WO2010095719A1 - 着色セラミック真空チャックおよびその製造方法 - Google Patents

着色セラミック真空チャックおよびその製造方法 Download PDF

Info

Publication number
WO2010095719A1
WO2010095719A1 PCT/JP2010/052553 JP2010052553W WO2010095719A1 WO 2010095719 A1 WO2010095719 A1 WO 2010095719A1 JP 2010052553 W JP2010052553 W JP 2010052553W WO 2010095719 A1 WO2010095719 A1 WO 2010095719A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum chuck
oxide
spherical particles
weight
chuck according
Prior art date
Application number
PCT/JP2010/052553
Other languages
English (en)
French (fr)
Inventor
鈴木茂美
石見嘉治
元矢秀和
Original Assignee
株式会社ソディック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソディック filed Critical 株式会社ソディック
Priority to JP2011500662A priority Critical patent/JP4761334B2/ja
Priority to CN2010800065928A priority patent/CN102308379B/zh
Priority to KR1020117021919A priority patent/KR101168863B1/ko
Priority to US13/202,329 priority patent/US8899564B2/en
Publication of WO2010095719A1 publication Critical patent/WO2010095719A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • B23Q3/08Work-clamping means other than mechanically-actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/061Lifting, gripping, or carrying means, for one or more sheets forming independent means of transport, e.g. suction cups, transport frames
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/707Chucks, e.g. chucking or un-chucking operations or structural details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70941Stray fields and charges, e.g. stray light, scattered light, flare, transmission loss
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/6875Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2249/00Aspects relating to conveying systems for the manufacture of fragile sheets
    • B65G2249/04Arrangements of vacuum systems or suction cups
    • B65G2249/045Details of suction cups suction cups
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • C04B2235/945Products containing grooves, cuts, recesses or protusions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T279/00Chucks or sockets
    • Y10T279/11Vacuum

