WO2010071043A1 - 電子血圧計 - Google Patents

電子血圧計 Download PDF

Info

Publication number
WO2010071043A1
WO2010071043A1 PCT/JP2009/070472 JP2009070472W WO2010071043A1 WO 2010071043 A1 WO2010071043 A1 WO 2010071043A1 JP 2009070472 W JP2009070472 W JP 2009070472W WO 2010071043 A1 WO2010071043 A1 WO 2010071043A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
control unit
value
voltage
switching control
Prior art date
Application number
PCT/JP2009/070472
Other languages
English (en)
French (fr)
Inventor
新吾 山下
章 辻
裕恭 有賀
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Priority to DE112009003746.1T priority Critical patent/DE112009003746B4/de
Priority to RU2011129623/14A priority patent/RU2520156C2/ru
Priority to CN200980151141.0A priority patent/CN102256538B/zh
Publication of WO2010071043A1 publication Critical patent/WO2010071043A1/ja
Priority to US13/162,278 priority patent/US9161702B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02233Occluders specially adapted therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0242Operational features adapted to measure environmental factors, e.g. temperature, pollution
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/23The load being a medical device, a medical implant, or a life supporting device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially

Definitions

  • the present invention relates to an electronic sphygmomanometer, and more particularly to an electronic sphygmomanometer equipped with a battery.
  • the electronic blood pressure monitor is driven by a primary battery (hereinafter referred to as “dry battery”), an AC (Alternating Current) adapter, or a secondary battery (hereinafter referred to as “rechargeable battery”).
  • dry battery a primary battery
  • AC (Alternating Current) adapter a secondary battery
  • rechargeable battery a secondary battery
  • Patent Document 1 proposes a technique for notifying the number of remaining measurements from the voltage value of the battery.
  • the battery capacity consumption is affected by the pressurization time and environmental temperature of the pump depending on the arm circumference and blood pressure value (maximum blood pressure), it is difficult to accurately indicate the remaining number of measurements. Therefore, in the above conventional technique, there is a possibility that the dry battery may be replaced or the rechargeable battery may be charged although the measurement can still be performed. On the other hand, even if the number of measurements is 1 or more, there is a possibility that the capacity becomes insufficient during the measurement and the measurement cannot be continued.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an electronic sphygmomanometer that can be measured when a user wants to perform measurement and can use a battery efficiently. It is to be.
  • An electronic sphygmomanometer is an electronic sphygmomanometer for measuring a blood pressure of a measurement subject, and detects a cuff for winding around a predetermined body part of the measurement subject and a pressure in the cuff.
  • An electronic sphygmomanometer including a primary battery and a secondary battery including a pressure sensor for measuring, a measurement control unit for performing control for measuring blood pressure of the measurement subject, and a primary battery and a secondary battery based on a signal from the pressure sensor Based on the detection result of the feature value detection unit, the characteristic value detection unit for detecting the characteristic value of each of the primary battery and the secondary battery, and the primary battery and the secondary battery A switching control unit for performing switching control.
  • the characteristic value is a value related to the remaining amount of each of the primary battery and the secondary battery.
  • the solar cell further includes a solar cell for receiving sunlight and converting the received light energy into electrical energy, and the secondary battery stores electrical energy generated by the solar cell.
  • the switching control unit predicts the weather based on a signal from the pressure sensor, and selects the primary battery or the secondary battery according to the weather prediction result.
  • the secondary battery is selected, and when the feature value of the secondary battery is less than the first threshold, the weather The primary battery or the secondary battery is selected according to the prediction result.
  • the switching control unit sets the first battery when the feature value of the first battery determined to be used preferentially among the primary battery and the secondary battery is larger than the first threshold value.
  • a first selection processing unit for selecting the second battery that is the other battery is included.
  • the apparatus further includes a pressurizing unit for pressurizing the cuff using the power supplied from the power supply unit as a drive source
  • the switching control unit further includes a pressurizing unit when the first battery is selected at the time of startup.
  • the switching control unit further determines that the voltage of the first battery during pressurization by the pressurization unit is When it is determined that the third threshold value is lower than the second threshold value, the second battery is switched to the first battery again.
  • the third threshold value may be a value equal to the first threshold value or a value higher than the first threshold value.
  • the switching control unit preferentially selects one of the primary battery and the secondary battery that is designated in advance by the user.
  • the apparatus further includes a generation unit for generating an alarm sound at a specific timing designated by the user, and the switching control unit further includes a detection result by the feature value detection unit when the specific timing arrives. Switching control between the primary battery and the secondary battery is performed.
  • the feature value represents one of a voltage value, a voltage level based on the voltage value, and a measurable number of times calculated based on the voltage value.
  • the primary battery and the secondary battery are provided, and both of them can be switched based on the characteristic values related to the respective remaining amounts. Therefore, it is possible to avoid a situation in which measurement cannot be performed unexpectedly. Moreover, both battery remaining charge can be used efficiently.
