WO2010087221A1 - Multilayer electronic component - Google Patents

Multilayer electronic component Download PDF

Info

Publication number
WO2010087221A1
WO2010087221A1 PCT/JP2010/050157 JP2010050157W WO2010087221A1 WO 2010087221 A1 WO2010087221 A1 WO 2010087221A1 JP 2010050157 W JP2010050157 W JP 2010050157W WO 2010087221 A1 WO2010087221 A1 WO 2010087221A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
metal layers
metal layer
electronic component
ceramic
Prior art date
Application number
PCT/JP2010/050157
Other languages
French (fr)
Japanese (ja)
Inventor
才規 永元
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2010548455A priority Critical patent/JP5099609B2/en
Priority to CN201080002204.9A priority patent/CN102105954B/en
Publication of WO2010087221A1 publication Critical patent/WO2010087221A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • H01G4/2325Terminals electrically connecting two or more layers of a stacked or rolled capacitor characterised by the material of the terminals

Definitions

  • the present invention relates to a multilayer electronic component such as a multilayer ceramic capacitor.
  • the internal electrode is embedded in the component element body, and the external electrode is formed on the surface of the component element body. Further, as the internal electrode material, it is desirable to use a base metal material in consideration of cost, and Ni suitable for high-temperature firing is actively used.
  • the external electrode after the raw ceramic laminate having the internal electrode material embedded in a sheet shape and the external electrode material are simultaneously fired, and after the component body that is a ceramic sintered body is formed There is a method in which an external electrode material is applied to the surface of a component body, and is baked and sintered.
  • the external electrode layer includes a first metal layer mainly composed of Ni formed simultaneously with an internal electrode layer made of Ni, and Cu formed on the first metal layer.
  • a multilayer ceramic capacitor composed of a second metal layer as a main component has been proposed.
  • the first metal layer of the external electrode is simultaneously fired with the ceramic laminate, and the firing temperature is also high, the first metal layer is a material mainly composed of Ni having a high melting point. Is used. Thereafter, a second metal layer mainly composed of Cu having good adhesion to Ni is baked and formed on the first metal layer.
  • Patent Document 2 includes 70 wt% to 95 wt% of Ni powder having an average particle diameter of 0.1 ⁇ m to 4.0 ⁇ m and 5 wt% of Cu powder having an average particle diameter of 1.0 ⁇ m to 20.0 ⁇ m. There has been proposed a multilayer ceramic electronic component in which external electrodes are formed of metal powder containing from 30% to 30% by weight.
  • Patent Document 1 since the internal electrode material and the raw ceramic laminate and the first metal layer material are integrally fired and integrally formed, control of the firing atmosphere such as oxygen partial pressure and temperature conditions is controlled. Is complicated. Moreover, since firing at a high temperature is required, a low melting point material such as a glass component cannot be included. That is, since the glass component that acts as a fusing agent cannot be included in the first metal layer, the adhesion between the sintered ceramic body and the first metal layer is weak, for example, an electronic component There is a possibility that a part of the external electrode may be peeled off during mounting. Furthermore, as described above, since a glass component cannot be included, pores are likely to be generated in the film of the external electrode or at the interface of the ceramic body, so that there is a problem of poor moisture resistance.
  • Patent Document 2 after forming a ceramic body that is a sintered body, an external electrode material is applied and sintered to form an external electrode.
  • the external electrode contains Ni having a high melting point. Therefore, the sinterability is inferior, and it is difficult to form a dense electrode film. If the external electrode lacks denseness, there is a problem in that the plating solution enters the ceramic body in the subsequent plating step, leading to a decrease in reliability. That is, for example, when the plating solution enters the external electrode during electrolytic plating, there is a risk that when these multilayer electronic components are solder-mounted, the invaded plating solution bumps and the solder scatters.
  • the present invention has been made in view of such circumstances, and can provide a multilayer electronic component including an external electrode with good internal density that can suppress the internal electrode from protruding toward the external electrode. Objective.
  • a multilayer electronic component includes a sintered body in which an internal electrode mainly composed of Ni is embedded, and is formed on the surface of the sintered body to electrically connect to the internal electrode.
  • the external electrode includes a first metal layer in contact with the sintered body, and a second metal layer formed on the surface of the first metal layer.
  • the first metal layer contains at least Ni
  • the second metal layer is made of Cu, and is sintered after the sintered body is formed. It is characterized by being.
  • the first metal layer is formed of one of Ni and a Ni—Cu alloy, and the content of Cu is 80 atomic% or less (less than 0 atomic%). Is included).).
  • the multilayer electronic component is characterized in that the first metal layer is formed of a Ni—Cu alloy and the Cu content is 10 to 50 atomic% or less.
  • the sintered body in which the internal electrode mainly composed of Ni is embedded, and the external electrode formed on the surface of the sintered body and electrically connected to the internal electrode are provided.
  • the external electrode has a two-layer structure including a first metal layer in contact with the sintered body and a second metal layer formed on the surface of the first metal layer. Since the sintered body is formed and sintered, the first metal layer contains at least Ni and the second metal layer is formed of Cu, so that the internal electrode is an external electrode. Protruding to the side can be suppressed, and generation of pores inside the external electrode can be suppressed, thereby improving the denseness of the external electrode.
  • the external electrode can be prevented from floating from the sintered body, and the reliability of the multilayer electronic component can be ensured. Further, since the density of the external electrode is improved, the generation of pores inside the external electrode can be suppressed. Therefore, even if a plating process such as electrolytic plating is performed in a subsequent process, the seal against the plating solution is prevented. Thus, the plating solution can be prevented from entering the external electrode.
  • the first metal layer is formed of one of Ni and a Ni—Cu alloy and has a Cu content of 80 atomic% or less (including 0 atomic%). An effect can be produced easily.
  • the first metal layer is formed of a Ni—Cu alloy and the Cu content is 10 to 50 atomic% or less, Cu having a melting point lower than that of Ni is also present in the first metal layer.
  • An appropriate amount is included, and it is possible to further suppress the generation of pores in the first metal layer while suppressing the protrusion of the internal electrode to the external electrode, effectively reducing the protrusion of the internal electrode and the denseness of the film quality. It is possible to achieve both.
  • 1 is a cross-sectional view showing an embodiment of a multilayer ceramic capacitor as a multilayer electronic component according to the present invention. It is a figure explaining the problem at the time of using Cu for the 1st metal layer. It is sectional drawing of an external electrode at the time of forming a 1st metal layer only with Ni.
  • FIG. 1 is a cross-sectional view showing an embodiment of a multilayer ceramic capacitor as a multilayer electronic component according to the present invention.
  • This multilayer ceramic capacitor has a ceramic body (sintered body) 1 mainly composed of a ceramic material such as barium titanate, and external electrodes 3 a and 3 b formed at both ends of the ceramic body 1.
  • An internal electrode 2 (2a to 2f) containing Ni as a main component is embedded in the ceramic body 1.
  • the external electrodes 3a and 3b are composed of first metal layers 4a and 4b in contact with the ceramic body 1, and second metal layers 5a and 5b formed on the surfaces of the first metal layers 4a and 4b.
  • the external electrodes 3a and 3b are sintered after the ceramic body 1 is formed.
  • the ceramic body 1 Since the ceramic body 1 is thus sintered after being formed, it is possible to avoid complicated control of the firing atmosphere and temperature conditions. Moreover, it can be fired at a lower temperature than the case of simultaneous firing with the raw ceramic body, and a conductive paste containing a glass component (glass frit) can be used. As a result, the fixing force at the interface between the ceramic body 2 and the external electrodes 3a and 3b can be strengthened, and the reliability can be ensured.
  • the first metal layers 4a and 4b contain the same kind of metal as that of the internal electrode 2, that is, at least Ni.
  • the reason why at least Ni is contained in the first metal layers 4a and 4b is as follows.
  • the diffusion rate of Cu in the firing process is higher than that of Ni. Diffusion to the electrode 2 side is promoted. For this reason, as shown in FIG. 2, the internal electrode 2 protrudes into the first metal layers 4 a and 4 b to form a protruding portion 6, and the first metal layers 4 a and 4 b and the ceramic body 2 are interposed. There is a possibility that the gap 7 is formed. Then, the first metal layers 4a, 4b (external electrodes 3a, 3b) may be lifted from the ceramic body 2, or cracks 8 may be generated in the ceramic body 2, leading to a decrease in reliability.
  • the first metal layers 4a and 4b contain at least Ni which is the same kind of metal as the internal electrode material.
  • each of the first metal layers 4a and 4b is formed of one of Ni and a Ni—Cu alloy and has a Cu content of 80 atomic% or less (including 0 atomic%). preferable.
