WO2010114222A2 - Flexible copper clad laminate having a buffer layer, and method for manufacturing same - Google Patents

Flexible copper clad laminate having a buffer layer, and method for manufacturing same Download PDF

Info

Publication number
WO2010114222A2
WO2010114222A2 PCT/KR2010/000756 KR2010000756W WO2010114222A2 WO 2010114222 A2 WO2010114222 A2 WO 2010114222A2 KR 2010000756 W KR2010000756 W KR 2010000756W WO 2010114222 A2 WO2010114222 A2 WO 2010114222A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
buffer layer
copper foil
base substrate
silicon compound
Prior art date
Application number
PCT/KR2010/000756
Other languages
French (fr)
Korean (ko)
Other versions
WO2010114222A3 (en
Inventor
김정식
조강래
박은규
Original Assignee
주식회사 서흥플라즈마
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 서흥플라즈마 filed Critical 주식회사 서흥플라즈마
Publication of WO2010114222A2 publication Critical patent/WO2010114222A2/en
Publication of WO2010114222A3 publication Critical patent/WO2010114222A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/389Improvement of the adhesion between the insulating substrate and the metal by the use of a coupling agent, e.g. silane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • B32B5/147Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces by treatment of the layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present invention relates to a flexible copper clad laminate (FCCL) and a method for manufacturing the same, and more particularly, to a flexible copper clad laminate having a buffer layer formed of a silicon compound or a similar silicon compound between a polymer base substrate and a copper foil layer. And a method for producing the same.
  • FCCL flexible copper clad laminate
  • Flexible copper foil laminates are used as basic materials for tape wiring boards such as flexible printed circuit boards (FPCBs) and chip on film / chip on flexible printed circuits (COFs).
  • FPCB is used as a passive component connector for capacitors and resistors, and is used as a core component material for mobile phones, computers, and other electronic components.
  • COF is a board for package of active devices such as drive IC, and is used as a core component material of LCD module, digital camera, PDA and mobile phone.
  • FPCB is leading the current market centering on mobile phones, and it is expected that the market size will increase due to the increase in use of next-generation mobile phone substrates and double-sided FPCBs.
  • Such a flexible copper foil laminate has a structure in which a copper foil layer is formed on at least one surface of a base material of a polymer material such as polyimide (PI), polyesterol (PE), polyethylene terephthalate (PET), or the like. . That is, a flexible copper foil laminated board can be called the material which laminated
  • PI polyimide
  • PET polyethylene terephthalate
  • the initial adhesive force of the copper foil layer with respect to a base substrate is excellent.
  • the late bond strength of the copper foil layer to the base substrate is reduced by about 0.1 kgf / cm compared to the initial adhesive strength after the reliability test of exposing the manufactured flexible copper foil laminate to air at 150 ° C. for 168 hours, the tape wiring board is reduced.
  • a transition metal layer such as chromium (Cr) or nickel chromium (NiCr) is formed between the base substrate and the copper foil layer.
  • Cr chromium
  • NiCr nickel chromium
  • a small amount of chromium may remain on the base substrate between the wiring patterns when the wiring pattern is formed by fine patterning the copper foil layer and the transition metal layer. Such residual traces of chromium may cause dielectric breakdown due to ion migration with copper components of neighboring wiring patterns.
  • an object of the present invention can easily proceed the etching process for the copper foil layer while maintaining a good adhesion between the base substrate and the copper foil layer, and solve the problem of inferior product reliability due to insulation breakdown by ion migration. It is to provide a flexible copper foil laminate having a buffer layer which can be obtained, and a method for producing the same.
  • the present invention provides a flexible copper foil laminate having a buffer layer comprising a base substrate, a buffer layer and a copper foil layer.
  • the buffer layer provides a flexible copper foil laminate having a buffer layer including a buffer layer formed of a silicon compound or a similar silica compound on at least one surface of the base substrate of a polymer material and a copper foil layer formed on the buffer layer.
  • the present invention also provides a preparation step of preparing a base substrate of a polymer material, a buffer layer forming step of forming a buffer layer with a silicon compound or a similar silicon compound on at least one surface of the base substrate, and a copper foil layer forming step of forming a copper foil layer on the buffer layer. It provides a method for producing a flexible copper foil laminate having a buffer layer comprising a.
  • the present invention also provides a flexible copper foil laminate having a buffer layer comprising a base substrate, a protective layer, a buffer layer, a seed layer and a thick film layer.
  • the protective layer is formed of a silicon compound or a similar silicon compound on the lower surface of the base substrate of a polymer material.
  • the buffer layer is formed of a silicon compound or a similar silicon compound on the upper surface of the base substrate surface-treated by irradiating an ion beam or plasma.
  • the seed layer is formed by sputtering copper on the buffer layer.
  • the thick film layer is formed by plating copper on the seed layer. At this time, the seed layer and the thick film layer forms a copper foil layer.
  • the present invention also provides a preparatory step of preparing a base substrate made of a polymer material, a protective layer forming step of forming a protective layer of a silicon compound or a similar silicon compound on a lower surface of the base substrate, and an ion beam or plasma Surface treatment step of irradiating the surface treatment, forming a buffer layer of a silicon compound or a similar silicon compound on the upper surface of the base substrate, forming a seed layer of copper material by sputtering on the buffer layer and the seed layer It provides a method for producing a flexible copper foil laminate having a buffer layer comprising the step of plating a stomach with copper to form a thick film layer.
  • the flexible copper foil laminate according to the present invention has a structure in which a buffer layer of a silicon compound or a similar silicon compound material is formed between the base substrate and the copper foil layer instead of the transition metal layer, a wiring pattern can be formed by etching the copper foil layer. The etching process for can easily proceed.
  • the tape wiring board manufactured using the flexible copper foil laminate according to the present invention can provide good product reliability.
  • FIG. 1 is a flowchart of a method of manufacturing a flexible copper foil laminate having a buffer layer according to an embodiment of the present invention.
  • FIG. 2 to 7 are cross-sectional views showing each step according to the manufacturing method of FIG.
  • FIGS. 1 to 7 are cross-sectional views showing each step according to the manufacturing method of FIG.
  • a base substrate 11 to be used for manufacturing a flexible copper foil laminate according to the present embodiment is prepared (S31).
  • the material of the base substrate 11 is polycarbonate (PC), polyimide (PI), polyarylate (PAR), polyethylene naphthalate (PEN), polyethylene terephthalate (polyethylene terephthalate).
  • PET a polymer material such as cycloolefin copolymer (cycloolefin copolymer) can be used.
  • the protective layer 13 is formed on the lower surface of the base substrate 11 (S32).
  • the protective layer 13 functions to suppress penetration of process gas or moisture through the lower surface of the base substrate 11 in the manufacturing process after step S32.
  • a silicon-based inorganic substance containing silicon oxide, a silicon compound or a similar silicon compound may be used as the material of the protective layer 13.
  • the protective layer 13 may be formed of at least one layer. In addition, the protective layer 13 can also be omitted as needed.
  • the upper surface of the base substrate 11 is irradiated with ion beams or plasma to perform surface treatment (S33). That is, the polymer forming the base substrate 11 has a low surface energy and low adhesion with other materials. Accordingly, in order to improve adhesion to the buffer layer 15 to be formed on the upper surface of the base substrate 11, the base substrate 11 is formed by irradiating the upper surface of the base substrate 11 with an ion beam 20 or plasma. The high injection chain of the polymer is broken or hydrophilic to modify the top surface of the base substrate 11.
  • reference numeral 14 denotes a modified part.
  • the upper surface of the base substrate 11 is irradiated by irradiating the upper surface of the base substrate 11 with an ion beam 20 having an output of 300 to 500 W in a nitrogen gas or oxygen gas atmosphere having a flow rate of 50 to 150 sccm. It can be surface treated. Through such a surface treatment, the low surface energy of the base substrate 11 is increased. In this case, nitrogen forms an amine adsorption group on the upper surface of the base substrate 11, and hydrogen having short wavelength characteristics in the plasma enables the formation of an additional linking ring of molecules and a polymer chain on the upper surface of the base substrate 11 Thereby increasing the surface energy of the base substrate 11.
  • the buffer layer 15 is formed of a silicon compound or a similar silicon compound on the upper surface of the surface-treated base substrate 11 (S34).
  • the buffer layer 15 may be formed by stacking silicon compounds, pseudosilicon compounds, or the like.
  • the buffer layer 15 may be formed through sputtering or plasma deposition. For example, magnetron sputtering may be used as the sputtering method, and plasma-enhanced chemical vapor deposition (PECVD) may be used as the plasma deposition method.
  • PECVD plasma-enhanced chemical vapor deposition
  • the silicon compound used as the material of the buffer layer 15 is hexamethyldisiloxane (HMDSO), tetraethylorthosilicate (TEOS), tetramethylorthosilicate (TMOS), tetramethyldisiloxane (tetramethyldisiloxane; TMDSO). ), And hexamethyldisilazane (TMDS).
  • HMDSO hexamethyldisiloxane
  • TEOS tetraethylorthosilicate
  • TMOS tetramethylorthosilicate
  • TMDSO tetramethyldisiloxane
  • TMDSO tetramethyldisiloxane
  • TMDS hexamethyldisilazane
  • the similar silicon compound used as the material of the buffer layer 15 refers to a compound that does not contain silicon but exhibits similar characteristics to that of the silicon compound.
  • the buffer layer 15 may be formed by mixing at least one of oxygen gas, nitrogen gas, helium gas, argon gas or oxide gas with a silicon compound or a similar silicon compound.
  • the buffer layer 15 made of a silicon compound or a similar silicon compound increases the adhesion between the base substrate 11 and the copper foil layer (17, 19 in FIG. 7).
  • the buffer layer 15 facilitates an etching process of the copper foil layers (17 and 19 of FIG. 7) formed later, and improves high frequency characteristics with excellent electrical insulation properties and low dielectric constant.
  • the buffer layer 15 also has a function as a gas diffusion prevention film that prevents gas diffusion into the base substrate 11.
  • copper seed layers 17 and 19 are sequentially formed on the buffer layer 15 by sequentially forming a copper seed layer 17 and a thick film layer 17 (S35 and S36). ).
  • a seed layer 17 of copper material is formed on the buffer layer 15 (S35).
  • the seed layer 17 may be formed on the buffer layer 15 through a magnetron sputtering process.
  • the thickness of the seed layer 17 deposited through the magnetron sputtering process is preferably formed to about 0.2 ⁇ 0.3 ⁇ m.
  • the material copper of the seed layer 17 is used is disclosed, but another metal having good conductivity may be used.
  • a thick film layer 19 of copper material is formed on the seed layer 17 (S36).
  • the thick film layer 19 is formed to a thickness of about 2 to 12 ⁇ m by a plating process, for example, electrolytic plating or electroless plating.
  • the protective layer forming step, the surface treatment step, and the buffer layer forming step are performed is disclosed, but is not limited thereto.
  • the step of forming the protective layer 13 and the buffer layer 15 may be performed at the same time. That is, the protective layer 13 and the buffer layer 15 may be formed on both sides of the base substrate 11 using the same material.
  • the copper foil layers 17 and 19 are formed only on the upper surface of the base substrate 11
  • the copper foil layers may be formed on both surfaces.
  • the forming of the copper foil layer proceeds in the order of forming a seed layer and forming a thick film layer on the seed layer.
  • the flexible copper foil laminate 10 since the buffer layer 15 of the silicon compound or the similar silicon compound material is formed between the base substrate 11 and the copper foil layers 17 and 19, the base substrate 11 ) And good early and late adhesion between the copper foil layers 17 and 19. Since the flexible copper foil laminate 10 according to the present embodiment has a structure in which a buffer layer 15 of silicon compound or similar silicon compound material is formed between the base substrate 11 and the copper foil layers 17 and 19 instead of the transition metal layer, Since the wiring pattern may be formed only by etching the copper foil layers 17 and 19, the etching process for the copper foil layers 17 and 19 may be easily performed. In addition, when a tape wiring board is manufactured using the flexible copper foil laminate 10 according to the present embodiment, transition metals such as chromium are not left between the wiring patterns, thereby preventing occurrence of dielectric breakdown due to ion migration. have.
  • the tape wiring board manufactured using the flexible copper foil laminate 10 according to the present embodiment can provide good product reliability.
  • the adhesion strength before and after exposure to air at 150 ° C. for 168 hours was measured.
  • the adhesive strength to the flexible copper foil laminate according to the first and second comparative examples were also measured.
  • the flexible copper foil laminate according to the first comparative example has a structure in which a copper foil layer is directly formed on the base substrate.
  • the flexible copper foil laminate according to the second comparative example has a structure in which a nickel chromium (NiCr) layer is formed between the base substrate and the copper foil layer.
  • the initial adhesive force had a value between 0.1 ⁇ 0.5kgf / cm
  • the late adhesive force had a value between 0.01 ⁇ 0.1kgf / cm.
  • NiCr nickel chromium
  • the adhesive force before and after exposing the flexible copper foil laminate according to the second comparative example thus prepared for 168 hours in air at 150 ° C. was measured.
  • the initial adhesive force had a value between 0.1 ⁇ 0.6kgf / cm
  • the late adhesive force had a value between 0.01 ⁇ 0.3kgf / cm.
  • the flexible copper foil laminate according to the first embodiment was manufactured by the following process. That is, in order to improve the hydrophilicity, adhesion, durability, and wearability of the base substrate, HMDSO is deposited on the lower surface of the base substrate through PECVD to form a protective layer. Next, the upper surface of the base substrate is surface treated with 300W nitrogen ion at a flow rate of 150sccm. Next, a plasma is generated by applying a mixed gas of helium gas, oxygen gas, nitrogen gas, argon gas and HMDSO between 100W and 2kW to generate plasma to deposit a buffer layer on the upper surface of the base substrate.
  • the initial adhesive force had a value between 0.1 ⁇ 1.5kgf / cm
  • the late adhesive force had a value between 0.03 ⁇ 0.7kgf / cm.
  • the flexible copper foil laminate according to the first embodiment is better than the flexible copper foil laminate according to the first and second comparative examples. It can be confirmed that it has a late adhesive force.
  • the flexible copper foil laminate according to the second embodiment was manufactured by the following process. That is, in order to improve the hydrophilicity, adhesion, durability, and wearability of the base substrate, HMDSO is deposited on the lower surface of the base substrate through PECVD to form a protective layer. Next, the upper surface of the base substrate is surface treated with 300W nitrogen ion at a flow rate of 150sccm. Next, a plasma is generated by applying RF power between 100W and 1kW to a mixed gas of helium gas, oxygen gas, nitrogen gas, argon gas, and HMDSO to deposit a buffer layer on the upper surface of the base substrate.
  • the initial adhesive force had a value between 0.1 and 1.5 kgf / cm
  • the late adhesive force had a value between 0.27 and 0.38 kgf / cm.
  • the flexible copper foil laminate according to the second embodiment is better than the flexible copper foil laminate according to the first and second comparative examples. It can be confirmed that it has a late adhesive force.
  • the flexible copper foil laminate according to the third embodiment was manufactured by the following process. That is, in order to improve the hydrophilicity, adhesion, durability and wearability of the base substrate, TMOS is deposited on the lower surface of the base substrate through PECVD to form a protective layer. Next, the upper surface of the base substrate is surface treated with 300W nitrogen ion at a flow rate of 150sccm. Next, a plasma is generated by applying a mixed gas of helium gas, oxygen gas, nitrogen gas, argon gas, and TMOS between 100W and 2kW to generate plasma to deposit a buffer layer on the upper surface of the base substrate.
  • the initial adhesive force had a value between 0.2 ⁇ 1.2kgf / cm
  • the late adhesive force had a value between 0.02 ⁇ 0.41 kgf / cm.
  • the flexible copper foil laminate according to the third embodiment is better than the flexible copper foil laminate according to the first and second comparative examples. It can be confirmed that it has a late adhesive force.
  • the flexible copper foil laminate according to the second embodiment was manufactured by the following process. That is, in order to improve the hydrophilicity, adhesion, durability and wearability of the base substrate, TMOS is deposited on the lower surface of the base substrate through PECVD to form a protective layer. Next, the upper surface of the base substrate is surface treated with 300W nitrogen ion at a flow rate of 150sccm. Next, helium gas, oxygen gas, nitrogen gas, argon gas and a mixed gas of TMOS is applied to the RF power between 200 ⁇ 900W to generate a plasma to deposit a buffer layer on the upper surface of the base substrate.
  • the seed layer was deposited on the nickel chromium layer with a thickness of 0.2 to 0.3 ⁇ m, and then plated on the seed layer by thick film. Form a layer.
  • the initial adhesive force had a value between 0.1 and 1.2 kgf / cm
  • the late adhesive force had a value between 0.01 and 0.31 kgf / cm.
  • the flexible copper foil laminate according to the fourth embodiment is better than the flexible copper foil laminate according to the first and second comparative examples. It can be confirmed that it has a late adhesive force.
  • the flexible copper foil laminate according to the fourth embodiment is the flexible copper foil laminate according to the second comparative example using a nickel chromium layer Since it has the same or more late adhesion and does not use a nickel chromium layer, the problem by the conventional etching process and the problem by ion migration can be solved.
  • the flexible copper foil laminates according to the first to fourth embodiments have a structure in which a buffer layer of a silicon compound or a similar silicon compound material is formed between the base substrate and the copper foil layer, the flexible copper foil laminates according to the first and second comparative examples Compared with the base substrate and the copper foil layer, it is confirmed that good initial and late adhesive strengths are maintained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to a flexible copper clad laminate (FCCL) having a buffer layer, and to a method for manufacturing same. The present invention provides a flexible copper clad laminate in which a buffer layer made of silicon compounds or silicon compound analogs is formed on at least one side of a base substrate made of polymer materials, and a copper foil layer is formed on the buffer layer, as well as a method for manufacturing same. As the flexible copper clad laminate according to the present invention has the buffer layer which is made of silicon compounds or silicon compound analogs, and formed between the base substrate and the copper foil layer, an etching process can be easily performed on the copper foil layer while maintaining excellent bonding force between the base substrate and the copper foil layer, and a degradation in the reliability of products caused by dielectric breakdown resulting from ion migration can be prevented.

