WO2010116747A1 - メカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプを構成する部材の表面処理方法及びこの表面処理方法により処理されたメカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプ - Google Patents

メカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプを構成する部材の表面処理方法及びこの表面処理方法により処理されたメカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプ Download PDF

Info

Publication number
WO2010116747A1
WO2010116747A1 PCT/JP2010/002576 JP2010002576W WO2010116747A1 WO 2010116747 A1 WO2010116747 A1 WO 2010116747A1 JP 2010002576 W JP2010002576 W JP 2010002576W WO 2010116747 A1 WO2010116747 A1 WO 2010116747A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
treatment method
pumps
dry
sodium
Prior art date
Application number
PCT/JP2010/002576
Other languages
English (en)
French (fr)
Inventor
石榑文昭
稲吉さかえ
三浦辰也
佐藤洋志
石川裕一
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2011508253A priority Critical patent/JP5432985B2/ja
Priority to CN201080013272.5A priority patent/CN102362015B/zh
Publication of WO2010116747A1 publication Critical patent/WO2010116747A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • F04C23/003Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle having complementary function
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/005Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
    • F04C23/006Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle having complementary function
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/92Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/90Alloys not otherwise provided for
    • F05C2201/903Aluminium alloy, e.g. AlCuMgPb F34,37
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/95Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/12Light metals
    • F05D2300/121Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/173Aluminium alloys, e.g. AlCuMgPb