  • the second metal layers 5a and 5b are made of Cu having excellent sinterability because it is necessary to ensure good denseness.
  • plating treatment such as electrolytic plating is performed, and Ni, Ag, Au, Sn, and the like are formed on the surfaces of the external electrodes 3a and 3b.
  • Forming a plating film such as solder is widely performed.
  • the plating solution may enter the external electrodes 3a and 3b during plating.
  • the infiltrated plating solution may bump and the solder may be scattered.
  • the second metal layers 5a and 5b are formed of Cu that can be fired at a low temperature and has good sinterability.
  • the first metal layers 4a and 4b with a metal species containing Ni, the protrusion of the external electrodes 3a and 3b of the internal electrode 2 can be suppressed, and the second metal layers 5a and 5b are formed of Cu. By doing so, denseness can be ensured.
  • the first metal layers 4a and 4b further contain 10 to 50 atomic% of Cu.
  • the protrusion of the internal electrode can be suppressed.
  • Ni is a high melting point material and has poor sinterability, a large amount of Ni causes a decrease in denseness. There is a fear.
  • the second metal layers 5a and 5b are made of Cu, the denseness of the second metal layers 5a and 5b is good, but the first metal layers 4a and 4b contain Cu. Otherwise, as shown in FIG. 3, the first metal layers 4a and 4b may have pores 9 formed at the interfaces with the second metal layers 5a and 5b. As described above, since the denseness of the second metal layers 5a and 5b is good, the pores 9 are considered not to affect the electrical characteristics normally. If the plating solution enters, solder explosion may occur or the moisture resistance may be reduced, and reliability may be impaired. Therefore, it is preferable to suppress the generation of pores 9 in the first metal layers 4a and 4b as much as possible. That is, it is preferable to contain Cu having good sinterability in the first metal layers 4a and 4b, thereby suppressing the formation of pores 9 at the interfaces of the first metal layers 5a and 5b.
  • the Cu content needs to be at least 10 atomic%.
  • the content of Cu exceeds 50 atomic%, the content of Ni is relatively lowered, so that the protrusion of the internal electrode may be promoted.
  • the first metal layers 4a and 4b preferably contain 10 to 50 atomic% of Cu.
  • the present invention is not limited to the above embodiment.
  • the ceramic electronic component is exemplified as the multilayer electronic component.
  • the present invention can also be applied to other multilayer electronic components such as multilayer piezoelectric components, multilayer ferrite components, LC composite circuits, and chip electronic components. It is.
  • the Ni—Cu alloy is produced by mixing Ni powder and Cu powder, but it goes without saying that the same effect can be obtained by using Ni—Cu alloy powder directly.
  • the thickness of each of the first metal layers 4a and 4b and the second metal layers 5a and 5b can usually be arbitrarily selected within a set range of 5 to 50 ⁇ m, and the first metal layer 4a
  • the film thickness ratio between 4b and the second metal layers 5a and 5b is not particularly limited, and can be arbitrarily changed.
  • the mixed powder was calcined in the atmosphere at a temperature of 950 ° C. for 2 hours, and then pulverized in a dry manner to produce a ceramic raw material powder containing BaTiO 3 as a main component.
  • this ceramic raw material powder was mixed and pulverized by using ethanol as a solvent and adding a polyvinyl butyral binder to obtain a ceramic slurry. Then, the ceramic slurry was molded using a doctor blade method to obtain a ceramic green sheet.
  • a conductive paste for internal electrodes mainly composed of Ni was screen-printed on the surface of the ceramic green sheet to form a conductive film having a predetermined pattern.
  • the ceramic green sheets on which the conductive film was formed were laminated in a predetermined direction, sandwiched between the ceramic green sheets on which the conductive film was not formed, and pressed to produce a ceramic laminate.
  • this ceramic laminate is cut into chips, and then heated to a temperature of 500 ° C. in a nitrogen atmosphere to burn and remove the binder, and then a reducing atmosphere composed of H 2 —N 2 —H 2 O gas. Thereafter, firing was performed at a temperature of 1200 ° C. for 2 hours, and ceramic sintered bodies of sample numbers 1 to 10 were obtained.
  • ceramic layers and internal electrode layers are alternately laminated, and the end faces of the internal electrodes are alternately exposed on the end faces of different ceramic sintered bodies.
  • the external dimensions were 1 mm in length, 0.5 mm in width, and 0.5 mm in thickness.
  • Example No. 1 A Ni paste consisting of Ni powder: 65% by weight, B—Si—Ba—O glass frit: 6% by weight, acrylic resin: 5% by weight, and organic vehicle: 24% by weight was prepared.
  • organic vehicle a mixture of 3-methyl-3-methoxy-1-butanol and terpineol was used.
  • the Ni paste was applied to both ends of the ceramic sintered body and dried at a temperature of 150 ° C. for 10 minutes to form a Ni film.
  • the ceramic sintered body in which the Ni film and the Cu film are formed in this manner is put into a batch furnace and fired with a firing profile of 30 minutes, a maximum firing temperature of 850 ° C., and a holding time of 10 minutes, An external electrode having a two-layer structure of a Ni electrode (first metal layer) and a Cu electrode (second metal layer) was formed, and a sample No. 1 was obtained.
  • the film thickness of the external electrode was 20 ⁇ m for the Ni electrode and 20 ⁇ m for the Cu electrode.
  • the firing atmosphere was controlled by reduction into N 2 and the addition of an oxidizing gas. From room temperature to the highest firing temperature, H 2 / H 2 O was added, and at the highest firing temperature, air was added.
  • Ni powder and Cu powder are weighed so that the atomic ratio Ni / Cu of Ni powder and Cu powder is 90/10, 70/30, 50/50, 40/60, and 20/80, respectively, and Ni-Cu mixed A powder was obtained.
  • a Ni—Cu paste comprising Ni—Cu mixed powder: 65 wt%, B—Si—Ba—O glass frit: 6 wt%, acrylic resin: 5 wt%, and organic vehicle: 24 wt% was prepared. .
  • an external electrode having a two-layer structure of a Ni—Cu electrode (first metal layer) and a Cu electrode (second metal layer) is formed by the same method and procedure as in sample number 1, and sample numbers 2 to Six samples were obtained.
  • the thickness of the external electrode was 20 ⁇ m for the Ni—Cu electrode and 20 ⁇ m for the Cu electrode.
  • Example No. 7 The Ni paste produced in Sample No. 1 was applied to both ends of the ceramic sintered body and dried at a temperature of 150 ° C. for 10 minutes to form a Ni film. Thereafter, an external electrode having a single layer structure made of a Ni electrode was formed by the same method and procedure as in Sample No. 1, and a sample No. 7 was obtained.
  • the thickness of the external electrode was set to 40 ⁇ m so as to be equal to the total thickness of the external electrodes of the sample numbers 1 to 6 having a two-layer structure.
  • Ni powder and Cu powder were weighed so that the atomic ratio Ni / Cu between Ni powder and Cu powder would be 50/50 and 20/80, respectively, to obtain a Ni—Cu mixed powder.
  • a Ni—Cu paste comprising Ni—Cu mixed powder: 65 wt%, B—Si—Ba—O glass frit: 6 wt%, acrylic resin: 5 wt%, and organic vehicle: 24 wt% was prepared. .
  • the film thickness of the external electrode was 40 ⁇ m as in sample number 7.
  • Sample No. 10 The Cu paste prepared in Sample No. 1 was applied to both ends of the ceramic sintered body and dried at a temperature of 150 ° C. for 10 minutes to form a Cu film. Thereafter, a single layer external electrode composed of a Cu electrode was formed by the same method and procedure as in Sample No. 1, and a sample No. 10 was obtained.
  • the film thickness of the external electrode was 40 ⁇ m as in sample number 7.
  • Example evaluation For each of the samples Nos. 1 to 10, images were taken with an SEM (scanning electron microscope), and image analysis was performed to measure the amount of protrusion of the internal electrodes. The protrusion amount was evaluated as good ( ⁇ ) when the protrusion amount was less than 0.5 ⁇ m, acceptable ( ⁇ ) when 0.5 to 1.0 ⁇ m was exceeded, and impossible ( ⁇ ) when the protrusion amount exceeded 1.0 ⁇ m.
  • the pore diameter of the interface between the Ni electrode or Ni—Cu electrode and the Cu electrode was obtained from image analysis of the SEM image. Density evaluation was performed with a pore size of less than 0.5 ⁇ m being good ( ⁇ ), 0.5 to 1.0 ⁇ m being acceptable ( ⁇ ), and exceeding 1.0 ⁇ m being unacceptable ( ⁇ ).
  • the porosity generation rate was determined from image analysis of SEM images. Then, the porosity generation rate was evaluated as dense (less than 10%) (good), 10-15% as acceptable ( ⁇ ), and more than 15% as unacceptable (x).
  • Table 1 shows the configuration of external electrodes and measurement results of each sample.
  • the denseness evaluation (1) shows the measurement results in the first metal layer (Ni electrode or Ni—Cu electrode) of the present invention
  • the denseness evaluation (2) is a single layer outside the scope of the present invention. The measurement result of the structure Ni-Cu electrode is shown.
  • the external electrode has a single layer structure and contains 50% or more of Ni, which is the same material as the internal electrode, so the protruding amount of the internal electrode was good, less than 0.5 ⁇ m.
  • the porosity generation rate was 15% or more and the density was inferior, and the overall judgment was poor. This is probably because Ni, which is the main component of the external electrode, is a high melting point material, so that it has poor sinterability and a dense external electrode could not be formed.
  • Sample Nos. 1 to 6 have the Cu electrode formed on the Ni electrode or Ni—Cu electrode, so that the protrusion of the internal electrode is suppressed, and the Ni electrode or Ni—Cu electrode is the same as the Cu electrode.
  • the porosity generation rate at the interface was low, and good results were obtained.
  • the samples Nos. 2 to 4 having an atomic ratio of Ni and Cu of 90/10 to 50/50 were very good in the protruding amount of the internal electrode and the porosity generation rate, and more preferable results were obtained.