Definitions

  • the present invention relates to an exposure apparatus that exposes a glass substrate in a process of manufacturing an FPD such as an LCD (liquid crystal display) or a PDP (plasma display).
  • an FPD such as an LCD (liquid crystal display) or a PDP (plasma display).
  • the present invention relates to a colored ceramic vacuum chuck on which a glass substrate is placed.
  • Incident light in the ultraviolet region used in the exposure process passes through the glass substrate and is reflected by the upper surface of the vacuum chuck. Since this reflected light causes uneven exposure, a low reflectance is required for the vacuum chuck.
  • the proportion of incident light that is reflected at the same angle as the incident angle is referred to as regular reflectance or specular reflectance. It is considered that the regular reflectance decreases as the surface roughness of the upper surface of the vacuum chuck increases.
  • Patent Documents 1-3 disclose a substrate holding device in which the upper surface of the vacuum chuck is roughened to reduce the regular reflectance. However, roughening may increase the diffuse reflectance.
  • the reflectance obtained by adding diffuse reflectance to regular reflectance is referred to as total reflectance or cumulative reflectance. In particular, recent LCD exposure apparatuses require low total reflectance.
  • the vacuum chuck is manufactured from black-anodized aluminum or ceramics.
  • Patent Document 4 states that the total reflectance of aluminum treated with black alumite is 6 to 8% at a light wavelength of 200 to 650 nm.
  • the blackened thin film may be worn or peeled off by repeated chucking of the glass substrate.
  • finishing the vacuum chuck material after the black alumite treatment has a limit from the viewpoint of protecting the blackened thin film.
  • Patent Document 5 discloses a colored alumina ceramic suitable for a support for a large metric substrate.
  • the disclosed preferred colored ceramic has a regular reflectance of 0.6 to 0.9% at a light wavelength of 220 to 350 nm, and a total reflectance of 10.3 to 22.5% at a light wavelength of 220 to 350 nm.
  • a large number of convex pins for supporting the glass substrate are formed in the vacuum chuck in order to reduce the area where the vacuum chuck contacts the glass substrate.
  • Several suction holes communicating with the vacuum source are opened in the non-contact surface of the vacuum chuck.
  • the space formed between the non-contact surface and the glass substrate is separated by a convex rim.
  • the rim is also called a bank or a bank.
  • the suction hole and most of the pins are surrounded by a rim.
  • the rim usually has almost the same height as the pin.
  • the pins and rims are formed by shot blasting following the formation of the mask pattern.
  • Hard abrasive grains are used for shot blasting.
  • the total reflectance is different between the concave portion and the convex portion thus formed. Even in the same convex portion, the total reflectance of the rim is slightly higher than that of the pin due to the difference in the area ratio of the convex portion to the peripheral concave portion.
  • An object of the present invention is to provide a low-reflectance vacuum chuck that supports a large glass substrate of about 1 square meter. Therefore, the vacuum chuck is manufactured from a colored ceramic sintered body having a high Young's modulus. Another object of the present invention is that the total reflectivity is sufficiently low even without forming a colored film. In particular, the aluminum vacuum chuck treated with black alumite is sufficiently competitive in terms of the total reflectivity. A colored ceramic vacuum chuck is provided. Furthermore, another object of the present invention is to provide a colored ceramic vacuum chuck in which the total reflectance of the mounting surface on which the pins and rims are formed is uniform.
  • the ceramic vacuum chuck for adsorbing the substrate on the upper surface has at least 3 wt% converted to 55 to 75 wt% alumina (Al 2 O 3 ) and oxide (SiO 2 ).
  • Si at least 0.4 wt% Ca in terms of oxide (CaO), at least 0.4 wt% Mg in terms of oxide (MgO), a colorant, and 1% or less
  • a plurality of pins that comprise a colored ceramic sintered body containing impurities, a rim that at least partially surrounds the plurality of pins that support the substrate, are formed on the upper surface by shot blasting with abrasive grains, and shot peening with spherical particles is performed as described above. It is characterized by being applied to the entire top surface.
  • the ceramic vacuum chuck of the present invention has a Young's modulus of 200 GPa or more.
  • the ceramic vacuum chuck of the present invention has a total reflectance of 7% or less at a light wavelength of 360 nm when light is irradiated on the upper surface.
  • the colorant may be any one selected from Fe, Mn, Co, Ti and Cr.
  • the colorant contains 2 to 20% by weight of Fe in terms of oxide (Fe 2 O 3 ).
  • Shot peening with spherical particles forms a large number of minute dents on the upper surface of the vacuum chuck material.
  • the spherical particles are preferably glass beads, particularly glass beads having an average particle diameter of 10 to 25 ⁇ m.
  • the spherical particles may be any particles having a particle size smaller than that of the abrasive particles.
  • a method of manufacturing a vacuum chuck includes 55 to 75% by weight or more of alumina (Al 2 O 3 ), a sintering aid, a colorant, and 1% or less of impurities. Sintering the raw material at 1200 to 1450 ° C.
  • a ceramic sintered body having a flat upper surface, polishing the upper surface, and alumina, silicon carbide, silicon nitride or zirconia with a mask pattern formed Subjecting the upper surface to shot blasting with abrasive grains containing as a main component to form a large number of pins and a rim that at least partially surrounds the large number of pins, and applying shot peening with glass beads to the upper surface and total reflection thereof Reducing the rate to 7% or less at a light wavelength of 360 nm.
  • the ceramic vacuum chuck has a sufficient Young's modulus and can support a large substrate of about 1 square meter.
  • the pin and rim are formed by shot blasting with abrasive grains on the upper surface of the colored ceramic sintered body, shot peening with spherical particles is performed, so that the total reflectance of the upper surface becomes uniform. If the spherical particles are glass beads, shot peening further reduces the total reflectance of the upper surface of the colored ceramic sintered body. As a result, the colored ceramic vacuum chuck of the present invention has a long life.
  • FIGS. A large number of pins 4 that support the glass substrate are formed on the upper surface of the vacuum chuck 2.
  • the glass substrate is in contact with the flat top surface of the pins 4.
  • a convex rim 6 that at least partially surrounds a large number of pins 4 is formed on the upper surface of the vacuum chuck 2.
  • the rim 6 has a rectangular shape along the contour of the vacuum chuck 2 and has the same or almost the same height as the pin 4.
  • Several suction holes (not shown) communicating with the vacuum source are opened in the non-contact surface 8 that does not contact the substrate.
  • the ceramic vacuum chuck 2 is formed from a colored ceramic sintered body mainly composed of alumina. If the alumina ratio in the colored ceramic sintered body is less than 55% by weight, it is difficult to manufacture the vacuum chuck 2 having a sufficient Young's modulus. Sufficient Young's modulus is such that the vacuum chuck 2 supports a large substrate of about 1 square meter, specifically 200 GPa or more. On the other hand, when the ratio of alumina contained in the colored ceramic sintered body is larger than 75% by weight, the ratio of the sintering aid and the colorant becomes small and the ceramic sintered body does not exhibit a dark color.
  • the colored ceramic sintered body preferably contains 3 to 12% by weight of Si in terms of oxide (SiO 2 ).
  • the colored ceramic sintered body may contain at least 0.4 wt% Ca in terms of oxide (CaO) and at least 0.4 wt% Mg in terms of oxide (MgO). desirable. If the sintering aid is less than the desired range, the sintering temperature will increase.
  • the colorant contained in the colored ceramic sintered body is selected from Fe, Mn, Co, Ti, and Cr.
  • a colorant containing 2 to 20% by weight of Fe in terms of oxide (Fe 2 O 3 ) contributes to a decrease in regular reflectance.
  • the ceramic raw material is sintered at a temperature of 1200 to 1450 ° C.
  • the sintering furnace may be an electric furnace or a highly productive LPG furnace.
