WO2010127621A1 - 固体激光剥离设备和剥离方法 - Google Patents

固体激光剥离设备和剥离方法 Download PDF

Info

Publication number
WO2010127621A1
WO2010127621A1 PCT/CN2010/072466 CN2010072466W WO2010127621A1 WO 2010127621 A1 WO2010127621 A1 WO 2010127621A1 CN 2010072466 W CN2010072466 W CN 2010072466W WO 2010127621 A1 WO2010127621 A1 WO 2010127621A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
state laser
spot
laser
stripping
Prior art date
Application number
PCT/CN2010/072466
Other languages
English (en)
French (fr)
Inventor
张国义
杨欣荣
何明坤
孙永健
Original Assignee
东莞市中镓半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市中镓半导体科技有限公司 filed Critical 东莞市中镓半导体科技有限公司
Priority to EP10772024.5A priority Critical patent/EP2428979A4/en
Priority to JP2012508888A priority patent/JP2012526369A/ja
Priority to KR1020117029419A priority patent/KR101323585B1/ko
Priority to US13/318,663 priority patent/US8395082B2/en
Publication of WO2010127621A1 publication Critical patent/WO2010127621A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/19Delaminating means
    • Y10T156/1911Heating or cooling delaminating means [e.g., melting means, freezing means, etc.]
    • Y10T156/1917Electromagnetic radiation delaminating means [e.g., microwave, uv, ir, etc.]