Abstract

Provided is a multilayer electronic component which has: a ceramic element body (1) wherein an internal electrode (2) having Ni as the main component is embedded; and external electrodes (3a, 3b) which are formed on the both end portions of the ceramic element body (1) and are electrically connected with the internal electrode (2). The external electrodes (3a, 3b) respectively have double layer structures composed of first metal layers (4a, 4b), which are brought into contact with the ceramic element body (1), and second metal layers (5a, 5b) formed on the surfaces of the first metal layers (4a, 4b), and the external electrodes are formed by sintering after the ceramic element body (1) is formed. The first metal layers (4a, 4b) contain at least Ni, and second metal layers (5a, 5b) are formed of Cu. The first metal layers (4a, 4b) are formed of either Ni or a Ni-Cu alloy, and contain 80 atm% or less (including 0 atm%) of Cu, preferably 10-50 atm% of Cu. Thus, in the multilayer electronic component, protrusion of the internal electrode to the sides of the external electrodes is suppressed and the external electrodes having a high density are provided.

Description

積層型電子部品Multilayer electronic components
 本発明は、積層セラミックコンデンサ等の積層型電子部品に関する。 The present invention relates to a multilayer electronic component such as a multilayer ceramic capacitor.
 従来より、セラミック焼結体を部品素体にした積層セラミックコンデンサ等の積層型電子部品が広く知られている。 Conventionally, a multilayer electronic component such as a multilayer ceramic capacitor using a ceramic sintered body as a component body has been widely known.
 この種の積層型電子部品は、内部電極が部品素体に埋設されると共に、該部品素体の表面に外部電極が形成されている。また、内部電極材料としては、コスト面を考慮して卑金属材料を使用するのが望ましく、高温焼成に適したNiが盛んに使用されている。 In this type of multilayer electronic component, the internal electrode is embedded in the component element body, and the external electrode is formed on the surface of the component element body. Further, as the internal electrode material, it is desirable to use a base metal material in consideration of cost, and Ni suitable for high-temperature firing is actively used.
 一方、外部電極の形成方法としては、内部電極材料がシート状に埋設された生のセラミック積層体と外部電極材料とを同時焼成する方法、及びセラミック焼結体である部品素体を形成した後、部品素体の表面に外部電極材料を塗布し、焼き付けて焼結させる方法がある。 On the other hand, as a method for forming the external electrode, after the raw ceramic laminate having the internal electrode material embedded in a sheet shape and the external electrode material are simultaneously fired, and after the component body that is a ceramic sintered body is formed There is a method in which an external electrode material is applied to the surface of a component body, and is baked and sintered.
 例えば、特許文献1では、外部電極層が、Niからなる内部電極層と同時に形成されるNiを主成分とする第1の金属層と、前記第1の金属層の上に形成されるCuを主成分とする第2の金属層からなる積層セラミックコンデンサが提案されている。 For example, in Patent Document 1, the external electrode layer includes a first metal layer mainly composed of Ni formed simultaneously with an internal electrode layer made of Ni, and Cu formed on the first metal layer. A multilayer ceramic capacitor composed of a second metal layer as a main component has been proposed.
 この特許文献1では、外部電極の第1の金属層をセラミック積層体と同時焼成しており、焼成温度も高くなることから、第1の金属層として、融点の高いNiを主成分とする材料を使用している。そしてその後、Niとの密着性が良好なCuを主成分とする第2の金属層を第1の金属層上に焼き付けて形成している。 In this Patent Document 1, since the first metal layer of the external electrode is simultaneously fired with the ceramic laminate, and the firing temperature is also high, the first metal layer is a material mainly composed of Ni having a high melting point. Is used. Thereafter, a second metal layer mainly composed of Cu having good adhesion to Ni is baked and formed on the first metal layer.
 また、特許文献2には、平均粒径が0.1μm~4.0μmのNi粉末を70重量%~95重量%含有し、平均粒径が1.0μm~20.0μmのCu粉末を5重量%~30重量%含有した金属粉末で外部電極を形成した積層セラミック電子部品が提案されている。 Patent Document 2 includes 70 wt% to 95 wt% of Ni powder having an average particle diameter of 0.1 μm to 4.0 μm and 5 wt% of Cu powder having an average particle diameter of 1.0 μm to 20.0 μm. There has been proposed a multilayer ceramic electronic component in which external electrodes are formed of metal powder containing from 30% to 30% by weight.
 この特許文献2では、内部電極が埋設されたセラミック焼結体を形成した後、外部電極を焼き付けて形成するので、電気特性に影響を及ぼさないように低温での焼成が望まれる。このため外部電極材料としては、低温での焼結が可能なCuを含有したNi-Cu合金を使用し、これにより内部電極との間で良好な接続性を得ている。 In this Patent Document 2, since the external electrode is baked after forming the ceramic sintered body in which the internal electrode is embedded, firing at a low temperature is desired so as not to affect the electrical characteristics. For this reason, a Ni—Cu alloy containing Cu that can be sintered at a low temperature is used as the external electrode material, thereby obtaining good connectivity with the internal electrode.
特開平06-84693号公報Japanese Patent Application Laid-Open No. 06-84693 特開2003-123535号公報JP 2003-123535 A
 しかしながら、特許文献1では、内部電極材料及び生のセラミック積層体と、第1の金属層材料とを同時焼成して一体形成しているため、酸素分圧などの焼成雰囲気や温度条件などの制御が煩雑である。しかも、高温での焼成が必要となるため、ガラス成分のような低融点材料を含めることができない。すなわち、融着剤としての作用を奏するガラス成分を第1の金属層中に含めることができないため、焼結後のセラミック素体と第1の金属層との固着力が弱く、例えば、電子部品の実装時に外部電極の一部が剥離するおそれがある。さらに、上述したようにガラス成分を含めることができないため、外部電極の膜中やセラミック素体の界面に気孔が生じやすく、このため耐湿性に劣るという間題点があった。 However, in Patent Document 1, since the internal electrode material and the raw ceramic laminate and the first metal layer material are integrally fired and integrally formed, control of the firing atmosphere such as oxygen partial pressure and temperature conditions is controlled. Is complicated. Moreover, since firing at a high temperature is required, a low melting point material such as a glass component cannot be included. That is, since the glass component that acts as a fusing agent cannot be included in the first metal layer, the adhesion between the sintered ceramic body and the first metal layer is weak, for example, an electronic component There is a possibility that a part of the external electrode may be peeled off during mounting. Furthermore, as described above, since a glass component cannot be included, pores are likely to be generated in the film of the external electrode or at the interface of the ceramic body, so that there is a problem of poor moisture resistance.
 一方、特許文献2は、焼結体であるセラミック素体を形成した後、外部電極材料を塗布し、焼結させて外部電極を形成しているが、外部電極が高融点のNiを含有している単層構造であるため、焼結性に劣り、緻密な電極膜を形成することが困難である。そして、外部電極が緻密性を欠くと、その後のめっき工程でセラミック素体中にめっき液が浸入し、信頼性低下を招くという問題点があった。すなわち、例えば、電解めっき時にめっき液が外部電極中に浸入すると、これらの積層型電子部品をはんだ実装する場合、浸入しためっき液が突沸し、はんだが飛び散るといった不具合の生じるおそれがあった。 On the other hand, in Patent Document 2, after forming a ceramic body that is a sintered body, an external electrode material is applied and sintered to form an external electrode. The external electrode contains Ni having a high melting point. Therefore, the sinterability is inferior, and it is difficult to form a dense electrode film. If the external electrode lacks denseness, there is a problem in that the plating solution enters the ceramic body in the subsequent plating step, leading to a decrease in reliability. That is, for example, when the plating solution enters the external electrode during electrolytic plating, there is a risk that when these multilayer electronic components are solder-mounted, the invaded plating solution bumps and the solder scatters.
 本発明はこのような事情に鑑みなされたものであって、内部電極が外部電極側に突出するのを抑制でき、かつ緻密性の良好な外部電極を備えた積層型電子部品を提供することを目的とする。 The present invention has been made in view of such circumstances, and can provide a multilayer electronic component including an external electrode with good internal density that can suppress the internal electrode from protruding toward the external electrode. Objective.
 上記目的を達成するために本発明に係る積層型電子部品は、Niを主成分とする内部電極が埋設された焼結体と、該焼結体の表面に形成されて前記内部電極と電気的に接続された外部電極とを有する積層型電子部品において、前記外部電極は、前記焼結体と接する第1の金属層と該第1の金属層の表面に形成された第2の金属層とからなる二層構造を有すると共に、前記焼結体が形成された後に焼結されてなり、前記第1の金属層は少なくもNiを含有し、前記第2の金属層がCuで形成されていることを特徴としている。 In order to achieve the above object, a multilayer electronic component according to the present invention includes a sintered body in which an internal electrode mainly composed of Ni is embedded, and is formed on the surface of the sintered body to electrically connect to the internal electrode. In the multilayer electronic component having the external electrode connected to the first electrode, the external electrode includes a first metal layer in contact with the sintered body, and a second metal layer formed on the surface of the first metal layer. The first metal layer contains at least Ni, and the second metal layer is made of Cu, and is sintered after the sintered body is formed. It is characterized by being.
 また、本発明の積層型電子部品は、前記第1の金属層は、Ni及びNi-Cu合金のうちのいずれか一方で形成され、かつCuの含有量が80原子%以下(0原子%を含む。)であることを特徴としている。 In the multilayer electronic component of the present invention, the first metal layer is formed of one of Ni and a Ni—Cu alloy, and the content of Cu is 80 atomic% or less (less than 0 atomic%). Is included).).