Definitions

  • the present invention relates to a mechanical booster pump composed of aluminum or an aluminum alloy exposed in a gas flow path, a surface treatment method for parts of a turbo molecular pump or a dry pump, and a mechanical booster composed of parts treated by the surface treatment method.
  • the present invention relates to a pump, a turbo molecular pump, or a dry pump.
  • this rotor chamber 4 there is known a screw type that is constituted by providing rotors 7 to 12 supported by a rotating shaft 6 driven by a motor 5.
  • a gas ballast 14 for introducing air heated by the heating means 13, dry nitrogen, or the like is connected to the rotor chamber 4, and a shaft seal gas is introduced around the rotary shaft 6.
  • a shaft seal gas introduction path 15 is formed for this purpose.
  • GaN which is a wide band gap compound semiconductor
  • LED light emitting diode
  • TMG trimethylgallium
  • TMG triethylgallium
  • Al aluminum and aluminum alloys cannot be used for pipes and components through which raw materials and unreacted Ga flow.
  • the present invention provides a mechanical booster pump, a turbomolecular pump, or a surface treatment method for a member constituting a dry pump, and a mechanical booster pump treated by the surface treatment method, which has excellent corrosion resistance and a small amount of released gas.
  • An object is to provide a turbo molecular pump or a dry pump.
  • the present inventors have found a solving means as follows as a result of intensive studies. That is, the first solution of the surface treatment method of the parts constituting the mechanical booster pump, turbo molecular pump or dry pump of the present invention is made of aluminum or aluminum as a member constituting the mechanical booster pump, turbo molecular pump or dry pump. It is made of an alloy, and the surface of the component is immersed in an alkaline solution and subjected to a micro arc oxidation treatment.
  • the second solution is that the alkaline solution is disodium hydrogen phosphate, sodium tripolyphosphate, sodium dihydrogen phosphate, sodium ultrapolyphosphate, sodium silicate, potassium hydroxide, sodium diphosphate, One of trisodium phosphate, sodium aluminate, sodium metasilicate and sodium hydroxide or a mixture thereof is dissolved in water to have a concentration of 0.1% to 5%.
  • the third solving means is characterized in that the applied voltage in the micro arc treatment is in the range of 300 V to 600 V, and the current density is 3.0 A / dm 2 to 10 A / dm 2 .
  • the fourth solving means is characterized in that the temperature of the alkaline solution is 5 to 90 ° C.
  • the fifth solving means is characterized in that the film thickness of the oxide film formed on the surface of the member by the treatment is set to 12 ⁇ m to 15 ⁇ m.
  • the mechanical booster pump, the turbo molecular pump or the dry pump of the present invention is constituted by a member treated by the surface treatment method.
  • the surface of a member constituting a mechanical booster pump, a turbo molecular pump or a dry pump is made of aluminum or an aluminum alloy and subjected to a micro arc oxidation treatment, thereby exhausting corrosive gas
  • a dry pump having excellent corrosion resistance and a small amount of released gas can be obtained.
  • a turbo molecular pump, or a dry pump efficient suction becomes possible. Moreover, it becomes the thing with the excellent corrosion resistance with respect to the gas containing Ga.
  • alkaline solution electrolyte used in the present invention examples include disodium hydrogen phosphate, sodium tripolyphosphate, sodium dihydrogen phosphate, sodium ultrapolyphosphate, sodium silicate, potassium hydroxide, sodium diphosphate.
  • a solution obtained by dissolving one kind of trisodium phosphate, sodium aluminate, sodium metasilicate, sodium hydroxide, or the like or a mixture thereof in an electrolytic solution can be used.
  • the concentration is preferably in the range of 0.1% to 5%.
  • Aluminum alloy casting materials and die-casting materials typically silicon, contain many elements in general, and it is said that it is difficult to form a porous anodic oxide film. According to the present invention, it is possible to form a coating film with good corrosion resistance even in such a casting or die-casting with a lot of silicon.
  • the No. 4000 series treatment of the Al—Si alloy has the same corrosion resistance due to the same reason, but according to the present invention, a good oxide film can be formed.
  • the wrought material in which no silicon is deposited, aluminum alloys in the 1000th to 3000th, 5000th to 7000th range are also effective in the case of a complicated shape or a high temperature of 100 ° C. or higher.
  • the above-described base material is immersed in an alkaline solution as a constituent member of a mechanical booster pump, a turbo molecular pump or a dry pump to perform micro-arc oxidation treatment.
  • a mechanical booster pump a turbo molecular pump or a dry pump to perform micro-arc oxidation treatment.
  • the voltage to be applied is preferably 300V to 600V. If it is less than 300 V, dielectric breakdown does not occur, and if it exceeds 600 V, the voids of the film increase.
  • the current density is preferably 3.0 A / dm 2 to 10 A / dm 2 .
  • the current may be any of direct current, alternating current, and orthogonal superimposition.
  • the thickness of the oxide film formed on the surface of the base material is not particularly limited, but is preferably in the range of 12 ⁇ m to 15 ⁇ m. This is because the function as an oxide film is exhibited within a range that does not hinder the operation of the pump.
  • the dry pump used in the present invention is not particularly limited to the structure shown in FIG. 1 as long as it does not use oil in the gas passage inside the pump.
  • a root type, a claw type, a screw type, a turbo type, a scroll type, a multistage type, a diaphragm type, and the like can be given.
  • limit especially regarding the structure of a mechanical booster pump an example is demonstrated with reference to FIG.
  • Reference numeral 21 in the drawing is a casing, and the casing 21 has a configuration in which an upper casing 21a constituting an upstream portion and a lower casing 21b constituting a downstream portion are integrated.