Definitions

  • This invention relates to the field of semiconductor processing, and more particularly to a stripping apparatus and stripping method for stripping a semiconductor thin film material using a solid laser to a semiconductor thin film material.
  • the invention enables the laser to form a specific shape and a specific light field distribution through a dedicated optical path, and irradiates the interface between the multilayer materials by focusing to decompose the interface material to achieve the function of peeling off the film layer and the substrate.
  • III/V nitrides dominated by GaN and InGaN, AlGaN are semiconductor materials of recent interest, with a 1.9eV-6.2eV continuously variable direct band gap, excellent physical and chemical stability, and high saturation electron mobility. Rate and other characteristics make it the most preferred material for optoelectronic devices and microelectronic devices such as lasers, light-emitting diodes, and the like.
  • GaN GaN-based semiconductor devices
  • the method of removing sapphire was invented.
  • the GaN film after removing the bottom of the village can be bonded to a better heat sink or as a homogenous epitaxial substrate material.
  • the main application method is laser stripping technology.
  • the Lift-off technology was first implemented by Hewlett-Packard Company on AlGalnP/GaAs LEDs because the GaAs substrate made the internal light absorption loss of the LED very large. By stripping the GaAs substrate and then bonding it to the transparent GaP village floor, it can increase the luminous efficiency by nearly 2 times.
  • the laser lift-off (LLO) technology of GaN-based materials is a technology based on the development of heteroepitaxial growth of GaN. It was proposed by MKKelly et al. in 1996. It uses YAG's 3x laser to strip the hydride on the sapphire substrate. Thick film GaN grown by vapor phase epitaxy (HVPE). In 1998, W.S. Wong et al. used LLO technology to prepare GaN-based LEDs and laser diodes. The laser stripping process has received extensive attention.
  • Laser stripping technology solves a series of problems such as heat dissipation, current concentration and low light extraction efficiency of GaN-based LEDs on sapphire villages. It is the most potential technology to solve the above obstacles in lighting applications. Surgery.
  • the epitaxial wafer is transferred to a heat sink with high thermal conductivity, which greatly improves the heat dissipation efficiency of the LED chip, reduces the junction temperature of the LED, and lowers the junction temperature, which greatly improves the luminous efficiency and reliability of the LED, and increases the lifetime of the LED.
  • the laser stripping technology can reduce the etching, grinding, dicing and other processes, and the sapphire substrate can be reused, which effectively saves the process cost.
  • the commercial laser stripping equipment mainly includes the American IX-1000 laser stripping machine of JPSA Company, which uses a high-power KrF excimer laser with a wavelength of 248nm and a pulse width ranging from 25-38ns, through precise control of energy and After the energy distribution of the beam is branched, it is irradiated onto the GaN buffer layer to be decomposed into metal gallium and nitrogen, thereby achieving the peeling of the GaN film layer from the substrate.
  • KrF excimer lasers Q-switched YAG triple-frequency solid-state lasers are also used, mainly in the US MKKelly group and Taiwan RHHorng group. Solid-state lasers can achieve higher pulse energy through Q-switch technology, and are more convenient to maintain.
  • this program has not had mature commodity equipment.
  • the spot energy is large, and the general energy density is greater than 0.6 J/cm 2 .
  • the characteristics of the KrF laser can not guarantee the energy stability of each laser pulse, and it is prone to fluctuations in energy, thereby destroying the structure of components and reducing the yield.
  • the invention adopts the micro-area stripping (Micro Area LLO) technology proposed by the inventor, and the high-speed blind-scan laser stripping method without precise positioning realizes the non-destructive stripping of GaN and sapphire substrate.
  • the invention provides a solid laser stripping device, which comprises a solid laser, a beam shaping mirror, a galvanometer motor, a galvanometer lens and a field lens, and a mobile platform and an industrial computer and control software, wherein the beam shaping mirror is located Under the solid-state laser, the galvanometer lens, the galvanometer motor, the field lens, and the beam shaping mirror are located after the solid-state laser, and the laser beam emitted by the solid-state laser is shaped, and the galvanometer motor is located before the field lens.
  • the action of the galvanometer lens is controlled according to an instruction issued by the control software to realize different beam scanning paths, the moving platform is located under the solid laser, and the control software runs on the industrial computer.
  • the laser beam shaping mirror shapes the laser spot into small spots of different geometries.
  • the geometric shape includes a square, a rectangular circle, an ellipse, a pentagon, and a hexagon.
  • the small spot is a square spot having a circumference of 3 to 1000 ⁇ m.
  • the small spot is a circular spot having a diameter of 3 to 300 ⁇ m.
  • the center of the small spot is the strongest, and the energy to the periphery is gradually weakened.
  • the solid-state laser is a DPSS solid-state laser having a wavelength of less than 400 nm.
  • the beam scanning is a beam scanning generated by driving a galvanometer lens using a galvanometer motor.
  • the present invention also provides a peeling method using the above solid laser lift-off apparatus, which is characterized in that scanning is performed using a small spot.
  • the small spot is a square spot of 3 to 1000 ⁇ m.
  • the small spot is a circular spot having a diameter of 3 to 300 ⁇ m.
  • the center of the small spot is the strongest, and the energy to the periphery is gradually weakened.
  • a plurality of different beam scanning paths are employed.
  • the small spot does not need to be accurately positioned with the chip during scanning, and the peeling is scanned in any direction.
  • Figure 1 is a schematic view of a solid laser stripping apparatus of the present invention
  • FIG. 2 is a schematic view of beam shaping of the present invention
  • FIG. 3a is a prior art pulse spot energy distribution diagram
  • FIG. 3b is a pulse spot energy distribution diagram of the present invention
  • 4 to 8 are schematic views of a beam scanning path
  • Figure 9 is a micrograph of the small spot of the present invention after lossless laser lift-off.
  • FIG. 1 is a schematic view of a solid-state laser stripping apparatus of the present invention, which includes a solid-state laser, a beam shaping mirror, a galvanometer motor, a galvanometer lens, and a field lens, and includes a mobile platform and an industrial computer and control software (not shown).