  • the abrasive grains are hard abrasive grains that can scrape the alumina ceramic sintered body.
  • the hard abrasive grains of shot blast are mainly composed of alumina (Al 2 O 3 ), silicon carbide (SiC), silicon nitride (Si 3 N 4 ) or zirconia (ZrO 2 ).
  • the abrasive grains are, for example, green carborundum (GC) and white alundum (WC).
  • the ceramic vacuum chuck of the present invention is required to perform shot peening on the upper surface of the colored ceramic sintered body. Shot peening with fine spherical particles reduces the difference in total reflectivity at the pin 4, rim 6 and non-contact surface 8.
  • the spherical particles used in shot peening are preferably glass beads. Moreover, shot peening with glass beads further reduces the total reflectance of the upper surface of the colored ceramic sintered body by about 1%. As a result, the total reflectance of the upper surface of the colored ceramic sintered body is 7% or less at a light wavelength of 360 nm. Even when shot peening with glass beads was applied to the white ceramic sintered body, the total reflectance was not lowered.
  • Table 1 shows a sample of a colored ceramic sintered body. The constituent elements of the sample are converted to oxides. The production of a colored ceramic sintered body sample will be described below. First, manganese dioxide (MnO 2 ), iron oxide (Fe 2 O 3 ), meteorite or clay, dolomite (MgCO 3 ⁇ CaCO 3 ), calcite (CaCO 3 ), magnesite (MgCO 3 ), chromium oxide (Cr 2 O 3 ) and titanium oxide (TiO 2 ) powder were weighed and mixed with alumina (Al 2 O 3 ) powder as a main component. Next, the slurry was produced
  • the slurry was dried by a spray drying method to produce raw material granules.
  • the raw material granules were press-molded and then sintered at a temperature of 1300 to 1450 ° C. in an electric furnace. In this way, two samples of different sizes were produced for each sample number. Although not shown in Table 1, cracks occurred in the sample having an alumina content of 47% by weight or less.
  • the colored ceramic sintered body is composed of alumina (Al 2 O 3 ) crystals, spinel crystals, anorthite (CaO ⁇ Al 2 O 3 ⁇ 2SiO 2 ) crystals, and other trace amounts of crystal phases.
  • Spinel crystals include Mn—Al spinel (MnO.Al 2 O 3 ) crystal, Mg—Fe spinel (MgFe 3+ 2 O 4 ) crystal, Mn—Mg—Fe—Al (MnO.MgFe 3+ 2 O 4 .Al 2 O 3 ) any of spinel crystals.
  • the spinel crystal has a reddish brown color, black color or blackish brown color and absorbs light to reduce the total reflectance.
  • the Young's modulus (GPa) in Table 1 was measured by the resonance method defined in JIS R1602.
  • the specific gravity in Table 1 is a bulk specific gravity obtained by measuring a sample of ⁇ 30 mm ⁇ t20 mm by the Archimedes method. Examples of the present invention will be described below.
  • Example 1 The flat upper and lower surfaces of Sample 1 were polished with a diamond grindstone having a particle size of 325 until the thickness became 30 mm, and then washed. The surface roughness of the polished surface of Sample 1 was 1.0 to 1.6 ⁇ mRa. The polished surface of Sample 1 had a total reflectance in the range of 6 to 10% and a regular reflectance in the range of 0.4 to 0.7% at a light wavelength of 360 nm. Next, a mask pattern corresponding to a large number of pins 4 and rims 6 was formed on the polished surface of Sample 1, and Sample 1 was subjected to shot blasting with alumina abrasive grains. The surface roughness of the non-contact surface 8 of the sample 1 was 2 to 5 ⁇ mRa.
  • the non-contact surface 8 of the sample 1 had a total reflectance exceeding 7% at a light wavelength of 360 nm.
  • the total reflectance of the non-contact surface 8 is about 1% higher than that of the pin 4 by shot blasting of alumina abrasive grains.
  • the total reflectance of the rim 6 was about 1% higher than that of the pin 4 although it depends on the size of the pin 4 and the rim 6.
  • shot peening with spherical particles was performed on the upper surface of the sample 1.
  • the spherical particles were # 1200 glass beads and the average particle size was 10-25 ⁇ m. When observed with an electron microscope, a large number of spherical dents were overlapped and formed on the upper surface of the sample 1.
  • the size of the spherical dent was the same as that of the spherical particles.
  • the non-contact surface 8 of the sample 1 had a total reflectance of 6.1 to 6.5% and 7% or less at a light wavelength of 360 nm. The difference in total reflectance at the pin 4, the rim 6 and the non-contact surface 8 was within 0.5%.
  • Example 2 The flat upper and lower surfaces of Sample 2 were polished with a diamond grindstone having a particle size of 140 until the thickness became 30 mm, and then washed. The surface roughness of the polished surface of Sample 2 was 0.8 to 0.9 ⁇ mRa. The polished surface of Sample 2 had a total reflectance of 8.7 to 8.8% exceeding 7% at a light wavelength of 360 nm. The regular reflectance was 0.1 to 0.2% at a light wavelength of 360 nm. Next, shot blasting with silicon carbide abrasive grains having a grain size of No. 400 was performed on the sample 2 (by this shot blasting, the surface of the sample 2 became a surface corresponding to the non-contact surface 8 of Example 1).
  • the surface roughness increased to 1.4 to 1.5 ⁇ mRa.
  • the total reflectivity increased to 8.9 to 9.0% at a light wavelength of 360 nm.
  • the regular reflectance was 0.1% or less at a light wavelength of 360 nm.
  • shot peening with spherical particles was performed on the upper surface of Sample 2.
  • the spherical particles were glass beads, and shot peening was performed 8 times under the conditions shown in Table 2. When observed with an electron microscope, a large number of spherical dents were overlapped and formed on the upper surface of the sample 2.
  • the size of the spherical dent was the same as that of the spherical particles.
  • the surface roughness was larger than that immediately after polishing (before shot blasting), but slightly smaller than that after shot blasting.
  • the total reflectance was 6.5 to 6.6% and 7% or less at a light wavelength of 360 nm.
  • the regular reflectance was 0.1% or less at a light wavelength of 360 nm.
  • Example 3 The flat upper and lower surfaces of Sample 2 were polished with a diamond grindstone having a particle size of 325 until the thickness became 30 mm, and then washed.
  • the surface roughness of the polished surface of Sample 2 was 0.5 to 0.6 ⁇ mRa.
  • the polished surface of Sample 2 had a total reflectance of 8.0 to 8.1% exceeding 7% at a light wavelength of 360 nm.
  • the regular reflectance was 0.2 to 0.3% at a light wavelength of 360 nm.
  • shot peening with spherical particles was performed on the polished surface of sample 2 (the surface corresponding to pin 4 and rim 6 of Example 1).
  • the spherical particles were glass beads, and shot peening was performed 4 times under the conditions shown in Table 2.
  • the size of the spherical dent was the same as that of the spherical particles.
  • the surface roughness increased to 0.7 to 0.8 ⁇ mRa.
  • the total reflectance was 6.6 to 6.8%, which is 7% or less, at a light wavelength of 360 nm.
  • the regular reflectance was 0.1% or less at a light wavelength of 360 nm.
  • Example 4 The polished surface of Sample 2 of Example 3 was further subjected to shot peening with glass beads four times under the conditions shown in Table 2.
  • the surface roughness was 0.9 to 1.0 ⁇ mRa, which was larger than that of Example 3.
  • the total reflectivity was 6.2 to 6.3% at a light wavelength of 360 nm, which was further reduced as compared with Example 3.
  • the regular reflectance was 0.1% or less at a light wavelength of 360 nm.
  • Example 5 The flat upper and lower surfaces of Sample 2 were polished with a diamond grindstone having a particle size of 325 until the thickness became 30 mm, and then hand lapping was performed using a lapping solution containing diamond having a particle size of 3 ⁇ m.
  • the surface roughness of the lap surface of Sample 2 was 0.2 to 0.3 ⁇ mRa.
  • the lapped surface of Sample 2 had a total reflectance of about 7.1% and slightly over 7% at a light wavelength of 360 nm.
  • the regular reflectance was 0.9 to 1.0% at a light wavelength of 360 nm.
  • shot peening with spherical particles was performed on the lapping surface of Sample 2.
  • the spherical particles were glass beads, and shot peening was performed 8 times under the conditions shown in Table 2.
  • the size of the spherical dent was the same as that of the spherical particles.
  • the surface roughness increased to 0.6 to 0.7 ⁇ mRa.
  • the total reflectance was 6.4 to 6.6% and 7% or less at a light wavelength of 360 nm.
  • the regular reflectance was 0.4 to 0.5% at a light wavelength of 360 nm.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