  • the casing 21 is provided with an intake port 22 and an exhaust port 23, and a stationary blade 25 is fixedly provided inside the upper casing 21 a side where the intake port 22 is provided.
  • the positions of these stationary blades 25 are fixed by spacers 28, respectively.
  • a rotating body 31 is installed in the casing 21 so as to be rotatable at a high speed with respect to the stationary side including the casing 21 and the stationary blade 25.
  • the rotating body 31 includes a plurality of rotor blades 32 and a thread groove portion 33 provided in a rotor portion 35 integrally connected to a rotating shaft 34. Accordingly, the rotor 31 includes two axial flow stages and a thread groove stage. It has a stage compression structure.
  • the moving blades 32 on the rotating body 31 side are alternately arranged in the axial direction of the stationary blade 25 and the rotating shaft 34 described above.
  • the rotating shaft 34 of the rotating body 31 includes a magnetic bearing 29a as an upper bearing, a magnetic bearing 29b as a lower bearing, and an axial bearing that are attached to the inner peripheral surface of the stator 26 fixed to the lower casing 21b.
  • the magnetic bearing 29c is supported at high speed.
  • symbol M in a figure is the motor for a rotor drive provided between the internal peripheral surface of the stator 26 and the rotating shaft 34.
  • the gas sucked from the intake port 22 passes between the stationary blade 25 and the moving blade 32 and is compressed by the axial flow stage, and then between the screw groove portion 33 and the heat radiating plate 41. It flows through the main flow of the gas flow path that passes through and receives compression by the thread groove step and flows out from the exhaust port 23.
  • the rotor blade 32 of the rotating body 31, the casing 21b, the stationary blade 25 fixed by the spacer 28, and the thread groove portion 33 of the rotating body 31 are made of aluminum or an aluminum alloy.
  • a disc-shaped aluminum alloy casting (AC4A) material having a diameter of 40 mm and a length of 3 mm is made at room temperature with potassium hydroxide 1 g / L, sodium metasilicate 2 g / L and trisodium phosphate 3 g / L (0.1% hydroxide).
  • potassium hydroxide 1 g / L potassium hydroxide
  • sodium metasilicate 2 g / L sodium metasilicate 2 g / L
  • trisodium phosphate 3 g / L (0.1% hydroxide).
  • sodium metasilicate 2 g / L sodium metasilicate 2 g / L
  • trisodium phosphate 3 g / L 0.1% hydroxide
  • Example 2 A rotor 8 to 12 made of cast aluminum alloy, a rotor chamber 4, a casing 1, and an intake air, which constitute the dry pump having the structure of FIG. 1 (maximum exhaust speed is 1.72 ⁇ 10 ⁇ 2 m 3 / s (50 Hz)).
  • the surface of the port 2 and the exhaust port 3 was subjected to micro-arc oxidation treatment in the same manner as in Example 1 to grow an oxide film having a thickness of about 12 ⁇ m on the surface of the member.
  • the part which does not process ie, the rotor shaft part 6 and knock pin part of an iron core, was masked by the silicon sealer and the silicon rubber stopper, respectively.
  • a dry pump was assembled from each member after the above treatment.
  • Example 1 The same aluminum alloy casting member as in Example 1 was subjected to an alumite treatment using a 20% by mass sulfuric acid solution to grow an alumite film having a thickness of about 20 ⁇ m on the surface of the member. Then, the sealing process was performed by immersing in boiling water for 20 minutes.
  • Comparative Example 2 The same treatment as in Comparative Example 1 was performed on the same aluminum alloy casting member as in Example 2.
  • FIG. 3 is a graph showing the results of measuring the gas release characteristics of the members of Example 1 and Comparative Example 1 at room temperature.
  • the vertical axis of the graph represents the amount of gas released per unit area (Pa ⁇ m ⁇ s ⁇ 1 ), and the horizontal axis represents time (hours). From this graph, it was found that in Example 1, the amount of gas released per unit area was about 1/100 compared to Comparative Example 1.
  • FIG. 5 is a graph showing the results of measuring the time required for each of the members of Example 1 and Comparative Example 1 to be immersed in 35 to 38 mass% concentrated hydrochloric acid and vigorously foamed.
  • the vertical axis of the graph is time (minutes), and the horizontal axis is the film thickness ( ⁇ m). From the graph, it was found that Example 1 has a corrosion resistance of about 2.5 times that of Comparative Example 1. Moreover, after atmospheric heating (same as the comparative test 2), the corrosion resistance of Example 1 hardly changed, and Comparative Example 1 had no corrosion resistance. In Comparative Example 1, it is considered that cracks occurred in the film and the surface of the base material was exposed.
  • FIG. 6 shows the time change of the pressure in the chamber when the 1 m 3 chamber was evacuated using the dry pumps of Example 2 and Comparative Example 2.
  • the chamber pressure is 10 2 Pa or more, but not much different in both examples, which is evacuated by a dry pump of Example 2 and less than 10 2 Pa
  • the amount of pressure change over time increased.
  • the ultimate pressure was increased about 2.5 times.
  • Example 3 A disc-shaped aluminum material having a diameter of 40 mm and a length of 3 mm is placed in an electrolytic solution of potassium hydroxide 1 g / L, sodium metasilicate 2 g / L and trisodium phosphate 3 g / L at room temperature, and a 50 Hz AC / DC superimposed waveform setting is performed. Micro-arc oxidation treatment was performed in the current mode, and an oxide film having a thickness of about 15 ⁇ m was grown on the surface of the member.
  • Example 3 The member used in Example 3 was not subjected to treatment on the member surface.
  • FIG. 7 shows a surface SEM image of each member after the Ga was rubbed against each member and pressed with a slide glass from the top for 60 hours to be adhered. No corrosion or the like is observed on the surface of the member of Example 3, and it is considered that Ga is in contact with the member of Comparative Example 3 and corrodes Al.
  • the present invention has industrial applicability in imparting corrosion resistance to components comprising a mechanical booster pump, a turbo molecular pump or a dry pump using aluminum or an aluminum alloy as a base material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