 さらに、積層型電子部品は、前記第1の金属層は、Ni-Cu合金で形成され、かつCuの含有量が10~50原子%以下であることを特徴としている。 Furthermore, the multilayer electronic component is characterized in that the first metal layer is formed of a Ni—Cu alloy and the Cu content is 10 to 50 atomic% or less.
 上記積層型電子部品によれば、Niを主成分とする内部電極が埋設された焼結体と、該焼結体の表面に形成されて前記内部電極と電気的に接続された外部電極とを有する積層型電子部品において、前記外部電極は、前記焼結体と接する第1の金属層と該第1の金属層の表面に形成された第2の金属層とからなる二層構造を有すると共に、前記焼結体が形成された後に焼結されてなり、前記第1の金属層は少なくもNiを含有し、前記第2の金属層がCuで形成されているので、内部電極が外部電極側に突出するのを抑制でき、かつ外部電極内部に気孔が発生するのを抑制でき、これにより外部電極の緻密性を向上させることができる。 According to the multilayer electronic component, the sintered body in which the internal electrode mainly composed of Ni is embedded, and the external electrode formed on the surface of the sintered body and electrically connected to the internal electrode are provided. In the multilayer electronic component, the external electrode has a two-layer structure including a first metal layer in contact with the sintered body and a second metal layer formed on the surface of the first metal layer. Since the sintered body is formed and sintered, the first metal layer contains at least Ni and the second metal layer is formed of Cu, so that the internal electrode is an external electrode. Protruding to the side can be suppressed, and generation of pores inside the external electrode can be suppressed, thereby improving the denseness of the external electrode.
 そして、このように内部電極の外部電極側への突出を抑制できるので、外部電極が焼結体から浮き上がるのを回避でき、積層型電子部品の信頼性を確保することができる。また、外部電極の緻密性が向上することから、該外部電極内部での気孔の発生を抑制することができ、したがって後工程で電解めっき等のめっき処理を行っても、めっき液に対するシ-ル性が向上し、外部電極内部にめっき液が浸入するのを回避することができる。 And since the protrusion of the internal electrode to the external electrode side can be suppressed in this way, the external electrode can be prevented from floating from the sintered body, and the reliability of the multilayer electronic component can be ensured. Further, since the density of the external electrode is improved, the generation of pores inside the external electrode can be suppressed. Therefore, even if a plating process such as electrolytic plating is performed in a subsequent process, the seal against the plating solution is prevented. Thus, the plating solution can be prevented from entering the external electrode.
 また、前記第1の金属層は、Ni及びNi-Cu合金のうちのいずれか一方で形成され、かつCuの含有量が80原子%以下(0原子%を含む。)であるので、上記作用効果を容易に奏することができる。 The first metal layer is formed of one of Ni and a Ni—Cu alloy and has a Cu content of 80 atomic% or less (including 0 atomic%). An effect can be produced easily.
 さらに、前記第1の金属層は、Ni-Cu合金で形成され、かつCuの含有量が10~50原子%以下であるので、Niよりも融点の低いCuが第1の金属層内にも適量含まれることとなり、内部電極の外部電極への突出を抑制しつつ該第1の金属層内で気孔が発生するのをより一層抑制でき、内部電極の突出と膜質の緻密性を効果的に両立させることが可能となる。 Furthermore, since the first metal layer is formed of a Ni—Cu alloy and the Cu content is 10 to 50 atomic% or less, Cu having a melting point lower than that of Ni is also present in the first metal layer. An appropriate amount is included, and it is possible to further suppress the generation of pores in the first metal layer while suppressing the protrusion of the internal electrode to the external electrode, effectively reducing the protrusion of the internal electrode and the denseness of the film quality. It is possible to achieve both.
本発明に係る積層型電子部品としての積層型セラミックコンデンサの一実施の形態を示す断面図である。1 is a cross-sectional view showing an embodiment of a multilayer ceramic capacitor as a multilayer electronic component according to the present invention. 第1の金属層にCuを使用した場合の問題点を説明する図である。It is a figure explaining the problem at the time of using Cu for the 1st metal layer. 第1の金属層をNiのみで形成した場合の外部電極の断面図である。It is sectional drawing of an external electrode at the time of forming a 1st metal layer only with Ni.
 次に、本発明の実施の形態を詳説する。 Next, an embodiment of the present invention will be described in detail.
 図1は本発明に係る積層型電子部品としての積層セラミックコンデンサの一実施の形態を示す断面図である。 FIG. 1 is a cross-sectional view showing an embodiment of a multilayer ceramic capacitor as a multilayer electronic component according to the present invention.
 この積層セラミックコンデンサは、チタン酸バリウム等のセラミック材料を主成分とするセラミック素体(焼結体)1と、該セラミック素体1の両端部に形成された外部電極3a、3bとを有し、該セラミック素体1にはNiを主成分とした内部電極2(2a~2f)が埋設されている。 This multilayer ceramic capacitor has a ceramic body (sintered body) 1 mainly composed of a ceramic material such as barium titanate, and external electrodes 3 a and 3 b formed at both ends of the ceramic body 1. An internal electrode 2 (2a to 2f) containing Ni as a main component is embedded in the ceramic body 1.
 そして、外部電極3a、3bは、セラミック素体1に接する第1の金属層4a、4bと、該第1の金属層4a、4bの表面に形成された第2の金属層5a、5bとからなる二層構造とされ、かつこれら外部電極3a、3bは、セラミック素体1が形成された後、焼結されてなる。 The external electrodes 3a and 3b are composed of first metal layers 4a and 4b in contact with the ceramic body 1, and second metal layers 5a and 5b formed on the surfaces of the first metal layers 4a and 4b. The external electrodes 3a and 3b are sintered after the ceramic body 1 is formed.
 このようにセラミック素体1が形成された後に、焼結されてなるので、焼成雰囲気や温度条件の制御が複雑化するのを回避できる。しかも、生のセラミック素体と同時焼成する場合に比べ、低温での焼成が可能であり、ガラス成分(ガラスフリット)を含有した導電性ペーストを使用することができる。そして、これにより、セラミック素体2と外部電極3a、3bの界面での固着力を強固にすることができ、信頼性を確保することが可能となる。 Since the ceramic body 1 is thus sintered after being formed, it is possible to avoid complicated control of the firing atmosphere and temperature conditions. Moreover, it can be fired at a lower temperature than the case of simultaneous firing with the raw ceramic body, and a conductive paste containing a glass component (glass frit) can be used. As a result, the fixing force at the interface between the ceramic body 2 and the external electrodes 3a and 3b can be strengthened, and the reliability can be ensured.
 第1の金属層4a、4bは、内部電極2と同種の金属種、すなわち少なくともNiを含んでいる。 The first metal layers 4a and 4b contain the same kind of metal as that of the internal electrode 2, that is, at least Ni.
 このように第1の金属層4a、4bに、少なくともNiを含むようにしたのは以下の理由による。 The reason why at least Ni is contained in the first metal layers 4a and 4b is as follows.
 従来より、外部電極3a、3bとして汎用されているCuを第1の金属層4a、4bに使用した場合、Cuは、焼成過程における拡散速度がNiよりも大きいため、CuのNi側、すなわち内部電極2側への拡散が促進される。このため、図2に示すように、内部電極2が第1の金属層4a、4b内に突出して突出部6を形成し、第1の金属層4a、4bとセラミック素体2との間に隙間7が形成されるおそれがある。そして、第1の金属層4a、4b(外部電極3a、3b)がセラミック素体2から浮き上がったり、セラミック素体2にクラック8が発生し、信頼性低下を招くおそれがある。 Conventionally, when Cu that has been widely used as the external electrodes 3a and 3b is used for the first metal layers 4a and 4b, the diffusion rate of Cu in the firing process is higher than that of Ni. Diffusion to the electrode 2 side is promoted. For this reason, as shown in FIG. 2, the internal electrode 2 protrudes into the first metal layers 4 a and 4 b to form a protruding portion 6, and the first metal layers 4 a and 4 b and the ceramic body 2 are interposed. There is a possibility that the gap 7 is formed. Then, the first metal layers 4a, 4b ( external electrodes 3a, 3b) may be lifted from the ceramic body 2, or cracks 8 may be generated in the ceramic body 2, leading to a decrease in reliability.
 そこで、本実施の形態では、第1の金属層4a、4bは、少なくとも内部電極材料と同種の金属であるNiを含むようにしている。具体的には、第1の金属層4a、4bは、Ni及びNi-Cu合金のいずれか一方で形成され、Cuの含有量が80原子%以下(0原子%を含む。)であるのが好ましい。 Therefore, in the present embodiment, the first metal layers 4a and 4b contain at least Ni which is the same kind of metal as the internal electrode material. Specifically, each of the first metal layers 4a and 4b is formed of one of Ni and a Ni—Cu alloy and has a Cu content of 80 atomic% or less (including 0 atomic%). preferable.
 一方、第2の金属層5a、5bは、良好な緻密性を確保する必要性から、焼結性に優れたCuで形成されている。 On the other hand, the second metal layers 5a and 5b are made of Cu having excellent sinterability because it is necessary to ensure good denseness.
 すなわち、一般に、耐熱性やはんだ濡れ性確保の観点から、外部電極3a、3bの形成後には電解めっき等のめっき処理が行なわれ、外部電極3a、3bの表面にNi、Ag、AuやSn、はんだ等のめっき皮膜を形成することが広く行われる。 That is, from the viewpoint of ensuring heat resistance and solder wettability, generally, after the formation of the external electrodes 3a and 3b, plating treatment such as electrolytic plating is performed, and Ni, Ag, Au, Sn, and the like are formed on the surfaces of the external electrodes 3a and 3b. Forming a plating film such as solder is widely performed.
しかしながら、外部電極3a、3bが緻密性に劣り、その内部に気孔が形成されると、めっき時に外部電極3a、3b内にめっき液が浸入するおそれがある。そしてその結果、例えば積層セラミックコンデンサをはんだ実装する際、浸入しためっき液が突沸し、はんだが飛び散るおそれがある。このため、少なくとも外部電極3a、3bの表面は、めっき液が浸入しないように緻密に形成する必要がある。 However, if the external electrodes 3a and 3b are inferior in density and pores are formed therein, the plating solution may enter the external electrodes 3a and 3b during plating. As a result, for example, when the multilayer ceramic capacitor is mounted by soldering, the infiltrated plating solution may bump and the solder may be scattered. For this reason, it is necessary to form at least the surfaces of the external electrodes 3a and 3b densely so that the plating solution does not enter.
そこで、本実施の形態では、第2の金属層5a、5bを低温での焼成が可能で焼結性の良好なCuで形成している。 Therefore, in the present embodiment, the second metal layers 5a and 5b are formed of Cu that can be fired at a low temperature and has good sinterability.