  • FIG. 1 is a diagram showing an external appearance of a sphygmomanometer 1 according to Embodiment 1 of the present invention.
  • sphygmomanometer 1 includes a main body portion 10, a cuff 20 for wrapping around the upper arm of the measurement subject, and an air tube 24 for connecting the main body portion 10 and the cuff 20. .
  • FIG. 2 is a perspective view of main body 10 according to Embodiment 1 of the present invention as viewed from the rear.
  • main body 10 is a pentahedron, an installation surface in contact with a table such as a desk, a surface 10 ⁇ / b> A forming a predetermined angle with the installation surface, and a surface perpendicular to the installation surface. And have two side surfaces 10B and 10C and a back surface 10D.
  • a display unit 40 for displaying measurement results and an operation unit 41 for receiving an instruction input from a user (typically a person to be measured) are arranged on the surface 10A of the main body unit 10.
  • the operation unit 41 for example, a power switch 41A for switching power ON / OFF, a measurement switch 41B for inputting a measurement start instruction, and an instruction for reading and displaying past measurement results. And a memory switch 41C.
  • the display part 40 is comprised by displays, such as a liquid crystal, for example.
  • the air tube 24 described above is connected to the left side surface 10 ⁇ / b> B of the main body 10.
  • a solar cell (solar panel) 50 is disposed on the back surface 10D of the main body 10.
  • the solar cell 50 receives sunlight and converts the received light energy into electrical energy. That is, the solar cell 50 generates electrical energy according to the amount of received light.
  • the generated electrical energy is output to a rechargeable battery (secondary battery) 51 (see FIG. 3) built in the main body 10.
  • FIG. 3 is a block diagram showing a hardware configuration of sphygmomanometer 1 according to the first embodiment of the present invention.
  • the cuff 20 of the sphygmomanometer 1 includes an air bag 21 in which air is contained.
  • the air bladder 21 is connected to an air system 25 built in the main body 10 via an air tube 24.
  • the air system 25 includes a pressure sensor 32 for detecting the pressure in the air bag 21 (hereinafter referred to as “cuff pressure”), a pump 33 for supplying air to the air bag 21, and the air in the air bag 21. And an exhaust valve 34 that is opened and closed for draining or sealing.
  • a pressure sensor 32 for detecting the pressure in the air bag 21 (hereinafter referred to as “cuff pressure”)
  • a pump 33 for supplying air to the air bag 21, and the air in the air bag 21.
  • an exhaust valve 34 that is opened and closed for draining or sealing.
  • the main body unit 10 measures a time (CPU) 100, a non-volatile memory 39, a display unit 40, an operation unit 41, a power supply unit 60, and a time for centrally controlling and monitoring each unit.
  • the main body 10 further includes an oscillation circuit 35, a pump drive circuit 36 for driving the pump 33, and a valve drive circuit 37 for driving the exhaust valve 34 in association with the air system 25.
  • the pump drive circuit 36 controls the drive of the pump 33 based on a control signal given from the CPU 100.
  • the valve drive circuit 37 performs opening / closing control of the exhaust valve 34 based on a control signal given from the CPU 100.
  • the capacity value of the pressure sensor 32 changes depending on the cuff pressure.
  • the oscillation circuit 35 outputs a signal having an oscillation frequency corresponding to the capacitance value of the pressure sensor 32 to the CPU 100.
  • the CPU 100 detects the pressure by converting the signal obtained from the oscillation circuit 35 into a pressure.
  • the memory 39 stores various programs and various data.
  • the memory 39 includes a measurement result storage area for storing blood pressure measurement results.
  • the power supply unit 60 includes a rechargeable battery 51 for storing electrical energy generated by the solar battery 50, a detachable dry battery (primary battery) 52, and a power supply control circuit 53.
  • the power supply unit 60 may further include an AC adapter (not shown) for rapidly charging the rechargeable battery 51.
  • the power supply control circuit 53 is electrically connected to the rechargeable battery 51 and the dry battery 52, and selectively supplies the electric power stored in both to various devices such as the pump drive circuit 36 and the valve drive circuit 37.
  • the power supply control circuit 53 is electrically connected to the CPU 100 and transmits / receives signals to / from the CPU 100. A configuration example of the power supply control circuit 53 will be described later.
  • the rechargeable battery 51 is, for example, a nickel metal hydride battery.
  • the dry battery 52 is, for example, an alkaline battery.
  • FIG. 4 is a functional block diagram of sphygmomanometer 1 according to the first embodiment of the present invention.
  • power supply control circuit 53 includes voltage detection unit 56 for detecting the voltage of rechargeable battery 51, voltage detection unit 57 for detecting the voltage of dry battery 52, rechargeable battery 51 and dry battery 52. And a switching unit 58 for switching the output of.
  • the remaining battery level can be detected (estimated) based on the voltage. Therefore, also in the present embodiment, the voltage is detected as a feature value (correlated) related to the remaining amount of each of the batteries 51 and 52. However, the voltage is not limited as long as it has a correlation with the remaining amount.