  • the invention uses a solid-state laser as a laser light source, and below the laser is a beam shaping mirror, a galvanometer lens, a galvanometer motor and a field lens.
  • the beam shaping mirror is located behind the laser, and the laser beam emitted by the laser is shaped into the beam shape required by the invention.
  • the galvanometer motor is placed in front of the field lens and controls the movement of the galvanometer lens according to the commands issued by the control software to achieve different beam scanning paths.
  • a laser-stripped GaN and sapphire substrate stripping apparatus and stripping method uses a solid-state laser as a laser light source, using a circumference of 3 to 1000 ⁇ m, and the two farthest angular distances or the longest diameters not exceeding 400
  • the micro-small spot is scanned by point-by-point progressive laser.
  • the energy distribution inside the small spot is: The center of the spot is the strongest, and the energy to the surrounding area is gradually weakened.
  • the invention has changed the large spot stripping technique in the original laser stripping, and uses a small spot to realize a blind sweep stripping GaN film or GaN-based device without precise positioning.
  • the small spot method has not been proposed for four important reasons: (1) It is generally believed that small spot stripping will introduce the spot edge problem into the GaN-based device unit, thereby further reducing the quality of laser stripping; (2) generally considered solid Laser The single pulse energy of the device may not reach the threshold of laser stripping; (3) Non-destructive laser stripping of small spots has not been reported.
  • the small spot size used in the present invention is 3 to 1000 micrometers, and the two farthest angular distances or the longest diameters are not more than 400 micrometers, preferably the circumference is 100 to 400 micrometers, and the two farthest angular distances or the longest diameters are not More than 150 microns.
  • the shape of the spot may be a square, a rectangle, a circle, an ellipse, a pentagon, a hexagon, or the like.
  • Such small spots are, for example, square spots with a side length of 3 to 250 meters and circular spots with a diameter of 1 to 300 microns.
  • the invention adjusts the laser energy distribution of a single spot, and changes the laser energy distribution inside the original spot.
  • the energy in the large spot is uniformly hooked, and the energy at the edge of the spot suddenly changes, so it is easy to cause damage.
  • the original pulse spot energy distribution is shown in Fig. 3a, and the X axis indicates the side length direction of the spot.
  • the y-axis represents the energy level, and the X-axis zero position corresponds to the center of the spot.
  • the inventors changed the energy distribution inside the spot, and no longer pursued the energy uniformization, but considered the gradual change of the edge energy of the spot, and the energy distribution is as shown in Fig. 3b. Compared to large spots, small spots are more likely to achieve a gradual change in spot laser energy.
  • the solid-state laser used in the present invention may be an improved solid-frequency double-frequency laser light source, and the improvement thereof is to improve the spatial declaration of laser energy inside the spot, and the center of the spot is the highest point of energy, and the energy to the surrounding area is gradually weakened, and the internal energy of the entire spot is Gaussian distribution or approximate Gaussian distribution. As shown in Figure 3b.
  • the invention realizes the small spot non-destructive laser peeling (the peeling surface is as shown in Fig. 9, without obvious damage), thereby realizing a blind sweep peeling method which does not need to accurately match the spot and the chip position.
  • the invention improves the laser stripping scanning mode, and after the step of electroplating or bonding is performed in the conventional process, the spot area is not required to be adjusted according to the size of the GaN device unit, and the spot spot precise positioning work is not required at the beginning, and the laser scanning can be directly performed without intermediate Pause, no real-time detection required.
  • the invention designs a beam shaping system, which changes the spatial distribution of the beam, makes it more conducive to the energy distribution in the spot, and changes the requirement that the required energy distribution in the original optical path is completely flat-topped, and is changed into a class.
  • Gaussian distribution the waist is smaller than the width of the bottom edge, which is beneficial to the connection between the spots without destroying the material of the village bottom.
  • the principle of the light path is shown in Figure 2.
  • the beam scanning system uses a scanning system similar to laser marking. This system has not been used in the current stripping system. The reason may be that this method has problems in positioning accuracy correction. So no product was formed, but due to our micro-zone stripping (MALLO) technology, this problem was solved.
  • MALLO micro-zone stripping
  • the inventors Due to the successful resolution of the blind scanning scheme, the inventors have proposed some unique scanning and stripping schemes to disperse the problem of continuous heating of the peeling zone due to laser pulses in accordance with the existing problems of peeling. Since gallium droplets and nitrogen bubbles are formed between the film layer and the substrate at the peeling, different beam scanning paths have different stress distributions. Therefore, the inventors propose a variety of beam scanning paths to solve The problem of stress in the peeling of materials of different structures. At the same time, the yield rate is improved.
  • FIGS 4-8 illustrate several typical beam scanning paths of the present invention.
  • the present invention employs a unique scanning path, such as a spiral scan from the inside to the outside, a spiral scan from the outside to the inside, a concentric scan path from the inside to the outside, a concentric circular scan path from the outside to the inside, and an alternate scan path up and down.
  • a unique scanning path such as a spiral scan from the inside to the outside, a spiral scan from the outside to the inside, a concentric scan path from the inside to the outside, a concentric circular scan path from the outside to the inside, and an alternate scan path up and down.
  • the beneficial effects of the present invention are: first, greatly enlarging the laser stripping process; second, greatly improving the working efficiency of laser stripping; third, reducing the scrap rate; fourth , clearing the obstacles for the industrialization of the laser stripping process and promoting the industrial production of laser stripping.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Description