Description

버퍼층을 갖는 연성 동박 적층판 및 그의 제조 방법Flexible Copper Clad Laminates with Buffer Layer and Manufacturing Method Thereof
본 발명은 연성 동박 적층판(Flexible Copper Clad Laminate; FCCL) 및 그의 제조 방법에 관한 것으로, 더욱 상세하게는 폴리머 소재의 베이스 기판과 동박층 사이에 규소화합물 또는 유사규소화합물로 형성된 버퍼층을 갖는 연성 동박 적층판 및 그의 제조 방법에 관한 것이다.The present invention relates to a flexible copper clad laminate (FCCL) and a method for manufacturing the same, and more particularly, to a flexible copper clad laminate having a buffer layer formed of a silicon compound or a similar silicon compound between a polymer base substrate and a copper foil layer. And a method for producing the same.
연성 동박 적층판은 연성회로기판(FPCB: Flexible Printed Circuit Board), COF(Chip on Film/Chip On Flexible Printed Circuit)과 같은 테이프 배선기판의 기본 소재로 사용된다. FPCB는 콘덴서, 저항 등의 수동소자 탑재 커넥터용으로서, 핸드폰, 컴퓨터 및 기타 전자부품의 핵심 부품 소재로 이용되고 있다. COF는 드라이브(Drive) IC 등 능동소자 탑재 패키지용 기판으로서, LCD모듈, 디지털 카메라, PDA, 핸드폰의 핵심 부품소재로 사용된다. 여기서, FPCB는 휴대전화를 중심으로 현시장을 주도하고 있고, 향후 차세대 휴대폰용 기판 및 양면 FPCB의 사용 증대에 따른 시장 규모가 증가할 것으로 기대하고 있다.Flexible copper foil laminates are used as basic materials for tape wiring boards such as flexible printed circuit boards (FPCBs) and chip on film / chip on flexible printed circuits (COFs). FPCB is used as a passive component connector for capacitors and resistors, and is used as a core component material for mobile phones, computers, and other electronic components. COF is a board for package of active devices such as drive IC, and is used as a core component material of LCD module, digital camera, PDA and mobile phone. Here, FPCB is leading the current market centering on mobile phones, and it is expected that the market size will increase due to the increase in use of next-generation mobile phone substrates and double-sided FPCBs.
이와 같은 연성 동박 적층판은 폴리이미드(polyimide; PI), 폴리에스테롤(polyesterols; PE), 폴리에틸렌테레프탈레이트(polyethylene terephthalate; PET) 등과 같은 폴리머 소재의 베이스 기판의 적어도 일면에 동박층이 형성된 구조를 갖는다. 즉 연성 동박 적층판은 유연성 절연재에 동박을 적층한 소재라고 할 수 있다.Such a flexible copper foil laminate has a structure in which a copper foil layer is formed on at least one surface of a base material of a polymer material such as polyimide (PI), polyesterol (PE), polyethylene terephthalate (PET), or the like. . That is, a flexible copper foil laminated board can be called the material which laminated | stacked copper foil on the flexible insulating material.
이때 베이스 기판에 접착제를 개재하여 동박을 접착하여 연성 동박 적층판을 제조하는 경우, 연성 동박 적층판의 제조 원가는 낮출 수는 있지만 접착제로 인해 미세 패턴 형성시 신뢰성이 떨어지는 단점이 있다At this time, when manufacturing a flexible copper foil laminate by bonding the copper foil through the adhesive to the base substrate, the manufacturing cost of the flexible copper foil laminate may be lowered, but there is a disadvantage that the reliability is poor when forming a fine pattern due to the adhesive
베이스 기판에 동박을 코팅하여 연성 동박 적층판을 제조하는 경우, 베이스 기판에 대한 동박층의 초기 접착력은 우수하다. 하지만 제조된 연성 동박 적층판에 대한 150℃의 공기중에 168시간 노출시키는 신뢰성 테스트를 진행한 이후에 베이스 기판에 대한 동박층의 후기 접착력이 초기 접착력에 비해서 0.1kgf/cm 정도 감소하기 때문에, 테이프 배선기판의 기본 소재로 사용할 수 없다. 즉 베이스 기판의 소재로 사용되는 폴리머는 산소, 수증기, 기타 기체의 투과성이 좋기 때문에, 주위의 환경 예컨대, 온도변화와 압력변화에 의해 산소, 수증기, 기타 기체가 폴리머를 통과하여 기포를 발생시키거나 구리와 화학반응을 하여 폴리머 내부로 확산하는 구리와 산화구리 원자들이 결합층을 생성하여 가수분해를 일으킨다. 이는 베이스기판과 동박층 사이의 접착력을 떨어뜨리는 요인으로 작용한다.When manufacturing a flexible copper foil laminated board by coating copper foil on a base substrate, the initial adhesive force of the copper foil layer with respect to a base substrate is excellent. However, since the late bond strength of the copper foil layer to the base substrate is reduced by about 0.1 kgf / cm compared to the initial adhesive strength after the reliability test of exposing the manufactured flexible copper foil laminate to air at 150 ° C. for 168 hours, the tape wiring board is reduced. Can not be used as the base material. That is, since the polymer used as the material of the base substrate has good permeability to oxygen, water vapor, and other gases, oxygen, water vapor, and other gases pass through the polymer to generate bubbles due to ambient environment, for example, temperature change and pressure change. Copper and copper oxide atoms, which chemically react with copper and diffuse into the polymer, form a bonding layer and cause hydrolysis. This acts as a factor of reducing the adhesion between the base substrate and the copper foil layer.
이와 같은 베이스 기판과 동박층 사이의 접착력이 떨어지는 문제점을 해소하기 위해서, 베이스 기판과 동박층 사이에 크롬(Cr) 혹은 니켈크롬(NiCr)과 같은 전이금속층을 형성한다. 하지만 전이금속층과 동박층을 에칭하는 경우, 서로 다른 에칭 용액을 함께 사용해야 하기 때문에 공정 조건이 까다롭다. 그리고 전이금속층과 동박층을 동시에 에칭하기 위해서 강산성의 에칭용액을 사용하는 경우, 전이금속층에서 언더컷(undercut)이 발생될 수 있다.In order to solve the problem that the adhesion between the base substrate and the copper foil layer is inferior, a transition metal layer such as chromium (Cr) or nickel chromium (NiCr) is formed between the base substrate and the copper foil layer. However, when etching the transition metal layer and the copper foil layer, process conditions are difficult because different etching solutions must be used together. In addition, when a strong acid etching solution is used to simultaneously etch the transition metal layer and the copper foil layer, undercut may occur in the transition metal layer.
그리고 연성 동박 적층판을 이용하여 테이프 배선기판을 제조하는 공정에 있어서, 동박층 및 전이금속층을 미세 패터닝하여 배선 패턴을 형성할 때 배선 패턴 사이의 베이스 기판 위에 미량의 크롬이 잔존할 수 있다. 이와 같은 잔존하는 미량의 크롬은 이웃하는 배선 패턴의 구리 성분과의 이온 마이그레이션(ion migration)에 의한 절연파괴를 유발할 수 있다.In the process of manufacturing a tape wiring board using a flexible copper foil laminate, a small amount of chromium may remain on the base substrate between the wiring patterns when the wiring pattern is formed by fine patterning the copper foil layer and the transition metal layer. Such residual traces of chromium may cause dielectric breakdown due to ion migration with copper components of neighboring wiring patterns.
따라서, 본 발명의 목적은 베이스 기판과 동박층 사이의 양호한 접착력을 유지하면서, 동박층에 대한 에칭 공정을 용이하게 진행할 수 있고, 이온 마이그레이션에 의한 절연파괴로 인한 제품의 신뢰성이 떨어지는 문제를 해소할 수 있는 버퍼층을 갖는 연성 동박 적층판 및 그의 제조 방법을 제공하는 데 있다.Accordingly, an object of the present invention can easily proceed the etching process for the copper foil layer while maintaining a good adhesion between the base substrate and the copper foil layer, and solve the problem of inferior product reliability due to insulation breakdown by ion migration. It is to provide a flexible copper foil laminate having a buffer layer which can be obtained, and a method for producing the same.
상기 목적을 달성하기 위하여, 본 발명은 베이스 기판, 버퍼층 및 동박층을 포함하여 구성되는 버퍼층을 갖는 연성 동박 적층판을 제공한다. 상기 버퍼층은 폴리머 소재의 상기 베이스 기판의 적어도 일면에 규소화합물 또는 유사규사화합물로 형성된 버퍼층 및 상기 버퍼층 위에 형성된 동박층을 포함하는 버퍼층을 갖는 연성 동박 적층판을 제공한다.In order to achieve the above object, the present invention provides a flexible copper foil laminate having a buffer layer comprising a base substrate, a buffer layer and a copper foil layer. The buffer layer provides a flexible copper foil laminate having a buffer layer including a buffer layer formed of a silicon compound or a similar silica compound on at least one surface of the base substrate of a polymer material and a copper foil layer formed on the buffer layer.
본 발명은 또한, 폴리머 소재의 베이스 기판을 준비하는 준비 단계, 상기 베이스 기판의 적어도 일면에 규소화합물 또는 유사규소화합물로 버퍼층을 형성하는 버퍼층 형성 단계 및 상기 버퍼층 위에 동박층을 형성하는 동박층 형성 단계를 포함하는 버퍼층을 갖는 연성 동박 적층판의 제조 방법을 제공한다.The present invention also provides a preparation step of preparing a base substrate of a polymer material, a buffer layer forming step of forming a buffer layer with a silicon compound or a similar silicon compound on at least one surface of the base substrate, and a copper foil layer forming step of forming a copper foil layer on the buffer layer. It provides a method for producing a flexible copper foil laminate having a buffer layer comprising a.