 本発明は、耐食性に優れ放出ガスの少ないメカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプを構成する部材の表面処理方法及びこの表面処理方法により処理されたドライポンプを提供することを目的とする。メカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプを構成する部材を、アルミニウム又はアルミニウム合金から構成し、前記部品表面を、アルカリ溶液中に浸漬して、マイクロアーク酸化処理することを特徴とする。

Description

メカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプを構成する部材の表面処理方法及びこの表面処理方法により処理されたメカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプ
 本発明は、気体流路に露出するアルミニウム又はアルミニウム合金から構成されるメカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプの部品の表面処理方法及びこの表面処理方法により処理された部品から構成されるメカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプに関する。
 従来のドライポンプの構造としては、例えば、図1に示されるように、筐体1の側面に対向するようにして配置された吸気口2及び排気口3を接続する流路において、ローター室4を設け、このローター室4内に、モーター5により駆動される回転軸6により軸支されたローター7~12を設けることにより構成されるスクリュー型のものが知られている。尚、図示したものでは、ローター室4内に、加熱手段13により加熱された空気や乾燥窒素等を導入するためのガスバラスト14が接続され、また、回転軸6の周辺に軸シールガスを導入するための軸シールガス導入路15が形成されている。
 上記構造において、真空チャンバーから吸引された気体は、吸気口2からローター室4を通り、排気口3から排気されることになるが、その間に、気体は、吸気口2、ローター7~12、ローター室4や排気口3等の表面と接触し、吸引される気体が腐食性を有する場合には、通常は、各部品の表面にアルマイト処理を行うようにしている(例えば、特許文献1参照)。
 しかしながら、アルマイト処理の場合には、部材表面にポーラス型の酸化皮膜が形成されるために、該皮膜から放出されるガス量が多く、真空ポンプの排気効率を低下させるという問題があった。また、アルマイト処理された部材は120℃程度に加熱されると皮膜にクラックが入り耐食性が低下する可能性があるという問題があった。更に、塩素を含有する気体を吸引するような場合にも短期間で部材が腐蝕するという問題があった。
 一方、ワイドバンドギャップ化合物半導体であるGaNは、発光ダイオード(LED)やパワーデバイスとして、MBEやMOCVDで製造されており、量産化に伴い、MBE原料である金属Ga、或いは、MOCVD原料有機金属であるトリメチルガリウム(TMG)やトリエチルガリウム(TEG)が大量に消費される。ところが、反応性の高いGaはAlに触れると溶けてアマルガム状態になるため、原料および未反応のGaが流れる配管および構成部品には、アルミニウム製やアルミニウム合金製は使用できないという問題があった。
特開2006-257908号公報
 そこで、本発明は、上記課題を解決すべく、耐食性に優れ放出ガスの少ないメカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプを構成する部材の表面処理方法及びこの表面処理方法により処理されたメカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプを提供することを目的とする。
 上記課題を解決するために、本発明者等は鋭意検討の結果、下記の通り解決手段を見いだした。
 即ち、本発明のメカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプを構成する部品の表面処理方法の第1の解決手段は、メカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプを構成する部材を、アルミニウム又はアルミニウム合金から構成し、前記部品表面を、アルカリ溶液中に浸漬して、マイクロアーク酸化処理することを特徴とする。
 また、第2の解決手段は、前記アルカリ溶液は、りん酸水素二ナトリウム、トリポリりん酸ナトリウム、りん酸二水素ナトリウム、ウルトラポリりん酸ナトリウム、ケイ酸ナトリウム、水酸化カリウム、二リン酸ナトリウム、リン酸三ナトリウム、アルミン酸ナトリウム、メタケイ酸ナトリウム及び水酸化ナトリウム等の中の1種類又はこれらの中の混合物を水に溶解させて、その濃度0.1%~5%としたことを特徴とする。
 また、第3の解決手段は、前記マイクロアーク処理における印加電圧を300V~600Vの範囲とし、電流密度を3.0A/dm2~10A/dm2とすることを特徴とする。
 また、第4の解決手段は、前記アルカリ溶液の温度を5~90℃とすることを特徴とする。
 また、第5の解決手段は、前記処理により部材表面に形成される酸化皮膜の膜厚を12μm~15μmとすることを特徴とする。
