion 322b of the front surface side fin 322 is welded (brazed) to the frame 30 without welding the front surface 321b and the back surface 321c of the base 321.
  • the frame 30 and the fin member 320 are welded (for example, brazed)
  • the generated gas is easily discharged from the welded portion to the outside, so that voids (voids) in the welded portion between the fin member 320 and the frame 30 are eliminated. Occurrence can be suppressed.
  • the fin member 320 is integrally formed by extrusion molding. Specifically, as shown in FIG. 20, using an extrusion molding machine 350 having an extrusion mold 351 having a through hole 351b, aluminum softened by heating is extruded and cooled to integrally form the fin member 320. To do. Accordingly, the arrangement interval P of the front surface side fins 322 and the arrangement interval P of the rear surface side fins 323 in the fin arrangement direction D are equal and constant, and the protrusion height H1 of the front surface side fins 322 and the protrusion height of the rear surface side fins 323 are the same.
  • a fin member 320 (see FIG. 18) different from H2 (H1 ⁇ H2) can be obtained.
  • the through hole 351b of the extrusion mold 351 has a shape corresponding to a cross section of the fin member 320 (a cross section obtained by cutting the fin member 320 in a direction perpendicular to the fin extending direction C).
  • a first frame member 31 made of aluminum and having a rectangular flat plate shape and a second frame member 32 made of aluminum and having a U-shaped cross section are prepared.
  • the fin member 320 is arrange
  • the four fin members 320 are arranged in a row on the bottom surface 32 h of the second frame member 32.
  • the four fin members 320 are arranged in a row with a certain gap in the refrigerant flow direction A along the fin extension direction C with the fin extension direction C facing each other (FIG. 17). reference).
  • the fin members 320 are arranged in a line in the refrigerant flow direction A (fin extension direction C) with the directions of the front surface 321b and the back surface 321c of the base 321 being alternately reversed (see FIGS. 17 and 19).
  • the base 321 of the fin member 320 can be offset.
  • the base 321 can be shifted in a direction perpendicular to the surface 321b of the base 321 (vertical direction in FIGS. 17 and 19).
  • the first frame member 31 is arranged on the upper end surface 32d of the second frame member so as to cover the first frame member 31 (see FIG. 17).
  • tip part 322b of the surface side fin 322 and the inner surface 31h of the 1st frame member 31 contact.
  • a brazing material (melting point: 600 ° C.) is applied in advance to the inner surface 31 h of the first frame member 31 and the upper end surface 32 d of the second frame member. Then, it progresses to a joining process and it joins the fin member 320, the 1st frame member 31, and the 2nd frame member 32 by brazing similarly to Example 1.
  • the heat exchanger 310 of the fourth embodiment can also be used for cooling semiconductor elements in the same manner as the heat exchanger 10 of the first embodiment.
  • the semiconductor elements 71 to 74 are arranged on the outer surface 31f of the first frame member 31 with the insulating plate 60 interposed therebetween (see FIG. 8) to constitute the semiconductor device. Thereby, the semiconductor elements 71 to 74 can be cooled by the heat exchanger 310.
  • Example 5 a fifth embodiment of the present invention will be described with reference to the drawings.
  • the heat exchanger 410 (see FIG. 21) according to the fifth embodiment is different from the heat exchanger 10 according to the first embodiment in the fin member and the other is the same. Therefore, here, the description will focus on the points different from the first embodiment, and the description of the same points will be omitted or simplified.
  • the fin member 420 of the fifth embodiment is made of aluminum and has a base 421 having a rectangular flat plate shape, a plurality (ten in the fifth embodiment) surface side fins 422 protruding from the surface 421b of the base 421, and the base 421. And a plurality of (10 in this embodiment) rear surface side fins 423 projecting from the rear surface 421c (see FIG. 22).
  • the fin member 420 is also integrally formed by extrusion, like the fin member 20 of the first embodiment.
  • the front side fin 422 and the back side fin 423 are on the same side in the fin arrangement direction D (right side in FIG. 22). It is different in that it protrudes at an angle. Specifically, the surface-side fin 422 protrudes in an oblique direction (obliquely upper right in FIG. 22) with respect to a direction orthogonal to the surface 421b of the base 421 (vertically upward in FIG. 22). Further, the back surface side fins 423 protrude in an oblique direction (downward and diagonally right in FIG.
  • the protrusion height H1 of the front surface side fin 422 and the protrusion height H2 of the back surface side fin 423 are equal, it is slightly higher than the protrusion heights H1 and H2 of the fin member 20 of the first embodiment.
  • a plurality (four in the fifth embodiment) of fin members 420 are arranged in such a direction that the front-side fins 422 and the back-side fins 423 are inclined to the same side. (See FIG. 21).
  • one end surface 421f of the base 421 in the fin arrangement direction D is in contact with the flat inner wall surface 33b of the one side wall 33 in the fin arrangement direction D of the second frame member 32 ( (Refer FIG. 21, FIG. 23).
  • FIG. 23 is a cross-sectional view of the heat exchanger 410 cut along the refrigerant flow direction A at an intermediate position between the first frame member 31 and the base 421 of the fin member 420.
  • the fin member 420 of the fifth embodiment includes the front surface side fin 422 and the back surface side fin 423, the fin member 520 from which the fin 522 protrudes only from the back surface 521c (one surface) of the base 521 (see FIG. 28). ), The moldability by extrusion molding is improved. The reason is that the strength of the extrusion mold 451 for molding the fin member 420 (specifically, the portion of the extrusion mold 451 where the fin is molded, see FIG. 24) can be increased. This is because the deformation of 451 can be suppressed.
  • the fin member 420 of the fifth embodiment is a fin member in which warpage (curvature) is suppressed compared to the fin member 520 (see FIG. 30). This is because when the fin member is extruded and cooled, the occurrence (curvature) of warpage can be suppressed as compared with the fin member 520 (see FIG. 30).
  • the reason is that in the fin member 420, fins (surface-side fins 422 and back-side fins 423) that are easy to cool are arranged on both sides (the front surface 421 b side and the back surface 421 c side) of the base 421 that is difficult to cool. Thereby, since the difference in the ease of cooling (cooling speed) of the fin member between the front surface 421b side and the back surface 421c side of the base 421 is reduced, warping (curving) of the fin member can be suppressed.
  • the fin member 420 is welded (brazed) to the first frame member 31 of the frame 30 at the front end portion 422b of the surface-side fin 422. That is, the front end portion 422b of the front surface side fin 422 is welded (brazed) to the frame 30 without welding the front surface 421b and the back surface 421c of the base 421.
  • the frame 30 and the fin member 420 are welded (for example, brazed)
  • the generated gas is easily discharged from the welded portion to the outside, so that voids (voids) in the welded portion between the fin member 420 and the frame 30 are eliminated. Occurrence can be suppressed.
  • the fin member 420 is integrally formed by extrusion molding. Specifically, as shown in FIG. 24, the fin member 420 is integrally formed by extruding and cooling the aluminum softened by heating using an extruder 450 having an extrusion mold 451 having a through hole 451b. To do. Thereby, the fin member 420 (refer FIG. 22) which the surface side fin 422 and the back surface side fin 423 incline and protrude to the same side of the fin arrangement direction D can be obtained.
  • the through hole 451b of the extrusion mold 451 has a shape corresponding to a cross section of the fin member 420 (a cross section obtained by cutting the fin member 420 in a direction orthogonal to the fin extending direction C).
  • a first frame member 31 made of aluminum and having a rectangular flat plate shape and a second frame member 32 made of aluminum and having a U-shaped cross section are prepared.
  • the four fin members 20 are arranged in a row with a certain gap in the refrigerant flow direction A along the fin extension direction C with the fin extension direction C facing the same direction.
  • the first frame member 31 is arranged on the fin member 420 so that the first frame member 31 covers the second frame member 32 (see FIG. 26). At this time, the first frame member 31 is disposed above the upper end surface 32d of the second frame member without contacting the upper end surface 32d of the second frame member.
  • the protrusion height H1 of the front surface side fin 422 and the protrusion height H2 of the back surface side fin 423 are higher than the protrusion heights H1 and H2 of the fin member 20 of the first embodiment. This is because it is slightly higher.
  • a brazing material (melting point: 600 ° C.) is applied in advance to the inner surface 31 h of the first frame member 31 and the upper end surface 32 d of the second frame member.
  • the fin member 420 and the second frame member 32 have design dimensional tolerances, manufacturing dimensional errors, and the like. For this reason, in the arrangement step, when the four fin members 420 are arranged in a line on the bottom surface 32h of the second frame member 32, the four fin members 420 are arranged in the fin arrangement direction D (see FIG. 25). 25 may be misaligned in the horizontal direction).
  • FIG. 25 is a top view of a state in which the four fin members 420 are arranged in a row on the bottom surface 32 h of the second frame member 32.
  • the first frame member 31 is moved to the fin member 420 side (in FIG. 27) by a pressing jig (not shown) in the electric furnace 5 in the joining process.
  • the fin member 420, the first frame member 31, and the second frame member 32 in a state where the inner surface 31h of the first frame member 31 is in contact with the upper end surface 32d of the second frame member 32. Join by brazing.
  • the four fin members 420 located inside the second frame member 32 are passed through the first frame member 31 and the front side fins 422.
  • the front end portion 422b of the base plate 421 is pressed toward the front surface 421b side (downward in FIG. 27), and through the second frame member 32, the front end portion 423b of the back surface side fin 423 is pressed to the back surface 421c side of the base 421 (upward in FIG. Can be pressed.
  • the front side fin 422 and the back side fin 423 are compressed and deformed, and the base end part 422d of the front side fin 422 and the base end part 423d of the back side fin 423 are changed into the front side fin 422 and the fins in the fin arrangement direction D.
  • the reverse side fin 423 can be moved to the opposite side (left side in FIG. 27) to the inclined side.
  • the base 421 is moved to the side (left side in FIG.
  • the one end surface 421f applied to the fin arrangement direction D on the side opposite to the side on which the front surface fins 422 and the rear surface fins 423 are inclined is defined as the fin arrangement direction D (specifically, the front surface of the fin arrangement direction D is the front surface).
  • the side fins 422 and the back side fins 423 can be brought into contact with the flat inner wall surface 33b of the one side wall 33 of the second frame member 32 on the side opposite to the inclined side.
  • the four fin members 420 arranged in a row in the refrigerant flow direction A can be arranged in a straight line along the flat inner wall surface 33b of the one side wall 33 of the second frame member 32.
  • the temperature in the electric furnace 5 is raised to 600 ° C. to melt the brazing material, and then cooled to cure the brazing material.
  • the fin member 420, the 1st frame member 31, and the 2nd frame member 32 can be joined by brazing.
  • the heat exchanger 410 in which the plurality of fin members 420 are arranged in a straight line in the refrigerant flow direction A without being displaced in the fin arrangement direction D” is completed.
  • the heat exchanger 410 of the fifth embodiment can also be used for cooling the semiconductor element in the same manner as the heat exchanger 10 of the first embodiment.
  • the semiconductor elements 71 to 74 are arranged on the outer surface 31f of the first frame member 31 with the insulating plate 60 interposed therebetween (see FIG. 8) to constitute the semiconductor device. Thereby, the semiconductor elements 71 to 74 can be cooled by the heat exchanger 410.
  • the fin members 320 are arranged in a straight line in the refrigerant flow direction A (fin extension direction C) with the directions of the front surface 321b and the back surface 321c of the base 321 being alternately reversed. They were arranged (see FIGS. 17 and 19).
  • the fin members 320 adjacent to each other in the fin extension direction C may be shifted in the fin arrangement direction D.
  • the surface side fins 322 of the fin members 320 adjacent to each other in the fin extension direction C are arranged so as to be shifted in the fin arrangement direction D by half of the arrangement interval P, and the fin members 320 adjacent to the fin extension direction C are arranged.
  • the back-side fins 323 may also be arranged so as to be shifted in the fin arrangement direction D by half of the arrangement interval P.
  • the protrusion height H1 of the front surface side fin 322 differs from the protrusion height H2 of the rear surface side fin 323 (H1 ⁇ H2), and the fin member 320 has a front surface side like the fin member 220 of the third embodiment.
  • the fins 322 and the back surface side fins 323 may be arranged so as to be shifted in the fin arrangement direction D by half of the arrangement interval P.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 押出成形による成形性が良好で且つ反り(湾曲)が抑制されたフィン部材を有し、フィン部材とフレームとの溶接部におけるボイドの発生が抑制された熱交換器、及びその製造方法を提供する。熱交換器10では、外枠を形成するフレーム30の内部に、冷媒の流路25を形成する複数のフィンを備えたフィン部材20が配置されている。フィン部材20は、押出成形により一体成形されたフィン部材であって、矩形平板状のベース21と、ベース21の表面21bから突出する複数の表面側フィン22と、ベース21の裏面21cから突出する複数の裏面側フィン23とを有している。このフィン部材20は、フレーム30に対し、ベース21の表面21b及び裏面21cが溶接されることなく、表面側フィン22及び裏面側フィン23の少なくともいずれか一方の先端部が溶接されている。