本発明において、載置面に基板を吸着する着色セラミック真空チャック2は、55~75重量%以上のアルミナ(Al23)と、酸化物(SiO2)に換算して少なくとも3重量%のSiと、酸化物(CaO)に換算して少なくとも0.4重量%のCaと、酸化物(MgO)に換算して少なくとも0.4重量%のMgと、着色剤と、1%以下の不純物を含む着色セラミック焼結体から成り、基板を支持する多数のピン4とリム6が砥粒によるショットブラストにより載置面に形成され、球形粒子によるショットピーニングが載置面全体に施される。

Description

着色セラミック真空チャックおよびその製造方法
本発明は、LCD(液晶ディスプレイ)、PDP(プラズマディスプレイ)等のFPDを製造するプロセスにおいてガラス基板を露光する露光装置に関する。特に、本発明は、ガラス基板を載置する着色セラミック真空チャックに関する。
露光プロセスで使用される紫外線領域の入射光はガラス基板を透過してしまい、真空チャック上面で反射してしまう。この反射光は露光ムラを引き起こしてしまうため、低い反射率が真空チャックに求められる。入射光のうち入射角と同じ角度で反射する光の比率を正反射率、あるいは鏡面反射率という。真空チャック上面の面粗さが大きくなると正反射率は小さくなると考えられている。特許文献1-3は真空チャック上面を粗面化して正反射率を低下させた基板保持装置を開示している。しかしながら、粗面化は拡散反射率をより大きくすることがある。正反射率に拡散反射率を加えた反射率は全反射率、又は累積反射率と呼ばれる。特に、近年のLCD用の露光装置は、低い全反射率を求めている。
一般に、真空チャックは、黒色アルマイト処理されたアルミニウム、又はセラミックスから製作される。特許文献4は黒色アルマイト処理されたアルミニウムの全反射率が200nm~650nmの光波長において6~8%であると述べている。しかし、黒色化薄膜は、ガラス基板のチャッキングの繰り返しによって、摩滅あるいは剥離することがある。また、黒色アルマイト処理の後に真空チャック材料を仕上げ加工することは、黒色化薄膜の保護の点から、限界がある。さらに、黒色化薄膜を大型の真空チャックに均一に形成することは容易ではない。
特許文献5はメートルサイズの大型基板の支持台に好適な着色アルミナセラミックスを開示している。開示された好適な着色セラミックスの正反射率は220~350nmの光波長において0.6~0.9%、全反射率は220~350nmの光波長において10.3~22.5%である。
多くの場合、真空チャックがガラス基板と接触する面積を小さくするためガラス基板を支持する多数の凸状のピンが真空チャックに形成されている。真空源に連通するいくつかの吸引孔が真空チャックの非接触面に開口している。吸引効率を向上するため、非接触面とガラス基板との間に形成される空間は凸状のリムによって区切られている。リムは土手あるいは縁堤とも呼ばれている。吸引孔とほとんどのピンはリムによって囲まれている。リムは通常ピンとほぼ同じ高さをもつ。
通常、ピンおよびリムは、マスクパターンの形成に続くショットブラストにより形成される。アルミナ(Al23)、炭化珪素(SiC)、窒化珪素(Si34)又はジルコニア(ZrO2)を主成分とする、例えばグリーンカーボランダム(GC)、ホワイトアランダム(WC)等の硬質砥粒が、ショットブラストに使用される。こうして形成された凹部と凸部では全反射率が異なってしまう。また、同じ凸部でも、周辺の凹部に対する凸部の面積比率の差によって、リムの全反射率はピンよりもわずかに高くなってしまう。
特開2005-332910号公報 特開2005-109091号公報 特許3095514号公報 特開2006-210546号公報 特開2004-099413号公報
本発明の目的は、1平方メートル程度の大型のガラス基板を支持する低反射率の真空チャックを提供することである。そのため、真空チャックはヤング率の高い着色セラミックス焼結体から製作される。また、本発明の他の目的は、着色被膜を形成しなくても全反射率が十分に低い、特に、全反射率の点で黒色アルマイト処理されたアルミニウム製の真空チャックと十分な競争力を持つ着色セラミック真空チャックを提供することである。さらに、本発明の他の目的は、ピンおよびリムが形成された載置面の全反射率が均一である着色セラミック真空チャックを提供することである。
本発明の一側面によれば、上面に基板を吸着するセラミック真空チャックは、55~75重量%以上のアルミナ(Al23)と、酸化物(SiO2)に換算して少なくとも3重量%のSiと、酸化物(CaO)に換算して少なくとも0.4重量%のCaと、酸化物(MgO)に換算して少なくとも0.4重量%のMgと、着色剤と、1%以下の不純物を含む着色セラミック焼結体から成り、前記基板を支持する多数のピンと前記多数のピンを少なくとも部分的に囲むリムが砥粒によるショットブラストにより前記上面に形成され、球形粒子によるショットピーニングが前記上面全体に施されたことを特徴とする。
本発明のセラミック真空チャックはヤング率が200GPa以上である。また、本発明のセラミック真空チャックは、上面に光が照射されたとき全反射率が360nmの光波長において7%以下である。
着色剤は、Fe、Mn、Co、TiおよびCrの中から選ばれるものであればよい。好ましくは、着色剤は、酸化物(Fe23)に換算して2~20重量%のFeを含む。
球形粒子によるショットピーニングは真空チャック材料の上面に多数の微小な打痕を形成する。球形粒子はガラスビーズ、特に平均粒径が10~25μmのガラスビーズであることが好ましい。また、球形粒子は砥粒よりも小さい粒度を有するものであればよい。
本発明の他の側面によれば、真空チャックの製造方法は、55~75重量%以上のアルミナ(Al23)と、焼結助剤と、着色剤と、1%以下の不純物を含む原料を1200~1450℃で焼結して平坦な上面を有するセラミック焼結体を生成するステップと、前記上面を研磨するステップと、マスクパターンを形成した状態でアルミナ、炭化珪素、窒化珪素又はジルコニアを主成分とする砥粒によるショットブラストを前記上面に施して多数のピンと前記多数のピンを少なくとも部分的に囲むリムを形成するステップと、ガラスビーズによるショットピーニングを前記上面に施してその全反射率を360nmの光波長において7%以下へ低下させるステップを含む。
本発明によれば、セラミック真空チャックは十分なヤング率を有し1平方メートル程度の大型の基板を支持することができる。加えて、着色セラミック焼結体の上面に砥粒によるショットブラストによりピンおよびリムを形成した後に球形粒子によるショットピーニングを施すので、上面の全反射率が均一になる。また、球形粒子をガラスビーズとすると、ショットピーニングは着色セラミック焼結体の上面の全反射率を更に低下させる。その結果、本発明の着色セラミック真空チャックは、寿命が長くなる。
本発明のセラミック真空チャックを示す平面図である。 本発明のセラミック真空チャックを示す断面図ある。
図1および2を参照して本発明のセラミック真空チャックの一実施例を説明する。ガラス基板を支持する多数のピン4が真空チャック2の上面に形成されている。ガラス基板はピン4の平坦な頂面と接触する。さらに、多数のピン4を少なくとも部分的に囲む凸状のリム6が真空チャック2の上面に形成されている。リム6は真空チャック2の輪郭に沿った矩形を有し、ピン4と同一かほぼ同じ高さを有する。真空源に連通するいくつかの吸引孔(図示しない)が、基板と接触することのない非接触面8に開口している。
セラミック真空チャック2は、アルミナを主成分とする着色セラミック焼結体から形成される。着色セラミック焼結体中のアルミナの比率が55重量%より小さいと、十分なヤング率をもつ真空チャック2を製造することが困難となる。十分なヤング率は、真空チャック2が1平方メートル程度の大型の基板を支持する程度であり、具体的には200GPa以上である。また、着色セラミック焼結体中に含まれるアルミナの比率が75重量%より大きいと、焼結助剤と着色剤の比率が小さくなってしまいセラミック焼結体が暗い色を呈しなくなる。
着色セラミック焼結体は、酸化物(SiO2)に換算して3~12重量%のSiを含むことが望ましい。また、着色セラミック焼結体は、酸化物(CaO)に換算して少なくとも0.4重量%のCaと、酸化物(MgO)に換算して少なくとも0.4重量%のMgとを含むことが望ましい。焼結助剤が望ましい範囲よりも少なすぎると焼結温度が高くなってしまう。