  • the switching unit 58 is configured by a switch, for example.
  • voltage detection units 56 and 57 are included in power supply control circuit 53 of power supply unit 60, but these may be provided independently of power supply unit 60.
  • the CPU 100 includes a switching control unit 102, a measurement control unit 104, and an alarm control unit 106 as its functions.
  • the switching control unit 102 performs switching control of the rechargeable battery 51 and the dry battery 52 based on the voltage value detected by the voltage detection units 56 and 57. More specifically, a control signal is transmitted to the switching unit 58 to cause the switching unit 58 to select one of the rechargeable battery 51 and the dry battery 52. Detailed switching control will be described later.
  • the measurement control unit 104 controls the pump drive circuit 36 and the valve drive circuit 37 shown in FIG.
  • the measurement control unit 104 calculates a blood pressure value (for example, maximum blood pressure, minimum blood pressure) based on a signal (cuff pressure signal) from the oscillation circuit 35 shown in FIG. 3 according to, for example, an oscillometric method. Further, the pulse rate is calculated according to a known method.
  • the alarm control unit 106 is connected to the buzzer 44 shown in FIG. 3 and performs control for generating an alarm sound at a specific timing (for example, date and time) designated by the user.
  • each functional block may be realized by executing software stored in the memory 39, and at least one of these functional blocks may be realized by hardware.
  • the memory 39 stores information indicating that the rechargeable battery 51 is used preferentially, that is, the rechargeable battery priority mode.
  • the battery to be preferentially used may be determined in advance by default when the blood pressure monitor 1 is shipped. Alternatively, the user may be able to specify (set and change) by operating the operation unit 41.
  • FIG. 5 is a flowchart showing processing (hereinafter referred to as “measurement-related processing”) executed by the CPU 100 in relation to blood pressure measurement control in the first embodiment of the present invention.
  • the processing shown in the flowchart of FIG. 5 is stored in advance in the memory 39 as a program, and the CPU 100 reads and executes this program.
  • step S102 a power source selection process at the time of activation is executed. This process will be described in detail with reference to a subroutine in FIG.
  • FIG. 6 is a flowchart showing power source selection processing according to Embodiment 1 of the present invention.
  • the rechargeable battery 51 is selected in the switching unit 58. Further, it is assumed that the remaining amount of the dry battery 52 is sufficient. That is, it is assumed that the voltage of the dry battery 52 obtained from the voltage detection unit 57 is equal to or higher than a threshold value THm (for example, 4.5 V) described later.
  • THm for example, 4.5 V
  • switching control unit 102 determines whether or not the voltage of rechargeable battery 51 is greater than a predetermined threshold value THm (step S212).
  • the voltage of the rechargeable battery 51 is obtained from the output from the voltage detection unit 56 shown in FIG.
  • Threshold value THm may be a value equal to or higher than a voltage necessary for completing at least one blood pressure measurement process. Here, for example, it is a value obtained by adding a predetermined value to the voltage required for completing one blood pressure measurement process.
  • switching control unit 102 selects rechargeable battery 51 (step S214). Since the rechargeable battery 51 is selected at the beginning of the process, the switching control unit 102 does not switch the power source in this case.
  • switching control unit 102 selects dry battery 52 (step S216). In this case, the switching control unit 102 performs power source switching processing. That is, a control signal is transmitted to the switching unit 58 so as to select the dry battery 52.
  • step S216 it is preferable that the CPU 100 informs the rechargeable battery 51 to be charged.
  • step S214 the switching control unit 102 displays on the display unit 40 whether the battery used is the rechargeable battery 51 or the dry battery 52 (step S218).
  • the measurement control unit 104 starts driving the pump 33 and gradually increases the pressure of the air bladder 21 (step S106).
  • the rechargeable battery 51 is selected for the switching unit 58 of the power supply control circuit 53
  • the electric power stored in the rechargeable battery 51 becomes a drive source for the pump 33.
  • the dry battery 52 is selected for the switching unit 58 of the power supply control circuit 53
  • the electric power stored in the dry battery 52 becomes the drive source of the pump 33.
  • the measurement control unit 104 stops the pump 33, gradually opens the closed exhaust valve 34, and gradually exhausts the air in the air bladder 21. Thereby, the cuff pressure is gradually reduced (step S107).
  • the measurement control unit 104 calculates blood pressure (maximum blood pressure, minimum blood pressure) by a known method (step S108). Specifically, in the process of gradually decreasing the cuff pressure, the measurement control unit 104 extracts pulse wave information based on the oscillation frequency obtained from the oscillation circuit 35. Then, the blood pressure is calculated from the extracted pulse wave information. The measurement control unit 104 may further calculate the pulse rate.
  • the blood pressure is calculated based on the pulse wave information obtained in the decompression process, but the blood pressure may be calculated based on the pulse wave information obtained in the pressurization process.
  • the measurement control unit 104 displays the measurement result, that is, the blood pressure value and the pulse rate calculated in step S108 on the display unit 40 (step S110).