 また、本発明のメカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプは、上記表面処理方法により処理された部材により構成されたことを特徴とする。
 本発明によれば、メカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプを構成する部材表面を、アルミニウム又はアルミニウム合金により構成してマイクロアーク酸化処理を行うことにより、腐食性を有するガスの排気に対して耐食性に優れ、放出ガス量の少ないドライポンプが得られる。そして、このメカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプによれば、効率的な吸引が可能となる。また、Gaを含有するガスに対する耐食性の優れたものとなる。
従来のドライポンプの概略構成図 メカニカルブースターポンプの概略構成図 実施例1及比較例1のガス放出特性を測定したグラフ 実施例1及び比較例1の加熱後の表面SEM画像 実施例1及び比較例1の塩酸に対する耐食性を測定したグラフ 実施例2及び比較例2のドライポンプを使用して、1m3のチャンバーを排気した時のチャンバー内の圧力の時間変化を示すグラフ 実施例3及び比較例3の比較試験4の試験前後の表面SEM画像
 本発明において使用するアルカリ溶液の電解液の例としては、りん酸水素二ナトリウム、トリポリりん酸ナトリウム、りん酸二水素ナトリウム、ウルトラポリりん酸ナトリウム、ケイ酸ナトリウム、水酸化カリウム、二リン酸ナトリウム、リン酸三ナトリウム、アルミン酸ナトリウム、メタケイ酸ナトリウム及び水酸化ナトリウム等の中の1種類又はこれらの中の混合物を、電解液に溶解させたものを用いることができる。その濃度は、0.1%~5%の範囲とすることが好ましい。
 また、母材としては、アルミニウム又はアルミニウム合金を使用する。アルミニウム合金の鋳物材料、ダイキャスト材料はシリコンを代表として、一般的に含有されている元素が多く、ポーラス型アノード酸化皮膜が形成し難いといわれている。
 本発明によれば、このようなシリコンが多い鋳物、ダイキャストでも耐食性良好な皮膜を形成することができる。また、展伸材の中でもAl-Si合金の4000番系の処理も同様な理由でポーラス型アノード酸化処理の耐食性は悪いが、本発明によれば、良好な酸化皮膜が形成できる。シリコンが析出していないような展伸材、1000番~3000番、5000番から7000番台のアルミニウム合金についても複雑形状の場合や100℃以上の高温になる場合には効果がある。
 本発明では、上記した母材を、メカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプの構成部材として、アルカリ溶液中に浸漬して、マイクロアーク酸化処理を行うものであるが、アルカリ溶液の温度条件としては、特に制限するものではないが、該溶液が凍結乃至沸騰しない範囲(5℃~90℃程度)とすることが好ましい。また、印加する電圧は、300V~600Vとすることが好ましい。300V未満であると絶縁破壊が起こらず、600Vを超えると皮膜のボイドが大きくなるからである。また、電流密度については、3.0A/dm2~10A/dm2とすることが好ましい。3.0A/dm2であると厚膜化できず、10A/dm2を超えると電圧が上昇しボイドが大きくなるからである。また、電流に関しては、直流、交流及び直交重畳のいずれであってもよい。
 また、母材表面に形成される酸化皮膜の膜厚については特に制限はないが、12μm~15μmの範囲とすることが好ましい。ポンプの作動に支障を与えない範囲で、酸化皮膜としての機能も発揮する範囲であるためである。
 本発明に使用するドライポンプは、ポンプ内部のガス通路に油を使用しないものであれば、図1に示される構造に特に制限をするものではないが、構造的には、排気する回転体の形状に応じて、ルーツ型、クロー型、スクリュー型、ターボ型、スクロール型のもの、多段式のものやダイヤフラム型等を挙げることができる。
 また、メカニカルブースターポンプの構造に関しても特に制限するものではないが、一例を図2を参照して説明する。図中の符号21はケーシングであり、ケーシング21は、上流部を構成する上側ケーシング21aと下流部を構成する下側ケーシング21bとを一体化した構成となっている。このケーシング21には吸気口22及び排気口23が設けられ、吸気口22を設けた上側ケーシング21a側の内部には静翼25が固定して設けられている。これら静翼25は、それぞれスペーサ28によってその位置が固定されている。
 ケーシング21及び静翼25を備えた静止側に対し、ケーシング21内には回転体31が高速回転可能に設置されている。この回転体31は、回転軸34と一体的に連結されたロータ部35に設けられた複数段の動翼32及びねじ溝部33を備えており、従って、軸流段及びねじ溝段よりなる二段圧縮構造となっている。回転体31側の動翼32は、上述した静翼25と回転軸34の軸方向において交互に配設されている。
 回転体31の回転軸34は、下側ケーシング21bに固定されたステータ26の内周面に取り付けられている上部軸受としての磁気軸受29aと、下部軸受としての磁気軸受29bと、軸方向軸受としての磁気軸受29cとにより支持されて高速回転可能となっている。なお、図中の符号Mは、ステータ26の内周面と回転軸34との間に設けられているロータ駆動用モータである。