固体激光剥离设备和剥离方法
技术领域
本发明涉及半导体加工领域, 更具体地说涉及一种应用固体激光对半导 体薄膜材料的剥离半导体薄膜材料的剥离设备和剥离方法。 本发明使激光通 过专用的光路整形成特定的形状及特定的光场分布, 通过聚焦照射到多层材 料之间的界面上, 分解界面材料以达到剥离薄膜层与村底的功能。
背景技术
以 GaN以及 InGaN, AlGaN为主的 III/ V氮化物是近年来备受关注的半导 体材料, 其 1.9eV-6.2eV连续可变的直接带隙, 优异的物理、 化学稳定性, 高 饱和电子迁移率等等特性, 使其成为激光器、 发光二极管等等光电子器件和 微电子器件的最优选材料。
然而, 由于 GaN本身生长技术的限制, 现今的大面积 GaN材料大多生长 在蓝宝石村底上。 虽然蓝宝石村底上生长的 GaN质量很高, 应用也最广, 可 是由于蓝宝石的不导电及较差的导热特性, 极大地限制了 GaN基半导体器件 的发展。 为了回避这一不足, GaN薄膜在蓝宝石上生长成功后, 将蓝宝石去 除的方法发明了, 去除村底后的 GaN薄膜依需要可以键合在更好的热沉或作 为同质外延的村底材料。 在蓝宝石去除的过程中, 主要应用的方法就是激光 剥离技术。
村底剥离技术( Lift-off )首先由美国惠普公司在 AlGalnP/GaAs LED上实 现, 因为 GaAs村底使得 LED内部光吸收损失非常大。 通过剥离 GaAs村底, 然后粘接在透明的 GaP村底上, 可以提高近 2倍的发光效率。 GaN基材料的激 光剥离( LLO )技术是基于 GaN的异质外延发展的一项技术,是美国 M.K.Kelly 等人于 1996年提出的, 利用 YAG的 3倍频激光剥离在蓝宝石村底上氢化物气 相外延(HVPE )生长的厚膜 GaN。 1998年 W.S.Wong等人利用 LLO技术制备 GaN基的 LED和激光二极管, 激光剥离工艺受到了人们的广泛重视。
激光剥离技术解决了蓝宝石村底上 GaN基 LED存在的诸如散热、 电流聚 集以及出光效率低等一系列问题, 是解决上述照明应用障碍的最有潜力的技 术。 首先, 外延片转移到高热导率的热沉上, 极大地改进了 LED芯片的散热 效率, 降低 LED的结温, 结温的降低将大大提高 LED的发光效率和可靠性, 增加 LED的寿命。 激光剥离技术由于减少刻蚀、 磨片、 划片等工艺, 而且剥 离出来的蓝宝石村底可以重复运用, 有效地节约工艺成本。
目前商业化的激光剥离设备主要有美国 JPSA公司 IX-1000型激光剥离 机, 采用的是大功率 KrF准分子激光器, 波长为 248nm, 脉沖宽度在 25-38ns 不等, 通过对能量的精确控制及光束能量分布的勾化后, 照射到 GaN緩沖层 上, 使之分解为金属镓和氮气, 从而实现 GaN膜层与村底的剥离。 除了 KrF 准分子激光器外, Q开关的 YAG三倍频固体激光器也被应用, 主要有美国 M.K.Kelly小组和台湾 R.H.Horng小组, 固体激光器通过 Q开关技术可以达到 较高的脉沖能量, 而且维护比较方便, 但由于技术限制, 这种方案一直没有 成熟的商品设备。
上述的剥离方法有如下的特点:
1.使用逐片剥离工艺 ( chip by chip ) , 通过大光斑(光斑大于或等于一 个元件 (chip))进行剥离。
2.光斑大 d、要依据器件单元的尺寸改变。
3.光斑的能量分布均匀, 呈平顶状。
4.光斑能量大, 一般能量密度大于 0.6J/cm2
5.使用移动工作台加视觉识别***完成各个器件单元的和激光光斑的对 准。
经过产业界最近几年的应用,上述两种解决方案虽然解决了剥离的问题, 但同时也出现了一些问题, 主要有以下几点:
1. KrF激光器的特点, 无法保证每个激光脉沖的能量稳定性, 容易出现能 量波动, 从而破坏元器件结构, 降低良品率。
2.由于要随元器件规格的变动调节光斑大小, 从而导致激光剥离参数的 调校无法精确, 从而无法保证剥离效果的一致性。
3.因为光斑较大, 近年在使用中产业界一直在质疑这种大面积的剥离方 法, 由于照射区内 GaN同时分解, 造成分解区内 艮大的应力及变形, 从而给 芯片的质量和寿命造成隐患。 虽然可以通过人工调校使 GaN 分解尽可能精 确, 但这种宏观上的调校很难适应微观的要求。 同时由于 KrF准分子激光器 脉沖能量的离散性, 使这种激光的调校更加困难。
发明内容
本发明的目的在于提供一种更加可靠、 筒便的低成本的激光剥离设备和 剥离方法。 本发明采用了发明人提出的微区剥离 ( Micro AreaLLO )技术, 无 需精确定位的高速盲扫激光剥离方法,实现了 GaN和蓝宝石村底的无损剥离。
本发明提供了一种固体激光剥离设备, 其特征在于包括固体激光器, 光 束整形镜, 振镜电机, 振镜镜片和场镜, 还包括移动平台和工控电脑及控制 软件, 所述光束整形镜位于所述固体激光器下方, 所述振镜镜片、 振镜电机 和场镜、 光束整形镜位于所述固体激光器之后, 将所述固体激光器发出的激 光束整形, 所述振镜电机位于场镜之前, 依控制软件发出的指令控制所述振 镜镜片的动作, 从而实现不同的光束扫描路径, 所述移动平台位于所述固体 激光器下方, 所述控制软件运行于所述工控电脑之上。
在本发明的固体激光剥离设备中, 所述激光光束整形镜把激光光斑整形 为不同几何形状的小光斑。
在本发明的固体激光剥离设备中 所述几何形状包括正方形、 长方形 圓形、 橢圓形、 五边形和六边形。
在本发明的固体激光剥离设备中,小光斑为周长 3 ~ 1000微米的正方形光 斑。
在本发明的固体激光剥离设备中 小光斑为直径 3 ~ 300微米的圓形光斑。 在本发明的固体激光剥离设备中 小光斑中心能量最强, 向四周能量逐 渐变弱。
在本发明的固体激光剥离设备中, 所述固体激光器是波长小于 400nm的 DPSS固体激光器。