  • the measurement result is stored in a measurement result storage area (not shown) in the memory 39 (step S112).
  • measurement data including a measurement date and a measurement value (maximum blood pressure, minimum blood pressure, pulse rate) is stored in a record format for each measurement.
  • step S102 a series of measurement processes is completed (power OFF). It is assumed that the battery selected in the power source selection process (step S102) is continuously selected even after the measurement process is completed.
  • the dry battery 52 is selected. Therefore, the situation where the capacity of the rechargeable battery 51 becomes insufficient during the measurement and the measurement is stopped can be surely avoided.
  • the rechargeable battery priority mode is taken as an example, but the same processing can be performed even in a mode in which the dry battery 52 is preferentially used, that is, in the dry battery priority mode.
  • the above-described power source selection process is performed only at the time of startup, but may be performed at other timings as long as the phase is not related to blood pressure measurement control. For example, it may be executed when charging of the rechargeable battery 51 is completed, when the dry battery 52 is inserted, or when an instruction for power source switching control is input by the user.
  • the sphygmomanometer including an automatic pressurizing unit for example, the pump 33, the exhaust valve 34, etc.
  • a sphygmomanometer including an automatic pressurizing unit for example, a rubber ball
  • the pump 33, the exhaust valve 34, the pump drive circuit 36, and the valve drive circuit 37 shown in FIG. 3 are unnecessary.
  • the sphygmomanometer may include a rubber ball (not shown) connected to the air bladder 21 via the tube 24.
  • the sphygmomanometer 1 since the sphygmomanometer 1 according to the present embodiment includes the solar battery 50, it may not be possible to charge the rechargeable battery 51 when the weather is cloudy or rainy. Therefore, power supply switching control may be performed based on not only the battery voltage but also the weather prediction result.
  • FIG. 7 is a flowchart showing the power supply selection process in the first modification of the first embodiment of the present invention.
  • the remaining measurable number of times (referred to as “remaining number of times of measurement”) is used in place of the voltage as the characteristic value related to the remaining battery level.
  • switching control unit 102 calculates the remaining number of measurements of rechargeable battery 51 and displays it on display unit 40 (step S222).
  • the remaining number of measurements is calculated based on, for example, the voltage of the rechargeable battery 51 and a data table (stored in the memory 39) in which the relationship between the voltage and the number of measurements is defined in advance.
  • the feature value (remaining measurement count) in this modification is a value calculated by the CPU 100 based on the outputs from the voltage detection units 56 and 57.
  • step S224 determines whether or not the calculated number of remaining measurements is 20 or more. If the remaining number of measurements is 20 or more (YES in step S224), the process proceeds to step S228. On the other hand, if the remaining number of measurements is less than 20 (NO in step S224), the process proceeds to step S225.
  • step S225 the switching control unit 102 performs a weather prediction process.
  • the switching control unit 102 predicts weather using the pressure sensor 32.
  • the pressure sensor 32 detects an absolute value or a relative value of atmospheric pressure.
  • the switching control unit 102 periodically receives a signal from the oscillation circuit 35 and records the absolute value or relative value trend of the atmospheric pressure in the memory 39. Then, for each predetermined time (for example, 6 hours), future weather (for example, weather after 3 hours) is predicted based on the trend of the absolute value or the relative value of the atmospheric pressure.
  • a weather prediction method a known method may be employed.
  • step S226 determines whether or not the remaining measurement count is 10 or more and the weather prediction is clear. If the condition is satisfied (YES in step S226), the process proceeds to step S228. On the other hand, if the condition is not satisfied (NO in step S226), the process proceeds to step S230.
  • step S228, the switching control unit 102 selects the rechargeable battery 51.
  • a switching signal is transmitted to the switching unit 58 only when the dry battery 52 is selected when the power is turned off.
  • step S230 the switching control unit 102 selects the dry battery 52.
  • a switching signal is transmitted to the switching unit 58 only when the rechargeable battery 51 is selected when the power is turned off.
  • step S228 or step S230 When the process of step S228 or step S230 is completed, the power supply selection process is terminated.
  • the threshold value (20 times, 10 times) used for the determination of the remaining number of measurements may be fixed (predetermined value) or may be set based on the measurement data recorded in the memory 39. In the latter case, the switching control unit 102 calculates the average number of measurements per day of the person being measured, sets the first threshold (step S224) for two days, and sets the second threshold (step S226) for one day. May be minutes.
  • the user may be able to set and change the two threshold values directly.
  • the remaining number of measurements is used as a feature value related to the remaining battery level, but the battery voltage may be used as in the first embodiment.
  • the feature value related to the remaining battery level corresponds to the voltage in the first embodiment and the remaining number of measurements in the first modification of the first embodiment, but may represent a voltage level.
  • the power source switching control based on the voltage level of the rechargeable battery 51 will be described below. For the sake of simplicity, the description will be made in comparison with the first modification.
  • FIG. 8 is a flowchart showing the power supply selection process in the second modification of the first embodiment of the present invention.