 このような構成とすれば、吸気口22から吸引したガスは静翼25及び動翼32の間を通過して軸流段による圧縮を受けた後、ねじ溝部33と放熱板41との間を通過してねじ溝段による圧縮を受けるというガス流路の主流を流れて排気口23から流出する。
 上記構造において、回転体31の動翼32、ケーシング21b、スペーサ28で固定された静翼25及び回転体31のねじ溝部33を、アルミニウム又はアルミニウム合金により構成する。
(実施例1)
 以下に、本発明の実施例に関し、比較例とともに説明する。
 直径40mm、長さ3mmの円盤状のアルミニウム合金鋳物(AC4A)材を、室温下で、水酸化カリウム1g/L、メタケイ酸ナトリウム2g/L及びリン酸三ナトリウム3g/Lの(0.1%水酸化カリウム、0.1%メタけい酸ナトリウム、0.3%りん酸三ナトリウム)電解液に入れ、50Hz交直重畳波形定電流モードでマイクロアーク酸化処理を行い、部材表面に膜厚約15μmの酸化皮膜を成長させた。
(実施例2)
 図1の構造のドライポンプ(最大排気速度が1.72×10-23/s(50Hz))を構成する、アルミニウム合金鋳物製のローター8~12、ローター室4、筐体1、吸気口2及び排気口3の表面を実施例1と同様にマイクロアーク酸化処理を行い、部材表面に膜厚約12μmの酸化皮膜を成長させた。尚、処理を行わない部分、即ち、鉄心のローターシャフト部6及びノックピン部は、それぞれ、シリコンシーラー及びシリコンゴム栓によりマスキングを行った。
 上記処理の終了後に各部材からドライポンプを組み立てた。
(比較例1)
 実施例1と同じアルミニウム合金鋳物製の部材に対して、20質量%の硫酸溶液を用いてアルマイト処理を行い、部材表面に膜厚約20μmのアルマイト皮膜を成長させた。その後、沸騰水に20分間浸漬して封孔処理を行った。
(比較例2)
 実施例2と同じアルミニウム合金鋳物製の部材に対して、比較例1と同じ処理を行った。
(比較試験1)
 実施例1及比較例1の部材の室温下でのガス放出特性を測定した結果を図3のグラフに示す。グラフ縦軸は、単位面積当たりのガス放出量(Pa・m・s-1)、横軸は時間(時間)を示す。
 このグラフから、比較例1に対して実施例1では、単位面積当たりのガス放出量が約1/100となることがわかった。
(比較試験2)
 実施例1及び比較例1の部材のそれぞれに対して、120℃の大気下で30分間の加熱を3回行った後、各部材の表面SEM画像を図4に示す。
 図4から実施例1は、加熱前後で皮膜形態は変化が見られず、比較例2では、加熱後にクラックが入ることがわかった。
(比較試験3)
 実施例1及び比較例1の部材のそれぞれを、35~38質量%の濃塩酸に浸漬して、激しく発泡するまでの時間を測定した結果を図5のグラフに示す。グラフ縦軸は、時間(分)であり、横軸は膜厚(μm)である。
 グラフから比較例1に対して、実施例1は約2.5倍の耐食性を有することがわかった。また、大気加熱(比較試験2と同じ)後では、実施例1は耐食性がほぼ変化せず、比較例1は耐食性がないものとなった。比較例1は、皮膜にクラックが生じて、母材の表面が露出したことによるものと考えられる。
(比較試験4)
 実施例2及び比較例2のドライポンプを使用して、1m3のチャンバーを排気した時のチャンバー内の圧力の時間変化を図6に示す。
 グラフから実施例2及び比較例2のドライポンプを使用し、チャンバー内圧力が102Pa以上では、両例とも大差はないが、102Pa未満になると実施例2のドライポンプで排気した方が圧力の時間変化量が大きくなった。また、到達圧力も2.5倍程度高くなった。
(実施例3)
 直径40mm、長さ3mmの円盤状のアルミニウム材を、室温下で、水酸化カリウム1g/L、メタケイ酸ナトリウム2g/L及びリン酸三ナトリウム3g/Lの電解液に入れ、50Hz交直重畳波形定電流モードでマイクロアーク酸化処理を行い、部材表面に膜厚約15μmの酸化皮膜を成長させた。
(比較例3)
 実施例3で使用した部材に対して、部材表面に処理を施さないものとした。
(比較試験5)
 実施例3及び比較例3の部材のGaに対する耐食性を比較するために、Ga雰囲気(気体)とすることは困難であるため、各部材の温度を100℃程度に加熱した状態で、液体状のGaを各部材に擦りつけ、60時間スライドガラスで上から押さえて密着させた後の各部材の表面SEM画像を図7に示す。実施例3の部材表面に腐食等は見られず、比較例3の部材そのものとGaが接触し、Alを腐食させていると考えられる。
 本発明は、アルミニウム又はアルミニウム合金を母材としてメカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプを構成される部品に対して耐食性を付与する上で産業上の利用可能性を有する。
  1 筐体
  2 吸気口
  3 排気口
  4 ローター室
  5 モーター
  6 回転軸
  7~12 ローター
 13 加熱手段
 14 ガスバラスト
 15 軸シールガス導入路
 21 ケーシング
 21a 上側ケーシング(上流部)
 21b 下側ケーシング(下流部)
 22 吸気口
 23 排気口
 24 静止体
 25 静翼
 26 ステータ
 28 スペーサ
 29c 磁気軸受
 30 ポンプ機構
 31 回転体
 32 動翼
 33 ねじ溝部
 34 回転軸
 41 放熱板
 HI 断熱部材
 Ht ヒータ
 T トラップ部材