在本发明的固体激光剥离设备中, 所述光束扫描是使用振镜电机驱动振 镜镜片而产生的光束扫描。
本发明还提供了一种使用上述固体激光剥离设备的剥离方法, 其特征在 于使用小光斑进行扫描。
在本发明的剥离方法中, 小光斑为 3 ~ 1000微米的正方形光斑。
在本发明的剥离方法中, 小光斑为直径 3 ~ 300微米的圓形光斑。 在本发明的剥离方法中, 小光斑中心能量最强, 向四周能量逐渐变弱。 在本发明的剥离方法中, 采用多种不同的光束扫描路径。
在本发明的剥离方法中, 小光斑在扫描时无需与芯片进行精确位置定 位, 按任意方向扫描剥离。
附图说明
本发明将结合附图予以描述。 附图中:
图 1是本发明的固体激光剥离设备的示意图;
图 2是本发明的光束整形示意图;
图 3a是现有技术的脉沖光斑能量分布图, 图 3b是本发明的脉沖光斑能量 分布图;
图 4 -图 8是光束扫描路径示意图;
图 9是本发明的小光斑无损激光剥离后的显微图。
具体实施方式
图 1是本发明的固体激光剥离设备的示意图,其中包括固体激光器、光束 整形镜、 振镜电机、 振镜镜片和场镜, 还包括移动平台和工控电脑及控制软 件(图中未示出) 。 本发明以固体激光器为激光光源, 激光器下方是光束整 形镜、 振镜镜片、 振镜电机和场镜, 光束整形镜位于激光器之后, 将激光器 发出的激光束整形为本发明所需的光束形状。 振镜电机位于场镜之前, 依控 制软件发出的指令控制振镜镜片的动作, 从而实现不同的光束扫描路径。
根据本发明的一种激光剥离 GaN和蓝宝石村底剥离设备和剥离方法, 是 以固体激光器为激光光源, 使用周长为 3 ~ 1000微米, 且两个最远角距离或 最长直径不超过 400微米的小光斑进行逐点逐行激光扫描, 其中小光斑内部 的能量分布情况是: 光斑中心能量最强, 向四周能量逐渐变弱。
本发明对原有激光剥离中的大光斑剥离技术做了改变, 使用小光斑实现 无需精确定位的盲扫剥离 GaN薄膜或 GaN基器件。 小光斑方法一直未被提出 有 4艮重要的三点原因: ( 1 )普遍认为小光斑剥离将把光斑边缘问题引入 GaN 基器件单元内部, 从而更加降低激光剥离的质量; (2 )普遍认为固体激光 器的单脉沖能量可能无法达到激光剥离的阈值;(3 ) 尚未有报道能实现小光 斑的无损激光剥离。 本发明采用的小光斑周长为 3到 1000微米, 且两个最远 角距离或最长直径不超过 400微米, 优选周长为 100到 400微米, 两个最远角 距离或最长直径不超过 150微米。 光斑的形状可为正方形、 长方形、 圓形、 橢圓形、 五边形、 六边形等。 这样的小光斑例如边长为 3 ~ 250 米的正方形 光斑, 直径为 1 ~ 300微米的圓形光斑。 同时本发明对单个光斑的激光能量分 布做了调整, 改变了原有光斑内部的激光能量分布状况。 在现有技术中, 大 光斑内的能量是均勾的, 在光斑边缘能量发生骤变, 故容易造成损伤, 原有 脉沖光斑能量分布如图 3a所示, 图中 X轴表示光斑边长方向, y轴表示能量大 小, X轴零点位置对应光斑中心。 在本发明中, 发明人改变了光斑内部的能 量分布状况,不再一味地追求能量均勾化,而是考虑了光斑边缘能量的渐变, 能量分布如图 3b所示。 相对于大光斑, 小光斑更容易实现光斑激光能量的渐 变。 正是由于强调了光斑边缘区域的能量的渐变过程(从靠近光斑中心能量 较强区到远离中心的能量较弱区的渐变) , 改善了 GaN基材料在光斑边缘的 受力状况, 从而实现了小光斑的无损激光剥离。
本发明所使用的固体激光器可以是改进的固体倍频激光光源, 其改进在 于改善了光斑内部的激光能量空间公布, 以光斑中心为能量最高点, 向四周 能量逐渐变弱, 整个光斑内部能量呈高斯分布或近似高斯分布。 如图 3b所 示。
本发明实现了小光斑无损激光剥离 (剥离表面如图 9所示, 没有明显损 伤) , 从而实现了无需精确匹配光斑和芯片位置的盲扫剥离方法。 本发明改 进了激光剥离扫描方式, 在传统工艺实现电镀或键合的步骤后, 无需再根据 GaN器件单元尺寸调整光斑面积, 无需在开始时进行光斑精确定位工作, 可 直接进行激光扫描, 中间无需停顿, 无需实时检测。
本发明设计了一种光束整形***, 改变了光束的空间分布, 使之更有利 于光斑内的能量分布, 改变了以前原有光路中要求能量分布完全呈平顶状分 布的要求, 改成类高斯分布, 光腰小于底边宽度, 这样有利于光斑之间的衔 接不致破坏村底材料, 光路原理如图 2所示。
光束扫描***采用与激光打标类似的扫描***, 这个***在目前所用的 剥离***中还没有使用过, 原因可能是这种方式在定位精度校正时存在问题 所以没有形成产品, 但是由于我们的微区剥离 (MALLO )技术, 使得这一 问题得到解决。 光路原理如图 1所示。
由于盲扫方案的成功解决, 本发明人又依现有剥离存在的问题, 提出了 一些特有的扫描剥离方案, 以分散由于激光脉沖造成的剥离区持续升温的问 题。 由于在剥离中膜层与村底之间形成镓滴及氮气泡, 所以, 不同的光束扫 描路径, 也会有不同的应力分布, 因此, 本发明人提出的多种多样的光束扫 描路径, 解决了不同结构的材料在剥离中的应力问题。 同时提高了良品率。
图 4 -图 8示出了本发明的几个典型的光束扫描路径。
本发明采用独特的扫描路径, 例如从内向外的螺旋线扫描, 从外向内的 螺旋线扫描, 从内向外的同心圓扫描路径, 从外向内的同心圓扫描路径, 上 下交替的扫描路径,其优点是可依元器件特性及 GaN薄膜特性采取不同的扫 描策略。
与现有技术相比, 本发明的有益效果是: 第一, 极大地筒化了激光剥离 工艺过程; 第二, 极大地提高了激光剥离的工作效率; 第三, 降低了废品率; 第四, 为激光剥离工艺产业化扫清了障碍, 推进了激光剥离的工业生产。