본 발명은 또한 베이스 기판, 보호층, 버퍼층, 시드층 및 후막층을 포함하여 구성되는 버퍼층을 갖는 연성 동박 적층판을 제공한다. 상기 보호층은 폴리머 소재의 상기 베이스 기판의 하부면에 규소화합물 또는 유사규소화합물로 형성된다. 상기 버퍼층은 이온빔 또는 플라즈마를 조사하여 표면처리된 상기 베이스 기판의 상부면에 규소화합물 또는 유사규소화합물로 형성된다. 상기 시드층은 상기 버퍼층 위에 구리를 스퍼터링하여 형성된다. 그리고 상기 후막층은 상기 시드층 위에 구리를 도금하여 형성된다. 이때 시드층과 후막층이 동박층을 형성한다.The present invention also provides a flexible copper foil laminate having a buffer layer comprising a base substrate, a protective layer, a buffer layer, a seed layer and a thick film layer. The protective layer is formed of a silicon compound or a similar silicon compound on the lower surface of the base substrate of a polymer material. The buffer layer is formed of a silicon compound or a similar silicon compound on the upper surface of the base substrate surface-treated by irradiating an ion beam or plasma. The seed layer is formed by sputtering copper on the buffer layer. The thick film layer is formed by plating copper on the seed layer. At this time, the seed layer and the thick film layer forms a copper foil layer.
본 발명은 또한, 폴리머 소재의 베이스 기판을 준비하는 준비 단계, 상기 베이스 기판의 하부면에 규소화합물 또는 유사규소화합물로 보호층을 형성하는 보호층 형성 단계, 상기 베이스 기판의 상부면을 이온빔 또는 플라즈마를 조사하여 표면처리하는 표면처리 단계, 상기 베이스 기판의 상부면에 규소화합물 또는 유사규소화합물로 버퍼층을 형성하는 버퍼층 형성 단계, 상기 버퍼층 위에 스퍼터링으로 구리 소재의 시드층을 형성하는 단계 및 상기 시드층 위를 구리로 도금하여 후막층을 형성하는 단계를 포함하는 버퍼층을 갖는 연성 동박 적층판의 제조 방법을 제공한다.The present invention also provides a preparatory step of preparing a base substrate made of a polymer material, a protective layer forming step of forming a protective layer of a silicon compound or a similar silicon compound on a lower surface of the base substrate, and an ion beam or plasma Surface treatment step of irradiating the surface treatment, forming a buffer layer of a silicon compound or a similar silicon compound on the upper surface of the base substrate, forming a seed layer of copper material by sputtering on the buffer layer and the seed layer It provides a method for producing a flexible copper foil laminate having a buffer layer comprising the step of plating a stomach with copper to form a thick film layer.
본 발명에 따른 연성 동박 적층판은 베이스 기판과 동박층 사이에 규소화합물 또는 유사규소화합물 소재의 버퍼층이 형성되기 때문에, 도 8 내지 도 11에 도시된 바와 같이, 베이스 기판과 동박층 사이에 양호한 초기 및 후기 접착력을 유지하는 것을 확인할 수 있다.In the flexible copper foil laminate according to the present invention, since a buffer layer of a silicon compound or a similar silicon compound material is formed between the base substrate and the copper foil layer, as shown in FIGS. 8 to 11, a good initial phase between the base substrate and the copper foil layer and It can be seen that the late adhesion is maintained.
본 발명에 따른 연성 동박 적층판은 베이스 기판과 동박층 사이에 전이금속층 대신에 규소화합물 또는 유사규소화합물 소재의 버퍼층이 형성된 구조를 갖기 때문에, 동박층에 대한 에칭으로 배선 패턴을 형성할 수 있어 동박층에 대한 에칭 공정을 용이하게 진행할 수 있다.Since the flexible copper foil laminate according to the present invention has a structure in which a buffer layer of a silicon compound or a similar silicon compound material is formed between the base substrate and the copper foil layer instead of the transition metal layer, a wiring pattern can be formed by etching the copper foil layer. The etching process for can easily proceed.
그리고 본 발명에 따른 연성 동박 적층판을 이용하여 테이프 배선기판으로 제조할 때, 배선 패턴 사이에 크롬과 같은 전이금속이 없기 때문에 이온 마이그레이션에 의한 절연파괴가 발생되는 것을 방지할 수 있다.In addition, when manufacturing a tape wiring board using the flexible copper foil laminate according to the present invention, since there is no transition metal such as chromium between the wiring patterns, insulation breakdown due to ion migration can be prevented.
따라서 본 발명에 따른 연성 동박 적층판을 이용하여 제조된 테이프 배선기판은 양호한 제품 신뢰성을 제공할 수 있다.Therefore, the tape wiring board manufactured using the flexible copper foil laminate according to the present invention can provide good product reliability.
도 1은 본 발명의 실시예에 따른 버퍼층을 갖는 연성 동박 적층판의 제조 방법에 따른 흐름도이다.1 is a flowchart of a method of manufacturing a flexible copper foil laminate having a buffer layer according to an embodiment of the present invention.
도 2 내지 도 7은 도 1의 제조 방법에 따른 각 단계를 보여주는 단면도들이다.2 to 7 are cross-sectional views showing each step according to the manufacturing method of FIG.
도 8 내지 도 11은 도 1의 제조 방법 및 종래의 제조 방법으로 제조된 연성 동박 적층판의 초기 및 후기 접착력을 비교한 그래프이다.8 to 11 is a graph comparing the early and late adhesive strength of the flexible copper foil laminate prepared by the manufacturing method of Figure 1 and the conventional manufacturing method.
이하, 첨부 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of the present invention.
본 발명의 실시예에 따른 버퍼층을 갖는 연성 동박 적층판의 제조 방법에 대해서 도 1 내지 도 7을 참조하여 설명하면 다음과 같다. 여기서 도 1은 본 발명의 실시예에 따른 버퍼층을 갖는 연성 동박 적층판의 제조 방법에 따른 흐름도이다. 도 2 내지 도 7은 도 1의 제조 방법에 따른 각 단계를 보여주는 단면도들이다.A method of manufacturing a flexible copper foil laminate having a buffer layer according to an embodiment of the present invention will be described with reference to FIGS. 1 to 7. 1 is a flowchart of a method of manufacturing a flexible copper foil laminate having a buffer layer according to an embodiment of the present invention. 2 to 7 are cross-sectional views showing each step according to the manufacturing method of FIG.
먼저 도 2에 도시된 바와 같이, 본 실시예에 따른 연성 동박 적층판의 제조에 사용될 베이스 기판(11)을 준비한다(S31). 베이스 기판(11)의 소재로는 폴리카보네이트(polycarbonate; PC), 폴리이미드(polyimide; PI), 폴리아릴레이트(polyarylate; PAR), 폴리에틸렌나프탈레이트(polyethylene naphthalate; PEN), 폴리에틸렌테레프탈레이트(polyethylene terephthalate; PET), 사이클로올레핀 코폴리머(cycloolefin copolymer) 등의 폴리머 소재가 사용될 수 있다.First, as shown in FIG. 2, a base substrate 11 to be used for manufacturing a flexible copper foil laminate according to the present embodiment is prepared (S31). The material of the base substrate 11 is polycarbonate (PC), polyimide (PI), polyarylate (PAR), polyethylene naphthalate (PEN), polyethylene terephthalate (polyethylene terephthalate). PET), a polymer material such as cycloolefin copolymer (cycloolefin copolymer) can be used.
다음으로 도 3에 도시된 바와 같이, 베이스 기판(11)의 하부면에 보호층(13)을 형성한다(S32). 보호층(13)은 S32단계 이후의 제조 공정에서 베이스 기판(11)의 하부면을 통하여 공정 가스나 수분이 침투하는 것을 억제하는 기능을 수행한다. 보호층(13)의 소재로는 산화수소를 함유한 규소계무기질, 규소화합물 또는 유사규소화합물이 사용될 수 있다. 보호층(13)은 적어도 한 층으로 형성될 수 있다. 한편 보호층(13)은 필요에 따라 생략할 수도 있다.Next, as shown in FIG. 3, the protective layer 13 is formed on the lower surface of the base substrate 11 (S32). The protective layer 13 functions to suppress penetration of process gas or moisture through the lower surface of the base substrate 11 in the manufacturing process after step S32. As the material of the protective layer 13, a silicon-based inorganic substance containing silicon oxide, a silicon compound or a similar silicon compound may be used. The protective layer 13 may be formed of at least one layer. In addition, the protective layer 13 can also be omitted as needed.
다음으로 도 4에 도시된 바와 같이, 베이스 기판(11)의 상부면에 이온빔 또는 플라즈마를 조사하여 표면처리한다(S33). 즉 베이스 기판(11)을 형성하는 폴리머는 표면에너지가 낮아 다른 물질과의 낮은 접착력을 갖는다. 따라서 베이스 기판(11)의 상부면에 형성될 버퍼층(15)과의 접착력을 향상시키기 위해서, 이온빔(20)이나 플라즈마를 베이스 기판(11)의 상부면에 조사하여 베이스 기판(11)을 형성하는 폴리머의 고분사 사슬을 끊거나 친수성 처리하여 베이스 기판(11)의 상부면을 개질화한다. 여기서 도면부호 14는 개질화된 부분을 나타낸다.Next, as shown in FIG. 4, the upper surface of the base substrate 11 is irradiated with ion beams or plasma to perform surface treatment (S33). That is, the polymer forming the base substrate 11 has a low surface energy and low adhesion with other materials. Accordingly, in order to improve adhesion to the buffer layer 15 to be formed on the upper surface of the base substrate 11, the base substrate 11 is formed by irradiating the upper surface of the base substrate 11 with an ion beam 20 or plasma. The high injection chain of the polymer is broken or hydrophilic to modify the top surface of the base substrate 11. Here, reference numeral 14 denotes a modified part.
예컨대, S33단계는 50~150sccm 유량을 가지는 질소가스 혹은 산소가스 분위기에서 300~500W의 출력을 가지는 이온빔(20)을 베이스 기판(11)의 상부면에 조사하여 베이스 기판(11)의 상부면을 표면처리할 수 있다. 이와 같은 표면처리를 통하여 베이스 기판(11)의 낮은 표면에너지를 증가시킨다. 이때 질소는 아민흡착그룹을 베이스 기판(11)의 상부면에 형성하고, 플라즈마 안에서 단파장 특성을 가진 수소는 베이스 기판(11)의 상부면에서 분자들의 부가적인 연결 고리와 폴리머의 체인 형성을 가능하게 하여 베이스 기판(11)의 표면에너지를 증가시킨다.For example, in step S33, the upper surface of the base substrate 11 is irradiated by irradiating the upper surface of the base substrate 11 with an ion beam 20 having an output of 300 to 500 W in a nitrogen gas or oxygen gas atmosphere having a flow rate of 50 to 150 sccm. It can be surface treated. Through such a surface treatment, the low surface energy of the base substrate 11 is increased. In this case, nitrogen forms an amine adsorption group on the upper surface of the base substrate 11, and hydrogen having short wavelength characteristics in the plasma enables the formation of an additional linking ring of molecules and a polymer chain on the upper surface of the base substrate 11 Thereby increasing the surface energy of the base substrate 11.