Claims (6)

  1.  メカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプを構成する部材を、アルミニウム又はアルミニウム合金から構成し、前記部品表面を、アルカリ溶液中に浸漬して、マイクロアーク酸化処理することを特徴とするドライポンプを構成する部品の表面処理方法。
  2.  前記アルカリ溶液は、りん酸水素二ナトリウム、トリポリりん酸ナトリウム、りん酸二水素ナトリウム、ウルトラポリりん酸ナトリウム、ケイ酸ナトリウム、水酸化カリウム、二リン酸ナトリウム、リン酸三ナトリウム、アルミン酸ナトリウム、メタケイ酸ナトリウム及び水酸化ナトリウム等の中の1種類又はこれらの中の混合物を水に溶解させて、その濃度0.1%~5%としたことを特徴とする請求項1記載の表面処理方法。
  3.  前記マイクロアーク処理における印加電圧を300V~600Vの範囲とし、電流密度を3.0A/dm2~10A/dm2とすることを特徴とする請求項1又は2に記載の表面処理方法。
  4.  前記アルカリ溶液の温度を5~90℃とすることを特徴とする請求項1乃至3の何れか1項に記載の表面処理方法。
  5.  前記処理により部材表面に形成される酸化皮膜の膜厚を12μm~15μmとすることを特徴とする請求項1乃至4の何れか1項に記載の表面処理方法。
  6.  請求項1乃至5の何れか1項に記載の表面処理方法により処理された部材により構成されたことを特徴とするメカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプ。
PCT/JP2010/002576 2009-04-10 2010-04-08 メカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプを構成する部材の表面処理方法及びこの表面処理方法により処理されたメカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプ WO2010116747A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011508253A JP5432985B2 (ja) 2009-04-10 2010-04-08 メカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプを構成する部材の表面処理方法及びこの表面処理方法により処理されたメカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプ
CN201080013272.5A CN102362015B (zh) 2009-04-10 2010-04-08 构成机械增压泵、涡轮分子泵或干式泵的部件的表面处理方法及通过该表面处理方法处理过的机械增压泵、涡轮分子泵或干式泵

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-095881 2009-04-10
JP2009095881 2009-04-10

Publications (1)

Publication Number Publication Date
WO2010116747A1 true WO2010116747A1 (ja) 2010-10-14

Family

ID=42936041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002576 WO2010116747A1 (ja) 2009-04-10 2010-04-08 メカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプを構成する部材の表面処理方法及びこの表面処理方法により処理されたメカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプ

Country Status (4)

Country Link
JP (1) JP5432985B2 (ja)
CN (1) CN102362015B (ja)
TW (1) TWI467060B (ja)
WO (1) WO2010116747A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014520211A (ja) * 2011-06-24 2014-08-21 エーリコン ライボルト ヴァキューム ゲゼルシャフト ミット ベシュレンクテル ハフツング 変成層非担持の真空ポンプ部材
WO2016042218A1 (fr) * 2014-09-17 2016-03-24 Liebherr-Aerospace Toulouse Sas Dispositif de compression et compresseur à spirales utilisant un tel dispositif de compression
JP2016156036A (ja) * 2015-02-23 2016-09-01 株式会社栗本鐵工所 皮膜形成方法
EP4361449A1 (de) * 2024-02-29 2024-05-01 Pfeiffer Vacuum Technology AG Vakuumpumpe

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6398337B2 (ja) * 2014-06-04 2018-10-03 株式会社島津製作所 ターボ分子ポンプ
CN104404596A (zh) * 2014-12-16 2015-03-11 常熟市东方特种金属材料厂 一种耐磨型铝合金
US20200080561A1 (en) * 2018-09-10 2020-03-12 Fieldpiece Instruments, Inc. Lightweight vacuum pump with oxidized surfaces