Description

熱交換器及びその製造方法
 本発明は、熱交換器内部を流れる冷媒により半導体素子等の発熱体を冷却する熱交換器、及びその製造方法に関する。
 ハイブリッド自動車等の電源として、電力変換機能を有するインバータ装置が用いられている。インバータ装置は、スイッチング素子として複数の半導体素子を備えている。このインバータ装置の半導体素子は、電力変換等に伴って発熱するため、積極的に冷却される必要がある。
 ここで、半導体素子等の発熱体を冷却する熱交換器としては、例えば、外枠を形成するフレームの内部に、直線状に延びる複数のフィンを平行に配置することにより、冷媒の流路を形成したものが知られている(例えば、特許文献1参照)。
特開2007-335588号公報
 ところで、近年、押出成形により一体成形されたフィン部材を、外枠を形成するフレームの内部に配置した熱交換器(図28参照)が開発されている。図28に示す熱交換器510では、発熱体である半導体素子71が、絶縁板60を挟んでフレーム530の第1フレーム部材531の外表面に配置されている。フィン部材520のフィン522間に形成される流路525には、冷媒(例えば、水)が流される。これにより、半導体素子71で発生した熱を、絶縁板60及び第1フレーム部材531を通じて、フィン部材520のフィン522に伝達して冷却することができる。
 フィン部材520は、平板状のベース521と、ベース521の裏面521c(片面)から突出する複数のフィン522とを備えている。これらのフィン522は、押出成形の押出方向に沿ったフィン延長方向(図28において紙面に直交する方向)に延びる平板状をなし、フィン延長方向に直交するフィン配列方向(図28において左右方向)に間隙をあけて一列に配置されている。
 このフィン部材520は、例えば、フレーム530の第1フレーム部材531に対し、ベース521の表面521b(フィン522が配置されていない面)全体を溶接(例えばロウ付け)する。ところが、このような溶接方法では、溶接面が広いために、溶接時に発生したガスが、溶接部から外部に排出され難い。このため、図29に示すように、溶接後も、溶接部580内にガスが留まり、これによってボイド581(空隙)が生じることがあった。このボイド581は、第1フレーム部材531からフィン部材520への熱伝導の妨げになるため、十分な冷却性能を得られないことがあった。
 また、フィン部材による冷却性能を向上させるためには、フィンの突出高さを高くするのが好ましい。しかしながら、フィン部材520のようにフィン522の突出高さHを高くするのは、フィン部材を成形する押出成形型の強度を低下させる(詳細には、押出成形型のうちフィンを成形する部位が細長くなるため、この部位の強度が低下する)ことなる。このため、押出成形時に押出成形型が変形し、フィン部材の成形性が低下する虞があった。さらには、押出成形時に押出成形型が破損してしまう虞もあった。
 また、押出成形した直後のフィン部材は高温(例えば、600℃程度)であるため、これを冷却水等で冷却する。ところが、フィン部材520では、フィン522が冷えやすく、ベース521が冷えにくい。この冷えやすさの違いにより、図30に示すように、フィン部材520に反りが発生(湾曲)することがあった。
 本発明は、かかる現状に鑑みてなされたものであって、押出成形による成形性が良好で且つ反り(湾曲)が抑制されたフィン部材を有し、フィン部材とフレームとの溶接部におけるボイドの発生が抑制された熱交換器、及びその製造方法を提供することを目的とする。
 本発明の一態様は、外枠を形成するフレームの内部に、冷媒の流路を形成する複数のフィンを備えたフィン部材を配置した熱交換器において、上記フィン部材は、押出成形により一体成形されたフィン部材であって、矩形平板状のベースと、上記ベースの表面から突出する上記フィンであって、上記押出成形の押出方向に沿ったフィン延長方向に延びる平板状をなし、上記フィン延長方向に直交するフィン配列方向に間隙をあけて一列に配置された複数の表面側フィンと、上記ベースの裏面から突出する上記フィンであって、上記フィン延長方向に延びる平板状をなし、上記フィン配列方向に間隙をあけて一列に配置された複数の裏面側フィンと、を有し、上記フレームに対し、上記ベースの上記表面及び上記裏面が溶接されることなく、上記表面側フィン及び上記裏面側フィンの少なくともいずれか一方の先端部が溶接されてなる熱交換器である。
 上述の熱交換器では、押出成形により一体成形されたフィン部材として、矩形平板状のベースと、ベースの表面から突出する複数の表面側フィンと、ベースの裏面から突出する裏面側フィンとを有するフィン部材を用いている。このようなフィン部材では、ベース521の裏面521c(片面)のみからフィン522が突出するフィン部材520(図28参照)に比べて、押出成形による成形性が良好になる。その理由は、表面側フィンと裏面側フィンのベースからの突出高さの合計を、フィン522の突出高さHと等しくする(フィンの厚みは等しいとする)ことで、フィン部材による冷却性能を同等にすることができる一方、表面側フィン及び裏面側フィンのそれぞれの突出高さを、フィン522の突出高さHよりも低くすることができるからである。これにより、フィン部材を成形する押出成形型のうちフィンを成形する部位の長さを短くできるので、押出成形型(詳細には、押出成形型のうちフィンを成形する部位)の強度を高めることができる。このため、押出成形時に押出成形型が変形するのが抑制され、フィン部材の成形性が良好になる。
 また、矩形平板状のベースと、ベースの表面から突出する複数の表面側フィンと、ベースの裏面から突出する裏面側フィンとを有するフィン部材を、押出成形して冷却したとき、フィン部材520(図30参照)に比べて、反りの発生(湾曲)を抑制することができる。その理由は、上述のフィン部材では、冷えにくいベースの両側(表面側と裏面側)に、冷えやすいフィン(表面側フィンと裏面側フィン)を配置しているからである。これにより、ベースの表面側と裏面側とで、フィン部材の冷えやすさ(冷却速度)の差が小さくなるので、フィン部材の反り(湾曲)を抑制することができる。従って、上述フィン部材は、反り(湾曲)が抑制されたフィン部材となる。
 さらに、上述の熱交換器では、フレームに対し、ベースの表面及び裏面が溶接されることなく、表面側フィン及び裏面側フィンの少なくともいずれか一方の先端部が溶接されている。これにより、フレーム530に対し、ベース521の表面521b全体を溶接(例えばロウ付け)する場合(図29参照)に比べて、溶接面(溶接部)を極めて小さくすることができる。このため、フレームとフィン部材との溶接(例えばロウ付け)時には、発生したガスが溶接部から外部に排出され易くなるので、フィン部材とフレームとの溶接部におけるボイド(空隙)の発生を抑制することができる。従って、上述の熱交換器は、フィン部材とフレームとの溶接部におけるボイドの発生が抑制された熱交換器となる。これにより、フレームからフィン部材への熱伝導を良好にすることができる。
 また、熱交換器510(図28参照)では、フレーム530の第1フレーム部材531の外表面に、絶縁板60が溶接(例えばロウ付け)されている。フレーム530は、熱伝導性の高い材料(例えば、アルミニウム)を用いて形成されており、絶縁板60は、電気絶縁性を有する材料(例えば、アルミナ等のセラミック)を用いて形成されている。従って、フレーム530(第1フレーム部材531)と絶縁板60とでは、線膨張率が大きく異なる。このため、フレームと絶縁板との溶接(例えばロウ付け)時に、フレーム及び絶縁板が加熱された後冷却されたとき、フレームと絶縁板との収縮率(線膨張率)の差によって、反り(湾曲)が生じることがあった。特に、熱交換器510(図28参照)では、フレーム530の第1フレーム部材531とフィン部材520のベース521とが溶接(例えばロウ付け)により一体になっていることから、フレームのうち絶縁板が溶接される部位の強度が高くなっている。これにより、上述のような反り(湾曲)が生じ易くなっていた。
 これに対し、上述の熱交換器では、フレームに対し、ベースの表面及び裏面が溶接されることなく、表面側フィン及び裏面側フィンの少なくともいずれか一方の先端部が溶接されている。これにより、熱交換器510に比べて、フレームのうち絶縁板が溶接される部位の強度が低くなるので、上述のような反り(湾曲)を抑制することができる。
 なお、本願において、溶接とは、ロウ材を用いたロウ付け、ハンダを用いたハンダ付け、母材(接合対象部材)を溶融させて接合する方法等を含むものであり、加熱溶融して接合する方法をいう。
 さらに、上記の熱交換器であって、同一形状をなす複数の前記フィン部材が、互いに前記フィン延長方向を同一方向に向けて、上記フィン延長方向に沿った前記冷媒の流れ方向に間隙をあけて一列に配置されてなり、上記フィン部材は、前記フィン配列方向にかかる前記表面側フィンの配置間隔と前記裏面側フィンの配置間隔とが等しく一定であり、前記フィン延長方向に隣り合う上記フィン部材の上記表面側フィンは、上記配置間隔の半分だけ上記フィン配列方向にずれて配置され、上記フィン延長方向に隣り合う上記フィン部材の上記裏面側フィンは、上記配置間隔の半分だけ上記フィン配列方向にずれて配置されてなる熱交換器とすると良い。
 ところで、外枠を形成するフレームの内部に冷媒の流路を形成する複数のフィンを備えたフィン部材を配置した熱交換器について、フィン間を流れる冷媒の速度分布を調査したところ、フィンに近づくにつれて冷媒の速度が遅くなる傾向にあった。これは、冷媒の粘性の影響により、冷媒がフィンに引っ張られるためである。これにより、フィン付近には、他の領域に比べて冷媒の流れる速度が遅いか又は冷媒がほとんど停止した領域(以下、これを境界層ともいう)が形成される。この境界層が形成されると、集熱したフィンは、主にフィン周辺に形成された境界層内の冷媒のみと熱交換することになり、境界層以外の領域を流れる冷媒との熱交換がほとんど行われなくなる。その結果、熱交換器の内部を流れる冷媒と有効に熱交換が行われず、高い冷却効果を得ることができないという問題があった。
 これに対し、上述の熱交換器では、フィン延長方向に隣り合う(フィン延長方向に沿って延びる流路の上流側と下流側とに隣り合う)フィン部材の表面側フィンが、その配置間隔の半分だけフィン配列方向にずれて配置されている。換言すれば、フィン延長方向に隣り合うフィン部材の表面側フィンが、フィン配列方向にオフセットされている。さらに、フィン延長方向に隣り合うフィン部材の裏面側フィンも、その配置間隔の半分だけフィン配列方向にずれて配置されている。換言すれば、フィン延長方向に隣り合うフィン部材の裏面側フィンも、フィン配列方向にオフセットされている。
 これにより、流路(例えば、フィン部材の表面側の流路)を流れる冷媒を、下流側に位置するフィン部材の上流側端面(例えば、表面側フィンの上流側端面)に衝突させて、表面側フィンまたは裏面側フィンによって分岐する2つの流路(例えば、表面側フィンを挟んでフィン配列方向に隣り合う2つの流路)と、ベースを挟んで反対側(例えば、裏面側)に位置する流路とに分流させることができる。これにより、冷媒の流れに乱流を発生させて、境界層の形成を効果的に抑制することができる。これにより、熱交換器の内部を流れる冷媒を有効に活用して、高い冷却効果を得ることができる。
 さらに、前記の熱交換器であって、同一形状をなす複数の前記フィン部材が、互いに前記フィン延長方向を同一方向に向けて、上記フィン延長方向に沿った前記冷媒の流れ方向に間隙をあけて一列に配置されてなり、上記フィン部材は、前記フィン配列方向にかかる前記表面側フィンの配置間隔と前記裏面側フィンの配置間隔とが等しく一定で、上記表面側フィンと上記裏面側フィンとが、上記配置間隔の半分だけ上記フィン配列方向にずれて配置されたフィン部材であり、複数の上記フィン部材は、前記ベースの前記表面及び前記裏面の向きを交互に反対にして、前記冷媒の流れ方向に配列されてなる熱交換器とすると良い。
 上述の熱交換器では、フィン部材として、表面側フィンと裏面側フィンとがフィン配置間隔の半分だけフィン配列方向にずれて配置されたフィン部材を用いている。さらに、これらのフィン部材を、ベースの表面及び裏面の向きを交互に反対にして、冷媒の流れ方向(フィン延長方向)に配列している。これにより、フィン延長方向に隣り合うフィン部材の表面側フィンと裏面側フィンとを、その配置間隔の半分だけフィン配列方向にずらして配置させることができる。
 これにより、流路(例えば、フィン部材の表面側の流路)を流れる冷媒を、下流側に位置するフィン部材の上流側端面(例えば、表面側フィンの上流側端面)に衝突させて、表面側フィンまたは裏面側フィンによって分岐する2つの流路(例えば、表面側フィンを挟んでフィン配列方向に隣り合う2つの流路)と、ベースを挟んで反対側(例えば、裏面側)に位置する流路とに分流させることができる。これにより、冷媒の流れに乱流を発生させて、境界層の形成を効果的に抑制することができる。これにより、熱交換器の内部を流れる冷媒を有効に活用して、高い冷却効果を得ることができる。
 しかも、上述のようなフィン部材では、ベースについて表面側フィンと対称な位置に裏面側フィンが存在せず、さらには、ベースについて裏面側フィンと対称な位置に表面側フィンが存在しない。このため、ベースについて表面側フィンと対称な位置に裏面側フィンが存在するフィン部材を用いた熱交換器と比べて、流路(例えば、フィン部材の表面側の流路)を流れる冷媒が下流側に位置するフィン部材の上流側端面(例えば、表面側フィンの上流側端面)に衝突したとき、ベースを挟んで反対側(例えば、裏面側)に位置する流路に、冷媒が分流し易くなる。これにより、冷媒の乱流を促進させて、境界層の形成をより一層抑制することができる。
 さらに、上記いずれかの熱交換器であって、同一形状をなす複数の前記フィン部材が、互いに前記フィン延長方向を同一方向に向けて、上記フィン延長方向に沿った前記冷媒の流れ方向に一列に配置されてなり、上記フィン部材は、複数の前記表面側フィンが同一形状で、複数の前記裏面側フィンが同一形状で、上記表面側フィンの突出高さと上記裏面側フィンの突出高さとが異なるフィン部材であり、上記複数のフィン部材は、前記ベースの表面及び裏面の向きを交互に反対にして、上記冷媒の流れ方向に配置されてなる熱交換器とすると良い。
 上述の熱交換器では、フィン部材として、複数の表面側フィンが互いに同一形状で、複数の裏面側フィンが互いに同一形状で、表面側フィンの突出高さと裏面側フィンの突出高さとが異なるフィン部材を用いている。さらに、これらのフィン部材を、ベースの表面及び裏面の向きを交互に反対にして、冷媒の流れ方向(フィン延長方向)に配列している。これにより、フィン延長方向に隣り合うフィン部材において、フィン部材のベースをオフセットさせる(ベースの表面に直交する方向にベースをずらして配置する)ことができる。このため、流路を流れる冷媒が、下流側に位置するフィン部材のベースの上流側端面に衝突し易くなり、ベースを挟んで表面側と裏面側に位置する2つの流路に、冷媒が分流し易くなる。これにより、冷媒の乱流を促進させて、境界層の形成を抑制することができるので、熱交換器の内部を流れる冷媒を有効に活用して、高い冷却効果を得ることができる。
 また、前記いずれかの熱交換器であって、前記フィン部材は、前記表面側フィンと前記裏面側フィンとが前記ベースに関し対称なフィン部材である熱交換器とすると良い。
 上述の熱交換器では、フィン部材として、表面側フィンと裏面側フィンとがベースに関し対称なフィン部材を用いている。このようなフィン部材では、ベース521の裏面521c(片面)のみからフィン522が突出するフィン部材520(図28参照)に比べて、押出成形による成形性が特に良好になる。その理由は、表面側フィンと裏面側フィンのベースからの突出高さの合計を、フィン522の突出高さHと等しくする(フィンの厚みは等しいとする)ことで、フィン部材による冷却性能を同等にすることができる一方、表面側フィン及び裏面側フィンのそれぞれの突出高さを、フィン522の突出高さHの半分にすることができるからである。これにより、フィン部材を成形する押出成形型のうちフィンを成形する部位の長さを半分にできるので、押出成形型(詳細には、押出成形型のうちフィンを成形する部位)の強度を高めることができる。このため、押出成形時に押出成形型が変形するのが抑制され、フィン部材の成形性が良好になる。
 また、上述のフィン部材を押出成形して冷却したとき、反りの発生(湾曲)を防止することができる。その理由は、上述のフィン部材では、同一形状(従って、冷えやすさが同等)の表面側フィンと裏面側フィンとが、ベースについて対称な位置に配置されているからである。これにより、ベースの表面側と裏面側とで、フィン部材の冷えやすさが同等になるので、フィン部材の反り(湾曲)を防止することができる。従って、上述フィン部材は、反り(湾曲)が防止されたフィン部材となる。