 このように第1の金属層4a、4bをNiを含む金属種で形成することにより、内部電極2の外部電極3a、3bの突出を抑制でき、第2の金属層5a、5bをCuで形成することにより、緻密性を確保することができる。 Thus, by forming the first metal layers 4a and 4b with a metal species containing Ni, the protrusion of the external electrodes 3a and 3b of the internal electrode 2 can be suppressed, and the second metal layers 5a and 5b are formed of Cu. By doing so, denseness can be ensured.
 また、本発明は、更に第1の金属層4a、4bに、10~50原子%のCuを含有するのが好ましい。 In the present invention, it is preferable that the first metal layers 4a and 4b further contain 10 to 50 atomic% of Cu.
 第1の金属層4a、4bがNiを含むことにより、内部電極の突出は抑制できるが、Niは高融点材料であり、焼結性に劣ることから、Ni量が多いと緻密性低下を招くおそれがある。 When the first metal layers 4a and 4b contain Ni, the protrusion of the internal electrode can be suppressed. However, since Ni is a high melting point material and has poor sinterability, a large amount of Ni causes a decrease in denseness. There is a fear.
 すなわち、第2の金属層5a、5bがCuで形成されているため、該第2の金属層5a、5bの緻密性は良好であるが、第1の金属層4a、4bにCuが含有されていない場合、図3に示すように、第1の金属層4a、4bは第2の金属層5a、5bとの界面で気孔9が形成されるおそれがある。上述したように第2の金属層5a、5bの緻密性が良好であることから、前記気孔9は、通常は電気特性に影響を及ぼさないと考えられるものの、万一めっき工程で該気孔9にめっき液が浸入すると、はんだ爆ぜが生じたり耐湿性が低下し、信頼性を損なうおそれがある。したがって第1の金属層4a、4bにおいても、気孔9の発生を極力抑制するのが好ましい。すなわち、第1の金属層4a、4bにも焼結性の良好なCuを含有させ、これにより第1の金属層5a、5bの界面で気孔9が形成されるのを抑制するのが好ましい。 That is, since the second metal layers 5a and 5b are made of Cu, the denseness of the second metal layers 5a and 5b is good, but the first metal layers 4a and 4b contain Cu. Otherwise, as shown in FIG. 3, the first metal layers 4a and 4b may have pores 9 formed at the interfaces with the second metal layers 5a and 5b. As described above, since the denseness of the second metal layers 5a and 5b is good, the pores 9 are considered not to affect the electrical characteristics normally. If the plating solution enters, solder explosion may occur or the moisture resistance may be reduced, and reliability may be impaired. Therefore, it is preferable to suppress the generation of pores 9 in the first metal layers 4a and 4b as much as possible. That is, it is preferable to contain Cu having good sinterability in the first metal layers 4a and 4b, thereby suppressing the formation of pores 9 at the interfaces of the first metal layers 5a and 5b.
 そして、このような作用効果を得るためには、Cuの含有量は少なくとも10原子%は必要である。一方、Cuの含有量が50原子%を超えると、Niの含有量が相対的に低下するため、内部電極の突出が助長されるおそれがある。 In order to obtain such an effect, the Cu content needs to be at least 10 atomic%. On the other hand, when the content of Cu exceeds 50 atomic%, the content of Ni is relatively lowered, so that the protrusion of the internal electrode may be promoted.
 そこで、上述したように第1の金属層4a、4bには、10~50原子%のCuを含有するのが好ましい。 Therefore, as described above, the first metal layers 4a and 4b preferably contain 10 to 50 atomic% of Cu.
 尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態では、積層型電子部品としてセラミック電子部品を例示したが、他の積層型電子部品、例えば積層型圧電部品、積層型フェライト部品、LC複合回路やチップ型電子部品等にも適用可能である。 The present invention is not limited to the above embodiment. In the above embodiment, the ceramic electronic component is exemplified as the multilayer electronic component. However, the present invention can also be applied to other multilayer electronic components such as multilayer piezoelectric components, multilayer ferrite components, LC composite circuits, and chip electronic components. It is.
 また、上記実施の形態では、Ni-Cu合金をNi粉末及びCu粉末の混合により作製したが、直接、Ni-Cu合金粉を用いても同様の効果が得られるのはいうまでもない。また、第1の金属層4a、4b及び第2の金属層5a、5bの各膜厚は、通常、設定される5~50μmの範囲で任意に選択することができ、第1の金属層4a、4bと第2の金属層5a、5bの膜厚比率も特に限定されるものではなく、任意に変更可能である。 In the above embodiment, the Ni—Cu alloy is produced by mixing Ni powder and Cu powder, but it goes without saying that the same effect can be obtained by using Ni—Cu alloy powder directly. In addition, the thickness of each of the first metal layers 4a and 4b and the second metal layers 5a and 5b can usually be arbitrarily selected within a set range of 5 to 50 μm, and the first metal layer 4a The film thickness ratio between 4b and the second metal layers 5a and 5b is not particularly limited, and can be arbitrarily changed.
 次に、本発明の実施例を具体的に説明する。 Next, specific examples of the present invention will be described.
〔セラミック焼結体の作製〕
 まず、セラミック素原料として、BaCO及びTiOを所定量秤量し、次いで、これら秤量物をPSZ(部分安定化ジルコニア)ボール及び純水と共にボールミルに投入し、湿式で十分に混合粉砕し、乾燥させて混合粉体を得た。
[Production of ceramic sintered body]
First, as a ceramic raw material, BaCO 3 and TiO 2 are weighed in predetermined amounts, and then these weighed materials are put into a ball mill together with PSZ (partially stabilized zirconia) balls and pure water, and sufficiently mixed and pulverized in a wet manner and dried. To obtain a mixed powder.
 次に、この混合粉体を、大気中、950℃の温度で2時間仮焼し、その後乾式で粉砕し、BaTiOを主成分とするセラミック原料粉末を作製した。 Next, the mixed powder was calcined in the atmosphere at a temperature of 950 ° C. for 2 hours, and then pulverized in a dry manner to produce a ceramic raw material powder containing BaTiO 3 as a main component.
 次いで、このセラミック原料粉末を、エタノールを溶媒とし、ポロビニルブチラール系バインダを加えて混合粉砕し、セラミックスラリーを得た。そして、ドクターブレード法を使用して前記セラミックスラリーに成形加工を施し、セラミックグリーンシートを得た。 Next, this ceramic raw material powder was mixed and pulverized by using ethanol as a solvent and adding a polyvinyl butyral binder to obtain a ceramic slurry. Then, the ceramic slurry was molded using a doctor blade method to obtain a ceramic green sheet.
 次に、Niを主成分とする内部電極用導電性ペーストをセラミックグリーンシートの表面にスクリーン印刷し、所定パターンの導電膜を形成した。次いで、この導電膜が形成されたセラミックグリーンシートを所定方向に積層し、導電膜の形成されていないセラミックグリーンシートで挟持し、圧着してセラミック積層体を作製した。 Next, a conductive paste for internal electrodes mainly composed of Ni was screen-printed on the surface of the ceramic green sheet to form a conductive film having a predetermined pattern. Next, the ceramic green sheets on which the conductive film was formed were laminated in a predetermined direction, sandwiched between the ceramic green sheets on which the conductive film was not formed, and pressed to produce a ceramic laminate.
 次に、このセラミック積層体をチップ形状に切断した後、窒素雰囲気中、500℃の温度に加熱してバインダを燃焼除去し、その後、H-N-HOガスからなる還元性雰囲気下、1200℃の温度で2時間焼成し、試料番号1~10のセラミック焼結体を得た。 Next, this ceramic laminate is cut into chips, and then heated to a temperature of 500 ° C. in a nitrogen atmosphere to burn and remove the binder, and then a reducing atmosphere composed of H 2 —N 2 —H 2 O gas. Thereafter, firing was performed at a temperature of 1200 ° C. for 2 hours, and ceramic sintered bodies of sample numbers 1 to 10 were obtained.
 これらセラミック焼結体は、セラミック層と内部電極層とが交互に積層され、かつ内部電極の端面は、異なるセラミック焼結体の端面に交互に表面露出している。そして、その外形寸法は、縦:1mm、横:0.5mm、厚み:0.5mmであった。 In these ceramic sintered bodies, ceramic layers and internal electrode layers are alternately laminated, and the end faces of the internal electrodes are alternately exposed on the end faces of different ceramic sintered bodies. And the external dimensions were 1 mm in length, 0.5 mm in width, and 0.5 mm in thickness.
〔外部電極の作製〕
〔試料番号1〕
 Ni粉末:65重量%、B-Si-Ba-O系ガラスフリット:6重量%、アクリル樹脂:5重量%、及び有機ビヒクル:24重量%からなるNiペーストを作製した。尚、有機ビヒクルとしては、3-メチル-3-メトキシ-1-ブタノールとターピネオールとを混合させたものを使用した。
[Production of external electrode]
[Sample No. 1]
A Ni paste consisting of Ni powder: 65% by weight, B—Si—Ba—O glass frit: 6% by weight, acrylic resin: 5% by weight, and organic vehicle: 24% by weight was prepared. As the organic vehicle, a mixture of 3-methyl-3-methoxy-1-butanol and terpineol was used.
 次に、前記Niペーストをセラミック焼結体の両端部に塗布し、150℃の温度で10分間乾燥し、Ni膜を形成した。 Next, the Ni paste was applied to both ends of the ceramic sintered body and dried at a temperature of 150 ° C. for 10 minutes to form a Ni film.
 次いで、Ni粉末に代えて同量のCu粉末を使用したCuペーストを用意した。そして、CuペーストをNi膜上に塗布し、150℃の温度で10分間乾燥し、Cu膜を形成した。 Next, a Cu paste using the same amount of Cu powder instead of Ni powder was prepared. And Cu paste was apply | coated on Ni film | membrane, it dried for 10 minutes at the temperature of 150 degreeC, and Cu film | membrane was formed.
 次に、このようにしてNi膜及びCu膜が形成されたセラミック焼結体を、バッチ炉に投入し、焼成時間30分、最高焼成温度850℃、保持時間10分の焼成プロファイルで焼成し、Ni電極(第1の金属層)及びCu電極(第2の金属層)の二層構造からなる外部電極を形成し、試料番号1の試料を得た。 Next, the ceramic sintered body in which the Ni film and the Cu film are formed in this manner is put into a batch furnace and fired with a firing profile of 30 minutes, a maximum firing temperature of 850 ° C., and a holding time of 10 minutes, An external electrode having a two-layer structure of a Ni electrode (first metal layer) and a Cu electrode (second metal layer) was formed, and a sample No. 1 was obtained.
 尚、外部電極の膜厚は、Ni電極が20μm、Cu電極が20μmであった。 In addition, the film thickness of the external electrode was 20 μm for the Ni electrode and 20 μm for the Cu electrode.
 また、焼成雰囲気の制御はN中への還元、酸化ガスの添加により行い、室温から最高焼成温度まではH/HO添加、最高焼成温度では空気添加により行った。 The firing atmosphere was controlled by reduction into N 2 and the addition of an oxidizing gas. From room temperature to the highest firing temperature, H 2 / H 2 O was added, and at the highest firing temperature, air was added.