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531302A (ja) * 2000-04-26 2003-10-21 ボーヴイル,ジヤック プラズママイクロアーク酸化用の電解法
JP2006528279A (ja) * 2003-07-23 2006-12-14 ザ ビーオーシー グループ ピーエルシー コーティング
JP2008088506A (ja) * 2006-10-02 2008-04-17 Ulvac Japan Ltd アルミニウム材の表面処理方法
JP2008266701A (ja) * 2007-04-18 2008-11-06 Ulvac Japan Ltd 真空用冷却部材の製造方法、真空用冷却部材および真空用機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0317126D0 (en) * 2003-07-23 2003-08-27 Boc Group Plc Coating
CN100334244C (zh) * 2005-07-22 2007-08-29 敬康林 金属陶瓷化动力机械产品的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531302A (ja) * 2000-04-26 2003-10-21 ボーヴイル,ジヤック プラズママイクロアーク酸化用の電解法
JP2006528279A (ja) * 2003-07-23 2006-12-14 ザ ビーオーシー グループ ピーエルシー コーティング
JP2008088506A (ja) * 2006-10-02 2008-04-17 Ulvac Japan Ltd アルミニウム材の表面処理方法
JP2008266701A (ja) * 2007-04-18 2008-11-06 Ulvac Japan Ltd 真空用冷却部材の製造方法、真空用冷却部材および真空用機器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014520211A (ja) * 2011-06-24 2014-08-21 エーリコン ライボルト ヴァキューム ゲゼルシャフト ミット ベシュレンクテル ハフツング 変成層非担持の真空ポンプ部材
WO2016042218A1 (fr) * 2014-09-17 2016-03-24 Liebherr-Aerospace Toulouse Sas Dispositif de compression et compresseur à spirales utilisant un tel dispositif de compression
US10711783B2 (en) 2014-09-17 2020-07-14 Liebherr-Aerospace Toulouse Sas Scroll compressor with coated sliding surface
JP2016156036A (ja) * 2015-02-23 2016-09-01 株式会社栗本鐵工所 皮膜形成方法
EP4361449A1 (de) * 2024-02-29 2024-05-01 Pfeiffer Vacuum Technology AG Vakuumpumpe

Also Published As

Publication number Publication date
TW201107533A (en) 2011-03-01
JP5432985B2 (ja) 2014-03-05
JPWO2010116747A1 (ja) 2012-10-18
TWI467060B (zh) 2015-01-01
CN102362015A (zh) 2012-02-22
CN102362015B (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5432985B2 (ja) メカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプを構成する部材の表面処理方法及びこの表面処理方法により処理されたメカニカルブースターポンプ、ターボ分子ポンプ又はドライポンプ
JP5019391B2 (ja) 金属酸化物膜、積層体、金属部材並びにその製造方法
WO2010119977A1 (ja) エンジン燃焼室構造およびその製造方法
KR20060047176A (ko) 진공 펌프
JP3919996B2 (ja) プラズマ処理装置用アルミニウム合金、プラズマ処理装置用アルミニウム合金部材およびプラズマ処理装置
US20170292029A1 (en) Electrophoretic deposition fluid, metal core substrate, and method for fabricating the metal core substrate
TWI733836B (zh) 金屬構件及其製造方法以及具有該金屬構件的處理室
JP2009062914A (ja) 回転機器およびオイルポンプ
CN112195491A (zh) 一种基于微弧氧化的SiC-Al2O3涂层的制备方法
WO2002023654A1 (en) Separator for low-temperature type fuel cell and production method therefor
US20110177355A1 (en) Al alloy member, electronic device manufacturing apparatus, and method of manufacturing an anodic oxide film coated al alloy member
EP4180647A1 (en) Piston, device for manufacturing pistons, and method for manufacturing pistons
CN109161890B (zh) 一种SiO2微弧氧化复合涂层及其制备方法
JPWO2008081748A1 (ja) 半導体又は平面デイスプレイの製造装置に使用される構造部材とその製造方法
WO2022148744A1 (en) Dry vacuum pump and method of manufacture
CN116043305A (zh) 一种涡旋压缩机涡旋盘高表面硬度、高耐磨性的微弧氧化陶瓷膜层及其制备方法
JP5777939B2 (ja) 陽極酸化膜生成方法
JP2010189704A (ja) 酸化皮膜の形成方法
JP2014214342A (ja) 酸化皮膜の形成方法
RU110432U1 (ru) Центробежный компрессорный агрегат
JP2011058611A (ja) 真空用バルブ
RU2383661C1 (ru) Способ получения алюминия электролизом в криолит-глиноземных расплавах
CN115476278B (zh) 真空镀膜机的真空腔室表面处理加工工艺
CN216437546U (zh) 一种基于工业运用的微波等离子体激励腔体
KR20170055431A (ko) 금속부품 및 그 제조 방법 및 금속부품을 구비한 공정챔버

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013272.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011508253

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761451

Country of ref document: EP

Kind code of ref document: A1