 さらに、上記いずれかの熱交換器であって、同一形状をなす複数の前記フィン部材が、互いに前記フィン延長方向を同一方向に向けて、上記フィン延長方向に沿った前記冷媒の流れ方向に一列に配置されてなり、上記フィン部材は、前記表面側フィンと前記裏面側フィンとが、前記フィン配列方向の同一側に傾斜して突出するフィン部材であり、上記複数のフィン部材は、互いに、上記表面側フィン及び上記裏面側フィンが同一側に傾斜する向きで配置され、前記ベースの上記フィン配列方向にかかる一端面が、前記フレームの上記フィン配列方向にかかる一側壁の平坦な内壁面に当接してなる熱交換器とすると良い。
 上述の熱交換器は、同一形状をなす複数のフィン部材が、互いにフィン延長方向を同一方向に向けて、フィン延長方向に沿った冷媒の流れ方向に一列に配置された熱交換器である。このような熱交換器では、複数のフィン部材が、フィン配列方向(冷媒の流れ方向に直交する方向)に位置ズレすることなく、冷媒の流れ方向に真っ直ぐ一列に配列されることを要求されることがある。
 これに対し、上述の熱交換器では、フィン延長方向に沿った冷媒の流れ方向に一列に配置した複数のフィン部材について、ベースのフィン配列方向にかかる一端面を、フレームのフィン配列方向にかかる一側壁の平坦な内壁面に当接させている。これにより、冷媒の流れ方向に一列に配置した複数のフィン部材が、フレームの一側壁の平坦な内壁面に沿って、真っ直ぐ一列に配列される。従って、複数のフィン部材が、フィン配列方向(冷媒の流れ方向に直交する方向)に位置ズレすることなく、冷媒の流れ方向に真っ直ぐ一列に配列される。
 なお、複数のフィン部材について、ベースのフィン配列方向にかかる一端面を、フィン配列方向にかかるフレームの一側壁の平坦な内壁面に当接させる手法は、以下の通りである。フレームの内部に配置した複数のフィン部材について、フレームを通じて、表面側フィンの先端部をベースの表面側に押圧すると共に、裏面側フィンの先端部をベースの裏面側に押圧する。これにより、表面側フィン及び裏面側フィンを圧縮変形させて、表面側フィン及び裏面側フィンの基端部(ベース側の部位、先端部の反対側の部位)を、フィン配列方向のうち表面側フィン及び裏面側フィンが傾斜する側とは反対側に動かす力を作用することができる。これにより、ベースを、フィン配列方向のうち表面側フィン及び裏面側フィンが傾斜する側とは反対側に移動させて、ベースのフィン配列方向(詳細には、フィン配列方向のうち表面側フィン及び裏面側フィンが傾斜する側とは反対側)にかかる一端面を、フィン配列方向(詳細には、フィン配列方向のうち表面側フィン及び裏面側フィンが傾斜する側とは反対側)にかかるフレームの一側壁の平坦な内壁面に当接させることができる。
 本発明の他の態様は、外枠を形成するフレームの内部に、冷媒の流路を形成する複数のフィンを備えたフィン部材を配置した熱交換器の製造方法において、上記フィン部材を押出成形により一体成形する押出成形工程と、上記押出成形工程で成形された上記フィン部材を、上記フレームの内部に配置する配置工程と、上記フレームと当該フレームの内部に配置した上記フィン部材とを溶接する接合工程と、を有し、上記押出成形工程は、矩形平板状のベースと、上記ベースの表面から突出する上記フィンであって、上記押出成形の押出方向に沿ったフィン延長方向に延びる平板状をなし、上記フィン延長方向に直交するフィン配列方向に間隙をあけて一列に配置された複数の表面側フィンと、上記ベースの裏面から突出する上記フィンであって、上記押出成形の押出方向に沿った上記フィン延長方向に延びる平板状をなし、上記フィン配列方向に間隙をあけて一列に配置された複数の裏面側フィンと、を有するフィン部材を押出成形により一体成形し、上記接合工程は、上記フレームに対し、上記ベースの上記表面及び上記裏面を溶接することなく、上記表面側フィン及び上記裏面側フィンの少なくともいずれか一方の先端部を溶接する熱交換器の製造方法である。
 上述の製造方法では、平板状のベースと、ベースの表面から突出する複数の表面側フィンと、ベースの裏面から突出する裏面側フィンと、を有するフィン部材を、押出成形により一体成形する。このような形態のフィン部材を押出成形するのは、ベース521の裏面521c(片面)のみからフィン522が突出するフィン部材520(図28参照)を押出成形する場合に比べて、成形性を良好にすることができる。その理由は、前述の通りである。さらには、フィン部材を上記のような形態とすることで、フィン部材を押出成形して冷却したとき、フィン部材520(図30参照)に比べて、反りの発生(湾曲)を抑制することができる。その理由は、前述の通りである。
 さらに、上述の製造方法では、フレームに対し、ベースの表面及び裏面を溶接することなく、表面側フィン及び裏面側フィンの少なくともいずれか一方の先端部を溶接する。これにより、フレーム530に対しベース521の表面521b全体を溶接(例えばロウ付け)する場合(図29参照)に比べて、溶接面(溶接部)を極めて小さくすることができる。このため、フレームとフィン部材との溶接(例えばロウ付け)時に発生したガスが溶接部から外部に排出され易くなるので、フィン部材とフレームとの溶接部におけるボイド(空隙)の発生を抑制することができる。これにより、フレームからフィン部材への熱伝導を良好にすることができる。
 また、フレームに対し、ベースの表面及び裏面を溶接することなく、表面側フィン及び裏面側フィンの少なくともいずれか一方の先端部を溶接することで、前述のように、熱交換器510に比べて、フレームのうち絶縁板が溶接される部位の強度を低くすることができる。これにより、フレームと絶縁板との収縮率(線膨張率)の差によって生じる反り(湾曲)を抑制することができる。
 なお、接合工程における溶接方法としては、例えば、フレームとフィン部材とをロウ付けする方法、フレームとフィン部材とをハンダ付けする方法、フレームとフィン部材との接合部を溶融させて接合する方法(レーザ溶接、電子ビーム溶接、抵抗溶接等)などを挙げることができる。
 さらに、上記の熱交換器の製造方法であって、前記押出成形工程は、前記フィン配列方向にかかる前記表面側フィンの配置間隔と前記裏面側フィンの配置間隔とが等しく一定であるフィン部材を、押出成形により一体成形し、前記配置工程は、同一形状をなす複数の上記フィン部材を、互いに前記フィン延長方向を同一方向に向けて、上記フィン延長方向に沿った前記冷媒の流れ方向に間隙をあけて一列に配置する工程であって、上記フィン延長方向に隣り合う上記フィン部材の上記表面側フィンを、上記配置間隔の半分だけ上記フィン配列方向にずらして配置すると共に、上記フィン延長方向に隣り合う上記フィン部材の上記裏面側フィンを、上記配置間隔の半分だけ上記フィン配列方向にずらして配置する熱交換器の製造方法とすると良い。
 上述の製造方法では、フィン延長方向に隣り合う(フィン延長方向に沿って延びる流路の上流側と下流側とに隣り合う)フィン部材の表面側フィンを、その配置間隔の半分だけフィン配列方向にずらして配置している。換言すれば、フィン延長方向に隣り合うフィン部材の表面側フィンを、フィン配列方向にオフセットさせている。さらに、フィン延長方向に隣り合うフィン部材の裏面側フィンも、その配置間隔の半分だけフィン配列方向にずらして配置している。換言すれば、フィン延長方向に隣り合うフィン部材の裏面側フィンも、フィン配列方向にオフセットさせている。
 これにより、流路(例えば、フィン部材の表面側の流路)を流れる冷媒を、下流側に位置するフィン部材の上流側端面(例えば、表面側フィンの上流側端面)に衝突させて、表面側フィンまたは裏面側フィンによって分岐する2つの流路(例えば、表面側フィンを挟んでフィン配列方向に隣り合う2つの流路)と、ベースを挟んで反対側(例えば、裏面側)に位置する流路とに分流させることができる。このため、冷媒の流れに乱流を発生させて、境界層の形成を効果的に抑制することができる。これにより、熱交換器の内部を流れる冷媒を有効に活用して、高い冷却効果を得ることができる。
 さらに、前記の熱交換器の製造方法であって、前記押出成形工程は、前記フィン配列方向にかかる前記表面側フィンの配置間隔と前記裏面側フィンの配置間隔とが等しく一定で、上記表面側フィンと上記裏面側フィンとが上記配置間隔の半分だけ前記フィン配列方向にずれて配置されたフィン部材を、押出成形により一体成形し、前記配置工程は、同一形状をなす複数の上記フィン部材を、互いに前記フィン延長方向を同一方向に向けて、上記フィン延長方向に沿った前記冷媒の流れ方向に間隙をあけて一列に配置する工程であって、複数の上記フィン部材を、前記ベースの前記表面及び前記裏面の向きを交互に反対にして、上記冷媒の流れ方向に真っ直ぐ一列に配列する熱交換器の製造方法とすると良い。
 上述の製造方法では、表面側フィンと裏面側フィンとがフィン配置間隔の半分だけフィン配列方向にずれて配置されたフィン部材を、押出成形により一体成形する。さらに、これらのフィン部材を、ベースの表面及び裏面の向きを交互に反対にして、冷媒の流れ方向(フィン延長方向)に真っ直ぐ一列に配列する。これにより、フィン延長方向に隣り合うフィン部材の表面側フィンと裏面側フィンとを、その配置間隔の半分だけフィン配列方向にずらして配置することができる。
 これにより、流路(例えば、フィン部材の表面側の流路)を流れる冷媒を、下流側に位置するフィン部材の上流側端面(例えば、表面側フィンの上流側端面)に衝突させて、表面側フィンまたは裏面側フィンによって分岐する2つの流路(例えば、表面側フィンを挟んでフィン配列方向に隣り合う2つの流路)と、ベースを挟んで反対側(例えば、裏面側)に位置する流路とに分流させることができる。これにより、冷媒の流れに乱流を発生させて、境界層の形成を効果的に抑制することができる。これにより、熱交換器の内部を流れる冷媒を有効に活用して、高い冷却効果を得ることができる。
 しかも、上述のようなフィン部材では、ベースについて表面側フィンと対称な位置に裏面側フィンが存在せず、さらには、ベースについて裏面側フィンと対称な位置に表面側フィンが存在しない。このため、ベースについて表面側フィンと対称な位置に裏面側フィンが存在するフィン部材を用いた熱交換器と比べて、流路(例えば、フィン部材の表面側の流路)を流れる冷媒が下流側に位置するフィン部材の上流側端面(例えば、表面側フィンの上流側端面)に衝突したとき、ベースを挟んで反対側(例えば、裏面側)に位置する流路に、冷媒が分流し易くなる。これにより、冷媒の乱流を促進させて、境界層の形成をより一層抑制することができる。
 さらに、上記いずれかの熱交換器の製造方法であって、前記押出成形工程は、複数の前記表面側フィンが同一形状で、複数の前記裏面側フィンが同一形状で、上記表面側フィンの突出高さと上記裏面側フィンの突出高さとが異なるフィン部材を、押出成形により一体成形し、前記配置工程は、同一形状をなす複数の上記フィン部材を、互いに前記フィン延長方向を同一方向に向けて、上記フィン延長方向に沿った前記冷媒の流れ方向に間隙をあけて一列に配置する工程であって、複数の上記フィン部材を、前記ベースの前記表面及び前記裏面の向きを交互に反対にして、上記冷媒の流れ方向に配列する熱交換器の製造方法とすると良い。
 上述の製造方法では、複数の表面側フィンが互いに同一形状で、複数の裏面側フィンが互いに同一形状で、表面側フィンの突出高さと裏面側フィンの突出高さとが異なるフィン部材を、押出成形により一体成形する。さらに、これらのフィン部材を、ベースの表面及び裏面の向きを交互に反対にして、冷媒の流れ方向(フィン延長方向)に配列する。これにより、フィン延長方向に隣り合うフィン部材において、フィン部材のベースをオフセットさせる(ベースの表面に直交する方向にベースをずらして配置する)ことができる。このため、流路を流れる冷媒が、下流側に位置するフィン部材のベースの上流側端面に衝突し易くなり、ベースを挟んで表面側と裏面側に位置する2つの流路に、冷媒が分流し易くなる。これにより、冷媒の乱流を促進させて、境界層の形成を抑制することができるので、熱交換器の内部を流れる冷媒を有効に活用して、高い冷却効果を得ることができる。
 また、前記いずれかの熱交換器の製造方法であって、前記押出成形工程は、前記表面側フィンと前記裏面側フィンとが前記ベースに関し対称なフィン部材を、押出成形により一体成形する熱交換器の製造方法とすると良い。
 上述の製造方法では、表面側フィンと裏面側フィンとがベースに関し対称なフィン部材を、押出成形により一体成形する。このようなフィン部材では、ベース521の裏面521c(片面)のみからフィン522が突出するフィン部材520(図28参照)に比べて、押出成形による成形性が特に良好になる。その理由は、前述の通りである。
 また、上述のフィン部材を押出成形して冷却したとき、反りの発生(湾曲)を防止することができる。その理由は、前述の通りである。
 さらに、上記いずれかの熱交換器の製造方法であって、前記押出成形工程は、前記表面側フィンと前記裏面側フィンとが前記フィン配列方向の同一側に傾斜して突出するフィン部材を、押出成形により一体成形し、前記配置工程は、同一形状をなす複数の上記フィン部材を、互いに前記フィン延長方向を同一方向に向けて、上記フィン延長方向に沿った前記冷媒の流れ方向に一列に配置する工程であって、上記複数のフィン部材を、互いに、上記表面側フィン及び上記裏面側フィンが同一側に傾斜する向きで、上記フレームの内部に配置し、前記接合工程は、上記フレームを通じて、上記フレームの内部に位置する上記複数のフィン部材について、上記表面側フィンの前記先端部を前記ベースの前記表面側に押圧すると共に、上記裏面側フィンの前記先端部を前記ベースの前記裏面側に押圧し、上記ベースの上記フィン配列方向にかかる一端面を、上記フレームの上記フィン配列方向にかかる一側壁の平坦な内壁面に当接させた状態で、上記フレームと上記フィン部材とを溶接する熱交換器の製造方法とすると良い。
 上述の製造方法では、配置工程において、同一形状をなす複数のフィン部材を、互いにフィン延長方向を同一方向に向けて、フィン延長方向に沿った冷媒の流れ方向に一列に配置する。このような配置工程では、複数のフィン部材が、フィン配列方向(冷媒の流れ方向に直交する方向)に位置ズレすることなく、冷媒の流れ方向に真っ直ぐ一列に配列されることを要求されることがある。
 これに対し、上述の製造方法では、表面側フィンと裏面側フィンとがフィン配列方向の同一側に傾斜して突出するフィン部材を、押出成形により一体成形する。そして、これらのフィン部材を、互いに、表面側フィン及び裏面側フィンが同一側に傾斜する向きで、フレームの内部に配置する。その後、フレームの内部に配置した複数のフィン部材について、フレームを通じて、表面側フィンの先端部をベースの表面側に押圧すると共に、裏面側フィンの先端部をベースの裏面側に押圧する。
 これにより、表面側フィン及び裏面側フィンを圧縮変形させて、表面側フィン及び裏面側フィンの基端部(ベース側の部位、先端部の反対側の部位)を、フィン配列方向のうち表面側フィン及び裏面側フィンが傾斜する側とは反対側に動かす力を作用することができる。これにより、ベースを、フィン配列方向のうち表面側フィン及び裏面側フィンが傾斜する側とは反対側に移動させて、ベースのフィン配列方向(詳細には、フィン配列方向のうち表面側フィン及び裏面側フィンが傾斜する側とは反対側)にかかる一端面を、フィン配列方向(詳細には、フィン配列方向のうち表面側フィン及び裏面側フィンが傾斜する側とは反対側)にかかるフレームの一側壁の平坦な内壁面に当接させることができる。
 これにより、冷媒の流れ方向に一列に配置した複数のフィン部材を、フレームの一側壁の平坦な内壁面に沿って、真っ直ぐ一列に配列することができる。上述の製造方法では、この状態で、フレームとフィン部材とを溶接するので、「複数のフィン部材が、フィン配列方向(冷媒の流れ方向に直交する方向)に位置ズレすることなく、冷媒の流れ方向に真っ直ぐ一列に配列された熱交換器」を製造することができる。
実施例1にかかる熱交換器の斜視図である。 同熱交換器のフィン部材の斜視図である。 実施例1にかかる押出成形工程を説明する図である。 実施例1にかかる押出成形型の断面図である。 実施例1にかかる押出成形工程を説明する図である。 実施例1にかかる配置工程及び接合工程を説明する図(断面図)である。 実施例1にかかる接合工程を説明する図であり、図6のM部拡大図に相当する。 実施例1にかかる半導体装置の斜視図である。 実施例2にかかる熱交換器の斜視図である。 同熱交換器の断面図である。 同熱交換器における冷媒(冷却水)の流れを説明する図である。 実施例3にかかる熱交換器の斜視図である。 同熱交換器のフィン部材の斜視図である。 同熱交換器の断面図である。 同熱交換器における冷媒(冷却水)の流れを説明する図である。 実施例3にかかる押出成形工程を説明する図である。 実施例4にかかる熱交換器の斜視図である。 同熱交換器のフィン部材の斜視図である。 同熱交換器における冷媒(冷却水)の流れを説明する図である。 実施例4にかかる押出成形工程を説明する図である。 実施例5にかかる熱交換器の斜視図である。 同熱交換器のフィン部材の正面図である。 同熱交換器の断面図である。 実施例5にかかる押出成形工程を説明する図である。 実施例5にかかる配置工程を説明する図である。 実施例5にかかる配置工程を説明する図である。 実施例5にかかる接合工程を説明する図である。 本発明とは異なる熱交換器の断面図である。 同熱交換器におけるボイドの発生を説明する図であり、図28のQ部拡大図に相当する。 同熱交換器におけるフィン部材の反り(湾曲)の様子を示す図である。