  • the same step numbers are assigned to the same processes as the power source selection process shown in FIG. Therefore, description thereof will not be repeated here.
  • steps S222A, S224A, and S226A are executed instead of steps S222, S224, and S226 in FIG.
  • step S222A the switching control unit 102 calculates the voltage level of the rechargeable battery 51 and displays it on the display unit 40.
  • the voltage level is calculated based on, for example, the voltage of the rechargeable battery 51 and a data table (stored in the memory 39) in which the relationship between the voltage and the voltage level (for example, levels 0 to 3) is defined in advance.
  • the feature value (voltage level) in the present modification is also a value calculated by the CPU 100 based on the outputs from the voltage detection units 56 and 57.
  • FIG. 9 is a diagram illustrating a display example according to the voltage level of the rechargeable battery 51.
  • the switching control unit 102 determines whether or not the voltage level of the rechargeable battery 51 is level 2 or higher.
  • step S226A the switching control unit 102 determines whether or not the voltage level of the rechargeable battery 51 is level 1 or higher and the weather prediction is clear.
  • Embodiment 1 and Modification 2 may be combined. That is, the switching control unit 102 does not have to perform weather prediction.
  • the user may be able to select which of the remaining measurement count and the voltage level is the feature value. Thereby, it becomes possible to switch a power supply at a desired timing for every user. Moreover, since the desired feature value is displayed directly or indirectly, usability can be improved.
  • the power source switching control is executed only once at the time of startup.
  • the power source switching control is executed a plurality of times at the timing related to the blood pressure measurement process.
  • the configuration of the blood pressure monitor and its basic operation in the present embodiment are the same as those in the first embodiment. Accordingly, only the parts different from the first embodiment will be described below by taking the blood pressure monitor 1 shown in FIGS. 1 to 4 as an example. It is assumed that blood pressure monitor 1 in the present embodiment includes an automatic pressurizing unit.
  • FIG. 10 is a flowchart showing measurement-related processing in the second embodiment of the present invention.
  • the processing shown in the flowchart of FIG. 10 is also stored in advance in the memory 39 as a program, and the CPU 100 reads and executes this program.
  • the switching control unit 102 executes a power source selection process at startup (steps S402, S404, and S406).
  • the dry battery 52 is selected by the switching unit 58 at the start of the process. Further, it is assumed that the remaining capacity of the rechargeable battery 51 is sufficient. That is, it is assumed that the voltage of the rechargeable battery 51 obtained from the voltage detection unit 56 is equal to or higher than the threshold value THm described in the first embodiment.
  • the switching control unit 102 determines whether or not the voltage of the dry battery 52 is greater than a threshold value THo (for example, 4.1 V).
  • the threshold value THo represents, for example, a voltage value at which the sphygmomanometer 1 can be operated at a minimum (for example, the display unit 40 and the operation unit 41 can be activated). That is, even if the voltage of the dry battery 52 is about the threshold value THo, it means that the dry battery 52 alone cannot be pressurized to an appropriate value (for example, 180 mmHg).
  • the switching control unit 102 selects the dry battery 52 (step S404).
  • switching control unit 102 selects rechargeable battery 51 (step S406). In this case, the switching control unit 102 performs power source switching processing. That is, a control signal is transmitted to the switching unit 58 so as to select the rechargeable battery 51.
  • the switching control unit 102 displays on the display unit 40 which of the rechargeable battery 51 and the dry battery 52 is used. The same applies to the following power source selection process.
  • step S410 a measurement start instruction is input by the user. Then, pressurization control is executed (step S410). The pressurization control will be described with reference to a subroutine in FIG.
  • FIG. 11 is a flowchart showing pressurization control in the second embodiment of the present invention.
  • switching control unit 102 executes a power source selection process (steps S502, S504, S508) immediately before driving the pump.
  • step S502 it is determined whether or not the voltage of the dry battery 52 is greater than a predetermined threshold THp (for example, 4.5 V).
  • the threshold value THp is a value sufficiently higher than the threshold value THo (operable voltage) at the time of activation, and represents a voltage value (+ predetermined value) necessary for driving the pump 33.
  • step S502 When the voltage of the dry battery 52 is greater than the threshold value THp (YES in step S502), the switching control unit 102 selects the dry battery 52 (step S504). On the other hand, if the voltage of dry battery 52 is equal to or lower than threshold value THp (NO in step S502), switching control unit 102 selects rechargeable battery 51 (step S506).
  • the measurement control unit 104 starts driving the pump 33 and gradually increases the pressure of the air bladder 21 (step S508).
  • the measurement control unit 104 determines whether or not the pressurization end timing has come (step S510).
  • the pressurization end timing may be a time point when the systolic blood pressure is estimated during pressurization by a known method.
  • step S510 Pressurization is continued until the pressurization end timing is reached (NO in step S510).
  • step S510 measurement control unit 104 stops driving of pump 33 (step S512).
  • step S512 the process returns to the main routine.
  • measurement control unit 104 starts depressurization (step S412).