着色セラミック焼結体が含む着色剤は、Fe、Mn、Co、TiおよびCrの中から選ばれる。酸化物(Fe23)に換算して2~20重量%のFeを含む着色剤は、正反射率の低下に貢献する。セラミック原料は1200~1450℃の温度で焼結される。焼結炉は電気炉、又は生産性の高いLPG炉であってもよい。
多数のピン4とリム6に相当するマスクパターンが着色セラミック焼結体に形成される。続いて、砥粒によるショットブラストが着色セラミック焼結体に施される。砥粒はアルミナセラミック焼結体を削ることのできる硬質砥粒である。ショットブラストの硬質砥粒は、アルミナ(Al23)、炭化珪素(SiC)、窒化珪素(Si34)又はジルコニア(ZrO2)を主成分とする。砥粒は例えばグリーンカーボランダム(GC)、ホワイトアランダム(WC)である。
本発明のセラミック真空チャックは、ショットピーニングを着色セラミック焼結体の上面に施すことを要件とする。微小な球形粒子によるショットピーニングは、ピン4、リム6および非接触面8における全反射率の差を減少させる。ショットピーニングで使用する球形粒子はガラスビーズが好適である。また、ガラスビーズによるショットピーニングは、着色セラミック焼結体の上面の全反射率を更に1%程度低下させる。その結果、着色セラミック焼結体の上面の全反射率は360nmの光波長において7%以下となる。なお、ガラスビーズによるショットピーニングを白色セラミック焼結体に施してもその全反射率が低下することはなかった。
表1は着色セラミック焼結体の試料を示している。試料の成分元素は酸化物に換算されている。着色セラミック焼結体の試料の製作を以下に説明する。まず、二酸化マンガン(MnO2)、酸化鉄(Fe23)、硅石又は粘土、ドロマイト(MgCO3・CaCO3)、カルサイト(CaCO3)、及びマグネサイト(MgCO3)、酸化クロム(Cr23)、酸化チタン(TiO2)の粉末が、秤量後、主成分であるアルミナ(Al23)粉末に混合された。次に、原料粉末を湿式粉砕することによりスラリィが生成された。スラリィはスプレードライ法によって乾燥され、原料顆粒が生成された。原料顆粒はプレス成形された後、電気炉にて1300~1450℃の温度で焼結された。こうして各試料番号について、サイズの異なる2個の試料が製作された。なお、表1中には示されていないが、アルミナの含有量が47重量%以下である試料はクラックが発生してしまった。
Figure JPOXMLDOC01-appb-T000001
試料の破片が乳鉢で粉砕され、結晶相の分析がX線回折装置にて行われた。その結果、着色セラミック焼結体は、アルミナ(Al23)結晶と、スピネル結晶と、アノーサイト(CaO・Al23・2SiO2)結晶と、他の微量な結晶相から成っている。スピネル結晶は、Mn-Alスピネル(MnO・Al23)結晶、Mg-Feスピネル(MgFe3+ 24)結晶、Mn-Mg-Fe-Al(MnO・MgFe3+ 24・Al23)スピネル結晶のいずれかである。スピネル結晶は赤褐色、黒色又は黒褐色を呈し、光を吸収して全反射率を低下させる。
表1中のヤング率(GPa)はJISのR1602に定められた共振法により測定された。表1中の比重は、□30mm×t20mmの試料をアルキメデス法により測定した嵩比重である。以下に本発明の実施例について説明する。
〔実施例1〕
試料1の平坦な上下面を粒度325番のダイヤモンド砥石で厚さが30mmになるまで研磨された後に洗浄した。試料1の研磨面の表面粗さは1.0~1.6μmRaであった。試料1の研磨面は、360nmの光波長において全反射率が6~10%の範囲、正反射率が0.4~0.7%の範囲であった。
次いで、試料1の研磨面に多数のピン4とリム6に相当するマスクパターンを形成し、アルミナ砥粒によるショットブラストを試料1に施した。試料1の非接触面8の表面粗さは2~5μmRaであった。試料1の非接触面8は、360nmの光波長において全反射率が7%を超えていた。アルミナ砥粒のショットブラストにより非接触面8の全反射率はピン4よりも1%程度高くなった。また、リム6の全反射率は、ピン4およびリム6のサイズにもよるが、ピン4よりも1%程度高くなった。
続いて、試料1の上面に球形粒子によるショットピーニングを施した。球形粒子は#1200のガラスビーズであり、平均粒径は10~25μmとした。電子顕微鏡で観察したところ、多数の球形打痕が重なって試料1の上面に形成されていた。球形打痕のサイズは球形粒子と同様であった。試料1の非接触面8は、360nmの光波長において全反射率が6.1~6.5%と7%以下であった。ピン4、リム6および非接触面8における全反射率の差は0.5%以内であった。
〔実施例2〕
試料2の平坦な上下面を粒度140番のダイヤモンド砥石で厚さが30mmになるまで研磨した後に洗浄した。試料2の研磨面の表面粗さは0.8~0.9μmRaであった。試料2の研磨面は、360nmの光波長において全反射率が8.7~8.8%と7%を超えていた。正反射率は360nmの光波長において0.1~0.2%であった。
次いで、粒度400番の炭化珪素砥粒によるショットブラストを試料2に施した(このショットブラストにより、試料2の表面が実施例1の非接触面8に相当する面となる)。表面粗さは1.4~1.5μmRaと大きくなった。全反射率は360nmの光波長において8.9~9.0%と上昇した。正反射率は360nmの光波長において0.1%以下であった。
続いて、試料2の上面に球形粒子によるショットピーニングを施した。球形粒子はガラスビーズとし、表2の条件でショットピーニングを8回施した。電子顕微鏡で観察したところ、多数の球形打痕が重なって試料2の上面に形成されていた。球形打痕のサイズは球形粒子と同様であった。表面粗さは、研磨直後(ショットブラスト前)よりも大きくなったものの、ショットブラスト後に対しては若干小さくなった。全反射率は360nmの光波長において6.5~6.6%と7%以下であった。正反射率は360nmの光波長において0.1%以下であった。
〔実施例3〕
試料2の平坦な上下面を粒度325番のダイヤモンド砥石で厚さが30mmになるまで研磨した後に洗浄した。試料2の研磨面の表面粗さは0.5~0.6μmRaであった。試料2の研磨面は、360nmの光波長において全反射率が8.0~8.1%と7%を超えていた。正反射率は360nmの光波長において0.2~0.3%であった。
次いで、試料2の研磨面(実施例1のピン4およびリム6に相当する面)に球形粒子によるショットピーニングを施した。球形粒子はガラスビーズとし、表2の条件でショットピーニングを4回施した。電子顕微鏡で観察したところ、多数の球形打痕が重なって試料2の上面に形成されていた。球形打痕のサイズは球形粒子と同様であった。表面粗さは、0.7~0.8μmRaと大きくなった。全反射率は、360nmの光波長において6.6~6.8%と7%以下であった。正反射率は360nmの光波長において0.1%以下であった。
〔実施例4〕
実施例3の試料2の研磨面に表2の条件でガラスビーズによるショットピーニングを更に4回施した。表面粗さは、0.9~1.0μmRaと実施例3に対し更に大きくなった。また、全反射率は360nmの光波長において6.2~6.3%と実施例3に対し更に低下した。正反射率は360nmの光波長において0.1%以下であった。
〔実施例5〕
試料2の平坦な上下面を粒度325番のダイヤモンド砥石で厚さが30mmになるまで研磨した後に、粒径3μmのダイヤモンドを含むラップ液を用いてハンドラップ加工を行った。試料2のラップ面の表面粗さは0.2~0.3μmRaであった。試料2のラップ面は、360nmの光波長において全反射率が7.1%程度%と7%を僅かに超えていた。正反射率は360nmの光波長において0.9~1.0%であった。
次いで、試料2のラップ面に球形粒子によるショットピーニングを施した。球形粒子はガラスビーズとし、表2の条件でショットピーニングを8回施した。電子顕微鏡で観察したところ、多数の球形打痕が重なって試料2の上面に形成されていた。球形打痕のサイズは球形粒子と同様であった。表面粗さは、0.6~0.7μmRaと大きくなった。全反射率は360nmの光波長において6.4~6.6%と7%以下であった。正反射率は360nmの光波長において0.4~0.5%であった。
Figure JPOXMLDOC01-appb-T000002
2・・・真空チャック
4・・・ピン
6・・・リム
8・・・非接触面