다음으로 도 5에 도시된 바와 같이, 표면처리된 베이스 기판(11)의 상부면에 규소화합물 또는 유사규소화합물로 버퍼층(15)을 형성한다(S34). 버퍼층(15)은 규소화합물, 유사규소화합물 또는 이들을 적층하여 형성할 수 있다. 버퍼층(15)은 스퍼터링 또는 플라즈마증착을 통하여 형성할 수 있다. 예컨대 스퍼터링 방법으로는 마그네트론 스퍼터링이 사용될 수 있고, 플라즈마증착 방법으로는 플라즈마 화학적기상증착법(plasma-enhanced chemical vapor deposition; PECVD)이 사용될 수 있다.Next, as shown in FIG. 5, the buffer layer 15 is formed of a silicon compound or a similar silicon compound on the upper surface of the surface-treated base substrate 11 (S34). The buffer layer 15 may be formed by stacking silicon compounds, pseudosilicon compounds, or the like. The buffer layer 15 may be formed through sputtering or plasma deposition. For example, magnetron sputtering may be used as the sputtering method, and plasma-enhanced chemical vapor deposition (PECVD) may be used as the plasma deposition method.
버퍼층(15)의 소재로 사용되는 규소화합물은 헥사메틸디실록산(hexamethyldisiloxane; HMDSO), 테트라에틸오쏘실리케이트(tetraethylorthosilicate; TEOS), 테트라메틸오쏘실리케이트(tetramethylorthosilicate; TMOS), 테트라메틸디실옥산(tetramethyldisiloxane; TMDSO), 헥사메틸디실라잔(hexamethyldisilazane: TMDS)을 포함한다.The silicon compound used as the material of the buffer layer 15 is hexamethyldisiloxane (HMDSO), tetraethylorthosilicate (TEOS), tetramethylorthosilicate (TMOS), tetramethyldisiloxane (tetramethyldisiloxane; TMDSO). ), And hexamethyldisilazane (TMDS).
버퍼층(15)의 소재로 사용되는 유사규소화합물은 규소를 포함하고 있지 않지만 규소화합물과 비슷한 특성을 나타내는 화합물을 의미한다.The similar silicon compound used as the material of the buffer layer 15 refers to a compound that does not contain silicon but exhibits similar characteristics to that of the silicon compound.
그리고 버퍼층(15)은 규소화합물 또는 유사규소화합물에 산소가스, 질소가스, 헬륨가스, 아르곤가스 또는 산화물가스 중에 적어도 하나를 혼합하여 형성할 수도 있다. 여기서 유사규소화합물은 The buffer layer 15 may be formed by mixing at least one of oxygen gas, nitrogen gas, helium gas, argon gas or oxide gas with a silicon compound or a similar silicon compound. The pseudosilicon compound here
여기서 규소화합물 또는 유사규소화합물로 이루어진 버퍼층(15)은 베이스 기판(11)과 동박층(도 7의 17,19) 사이의 접착력을 증대시킨다. 아울러 버퍼층(15)은 이후에 형성되는 동박층(도 7의 17,19)의 에칭 공정을 용이하게 하며, 우수한 전기 절연 특성과 낮은 유전율로 고주파 특성을 향상시킨다. 그리고 버퍼층(15)은 베이스 기판(11) 내부로의 가스 확산을 방지하는 가스 확산 방지막으로서의 기능도 갖고 있다.Here, the buffer layer 15 made of a silicon compound or a similar silicon compound increases the adhesion between the base substrate 11 and the copper foil layer (17, 19 in FIG. 7). In addition, the buffer layer 15 facilitates an etching process of the copper foil layers (17 and 19 of FIG. 7) formed later, and improves high frequency characteristics with excellent electrical insulation properties and low dielectric constant. The buffer layer 15 also has a function as a gas diffusion prevention film that prevents gas diffusion into the base substrate 11.
그리고 도 6 및 도 7에 도시된 바와 같이, 버퍼층(15) 위에 구리 소재의 시드층(17)과 후막층(17)을 순차적으로 형성하여 동박층(17,19)을 형성한다(S35,S36).6 and 7, copper seed layers 17 and 19 are sequentially formed on the buffer layer 15 by sequentially forming a copper seed layer 17 and a thick film layer 17 (S35 and S36). ).
먼저 도 6에 도시된 바와 같이, 버퍼층(15) 위에 구리 소재의 시드층(17)을 형성한다(S35). 시드층(17)은 마그네트론 스퍼터링 공정을 통해 버퍼층(15) 위에 형성될 수 있다. 이때, 마그네트론 스퍼터링 공정을 통해 증착되는 시드층(17)의 두께는 0.2~0.3㎛ 정도로 형성하는 것이 바람직하다. 한편 본 실시예에서는 시드층(17)의 소재 구리가 사용되는 예를 개시하였지만, 도전성이 양호한 다른 금속이 사용될 수도 있다.First, as shown in FIG. 6, a seed layer 17 of copper material is formed on the buffer layer 15 (S35). The seed layer 17 may be formed on the buffer layer 15 through a magnetron sputtering process. At this time, the thickness of the seed layer 17 deposited through the magnetron sputtering process is preferably formed to about 0.2 ~ 0.3㎛. Meanwhile, in the present embodiment, an example in which the material copper of the seed layer 17 is used is disclosed, but another metal having good conductivity may be used.
다음으로 도 7에 도시된 바와 같이, 시드층(17) 위에 구리 소재의 후막층(19)을 형성한다(S36). 후막층(19)은 도금 공정, 예컨대 전해 도금 또는 무전해 도금으로 2~12㎛ 정도의 두께로 형성한다.Next, as shown in FIG. 7, a thick film layer 19 of copper material is formed on the seed layer 17 (S36). The thick film layer 19 is formed to a thickness of about 2 to 12 μm by a plating process, for example, electrolytic plating or electroless plating.
한편 본 실시예에 따른 제조 방법에서는, 보호층 형성 단계, 표면처리 단계 및 버퍼층 형성 단계 순으로 진행하는 예를 개시하였지만 이에 한정되는 것은 아니다. 예컨대, 표면처리 단계를 수행한 이후에 보호층(13)과 버퍼층(15)을 형성하는 단계를 동시에 수행할 수 있다. 즉 보호층(13)과 버퍼층(15)을 동일한 소재를 사용하여 베이스기판(11)의 양면에 함께 형성할 수 있다.Meanwhile, in the manufacturing method according to the present embodiment, an example in which the protective layer forming step, the surface treatment step, and the buffer layer forming step are performed is disclosed, but is not limited thereto. For example, after performing the surface treatment step, the step of forming the protective layer 13 and the buffer layer 15 may be performed at the same time. That is, the protective layer 13 and the buffer layer 15 may be formed on both sides of the base substrate 11 using the same material.
그리고 본 실시예에 따른 제조 방법에서는, 동박층(17,19)이 형성되는 베이스기판(11)의 상부면만 표면처리하는 예를 개시하였지만, 베이스기판의 하부면도 함께 표면처리를 할 수 있다.In the manufacturing method according to the present embodiment, an example is described in which only the upper surface of the base substrate 11 on which the copper foil layers 17 and 19 are formed is surface treated, but the lower surface of the base substrate can also be surface treated.
또한 본 실시예에 따른 제조 방법에서는, 베이스기판(11)의 상부면에만 동박층(17,19)을 형성하는 예를 개시하였지만, 양면에 동박층을 형성할 수도 있다. 이 경우, 베이스기판의 양면을 표면처리하는 단계, 베이스기판의 표면처리된 양면에 버퍼층을 형성하는 단계 및 양쪽의 버퍼층에 각각 동박층을 형성하는 단계 순으로 진행될 수 있다. 물론 동박층을 형성하는 단계는 시드층을 형성하는 단계 및 시드층 위에 후막층을 형성하는 단계 순으로 진행된다.Further, in the manufacturing method according to the present embodiment, an example in which the copper foil layers 17 and 19 are formed only on the upper surface of the base substrate 11 is disclosed, but the copper foil layers may be formed on both surfaces. In this case, the surface treatment of both surfaces of the base substrate, the step of forming a buffer layer on the surface-treated both surfaces of the base substrate, and the step of forming a copper foil layer on each of the buffer layer, respectively. Of course, the forming of the copper foil layer proceeds in the order of forming a seed layer and forming a thick film layer on the seed layer.
이와 같이 본 실시예에 따른 연성 동박 적층판(10)은 베이스 기판(11)과 동박층(17,19) 사이에 규소화합물 또는 유사규소화합물 소재의 버퍼층(15)이 형성되기 때문에, 베이스 기판(11)과 동박층(17,19) 사이에 양호한 초기 및 후기 접착력을 유지할 수 있다. 본 실시예에 따른 연성 동박 적층판(10)은 베이스 기판(11)과 동박층(17,19) 사이에 전이금속층 대신에 규소화합물 또는 유사규소화합물 소재의 버퍼층(15)이 형성된 구조를 갖기 때문에, 동박층(17,19)에 대한 에칭만으로 배선 패턴을 형성할 수 있어 동박층(17,19)에 대한 에칭 공정을 용이하게 진행할 수 있는 이점이 있다. 그리고 본 실시예에 따른 연성 동박 적층판(10)을 이용하여 테이프 배선기판을 제조할 때, 배선 패턴 사이에 크롬과 같은 전이금속이 남지 않기 때문에, 이온 마이그레이션에 의한 절연파괴가 발생되는 것을 방지할 수 있다.As described above, in the flexible copper foil laminate 10 according to the present embodiment, since the buffer layer 15 of the silicon compound or the similar silicon compound material is formed between the base substrate 11 and the copper foil layers 17 and 19, the base substrate 11 ) And good early and late adhesion between the copper foil layers 17 and 19. Since the flexible copper foil laminate 10 according to the present embodiment has a structure in which a buffer layer 15 of silicon compound or similar silicon compound material is formed between the base substrate 11 and the copper foil layers 17 and 19 instead of the transition metal layer, Since the wiring pattern may be formed only by etching the copper foil layers 17 and 19, the etching process for the copper foil layers 17 and 19 may be easily performed. In addition, when a tape wiring board is manufactured using the flexible copper foil laminate 10 according to the present embodiment, transition metals such as chromium are not left between the wiring patterns, thereby preventing occurrence of dielectric breakdown due to ion migration. have.