(実施例1)
 次に、本発明の実施例1について、図面を参照しつつ説明する。
 本実施例1の熱交換器10は、図1に示すように、外枠を形成するフレーム30と、フレーム30内に収容されたフィン部材20とを備えている。フレーム30とフィン部材20とは、ロウ付けにより接合されている。
 なお、図1において、A方向は、熱交換器10の内部を流れる冷媒(例えば、水)の流れ方向を示している。また、C方向は、フィン部材20のフィン延長方向、D方向は、フィン延長方向Cに直交する方向であって、フィン部材20のフィン配列方向を示している。なお、A方向は、C方向に沿った方向である。
 フィン部材20は、アルミニウムからなり、図2に示すように、矩形平板状をなすベース21と、ベース21の表面21bから突出する複数(本実施例1では10個)の表面側フィン22と、ベース21の裏面21cから突出する複数(本実施例1では10個)の裏面側フィン23とを有している。このフィン部材20は、押出成形により一体成形されている。表面側フィン22は、押出成形の押出方向に沿ったフィン延長方向Cに延びる矩形平板状をなし、フィン延長方向Cに直交するフィン配列方向Dに一定の間隙をあけて一列に配置されている。裏面側フィン23も、フィン延長方向Cに延びる矩形平板状(表面側フィン22と同一形状)をなし、フィン延長方向Cに直交するフィン配列方向Dに一定の間隙をあけて一列に配置されている。
 なお、表面側フィン22の配置間隔(ピッチ)と裏面側フィン23の配置間隔(ピッチ)とは、等しい配置間隔Pとされている。また、表面側フィン22の厚みと裏面側フィン23の厚みとは、等しい厚みWとされている。このフィン部材20では、フィン配列方向Dに隣り合う表面側フィン22の間、及びフィン配列方向Dに隣り合う裏面側フィン23の間に、一定の幅を有し、フィン延長方向Cに沿った冷媒の流れ方向Aへと冷媒を導く冷媒の流路25が形成される。
 このようなフィン部材20では、ベース521の裏面521c(片面)のみからフィン522が突出するフィン部材520(図28参照)に比べて、押出成形による成形性が良好になる。その理由は、表面側フィン22と裏面側フィン23のベース21からの突出高さの合計(H1+H2)を、フィン522の突出高さHと等しくする(フィンの厚みWは等しいとする)ことで、フィン部材による冷却性能を同等にすることができる一方、表面側フィン22及び裏面側フィン23のそれぞれの突出高さH1,H2を、フィン522の突出高さHよりも低くすることができるからである。これにより、フィン部材を成形する押出成形型(詳細には、押出成形型のうちフィンを成形する部位)の強度を高めることができるので、押出成形時に押出成形型が変形するのが抑制され、フィン部材の成形性が良好になる。
 しかも、本実施例1のフィン部材20は、表面側フィン22と裏面側フィン23とがベース21に関し対称(図2において上下対称)な形態である。このようなフィン部材20では、ベース521の裏面521c(片面)のみからフィン522が突出するフィン部材520(図28参照)に比べて、押出成形による成形性が特に良好になる。その理由は、表面側フィン22と裏面側フィン23のベースからの突出高さの合計(H1+H2)を、フィン522の突出高さHと等しくする(フィンの厚みWは等しいとする)ことで、フィン部材による冷却性能を同等にすることができる一方、表面側フィン22及び裏面側フィン23のそれぞれの突出高さH1,H2を、フィン522の突出高さHの半分にすることができるからである。これにより、フィン部材を成形する押出成形型(詳細には、押出成形型のうちフィンを成形する部位)の強度を高めることができるので、押出成形時に押出成形型が変形するのが抑制され、フィン部材の成形性が良好になる。
 また、本実施例1のフィン部材20は、フィン部材520(図30参照)に比べて、反り(湾曲)が抑制されたフィン部材となる。フィン部材を押出成形して冷却したとき、フィン部材520(図30参照)に比べて、反りの発生(湾曲)を抑制することができるからである。その理由は、本実施例1のフィン部材20では、冷えにくいベース21の両側(表面21b側と裏面21c側)に、冷えやすいフィン(表面側フィン22と裏面側フィン23)を配置しているからである。これにより、ベース21の表面21b側と裏面21c側とで、フィン部材の冷えやすさ(冷却速度)の差が小さくなるので、フィン部材の反り(湾曲)を抑制することができる。
 特に、本実施例1では、フィン部材20を、表面側フィン22と裏面側フィン23とがベース21に関し対称(図2において上下対称)な形態としている。すなわち、同一形状(従って、冷えやすさが同等)の表面側フィン22と裏面側フィン23を、ベース21について対称な位置に配置している。これにより、ベース21の表面21b側と裏面21c側とで、フィン部材の冷えやすさが同等になるので、フィン部材の反り(湾曲)を防止することができる。従って、本実施例1のフィン部材20は、反り(湾曲)が防止されたフィン部材となる。
 フレーム30は、矩形平板状をなすアルミニウム製の第1フレーム部材31と、断面コ字状をなすアルミニウム製の第2フレーム部材32とを有している(図1、図6参照)。第1フレーム部材31と第2フレーム部材32とは、ロウ付けにより接合されている。これにより、フレーム30は、矩形筒状をなす。このフレーム30では、長手方向(A方向に一致する方向)の一端が、冷媒を導入する導入口30aとなり、長手方向(A方向に一致する方向)の他端が、冷媒を排出する排出口30bとなる。
 さらに、本実施例1の熱交換器10では、フィン部材20が、表面側フィン22の先端部22bにおいて、フレーム30の第1フレーム部材31に溶接(本実施例1ではロウ付け)されている(図7参照)。すなわち、フレーム30に対し、ベース21の表面21b及び裏面21cが溶接されることなく、表面側フィン22の先端部22bが溶接(本実施例1ではロウ付け)されている。
 これにより、フレーム530に対し、ベース521の表面521b全体を溶接(例えばロウ付け)する場合(図29参照)に比べて、溶接面(溶接部81)を極めて小さくすることができる。このため、フレーム30とフィン部材20との溶接(例えばロウ付け)時には、発生したガス81が溶接部80から外部に排出され易くなるので、フィン部材20とフレーム30との溶接部80におけるボイド(空隙)の発生を抑制することができる。従って、本実施例1の熱交換器10は、フィン部材20とフレーム30との溶接部80におけるボイドの発生が抑制された熱交換器となる。これにより、フレーム30からフィン部材20への熱伝導を良好にすることができる。
 本実施例1の熱交換器10は、例えば、半導体素子の冷却に用いることができる。具体的には、例えば、図8に示すように、熱交換器10と、第1フレーム部材31の外面31fの4箇所に配置された絶縁板60と、絶縁板60の表面に配置された半導体素子71~74とにより、半導体装置1を構成する。絶縁板60は、電気絶縁性を有する部材(例えば、アルミナ等のセラミック)からなり、矩形平板状をなしている。4個の絶縁板60は、等しい間隙をあけて、第1フレーム部材31の長手方向(A方向に一致する方向)に一列に並んでいる。これらの絶縁板60は、ロウ付けにより、第1フレーム部材31の外面31fに接合されている。半導体素子71~74は、絶縁板60の表面にハンダ付けされている。
 ところで、絶縁板60とフレーム30(第1フレーム部材31)とでは、線膨張率が異なる。具体的には、例えば、アルミナからなる絶縁板60を用いた場合、その線膨張率は約7×10-6/℃である。一方、アルミニウムからなるフレーム30(第1フレーム部材31)の線膨張率は、約23×10-6/℃である。この例の場合、フレーム30(第1フレーム部材31)の線膨張率は、絶縁板60の線膨張率の3倍以上となる。
 このため、アルミナからなる絶縁板とアルミニウムからなるフレーム(第1フレーム部材)との溶接(例えばロウ付け)時に、フレーム及び絶縁板が加熱された後冷却されたとき、フレームと絶縁板との収縮率(線膨張率)の差によって、反り(湾曲)が生じることがあった。特に、熱交換器510(図28参照)では、フレーム530の第1フレーム部材531とフィン部材520のベース521とが溶接(例えばロウ付け)により一体になっていることから、フレームのうち絶縁板が溶接される部位の強度が高くなっている。これにより、上述のような反り(湾曲)が生じ易くなっていた。
 これに対し、本実施例1の熱交換器10では、前述のように、フレーム30に対し、ベース21の表面21b及び裏面21cが溶接されることなく、表面側フィン22の先端部22bが溶接(本実施例1ではロウ付け)されている(図6参照)。これにより、熱交換器510に比べて、フレームのうち絶縁板が溶接される部位の強度が低くなるので、上述のような反り(湾曲)を抑制することができる。なお、図6は、熱交換器10をA方向に直交する方向に切断した断面図である。
 ここで、本実施例1の熱交換器10による冷却作用を、半導体装置1(図8参照)について説明する。半導体素子71~74は、使用に伴って発熱する。これらの熱は、絶縁板60を通じて、フレーム30(第1フレーム部材31)に伝えられ、さらに、フレーム30の内部に収納されているフィン部材20の表面側フィン22及び裏面側フィン23に伝えられる。
 フレーム30の内部には、図8に矢印で示すように、導入口30aを通じて冷媒(例えば、水)が連続的に導入される。フレーム30の内部に導入された冷媒は、フィン配列方向Dに沿った方向に隣り合う表面側フィン22の間及び裏面側フィン23の間に形成される流路25を、A方向(フィン延長方向Cに沿った方向)に流れてゆく。
 これにより、フィン部材20の表面側フィン22の間及び裏面側フィン23は、流路25を流れる冷媒と熱交換を行うことができる。すなわち、半導体素子71~74から表面側フィン22の間及び裏面側フィン23に伝えられた熱を、流路25を流れる冷媒に放出することができる。流路25を流れつつ表面側フィン22の間及び裏面側フィン23の熱を吸収した冷媒は、排出口30bを通じてフレーム30の外部に排出される。このようにして、発熱した半導体素子71~74を、適切に冷却することができる。
 次に、本実施例1にかかる熱交換器10の製造方法について説明する。
 まず、押出成形工程において、フィン部材20を押出成形により一体成形する。具体的には、図3に示すように、貫通孔51bを有する押出成形型51を備える押出成形機50を用いて、加熱により軟化させたアルミニウムを押出し、冷却して、フィン部材20を一体成形する。これにより、矩形平板状をなすベース21と、ベース21の表面21bから突出する複数(本実施例1では10個)の表面側フィン22と、ベース21の裏面21cから突出する複数(本実施例1では10個)の裏面側フィン23とを有するフィン部材20を得ることができる。なお、押出成形型51の貫通孔51bは、図4に示すように、フィン部材20の断面(フィン部材20をフィン延長方向Cに直交する方向に切断した断面、図6参照)に対応する形状をなしている。
 このような形態のフィン部材20を押出成形するのは、ベース521の裏面521c(片面)のみからフィン522が突出するフィン部材520(図28参照)を押出成形する場合に比べて、成形性を良好にすることができる。その理由は、表面側フィン22と裏面側フィン23のベース21からの突出高さの合計(H1+H2)を、フィン522の突出高さHと等しくする(フィンの厚みWは等しいとする)ことで、フィン部材による冷却性能を同等にすることができる一方、表面側フィン22及び裏面側フィン23のそれぞれの突出高さH1,H2を、フィン522の突出高さHよりも低くすることができるからである。特に、本実施例1では、フィン部材20を、表面側フィン22と裏面側フィン23とがベース21に関し対称(図2において上下対称)な形態とすることで、表面側フィン22及び裏面側フィン23のそれぞれの突出高さH1,H2を、フィン522の突出高さHの半分にすることができる。これにより、押出成形型51のうちフィンを成形する部位51cの長さを短く(フィン部材520の押出成形型の半分に)できるので、押出成形型51の強度を高めることができる。このため、押出成形時に押出成形型51が変形するのが抑制され、フィン部材20の成形性が良好になる。
 また、フィン部材20を、上述のような形態とすることで、アルミニウムを押出して冷却したとき、フィン部材520(図30参照)に比べて、反りの発生(湾曲)を抑制することができる(図5参照)。その理由は、本実施例1のフィン部材20では、冷えにくいベース21の両側(表面21b側と裏面21c側)に、冷えやすいフィン(表面側フィン22と裏面側フィン23)を配置しているからである。特に、本実施例1では、フィン部材20を、表面側フィン22と裏面側フィン23とがベース21に関し対称(図2において上下対称)な形態としている。すなわち、同一形状(従って、冷えやすさが同等)の表面側フィン22と裏面側フィン23を、ベース21について対称な位置に配置している。これにより、ベース21の表面21b側と裏面21c側とで、フィン部材の冷えやすさが同等になるので、図5に示すように、フィン部材20の反り(湾曲)を防止することができる。
 また、アルミニウム製で矩形平板状の第1フレーム部材31と、アルミニウム製で断面コの字状の第2フレーム部材32とを用意する。なお、第2フレーム部材32は、矩形平板状のアルミニウム板を、コの字状にプレス加工することで製造できる。
 次に、配置工程に進み、図6に示すように、フィン部材20を、第1フレーム部材31と第2フレーム部材32とからなるフレーム30の内部に配置する。具体的には、4つのフィン部材20を、第2フレーム部材32の底面32h上に一列に配置する。詳細には、4つのフィン部材20を、互いにフィン延長方向Cを同一方向に向けて、フィン延長方向Cに沿った冷媒の流れ方向Aに、一定の間隙をあけて一列に配置する(図1参照)。その後、第1フレーム部材31で蓋をするように、第1フレーム部材31を第2フレーム部材の上端面32d上に配置する(図6参照)。このとき、表面側フィン22の先端部22bと第1フレーム部材31の内面31hとが接触する。なお、第1フレーム部材31の内面31h及び第2フレーム部材の上端面32dには、予めロウ材(融点600℃)が塗布されている。
 その後、接合工程に進み、配置工程においてフィン部材20、第1フレーム部材31、及び第2フレーム部材32を組み合わせたもの(組み合わせ体)を、電気炉(図示なし)内に収容する。次いで、電気炉内の温度を600℃にまで上昇させて、ロウ材を溶融させる。その後、組み合わせ体を電気炉内から取り出し、冷却して、ロウ材を硬化させる。これにより、フィン部材20、第1フレーム部材31、及び第2フレーム部材32を、ロウ付けにより接合することができる。このようにして、本実施例1の熱交換器10が完成する。
 ところで、本実施例1では、フィン部材20を、表面側フィン22の先端部22bにおいて、フレーム30の第1フレーム部材31に溶接(本実施例1ではロウ付け)している(図6、図7参照)。すなわち、フレーム30に対し、ベース21の表面21b及び裏面21cを溶接することなく、表面側フィン22の先端部22bを溶接(本実施例1ではロウ付け)している。
 これにより、フレーム530に対し、ベース521の表面521b全体を溶接(例えばロウ付け)する場合(図29参照)に比べて、溶接面(溶接部81)を極めて小さくすることができる。このため、図7に示すように、フレーム30とフィン部材20との溶接(例えばロウ付け)時に、発生したガス81が溶接部80から外部に排出され易くなるので、フィン部材20とフレーム30との溶接部80におけるボイド(空隙)の発生を抑制することができる。これにより、本実施例1の熱交換器10では、フレーム30からフィン部材20への熱伝導を良好にすることができる。
(実施例2)
 次に、本発明の実施例2について、図面を参照しつつ説明する。
 本実施例2の熱交換器110(図9参照)は、実施例1の熱交換器10と比較して、フィン部材20の配列形態が異なり、その他については同様である。従って、ここでは、実施例1と異なる点を中心に説明し、同様な点については説明を省略または簡略化する。