Claims (10)

  1. 上面に基板を吸着するセラミック真空チャックにおいて、55~75重量%以上のアルミナ(Al23)と、酸化物(SiO2)に換算して少なくとも3重量%のSiと、酸化物(CaO)に換算して少なくとも0.4重量%のCaと、酸化物(MgO)に換算して少なくとも0.4重量%のMgと、着色剤と、1%以下の不純物を含む着色セラミック焼結体から成り、前記基板を支持する多数のピンと前記多数のピンを少なくとも部分的に囲むリムが砥粒によるショットブラストにより前記上面に形成され、球形粒子によるショットピーニングが前記上面全体に施されたことを特徴とするセラミック真空チャック。
  2. セラミック真空チャックのヤング率が200GPa以上である請求項1に記載の真空チャック。
  3. 前記上面に光が照射されたとき、全反射率が360nmの光波長において7%以下である請求項1に記載の真空チャック。
  4. 前記着色剤は、Fe、Mn、Co、TiおよびCrの中から選ばれる請求項1に記載の真空チャック。
  5. 前記着色剤は、酸化物(Fe23)に換算して2~20重量%のFeを含む請求項4に記載の真空チャック。
  6. 前記球形粒子はガラスビーズである請求項1に記載の真空チャック。
  7. 前記球形粒子は平均粒径が10~25μmのガラスビーズである請求項6に記載の真空チャック。
  8. 前記球形粒子は砥粒よりも小さい粒度を有する請求項1に記載の真空チャック。
  9. 着色セラミック真空チャックの製造方法において、55~75重量%以上のアルミナ(Al23)と、焼結助剤と、着色剤と、1%以下の不純物を含む原料を1200~1450℃で焼結して平坦な上面を有するセラミック焼結体を生成するステップと、前記上面を研磨するステップと、マスクパターンを形成した状態でアルミナ、炭化珪素、窒化珪素又はジルコニアを主成分とする砥粒によるショットブラストを前記上面に施して多数のピンと前記多数のピンを少なくとも部分的に囲むリムを形成するステップと、ガラスビーズによるショットピーニングを前記上面に施してその全反射率を360nmの光波長において7%以下へ低下させるステップを含む着色セラミック真空チャックの製造方法。
  10. 前記ガラスビーズは平均粒径が10~25μmである請求項9に記載の着色セラミック真空チャックの製造方法。
PCT/JP2010/052553 2009-02-23 2010-02-19 着色セラミック真空チャックおよびその製造方法 WO2010095719A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011500662A JP4761334B2 (ja) 2009-02-23 2010-02-19 着色セラミック真空チャックおよびその製造方法
CN2010800065928A CN102308379B (zh) 2009-02-23 2010-02-19 着色陶瓷真空夹盘以及其制造方法
KR1020117021919A KR101168863B1 (ko) 2009-02-23 2010-02-19 착색 세라믹 진공 척 및 그 제조 방법
US13/202,329 US8899564B2 (en) 2009-02-23 2010-02-19 Colored ceramic vacuum chuck and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-038767 2009-02-23
JP2009038767 2009-02-23

Publications (1)

Publication Number Publication Date
WO2010095719A1 true WO2010095719A1 (ja) 2010-08-26

Family

ID=42633996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052553 WO2010095719A1 (ja) 2009-02-23 2010-02-19 着色セラミック真空チャックおよびその製造方法

Country Status (5)

Country Link
US (1) US8899564B2 (ja)
JP (1) JP4761334B2 (ja)
KR (1) KR101168863B1 (ja)
CN (1) CN102308379B (ja)
WO (1) WO2010095719A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034161A1 (ja) * 2012-08-28 2014-03-06 株式会社ニコン 基板支持装置、及び露光装置
JP2014047119A (ja) * 2012-09-03 2014-03-17 Ngk Spark Plug Co Ltd アルミナ質焼結体及びその製造方法、真空チャック及び静電チャック並びにそれらの製造方法
JP2017183470A (ja) * 2016-03-30 2017-10-05 京セラ株式会社 載置用部材
JP2018019017A (ja) * 2016-07-29 2018-02-01 京セラ株式会社 載置用部材
JP2019067941A (ja) * 2017-10-02 2019-04-25 京セラ株式会社 載置用部材
JP2020141123A (ja) * 2019-02-27 2020-09-03 Toto株式会社 半導体製造装置用部材および半導体製造装置用部材を備えた半導体製造装置並びにディスプレイ製造装置
JP7497210B2 (ja) 2019-05-30 2024-06-10 京セラ株式会社 載置用部材、検査装置および加工装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG171819A1 (en) * 2008-12-25 2011-07-28 Ulvac Inc Method of manufacturing chuck plate for use in electrostatic chuck
US8899564B2 (en) * 2009-02-23 2014-12-02 Sodick Co., Ltd. Colored ceramic vacuum chuck and manufacturing method thereof
DE102013200285B4 (de) 2013-01-11 2021-11-04 Robert Bosch Gmbh Keramische Masse, deren Verwendung und keramisches Spritzgussverfahren
KR102070087B1 (ko) 2013-04-29 2020-01-30 삼성전자주식회사 반도체 소자 제조방법
CN104810315B (zh) * 2014-01-29 2018-07-20 上海微电子装备(集团)股份有限公司 一种用于led基底曝光的夹持装置
CN107206567B (zh) * 2014-11-23 2020-12-29 M丘比德技术公司 晶片针钉卡盘制造和修理
KR101692219B1 (ko) * 2016-08-19 2017-01-05 한국세라믹기술원 진공척용 복합체 및 그 제조방법
JP6712652B2 (ja) * 2016-12-26 2020-06-24 京セラ株式会社 耐食性部材