Claims

权 利 要 求 书
1、 一种固体激光剥离设备, 其特征在于包括固体激光器, 光束整形 镜, 振镜电机, 振镜镜片和场镜, 还包括移动平台和工控电脑及控制软件, 所述光束整形镜位于所述固体激光器下方,所述振镜镜片、振镜电机和场镜、 光束整形镜位于所述固体激光器之后, 将所述固体激光器发出的激光束整 形, 所述振镜电机位于场镜之前, 依控制软件发出的指令控制所述振镜镜片 的动作, 从而实现不同的光束扫描路径, 所述移动平台位于所述固体激光器 下方, 所述控制软件运行于所述工控电脑之上。
2、 如权利要求 1 所述的固体激光剥离设备, 其特征在于所述光束整 形镜把激光光斑整形为不同几何形状的小光斑。
3、 如权利要求 2所述的固体激光剥离设备, 其特征在于所述几何形 状包括正方形、 长方形、 圓形、 橢圓形、 五边形和六边形。
4、 如权利要求 2所述的固体激光剥离设备, 其特征在于小光斑周长 为 3 - 1000微米的正方形光斑。
5、 如权利要求 2所述的固体激光剥离设备, 其特征在于小光斑为直 径 3 - 300微米的圓形光斑。
6、 如权利要求 2所述的固体激光剥离设备, 其特征在于小光斑中心 能量最强, 向四周能量逐渐变弱。
7、 如权利要求 1 所述的剥离设备, 其特征在于所述固体激光器是波 长小于 400nm的 DPSS固体激光器。
8、 如权利要求 1 所述的剥离设备, 其特征在于所述光束扫描是使用 振镜电机驱动振镜镜片而产生的光束扫描。
9、 一种使用权利要求 1所述的固体激光剥离设备的剥离方法, 其特 征在于使用小光斑进行扫描。
10、 如权利要求 9所述的剥离方法,其特征在于小光斑为周长 3 - 1000 米的正方形光斑。
11、 如权利要求 9所述的剥离方法, 其特征在于小光斑为直径 3 - 300 微米的圓形光斑。
12、 如权利要求 9所述的剥离方法, 其特征在于小光斑中心能量最强, 向四周能量逐渐变弱。
13、 如权利要求 9所述的剥离方法, 其特征在于采用多种不同的扫描 路径。
14、 如权利要求 9所述的剥离方法, 其特征在于小光斑在扫描时, 无 需与芯片进行精确位置定位, 按任意方向扫描剥离。
PCT/CN2010/072466 2009-05-08 2010-05-05 固体激光剥离设备和剥离方法 WO2010127621A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10772024.5A EP2428979A4 (en) 2009-05-08 2010-05-05 SOLID STATE LASER DECOLUTION APPARATUS AND DECOLUTION METHOD
JP2012508888A JP2012526369A (ja) 2009-05-08 2010-05-05 固体レーザーリフトオフ(Lift−off)装置およびそのリフトオフ方法
KR1020117029419A KR101323585B1 (ko) 2009-05-08 2010-05-05 고체 레이저 박리장치 및 박리방법
US13/318,663 US8395082B2 (en) 2009-05-08 2010-05-05 Solid-state laser lift-off apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910136457.4 2009-05-08
CN200910136457.4A CN101879657B (zh) 2009-05-08 2009-05-08 固体激光剥离设备和剥离方法

Publications (1)

Publication Number Publication Date
WO2010127621A1 true WO2010127621A1 (zh) 2010-11-11

Family

ID=43049984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072466 WO2010127621A1 (zh) 2009-05-08 2010-05-05 固体激光剥离设备和剥离方法

Country Status (6)