  • the switching control unit 102 executes power source selection processing (steps S414, S416, and S418) at the start of pressure reduction (immediately after the pump is stopped).
  • steps S414, S416, and S418 may be the same as steps S402, S404, and S406 at the time of startup, respectively. Therefore, description here will not be repeated.
  • the measurement control unit 104 calculates blood pressure (maximum blood pressure, minimum blood pressure) and pulse rate by a known method (step S420).
  • the measurement control unit 104 displays the measurement result on the display unit 40 (step S422). Further, the measurement result is stored in a measurement result storage area (not shown) in the memory 39 (step S424).
  • steps S420, S422, and S424 may be the same as steps S108, S110, and S112 of FIG. 5 in the first embodiment, respectively.
  • FIG. 12 is a timing chart showing power supply switching timing in the second embodiment of the present invention. Also in this timing chart, an example in the dry battery priority mode is shown.
  • the voltage VA of the rechargeable battery 51 is greater than the threshold value THp
  • the voltage VB of the dry battery 52 is greater than the threshold value THo and less than or equal to the threshold value THp.
  • the rechargeable battery 51 is selected as the power source.
  • the battery 52 is charged from the dry battery 52 at the time point when the driving of the pump 33 is started (t3).
  • the power source is switched to the battery 51 (step S506 in FIG. 11). Thereby, the remaining amount of the rechargeable battery 51 is consumed for driving the pump 33.
  • the dry battery 52 can be selected as the power source in a phase other than the drive of the pump 33. .
  • the remaining amount of the dry battery 52 can be used efficiently.
  • the dry battery 52 can be used up.
  • the dry battery priority mode has been described as an example, but also in the rechargeable battery priority mode, the life of the rechargeable battery 51 can be extended by using up the rechargeable battery 51 to the lower limit value.
  • the power source selection process is not performed at the time (t1) when the dry battery 52 is inserted.
  • the power source selection process may be performed even at the time.
  • the power source selection process may be performed not only when the pump is stopped (t4) but also when the blood pressure calculation is completed (t5).
  • Time t5 corresponds to the end of decompression.
  • the power source selection process is performed only at a specific timing.
  • the voltage values of both the batteries 51 and 52 are periodically monitored and periodically. Power supply selection processing may be performed. This makes it possible to use the battery even more efficiently.
  • Embodiment 2 and Modifications 1 and 2 of Embodiment 1 may be combined.
  • ⁇ Modification> In the said Embodiment 2, it fixed to the battery determined just before the pump drive during the pressurization period. However, the most power is consumed during the pressurization period when the driving of the pump 33 is started. Therefore, in order to fully use the priority battery (the battery determined to be used preferentially), it may be determined again whether or not the priority battery can be switched after a certain period of time has elapsed after the start of driving of the pump 33. .
  • FIG. 13 is a flowchart showing pressurization control in a modification of the second embodiment of the present invention.
  • the same step numbers are assigned to the same processes as those in the flowchart of FIG. 11 used in the second embodiment. Therefore, description thereof will not be repeated here.
  • step S502A is executed instead of step S502 of FIG. Further, the processes of steps S602 to S608 are added between step S508 and step S510 of FIG.
  • step S502A the switching control unit 102 determines whether or not the voltage of the dry battery 52 is greater than a predetermined threshold THpa (for example, 4.5 V).
  • the threshold value THpa represents a voltage value (+ predetermined value) required at the initial driving of the pump 33.
  • THpa may be lower than threshold THp in the second embodiment, but is sufficiently higher than threshold THo at the time of activation.
  • the switching control unit 102 determines whether or not an elapsed time (that is, a pump driving time) after starting the driving of the pump 33 is less than a predetermined time Ta (Ste S602).
  • the pump driving time may be calculated based on the output (current day, hour, minute, second) from the time measuring unit 43. Alternatively, it may be counted by a timer not shown.
  • step S602 it is determined whether the voltage of the battery being used has recovered. Instead of determining the predetermined time Ta, it may be determined whether or not the voltage of the battery in use has returned to the threshold THpa at the initial driving stage.
  • switching control unit 102 determines whether or not the voltage of dry battery 52 is greater than a threshold THpb (for example, 4.2 V) (step S604).
  • the threshold value THpb represents a voltage value (+ predetermined value) necessary for continuing driving of the pump 33.
  • the threshold value THpb is lower than the threshold value THpa in the initial stage of pressurization. Further, the threshold value THpb is a value equal to or higher than the threshold value THo at the time of activation.
  • step S604 When it is determined that the voltage of the dry battery 52 is greater than the threshold value THpb (YES in step S604), the dry battery 52 is selected (step S606). On the other hand, when it is determined that the voltage of the dry battery 52 is equal to or lower than the threshold value THpb (NO in step S604), the rechargeable battery 51 is selected (step S608).
  • step S510 When any battery is selected, it is determined in step S510 described above whether or not the pressurization end timing has come. If it is not the pressurization end timing (NO in step S510), the process returns to step S604. If the pressurization end timing is reached (YES in step S510), the pump 33 is stopped in step S512 described above.