JP6829118B2 (ja) 2017-03-16 2021-02-10 株式会社日本製鋼所 レーザ照射装置、レーザ照射方法、及び半導体装置の製造方法
JP7096031B2 (ja) * 2017-06-26 2022-07-05 日本特殊陶業株式会社 基板保持部材
KR102206687B1 (ko) 2017-06-26 2021-01-22 니뽄 도쿠슈 도교 가부시키가이샤 기판 유지 부재
US11260679B2 (en) * 2018-12-21 2022-03-01 Kateeva, Inc. Gripping for print substrates
JP7325275B2 (ja) * 2019-09-12 2023-08-14 株式会社ニッカトー 耐摩耗性アルミナ質焼結体
KR102279391B1 (ko) 2020-09-14 2021-07-21 (주)대경셈코 반도체 노광 장비용 세라믹 부재 및 동 부재의 제조방법
KR20230077000A (ko) * 2021-11-24 2023-06-01 목포대학교산학협력단 블랙 알루미나 소결체 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202246A (ja) * 1989-12-29 1991-09-04 Toto Ltd 真空チャック
JPH08139168A (ja) * 1994-11-10 1996-05-31 Toto Ltd 露光用保持治具
JP2004358331A (ja) * 2003-06-03 2004-12-24 Seiko Epson Corp 液滴吐出装置、液滴吐出装置によって製造された電気光学装置、電気光学装置の製造方法および電子機器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3095514B2 (ja) 1992-01-29 2000-10-03 キヤノン株式会社 基板保持盤
US5272897A (en) * 1992-05-12 1993-12-28 Engineered Abrasives, Inc. Part hold down apparatus for part processing machine
HUP9903943A3 (en) * 1996-05-03 2001-10-29 Procter & Gamble Detergent compositions comprising modified polyamines as dye transfer inhibitors
CN1193961C (zh) * 1999-09-06 2005-03-23 Ibiden股份有限公司 含碳的氮化铝烧结体,用于半导体制造/检测设备的基材
JP4248833B2 (ja) 2002-09-12 2009-04-02 株式会社ソディック セラミックス及びその製造方法
JP4229380B2 (ja) 2003-09-30 2009-02-25 コバレントマテリアル株式会社 基板保持用真空チャック
JP2005332910A (ja) 2004-05-19 2005-12-02 Hitachi High-Tech Electronics Engineering Co Ltd 基板チャック、及び表示用パネル基板の製造方法
JP2006210546A (ja) 2005-01-27 2006-08-10 Toray Ind Inc 露光処理用基板保持盤およびその製造方法
JP2006305713A (ja) * 2005-03-28 2006-11-09 Nikon Corp 吸着装置、研磨装置、半導体デバイス及び半導体デバイス製造方法
US7921895B2 (en) * 2006-05-26 2011-04-12 Advanced Display Process Engineering Co., Ltd Adhesive chuck, and apparatus and method for assembling substrates using the same
JP4855177B2 (ja) * 2006-08-10 2012-01-18 住友大阪セメント株式会社 静電チャック装置
JP4394667B2 (ja) * 2006-08-22 2010-01-06 日本碍子株式会社 ヒータ付き静電チャックの製造方法
US8899564B2 (en) * 2009-02-23 2014-12-02 Sodick Co., Ltd. Colored ceramic vacuum chuck and manufacturing method thereof
DE102009018434B4 (de) * 2009-04-22 2023-11-30 Ev Group Gmbh Aufnahmeeinrichtung zur Aufnahme von Halbleitersubstraten
US8833746B2 (en) * 2010-06-25 2014-09-16 Vibration Technologies, Llc Multi-purpose vacuum clamp table
US20130022738A1 (en) * 2011-07-20 2013-01-24 Shenzhen China Star Optoelectronics Technology Co. Ltd. Liquid crystal coating apparatus and method, and supporting stage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202246A (ja) * 1989-12-29 1991-09-04 Toto Ltd 真空チャック
JPH08139168A (ja) * 1994-11-10 1996-05-31 Toto Ltd 露光用保持治具
JP2004358331A (ja) * 2003-06-03 2004-12-24 Seiko Epson Corp 液滴吐出装置、液滴吐出装置によって製造された電気光学装置、電気光学装置の製造方法および電子機器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034161A1 (ja) * 2012-08-28 2014-03-06 株式会社ニコン 基板支持装置、及び露光装置
JP2014047119A (ja) * 2012-09-03 2014-03-17 Ngk Spark Plug Co Ltd アルミナ質焼結体及びその製造方法、真空チャック及び静電チャック並びにそれらの製造方法
JP2017183470A (ja) * 2016-03-30 2017-10-05 京セラ株式会社 載置用部材
JP2018019017A (ja) * 2016-07-29 2018-02-01 京セラ株式会社 載置用部材
JP2019067941A (ja) * 2017-10-02 2019-04-25 京セラ株式会社 載置用部材
JP2020141123A (ja) * 2019-02-27 2020-09-03 Toto株式会社 半導体製造装置用部材および半導体製造装置用部材を備えた半導体製造装置並びにディスプレイ製造装置
JP7497210B2 (ja) 2019-05-30 2024-06-10 京セラ株式会社 載置用部材、検査装置および加工装置