 本実施例2の熱交換器110では、実施例1の熱交換器10と同様に、4つのフィン部材20を、互いにフィン延長方向Cを同一方向に向けて、フィン延長方向Cに沿った冷媒の流れ方向Aに、一定の間隙をあけて一列に配置している(図9参照)。しかしながら、実施例1の熱交換器10と異なり、フィン延長方向C(図10において上下方向)に隣り合うフィン部材20を、フィン配列方向D(図10において左右方向)にずらして配置している(図9及び図10参照)。なお、図10は、熱交換器110を、第1フレーム部材31とフィン部材20のベース21との間の位置で、冷媒の流れ方向Aに沿って切断した断面図である。
 詳細には、フィン延長方向Cに隣り合う(フィン延長方向Dに沿って延びる流路25の上流側(図10において下側)と下流側(図10において上側)とに隣り合う)フィン部材20の表面側フィン22が、その配置間隔Pの半分だけフィン配列方向D(図10において左右方向)にずれて配置されている。換言すれば、フィン延長方向C(図10において上下方向)に隣り合うフィン部材20の表面側フィン22が、フィン配列方向Dにオフセットされている。同様に、フィン延長方向Cに隣り合うフィン部材20の裏面側フィン23も、その配置間隔Pの半分だけフィン配列方向Dにずれて配置されている。換言すれば、フィン延長方向Cに隣り合うフィン部材20の裏面側フィン23も、フィン配列方向Dにオフセットされている。
 ところで、外枠を形成するフレームの内部に冷媒の流路を形成する複数のフィンを備えたフィン部材を配置した熱交換器について、フィン間を流れる冷媒の速度分布を調査したところ、フィンに近づくにつれて冷媒の速度が遅くなる傾向にあった。これは、冷媒の粘性の影響により、冷媒がフィンに引っ張られるためである。これにより、フィン付近には、他の領域に比べて冷媒の流れる速度が遅いか又は冷媒がほとんど停止した領域(以下、これを境界層ともいう)が形成される。この境界層が形成されると、集熱したフィンは、主にフィン周辺に形成された境界層内の冷媒のみと熱交換することになり、境界層以外の領域を流れる冷媒との熱交換がほとんど行われなくなる。その結果、熱交換器の内部を流れる冷媒と有効に熱交換が行われず、高い冷却効果を得ることができないという問題があった。
 これに対し、本実施例2の熱交換器110では、上述のように、フィン延長方向Cに隣り合うフィン部材20の表面側フィン22が、その配置間隔Pの半分だけフィン配列方向D(図10において左右方向)にずれて配置されている。同様に、フィン延長方向Cに隣り合うフィン部材20の裏面側フィン23も、その配置間隔Pの半分だけフィン配列方向Dにずれて配置されている。
 これにより、図10及び図11に矢印で示すように、フィン部材20のベース21の表面21b側の流路25を流れる冷媒を、下流側(図10において上側)に位置するフィン部材20の表面側フィン22の上流側端面22cに衝突させて、表面側フィン22によって分岐する2つの流路25b,25c(表面側フィン22を挟んでフィン配列方向Dに隣り合う2つの流路25b,25c)と、ベース21を挟んで裏面21c側に位置する流路25d,25e(図11参照)とに分流させることができる。これにより、冷媒の流れに乱流を発生させて、境界層の形成を効果的に抑制することができる。さらに、フィン部材20のベース21の裏面21b側の流路25を流れる冷媒についても、ベース21の表面21b側の流路25を流れる冷媒と同様にして、冷媒の流れに乱流を発生させて、境界層の形成を効果的に抑制することができる。これにより、熱交換器110の内部を流れる冷媒を有効に活用して、高い冷却効果を得ることができる。
 次に、本実施例2にかかる熱交換器110の製造方法について説明する。
 まず、実施例1と同様に、押出成形工程において、フィン部材20を押出成形により一体成形する(図3参照)。また、実施例1と同様に、アルミニウム製で矩形平板状の第1フレーム部材31と、アルミニウム製で断面コの字状の第2フレーム部材32とを用意する。
 次に、配置工程に進み、図9及び図10に示すように、フィン部材20を、第1フレーム部材31と第2フレーム部材32とからなるフレーム30の内部に配置する。具体的には、4つのフィン部材20を、第2フレーム部材32の底面32h上に一列に配置する。詳細には、4つのフィン部材20を、互いにフィン延長方向Cを同一方向に向けて、フィン延長方向Cに沿った冷媒の流れ方向Aに、一定の間隙をあけて一列に配置する(図9及び図10参照)。
 但し、フィン延長方向C(図10において上下方向)に隣り合うフィン部材20を、フィン配列方向D(図10において左右方向)にずらして配置する(図9及び図10参照)。詳細には、フィン延長方向Cに隣り合うフィン部材20の表面側フィン22及び裏面側フィン23が、その配置間隔Pの半分だけフィン配列方向D(図10において左右方向)にずれるように、4つのフィン部材20をフィン延長方向Cに配列する。その後、第1フレーム部材31で蓋をするように、第1フレーム部材31を第2フレーム部材の上端面32d上に配置する(図9参照)。このとき、表面側フィン22の先端部22bと第1フレーム部材31の内面31hとが接触する。なお、第1フレーム部材31の内面31h及び第2フレーム部材の上端面32dには、予めロウ材(融点600℃)が塗布されている。
 その後、接合工程に進み、実施例1と同様にして、フィン部材20、第1フレーム部材31、及び第2フレーム部材32を、ロウ付けにより接合する。このようにして、本実施例2の熱交換器110が完成する。
 本実施例2の熱交換器110も、実施例1の熱交換器10と同様にして、半導体素子の冷却に用いることができる。具体的には、例えば、第1フレーム部材31の外面31fに、絶縁板60を挟んで半導体素子71~74を配置(図8参照)して、半導体装置を構成する。これにより、熱交換器110によって半導体素子71~74を冷却することができる。
(実施例3)
 次に、本発明の実施例3について、図面を参照しつつ説明する。
 本実施例3の熱交換器210(図12参照)は、実施例1の熱交換器10と比較して、フィン部材及びその配列形態が異なり、その他については同様である。従って、ここでは、実施例1と異なる点を中心に説明し、同様な点については説明を省略または簡略化する。
 本実施例3のフィン部材220は、アルミニウムからなり、矩形平板状をなすベース221と、ベース221の表面221bから突出する複数(本実施例3では10個)の表面側フィン222と、ベース221の裏面221cから突出する複数(本実施例3では10個)の裏面側フィン223とを有している(図13参照)。このフィン部材220も、実施例1のフィン部材20と同様に、押出成形により一体成形されている。
 但し、このフィン部材220では、図13に示すように、実施例1のフィン部材20と異なり、表面側フィン222と裏面側フィン223とが、その配置間隔Pの半分だけフィン配列方向Dにずれて配置されている。
 本実施例3の熱交換器で210では、上述の形態のフィン部材220を、ベース221の表面221b及び裏面221cの向きを交互に反対にして、冷媒の流れ方向A(フィン延長方向C)に真っ直ぐ一列に配列している(図12、図14参照)。これにより、フィン延長方向C(図14において上下方向)に隣り合うフィン部材220の表面側フィン222と裏面側フィン223とを、その配置間隔Pの半分だけフィン配列方向D(図14において左右方向)にずらして配置させることができる。なお、図14は、熱交換器210を、第1フレーム部材31とフィン部材220のベース221との間の位置で、冷媒の流れ方向Aに沿って切断した断面図である。
 これにより、図14及び図15に矢印で示すように、フィン部材220のベース221の裏面221c側の流路225を流れてきた冷媒を、下流側(図14において上側)に位置するフィン部材220の表面側フィン222の上流側端面222cに衝突させて、表面側フィン222によって分岐する2つの流路225b,225c(表面側フィン222を挟んでフィン配列方向Dに隣り合う2つの流路225b,225c)と、ベース221を挟んで裏面221c側に位置する流路225d(図15参照)とに分流させることができる。これにより、冷媒の流れに乱流を発生させて、境界層の形成を効果的に抑制することができる。さらに、フィン部材220のベース221の表面221b側の流路225を流れてきた冷媒についても、ベース221の裏面221c側の流路225を流れてきた冷媒と同様に、冷媒の流れに乱流を発生させて、境界層の形成を効果的に抑制することができる。これにより、熱交換器210の内部を流れる冷媒を有効に活用して、高い冷却効果を得ることができる。
 しかも、本実施例3のフィン部材220では、ベース221について表面側フィン222と対称な位置(図13及び図15において真下の位置)に裏面側フィン223が存在せず、さらには、ベース221について裏面側フィン223と対称な位置(図13及び図15において真上の位置)に表面側フィン222が存在しない。このため、ベースについて表面側フィンと対称な位置に裏面側フィンが存在するフィン部材(例えば、フィン部材20)を用いた熱交換器(例えば、実施例2の熱交換器110)と比べて、流路225(例えば、フィン部材220のベース221の裏面221c側の流路225)を流れてきた冷媒が下流側に位置するフィン部材220の上流側端面(例えば、表面側フィン222の上流側端面222c)に衝突したとき、ベース221を挟んで反対側(例えば、裏面221c側)に位置する流路225に、冷媒が分流し易くなる。これにより、冷媒の乱流を促進させて、境界層の形成をより一層抑制することができる。
 なお、本実施例3のフィン部材220では、表面側フィン222及び裏面側フィン223を有しているので、実施例1のフィン部材20と同様に、ベース521の裏面521c(片面)のみからフィン522が突出するフィン部材520(図28参照)に比べて、押出成形による成形性が良好になる。その理由は、フィン部材220を成形する押出成形型251(詳細には、押出成形型251のうちフィンを成形する部位、図16参照)の強度を高めることができるので、押出成形時に押出成形型251が変形するのを抑制できるからである。
 さらに、本実施例3のフィン部材220は、フィン部材520(図30参照)に比べて、反り(湾曲)が抑制されたフィン部材となる。フィン部材を押出成形して冷却したとき、フィン部材520(図30参照)に比べて、反りの発生(湾曲)を抑制することができるからである。その理由は、フィン部材220では、冷えにくいベース221の両側(表面221b側と裏面221c側)に、冷えやすいフィン(表面側フィン222と裏面側フィン223)を配置しているからである。これにより、ベース221の表面221b側と裏面221c側とで、フィン部材の冷えやすさ(冷却速度)の差が小さくなるので、フィン部材の反り(湾曲)を抑制することができる。
 さらに、本実施例3の熱交換器210では、フィン部材220が、表面側フィン222の先端部222bにおいて、フレーム30の第1フレーム部材31に溶接(ロウ付け)されている。すなわち、フレーム30に対し、ベース221の表面221b及び裏面221cが溶接されることなく、表面側フィン222の先端部222bが溶接(ロウ付け)されている。これにより、フレーム30とフィン部材220との溶接(例えばロウ付け)時には、発生したガスが溶接部から外部に排出され易くなるので、フィン部材220とフレーム30との溶接部におけるボイド(空隙)の発生を抑制することができる。
 次に、本実施例3にかかる熱交換器210の製造方法について説明する。
 まず、押出成形工程において、フィン部材220を押出成形により一体成形する。具体的には、図16に示すように、貫通孔251bを有する押出成形型251を備える押出成形機250を用いて、加熱により軟化させたアルミニウムを押出し、冷却して、フィン部材220を一体成形する。これにより、フィン配列方向Dにかかる表面側フィン222の配置間隔Pと裏面側フィン223の配置間隔Pとが等しく一定で、表面側フィン222と裏面側フィン223とが配置間隔Pの半分だけフィン配列方向Dにずれて配置されたフィン部材220(図13参照)を得ることができる。なお、押出成形型251の貫通孔251bは、フィン部材220の断面(フィン部材220をフィン延長方向Cに直交する方向に切断した断面)に対応する形状をなしている。
 また、実施例1と同様に、アルミニウム製で矩形平板状の第1フレーム部材31と、アルミニウム製で断面コの字状の第2フレーム部材32とを用意する。
 次に、配置工程に進み、図12及び図14に示すように、フィン部材220を、第1フレーム部材31と第2フレーム部材32とからなるフレーム30の内部に配置する。具体的には、4つのフィン部材220を、第2フレーム部材32の底面32h上に一列に配置する。詳細には、4つのフィン部材20を、互いにフィン延長方向Cを同一方向に向けて、フィン延長方向Cに沿った冷媒の流れ方向Aに、一定の間隙をあけて一列に配置する(図12及び図14参照)。
 但し、4つのフィン部材220を、ベース221の表面221b及び裏面221cの向きを交互に反対にして、冷媒の流れ方向A(フィン延長方向C)に真っ直ぐ一列に配列する(図12、図14参照)。これにより、フィン延長方向C(図14において上下方向)に隣り合うフィン部材220の表面側フィン222と裏面側フィン223とを、その配置間隔Pの半分だけフィン配列方向D(図14において左右方向)にずらして配置させることができる。
 その後、第1フレーム部材31で蓋をするように、第1フレーム部材31を第2フレーム部材の上端面32d上に配置する(図12参照)。このとき、表面側フィン222の先端部222bと第1フレーム部材31の内面31hとが接触する。なお、第1フレーム部材31の内面31h及び第2フレーム部材の上端面32dには、予めロウ材(融点600℃)が塗布されている。その後、接合工程に進み、実施例1と同様にして、フィン部材220、第1フレーム部材31、及び第2フレーム部材32を、ロウ付けにより接合する。このようにして、本実施例3の熱交換器210が完成する。
 本実施例3の熱交換器210も、実施例1の熱交換器10と同様にして、半導体素子の冷却に用いることができる。具体的には、例えば、第1フレーム部材31の外面31fに、絶縁板60を挟んで半導体素子71~74を配置(図8参照)して、半導体装置を構成する。これにより、熱交換器210によって半導体素子71~74を冷却することができる。
(実施例4)
 次に、本発明の実施例4について、図面を参照しつつ説明する。
 本実施例4の熱交換器310は、実施例1の熱交換器10と比較して、フィン部材及びその配列形態が異なり、その他については同様である(図17参照)。従って、ここでは、実施例1と異なる点を中心に説明し、同様な点については説明を省略または簡略化する。
 本実施例4のフィン部材320は、アルミニウムからなり、矩形平板状をなすベース321と、ベース321の表面321bから突出する複数(本実施例4では10個)の表面側フィン322と、ベース321の裏面321cから突出する複数(本実施例4では10個)の裏面側フィン323とを有している(図18参照)。このフィン部材320も、実施例1のフィン部材20と同様に、押出成形により一体成形されている。
 このフィン部材320では、図18に示すように、実施例1のフィン部材20と比較して、表面側フィン322の突出高さH1と裏面側フィン323の突出高さH2とが異なる(H1<H2)点のみが異なっている。
 本実施例4の熱交換器で310では、上述の形態のフィン部材320を、ベース321の表面321b及び裏面321cの向きを交互に反対にして、冷媒の流れ方向A(フィン延長方向C)に一列に配列している(図17、図19参照)。これにより、フィン延長方向Cに隣り合うフィン部材320において、フィン部材320のベース321をオフセットさせることができる。詳細には、フィン延長方向Cに隣り合うフィン部材320において、ベース321の表面321bに直交する方向(図17及び図19において上下方向)にベース321をずらして配置することができる。なお、図19は、図17において配列されている複数のフィン部材320の一部分を拡大した図である。
 これにより、図19に矢印で示すように、流路325を流れる冷媒を、下流側(図19において右斜め上側)に位置するフィン部材320のベース321の上流側端面321dに衝突させて、ベース321を挟んで表面321b側と裏面321c側に位置する2つの流路325b,325cに、冷媒を分流させることができる。これにより、冷媒の乱流を促進させて、境界層の形成を抑制することができる。従って、熱交換器310の内部を流れる冷媒を有効に活用して、高い冷却効果を得ることができる。