〔試料番号2~6〕
 Ni粉末とCu粉末の原子比率Ni/Cuがそれぞれ90/10、70/30、50/50、40/60、20/80となるように、Ni粉末及びCu粉末を秤量し、Ni-Cu混合粉末を得た。そして、Ni-Cu混合粉末:65重量%、B-Si-Ba-O系ガラスフリット:6重量%、アクリル樹脂:5重量%、及び有機ビヒクル:24重量%からなるNi-Cuペーストを作製した。
[Sample Nos. 2-6]
Ni powder and Cu powder are weighed so that the atomic ratio Ni / Cu of Ni powder and Cu powder is 90/10, 70/30, 50/50, 40/60, and 20/80, respectively, and Ni-Cu mixed A powder was obtained. A Ni—Cu paste comprising Ni—Cu mixed powder: 65 wt%, B—Si—Ba—O glass frit: 6 wt%, acrylic resin: 5 wt%, and organic vehicle: 24 wt% was prepared. .
 その後は試料番号1と同様の方法・手順で、Ni-Cu電極(第1の金属層)及びCu電極(第2の金属層)の二層構造からなる外部電極を形成し、試料番号2~6の試料を得た。 Thereafter, an external electrode having a two-layer structure of a Ni—Cu electrode (first metal layer) and a Cu electrode (second metal layer) is formed by the same method and procedure as in sample number 1, and sample numbers 2 to Six samples were obtained.
 尚、外部電極の膜厚は、Ni-Cu電極が20μm、Cu電極が20μmであった。 The thickness of the external electrode was 20 μm for the Ni—Cu electrode and 20 μm for the Cu electrode.
〔試料番号7〕
 試料番号1で作製したNiペーストをセラミック焼結体の両端部に塗布し、150℃の温度で10分間乾燥し、Ni膜を形成した。そして、その後は試料番号1と同様の方法・手順で、Ni電極からなる単層構造の外部電極を形成し、試料番号7の試料を得た。
[Sample No. 7]
The Ni paste produced in Sample No. 1 was applied to both ends of the ceramic sintered body and dried at a temperature of 150 ° C. for 10 minutes to form a Ni film. Thereafter, an external electrode having a single layer structure made of a Ni electrode was formed by the same method and procedure as in Sample No. 1, and a sample No. 7 was obtained.
 尚、外部電極の膜厚は、二層構造の試料番号1~6の外部電極の総膜厚と等しくなるように40μmとした。 The thickness of the external electrode was set to 40 μm so as to be equal to the total thickness of the external electrodes of the sample numbers 1 to 6 having a two-layer structure.
〔試料番号8、9〕
 Ni粉末とCu粉末の原子比率Ni/Cuがそれぞれ50/50、20/80となるように、Ni粉末及びCu粉末を秤量し、Ni-Cu混合粉末を得た。そして、Ni-Cu混合粉末:65重量%、B-Si-Ba-O系ガラスフリット:6重量%、アクリル樹脂:5重量%、及び有機ビヒクル:24重量%からなるNi-Cuペーストを作製した。
[Sample Nos. 8 and 9]
Ni powder and Cu powder were weighed so that the atomic ratio Ni / Cu between Ni powder and Cu powder would be 50/50 and 20/80, respectively, to obtain a Ni—Cu mixed powder. A Ni—Cu paste comprising Ni—Cu mixed powder: 65 wt%, B—Si—Ba—O glass frit: 6 wt%, acrylic resin: 5 wt%, and organic vehicle: 24 wt% was prepared. .
 そして、その後は試料番号1と同様の方法・手順で、Ni-Cu電極からなる単層構造の外部電極を形成し、試料番号8、9の試料を得た。 After that, a single layer external electrode composed of a Ni—Cu electrode was formed by the same method and procedure as Sample No. 1, and Sample Nos. 8 and 9 were obtained.
 尚、外部電極の膜厚は、試料番号7と同様、40μmであった。 In addition, the film thickness of the external electrode was 40 μm as in sample number 7.
〔試料番号10〕
 試料番号1で作製したCuペーストをセラミック焼結体の両端部に塗布し、150℃の温度で10分間乾燥し、Cu膜を形成した。そして、その後は試料番号1と同様の方法・手順で、Cu電極からなる単層構造の外部電極を形成し、試料番号10の試料を得た。
[Sample No. 10]
The Cu paste prepared in Sample No. 1 was applied to both ends of the ceramic sintered body and dried at a temperature of 150 ° C. for 10 minutes to form a Cu film. Thereafter, a single layer external electrode composed of a Cu electrode was formed by the same method and procedure as in Sample No. 1, and a sample No. 10 was obtained.
 尚、外部電極の膜厚は、試料番号7と同様、40μmであった。 In addition, the film thickness of the external electrode was 40 μm as in sample number 7.
〔試料の評価〕
 試料番号1~10の各試料について、SEM(走査型電子顕微鏡)で画像を撮像し、画像解析を行って内部電極の突出量を測定した。そして、突出量が0.5μm未満を良(◎)、0.5~1.0μmを可(○)、1.0μmを超える場合を不可(×)とし、突出量評価を行った。
(Sample evaluation)
For each of the samples Nos. 1 to 10, images were taken with an SEM (scanning electron microscope), and image analysis was performed to measure the amount of protrusion of the internal electrodes. The protrusion amount was evaluated as good (、) when the protrusion amount was less than 0.5 μm, acceptable (◯) when 0.5 to 1.0 μm was exceeded, and impossible (×) when the protrusion amount exceeded 1.0 μm.
 また、二層構造の試料番号1~6については、SEM画像の画像解析からNi電極又はNi-Cu電極におけるCu電極との界面の気孔の孔径を求めた。孔径が0.5μm未満を良(◎)、0.5~1.0μmを可(○)、1.0μmを超える場合を不可(×)とし、緻密性評価を行った。 For the sample numbers 1 to 6 having a two-layer structure, the pore diameter of the interface between the Ni electrode or Ni—Cu electrode and the Cu electrode was obtained from image analysis of the SEM image. Density evaluation was performed with a pore size of less than 0.5 μm being good (◎), 0.5 to 1.0 μm being acceptable (◯), and exceeding 1.0 μm being unacceptable (×).
 さらに、単層構造の試料番号7~10については、SEM画像の画像解析から気孔発生率を求めた。そして、気孔発生率が10%未満を良(◎)、10~15%を可(○)、15%を超える場合を不可(×)とし、緻密性評価を行った。 Furthermore, for sample numbers 7 to 10 having a single layer structure, the porosity generation rate was determined from image analysis of SEM images. Then, the porosity generation rate was evaluated as dense (less than 10%) (good), 10-15% as acceptable (◯), and more than 15% as unacceptable (x).
 尚、各測定は、それぞれ試料10個について行い、平均値で各特性を評価した。 Each measurement was performed on 10 samples, and each characteristic was evaluated by an average value.
 表1は、各試料の外部電極の構成及び測定結果を示している。表1中、緻密性評価(1)は、本発明の第1の金属層(Ni電極又はNi-Cu電極)における測定結果を示し、緻密性評価(2)は、本発明範囲外の単層構造のNi-Cu電極の測定結果を示している。 Table 1 shows the configuration of external electrodes and measurement results of each sample. In Table 1, the denseness evaluation (1) shows the measurement results in the first metal layer (Ni electrode or Ni—Cu electrode) of the present invention, and the denseness evaluation (2) is a single layer outside the scope of the present invention. The measurement result of the structure Ni-Cu electrode is shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試料番号7、8は、外部電極が単層構造であり、内部電極と同一材料のNiを50%以上含有しているので、内部電極の突出量は0.5μm未満と良好であったが、気孔発生率が15%以上となって緻密性に劣り、総合判定は不良となった。これは、外部電極の主成分であるNiが高融点材料であるため、焼結性に劣り、緻密な外部電極を形成できなかったものと思われる。 In Sample Nos. 7 and 8, the external electrode has a single layer structure and contains 50% or more of Ni, which is the same material as the internal electrode, so the protruding amount of the internal electrode was good, less than 0.5 μm. The porosity generation rate was 15% or more and the density was inferior, and the overall judgment was poor. This is probably because Ni, which is the main component of the external electrode, is a high melting point material, so that it has poor sinterability and a dense external electrode could not be formed.
 また、試料番号9は、金属材料中のNiの含有量が20%と少なく、このため内部電極の突出量が0.5~1.0μmと若干大きくなった。しかも、試料番号7、8と同様の理由から、気孔発生率が15%以上となって緻密性に劣り、総合判定は不良となった。 In Sample No. 9, the Ni content in the metal material was as low as 20%. Therefore, the protruding amount of the internal electrode was slightly increased to 0.5 to 1.0 μm. In addition, for the same reason as Sample Nos. 7 and 8, the porosity generation rate was 15% or more, the density was inferior, and the overall judgment was poor.
 試料番号10は、外部電極をCu単独で形成しているので、気孔発生率は10%未満と緻密性は良好であるが、内部電極の突出量が1.0μmを超えてしまい、総合判定は不良となった。これは、外部電極を構成するCuと内部電極を構成するNiとでは、Cuの拡散速度がNiの拡散速度よりも大きいため、外部電極側から内部電極側へとCuの拡散が促進され、その結果、内部電極であるNiの突出量が増加したものと思われる。 In Sample No. 10, since the external electrode is formed of Cu alone, the porosity generation rate is less than 10% and the denseness is good, but the protruding amount of the internal electrode exceeds 1.0 μm, and the comprehensive judgment is It became defective. This is because the diffusion rate of Cu is promoted from the external electrode side to the internal electrode side because the diffusion rate of Cu is larger than the diffusion rate of Ni in Cu constituting the external electrode and Ni constituting the internal electrode. As a result, it seems that the protrusion amount of Ni which is an internal electrode increased.
 これに対し試料番号1~6は、Ni電極又はNi-Cu電極上にCu電極を形成しているので、内部電極の突出が抑制されると共に、Ni電極又はNi-Cu電極は、Cu電極との界面における気孔発生率も低く、良好な結果を得た。特に、NiとCuの原子比率が90/10~50/50の試料番号2~4の各試料は、内部電極の突出量及び気孔発生率も極めて良好であり、より好ましい結果を得た。 In contrast, Sample Nos. 1 to 6 have the Cu electrode formed on the Ni electrode or Ni—Cu electrode, so that the protrusion of the internal electrode is suppressed, and the Ni electrode or Ni—Cu electrode is the same as the Cu electrode. The porosity generation rate at the interface was low, and good results were obtained. In particular, the samples Nos. 2 to 4 having an atomic ratio of Ni and Cu of 90/10 to 50/50 were very good in the protruding amount of the internal electrode and the porosity generation rate, and more preferable results were obtained.
 積層型電子部品で内部電極の突出量抑制と外部電極の緻密性を両立させることができ、この種の積層型電子部品の信頼性向上に寄与する。 It is possible to achieve both the suppression of the protruding amount of the internal electrode and the denseness of the external electrode in the multilayer electronic component, which contributes to improving the reliability of this type of multilayer electronic component.
1 セラミック素体(焼結体)
2a~2f 内部電極
3a、3b 外部電極
4a、4b 第1の金属層
5a、5b 第2の金属層
1 Ceramic body (sintered body)
2a to 2f Internal electrodes 3a, 3b External electrodes 4a, 4b First metal layers 5a, 5b Second metal layers