따라서 본 실시예에 따른 연성 동박 적층판(10)을 이용하여 제조된 테이프 배선기판은 양호한 제품 신뢰성을 제공할 수 있다.Therefore, the tape wiring board manufactured using the flexible copper foil laminate 10 according to the present embodiment can provide good product reliability.
이와 같은 본 실시예에 따라 제조된 버퍼층(15)을 갖는 유연 동박 적층판(10)의 접착 신뢰성을 검증하기 위해서, 150℃의 공기중에 168시간 노출하기 전과 후의 접착력을 측정하였다. 이때 본 실험에서 본 실시예에 따른 유연 동박 적층판(10)과 대비하기 위해서, 제1 및 제2 비교예에 따른 유연 동박 적층판에 대한 접착력도 함께 비교 측정하였다. 이때 제1 비교예에 따른 유연 동박 적층판은 베이스 기판 위에 직접 동박층이 형성된 구조를 갖는다. 그리고 제2 비교예에 따른 유연 동박 적층판은 베이스 기판과 동박층 사이에 니켈크롬(NiCr)층이 형성된 구조를 갖는다.In order to verify the adhesion reliability of the flexible copper foil laminate 10 having the buffer layer 15 prepared according to the present embodiment, the adhesion strength before and after exposure to air at 150 ° C. for 168 hours was measured. At this time, in order to contrast with the flexible copper foil laminate 10 according to the present embodiment in the present experiment, the adhesive strength to the flexible copper foil laminate according to the first and second comparative examples were also measured. At this time, the flexible copper foil laminate according to the first comparative example has a structure in which a copper foil layer is directly formed on the base substrate. The flexible copper foil laminate according to the second comparative example has a structure in which a nickel chromium (NiCr) layer is formed between the base substrate and the copper foil layer.
제1 비교예Comparative Example 1
제1 비교예에 따른 유연 동박 적층판은 다음과 같은 공정으로 제조하였다. 즉 베이스 기판을 준비한 상태에서, 150sccm의 유량의 300W의 질소이온으로 베이스기판을 표면처리한다. 그리고 순수 아르곤가스의 분위기에서, 구리(순도=99.999%) 타겟을 가진 4kW의 출력의 플라즈마에서 구리를 0.2~0.3㎛의 두께로 시드층을 베이스 기판 위에 증착한 후, 시드층 위에 도금으로 후막층을 형성한다.The flexible copper foil laminate according to the first comparative example was manufactured by the following process. That is, in the state of preparing the base substrate, the base substrate is surface-treated with 300W nitrogen ion at a flow rate of 150sccm. In a pure argon gas atmosphere, a seed layer was deposited on a base substrate with a thickness of 0.2-0.3 μm of copper in a 4 kW output plasma having a copper (purity = 99.999%) target, followed by plating on the seed layer by a thick film layer. To form.
이와 같이 제조된 제1 비교예에 따른 유연 동박 적층판을 150℃의 공기 중에서 168시간 동안 노출(Aging)하기 전과 후의 접착력을 측정하였다. 실험 결과, 도 8 내지 도 11의 a에 도시된 바와 같이, 초기 접착력은 0.1~0.5kgf/cm 사이의 값을 가졌고, 후기 접착력은 0.01~0.1kgf/cm 사이의 값을 가졌다.The adhesive force before and after the flexible copper foil laminate according to the first comparative example thus prepared was exposed for 168 hours in air at 150 ° C. was measured. As a result of the experiment, as shown in Figure 8 to 11 a, the initial adhesive force had a value between 0.1 ~ 0.5kgf / cm, the late adhesive force had a value between 0.01 ~ 0.1kgf / cm.
제2 비교예2nd comparative example
제2 비교예에 따른 유연 동박 적층판은 다음과 같은 공정으로 제조하였다. 즉 베이스 기판을 준비한 상태에서, 150sccm의 유량의 300W의 질소이온으로 베이스기판을 표면처리한다. 다음으로 표면처리된 베이스기판 위에 니켈크롬(NiCr)층을 증착한다. 그리고 순수아르곤 가스의 분위기에서, 구리(순도=99.999%) 타겟을 가진 4kW의 출력의 플라즈마에서 구리를 0.2~0.3㎛의 두께로 시드층을 니켈크롬층 위에 증착한 후, 시드층 위에 도금으로 후막층을 형성한다.The flexible copper foil laminate according to the second comparative example was manufactured by the following process. That is, in the state of preparing the base substrate, the base substrate is surface-treated with 300W nitrogen ion at a flow rate of 150sccm. Next, a nickel chromium (NiCr) layer is deposited on the surface-treated base substrate. In the atmosphere of pure argon gas, the seed layer was deposited on the nickel chromium layer in a 4 kW output plasma having a copper (purity = 99.999%) target with a thickness of 0.2 to 0.3 μm, and then plated on the seed layer by thick film. Form a layer.
이와 같이 제조된 제2 비교예에 따른 유연 동박 적층판을 150℃의 공기 중에서 168시간 동안 노출(Aging)하기 전과 후의 접착력을 측정하였다. 실험 결과, 도 8 내지 도 11의 b에 도시된 바와 같이, 초기 접착력은 0.1~0.6kgf/cm 사이의 값을 가졌고, 후기 접착력은 0.01~0.3kgf/cm 사이의 값을 가졌다The adhesive force before and after exposing the flexible copper foil laminate according to the second comparative example thus prepared for 168 hours in air at 150 ° C. was measured. As a result of the experiment, as shown in b of Figures 8 to 11, the initial adhesive force had a value between 0.1 ~ 0.6kgf / cm, the late adhesive force had a value between 0.01 ~ 0.3kgf / cm.
제1 실시예First embodiment
제1 실시예에 따른 유연 동박 적층판은 다음과 같은 공정으로 제조하였다. 즉 베이스 기판의 친수성, 접착성, 내구성 및 마모성을 향상시키기 위해 PECVD를 통해 HMDSO를 베이스 기판의 하부면에 증착하여 보호층을 형성한다. 다음으로 150sccm의 유량의 300W의 질소이온으로 베이스기판의 상부면을 표면처리한다. 다음으로 헬륨가스, 산소가스, 질소가스, 아르곤가스 및 HMDSO의 혼합가스를 100W 에서 2kW 사이의 MF 전원을 인가하여 플라즈마를 발생시켜 베이스기판의 상부면에 버퍼층을 증착한다. 그리고 순수아르곤 가스의 분위기에서, 구리(순도=99.999%) 타겟을 가진 4kW의 출력의 플라즈마에서 구리를 0.2~0.3㎛의 두께로 시드층을 니켈크롬층 위에 증착한 후, 시드층 위에 도금으로 후막층을 형성한다.The flexible copper foil laminate according to the first embodiment was manufactured by the following process. That is, in order to improve the hydrophilicity, adhesion, durability, and wearability of the base substrate, HMDSO is deposited on the lower surface of the base substrate through PECVD to form a protective layer. Next, the upper surface of the base substrate is surface treated with 300W nitrogen ion at a flow rate of 150sccm. Next, a plasma is generated by applying a mixed gas of helium gas, oxygen gas, nitrogen gas, argon gas and HMDSO between 100W and 2kW to generate plasma to deposit a buffer layer on the upper surface of the base substrate. In the atmosphere of pure argon gas, the seed layer was deposited on the nickel chromium layer in a 4 kW output plasma having a copper (purity = 99.999%) target with a thickness of 0.2 to 0.3 μm, and then plated on the seed layer by thick film. Form a layer.
이와 같이 제조된 제1 실시예에 따른 유연 동박 적층판을 150℃의 공기 중에서 168시간 동안 노출(Aging)하기 전과 후의 접착력을 측정하였다. 실험 결과, 도 8의 c에 도시된 바와 같이, 초기 접착력은 0.1~1.5kgf/cm 사이의 값을 가졌고, 후기 접착력은 0.03~0.7kgf/cm 사이의 값을 가졌다.The adhesive force before and after the flexible copper foil laminate according to the first embodiment thus prepared was exposed for 168 hours in air at 150 ° C. was measured. As a result of the experiment, as shown in Figure 8c, the initial adhesive force had a value between 0.1 ~ 1.5kgf / cm, the late adhesive force had a value between 0.03 ~ 0.7kgf / cm.
제1 실시예, 제1 및 제2 비교예를 비교하면, 도 8에 도시된 바와 같이, 제1 실시예에 따른 유연 동박 적층판이 제1 및 제2 비교예에 따른 유연 동박 적층판 보다는 양호한 초기 및 후기 접착력을 갖고 있음을 확인할 수 있다.Comparing the first embodiment, the first and second comparative examples, as shown in FIG. 8, the flexible copper foil laminate according to the first embodiment is better than the flexible copper foil laminate according to the first and second comparative examples. It can be confirmed that it has a late adhesive force.
제2 실시예Second embodiment
제2 실시예에 따른 유연 동박 적층판은 다음과 같은 공정으로 제조하였다. 즉 베이스 기판의 친수성, 접착성, 내구성 및 마모성을 향상시키기 위해 PECVD를 통해 HMDSO를 베이스 기판의 하부면에 증착하여 보호층을 형성한다. 다음으로 150sccm의 유량의 300W의 질소이온으로 베이스기판의 상부면을 표면처리한다. 다음으로 헬륨가스, 산소가스, 질소가스, 아르곤가스 및 HMDSO의 혼합가스를 100W 에서 1kW 사이의 RF 전원을 인가하여 플라즈마를 발생시켜 베이스기판의 상부면에 버퍼층을 증착한다. 그리고 순수아르곤 가스의 분위기에서, 구리(순도=99.999%) 타겟을 가진 4kW의 출력의 플라즈마에서 구리를 0.2~0.3㎛의 두께로 시드층을 니켈크롬층 위에 증착한 후, 시드층 위에 도금으로 후막층을 형성한다.The flexible copper foil laminate according to the second embodiment was manufactured by the following process. That is, in order to improve the hydrophilicity, adhesion, durability, and wearability of the base substrate, HMDSO is deposited on the lower surface of the base substrate through PECVD to form a protective layer. Next, the upper surface of the base substrate is surface treated with 300W nitrogen ion at a flow rate of 150sccm. Next, a plasma is generated by applying RF power between 100W and 1kW to a mixed gas of helium gas, oxygen gas, nitrogen gas, argon gas, and HMDSO to deposit a buffer layer on the upper surface of the base substrate. In the atmosphere of pure argon gas, the seed layer was deposited on the nickel chromium layer in a 4 kW output plasma having a copper (purity = 99.999%) target with a thickness of 0.2 to 0.3 μm, and then plated on the seed layer by thick film. Form a layer.