Country Link
US (1) US8395082B2 (zh)
EP (1) EP2428979A4 (zh)
JP (1) JP2012526369A (zh)
KR (1) KR101323585B1 (zh)
CN (1) CN101879657B (zh)
WO (1) WO2010127621A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881662A (zh) * 2011-07-13 2013-01-16 株式会社迪思科 光器件晶片的加工方法
US20140102643A1 (en) * 2010-12-07 2014-04-17 Ipg Microsystems Llc Laser lift off systems and methods that overlap irradiation zones to provide multiple pulses of laser irradiation per location at an interface between layers to be separated
CN110534477A (zh) * 2019-08-26 2019-12-03 东莞市中镓半导体科技有限公司 激光剥离集成化设备
US20210175388A1 (en) * 2018-06-19 2021-06-10 Nantong China Railway Huayu Electric Co., Ltd Patterned epitaxial structure laser lift-off device
US11239116B2 (en) 2009-12-07 2022-02-01 Ipg Photonics Corporation Laser lift off systems and methods

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110114972A (ko) * 2010-04-14 2011-10-20 삼성전자주식회사 레이저 빔을 이용한 기판의 가공 방법
CN102231367B (zh) * 2011-04-26 2013-04-24 哈尔滨工业大学 扫描式薄膜图形激光转移方法
JP5977532B2 (ja) * 2012-02-20 2016-08-24 東京応化工業株式会社 支持体分離方法及び支持体分離装置
CN103258916B (zh) * 2013-05-31 2015-08-26 英利集团有限公司 Mwt太阳能电池及其制备方法
KR101794828B1 (ko) * 2013-08-28 2017-11-09 에이피시스템 주식회사 막 분리 장치
GB2519088B (en) 2013-10-08 2015-09-16 M Solv Ltd Laser scanning system for laser release
US9610651B2 (en) 2014-02-26 2017-04-04 Nlight, Inc. Square pulse laser lift off
CN103887157B (zh) * 2014-03-12 2021-08-27 京东方科技集团股份有限公司 光学掩膜板和激光剥离装置
JP6508153B2 (ja) * 2016-09-21 2019-05-08 日亜化学工業株式会社 発光素子の製造方法
CN106334873B (zh) * 2016-09-26 2019-06-28 中国电子科技集团公司第四十八研究所 用于太阳能电池片激光消融机的激光加工单元
CN107622977B (zh) * 2017-08-31 2020-05-22 西安交通大学 一种渐进式微米级蓝宝石衬底激光剥离工艺
JP7007053B2 (ja) * 2017-10-17 2022-01-24 株式会社ディスコ リフトオフ方法
CN108565248A (zh) * 2018-04-25 2018-09-21 大族激光科技产业集团股份有限公司 激光加工***及方法
CN108608120A (zh) * 2018-04-25 2018-10-02 大族激光科技产业集团股份有限公司 芯片衬底的激光剥离***和方法
CN112447933A (zh) * 2019-08-12 2021-03-05 陕西坤同半导体科技有限公司 激光剥离装置及激光剥离机
CN113463045B (zh) * 2021-06-11 2022-10-14 华中科技大学 一种激光脉冲沉积***及加工方法
CN113628960B (zh) * 2021-07-28 2024-03-22 山东大学 一种蓝宝石模板上GaN单晶衬底高温激光剥离装置及剥离方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010049201A1 (en) * 2000-04-27 2001-12-06 Park Sung-Soo Method for fabricating GaN single crystal substrate
CN1540720A (zh) * 2003-04-21 2004-10-27 ��ʽ����뵼����Դ�о��� 射束照射装置、射束照射方法及半导体装置的制作方法
US20060124939A1 (en) * 2004-12-13 2006-06-15 Lee Jae S Method for manufacturing GaN-based light emitting diode using laser lift-off technique and light emitting diode manufactured thereby
CN1947239A (zh) * 2004-04-19 2007-04-11 Eo技术有限公司 激光加工装置
CN101246820A (zh) * 2008-03-19 2008-08-20 厦门大学 一种氮化镓基外延膜的制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958093B2 (en) * 1994-01-27 2005-10-25 Cree, Inc. Free-standing (Al, Ga, In)N and parting method for forming same
JP3805673B2 (ja) * 2001-03-23 2006-08-02 松下電器産業株式会社 窒化物半導体基板の製造方法
TWI226139B (en) * 2002-01-31 2005-01-01 Osram Opto Semiconductors Gmbh Method to manufacture a semiconductor-component
US6580054B1 (en) * 2002-06-10 2003-06-17 New Wave Research Scribing sapphire substrates with a solid state UV laser
EP1588414B1 (de) * 2003-01-31 2014-12-03 OSRAM Opto Semiconductors GmbH Verfahren zur trennung einer halbleiterschicht mittels laserimpulsen
US7202141B2 (en) * 2004-03-29 2007-04-10 J.P. Sercel Associates, Inc. Method of separating layers of material
JP2005347647A (ja) * 2004-06-04 2005-12-15 Sony Corp 素子および素子転写方法
JP4740556B2 (ja) * 2004-06-17 2011-08-03 三星ダイヤモンド工業株式会社 レーザ光によるライン加工方法およびレーザ加工装置。
JP4883991B2 (ja) * 2005-11-28 2012-02-22 国立大学法人東京工業大学 レーザーリフトオフ法およびレーザーリフトオフ装置
JP5232971B2 (ja) * 2006-04-28 2013-07-10 豊田合成株式会社 窒化物系半導体発光素子の製造方法
US20080261382A1 (en) * 2007-04-19 2008-10-23 Andrei Starodoumov Wafer dicing using a fiber mopa
WO2010027712A2 (en) * 2008-08-26 2010-03-11 Applied Materials, Inc. Laser material removal methods and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010049201A1 (en) * 2000-04-27 2001-12-06 Park Sung-Soo Method for fabricating GaN single crystal substrate
CN1540720A (zh) * 2003-04-21 2004-10-27 ��ʽ����뵼����Դ�о��� 射束照射装置、射束照射方法及半导体装置的制作方法
CN1947239A (zh) * 2004-04-19 2007-04-11 Eo技术有限公司 激光加工装置
US20060124939A1 (en) * 2004-12-13 2006-06-15 Lee Jae S Method for manufacturing GaN-based light emitting diode using laser lift-off technique and light emitting diode manufactured thereby
CN101246820A (zh) * 2008-03-19 2008-08-20 厦门大学 一种氮化镓基外延膜的制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10974494B2 (en) 2009-12-07 2021-04-13 Ipg Photonics Corporation Laser lift off systems and methods that overlap irradiation zones to provide multiple pulses of laser irradiation per location at an interface between layers to be separated
US11239116B2 (en) 2009-12-07 2022-02-01 Ipg Photonics Corporation Laser lift off systems and methods
US20140102643A1 (en) * 2010-12-07 2014-04-17 Ipg Microsystems Llc Laser lift off systems and methods that overlap irradiation zones to provide multiple pulses of laser irradiation per location at an interface between layers to be separated
US9669613B2 (en) * 2010-12-07 2017-06-06 Ipg Photonics Corporation Laser lift off systems and methods that overlap irradiation zones to provide multiple pulses of laser irradiation per location at an interface between layers to be separated
CN102881662A (zh) * 2011-07-13 2013-01-16 株式会社迪思科 光器件晶片的加工方法
US20210175388A1 (en) * 2018-06-19 2021-06-10 Nantong China Railway Huayu Electric Co., Ltd Patterned epitaxial structure laser lift-off device
US11870003B2 (en) * 2018-06-19 2024-01-09 Nantong China Railway Huayu Electric Co., Ltd Patterned epitaxial structure laser lift-off device
CN110534477A (zh) * 2019-08-26 2019-12-03 东莞市中镓半导体科技有限公司 激光剥离集成化设备
CN110534477B (zh) * 2019-08-26 2022-04-15 东莞市中镓半导体科技有限公司 激光剥离集成化设备