 なお、本実施例4のフィン部材320では、表面側フィン322及び裏面側フィン323を有しているので、ベース521の裏面521c(片面)のみからフィン522が突出するフィン部材520(図28参照)に比べて、押出成形による成形性が良好になる。その理由は、フィン部材320を成形する押出成形型351(詳細には、押出成形型351のうちフィンを成形する部位、図20参照)の強度を高めることができるので、押出成形時に押出成形型351が変形するのを抑制できるからである。
 さらに、本実施例4のフィン部材320は、フィン部材520(図30参照)に比べて、反り(湾曲)が抑制されたフィン部材となる。フィン部材を押出成形して冷却したとき、フィン部材520(図30参照)に比べて、反りの発生(湾曲)を抑制することができるからである。その理由は、フィン部材320では、冷えにくいベース321の両側(表面321b側と裏面321c側)に、冷えやすいフィン(表面側フィン322と裏面側フィン323)を配置しているからである。これにより、ベース321の表面321b側と裏面321c側とで、フィン部材の冷えやすさ(冷却速度)の差が小さくなるので、フィン部材の反り(湾曲)を抑制することができる。
 さらに、本実施例4の熱交換器310では、フィン部材320が、表面側フィン322の先端部322bにおいて、フレーム30の第1フレーム部材31に溶接(ロウ付け)されている。すなわち、フレーム30に対し、ベース321の表面321b及び裏面321cが溶接されることなく、表面側フィン322の先端部322bが溶接(ロウ付け)されている。これにより、フレーム30とフィン部材320との溶接(例えばロウ付け)時には、発生したガスが溶接部から外部に排出され易くなるので、フィン部材320とフレーム30との溶接部におけるボイド(空隙)の発生を抑制することができる。
 次に、本実施例4にかかる熱交換器310の製造方法について説明する。
 まず、押出成形工程において、フィン部材320を押出成形により一体成形する。具体的には、図20に示すように、貫通孔351bを有する押出成形型351を備える押出成形機350を用いて、加熱により軟化させたアルミニウムを押出し、冷却して、フィン部材320を一体成形する。これにより、フィン配列方向Dにかかる表面側フィン322の配置間隔Pと裏面側フィン323の配置間隔Pとが等しく一定で、表面側フィン322の突出高さH1と裏面側フィン323の突出高さH2とが異なる(H1<H2)フィン部材320(図18参照)を得ることができる。なお、押出成形型351の貫通孔351bは、フィン部材320の断面(フィン部材320をフィン延長方向Cに直交する方向に切断した断面)に対応する形状をなしている。
 また、実施例1と同様に、アルミニウム製で矩形平板状の第1フレーム部材31と、アルミニウム製で断面コの字状の第2フレーム部材32とを用意する。
 次に、配置工程に進み、図17に示すように、フィン部材320を、第1フレーム部材31と第2フレーム部材32とからなるフレーム30の内部に配置する。具体的には、4つのフィン部材320を、第2フレーム部材32の底面32h上に一列に配置する。詳細には、4つのフィン部材320を、互いにフィン延長方向Cを同一方向に向けて、フィン延長方向Cに沿った冷媒の流れ方向Aに、一定の間隙をあけて一列に配置する(図17参照)。
 但し、フィン部材320を、ベース321の表面321b及び裏面321cの向きを交互に反対にして、冷媒の流れ方向A(フィン延長方向C)に一列に配列する(図17、図19参照)。これにより、フィン延長方向Cに隣り合うフィン部材320において、フィン部材320のベース321をオフセットさせることができる。詳細には、フィン延長方向Cに隣り合うフィン部材320において、ベース321の表面321bに直交する方向(図17及び図19において上下方向)にベース321をずらして配置することができる。
 その後、第1フレーム部材31で蓋をするように、第1フレーム部材31を第2フレーム部材の上端面32d上に配置する(図17参照)。このとき、表面側フィン322の先端部322bと第1フレーム部材31の内面31hとが接触する。なお、第1フレーム部材31の内面31h及び第2フレーム部材の上端面32dには、予めロウ材(融点600℃)が塗布されている。その後、接合工程に進み、実施例1と同様にして、フィン部材320、第1フレーム部材31、及び第2フレーム部材32を、ロウ付けにより接合する。このようにして、本実施例4の熱交換器310が完成する。
 本実施例4の熱交換器310も、実施例1の熱交換器10と同様にして、半導体素子の冷却に用いることができる。具体的には、例えば、第1フレーム部材31の外面31fに、絶縁板60を挟んで半導体素子71~74を配置(図8参照)して、半導体装置を構成する。これにより、熱交換器310によって半導体素子71~74を冷却することができる。
(実施例5)
 次に、本発明の実施例5について、図面を参照しつつ説明する。
 本実施例5の熱交換器410(図21参照)は、実施例1の熱交換器10と比較して、フィン部材が異なり、その他については同様である。従って、ここでは、実施例1と異なる点を中心に説明し、同様な点については説明を省略または簡略化する。
 本実施例5のフィン部材420は、アルミニウムからなり、矩形平板状をなすベース421と、ベース421の表面421bから突出する複数(本実施例5では10個)の表面側フィン422と、ベース421の裏面421cから突出する複数(本実施例5では10個)の裏面側フィン423とを有している(図22参照)。このフィン部材420も、実施例1のフィン部材20と同様に、押出成形により一体成形されている。
 このフィン部材420では、図22に示すように、実施例1のフィン部材20と比較して、表面側フィン422と裏面側フィン423とが、フィン配列方向Dの同一側(図22において右側)に傾斜して突出している点が異なっている。具体的には、表面側フィン422は、ベース421の表面421bに直交する方向(図22において垂直方向上方)に対し斜め方向(図22において斜め右上方)に突出している。また、裏面側フィン423は、ベース421の裏面421cに直交する方向(図22において垂直方向下方)に対し斜め方向(図22において斜め右下方)に突出している。また、表面側フィン422の突出高さH1と裏面側フィン423の突出高さH2とは等しいが、実施例1のフィン部材20の突出高さH1,H2よりも僅かに高くなっている。
 本実施例5の熱交換器で410では、複数(本実施例5でも4個)のフィン部材420が、互いに、表面側フィン422及び裏面側フィン423が同一側に傾斜する向きで配置されている(図21参照)。そして、各々のフィン部材420は、ベース421のフィン配列方向Dにかかる一端面421fが、第2フレーム部材32のフィン配列方向Dにかかる一側壁33の平坦な内壁面33bに当接している(図21、図23参照)。
 これにより、冷媒の流れ方向A(図23において上方)に一列に配置した複数のフィン部材420が、第2フレーム部材32の一側壁33の平坦な内壁面33bに沿って、真っ直ぐ一列に配列される。従って、複数のフィン部材420が、フィン配列方向D(図23において左右方向)に位置ズレすることなく、冷媒の流れ方向Aに真っ直ぐ一列に配列される。なお、図23は、熱交換器410を、第1フレーム部材31とフィン部材420のベース421との中間の位置で、冷媒の流れ方向Aに沿って切断した断面図である。
 なお、本実施例5のフィン部材420では、表面側フィン422及び裏面側フィン423を有しているので、ベース521の裏面521c(片面)のみからフィン522が突出するフィン部材520(図28参照)に比べて、押出成形による成形性が良好になる。その理由は、フィン部材420を成形する押出成形型451(詳細には、押出成形型451のうちフィンを成形する部位、図24参照)の強度を高めることができるので、押出成形時に押出成形型451が変形するのを抑制できるからである。
 さらに、本実施例5のフィン部材420は、フィン部材520(図30参照)に比べて、反り(湾曲)が抑制されたフィン部材となる。フィン部材を押出成形して冷却したとき、フィン部材520(図30参照)に比べて、反りの発生(湾曲)を抑制することができるからである。その理由は、フィン部材420では、冷えにくいベース421の両側(表面421b側と裏面421c側)に、冷えやすいフィン(表面側フィン422と裏面側フィン423)を配置しているからである。これにより、ベース421の表面421b側と裏面421c側とで、フィン部材の冷えやすさ(冷却速度)の差が小さくなるので、フィン部材の反り(湾曲)を抑制することができる。
 さらに、本実施例5の熱交換器410では、フィン部材420が、表面側フィン422の先端部422bにおいて、フレーム30の第1フレーム部材31に溶接(ロウ付け)されている。すなわち、フレーム30に対し、ベース421の表面421b及び裏面421cが溶接されることなく、表面側フィン422の先端部422bが溶接(ロウ付け)されている。これにより、フレーム30とフィン部材420との溶接(例えばロウ付け)時には、発生したガスが溶接部から外部に排出され易くなるので、フィン部材420とフレーム30との溶接部におけるボイド(空隙)の発生を抑制することができる。
 次に、本実施例5にかかる熱交換器410の製造方法について説明する。
 まず、押出成形工程において、フィン部材420を押出成形により一体成形する。具体的には、図24に示すように、貫通孔451bを有する押出成形型451を備える押出成形機450を用いて、加熱により軟化させたアルミニウムを押出し、冷却して、フィン部材420を一体成形する。これにより、表面側フィン422と裏面側フィン423とが、フィン配列方向Dの同一側に傾斜して突出するフィン部材420(図22参照)を得ることができる。なお、押出成形型451の貫通孔451bは、フィン部材420の断面(フィン部材420をフィン延長方向Cに直交する方向に切断した断面)に対応する形状をなしている。
 また、実施例1と同様に、アルミニウム製で矩形平板状の第1フレーム部材31と、アルミニウム製で断面コの字状の第2フレーム部材32とを用意する。
 次に、配置工程に進み、図25に示すように、4つのフィン部材420を、第2フレーム部材32の底面32h上に一列に配置する。詳細には、4つのフィン部材20を、互いにフィン延長方向Cを同一方向に向けて、フィン延長方向Cに沿った冷媒の流れ方向Aに、一定の間隙をあけて一列に配置する。
 その後、第1フレーム部材31で第2フレーム部材32に蓋をするように、第1フレーム部材31をフィン部材420上に配置する(図26参照)。このとき、第1フレーム部材31は、第2フレーム部材の上端面32dに接触することなく、第2フレーム部材の上端面32dから離れた上方に配置される。これは、本実施例5のフィン部材420では、表面側フィン422の突出高さH1及び裏面側フィン423の突出高さH2を、実施例1のフィン部材20の突出高さH1,H2よりも僅かに高くしているからである。なお、第1フレーム部材31の内面31h及び第2フレーム部材の上端面32dには、予めロウ材(融点600℃)が塗布されている。
 ところで、フィン部材420及び第2フレーム部材32は、設計上の寸法公差や製造上の寸法誤差等を有する。このため、配置工程において、4つのフィン部材420を、第2フレーム部材32の底面32h上に一列に配置したとき、図25に示すように、4つのフィン部材420が、フィン配列方向D(図25において左右方向)に位置ズレすることがあった。なお、図25は、4つのフィン部材420を、第2フレーム部材32の底面32h上に一列に配置した状態の上面図である。
 これに対し、本実施例5では、図27に示すように、接合工程において、電気炉5内で、押圧治具(図示なし)により、第1フレーム部材31をフィン部材420側(図27において下方)に押圧して、第1フレーム部材31の内面31hを第2フレーム部材32の上端面32dに接触させた状態で、フィン部材420、第1フレーム部材31、及び第2フレーム部材32を、ロウ付けにより接合する。第1フレーム部材31をフィン部材420側(図27において下方)に押圧することで、第2フレーム部材32の内部に位置する4つのフィン部材420について、第1フレーム部材31を通じて、表面側フィン422の先端部422bをベース421の表面421b側(図27において下方)に押圧すると共に、第2フレーム部材32を通じて、裏面側フィン423の先端部423bをベース421の裏面421c側(図27において上方)に押圧することができる。
 これにより、表面側フィン422及び裏面側フィン423を圧縮変形させて、表面側フィン422の基端部422d及び裏面側フィン423の基端部423dを、フィン配列方向Dのうち表面側フィン422及び裏面側フィン423が傾斜する側とは反対側(図27において左側)に動かすことができる。これにより、ベース421を、フィン配列方向Dのうち表面側フィン422及び裏面側フィン423が傾斜する側とは反対側(図27において左側)に移動させて、ベース421のフィン配列方向D(詳細には、フィン配列方向Dのうち表面側フィン422及び裏面側フィン423が傾斜する側とは反対側)にかかる一端面421fを、フィン配列方向D(詳細には、フィン配列方向Dのうち表面側フィン422及び裏面側フィン423が傾斜する側とは反対側)にかかる第2フレーム部材32の一側壁33の平坦な内壁面33bに当接させることができる。
 このようにして、冷媒の流れ方向Aに一列に配置した4つのフィン部材420を、第2フレーム部材32の一側壁33の平坦な内壁面33bに沿って、真っ直ぐ一列に配列することができる。この状態で、電気炉5内の温度を600℃にまで上昇させて、ロウ材を溶融させた後、冷却してロウ材を硬化させる。これにより、フィン部材420、第1フレーム部材31、及び第2フレーム部材32を、ロウ付けにより接合することができる。このようにして、「複数のフィン部材420が、フィン配列方向Dに位置ズレすることなく、冷媒の流れ方向Aに真っ直ぐ一列に配列された熱交換器410(図21参照)」が完成する。
 本実施例5の熱交換器410も、実施例1の熱交換器10と同様にして、半導体素子の冷却に用いることができる。具体的には、例えば、第1フレーム部材31の外面31fに、絶縁板60を挟んで半導体素子71~74を配置(図8参照)して、半導体装置を構成する。これにより、熱交換器410によって半導体素子71~74を冷却することができる。
 以上において、本発明を実施例1~5に即して説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
 例えば、実施例4の熱交換器で310では、フィン部材320を、ベース321の表面321b及び裏面321cの向きを交互に反対にして、冷媒の流れ方向A(フィン延長方向C)に真っ直ぐ一列に配列した(図17、図19参照)。
 しかしながら、実施例2と同様に、フィン延長方向Cに隣り合うフィン部材320を、フィン配列方向Dにずらして配置するようにしても良い。詳細には、フィン延長方向Cに隣り合うフィン部材320の表面側フィン322を、その配置間隔Pの半分だけフィン配列方向Dにずらして配置すると共に、フィン延長方向Cに隣り合うフィン部材320の裏面側フィン323も、その配置間隔Pの半分だけフィン配列方向Dにずらして配置するようにしても良い。これにより、実施例4の冷媒乱流効果に加えて、実施例2の冷媒乱流効果も得られるので、冷媒の流れにより一層乱流を発生させて、境界層の形成をより一層抑制することができる。
 あるいは、フィン部材320を、表面側フィン322の突出高さH1と裏面側フィン323の突出高さH2とが異なり(H1<H2)、しかも、実施例3のフィン部材220のように、表面側フィン322と裏面側フィン323とが、その配置間隔Pの半分だけフィン配列方向Dにずれて配置された形態としても良い。これにより、実施例4の冷媒乱流効果に加えて、実施例3の冷媒乱流効果も得られるので、冷媒の流れにより一層乱流を発生させて、境界層の形成をより一層抑制することができる。
10,110,210,310,410 熱交換器
20,220,320,420 フィン部材
21,221,321,421 ベース
21b,221b,321b,421b ベースの表面
21c,221c,321c,421c ベースの裏面
22,222,322,422 表面側フィン
22b,222b,322b,422b 表面側フィンの先端部
23,223,323,423 裏面側フィン
25,225,325,425 流路
30 フレーム
31 第1フレーム部材
32 第2フレーム部材
33 フィン配列方向にかかるフレーム(第2フレーム部材)の一側壁
33b フィン配列方向にかかるフレーム(第2フレーム部材)の一側壁の平坦な内壁面
421f ベースのフィン配列方向にかかる一端面
A 冷媒の流れ方向
C フィン延長方向
D フィン配列方向
P 表面側フィンの配置間隔及び裏面側フィンの配置間隔
H1 表面側フィンの突出高さ
H2 裏面側フィンの突出高さ