  • FIG. 14 is a timing chart showing the power supply switching timing in the modification of the second embodiment of the present invention. Also in this timing chart, an example in the dry battery priority mode is shown.
  • the voltage VA of the rechargeable battery 51 is larger than the threshold THp (voltage that can drive the pump 33) used in the second embodiment. Further, it is assumed that the voltage VB of the dry battery 52 is greater than the threshold value THpb (continuable voltage) and equal to or less than the threshold value THpa (drive initial voltage) at the start of the timing chart.
  • the states at times t11 to t13 are the same as those at times t1 to t3 in FIG.
  • the states at times t16 and t17 are the same as those at times t4 and t5 in FIG. 12, respectively. Therefore, detailed description of the states at these timings will not be repeated.
  • the rechargeable battery 51 is selected at the time when the drive of the pump 33 is started (t13) (step S506 in FIG. 13).
  • the capacity (remaining amount) of the dry battery 52 is reduced during pressurization (time t15). That is, it is assumed that the voltage value VB of the dry battery 52 becomes equal to or less than the threshold value THpb. Then, the power source is switched again from the dry battery 52 to the rechargeable battery 51 (NO in step S604, S608).
  • the rechargeable battery 51 is selected until the pump 33 is stopped.
  • the power source selection process is performed again. It is assumed that the voltage VB of the dry battery 52 is equal to or lower than the threshold value THpb but is larger than the operable voltage THpo. In that case, the power source is switched again from the rechargeable battery 51 to the dry battery 52 which is the priority battery (YES in step S414 in FIG. 10, S416).
  • the power source can be switched even during the pressurization period. Therefore, the priority battery can be used more preferentially.
  • the power source selection process (switching control) is performed in association with the blood pressure measurement control.
  • FIG. 15 is a flowchart showing alarm processing according to Embodiment 3 of the present invention.
  • the processing shown in the flowchart of FIG. 15 is also stored in advance in the memory 39 as a program, and the function of alarm processing is realized by the CPU 100 reading and executing this program.
  • the dry battery priority mode is assumed. Referring to FIG. 15, this process is executed when dry battery 52 is inserted.
  • the present invention is not limited to this, and instead of / in addition to this, it may be executed when charging of the rechargeable battery 51 is completed, or when an instruction for power source switching control is input by the user.
  • the switching control unit 102 determines whether or not the voltage of the dry battery 52 is greater than the threshold value THo (step S802).
  • the switching control unit 102 selects the dry battery 52 (step S804).
  • the switching control unit 102 selects the rechargeable battery 51 (step S806).
  • the sphygmomanometer 1 is turned off (step S808).
  • the switching control unit 102 determines whether or not the alarm time recorded in the memory 39 has arrived (step S810). Here, it is actually determined whether or not the current time obtained from the time measuring unit 43 is a predetermined time (for example, 10 seconds) before the alarm time.
  • the power supply selection process is executed for the switching control unit 102.
  • the switching control unit 102 determines whether or not the voltage of the dry battery 52 is greater than a threshold value THb (for example, 4.3 V) (step S812).
  • the threshold value THb is a voltage (+ predetermined value) necessary for driving the buzzer 44, and is larger than the threshold value THo that is an operable voltage.
  • the switching control unit 102 selects the dry battery 52 (step S814).
  • the switching control unit 102 selects the rechargeable battery 51 (step S816).
  • the alarm control unit 106 sounds (operates) the buzzer 44 when the alarm time recorded in the memory 39 arrives (step S818). As a result, the buzzer 44 generates an alarm sound.
  • FIG. 16 is a timing chart showing power supply switching timing of alarm processing according to Embodiment 3 of the present invention. Also in this timing chart, an example in the dry battery priority mode is shown.
  • the sphygmomanometer 1 is in a power OFF state from the insertion of the dry battery 52 until the alarm time (time t22).
  • the voltage of the dry battery 52 is equal to or less than the voltage value THb that enables the buzzer 44 to operate, and at this time, the rechargeable battery 51 is selected again as a power source (in step S812 of FIG. 15). NO, S816).
  • Embodiment 3 and Modifications 1 and 2 of Embodiment 1 may be combined.
  • auxiliary battery the voltage value of the battery that is not the priority battery
  • the voltage value of the auxiliary battery is below various threshold values.