Also Published As

Publication number Publication date
CN101879657A (zh) 2010-11-10
US20120064735A1 (en) 2012-03-15
KR20120006571A (ko) 2012-01-18
US8395082B2 (en) 2013-03-12
EP2428979A1 (en) 2012-03-14
CN101879657B (zh) 2016-06-29
JP2012526369A (ja) 2012-10-25
KR101323585B1 (ko) 2013-10-30
EP2428979A4 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
WO2010127621A1 (zh) 固体激光剥离设备和剥离方法
CN101882578B (zh) 固体激光剥离和切割一体化设备
TWI794343B (zh) 剝離裝置
JP5053076B2 (ja) 材料層の分離方法
US11114307B2 (en) Method of producing a wafer from an ingot including a peel-off detecting step
US20150214432A1 (en) Optical device and manufacturing method therefor
US20210407855A1 (en) Manufacturing process of element chip using laser grooving and plasma-etching
TWI555223B (zh) Processing method of optical element wafers
TWI779173B (zh) 晶圓之生成方法及晶圓之生成裝置
KR101454821B1 (ko) 결정성막, 디바이스, 및, 결정성막 또는 디바이스의 제조방법
CN111203652A (zh) 晶片的生成方法
WO2010051677A1 (zh) 利用固体激光器无损剥离GaN与蓝宝石衬底的方法
JP2014506009A (ja) 発光素子の改良シンギュレーションのための方法及び装置
JP2004158859A (ja) 基板から素子を切り取る装置及び方法
CN108565248A (zh) 激光加工***及方法
CN104183675A (zh) 基于区域激光剥离及化学腐蚀的GaN基LED制备方法
JP2010114374A (ja) 半導体素子の製造方法
US20210299790A1 (en) Laser processing apparatus
JP5261532B2 (ja) レーザスクライブ方法及びレーザ加工装置
TW202140870A (zh) 晶圓之生成方法
Dixit et al. Gallium nitride LED shaping by DPSS laser processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10772024

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13318663

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012508888

Country of ref document: JP

Ref document number: 2010772024

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117029419

Country of ref document: KR

Kind code of ref document: A