Claims (12)

  1. 外枠を形成するフレームの内部に、冷媒の流路を形成する複数のフィンを備えたフィン部材を配置した熱交換器において、
     上記フィン部材は、
      押出成形により一体成形されたフィン部材であって、
      矩形平板状のベースと、
      上記ベースの表面から突出する上記フィンであって、上記押出成形の押出方向に沿ったフィン延長方向に延びる平板状をなし、上記フィン延長方向に直交するフィン配列方向に間隙をあけて一列に配置された複数の表面側フィンと、
      上記ベースの裏面から突出する上記フィンであって、上記フィン延長方向に延びる平板状をなし、上記フィン配列方向に間隙をあけて一列に配置された複数の裏面側フィンと、を有し、
      上記フレームに対し、上記ベースの上記表面及び上記裏面が溶接されることなく、上記表面側フィン及び上記裏面側フィンの少なくともいずれか一方の先端部が溶接されてなる
    熱交換器。
  2. 請求項1に記載の熱交換器であって、
     同一形状をなす複数の前記フィン部材が、互いに前記フィン延長方向を同一方向に向けて、上記フィン延長方向に沿った前記冷媒の流れ方向に間隙をあけて一列に配置されてなり、
     上記フィン部材は、前記フィン配列方向にかかる前記表面側フィンの配置間隔と前記裏面側フィンの配置間隔とが等しく一定であり、
     前記フィン延長方向に隣り合う上記フィン部材の上記表面側フィンは、上記配置間隔の半分だけ上記フィン配列方向にずれて配置され、
     上記フィン延長方向に隣り合う上記フィン部材の上記裏面側フィンは、上記配置間隔の半分だけ上記フィン配列方向にずれて配置されてなる
    熱交換器。
  3. 請求項1に記載の熱交換器であって、
     同一形状をなす複数の前記フィン部材が、互いに前記フィン延長方向を同一方向に向けて、上記フィン延長方向に沿った前記冷媒の流れ方向に間隙をあけて一列に配置されてなり、
     上記フィン部材は、
      前記フィン配列方向にかかる前記表面側フィンの配置間隔と前記裏面側フィンの配置間隔とが等しく一定で、
      上記表面側フィンと上記裏面側フィンとが、上記配置間隔の半分だけ上記フィン配列方向にずれて配置されたフィン部材であり、
     複数の上記フィン部材は、前記ベースの前記表面及び前記裏面の向きを交互に反対にして、前記冷媒の流れ方向に配列されてなる
    熱交換器。
  4. 請求項1~請求項3のいずれか一項に記載の熱交換器であって、
     同一形状をなす複数の前記フィン部材が、互いに前記フィン延長方向を同一方向に向けて、上記フィン延長方向に沿った前記冷媒の流れ方向に一列に配置されてなり、
     上記フィン部材は、
      複数の前記表面側フィンが同一形状で、
      複数の前記裏面側フィンが同一形状で、
      上記表面側フィンの突出高さと上記裏面側フィンの突出高さとが異なるフィン部材であり、
     上記複数のフィン部材は、前記ベースの表面及び裏面の向きを交互に反対にして、上記冷媒の流れ方向に配置されてなる
    熱交換器。
  5. 請求項1または請求項2に記載の熱交換器であって、
     前記フィン部材は、前記表面側フィンと前記裏面側フィンとが前記ベースに関し対称なフィン部材である
    熱交換器。
  6. 請求項1~請求項5のいずれか一項に記載の熱交換器であって、
     同一形状をなす複数の前記フィン部材が、互いに前記フィン延長方向を同一方向に向けて、上記フィン延長方向に沿った前記冷媒の流れ方向に一列に配置されてなり、
     上記フィン部材は、前記表面側フィンと前記裏面側フィンとが、前記フィン配列方向の同一側に傾斜して突出するフィン部材であり、
     上記複数のフィン部材は、互いに、上記表面側フィン及び上記裏面側フィンが同一側に傾斜する向きで配置され、前記ベースの上記フィン配列方向にかかる一端面が、前記フレームの上記フィン配列方向にかかる一側壁の平坦な内壁面に当接してなる
    熱交換器。
  7. 外枠を形成するフレームの内部に、冷媒の流路を形成する複数のフィンを備えたフィン部材を配置した熱交換器の製造方法において、
     上記フィン部材を押出成形により一体成形する押出成形工程と、
     上記押出成形工程で成形された上記フィン部材を、上記フレームの内部に配置する配置工程と、
     上記フレームと当該フレームの内部に配置した上記フィン部材とを溶接する接合工程と、を有し、
     上記押出成形工程は、
      矩形平板状のベースと、
      上記ベースの表面から突出する上記フィンであって、上記押出成形の押出方向に沿ったフィン延長方向に延びる平板状をなし、上記フィン延長方向に直交するフィン配列方向に間隙をあけて一列に配置された複数の表面側フィンと、
      上記ベースの裏面から突出する上記フィンであって、上記押出成形の押出方向に沿った上記フィン延長方向に延びる平板状をなし、上記フィン配列方向に間隙をあけて一列に配置された複数の裏面側フィンと、を有するフィン部材を押出成形により一体成形し、
     上記接合工程は、
      上記フレームに対し、上記ベースの上記表面及び上記裏面を溶接することなく、上記表面側フィン及び上記裏面側フィンの少なくともいずれか一方の先端部を溶接する
    熱交換器の製造方法。
  8. 請求項7に記載の熱交換器の製造方法であって、
     前記押出成形工程は、
      前記フィン配列方向にかかる前記表面側フィンの配置間隔と前記裏面側フィンの配置間隔とが等しく一定であるフィン部材を、押出成形により一体成形し、
     前記配置工程は、
      同一形状をなす複数の上記フィン部材を、互いに前記フィン延長方向を同一方向に向けて、上記フィン延長方向に沿った前記冷媒の流れ方向に間隙をあけて一列に配置する工程であって、
      上記フィン延長方向に隣り合う上記フィン部材の上記表面側フィンを、上記配置間隔の半分だけ上記フィン配列方向にずらして配置すると共に、上記フィン延長方向に隣り合う上記フィン部材の上記裏面側フィンを、上記配置間隔の半分だけ上記フィン配列方向にずらして配置する
    熱交換器の製造方法。
  9. 請求項7に記載の熱交換器の製造方法であって、
     前記押出成形工程は、
      前記フィン配列方向にかかる前記表面側フィンの配置間隔と前記裏面側フィンの配置間隔とが等しく一定で、上記表面側フィンと上記裏面側フィンとが上記配置間隔の半分だけ前記フィン配列方向にずれて配置されたフィン部材を、押出成形により一体成形し、
     前記配置工程は、
      同一形状をなす複数の上記フィン部材を、互いに前記フィン延長方向を同一方向に向けて、上記フィン延長方向に沿った前記冷媒の流れ方向に間隙をあけて一列に配置する工程であって、
      複数の上記フィン部材を、前記ベースの前記表面及び前記裏面の向きを交互に反対にして、上記冷媒の流れ方向に真っ直ぐ一列に配列する
    熱交換器の製造方法。
  10. 請求項7~請求項9のいずれか一項に記載の熱交換器の製造方法であって、
     前記押出成形工程は、
      複数の前記表面側フィンが同一形状で、複数の前記裏面側フィンが同一形状で、上記表面側フィンの突出高さと上記裏面側フィンの突出高さとが異なるフィン部材を、押出成形により一体成形し、
     前記配置工程は、
      同一形状をなす複数の上記フィン部材を、互いに前記フィン延長方向を同一方向に向けて、上記フィン延長方向に沿った前記冷媒の流れ方向に間隙をあけて一列に配置する工程であって、
      複数の上記フィン部材を、前記ベースの前記表面及び前記裏面の向きを交互に反対にして、上記冷媒の流れ方向に配列する
    熱交換器の製造方法。
  11. 請求項7または請求項8に記載の熱交換器の製造方法であって、
     前記押出成形工程は、
      前記表面側フィンと前記裏面側フィンとが前記ベースに関し対称なフィン部材を、押出成形により一体成形する
    熱交換器の製造方法。
  12. 請求項7~請求項11のいずれか一項に記載の熱交換器の製造方法であって、
     前記押出成形工程は、
      前記表面側フィンと前記裏面側フィンとが前記フィン配列方向の同一側に傾斜して突出するフィン部材を、押出成形により一体成形し、
     前記配置工程は、
      同一形状をなす複数の上記フィン部材を、互いに前記フィン延長方向を同一方向に向けて、上記フィン延長方向に沿った前記冷媒の流れ方向に一列に配置する工程であって、
      上記複数のフィン部材を、互いに、上記表面側フィン及び上記裏面側フィンが同一側に傾斜する向きで、上記フレームの内部に配置し、
     前記接合工程は、
      上記フレームを通じて、上記フレームの内部に位置する上記複数のフィン部材について、上記表面側フィンの前記先端部を前記ベースの前記表面側に押圧すると共に、上記裏面側フィンの前記先端部を前記ベースの前記裏面側に押圧し、上記ベースの上記フィン配列方向にかかる一端面を、上記フレームの上記フィン配列方向にかかる一側壁の平坦な内壁面に当接させた状態で、上記フレームと上記フィン部材とを溶接する
    熱交換器の製造方法。
PCT/JP2009/059180 2009-05-19 2009-05-19 熱交換器及びその製造方法 WO2010134160A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/258,204 US20120006523A1 (en) 2009-05-19 2009-05-19 Heat exchanger and method of manufacturing the same
EP09844894.7A EP2434543B1 (en) 2009-05-19 2009-05-19 Heat exchanger and method of manufacturing the same
CN200980159471.4A CN102439715B (zh) 2009-05-19 2009-05-19 热交换器及其制造方法
JP2011514240A JP5263392B2 (ja) 2009-05-19 2009-05-19 熱交換器及びその製造方法
PCT/JP2009/059180 WO2010134160A1 (ja) 2009-05-19 2009-05-19 熱交換器及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059180 WO2010134160A1 (ja) 2009-05-19 2009-05-19 熱交換器及びその製造方法