Claims (3)

  1.  Niを主成分とする内部電極が埋設された焼結体と、該焼結体の表面に形成されて前記内部電極と電気的に接続された外部電極とを有する積層型電子部品において、
     前記外部電極は、前記焼結体と接する第1の金属層と該第1の金属層の表面に形成された第2の金属層とからなる二層構造を有すると共に、前記焼結体が形成された後に焼結されてなり、
     前記第1の金属層は少なくもNiを含有し、前記第2の金属層がCuで形成されていることを特徴とする積層型電子部品。
    In a multilayer electronic component having a sintered body in which an internal electrode mainly composed of Ni is embedded, and an external electrode formed on the surface of the sintered body and electrically connected to the internal electrode,
    The external electrode has a two-layer structure including a first metal layer in contact with the sintered body and a second metal layer formed on the surface of the first metal layer, and the sintered body is formed. After being sintered,
    The multilayer electronic component according to claim 1, wherein the first metal layer contains at least Ni, and the second metal layer is made of Cu.
  2.  前記第1の金属層は、Ni及びNi-Cu合金のうちのいずれか一方で形成され、かつCuの含有量が80原子%以下(0原子%を含む。)であることを特徴とする請求項1記載の積層型電子部品。 The first metal layer is formed of one of Ni and a Ni—Cu alloy, and has a Cu content of 80 atomic% or less (including 0 atomic%). Item 2. The multilayer electronic component according to Item 1.
  3.  前記第1の金属層は、Ni-Cu合金で形成され、かつCuの含有量が10~50原子%以下であることを特徴とする請求項1記載の積層型電子部品。 2. The multilayer electronic component according to claim 1, wherein the first metal layer is made of a Ni—Cu alloy and has a Cu content of 10 to 50 atomic% or less.
PCT/JP2010/050157 2009-01-28 2010-01-08 Multilayer electronic component WO2010087221A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010548455A JP5099609B2 (en) 2009-01-28 2010-01-08 Multilayer electronic components
CN201080002204.9A CN102105954B (en) 2009-01-28 2010-01-08 Multilayer electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-016788 2009-01-28
JP2009016788 2009-01-28