이와 같이 제조된 제2 실시예에 따른 유연 동박 적층판을 150℃의 공기 중에서 168시간 동안 노출(Aging)하기 전과 후의 접착력을 측정하였다. 실험 결과, 도 9의 d에 도시된 바와 같이, 초기 접착력은 0.1~1.5kgf/cm 사이의 값을 가졌고, 후기 접착력은 0.27~0.38kgf/cm 사이의 값을 가졌다.The adhesive force before and after the flexible copper foil laminate according to the second embodiment thus prepared was exposed for 168 hours in air at 150 ° C. was measured. As a result of the experiment, as shown in d of FIG. 9, the initial adhesive force had a value between 0.1 and 1.5 kgf / cm, and the late adhesive force had a value between 0.27 and 0.38 kgf / cm.
제2 실시예, 제1 및 제2 비교예를 비교하면, 도 9에 도시된 바와 같이, 제2 실시예에 따른 유연 동박 적층판이 제1 및 제2 비교예에 따른 유연 동박 적층판 보다는 양호한 초기 및 후기 접착력을 갖고 있음을 확인할 수 있다.Comparing the second embodiment, the first and the second comparative example, as shown in FIG. 9, the flexible copper foil laminate according to the second embodiment is better than the flexible copper foil laminate according to the first and second comparative examples. It can be confirmed that it has a late adhesive force.
제3 실시예Third embodiment
제3 실시예에 따른 유연 동박 적층판은 다음과 같은 공정으로 제조하였다. 즉 베이스 기판의 친수성, 접착성, 내구성 및 마모성을 향상시키기 위해 PECVD를 통해 TMOS를 베이스 기판의 하부면에 증착하여 보호층을 형성한다. 다음으로 150sccm의 유량의 300W의 질소이온으로 베이스기판의 상부면을 표면처리한다. 다음으로 헬륨가스, 산소가스, 질소가스, 아르곤가스 및 TMOS의 혼합가스를 100W 에서 2kW 사이의 MF 전원을 인가하여 플라즈마를 발생시켜 베이스기판의 상부면에 버퍼층을 증착한다. 그리고 순수아르곤 가스의 분위기에서, 구리(순도=99.999%) 타겟을 가진 4kW의 출력의 플라즈마에서 구리를 0.2~0.3㎛의 두께로 시드층을 니켈크롬층 위에 증착한 후, 시드층 위에 도금으로 후막층을 형성한다.The flexible copper foil laminate according to the third embodiment was manufactured by the following process. That is, in order to improve the hydrophilicity, adhesion, durability and wearability of the base substrate, TMOS is deposited on the lower surface of the base substrate through PECVD to form a protective layer. Next, the upper surface of the base substrate is surface treated with 300W nitrogen ion at a flow rate of 150sccm. Next, a plasma is generated by applying a mixed gas of helium gas, oxygen gas, nitrogen gas, argon gas, and TMOS between 100W and 2kW to generate plasma to deposit a buffer layer on the upper surface of the base substrate. In the atmosphere of pure argon gas, the seed layer was deposited on the nickel chromium layer in a 4 kW output plasma having a copper (purity = 99.999%) target with a thickness of 0.2 to 0.3 μm, and then plated on the seed layer by thick film. Form a layer.
이와 같이 제조된 제3 실시예에 따른 유연 동박 적층판을 150℃의 공기 중에서 168시간 동안 노출(Aging)하기 전과 후의 접착력을 측정하였다. 실험 결과, 도 10의 e에 도시된 바와 같이, 초기 접착력은 0.2~1.2kgf/cm 사이의 값을 가졌고, 후기 접착력은 0.02~0.41kgf/cm 사이의 값을 가졌다.The adhesive force before and after the flexible copper foil laminate according to the third embodiment thus prepared was exposed for 168 hours in air at 150 ° C. was measured. As a result of the experiment, as shown in Figure 10 e, the initial adhesive force had a value between 0.2 ~ 1.2kgf / cm, the late adhesive force had a value between 0.02 ~ 0.41 kgf / cm.
제3 실시예, 제1 및 제2 비교예를 비교하면, 도 10에 도시된 바와 같이, 제3 실시예에 따른 유연 동박 적층판이 제1 및 제2 비교예에 따른 유연 동박 적층판 보다는 양호한 초기 및 후기 접착력을 갖고 있음을 확인할 수 있다.Comparing the third embodiment, the first and the second comparative example, as shown in FIG. 10, the flexible copper foil laminate according to the third embodiment is better than the flexible copper foil laminate according to the first and second comparative examples. It can be confirmed that it has a late adhesive force.
제4 실시예Fourth embodiment
제2 실시예에 따른 유연 동박 적층판은 다음과 같은 공정으로 제조하였다. 즉 베이스 기판의 친수성, 접착성, 내구성 및 마모성을 향상시키기 위해 PECVD를 통해 TMOS를 베이스 기판의 하부면에 증착하여 보호층을 형성한다. 다음으로 150sccm의 유량의 300W의 질소이온으로 베이스기판의 상부면을 표면처리한다. 다음으로 헬륨가스, 산소가스, 질소가스, 아르곤가스 및 TMOS의 혼합가스를 200~900W 사이의 RF 전원을 인가하여 플라즈마를 발생시켜 베이스기판의 상부면에 버퍼층을 증착한다. 그리고 순수아르곤 가스의 분위기에서, 구리(순도=99.999%) 타겟을 가진 4kW의 출력의 플라즈마에서 구리를 0.2~0.3㎛의 두께로 시드층을 니켈크롬층 위에 증착한 후, 시드층 위에 도금으로 후막층을 형성한다.The flexible copper foil laminate according to the second embodiment was manufactured by the following process. That is, in order to improve the hydrophilicity, adhesion, durability and wearability of the base substrate, TMOS is deposited on the lower surface of the base substrate through PECVD to form a protective layer. Next, the upper surface of the base substrate is surface treated with 300W nitrogen ion at a flow rate of 150sccm. Next, helium gas, oxygen gas, nitrogen gas, argon gas and a mixed gas of TMOS is applied to the RF power between 200 ~ 900W to generate a plasma to deposit a buffer layer on the upper surface of the base substrate. In the atmosphere of pure argon gas, in a 4 kW output plasma having a copper (purity = 99.999%) target, the seed layer was deposited on the nickel chromium layer with a thickness of 0.2 to 0.3 µm, and then plated on the seed layer by thick film. Form a layer.
이와 같이 제조된 제4 실시예에 따른 유연 동박 적층판을 150℃의 공기 중에서 168시간 동안 노출(Aging)하기 전과 후의 접착력을 측정하였다. 실험 결과, 도 10의 f에 도시된 바와 같이, 초기 접착력은 0.1~1.2kgf/cm 사이의 값을 가졌고, 후기 접착력은 0.01~0.31kgf/cm 사이의 값을 가졌다.The adhesive force before and after the flexible copper foil laminate according to the fourth embodiment thus prepared was exposed for 168 hours in air at 150 ° C. was measured. As a result of the experiment, as shown in f of FIG. 10, the initial adhesive force had a value between 0.1 and 1.2 kgf / cm, and the late adhesive force had a value between 0.01 and 0.31 kgf / cm.
제4 실시예, 제1 및 제2 비교예를 비교하면, 도 11에 도시된 바와 같이, 제4 실시예에 따른 유연 동박 적층판이 제1 및 제2 비교예에 따른 유연 동박 적층판 보다는 양호한 초기 및 후기 접착력을 갖고 있음을 확인할 수 있다.Comparing the fourth embodiment, the first and the second comparative example, as shown in FIG. 11, the flexible copper foil laminate according to the fourth embodiment is better than the flexible copper foil laminate according to the first and second comparative examples. It can be confirmed that it has a late adhesive force.
한편 제4 실시예 및 제2 비교예에 따른 유연 동박 적층판의 후기 접착력의 차이가 크지 않지만, 제4 실시예에 따른 유연 동박 적층판은 니켈크롬층을 사용하는 제2 비교예에 따른 유연 동박 적층판과 동등하거나 그 이상의 후기 접착력을 갖고 있고, 니켈크롬층을 사용하지 않기 때문에 종래의 에칭 공정에 따른 문제 및 이온 마이그레이션에 따른 문제를 해소할 수 있다.On the other hand, although the difference in the late adhesive force of the flexible copper foil laminate according to the fourth embodiment and the second comparative example is not large, the flexible copper foil laminate according to the fourth embodiment is the flexible copper foil laminate according to the second comparative example using a nickel chromium layer Since it has the same or more late adhesion and does not use a nickel chromium layer, the problem by the conventional etching process and the problem by ion migration can be solved.
이와 같이 제1 내지 제 4 실시예에 따른 연성 동박 적층판은 베이스 기판과 동박층 사이에 규소화합물 또는 유사규소화합물 소재의 버퍼층이 형성된 구조를 갖기 때문에, 제1 및 제2 비교예에 따른 연성 동박 적층판에 비해서 베이스 기판과 동박층 사이에 양호한 초기 및 후기 접착력을 유지하는 것을 확인할 수 있다.As described above, since the flexible copper foil laminates according to the first to fourth embodiments have a structure in which a buffer layer of a silicon compound or a similar silicon compound material is formed between the base substrate and the copper foil layer, the flexible copper foil laminates according to the first and second comparative examples Compared with the base substrate and the copper foil layer, it is confirmed that good initial and late adhesive strengths are maintained.
한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명한 것이다.On the other hand, the embodiments of the present invention disclosed in the specification and drawings are merely presented specific examples to aid understanding, and are not intended to limit the scope of the present invention. In addition to the embodiments disclosed herein, it is apparent to those skilled in the art that other modifications based on the technical idea of the present invention may be implemented.