Also Published As

Publication number Publication date
KR20110116244A (ko) 2011-10-25
CN102308379A (zh) 2012-01-04
CN102308379B (zh) 2013-12-04
US8899564B2 (en) 2014-12-02
US20120193878A1 (en) 2012-08-02
KR101168863B1 (ko) 2012-07-30
JPWO2010095719A1 (ja) 2012-08-30
JP4761334B2 (ja) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4761334B2 (ja) 着色セラミック真空チャックおよびその製造方法
JP5865916B2 (ja) ガスノズル、これを用いたプラズマ装置およびガスノズルの製造方法
US7091146B2 (en) Enhanced ceramic material for precision alignment mechanism
JP2006210546A (ja) 露光処理用基板保持盤およびその製造方法
JP6659493B2 (ja) 載置用部材
TW201726307A (zh) 玻璃基板之製造方法及玻璃基板
KR20010014688A (ko) 성형 연마제와 그것을 사용하는 정련 휠
JP6509603B2 (ja) ペリクル枠の製造方法
JP6495595B2 (ja) 低反射部材
JP6608750B2 (ja) 載置用部材
JP2001348271A (ja) 研磨用成形体及びこれを用いた研磨用定盤
JP3843545B2 (ja) 研磨用成形体、それを用いた研磨用定盤及び研磨方法
JP6976799B2 (ja) 載置用部材
JP6464713B2 (ja) 白色ジルコニア焼結体及びその製造方法並びにその用途
JP6491472B2 (ja) ペリクル枠およびペリクル枠の製造方法
KR100740558B1 (ko) 연마용 성형체 및 그것을 이용한 연마용 정반
TW201837009A (zh) 暫時固定基板及電子元件的模塑方法
WO2023127559A1 (ja) 優れた機械加工性を有する歯科用酸化物セラミックス仮焼体及びその製造方法
JP7420600B2 (ja) 耐食性部材
WO2024127652A1 (ja) 優れた機械加工性を有する歯科用酸化物セラミックス仮焼体及びその製造方法
WO2023210268A1 (ja) ジルコニア質メディア、ベアリングボール及びそれらの製造方法
JP2007081145A (ja) ダミーウエハー
JP4518876B2 (ja) 液晶基板保持盤とその製造方法
JP2001071260A (ja) ウェハ保持プレート
JP2013177272A (ja) 載置用部材およびこれを用いた露光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006592.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743844

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011500662

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117021919

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13202329

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10743844

Country of ref document: EP

Kind code of ref document: A1