Publications (1)

Publication Number Publication Date
WO2010087221A1 true WO2010087221A1 (en) 2010-08-05

Family

ID=42395483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050157 WO2010087221A1 (en) 2009-01-28 2010-01-08 Multilayer electronic component

Country Status (3)

Country Link
JP (1) JP5099609B2 (en)
CN (1) CN102105954B (en)
WO (1) WO2010087221A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060331A (en) * 2012-09-19 2014-04-03 Tdk Corp Multilayer electronic component
JP2014078674A (en) * 2012-10-10 2014-05-01 Samsung Electro-Mechanics Co Ltd Multilayered ceramic electronic component and method of manufacturing the same
KR101444536B1 (en) * 2012-10-18 2014-09-24 삼성전기주식회사 Multi-Layered Ceramic Electronic Component And Manufacturing Method Thereof
US20160314902A1 (en) * 2015-04-21 2016-10-27 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and method of manufacturing the same
US10418180B2 (en) 2016-03-09 2019-09-17 Murata Manufacturing Co., Ltd. Electronic component and manufacturing method for the same
JP2019179874A (en) * 2018-03-30 2019-10-17 Jx金属株式会社 External electrode of ceramic laminate
JP2020155719A (en) * 2019-03-22 2020-09-24 株式会社村田製作所 Multilayer ceramic capacitor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101508541B1 (en) 2013-08-09 2015-04-07 삼성전기주식회사 Embedded multilayer ceramic electronic part and print circuit board having embedded multilayer ceramic electronic part
KR102293032B1 (en) * 2015-04-21 2021-08-24 삼성전기주식회사 Multi-layered ceramic capacitor and manufacturing method the same
JP6558084B2 (en) * 2015-06-05 2019-08-14 株式会社村田製作所 Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP6558083B2 (en) * 2015-06-05 2019-08-14 株式会社村田製作所 Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
US11715602B2 (en) * 2019-08-02 2023-08-01 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318059A (en) * 2002-04-25 2003-11-07 Kyocera Corp Layered ceramic capacitor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275272A (en) * 1991-03-19 1993-10-22 Nippon Steel Corp Method for forming terminal electrode of electronic ceramic component
JP3679529B2 (en) * 1996-11-15 2005-08-03 松下電器産業株式会社 Terminal electrode paste and multilayer ceramic capacitor
WO2005036571A1 (en) * 2003-10-08 2005-04-21 Tdk Corporation Electrode paste, ceramic electronic component and method for producing same
CN100511509C (en) * 2004-02-26 2009-07-08 京瓷株式会社 Conductive paste for via conductor, ceramic wiring board using the same, and method of manufacturing the same
CN1993784B (en) * 2004-08-27 2011-04-13 株式会社村田制作所 Multilayer ceramic capacitor and method for controlling equivalent series resistance
JP2007234800A (en) * 2006-02-28 2007-09-13 Tdk Corp Electronic component and manufacturing method thereof
JP4872085B2 (en) * 2007-03-13 2012-02-08 国立大学法人秋田大学 Copper-nickel-containing paste, multilayer ceramic electronic component, and method for producing copper-nickel-containing paste

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318059A (en) * 2002-04-25 2003-11-07 Kyocera Corp Layered ceramic capacitor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060331A (en) * 2012-09-19 2014-04-03 Tdk Corp Multilayer electronic component
JP2014078674A (en) * 2012-10-10 2014-05-01 Samsung Electro-Mechanics Co Ltd Multilayered ceramic electronic component and method of manufacturing the same
KR101444536B1 (en) * 2012-10-18 2014-09-24 삼성전기주식회사 Multi-Layered Ceramic Electronic Component And Manufacturing Method Thereof
US20160314902A1 (en) * 2015-04-21 2016-10-27 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and method of manufacturing the same
US10418180B2 (en) 2016-03-09 2019-09-17 Murata Manufacturing Co., Ltd. Electronic component and manufacturing method for the same
JP2019179874A (en) * 2018-03-30 2019-10-17 Jx金属株式会社 External electrode of ceramic laminate
JP7046679B2 (en) 2018-03-30 2022-04-04 Jx金属株式会社 External electrodes of ceramic laminate
JP2020155719A (en) * 2019-03-22 2020-09-24 株式会社村田製作所 Multilayer ceramic capacitor
CN111724991A (en) * 2019-03-22 2020-09-29 株式会社村田制作所 Multilayer ceramic capacitor
JP7081543B2 (en) 2019-03-22 2022-06-07 株式会社村田製作所 Multilayer ceramic capacitors
US11367574B2 (en) 2019-03-22 2022-06-21 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP5099609B2 (en) 2012-12-19
JPWO2010087221A1 (en) 2012-08-02
CN102105954A (en) 2011-06-22
CN102105954B (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5099609B2 (en) Multilayer electronic components
US9136058B2 (en) Laminated ceramic electronic component and manufacturing method therefor
KR101834747B1 (en) Laminated ceramic electronic component
JP4936087B2 (en) Multilayer positive temperature coefficient thermistor
JP5142090B2 (en) Ceramic multilayer electronic component and manufacturing method thereof
WO2014175034A1 (en) Multi-layer ceramic capacitor and method for manufacturing same
WO2013140903A1 (en) Ceramic electronic component
JP5527404B2 (en) Multilayer ceramic electronic components
JPWO2019059017A1 (en) Ceramic substrate manufacturing method, ceramic substrate, and module
JPH11243029A (en) Conducting paste for terminal and laminated ceramic capacitor
JP2012004189A (en) Multilayer ceramic capacitor
JP5780035B2 (en) Ceramic electronic components
JP5527405B2 (en) Multilayer ceramic electronic components
JP2023099276A (en) Laminate-type electronic component
JP2006202857A (en) Laminated ceramic electronic component and its manufacturing method
JP2022136816A (en) Ceramic electronic component
JP3744710B2 (en) Multilayer ceramic capacitor
JP5527400B2 (en) Multilayer ceramic electronic components
JP3981270B2 (en) Conductor pattern incorporated in multilayer substrate, multilayer substrate incorporating conductor pattern, and method of manufacturing multilayer substrate
JP5527403B2 (en) Multilayer ceramic electronic components
JP4753469B2 (en) Wiring board and manufacturing method thereof
JP2002298643A (en) Conductive paste for outer electrode and laminated ceramic capacitor
JP5429393B2 (en) Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component
KR102562429B1 (en) Conductive Paste and Multilayer Type Electronic Component
JP2001274035A (en) Conductive paste for laminated ceramic capacitor and laminated ceramic capacitor using it

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002204.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735691

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010548455

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10735691

Country of ref document: EP

Kind code of ref document: A1