Claims (12)

  1. 폴리머 소재의 베이스 기판;A base substrate made of a polymer material;
    상기 베이스 기판의 적어도 일면에 규소화합물 또는 유사규사화합물로 형성된 버퍼층; 및A buffer layer formed of a silicon compound or a similar silica compound on at least one surface of the base substrate; And
    상기 버퍼층 위에 형성된 동박층;A copper foil layer formed on the buffer layer;
    을 포함하는 것을 특징으로 하는 버퍼층을 갖는 연성 동박 적층판.Flexible copper foil laminate having a buffer layer comprising a.
  2. 제1항에 있어서, 상기 규소화합물은,The method of claim 1, wherein the silicon compound,
    헥사메틸디실록산(hexamethyldisiloxane; HMDSO), 테트라에틸오쏘실리케이트(tetraethylorthosilicate; TEOS), 테트라메틸오쏘실리케이트(tetramethylorthosilicate; TMOS), 테트라메틸디실옥산(tetramethyldisiloxane; TMDSO), 헥사메틸디실라잔(hexamethyldisilazane: TMDS)을 포함하는 것을 특징으로 하는 버퍼층을 갖는 연성 동박 적층판.Hexamethyldisiloxane (HMDSO), tetraethylorthosilicate (TEOS), tetramethylorthosilicate (TMOS), tetramethyldisiloxane (TMDSO), hexamethyldisilazane (TMDS) Flexible copper foil laminate having a buffer layer comprising a.
  3. 제2항에 있어서, 상기 버퍼층은,The method of claim 2, wherein the buffer layer,
    상기 규소화합물 또는 상기 유사규소화합물에 산소가스, 질소가스, 헬륨가스, 아르곤가스 또는 산화물가스 중에 적어도 하나를 혼합하여 형성한 것을 특징으로 하는 버퍼층을 갖는 연성 동박 적층판.A flexible copper foil laminate having a buffer layer, wherein the silicon compound or the similar silicon compound is formed by mixing at least one of oxygen gas, nitrogen gas, helium gas, argon gas or oxide gas.
  4. 제1항에 있어서,The method of claim 1,
    상기 동박층이 형성될 상기 베이스 기판의 일면에 이온빔 또는 플라즈마를 조사하여 표면처리한 것을 특징으로 하는 버퍼층을 갖는 연성 동박 적층판.The flexible copper foil laminate having a buffer layer, characterized in that the surface treatment by irradiating an ion beam or plasma to one surface of the base substrate on which the copper foil layer is to be formed.
  5. 제2항에 있어서, 상기 동박층은,The method of claim 2, wherein the copper foil layer,
    상기 버퍼층 위에 구리를 스퍼터링하여 형성한 시드층;A seed layer formed by sputtering copper on the buffer layer;
    상기 시드층 위에 구리를 도금하여 형성한 후막층;A thick film layer formed by plating copper on the seed layer;
    을 포함하는 것을 특징으로 하는 버퍼층을 갖는 연성 동박 적층판.Flexible copper foil laminate having a buffer layer comprising a.
  6. 폴리머 소재의 베이스 기판을 준비하는 준비 단계;Preparing a base substrate made of a polymer material;
    상기 베이스 기판의 적어도 일면에 규소화합물 또는 유사규소화합물로 버퍼층을 형성하는 버퍼층 형성 단계;A buffer layer forming step of forming a buffer layer on at least one surface of the base substrate with a silicon compound or a similar silicon compound;
    상기 버퍼층 위에 동박층을 형성하는 동박층 형성 단계;A copper foil layer forming step of forming a copper foil layer on the buffer layer;
    를 포함하는 것을 특징으로 하는 버퍼층을 갖는 연성 동박 적층판의 제조 방법.The manufacturing method of the flexible copper foil laminated board which has a buffer layer characterized by including the.
  7. 제6항에 있어서, 상기 버퍼층 형성 단계는,The method of claim 6, wherein the buffer layer forming step,
    상기 버퍼층을 스퍼터링 또는 플라즈마증착으로 형성하는 것을 특징으로 하는 버퍼층을 갖는 연성 동박 적층판의 제조 방법.The buffer layer is formed by sputtering or plasma deposition. A method for manufacturing a flexible copper foil laminate having a buffer layer.
  8. 제7항에 있어서, 상기 버퍼층 형성 단계 이전에 수행되는,The method of claim 7, wherein the step is performed before the buffer layer forming step,
    상기 동박층이 형성될 상기 베이스 기판의 일면에 이온빔 또는 플라즈마를 조사하여 표면처리하는 표면처리 단계;A surface treatment step of surface treatment by irradiating an ion beam or plasma to one surface of the base substrate on which the copper foil layer is to be formed;
    를 더 포함하는 것을 특징으로 하는 버퍼층을 갖는 연성 동박 적층판의 제조 방법.Method for producing a flexible copper foil laminate having a buffer layer further comprising.
  9. 제8항에 있어서, 상기 표면처리 단계는,The method of claim 8, wherein the surface treatment step,
    50~150sccm 유량을 가지는 질소 또는 산소가스 분위기에서 300~500W의 이온빔을 상기 베이스 기판의 일면에 조사하여 표면처리하는 것을 특징으로 하는 버퍼층을 갖는 연성 동박 적층판의 제조 방법.A method of manufacturing a flexible copper foil laminate having a buffer layer, wherein the surface of the base substrate is irradiated with a 300 to 500 W ion beam in a nitrogen or oxygen gas atmosphere having a flow rate of 50 to 150 sccm.
  10. 제6항에 있어서, 상기 동박층 형성 단계는,The method of claim 6, wherein the copper foil layer forming step,
    상기 버퍼층 위에 구리를 스퍼터링하여 시드층을 형성하는 단계;Sputtering copper over the buffer layer to form a seed layer;
    상기 시드층 위에 구리를 도금하여 후막층을 형성하는 단계;Plating a copper layer on the seed layer to form a thick film layer;
    를 포함하는 것을 특징으로 하는 버퍼층을 갖는 연성 동박 적층판의 제조 방법.The manufacturing method of the flexible copper foil laminated board which has a buffer layer characterized by including the.
  11. 폴리머 소재의 베이스 기판;A base substrate made of a polymer material;
    상기 베이스 기판의 하부면에 규소화합물 또는 유사규소화합물로 형성된 보호층;A protective layer formed of a silicon compound or a similar silicon compound on a lower surface of the base substrate;
    이온빔 또는 플라즈마를 조사하여 표면처리된 상기 베이스 기판의 상부면에 규소화합물 또는 유사규소화합물로 형성된 버퍼층;A buffer layer formed of a silicon compound or a similar silicon compound on an upper surface of the base substrate surface-treated by irradiating an ion beam or plasma;
    상기 버퍼층 위에 구리를 스퍼터링하여 형성된 시드층; 및A seed layer formed by sputtering copper on the buffer layer; And
    상기 시드층 위에 구리를 도금하여 형성된 후막층;A thick film layer formed by plating copper on the seed layer;
    을 포함하는 것을 특징으로 하는 버퍼층을 갖는 연성 동박 적층판.Flexible copper foil laminate having a buffer layer comprising a.
  12. 폴리머 소재의 베이스 기판을 준비하는 준비 단계;Preparing a base substrate made of a polymer material;
    상기 베이스 기판의 하부면에 규소화합물 또는 유사규소화합물로 보호층을 형성하는 보호층 형성 단계;A protective layer forming step of forming a protective layer of a silicon compound or a similar silicon compound on a lower surface of the base substrate;
    상기 베이스 기판의 상부면을 이온빔 또는 플라즈마를 조사하여 표면처리하는 표면처리 단계;A surface treatment step of surface treating the upper surface of the base substrate by irradiating an ion beam or plasma;
    상기 베이스 기판의 상부면에 규소화합물 또는 유사규소화합물로 버퍼층을 형성하는 버퍼층 형성 단계;A buffer layer forming step of forming a buffer layer of a silicon compound or a similar silicon compound on an upper surface of the base substrate;
    상기 버퍼층 위에 스퍼터링으로 구리 소재의 시드층을 형성하는 단계; 및Forming a seed layer of copper material on the buffer layer by sputtering; And
    상기 시드층 위를 구리로 도금하여 후막층을 형성하는 단계;Plating a thick layer on the seed layer with copper to form a thick film layer;
    를 포함하는 것을 특징으로 하는 버퍼층을 갖는 연성 동박 적층판의 제조 방법.The manufacturing method of the flexible copper foil laminated board which has a buffer layer characterized by including the.
PCT/KR2010/000756 2009-04-03 2010-02-08 Flexible copper clad laminate having a buffer layer, and method for manufacturing same WO2010114222A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0028954 2009-04-03
KR1020090028954A KR20100110563A (en) 2009-04-03 2009-04-03 Fccl having buffer layer and method for manufacturing thereof

Publications (2)

Publication Number Publication Date
WO2010114222A2 true WO2010114222A2 (en) 2010-10-07
WO2010114222A3 WO2010114222A3 (en) 2010-11-25

Family

ID=42828795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000756 WO2010114222A2 (en) 2009-04-03 2010-02-08 Flexible copper clad laminate having a buffer layer, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20100110563A (en)
WO (1) WO2010114222A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104591074A (en) * 2015-01-22 2015-05-06 华东师范大学 Flexible silicon film based on sandwich structure and preparation method of flexible silicon film
KR101745053B1 (en) * 2014-02-13 2017-06-08 현대자동차주식회사 Surface treatment of the metallic member using on transmission path of the radar and a method of manufacturing it
CN114559712A (en) * 2022-02-15 2022-05-31 江苏诺德新材料股份有限公司 High-temperature-resistant low-loss copper-clad plate and preparation process thereof
CN117265470A (en) * 2023-07-11 2023-12-22 安徽立光电子材料股份有限公司 Preparation method of ultrathin composite copper foil and ultrathin composite copper foil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101647199B1 (en) * 2014-10-20 2016-08-09 티-킹덤 컴퍼니 리미티드 Flexible copper-clad substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004001429A (en) * 2002-04-01 2004-01-08 Konica Minolta Holdings Inc Substrate and organic electroluminescent element having the substrate
JP2004351832A (en) * 2003-05-30 2004-12-16 Toppan Printing Co Ltd Transparent gas-barrier laminated film
KR100613018B1 (en) * 2002-03-19 2006-08-14 가부시끼가이샤 에키쇼 센탄 기쥬츠 가이하쯔 센터 Method for forming interconnection metal layer, method for selectively forming metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100613018B1 (en) * 2002-03-19 2006-08-14 가부시끼가이샤 에키쇼 센탄 기쥬츠 가이하쯔 센터 Method for forming interconnection metal layer, method for selectively forming metal
JP2004001429A (en) * 2002-04-01 2004-01-08 Konica Minolta Holdings Inc Substrate and organic electroluminescent element having the substrate
JP2004351832A (en) * 2003-05-30 2004-12-16 Toppan Printing Co Ltd Transparent gas-barrier laminated film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101745053B1 (en) * 2014-02-13 2017-06-08 현대자동차주식회사 Surface treatment of the metallic member using on transmission path of the radar and a method of manufacturing it
CN104591074A (en) * 2015-01-22 2015-05-06 华东师范大学 Flexible silicon film based on sandwich structure and preparation method of flexible silicon film
CN114559712A (en) * 2022-02-15 2022-05-31 江苏诺德新材料股份有限公司 High-temperature-resistant low-loss copper-clad plate and preparation process thereof
CN117265470A (en) * 2023-07-11 2023-12-22 安徽立光电子材料股份有限公司 Preparation method of ultrathin composite copper foil and ultrathin composite copper foil

Also Published As

Publication number Publication date
WO2010114222A3 (en) 2010-11-25
KR20100110563A (en) 2010-10-13

Similar Documents

Publication Publication Date Title
TWI627886B (en) Preparation method of printed circuit board with ultra-thin metal layer
WO2010114222A2 (en) Flexible copper clad laminate having a buffer layer, and method for manufacturing same
TWI726988B (en) Resin sheet with support
KR100791557B1 (en) Plastic-metal film and method for preparing the same
KR102128703B1 (en) Method for manufacturing component-embedded wiring board and semiconductor device
KR100727716B1 (en) Flexible metal clad laminate and manufacturing method thereof
WO2014088357A1 (en) Printed circuit board and manufacturing method therefor
CN108570213A (en) Resin composition layer
KR20150034629A (en) Resin composition
CN109749362A (en) Resin combination
CN108727837A (en) Resin combination
KR100599544B1 (en) Laminate and multilayer printed board manufactured by using the same
KR100656247B1 (en) Method of surface modification of polyimide film using silanes coupling agent, manufacturing method of flexible copper clad laminate and its product thereby
WO2013032277A2 (en) Method of manufacturing substrate for chip packages and method of manufacturing chip package
KR20060124505A (en) Flexible metal clad laminate and method of manufacturing flexible metal clad laminate
KR100956745B1 (en) Flexible copper clad laminate having polymer-ceramic-metal clad layers and manufacturing method thereof
KR20140146542A (en) Method for manufacturing component-embedded wiring substrate and semiconductor device
KR20220134460A (en) Method for manufacturing printed wiring board
KR20090104288A (en) Flexible circuit clad laminate
JPH04267597A (en) Manufacture of flexible printed wiring board
JP2006135278A (en) Insulating resin film for printed wiring board and printed wiring board using it
TWI642340B (en) Manufacturing method of wiring board
KR100877263B1 (en) A manufacturing method for flexible metal clad laminate film
KR102460622B1 (en) Copper clad laminate film, electronic device including the same
CN114079206B (en) Rigid-flex printed circuit board and circuit connector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758947

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC, EPO FORM 1205A DATED 06.02.12.

122 Ep: pct application non-entry in european phase

Ref document number: 10758947

Country of ref document: EP

Kind code of ref document: A2