Publications (1)

Publication Number Publication Date
WO2010134160A1 true WO2010134160A1 (ja) 2010-11-25

Family

ID=43125860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059180 WO2010134160A1 (ja) 2009-05-19 2009-05-19 熱交換器及びその製造方法

Country Status (5)

Country Link
US (1) US20120006523A1 (ja)
EP (1) EP2434543B1 (ja)
JP (1) JP5263392B2 (ja)
CN (1) CN102439715B (ja)
WO (1) WO2010134160A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186203A (ja) * 2011-03-03 2012-09-27 Mitsubishi Electric Corp 電子機器筐体の冷却構造
JP2013024483A (ja) * 2011-07-21 2013-02-04 Mitsubishi Electric Corp プレート積層型冷却器
JP2013225553A (ja) * 2012-04-20 2013-10-31 Sumitomo Light Metal Ind Ltd 熱交換器及びその製造方法
JP2013239676A (ja) * 2012-05-17 2013-11-28 Toyota Industries Corp 冷却器及び冷却器の製造方法
JP2013239675A (ja) * 2012-05-17 2013-11-28 Toyota Industries Corp 冷却器
WO2014098214A1 (ja) * 2012-12-21 2014-06-26 京セラ株式会社 流路部材およびこれを用いた熱交換器ならびに半導体装置
CN106825969A (zh) * 2016-12-29 2017-06-13 泰安祥杰散热器制造有限公司 用于铝制散热器的组合焊接方法
JP2017195226A (ja) * 2016-04-18 2017-10-26 昭和電工株式会社 液冷式冷却装置

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8854595B2 (en) 2008-03-03 2014-10-07 Manufacturing Resources International, Inc. Constricted convection cooling system for an electronic display
US8654302B2 (en) 2008-03-03 2014-02-18 Manufacturing Resources International, Inc. Heat exchanger for an electronic display
US8773633B2 (en) 2008-03-03 2014-07-08 Manufacturing Resources International, Inc. Expanded heat sink for electronic displays
US8497972B2 (en) 2009-11-13 2013-07-30 Manufacturing Resources International, Inc. Thermal plate with optional cooling loop in electronic display
US8749749B2 (en) 2008-12-18 2014-06-10 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with manifolds and ambient gas
US10827656B2 (en) 2008-12-18 2020-11-03 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with circulating gas and ambient gas
GB2502572A (en) * 2012-05-30 2013-12-04 Kraft Foods R & D Inc Mould with optimised heat transfer properties
CN104285293A (zh) * 2012-08-03 2015-01-14 富士电机株式会社 冷却构造体和电力转换装置
JP6262422B2 (ja) * 2012-10-02 2018-01-17 昭和電工株式会社 冷却装置および半導体装置
CA2888494C (en) 2012-10-16 2019-09-24 Manufacturing Resources International, Inc. Back pan cooling assembly for electronic display
US9648790B2 (en) 2013-03-15 2017-05-09 Manufacturing Resources International, Inc. Heat exchanger assembly for an electronic display
US10524384B2 (en) 2013-03-15 2019-12-31 Manufacturing Resources International, Inc. Cooling assembly for an electronic display
KR101894027B1 (ko) 2013-07-08 2018-08-31 매뉴팩처링 리소시스 인터내셔널 인코포레이티드 전자 디스플레이용 8자 모양의 폐쇄형 루프 냉각 시스템
EP3468321B1 (en) 2014-03-11 2021-04-28 Manufacturing Resources International, Inc. Method for mounting a display to a wall
KR101885884B1 (ko) 2014-04-30 2018-08-07 매뉴팩처링 리소시스 인터내셔널 인코포레이티드 백투백 전자 디스플레이 어셈블리
CN107529338B (zh) * 2015-01-13 2019-11-19 雷神公司 调整空气冷却式热量交换器几何形状以实现环境保护
US9723765B2 (en) 2015-02-17 2017-08-01 Manufacturing Resources International, Inc. Perimeter ventilation system for electronic display
KR102104342B1 (ko) 2016-03-04 2020-04-24 매뉴팩처링 리소시스 인터내셔널 인코포레이티드 양면 표시장치 조립체를 위한 냉각 시스템
KR20180070935A (ko) * 2016-12-19 2018-06-27 현대자동차주식회사 고강도 알루미늄 합금의 롤포밍 방법 및 그에 따른 롤포밍 성형물
US10766097B2 (en) * 2017-04-13 2020-09-08 Raytheon Company Integration of ultrasonic additive manufactured thermal structures in brazements
US10485113B2 (en) 2017-04-27 2019-11-19 Manufacturing Resources International, Inc. Field serviceable and replaceable display
WO2018200905A1 (en) 2017-04-27 2018-11-01 Manufacturing Resources International, Inc. System and method for preventing display bowing
US10520263B2 (en) 2017-09-20 2019-12-31 Toyota Motor Engineering & Manufacturing North America, Inc. Apparatus, system, and method for interior fluid flow with optimized fin structures
US10559965B2 (en) 2017-09-21 2020-02-11 Manufacturing Resources International, Inc. Display assembly having multiple charging ports
JP6663899B2 (ja) * 2017-11-29 2020-03-13 本田技研工業株式会社 冷却装置
DE102018112000A1 (de) * 2018-05-18 2019-11-21 Rogers Germany Gmbh System zum Kühlen eines Metall-Keramik-Substrats, ein Metall-Keramik-Substrat und Verfahren zum Herstellen des Systems
CN110543069A (zh) * 2018-05-28 2019-12-06 中强光电股份有限公司 液冷式散热器
US10602626B2 (en) 2018-07-30 2020-03-24 Manufacturing Resources International, Inc. Housing assembly for an integrated display unit
US11096317B2 (en) 2019-02-26 2021-08-17 Manufacturing Resources International, Inc. Display assembly with loopback cooling
US10795413B1 (en) 2019-04-03 2020-10-06 Manufacturing Resources International, Inc. Electronic display assembly with a channel for ambient air in an access panel
DE102020110937B4 (de) 2020-04-22 2022-06-09 Semikron Elektronik Gmbh & Co. Kg Kühleinrichtung zur Kühlung eines Leistungshalbleitermoduls
US20210358833A1 (en) * 2020-05-14 2021-11-18 Lite-On Semiconductor Corporation Direct cooling power semiconductor package
US11477923B2 (en) 2020-10-02 2022-10-18 Manufacturing Resources International, Inc. Field customizable airflow system for a communications box
US11778757B2 (en) 2020-10-23 2023-10-03 Manufacturing Resources International, Inc. Display assemblies incorporating electric vehicle charging equipment
US11470749B2 (en) 2020-10-23 2022-10-11 Manufacturing Resources International, Inc. Forced air cooling for display assemblies using centrifugal fans
US11856728B2 (en) * 2020-10-29 2023-12-26 Auras Technology Co., Ltd. Liquid cooling device
US11966263B2 (en) 2021-07-28 2024-04-23 Manufacturing Resources International, Inc. Display assemblies for providing compressive forces at electronic display layers
US11744054B2 (en) 2021-08-23 2023-08-29 Manufacturing Resources International, Inc. Fan unit for providing improved airflow within display assemblies
US11762231B2 (en) 2021-08-23 2023-09-19 Manufacturing Resources International, Inc. Display assemblies inducing turbulent flow
US11919393B2 (en) 2021-08-23 2024-03-05 Manufacturing Resources International, Inc. Display assemblies inducing relatively turbulent flow and integrating electric vehicle charging equipment
DE102021211544A1 (de) * 2021-10-13 2023-04-13 Robert Bosch Gesellschaft mit beschränkter Haftung Kühlrippe eines fluiddurchströmbaren Kühlers zum Kühlen einer Leistungselektronik
US11968813B2 (en) 2021-11-23 2024-04-23 Manufacturing Resources International, Inc. Display assembly with divided interior space
US12010813B2 (en) 2022-07-22 2024-06-11 Manufacturing Resources International, Inc. Self-contained electronic display assembly, mounting structure and methods for the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026207A (ja) * 2000-07-06 2002-01-25 Tousui Ltd 熱交換器
JP2005191527A (ja) * 2003-12-03 2005-07-14 Denso Corp 積層型冷却器
JP2006324647A (ja) * 2005-04-21 2006-11-30 Nippon Light Metal Co Ltd 液冷ジャケット
JP2007294666A (ja) * 2006-04-25 2007-11-08 Sumitomo Light Metal Ind Ltd 電子機器冷却板及び該電子機器冷却板の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1061805B (de) * 1957-05-02 1959-07-23 Friedrich Lohmann Dipl Ing Waermeaustauscher mit beiderseits eines Steges angeordneten Laengsrippen
US4401155A (en) * 1981-02-13 1983-08-30 Union Carbide Corporation Heat exchanger with extruded flow channels
JPS6126978U (ja) * 1984-07-20 1986-02-18 昭和アルミニウム株式会社 熱交換器
DE3731669A1 (de) * 1987-09-21 1989-04-06 Sueddeutsche Kuehler Behr Flaches waermetauscherrohr
JPH11284110A (ja) * 1998-03-30 1999-10-15 Onkyo Corp ヒートシンクにおけるパワートランジスタの取付構造
FR2811747B1 (fr) * 2000-07-11 2002-10-11 Air Liquide Ailette d'echange thermique pour echangeur de chaleur a plaques brasees, et echangeur de chaleur correspondant
JP3880812B2 (ja) * 2001-06-04 2007-02-14 東芝三菱電機産業システム株式会社 冷却器
JP2005257107A (ja) * 2004-03-09 2005-09-22 Calsonic Kansei Corp 熱交換器用チューブ
US7100281B2 (en) * 2004-03-15 2006-09-05 International Business Machines Corporation Heat sink and method of making the same
US8499824B2 (en) * 2005-10-04 2013-08-06 Elektronische Bauelemente Gesellschaft M.B.H. Heat sink
JP4697475B2 (ja) * 2007-05-21 2011-06-08 トヨタ自動車株式会社 パワーモジュールの冷却器及びパワーモジュール
CN101415312B (zh) * 2007-10-19 2012-03-14 富准精密工业(深圳)有限公司 散热装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026207A (ja) * 2000-07-06 2002-01-25 Tousui Ltd 熱交換器
JP2005191527A (ja) * 2003-12-03 2005-07-14 Denso Corp 積層型冷却器
JP2006324647A (ja) * 2005-04-21 2006-11-30 Nippon Light Metal Co Ltd 液冷ジャケット
JP2007294666A (ja) * 2006-04-25 2007-11-08 Sumitomo Light Metal Ind Ltd 電子機器冷却板及び該電子機器冷却板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2434543A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186203A (ja) * 2011-03-03 2012-09-27 Mitsubishi Electric Corp 電子機器筐体の冷却構造
JP2013024483A (ja) * 2011-07-21 2013-02-04 Mitsubishi Electric Corp プレート積層型冷却器
JP2013225553A (ja) * 2012-04-20 2013-10-31 Sumitomo Light Metal Ind Ltd 熱交換器及びその製造方法
JP2013239676A (ja) * 2012-05-17 2013-11-28 Toyota Industries Corp 冷却器及び冷却器の製造方法
JP2013239675A (ja) * 2012-05-17 2013-11-28 Toyota Industries Corp 冷却器
WO2014098214A1 (ja) * 2012-12-21 2014-06-26 京セラ株式会社 流路部材およびこれを用いた熱交換器ならびに半導体装置
JP2017195226A (ja) * 2016-04-18 2017-10-26 昭和電工株式会社 液冷式冷却装置
CN106825969A (zh) * 2016-12-29 2017-06-13 泰安祥杰散热器制造有限公司 用于铝制散热器的组合焊接方法

Also Published As

Publication number Publication date
EP2434543A1 (en) 2012-03-28
EP2434543A4 (en) 2013-01-09
JP5263392B2 (ja) 2013-08-14
CN102439715A (zh) 2012-05-02
JPWO2010134160A1 (ja) 2012-11-08
CN102439715B (zh) 2014-07-30
US20120006523A1 (en) 2012-01-12
EP2434543B1 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5263392B2 (ja) 熱交換器及びその製造方法
JP5370481B2 (ja) 熱交換器、半導体装置、及び、これらの製造方法
US8387685B2 (en) Heat sink for power module
JP5023020B2 (ja) 液冷式冷却装置
JP4729336B2 (ja) パワーモジュール用基板
US20090107655A1 (en) Semiconductor cooling apparatus
JP5426563B2 (ja) 自動車用の排ガス冷却器
JP4992808B2 (ja) 熱交換器の製造方法
US20130058042A1 (en) Laminated heat sinks
WO2010010826A1 (ja) 熱交換器及びその製造方法
RU2602660C2 (ru) Теплообменник
CN105408997A (zh) 半导体模块以及逆变器装置
JP2008166423A (ja) 冷却管およびその製造方法
JP5079586B2 (ja) 独立した流路を有する金属多孔体
US8726507B2 (en) Method for manufacturing a heat exchanger and exchanger obtained by the method
JP2015000432A (ja) 熱交換器の製造方法
JP2013225553A (ja) 熱交換器及びその製造方法
KR100674716B1 (ko) 플라스틱 열교환기 및 그 접합방법
JP2010040870A (ja) 電子部品冷却器
JPS5846660A (ja) ヒ−トシンクの製造法
JP7499689B2 (ja) 波型伝熱フィン
JP2005207726A (ja) 熱交換器およびその製造方法
JP6691651B2 (ja) 放冷用熱伝達器
JP2005188920A (ja) 一体型熱交換装置
JP2011086805A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159471.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011514240

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13258204

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009844894

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE