WO2010074007A1 - 固体撮像素子およびその製造方法、電子情報機器 - Google Patents

固体撮像素子およびその製造方法、電子情報機器 Download PDF

Info

Publication number
WO2010074007A1
WO2010074007A1 PCT/JP2009/071180 JP2009071180W WO2010074007A1 WO 2010074007 A1 WO2010074007 A1 WO 2010074007A1 JP 2009071180 W JP2009071180 W JP 2009071180W WO 2010074007 A1 WO2010074007 A1 WO 2010074007A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
pixel
unit
state imaging
unit pixel
Prior art date
Application number
PCT/JP2009/071180
Other languages
English (en)
French (fr)
Inventor
裕史 岩田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/141,567 priority Critical patent/US8946611B2/en
Priority to CN2009801574886A priority patent/CN102334188B/zh
Publication of WO2010074007A1 publication Critical patent/WO2010074007A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/778Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02024Position sensitive and lateral effect photodetectors; Quadrant photodiodes

Definitions

  • the present invention relates to a solid-state imaging device composed of a semiconductor element that photoelectrically converts incident light to image and a method for manufacturing the same, and a digital video camera, a digital still camera, and the like that use the solid-state imaging device as an image input device in an imaging unit
  • the present invention relates to electronic information devices such as digital cameras, image input cameras such as surveillance cameras, scanner devices, facsimile devices, television telephone devices, and mobile phone devices with cameras.
  • CCD image sensors, CMOS image sensors, and the like are known as solid-state imaging devices that convert image light from a subject into electrical signals as image signals.
  • the CMOS image sensor includes a plurality of light receiving portions (a plurality of photodiodes) that generate signal charges by light irradiation, and an amplification transistor (MOS transistor) that reads the signal charges generated in the light receiving portions as imaging signals.
  • MOS transistor amplification transistor
  • Patent Document 1 discloses a conventional technique in which high-sensitivity pixels and low-sensitivity pixels are mounted.
  • a solid-state imaging device is disclosed.
  • FIG. 8 is a plan view of a partial imaging region showing a pixel arrangement for improving the low illuminance sensitivity in the conventional solid-state imaging device disclosed in Patent Document 1.
  • FIG. 8 is a plan view of a partial imaging region showing a pixel arrangement for improving the low illuminance sensitivity in the conventional solid-state imaging device disclosed in Patent Document 1.
  • the conventional solid-state imaging device described in Patent Document 1 is a pixel having a large area indicated by uppercase RGB and a pixel having a small area indicated by lowercase rgb, that is, a high-sensitivity photoelectric conversion element and a low-sensitivity photoelectric conversion element.
  • the sensitivity photoelectric conversion elements are arranged in a checkered pattern and are obtained by synthesizing the imaging signals from the adjacent high-sensitivity photoelectric conversion elements and low-sensitivity photoelectric conversion elements of the same color
  • the combined signal is a single pixel located at the center of gravity of two pixels It can be regarded as a pixel (indicated by “•” in FIG. 8), and is virtually a checkered image signal.
  • a Bayer array of pixels having a large area and a pixel having a small area in the same color pair is arranged. Therefore, the dynamic range can be expanded without substantially reducing the vertical and horizontal resolutions.
  • RGB Red, Green, and Blue
  • FIG. 9 (a) to 9 (c) are main part plan views showing stepwise the color filter forming process of the conventional solid-state imaging device disclosed in Patent Document 2.
  • FIG. 9 (a) to 9 (c) are main part plan views showing stepwise the color filter forming process of the conventional solid-state imaging device disclosed in Patent Document 2.
  • the G filter 201 is formed on the pixel area 200 sharing the four pixels so that G (green) is arranged in the Bayer arrangement of the three primary colors RGB.
  • the R filter 202 is formed so that R (red) is arranged in a Bayer arrangement among the three primary colors of RGB.
  • the B filter 203 is formed so that B (blue) is arranged in a Bayer arrangement among the three primary colors of RGB. In this way, a 2 ⁇ 2 unit (4-pixel sharing) pixel array is formed in a two-dimensional Bayer array.
  • Patent Document 1 it is necessary to form the high-sensitivity photoelectric conversion element and the low-sensitivity photoelectric conversion element in separate processes, which is disadvantageous in terms of manufacturability. .
  • the present invention solves the above-described conventional problems, and a pixel separation electrode is provided in a pixel separation region, and a predetermined voltage is applied to the pixel separation electrode so that signal charges can be shared between adjacent pixels. Therefore, there is no need to form a high-sensitivity photoelectric conversion element and a low-sensitivity photoelectric conversion element in separate processes as in the prior art, and the solid-state imaging element can be manufactured more easily and the sensitivity at low illuminance can be greatly improved.
  • An object of the present invention is to provide an electronic information device such as a mobile phone device with a camera using the solid-state imaging device as an image input device in an imaging unit.
  • the present invention solves the above-mentioned conventional problems by disposing a pixel separation electrode in a pixel separation region and applying a voltage to the pixel separation electrode so that signal charges can be shared between adjacent pixels.
  • a solid-state imaging device capable of enlarging the area of a color filter by gathering a plurality of pixels and greatly reducing the accuracy of the overlap portion of each color filter and a manufacturing method thereof
  • An object of the present invention is to provide an electronic information device such as a mobile phone device with a camera using the solid-state imaging device as an image input device in an imaging unit.
  • the solid-state imaging device of the present invention is a solid-state imaging device in which a plurality of unit pixel portions each having a light receiving portion that generates a signal charge by light irradiation are two-dimensionally arranged on the surface side of a semiconductor substrate or semiconductor layer. Between the four unit pixel portions adjacent to each other, a semiconductor region opposite to the light receiving portion and a pixel separation electrode thereon are disposed, and a predetermined voltage is applied to the pixel separation electrode to thereby provide the four unit pixels.
  • the signal charges can be shared between the parts, and the above object can be achieved.
  • a light receiving portion that generates a signal charge by light irradiation is provided on the surface side of the semiconductor substrate or semiconductor layer, and the signal charge from the light receiving portion is adjacent to the light receiving portion.
  • the light receiving portion is formed in a square or rectangle in plan view, and does not contact the charge transfer means.
  • a reverse conductivity type semiconductor region and a pixel separation electrode thereon are disposed, and a predetermined voltage is applied to the pixel separation electrode.
  • the four unit pixel portions in the solid-state imaging device of the present invention are adjacent 2 ⁇ 2 units.
  • the reverse conductivity type semiconductor region and the pixel separation electrode thereon in the solid-state imaging device of the present invention have a cross shape in plan view formed between the four unit pixel portions.
  • the solid-state imaging device according to the present invention, red corresponding to a predetermined color arrangement is provided via an interlayer insulating film on the pixel region so as to correspond to each of the adjacent unit pixel portions including the four unit pixel portions.
  • a filter, a green filter, and a blue filter are formed.
  • the solid-state imaging device of the present invention has a two-dimensional shape in which a plurality of unit pixel portions each provided with a light receiving portion that generates signal charges by light irradiation on the surface side of a semiconductor substrate or semiconductor layer.
  • an interlayer insulating film on the pixel region is provided so as to correspond to each of adjacent unit pixel units including four unit pixel units adjacent to the two sides of the light receiving unit and adjacent to each other.
  • a red filter, a green filter, and a blue filter are formed in a predetermined color arrangement, whereby the above object is achieved.
  • Claims 1 and 2 are defined as dependent claims, and preferably, in the solid-state imaging device of the present invention, between the four unit pixel portions adjacent to each other, the light receiving portion has a reverse conductivity type semiconductor region and pixel separation thereon.
  • each of the light receiving portions is formed in a square shape or a rectangular shape in plan view, and is adjacent to two sides of the light receiving portion that are not in contact with the charge transfer means and adjacent to each other.
  • a semiconductor region opposite to the light receiving part and a pixel separation electrode thereon are disposed, and a signal charge is generated between the four unit pixel parts by applying a predetermined voltage to the pixel separation electrode. It can be shared.
  • the predetermined color arrangement in the solid-state imaging device of the present invention is such that when the color of the Bayer arrangement of the unit pixel unit is replaced in units of four pixels and two G pixels are arranged in an oblique direction, One R pixel and one B pixel are arranged in the other oblique direction, the arrangement order of the R pixel and the B pixel is alternately reversed, and the oblique direction of the two G pixels is also alternately reversed. It has become.
  • the unit charge unit is composed of four unit pixel units that share a floating diffusion unit in which the signal charge of the light receiving unit in the solid-state imaging device of the present invention is transferred through the charge transfer unit. .
  • the colors of the four unit pixel portions in the solid-state imaging device of the present invention are exchanged so that the four unit pixel portions adjacent to each other in the vertical and horizontal directions and adjacent to each other have the same color.
  • the unit pixel portion of the filter is configured.
  • the signal charge accumulated in the adjacent unit pixel portion corresponding to the same color filter composed of the four unit pixel portions applies a predetermined voltage to the pixel separation electrode at low illuminance.
  • charge is transferred from the charge transfer means as one pixel, and by applying a predetermined voltage to the pixel separation electrode at high illuminance, the four unit pixel portions are independent of each other. Charge transfer is performed from the charge transfer means corresponding to the unit pixel portion.
  • charge transfer is performed from one charge transfer unit for each adjacent unit pixel portion corresponding to the same color filter including the four unit pixel portions.
  • a same color filter is formed above the adjacent unit pixel portion composed of the four adjacent unit pixel portions.
  • the pixel separation electrode in the solid-state imaging device of the present invention comprises a gate oxide film and a polysilicon electrode thereon.
  • the charge transfer means in the solid-state imaging device of the present invention is provided at one corner of the light receiving unit.
  • the solid-state imaging device of the present invention is a CMOS solid-state imaging device in which the signal charge transferred from the light receiving unit to the floating diffusion unit is converted into a voltage signal and then amplified and output as an imaging signal. It is.
  • the method for manufacturing a solid-state imaging device according to the present invention is a method for manufacturing the solid-state imaging device according to the present invention, wherein the four unit pixel units are adjacent to two sides of the light receiving unit not in contact with the charge transfer means and adjacent to each other.
  • a reverse conductive type semiconductor region forming step for forming a reverse conductive type semiconductor region with respect to the light receiving portion, and a polysilicon electrode is formed on the reverse conductive type semiconductor region via the gate oxide film as the pixel isolation electrode.
  • a pixel separation electrode step, and thereby the above object is achieved.
  • a predetermined color arrangement is provided via an interlayer insulating film on the pixel region so as to correspond to each of adjacent unit pixel units including four unit pixel units in the method for manufacturing a solid-state imaging device of the present invention. It further has a color filter forming step of sequentially forming any one of a red filter, a green filter and a blue filter.
  • the electronic information device of the present invention uses the solid-state imaging device of the present invention as an image input device in an imaging unit, and thereby achieves the above object.
  • a semiconductor region opposite to the light receiving portion and a pixel separation electrode thereon are disposed, and a predetermined voltage is applied to the pixel separation electrode.
  • the signal charge can be shared between the two unit pixel portions.
  • a red filter, a green filter, and a blue filter are formed with a predetermined color arrangement through the interlayer insulating film on the pixel region so as to correspond to each of the adjacent unit pixel portions including the four unit pixel portions. ing.
  • a pixel separation electrode is arranged in the pixel separation region, and a predetermined voltage is applied to the pixel separation electrode so that signal charges can be shared between adjacent pixels.
  • the element and the low-sensitivity photoelectric conversion element do not need to be formed in separate steps, and can be manufactured more easily. At this time, it is possible to greatly improve the sensitivity at the time of low illuminance. Images can be easily captured in darker places.
  • a pixel separation electrode in the pixel separation region and applying a voltage to the pixel separation electrode so that signal charges can be shared between adjacent pixels, a plurality of pixels can be arranged even if pixel miniaturization progresses.
  • the area of the color filter is increased, and the accuracy of the overlap portion of each color filter is also eased.
  • the alignment accuracy of the color filter is relaxed by forming the four adjacent unit pixel portions with the same color filter, and the pixel separation electrode is formed in the four adjacent unit pixel portions, and the bias application is performed at low illuminance.
  • Signal charges can be shared, the effective photodiode area can be improved, and the sensitivity at dark low illuminance can be greatly improved.
  • the solid-state imaging device of the present invention since a signal charge can be shared between adjacent pixels by applying a voltage to the pixel separation electrode, sensitivity according to light illuminance can be obtained by bias control of the pixel separation region, In addition, it is possible to reduce the alignment accuracy in the production of the color filter. Therefore, since the solid-state imaging device of the present invention has excellent photodiode characteristics, the solid-state imaging device can be widely used in electronic information devices that can use the solid-state imaging device, such as video cameras, digital cameras, and camera-equipped mobile phones.
  • FIG. 2 is a plan view in which four-pixel shared image unit pixel portions in FIG. 1 are arranged in a matrix.
  • FIG. 3 is a longitudinal sectional view taken along line AA ′ of FIG. 2.
  • FIG. 3A is a cross-sectional potential diagram along line AA ′ in FIG. 2, where FIG. 2A is a cross-sectional potential diagram when the gate electrode is in an OFF state at high illuminance, and FIG. It is a cross-sectional potential diagram .
  • (A) is a pixel arrangement
  • (b) is a pixel arrangement
  • (A)-(c) is a top view which shows the manufacture process of the color filter formation process of the solid-state image sensor concerning this invention.
  • Embodiment 2 of this invention it is a block diagram which shows the schematic structural example of the electronic information device which used the solid-state imaging device containing the solid-state image sensor of Embodiment 1 of this invention for the imaging part.
  • CMOS image sensor of the first embodiment of the solid-state imaging device when applied to a CMOS image sensor, and the CMOS image sensor of the first embodiment of the solid-state imaging device is used as an image input device in an imaging unit, for example, a camera-equipped mobile phone Embodiment 2 of an electronic information device such as a telephone device will be described in detail with reference to the drawings.
  • FIG. 1 is a plan view showing an example of a unit pixel portion in a CMOS image sensor that is Embodiment 1 of the present invention.
  • a unit pixel unit 1 in the CMOS image sensor as the solid-state imaging device 30 of Embodiment 1 includes a plurality of light receiving units (photodiodes 2) that receive incident light and perform photoelectric conversion, and the photodiodes 2.
  • a charge transfer transistor 3 serving as a charge transfer means provided adjacently and a floating diffusion section 4 that temporarily accumulates the signal charge transferred by the charge transfer transistor 3 and converts it into a voltage signal.
  • the imaging signal is amplified by an amplification transistor according to the voltage level of the voltage signal and output to the signal line.
  • the floating diffusion unit 4 is commonly used as a transfer destination of each pixel signal of the image unit pixel unit 5. However, each pixel signal can be sequentially and independently transferred according to the operation timing of the charge transfer transistor 3.
  • the floating diffusion portion 4 is shared by four pixels.
  • the image unit pixel unit 5 shares four pixels, and alternately replaces colors from the Bayer array in RGB.
  • two G pixels are arranged in an oblique direction (upper right to lower left)
  • one R pixel and One B pixel is arranged in a reverse diagonal direction (from upper left to lower right).
  • the arrangement order of the R pixel and the B pixel is alternately reversed, and the arrangement of the two G pixels is alternately opposite to the oblique direction.
  • FIG. 2 is a plan view in which the 4-pixel shared image unit pixel portions 5 of FIG. 1 are arranged in a matrix.
  • the colors of the unit pixel units 1 in the Bayer array are exchanged so that the image unit pixel units 5 are
  • adjacent unit pixel units 6 each including four unit pixel units 1 surrounded by a chain line are formed with the same color in the unit pixel units 1 adjacent to the left and right.
  • the adjacent unit pixel portions 6 surrounded by the one-dot chain line are all the same color G color (or R color or B color), but in a cross shape in plan view at the boundary of four pixels (here, in the case of the end portion, it is a T shape)
  • the pixel separation electrode 7 is formed on the pixel separation region (contrast type region opposite to the light receiving portion).
  • one of the three primary colors of RGB is surrounded by a solid line of 2 ⁇ 2 units in a wide Bayer array (or a color array modified from the Bayer array) with four adjacent areas adjacent to each other. It can be regarded as the macro unit pixel portion 8.
  • the unit pixel portion 1 adjacent to the pixel separation electrode 7 having a cross shape in plan view has the same color filter with a large area.
  • the color of each unit pixel unit 1 in the Bayer array is alternately changed between the two G colors in the diagonal direction, that is, the upper right
  • the two B colors can be made to face each other on the left and right.
  • the color of each unit pixel unit 1 in the Bayer array is alternately changed between the two G colors in the diagonal direction, that is, the upper right
  • the two G colors from the left to the lower left are changed to the two G colors from the upper left to the lower right, and the B color from the upper right to the lower left is displayed from the diagonal arrangement of the R and B colors from the upper left to the lower right.
  • the two B colors can be made to face each other on the right side.
  • the two G colors in the diagonal direction are alternately switched, that is, from the two G colors from the upper left to the lower right.
  • two B colors can be made to oppose up and down on the left side mutually.
  • the four B colors can be collected adjacent to each other.
  • four R colors can be collected adjacent to each other, and four G colors can be collected adjacent to each other.
  • the colors of the unit pixel portions 1 in the Bayer array can be exchanged to collect four identical colors adjacent to each other.
  • a charge accumulation region (photodiode 2 as a light receiving portion) for accumulating signal charges generated by light irradiation, and the signal charge of the photodiode 2 is transferred to the floating diffusion portion 4.
  • 2 is a CMOS image sensor as a solid-state imaging device 30 in which a plurality of unit pixel portions 1 each having a charge transfer transistor 3 for transferring charges are arranged two-dimensionally, and each of the plurality of photodiodes 2 is square or rectangular in plan view.
  • a pixel separation electrode 7 By disposing a pixel separation electrode 7 between the unit pixel portions 1 adjacent to the two sides of the photodiode 2 that are not in contact with the charge transfer transistor 3, and applying a predetermined voltage to the pixel separation electrode 7, The signal charge is shared between the unit pixel portions 1 adjacent to the two sides of the photodiode 2 not in contact with the charge transfer transistor 3. It can be. In order to form a captured image with RGB colors at low illuminance, it is expanded to 2 ⁇ 2 units (4 pixels), and the four unit pixel portions 1 of the same color are integrated as one pixel with a large area, The effective photodiode size can be expanded up to 4 times, and the accumulated signal charge amount can be increased 4 times.
  • FIG. 3 is a longitudinal sectional view taken along line AA ′ of FIG.
  • an element isolation region 11 exists between different color pixels (photodiode 21 and photodiode 22), and a pixel isolation region exists between the same color pixels (photodiode 21 and photodiode 21). There are 12.
  • the element isolation region 11 is generally formed by an STI (Shallow Trench Isolation) method
  • the pixel isolation region 12 is formed by ion implantation having a conductivity type different from that of the photodiode 21.
  • a gate electrode (pixel separation electrode 7) made of a gate oxide film 14 and a polysilicon film 15 thereon is formed on the surface 13 side of the silicon substrate in the pixel separation region 12.
  • the thickness of the gate oxide film 14 can be 60 to 70 angstroms
  • the thickness of the polysilicon film 15 can be 1500 to 2000 angstroms.
  • FIG. 4A and 4B are cross-sectional potential diagrams taken along the line AA 'in FIG. 2.
  • FIG. 4A is a cross-sectional potential diagram when the gate electrode is in an OFF state at high illuminance
  • FIG. It is a cross-sectional potential diagram in the case of a state .
  • the gate electrode (pixel separation electrode 7) since the gate electrode (pixel separation electrode 7) is in the ON state, the depletion layer extends from the surface 13 side of the silicon substrate immediately below the gate electrode (pixel separation electrode 7), and the photodiode 21 and the photodiode 21 adjacent thereto. The potential barrier indicated by the broken line between them disappears , and the signal charge (electron e ⁇ in the figure) of the photodiode 21 and the adjacent photodiode 21 is shared.
  • the gate voltage applied to the gate electrode (pixel separation electrode 7) is a voltage corresponding to the potential depth of the photodiode 2, and generally corresponds to, for example, 2.5 to 3.0V.
  • FIG. 5A is a pixel arrangement diagram showing a charge transfer direction between photodiodes in an operation at high illuminance
  • FIG. 5B is a pixel arrangement showing a charge transfer direction between photodiodes in an operation at low illuminance.
  • the gate electrode (pixel separation electrode 7) is in an OFF state, so that the four unit pixel units 1 accumulated in the photodiode 21 and the adjacent photodiode 21 are provided.
  • Each signal charge is transferred in the direction of the charge transfer transistor 3 adjacent to each of the unit pixel portions 1 of the adjacent unit pixel portion 6 of the same color all surrounded by a chain line.
  • the gate electrode (pixel separation electrode 7) is in an ON state, so that the signal charges of the adjacent four pixels of the same color (four unit pixel portions 1) are combined. Then, charges are transferred simultaneously in the direction of the charge transfer transistor 3 at the upper right of the adjacent unit pixel portion 6 of the same color all surrounded by a chain line.
  • the output image is output at a pitch that matches the charge transfer transistor 3, that is, every two pixels. Since this thinning-out operation is performed by a sequence operation of peripheral circuits (such as a driver circuit) around the imaging region in the center, the description thereof is omitted in the description of the present invention.
  • the signal charges of four adjacent pixels of the same color are read from the charge transfer transistor 3 at the upper right one position by the image unit pixel unit 5 sharing four pixels from the four unit pixel units 1.
  • the image unit pixel unit 5 sharing four pixels from the four unit pixel units 1.
  • 6 (a) to 6 (c) are plan views showing the manufacturing process of the color filter forming process of the solid-state imaging device according to the present invention.
  • a green filter 31 is formed on a pixel region 34 in which a plurality of unit pixel portions 1 are arranged two-dimensionally.
  • a green filter 31 is formed in the green position of the Bayer array via an interlayer insulating film so as to correspond to the area of the solid line that is slightly larger than the area where four photodiodes 21 are adjacent to each other.
  • This Green filter 31 is arranged in the diagonally upper right direction. At this time, the green filter 31 has an area that is four times larger because adjacent pixel portions have the same color, and the restriction on overlap is greatly relaxed.
  • a Red filter 32 is formed on the pixel region 34 in which the plurality of unit pixel portions 1 are arranged two-dimensionally.
  • a red filter 32 is formed in the red position of the Bayer array via an interlayer insulating film so as to correspond to the area of the solid line that is slightly larger than the area where four photodiodes 22 are adjacent to each other.
  • the red filter 32 has an area that is four times larger because the adjacent pixel portions have the same color, and the restriction on overlap is greatly relaxed.
  • the Blue filter 33 is formed on the pixel region 34 in which the plurality of unit pixel portions 1 are arranged in a two-dimensional manner.
  • a blue filter 33 is formed at the blue position of the Bayer array via an interlayer insulating film so as to correspond to the area of the solid line that is slightly larger than the area where four photodiodes 23 are adjacent to each other.
  • the Red filter 32 and the Blue filter 33 can be widely formed in the same color pixel region as the Green filter 31.
  • the blue filter 33 has an area as large as four times because the adjacent pixel portions have the same color, and the restriction on overlap is greatly relaxed.
  • a negative dye-based green color resist film in which a green pigment is contained in a negative resist is applied on a planarizing film that is an interlayer insulating film, exposed to a predetermined pattern, developed, and formed into a Bayer array green pixel.
  • a single-layer Green filter 31 is formed at the corresponding position.
  • a negative type dye-based red color resist film containing a red pigment is applied to the negative type resist, and a predetermined pattern is exposed and developed to form a Red filter 32 at a position corresponding to a red pixel in the Bayer array. To do.
  • a negative dye-based blue color resist film containing a blue dye is applied to the negative resist, exposed to a predetermined pattern and developed, and a single-layer Blue filter 33 is formed at a position corresponding to a blue pixel in the Bayer array.
  • a target color filter including the Green filter 31, the Red filter 32, and the Blue filter 33 can be formed.
  • the manufacturing method of the solid-state imaging device 30 is adjacent to two sides of the photodiode 2 that is not in contact with the charge transfer transistor 3 as an example.
  • a reverse conductive type semiconductor region forming step for forming a reverse conductive type semiconductor region with respect to the photodiode 2 between the four unit pixel portions 1 adjacent to each other, and a gate oxide film 14 on the reverse conductive type semiconductor region via the gate oxide film 14
  • a pixel separation electrode step for forming the polysilicon electrode 15 as the pixel separation electrode 7 and an adjacent unit pixel portion composed of the four adjacent unit pixel portions 1 are respectively interposed via an interlayer insulating film on the pixel region 34.
  • a color filter forming step of sequentially forming any one of the red filter 32, the green filter 31, and the blue filter 33 in a predetermined color arrangement. It is.
  • the pixel isolation electrode 7 composed of the gate oxide film 14 and the polysilicon electrode 15 is disposed between the four pixels adjacent to the two sides of the photodiode 2 not in contact with the charge transfer transistor 3.
  • a predetermined bias voltage can be applied to the pixel separation electrode 7 to share signal charges between adjacent pixels for every four pixels of the same color.
  • the four shared pixels are considered to be effectively expanded photodiodes 2, and by forming adjacent pixels with the same color, it is considered that the signal charge corresponding to each color is increased by sharing. be able to.
  • high illuminance and low illuminance can be switched depending on whether or not a bias voltage is applied to the pixel separation electrode 7, and the dynamic range can be widened.
  • the solid-state imaging device 30 of the first embodiment has excellent photodiode characteristics, the solid-state imaging device 30 can be widely used in electronic information devices that can use the solid-state imaging device, such as video cameras, digital cameras, and camera-equipped mobile phones. Can do.
  • FIG. 7 is a block diagram illustrating a schematic configuration example of an electronic information device using, as an imaging unit, a solid-state imaging device including the solid-state imaging element 30 according to the first embodiment of the present invention as the second embodiment of the present invention.
  • an electronic information device 90 includes a solid-state imaging device 91 that obtains a color image signal by processing each image signal from the solid-state imaging device 30 according to the first embodiment, and the solid-state imaging device 91.
  • a memory unit 92 such as a recording medium that can record data after a predetermined signal processing for recording a color image signal from the recording medium, and a liquid crystal after a predetermined signal processing for display of the color image signal from the solid-state imaging device 91
  • Display means 93 such as a liquid crystal display device which can be displayed on a display screen such as a display screen, and a transmission / reception device which can perform communication processing after performing predetermined signal processing for color image signals from the solid-state imaging device 91 for communication
  • a communication means 94 such as a printer and an image of a printer or the like that can perform print processing after performing predetermined print signal processing for color image signals from the solid-state imaging device 91 for printing.
  • the electronic information device 90 is not limited to this, but in addition to the solid-state imaging device 91, at least one of a memory unit 92, a display unit 93, a communication unit 94, and an image output unit 95 such as a printer. You may have.
  • the electronic information device 90 includes, for example, a digital camera such as a digital video camera and a digital still camera, an in-vehicle camera such as a surveillance camera, a door phone camera, and an in-vehicle rear surveillance camera, and a video phone camera.
  • a digital camera such as a digital video camera and a digital still camera
  • an in-vehicle camera such as a surveillance camera, a door phone camera, and an in-vehicle rear surveillance camera
  • a video phone camera includes, for example, a digital camera such as a digital video camera and a digital still camera
  • an in-vehicle camera such as a surveillance camera, a door phone camera, and an in-vehicle rear surveillance camera
  • a video phone camera such as an image input camera, a scanner device, a facsimile device, a camera-equipped mobile phone device, and a portable terminal device (PDA) is conceivable.
  • PDA portable terminal device
  • the second embodiment on the basis of the color image signal from the solid-state imaging device 91, it is displayed on the display screen, or is printed out on the paper by the image output means 95. (Printing), communicating this as communication data in a wired or wireless manner, performing a predetermined data compression process in the memory unit 92 and storing it in a good manner, or performing various data processings satisfactorily Can do.
  • Print communicating this as communication data in a wired or wireless manner, performing a predetermined data compression process in the memory unit 92 and storing it in a good manner, or performing various data processings satisfactorily Can do.
  • a pixel-conducting electrode is provided between the four unit pixel units adjacent to each other by disposing a reverse-conductivity type semiconductor region and a pixel separation electrode thereon from the light-receiving unit.
  • a predetermined voltage By applying a predetermined voltage to the signal unit, signal charges can be shared among the four unit pixel portions.
  • a red filter, a green filter, and a blue filter are formed with a predetermined color arrangement through the interlayer insulating film on the pixel region so as to correspond to each of the adjacent unit pixel portions including the four unit pixel portions. ing.
  • a pixel separation electrode is arranged in the pixel separation region, and a predetermined voltage is applied to the pixel separation electrode so that signal charges can be shared between adjacent pixels. It is not necessary to form the device and the low-sensitivity photoelectric conversion device in separate steps, and the object of the present invention can be achieved, which can be manufactured more easily and can greatly improve the sensitivity at low illuminance.
  • the object of the present invention can be achieved, which can be manufactured more easily and can greatly improve the sensitivity at low illuminance.
  • a pixel separation electrode in the pixel separation region and applying a voltage to the pixel separation electrode so that signal charges can be shared between adjacent pixels, a plurality of pixels can be arranged even if pixel miniaturization progresses.
  • the object of the present invention can be achieved in which the area of the color filter can be increased collectively and the accuracy of the overlap portion of each color filter can be greatly relaxed.
  • the present invention relates to a solid-state imaging device composed of a semiconductor device that photoelectrically converts incident light to image it, a manufacturing method thereof, and a solid-state imaging device manufactured by this manufacturing method as an image input device, for example, a digital image sensor.
  • image input cameras such as surveillance cameras, scanner devices, facsimile devices, television telephone devices, camera-equipped mobile phone devices, etc.
  • voltage is applied to the pixel separation electrode. Since the signal charge can be shared between adjacent pixels by applying, sensitivity according to the light illuminance can be obtained by bias control of the pixel separation region, and alignment accuracy in color filter manufacturing can be eased Can do. Therefore, since the solid-state imaging device of the present invention has excellent photodiode characteristics, the solid-state imaging device can be widely used in electronic information devices that can use the solid-state imaging device, such as video cameras, digital cameras, and camera-equipped mobile phones.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Optical Filters (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

簡易な製造方法でカラーフィルタを形成し、画素分離電極へのバイアス印加により低照度感度の向上を可能とする。半導体基板または半導体層の表面側に、光照射により信号電荷を発生する受光部を有する複数の単位画素部が二次元状に配設された固体撮像素子において、隣接単位画素部6を同色で形成することによりカラーフィルタのアライメント精度の緩和を行い、隣接単位画素部6内に画素分離電極7を形成して低照度時にバイアス印加による信号電荷の共有を行い、実効的なフォトダイオード面積を向上させることができる。

Description

固体撮像素子およびその製造方法、電子情報機器
 本発明は、入射光を光電変換して撮像する半導体素子で構成された固体撮像素子およびその製造方法、この固体撮像素子を画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、監視カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、テレビジョン電話装置、カメラ付き携帯電話装置などの電子情報機器に関する。
 従来、被写体からの画像光を画像信号として電気信号に変換する固体撮像素子としては、CCD型イメージセンサやCMOSイメージセンサなどが知られている。このうち、CMOSイメージセンサは、光照射により信号電荷を発生する複数の受光部(複数のフォトダイオード)と、この受光部で発生した信号電荷を撮像信号として読み出す増幅用のトランジスタ(MOSトランジスタ)とが共通基板上に設けられており、消費電力が少なく、しかも、システムLSIなどの標準CMOSプロセス技術を利用することにより低コスト化が可能であり、汎用性があるという利点を有している。
 このようなCMOSイメージセンサにおいては、近年の画素の縮小化に伴って、低照度時の感度を確保することが重要であり、特許文献1には、高感度画素と低感度画素を搭載した従来の固体撮像素子が開示されている。
 図8は、特許文献1に開示されている従来の固体撮像素子における低照度感度改善のための画素配置を示す一部撮像領域の平面図である。
 図8に示すように、特許文献1に記載されている従来の固体撮像素子は、大文字RGBで示す面積の大きい画素と、小文字rgbで示す面積の小さい画素、即ち、高感度光電変換素子と低感度光電変換素子がそれぞれ市松状に配列されており、同色で隣接する高感度光電変換素子と低感度光電変換素子による撮像信号を合成して得る場合、合成信号は2画素の重心に位置する単独画素(図8では「・」で示している)と見なすことができ、仮想的に市松状配列の画像信号となる。大きい面積の画素と小さい面積の画素とを同色の対にしたものをベイヤー配列している。したがって、縦方向と横方向の解像度を実質的に低下させることなくダイナミックレンジを拡大させることができる。
 また、CMOSイメージセンサにおいては、画像を合成する際に、RGB(それぞれRed、Green、Blue)の3原色カラーフィルタを使用することが一般的に知られており、このことが特許文献2などで紹介されている。
 図9(a)~図9(c)は、特許文献2に開示されている従来の固体撮像素子のカラーフィルター形成工程を段階的に示す要部平面図である。
 まず、図9(a)に示すように、4画素共有の画素領域200上に、RGBの3原色のうちのベイヤー配列でG(緑色)が配設されるように、Gフィルタ201を形成する。次に、図9(b)に示すように、RGBの3原色のうちのベイヤー配列でR(赤色)が配設されるように、Rフィルタ202を形成する。その後、図9(c)に示すように、RGBの3原色のうちのベイヤー配列でB(青色)が配設されるように、Bフィルタ203を形成する。このようにして、二次元状にベイヤー配列された2×2単位(4画素共有)の画素アレイが形成される。
特開2004-336469号公報 特開2000-294758号公報
 しかしながら、特許文献1に開示された従来の固体撮像素子では、高感度光電変換素子と低感度光電変換素子を別工程で形成する必要が有り、製造容易性の面で不利になるという問題がある。
 特許文献2に開示された従来の固体撮像素子では、画素の微細化に伴って、クロストークなどの問題で、各色フィルタのオーバーラップ部に対して高い精度が要求され、製造上の制約が発生するという問題がある。
 本発明は、上記従来の問題を解決するもので、画素分離領域に画素分離電極を配設し、画素分離電極に所定の電圧を印加して、隣接する画素間で信号電荷を共有可能とすることにより、従来のように高感度光電変換素子と低感度光電変換素子を別工程で形成する必要がなく、より容易に製造でき、低照度時の感度を大幅に向上させることができる固体撮像素子およびその製造方法、この固体撮像素子を画像入力デバイスとして撮像部に用いた例えばカメラ付き携帯電話装置などの電子情報機器を提供することを目的とする。
 本発明は、上記従来の問題を解決するもので、画素分離領域に画素分離電極を配設し、画素分離電極に電圧を印加して、隣接する画素間で信号電荷を共有可能とすることにより、画素の微細化が進んでも、複数画素をひとまとめにして色フィルタの面積を大きくすることができて、各色フィルタのオーバーラップ部の精度を大幅に緩和することができる固体撮像素子およびその製造方法、この固体撮像素子を画像入力デバイスとして撮像部に用いた例えばカメラ付き携帯電話装置などの電子情報機器を提供することを目的とする。
 本発明の固体撮像素子は、半導体基板または半導体層の表面側に、光照射により信号電荷を発生する受光部を有する複数の単位画素部が二次元状に配設された固体撮像素子において、互いに隣接する4つの単位画素部間に、該受光部とは逆導電型半導体領域およびその上の画素分離電極を配設し、該画素分離電極に所定の電圧を印加することにより該4つの単位画素部間において信号電荷が共有化可能とされているものであり、そのことにより上記目的が達成される。
 また、本発明の固体撮像素子は、半導体基板または半導体層の表面側に、光照射により信号電荷を発生する受光部が設けられ、該受光部に隣接して、該受光部からの信号電荷を電荷転送する電荷転送手段が設けられた複数の単位画素部が二次元状に配設された固体撮像素子において、該受光部は平面視正方形または矩形に形成され、該電荷転送手段に接しない受光部の2辺に隣接しかつ互いに隣接する4つの単位画素部間に、該受光部とは逆導電型半導体領域およびその上の画素分離電極を配設し、該画素分離電極に所定の電圧を印加することにより該4つの単位画素部間において信号電荷が共有化可能とされているものであり、そのことにより上記目的が達成される。
 さらに、好ましくは、本発明の固体撮像素子における4つの単位画素部は、隣接した2×2単位である。
 さらに、好ましくは、本発明の固体撮像素子における逆導電型半導体領域およびその上の画素分離電極は、前記4つの単位画素部間に形成された平面視十字状である。
 さらに、好ましくは、本発明の固体撮像素子において、前記4つの単位画素部からなる隣接単位画素部毎にそれぞれ対応するように、画素領域上の層間絶縁膜を介して、所定の色配列で赤色フィルタ、緑色フィルタおよび青色フィルタが形成されている。これをメインクレームにする場合に、本発明の固体撮像素子は、半導体基板または半導体層の表面側に、光照射により信号電荷を発生する受光部が設けられた複数の単位画素部が二次元状に配設された固体撮像素子において、該受光部の2辺に隣接しかつ互いに隣接する4つの単位画素部からなる隣接単位画素部毎にそれぞれ対応するように、画素領域上の層間絶縁膜を介して、所定の色配列で赤色フィルタ、緑色フィルタおよび青色フィルタが形成されているものであり、そのことにより上記目的が達成される。請求項1,2を従属項として、また、好ましくは、本発明の固体撮像素子において、互いに隣接する4つの単位画素部間に、該受光部とは逆導電型半導体領域およびその上の画素分離電極を配設し、該画素分離電極に所定の電圧を印加することにより該4つの単位画素部間において信号電荷が共有化可能とされている。また、好ましくは、本発明の固体撮像素子において、該受光部はそれぞれ平面視正方形または矩形に形成され、該電荷転送手段に接しない受光部の2辺に隣接しかつ互いに隣接する4つの単位画素部間に、該受光部とは逆導電型半導体領域およびその上の画素分離電極を配設し、該画素分離電極に所定の電圧を印加することにより該4つの単位画素部間において信号電荷が共有化可能とされている。
 さらに、好ましくは、本発明の固体撮像素子における所定の色配列は、前記単位画素部のベイヤー配列の色を4画素単位で入れ替えて、一方斜め方向に二つのG画素が配置される場合に、一つのR画素と一つのB画素とが他方斜め方向に配置され、該R画素と該B画素の配列順序は交互に逆になり、該二つのG画素の斜め方向も交互に逆の斜め方向になっている。
 さらに、好ましくは、本発明の固体撮像素子における受光部の信号電荷が前記電荷転送手段を介して電荷転送されるフローティングディフュージョン部が共有化される4つの単位画素部を1単位として構成されている。
 さらに、好ましくは、本発明の固体撮像素子における4つの単位画素部のベイヤー配列の色を入れ替えて、該4つの単位画素部に上下および左右に隣接しかつ互いに隣接する4つの単位画素部を同色フィルタの単位画素部として構成する。
 さらに、好ましくは、本発明の固体撮像素子において、前記4つの単位画素部からなる同色フィルタに対応する隣接単位画素部に蓄積された信号電荷は、低照度時に前記画素分離電極に所定の電圧を印加することにより1画素として一体化されて前記電荷転送手段から電荷転送が為され、高照度時に前記画素分離電極に所定の電圧を印加しないことにより該4つの単位画素部がそれぞれ独立して、該単位画素部に対応した電荷転送手段から電荷転送が為される。
 さらに、好ましくは、本発明の固体撮像素子において、低照度時には、前記4つの単位画素部からなる同色フィルタに対応した隣接単位画素部毎に1箇所の電荷転送手段から電荷転送が為される。
 さらに、好ましくは、本発明の固体撮像素子において、前記隣接する4つの単位画素部からなる隣接単位画素部上方には同色フィルタが形成されている。
 さらに、好ましくは、本発明の固体撮像素子における画素分離電極はゲート酸化膜およびその上のポリシリコン電極からなっている。
 さらに、好ましくは、本発明の固体撮像素子における電荷転送手段は、前記受光部の1つの角部に設けられている。
 さらに、好ましくは、本発明の固体撮像素子は、前記受光部からフローティングディフュージョン部に電荷転送された信号電荷は、電圧信号に変換された後に増幅されて撮像信号として出力されるCMOS型固体撮像素子である。
 本発明の固体撮像素子の製造方法は、本発明の上記固体撮像素子を製造する方法であって、前記電荷転送手段に接しない受光部の2辺に隣接しかつ互いに隣接する4つの単位画素部間に、該受光部とは逆導電型半導体領域を形成する逆導電型半導体領域形成工程と、該逆導電型半導体領域上にゲート酸化膜を介してポリシリコン電極を前記画素分離電極として形成する画素分離電極工程とを有するものであり、そのことにより上記目的が達成される。
 また、好ましくは、本発明の固体撮像素子の製造方法における4つの単位画素部からなる隣接単位画素部毎にそれぞれ対応するように、画素領域上の層間絶縁膜を介して、所定の色配列で赤色フィルタ、緑色フィルタおよび青色フィルタのうちのいずれかから順次形成するカラーフィルタ形成工程を更に有する。
 本発明の電子情報機器は、本発明の上記固体撮像素子を画像入力デバイスとして撮像部に用いたものであり、そのことにより上記目的が達成される。
 上記構成により、以下、その作用を説明する。
 本発明においては、互いに隣接する4つの単位画素部間に、受光部とは逆導電型半導体領域およびその上の画素分離電極を配設し、画素分離電極に所定の電圧を印加することにより4つの単位画素部間において信号電荷が共有化可能とされている。このとき、この4つの単位画素部からなる隣接単位画素部毎にそれぞれ対応するように、画素領域上の層間絶縁膜を介して、所定の色配列で赤色フィルタ、緑色フィルタおよび青色フィルタが形成されている。
 これによって、画素分離領域に画素分離電極を配設し、画素分離電極に所定の電圧を印加して、隣接する画素間で信号電荷を共有可能とすることにより、従来のように高感度光電変換素子と低感度光電変換素子を別工程で形成する必要がなく、より容易に製造することが可能となる。このとき、低照度時の感度を大幅に向上させることが可能となる。より暗い所で容易に撮像することが可能となる。
 また、画素分離領域に画素分離電極を配設し、画素分離電極に電圧を印加して、隣接する画素間で信号電荷を共有可能とすることにより、画素の微細化が進んでも、複数画素をひとまとめにして色フィルタの面積が大きくなって、各色フィルタのオーバーラップ部の精度も緩和される。
 このように、隣接する4つの単位画素部を同色フィルタで形成することによりカラーフィルタのアライメント精度の緩和を行い、隣接する4つの単位画素部内に画素分離電極を形成して低照度時にバイアス印加による信号電荷の共有を行い、実効的なフォトダイオード面積を向上させることができて、暗い低照度時の感度を大幅に向上させることが可能となる。
 以上により、本発明によれば、画素分離電極に電圧を印加して、隣接する画素間で信号電荷を共有可能としたため、光照度に応じた感度を画素分離領域のバイアス制御によって得ることができ、また、カラーフィルタの製造におけるアライメント精度の緩和を図ることができる。したがって、本発明の固体撮像素子は、フォトダイオード特性が優れているため、ビデオカメラ、デジタルカメラ、カメラ付き携帯電話器など、固体撮像素子を利用可能な電子情報機器に幅広く利用することができる。
本発明の実施形態1であるCMOSイメージセンサにおける単位画素部の一例を示す平面図である。 図1の4画素共有の画像単位画素部をマトリクス状に配置した平面図である。 図2のA-A′線縦断面図である。 図2のA-A′線における断面ポテンシャル図であって、(a)は高照度時にゲート電極がOFF状態の場合の断面ポテンシャル図、(b)は低照度時にゲート電極がON状態の場合の断面ポテンシャル図である。 (a)は、高照度時動作におけるフォトダイオード間での電荷転送方向を示す画素配置図、(b)は、低照度時動作におけるフォトダイオード間での電荷転送方向を示す画素配置図である。 (a)~(c)は、本発明に係る固体撮像素子のカラーフィルタ形成工程の製造過程を示す平面図である。 本発明の実施形態2として、本発明の実施形態1の固体撮像素子を含む固体撮像装置を撮像部に用いた電子情報機器の概略構成例を示すブロック図である。 特許文献1に開示されている従来の固体撮像素子における低照度感度改善のための画素配置を示す一部撮像領域の平面図である。 (a)~(c)は、特許文献2に開示されている従来の固体撮像素子のカラーフィルター形成工程を段階的に示す要部平面図である。
 1  単位画素部
 2,21,22  フォトダイオード
 3  転送トランジスタ
 4  フローティングディフュージョン部(FD)
 5  画像単位画素部
 6  隣接単位画素部
 7  画素分離電極
 8  マクロ単位画素部
 11 素子分離領域
 12 画素分離領域
 13 シリコン基板の表面
 14 ゲート酸化膜
 15 ポリシリコン膜
 30 固体撮像素子(CMOSイメージセンサ)
 31 Greenフィルタ
 32 Redフィルタ
 33 Blueフィルタ
 34 画素領域
 90 電子情報機器
 91 固体撮像装置
 92 メモリ部
 93 表示手段
 94 通信手段
 95 画像出力手段
 以下に、本発明の固体撮像素子の実施形態1として、CMOSイメージセンサに適用した場合および、この固体撮像素子の実施形態1のCMOSイメージセンサを画像入力デバイスとして撮像部に用いた例えばカメラ付き携帯電話装置などの電子情報機器の実施形態2について図面を参照しながら詳細に説明する。
 (実施形態1)
 図1は、本発明の実施形態1であるCMOSイメージセンサにおける単位画素部の一例を示す平面図である。
 図1において、本実施形態1の固体撮像素子30としてのCMOSイメージセンサにおける単位画素部1は、入射光を受光して光電変換する複数の受光部(フォトダイオード2)と、このフォトダイオード2に隣接して設けられた電荷転送手段としての電荷転送トランジスタ3と、この電荷転送トランジスタ3によって電荷転送された信号電荷を一時的に電荷蓄積して電圧信号に変換するフローティングディフュージョン部4とを有し、この電圧信号の電圧レベルに応じて増幅トランジスタにより撮像信号に増幅して信号線に出力するようにしている。
 フローティングディフュージョン部4は、画像単位画素部5の各画素信号の転送先として共通化されているが、電荷転送トランジスタ3の動作タイミングにより各画素信号を独立して順次電荷転送することができる。フローティングディフュージョン部4は、4画素で共有化されている。
 画像単位画素部5は、4画素共有であり、RGBでベイヤー配列から色を交互に入れ替えており、斜め方向(右上から左下)に二つのG画素が配置される場合に、一つのR画素と一つのB画素とが逆斜め方向(左上から右下)に配置される。R画素とB画素の配列順序は交互に逆になり、二つのG画素配置も交互に逆の斜め方向になる。
 図2は、図1の4画素共有の画像単位画素部5をマトリクス状に配置した平面図である。
 図2に示すように、4画素共有の画像単位画素部5の配置(ここでは3×3)において、ベイヤー配列の各単位画素部1の色を入れ替えて、各画像単位画素部5に上下および左右に隣接する各単位画素部1を同色として、例えば一転鎖線で囲った4つの単位画素部1からなる隣接単位画素部6を形成する。この一転鎖線で囲った隣接単位画素部6は全て同色のG色(またはR色またはB色)であるが、4画素境界の平面視十字状(ここでは、端部の場合はT字状になっている)の画素分離領域(受光部とは逆導電型領域)上に画素分離電極7を形成する。このとき、マクロ的な視点で見れば、RGBの3原色のうちの1色が4つづつ隣接した面積の広いベイヤー配列(またはベイヤー配列から変形した色配列)の2×2単位の実線で囲ったマクロ単位画素部8と見なすことができる。この場合、平面視十字状の画素分離電極7に隣接する単位画素部1は面積の広い同色のカラーフィルタを持っている。
 ベイヤー配列の各単位画素部1の色を入れ替えて、4つの同色を互いに隣接して集める場合について説明する。
 1行目(水平方向)の二つの4画素共有の画像単位画素部5において、ベイヤー配列の各単位画素部1の色は、斜め方向の二つのG色を交互に方向を替え、即ち、右上から左下への二つのG色から、左上から右下への二つのG色に配置を変えることにより、二つのB色を左右に互いに対向させることができる。
 1列目(垂直方向)の二つの4画素共有の画像単位画素部5において、ベイヤー配列の各単位画素部1の色は、斜め方向の二つのG色を交互に方向を替え、即ち、右上から左下への二つのG色から、左上から右下への二つのG色に配置を変えると共に、左上から右下へのR色とB色の斜め方向の並びから、右上から左下へのB色とR色の斜め方向の並びに変えることにより、二つのB色を互いに右側で上下に対向させることができる。
 さらに、2列目(垂直方向)の二つの4画素共有の画像単位画素部5において、斜め方向の二つのG色を交互に方向を替え、即ち、左上から右下への二つのG色から、右上から左下への二つのG色に配置を変えると共に、右上から左下へのR色とB色の斜め方向の並びから、左上から右下へのB色とR色の斜め方向の並びに変えることにより、二つのB色を互いに左側で上下に対向させることができる。
 このようにして、4つのB色を互いに隣接して集めることができる。これと同様にして、4つのR色を互いに隣接して集めることができ、4つのG色を互いに隣接して集めることができる。要するに、ベイヤー配列の各単位画素部1の色を入れ替えて、4つの同色を互いに隣接して集めることができる。
 半導体基板(または半導体層)の表面側に、光照射により発生した信号電荷を蓄積する電荷蓄積領域(受光部としてのフォトダイオード2)を有し、このフォトダイオード2の信号電荷をフローティングディフュージョン部4に電荷転送する電荷転送トランジスタ3を備えた単位画素部1が二次元状に複数配設された固体撮像素子30としてのCMOSイメージセンサであって、複数のフォトダイオード2はそれぞれ平面視正方形または矩形に形成され、電荷転送トランジスタ3に接しないフォトダイオード2の2辺に隣接する単位画素部1間に画素分離電極7を配設し、この画素分離電極7に所定の電圧を印加することにより、電荷転送トランジスタ3に接しないフォトダイオード2の2辺に隣接する単位画素部1間において信号電荷を共有することができる。低照度時にRGB各色により撮像画像を形成するために2×2単位(4画素)に拡張させて、同色の4つの単位画素部1が、面積の大きい1画素のように一体化することにより、実効フォトダイオードサイズを4倍まで拡張することができて、蓄積信号電荷量を4倍にすることができる。
 図3は、図2のA-A′線縦断面図である。
 図3に示すように、隣接画素において、異色画素(フォトダイオード21とフォトダイオード22)間には素子分離領域11が存在し、同色画素(フォトダイオード21とフォトダイオード21)間には画素分離領域12が存在する。
 このとき、素子分離領域11は一般的にSTI(Shallow Trench Isolation)法によって形成されており、画素分離領域12はフォトダイオード21と導電型の異なるイオン注入によって形成されている。また、画素分離領域12のシリコン基板の表面13側にはゲート酸化膜14およびその上のポリシリコン膜15からなるゲート電極(画素分離電極7)が形成されている。例えばゲート酸化膜14の膜厚は60~70オングストローム、ポリシリコン膜15の膜厚は1500~2000オングストロームとすることができる。
 上記構成により、隣接画素間で信号電荷を共有する動作について、図4および図5を用いて詳細に説明する。
 図4は、図2のA-A′線における断面ポテンシャル図であって、(a)は高照度時にゲート電極がOFF状態の場合の断面ポテンシャル図、(b)は低照度時にゲート電極がON状態の場合の断面ポテンシャル図である。
 光が照射されると、フォトダイオード21、22に信号電荷が蓄積され、一般的なCMOSイメージセンサの電荷転送およびその増幅動作によって画素信号(撮像信号)として変換される。高照度時には、図4(a)に示すように、ゲート電極(画素分離電極7)はOFF状態にあるので、フォトダイオード21とその隣のフォトダイオード21の間には画素分離領域12が存在し、フォトダイオード21とその隣のフォトダイオード22に蓄積された信号電荷(図中で電子e)はそれぞれ、独立して順次電荷転送されるが、低照度時には、図4(b)に示すように、ゲート電極(画素分離電極7)はON状態にあるので、ゲート電極(画素分離電極7)直下のシリコン基板の表面13側から空乏層が伸長してフォトダイオード21とその隣のフォトダイオード21間の破線で示したポテンシャル障壁が無くなり、フォトダイオード21とその隣のフォトダイオード21の信号電荷(図中で電子e)が共有化される。このとき、ゲート電極(画素分離電極7)に印加するゲート電圧は、フォトダイオード2のポテンシャル深さに応じた電圧とするが、概ね、例えば2.5~3.0Vに相当する。
 図5(a)は、高照度時動作におけるフォトダイオード間での電荷転送方向を示す画素配置図、図5(b)は、低照度時動作におけるフォトダイオード間での電荷転送方向を示す画素配置図である。
 高照度時には、図5(a)に示すように、ゲート電極(画素分離電極7)はOFF状態にあるので、フォトダイオード21とその隣のフォトダイオード21に蓄積された4つの単位画素部1の各信号電荷はそれぞれ、一転鎖線で囲った全て同色の隣接単位画素部6の各単位画素部1のそれぞれに隣接している電荷転送トランジスタ3の方向に電荷転送される。
 低照度時には、図5(b)に示すように、ゲート電極(画素分離電極7)はON状態にあるので、隣接同色4画素(4つの単位画素部1)の各信号電荷が一緒になって、一転鎖線で囲った全て同色の隣接単位画素部6の右上1箇所の電荷転送トランジスタ3の方向に同時に電荷転送される。
 このとき、4画素分の信号電荷を1箇所の電荷転送トランジスタ3により電荷転送を行うため、出力画像は電荷転送トランジスタ3に合せたピッチ、即ち2画素毎に間引いて出力されることになる。この間引き動作については、中央部の撮像領域の周辺の周辺回路(ドライバ回路など)のシーケンス動作にて行うため、本発明の説明においてはその説明を省略する。
 前述したように、低照度時には、隣接同色4画素分の信号電荷の、右上1箇所の電荷転送トランジスタ3からの読み出しは、4画素共有の画像単位画素部5が、4つの単位画素部1から時系列に順次信号を4回に分けて読み出す場合に比べて、1回で済み、より広い面積で受光して、より速いスピードで信号を読み出すことができることから、ノイズが載りにくくなり、より暗いときに蓄積されている信号電荷の精度が向上し、低照度時のシャッタースピードも早くできて手ブレが入りにくくなり、低照度時のより鮮明な画像を撮像することができる。
 また、低照度時に、隣接する4画素を一体化するため、一つ飛ばしなど離れた位置にある信号電荷を画素加算する場合に比べても、より鮮明な画像を得ることができる。
 図6(a)~図6(c)は、本発明に係る固体撮像素子のカラーフィルタ形成工程の製造過程を示す平面図である。
 まず、図6(a)に示すように、二次元状に複数の単位画素部1が配設された画素領域34上にGreenフィルタ31を形成する。フォトダイオード21が4つ隣接した領域の一回り大きい実線領域の上方にこれに対応するように、層間絶縁膜を介して、ベイヤー配列の緑色位置にGreenフィルタ31が形成される。このGreenフィルタ31は右斜め上方向に配置される。このとき、Greenフィルタ31は、隣接画素部が同色であることから面積が4倍と大きく、オーバーラップの制約が大幅に緩和される。
 次に、図6(b)に示すように、二次元状に複数の単位画素部1が配設された画素領域34上にRedフィルタ32を形成する。フォトダイオード22が4つ隣接した領域の一回り大きい実線領域の上方にこれに対応するように、層間絶縁膜を介して、ベイヤー配列の赤色位置にRedフィルタ32が形成される。このとき、Redフィルタ32は、隣接画素部が同色であることから面積が4倍と大きく、オーバーラップの制約が大幅に緩和される。
 その後、図6(c)に示すように、二次元状に複数の単位画素部1が配設された画素領域34上にBlueフィルタ33を形成する。フォトダイオード23が4つ隣接した領域の一回り大きい実線領域の上方にこれに対応するように、層間絶縁膜を介して、ベイヤー配列の青色位置にBlueフィルタ33が形成される。このようにして、これらのRedフィルタ32、Blueフィルタ33に関してもGreenフィルタ31と同様に、同色画素領域に広く形成することができる。このとき、Blueフィルタ33は、隣接画素部が同色であることから面積が4倍と大きく、オーバーラップの制約が大幅に緩和される。
 さらに、本実施形態1の固体撮像素子30の製造方法におけるカラーフィルタ形成工程についてさらに詳細に説明する。
 まず、層間絶縁膜である平坦化膜上にネガ型レジストに緑色素を含有させたネガ型染料系の緑カラーレジスト膜を塗布し、所定パターンに露光、現像して、ベイヤー配列の緑画素に対応する位置に単層のGreenフィルタ31を形成する。
 次に、ネガ型レジストに赤色素を含有させたネガ型染料系の赤カラーレジスト膜を塗布し、所定パターンに露光、現像して、ベイヤー配列の赤画素に対応する位置にRedフィルタ32を形成する。
 その後、ネガ型レジストに青色素を含有させたネガ型染料系の青カラーレジスト膜を塗布し、所定パターンに露光、現像して、ベイヤー配列の青画素に対応する位置に単層のBlueフィルタ33を形成する。このようにして、Greenフィルタ31、Redフィルタ32およびBlueフィルタ33からなる目的の色フィルタを形成することができる。
 ここで、本実施形態1の固体撮像素子30の製造方法について簡単に説明すると、固体撮像素子30の製造方法は、その一例として、電荷転送トランジスタ3に接しないフォトダイオード2の2辺に隣接しかつ互いに隣接する4つの単位画素部1間に、フォトダイオード2とは逆導電型半導体領域を形成する逆導電型半導体領域形成工程と、この逆導電型半導体領域上にゲート酸化膜14を介してポリシリコン電極15を画素分離電極7として形成する画素分離電極工程と、隣接する4つの単位画素部1からなる隣接単位画素部毎にそれぞれ対応するように、画素領域34上の層間絶縁膜を介して、所定の色配列で赤色フィルタ32、緑色フィルタ31および青色フィルタ33のうちのいずれかから順次形成するカラーフィルタ形成工程を有している。
 以上により、本実施形態1によれば、電荷転送トランジスタ3に接しないフォトダイオード2の2辺に隣接する4画素間にゲート酸化膜14およびポリシリコン電極15からなる画素分離電極7を配設し、入射光量に応じて画素分離電極7に所定のバイアス電圧を印加して隣接画素間の信号電荷を同色4画素分づつ共有させることができる。この場合、共有された4画素は実効的にフォトダイオード2が拡張されたものと見なされ、且つ隣接画素を同色で形成することにより、各色に対応する信号電荷が共有により増大されたものと見なすことができる。このように、画素分離電極7へのバイアス電圧の印加の有無により、高照度と低照度を切り替えることができて、ダイナミックレンジを広げて使うことができる。
 また、従来は異色で形成していたカラーフィルタ工程において、画素サイズの縮小化に伴ってフィルタ間のアライメント精度を向上させる必要があったが、隣接4画素を同色で形成することにより、画素の微細化が進んでも、複数画素をひとまとめにして色フィルタの面積を大きくすることができて、カラーフィルタ形成工程のアライメントマージンを向上させることができ、カラーフィルタのオーバーラップ領域の精度が低減されてアライメント精度が大幅に緩和される。
 このようにして、光照度に応じた感度を画素分離領域のバイアス制御によって切り替えることができ、またカラーフィルタの製造におけるアライメント精度の緩和を図ることができる。したがって、本実施形態1の固体撮像素子30は、フォトダイオード特性が優れているため、ビデオカメラ、デジタルカメラ、カメラ付き携帯電話器など、固体撮像素子を利用可能な電子情報機器に幅広く利用することができる。
 (実施形態2)
 図7は、本発明の実施形態2として、本発明の実施形態1の固体撮像素子30を含む固体撮像装置を撮像部に用いた電子情報機器の概略構成例を示すブロック図である。
 図7において、本実施形態2の電子情報機器90は、上記実施形態1の固体撮像素子30からの撮像信号を各信号処理してカラー画像信号を得る固体撮像装置91と、この固体撮像装置91からのカラー画像信号を記録用に所定の信号処理した後にデータ記録可能とする記録メディアなどのメモリ部92と、この固体撮像装置91からのカラー画像信号を表示用に所定の信号処理した後に液晶表示画面などの表示画面上に表示可能とする液晶表示装置などの表示手段93と、この固体撮像装置91からのカラー画像信号を通信用に所定の信号処理をした後に通信処理可能とする送受信装置などの通信手段94と、この固体撮像装置91からのカラー画像信号を印刷用に所定の印刷信号処理をした後に印刷処理可能とするプリンタなどの画像出力手段95とを有している。なお、この電子情報機器90として、これに限らず、固体撮像装置91の他に、メモリ部92と、表示手段93と、通信手段94と、プリンタなどの画像出力手段95とのうちの少なくともいずれかを有していてもよい。
 この電子情報機器90としては、前述したように例えばデジタルビデオカメラ、デジタルスチルカメラなどのデジタルカメラや、監視カメラ、ドアホンカメラ、車載用後方監視カメラなどの車載用カメラおよびテレビジョン電話用カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、カメラ付き携帯電話装置および携帯端末装置(PDA)などの画像入力デバイスを有した電子機器が考えられる。
 したがって、本実施形態2によれば、この固体撮像装置91からのカラー画像信号に基づいて、これを表示画面上に良好に表示したり、これを紙面にて画像出力手段95により良好にプリントアウト(印刷)したり、これを通信データとして有線または無線にて良好に通信したり、これをメモリ部92に所定のデータ圧縮処理を行って良好に記憶したり、各種データ処理を良好に行うことができる。
 なお、上記実施形態1では、特に説明しなかったが、互いに隣接する4つの単位画素部間に、受光部とは逆導電型半導体領域およびその上の画素分離電極を配設し、画素分離電極に所定の電圧を印加することにより4つの単位画素部間において信号電荷が共有化可能とされている。このとき、この4つの単位画素部からなる隣接単位画素部毎にそれぞれ対応するように、画素領域上の層間絶縁膜を介して、所定の色配列で赤色フィルタ、緑色フィルタおよび青色フィルタが形成されている。これによって、画素分離領域に画素分離電極を配設し、画素分離電極に所定の電圧を印加して、隣接する画素間で信号電荷を共有可能とすることにより、従来のように高感度光電変換素子と低感度光電変換素子を別工程で形成する必要がなく、より容易に製造でき、低照度時の感度を大幅に向上させることができる本発明の目的を達成することができる。また、画素分離領域に画素分離電極を配設し、画素分離電極に電圧を印加して、隣接する画素間で信号電荷を共有可能とすることにより、画素の微細化が進んでも、複数画素をひとまとめにして色フィルタの面積を大きくすることができて、各色フィルタのオーバーラップ部の精度を大幅に緩和することができる本発明の目的を達成することができる。
 以上のように、本発明の好ましい実施形態1,2を用いて本発明を例示してきたが、本発明は、この実施形態1,2に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態1,2の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
 本発明は、入射光を光電変換して撮像する半導体素子で構成された固体撮像素子およびその製造方法、この製造方法により作製された固体撮像素子を、画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、監視カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、テレビジョン電話装置、カメラ付き携帯電話装置などの電子情報機器の分野において、画素分離電極に電圧を印加して、隣接する画素間で信号電荷を共有可能としたため、光照度に応じた感度を画素分離領域のバイアス制御によって得ることができ、また、カラーフィルタの製造におけるアライメント精度の緩和を図ることができる。したがって、本発明の固体撮像素子は、フォトダイオード特性が優れているため、ビデオカメラ、デジタルカメラ、カメラ付き携帯電話器など、固体撮像素子を利用可能な電子情報機器に幅広く利用することができる。

Claims (17)

  1.  半導体基板または半導体層の表面側に、光照射により信号電荷を発生する受光部を有する複数の単位画素部が二次元状に配設された固体撮像素子において、
     互いに隣接する4つの単位画素部間に、該受光部とは逆導電型半導体領域およびその上の画素分離電極を配設し、該画素分離電極に所定の電圧を印加することにより該4つの単位画素部間において信号電荷が共有化可能とされている固体撮像素子。
  2.  半導体基板または半導体層の表面側に、光照射により信号電荷を発生する受光部が設けられ、該受光部に隣接して、該受光部からの信号電荷を電荷転送する電荷転送手段が設けられた複数の単位画素部が二次元状に配設された固体撮像素子において、
     該受光部は平面視正方形または矩形に形成され、該電荷転送手段に接しない受光部の2辺に隣接しかつ互いに隣接する4つの単位画素部間に、該受光部とは逆導電型半導体領域およびその上の画素分離電極を配設し、該画素分離電極に所定の電圧を印加することにより該4つの単位画素部間において信号電荷が共有化可能とされている固体撮像素子。
  3.  前記4つの単位画素部は、隣接した2×2単位である請求項1または2に記載の固体撮像素子。
  4.  前記逆導電型半導体領域およびその上の画素分離電極は、前記4つの単位画素部間に形成された平面視十字状である請求項1または2に記載の固体撮像素子。
  5.  前記4つの単位画素部からなる隣接単位画素部毎にそれぞれ対応するように、画素領域上の層間絶縁膜を介して、所定の色配列で赤色フィルタ、緑色フィルタおよび青色フィルタが形成されている請求項1または2に記載の固体撮像素子。
  6.  前記所定の色配列は、前記単位画素部のベイヤー配列の色を4画素単位で入れ替えて、一方斜め方向に二つのG画素が配置される場合に、一つのR画素と一つのB画素とが他方斜め方向に配置され、該R画素と該B画素の配列順序は交互に逆になり、該二つのG画素の斜め方向も交互に逆の斜め方向になっている請求項5に記載の固体撮像素子。
  7.  前記受光部の信号電荷が電荷転送されるフローティングディフュージョン部が共有化される4つの単位画素部を1単位として構成されている請求項1または2に記載の固体撮像素子。
  8.  前記4つの単位画素部のベイヤー配列の色を入れ替えて、該4つの単位画素部に上下および左右に隣接しかつ互いに隣接する4つの単位画素部を同色フィルタの単位画素部として構成する請求項7に記載の固体撮像素子。
  9.  前記4つの単位画素部からなる同色フィルタに対応する隣接単位画素部に蓄積された信号電荷は、低照度時に前記画素分離電極に所定の電圧を印加することにより1画素として一体化されて前記電荷転送手段から電荷転送が為され、高照度時に前記画素分離電極に所定の電圧を印加しないことにより該4つの単位画素部がそれぞれ独立して、該単位画素部に対応した電荷転送手段から電荷転送が為される請求項1または2に記載の固体撮像素子。
  10.  前記低照度時には、前記4つの単位画素部からなる同色フィルタに対応した隣接単位画素部毎に1箇所の電荷転送手段から電荷転送が為される請求項9に記載の固体撮像素子。
  11.  前記隣接する4つの単位画素部からなる隣接単位画素部上方には同色フィルタが形成されている請求項1または2に記載の固体撮像素子。
  12.  前記画素分離電極はゲート酸化膜およびその上のポリシリコン電極からなっている請求項1または2に記載の固体撮像素子。
  13.  前記電荷転送手段は、前記受光部の1つの角部に設けられている請求項2に記載の固体撮像素子。
  14.  前記受光部からフローティングディフュージョン部に電荷転送された信号電荷は、電圧信号に変換された後に増幅されて撮像信号として出力されるCMOS型固体撮像素子である請求項1または2に記載の固体撮像素子。
  15.  請求項1または2に記載の固体撮像素子を製造する方法であって、
     前記電荷転送手段に接しない受光部の2辺に隣接しかつ互いに隣接する4つの単位画素部間に、該受光部とは逆導電型半導体領域を形成する逆導電型半導体領域形成工程と、
     該逆導電型半導体領域上にゲート酸化膜を介してポリシリコン電極を前記画素分離電極として形成する画素分離電極工程とを有する固体撮像素子の製造方法。
  16.  前記4つの単位画素部からなる隣接単位画素部毎にそれぞれ対応するように、画素領域上の層間絶縁膜を介して、所定の色配列で赤色フィルタ、緑色フィルタおよび青色フィルタのうちのいずれかから順次形成するカラーフィルタ形成工程を更に有する請求項15に記載の固体撮像素子の製造方法。
  17.  請求項1~14のいずれかに記載の固体撮像素子を画像入力デバイスとして撮像部に用いた電子情報機器。
PCT/JP2009/071180 2008-12-24 2009-12-18 固体撮像素子およびその製造方法、電子情報機器 WO2010074007A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/141,567 US8946611B2 (en) 2008-12-24 2009-12-18 Solid-state imaging element and manufacturing method thereof, and electronic information device
CN2009801574886A CN102334188B (zh) 2008-12-24 2009-12-18 固态成像元件及其制造方法以及电子信息设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008328592A JP5149143B2 (ja) 2008-12-24 2008-12-24 固体撮像素子およびその製造方法、電子情報機器
JP2008-328592 2008-12-24

Publications (1)

Publication Number Publication Date
WO2010074007A1 true WO2010074007A1 (ja) 2010-07-01

Family

ID=42287617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071180 WO2010074007A1 (ja) 2008-12-24 2009-12-18 固体撮像素子およびその製造方法、電子情報機器

Country Status (4)

Country Link
US (1) US8946611B2 (ja)
JP (1) JP5149143B2 (ja)
CN (1) CN102334188B (ja)
WO (1) WO2010074007A1 (ja)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5149143B2 (ja) * 2008-12-24 2013-02-20 シャープ株式会社 固体撮像素子およびその製造方法、電子情報機器
JP5471117B2 (ja) 2009-07-24 2014-04-16 ソニー株式会社 固体撮像装置とその製造方法並びにカメラ
BR112012026632A2 (pt) 2011-02-21 2016-07-12 Fujifilm Corp elemento de criação de imagem colorida
BR112012027309A2 (pt) 2011-02-28 2016-08-02 Fujifilm Corp aparelho de geração de imagens coloridas
JP5054857B1 (ja) 2011-02-28 2012-10-24 富士フイルム株式会社 カラー撮像装置
BR112012029513A2 (pt) 2011-03-09 2016-12-06 Fujifilm Corp elemento de imageamento de cor.
JP5378627B2 (ja) 2011-03-11 2013-12-25 富士フイルム株式会社 撮像装置およびその動作制御方法ならびに撮像システム
JP5524406B2 (ja) 2011-03-11 2014-06-18 富士フイルム株式会社 撮像装置及び撮像プログラム
JP5474258B2 (ja) 2011-03-11 2014-04-16 富士フイルム株式会社 撮像装置及び撮像プログラム
WO2012124183A1 (ja) 2011-03-11 2012-09-20 富士フイルム株式会社 撮像装置およびその動作制御方法
EP2690871A4 (en) 2011-03-24 2014-11-05 Fujifilm Corp COLOR IMAGING ELEMENT, IMAGING DEVICE, AND IMAGING PROGRAM
WO2012127700A1 (ja) 2011-03-24 2012-09-27 富士フイルム株式会社 カラー撮像素子、撮像装置、及び撮像プログラム
WO2012128153A1 (ja) 2011-03-24 2012-09-27 富士フイルム株式会社 カラー撮像素子、撮像装置、及び撮像装置の制御プログラム
JP5539584B2 (ja) 2011-03-24 2014-07-02 富士フイルム株式会社 カラー撮像素子、撮像装置、及び撮像プログラム
EP2690873A4 (en) 2011-03-24 2014-10-08 Fujifilm Corp IMAGING ELEMENT, IMAGING DEVICE AND IMAGING PROGRAM
JP5490313B2 (ja) 2011-03-24 2014-05-14 富士フイルム株式会社 カラー撮像素子、撮像装置、及び撮像装置の制御プログラム
JP5425343B2 (ja) 2011-06-30 2014-02-26 富士フイルム株式会社 撮像装置、撮像装置の制御方法、及び撮像装置の制御プログラム
EP2728885B1 (en) 2011-06-30 2016-08-03 FUJIFILM Corporation Imaging device and imaging program
JP5621059B2 (ja) 2011-12-27 2014-11-05 富士フイルム株式会社 カラー撮像素子及び撮像装置
JP5621054B2 (ja) 2011-12-27 2014-11-05 富士フイルム株式会社 カラー撮像素子
EP2800382B1 (en) 2011-12-27 2016-06-29 Fujifilm Corporation Imaging device, method for controlling imaging device, and control program
EP2800379A4 (en) 2011-12-27 2015-12-23 Fujifilm Corp COLOR IMAGING ELEMENT
JP5607267B2 (ja) 2011-12-27 2014-10-15 富士フイルム株式会社 撮像装置、撮像装置の制御方法、及び制御プログラム
JP5624227B2 (ja) 2011-12-27 2014-11-12 富士フイルム株式会社 撮像装置、撮像装置の制御方法、及び制御プログラム
WO2013100035A1 (ja) 2011-12-27 2013-07-04 富士フイルム株式会社 カラー撮像素子
CN104025566B (zh) 2011-12-27 2015-10-14 富士胶片株式会社 摄像装置及摄像装置的控制方法
JP5607266B2 (ja) 2011-12-27 2014-10-15 富士フイルム株式会社 撮像装置、撮像装置の制御方法、及び制御プログラム
JP5600814B2 (ja) * 2011-12-28 2014-10-01 富士フイルム株式会社 画像処理装置及び方法並びに撮像装置
JP5936364B2 (ja) * 2012-01-18 2016-06-22 キヤノン株式会社 撮像装置、及び撮像装置を含む撮像システム
JP5927068B2 (ja) 2012-07-06 2016-05-25 富士フイルム株式会社 カラー撮像素子
US9165959B2 (en) * 2013-02-25 2015-10-20 Omnivision Technologies, Inc. Image sensor with pixel units having mirrored transistor layout
JP2014187270A (ja) * 2013-03-25 2014-10-02 Sony Corp 固体撮像装置およびその製造方法、並びに電子機器
JP2015012303A (ja) * 2013-06-26 2015-01-19 ソニー株式会社 固体撮像装置および電子機器
CN111479066B (zh) * 2013-09-26 2022-11-18 株式会社尼康 摄像元件以及摄像装置
JP6180882B2 (ja) * 2013-10-31 2017-08-16 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、信号処理装置、および電子機器
US9595555B2 (en) * 2015-05-04 2017-03-14 Semiconductor Components Industries, Llc Pixel isolation regions formed with conductive layers
US9686486B2 (en) * 2015-05-27 2017-06-20 Semiconductor Components Industries, Llc Multi-resolution pixel architecture with shared floating diffusion nodes
JP6562250B2 (ja) * 2015-06-08 2019-08-21 パナソニックIpマネジメント株式会社 撮像装置および撮像モジュール
US9683890B2 (en) 2015-06-30 2017-06-20 Semiconductor Components Industries, Llc Image sensor pixels with conductive bias grids
EP3142453B1 (en) 2015-09-08 2018-05-16 ASUSTek Computer Inc. Method and apparatus for triggering radio bearer release by a relay ue (user equipment) in a wireless communication system
KR102473154B1 (ko) * 2016-01-11 2022-12-02 에스케이하이닉스 주식회사 이미지 센서
US9761624B2 (en) 2016-02-09 2017-09-12 Semiconductor Components Industries, Llc Pixels for high performance image sensor
KR102524400B1 (ko) * 2016-07-04 2023-04-24 에스케이하이닉스 주식회사 하나의 컬러 필터 및 하나의 마이크로렌즈를 공유하는 다수 개의 포토다이오드들을 갖는 이미지 센서
KR102617430B1 (ko) * 2016-11-08 2023-12-26 에스케이하이닉스 주식회사 이미지 센서
TWI602435B (zh) * 2016-11-29 2017-10-11 財團法人工業技術研究院 影像感測器以及影像感測方法
JP6592483B2 (ja) * 2017-08-04 2019-10-16 シャープ株式会社 電磁波透過フィルタ及び電磁波検出装置
KR102594038B1 (ko) * 2018-01-15 2023-10-26 에스케이하이닉스 주식회사 이미지 센싱 장치
KR102549400B1 (ko) * 2018-03-21 2023-06-30 에스케이하이닉스 주식회사 Pd 바이어스 패턴들을 갖는 이미지 센서
KR102524415B1 (ko) * 2018-03-21 2023-04-24 에스케이하이닉스 주식회사 Pd 바이어스 패턴들을 갖는 이미지 센서
KR102591525B1 (ko) * 2018-05-28 2023-10-23 에스케이하이닉스 주식회사 공통 선택 트랜지스터를 가진 유닛 픽셀 블록을 포함하는 이미지 센서
KR102600681B1 (ko) * 2019-03-26 2023-11-13 삼성전자주식회사 비닝을 수행하는 테트라셀 이미지 센서
US11284045B2 (en) * 2020-04-22 2022-03-22 OmniVision Technologies. Inc. Image sensor with shifted color filter array pattern and bit line pairs
KR20210144429A (ko) * 2020-05-22 2021-11-30 에스케이하이닉스 주식회사 이미지 센싱 장치
WO2022238806A1 (ja) * 2021-05-14 2022-11-17 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256521A (ja) * 1997-02-28 1998-09-25 Eastman Kodak Co ピクセル機能を相互に共用するアクティブピクセル撮像センサおよびその製造方法
JP2000078475A (ja) * 1998-09-02 2000-03-14 Canon Inc 撮像装置およびそれを用いた撮像システム
JP2005167958A (ja) * 2003-02-13 2005-06-23 Matsushita Electric Ind Co Ltd 固体撮像装置、その駆動方法及びそれを用いたカメラ
JP2008166780A (ja) * 2006-12-27 2008-07-17 Dongbu Hitek Co Ltd シーモスイメージセンサー及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294758A (ja) 1999-04-09 2000-10-20 Sony Corp 固体撮像素子
US6870207B2 (en) * 2000-04-24 2005-03-22 The University Of Connecticut III-V charge coupled device suitable for visible, near and far infra-red detection
US20090224351A1 (en) * 2002-08-27 2009-09-10 E-Phocus, Inc CMOS sensor with approximately equal potential photodiodes
US7525168B2 (en) * 2002-08-27 2009-04-28 E-Phocus, Inc. CMOS sensor with electrodes across photodetectors at approximately equal potential
JP2004336469A (ja) 2003-05-08 2004-11-25 Fuji Film Microdevices Co Ltd 固体撮像素子、撮像装置、及び画像処理方法
JP5040458B2 (ja) * 2007-06-16 2012-10-03 株式会社ニコン 固体撮像素子及びこれを用いた撮像装置
JP5292787B2 (ja) * 2007-11-30 2013-09-18 ソニー株式会社 固体撮像装置及びカメラ
JP5149143B2 (ja) * 2008-12-24 2013-02-20 シャープ株式会社 固体撮像素子およびその製造方法、電子情報機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256521A (ja) * 1997-02-28 1998-09-25 Eastman Kodak Co ピクセル機能を相互に共用するアクティブピクセル撮像センサおよびその製造方法
JP2000078475A (ja) * 1998-09-02 2000-03-14 Canon Inc 撮像装置およびそれを用いた撮像システム
JP2005167958A (ja) * 2003-02-13 2005-06-23 Matsushita Electric Ind Co Ltd 固体撮像装置、その駆動方法及びそれを用いたカメラ
JP2008166780A (ja) * 2006-12-27 2008-07-17 Dongbu Hitek Co Ltd シーモスイメージセンサー及びその製造方法

Also Published As

Publication number Publication date
JP5149143B2 (ja) 2013-02-20
CN102334188A (zh) 2012-01-25
CN102334188B (zh) 2013-11-20
JP2010153511A (ja) 2010-07-08
US8946611B2 (en) 2015-02-03
US20120025060A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP5149143B2 (ja) 固体撮像素子およびその製造方法、電子情報機器
US20240006427A1 (en) Imaging device and imaging system
JP5471174B2 (ja) 固体撮像装置とその製造方法、及び電子機器
US9024249B2 (en) Solid-state imaging device and method of manufacturing the same, and imaging apparatus
US20070007559A1 (en) Image sensors including active pixel sensor arrays
JP4946147B2 (ja) 固体撮像装置
JP6026102B2 (ja) 固体撮像素子および電子機器
CN1893541B (zh) 包括有源像素传感器阵列的图像传感器及具有其的***
JP2015053411A (ja) 固体撮像素子、固体撮像素子の製造方法、および電子機器
KR20080090295A (ko) 고체 촬상 장치, 그 제조 방법, 및 전자 정보 기기
JP2009088255A (ja) カラー固体撮像装置および電子情報機器
KR20230093074A (ko) 반도체 장치 및 전자 기기
KR20150002593A (ko) 고체 촬상 장치 및 전자 기기
WO2021159944A1 (zh) 图像传感器、摄像头组件及移动终端
JP4365117B2 (ja) インターライン電荷結合素子
CN116057953A (zh) 固态摄像元件和电子设备
JP2005110104A (ja) 固体撮像装置
WO2010090167A1 (ja) 固体撮像装置
JP5408964B2 (ja) 固体撮像素子および電子情報機器
TWI795895B (zh) 固體攝像裝置、固體攝像裝置的製造方法、以及電子機器
JP7404447B1 (ja) 固体撮像装置、固体撮像装置の製造方法、および電子機器
US20240214707A1 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
JP4444990B2 (ja) 固体撮像装置
JP2009194206A (ja) 固体撮像素子およびその製造方法、電子情報機器
WO2019224936A1 (ja) 固体撮像装置および撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157488.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4538/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13141567

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09834808

Country of ref document: EP

Kind code of ref document: A1