  • rapid charging of the rechargeable battery 51 by an AC adapter may be promoted.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Public Health (AREA)
  • Power Engineering (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

 電子血圧計の電源部は、一次電池としての乾電池(52)、二次電池としての充電池(51)および電源制御回路(53)を含む。電圧検出部(56)は、充電池(51)の電圧(特徴値)を検出し、電圧検出部(57)は、乾電池(52)の電圧を検出する。切替制御部(102)は、電圧検出部(56,57)による検出結果に基づいて、乾電池(52)および充電池(51)の切替制御を行なう。

Description

電子血圧計
 本発明は、電子血圧計に関し、特に、電池を備えた電子血圧計に関する。
 毎日血圧を測定することは、健康管理の上で非常に重要である。そのために、院外でも血圧を測定できる家庭用の電子血圧計が普及している。
 電子血圧計は、一次電池(以下「乾電池」という)、AC(Alternating Current)アダプタ、または二次電池(以下「充電池」という)によって駆動している。
 しかし、乾電池および充電池のうちどちらか一方の電池を使用する場合は、測定途中で容量(残量)不足となり測定できないといった問題点があった。
 そこで、特開2001-245857号公報(特許文献1)では、電池の電圧値より測定残数を報知する技術が提案されている。
特開2001-245857号公報
 しかしながら、電池容量の消費は、腕周や血圧値(最高血圧)に依存するポンプの加圧時間や環境温度に影響をうけるため、残りの測定回数を適確に示すことは難しい。したがって、上記従来の技術では、まだ測定できるにもかかわらず乾電池の交換や充電池の充電をしてしまう可能性がある。また、逆に、測定回数が1以上であったとしても、測定途中で容量不足になり、測定が継続できなくなる可能性もある。
 または、充電池を太陽光エネルギーにより充電する場合、使用状況によってはすぐに充電できない場合がある。
 または、カフに圧力を加える際(加圧初期)、ポンプの駆動により電圧降下が大きい。そのため、測定開始時に電池の電圧値が、ポンプの駆動が可能な所定量以下だと、電池交換マークや充電マークが表示される。したがって、そのような場合、乾電池や充電池の残量を使い切ることができない。充電池の残量が十分存在する段階で充電を繰返すと、充電池の寿命が縮まるため、充電池の場合であっても、できるだけ使い切ることが望ましい。
 本発明は、上記のような問題を解決するためになされたものであって、その目的は、ユーザが測定したいときに測定でき、かつ、電池を効率良く使用することのできる電子血圧計を提供することである。
 この発明のある局面に従う電子血圧計は、被測定者の血圧を測定するための電子血圧計であって、被測定者の所定の身体部位に巻き付けるためのカフと、カフ内の圧力を検知するための圧力センサと、圧力センサからの信号に基づいて、被測定者の血圧を測定するための制御を行なうための測定制御部と、一次電池および二次電池を含み、電子血圧計を動作させるための電力を蓄えるための電源部と、一次電池および二次電池それぞれの特徴値を検出するための特徴値検出部と、特徴値検出部による検出結果に基づいて、一次電池および二次電池の切替制御を行なうための切替制御部とを備える。上記特徴値は、一次電池および二次電池それぞれの残量に関連する値である。
 好ましくは、太陽光を受光し、受光した光エネルギーを電気エネルギーに変換するための太陽電池をさらに備え、二次電池は、太陽電池が発電した電気エネルギーを蓄える。
 好ましくは、切替制御部は、圧力センサからの信号に基づいて天気を予測し、天気の予測結果に応じて、前記一次電池または前記二次電池を選択する。
 さらに好ましくは、起動時に、二次電池の特徴値が第1の閾値以上である場合に、二次電池を選択し、二次電池の特徴値が第1の閾値未満である場合には、天気の予測結果に応じて、一次電池または二次電池を選択する。
 好ましくは、切替制御部は、起動時に、一次電池および二次電池のうち優先的に使用することが定められた第1の電池の特徴値が第1の閾値より大きい場合に、第1の電池を選択し、第1の電池の特徴値が第1の閾値以下である場合には、他方の電池である第2の電池を選択するための第1の選択処理部を含む。
 好ましくは、電源部から供給される電力を駆動源としてカフを加圧するための加圧部をさらに備え、切替制御部は、さらに、起動時に第1の電池が選択されている場合、加圧部による加圧前における第1の電池の特徴値が、第1の閾値よりも高い第2の閾値以下であると判定したときには、第2の電池に電源を切替える。
 好ましくは、切替制御部は、さらに、加圧前に第2の選択処理部により第2の電池が選択されている場合に、加圧部による加圧途中における第1の電池の電圧が、第2の閾値よりも低い第3の閾値以上であると判定したときには、再度、第2の電池から第1の電池に切替える。
 なお、上記第3の閾値は、第1の閾値と等しい値であってもよいし、第1の閾値よりも高い値であってもよい。
 好ましくは、切替制御部は、一次電池および二次電池のうち、ユーザにより予め指定された方の電池を優先的に選択する。
 好ましくは、ユーザにより指定された特定タイミングでアラーム音を発生するための発生部をさらに備え、切替制御部は、特定タイミングが到来したときに、さらに、特徴値検出部による検出結果に基づいて、一次電池および二次電池の切替制御を行なう。
 好ましくは、特徴値は、電圧値、電圧値に基づく電圧レベル、および、電圧値により算出される測定可能回数のいずれかを表わす。
 本発明によると、一次電池および二次電池を備え、両者を、それぞれの残量に関連する特徴値に基づいて切替えることができる。したがって、不意に測定できなくなるという事態を避けることができる。また、両者の電池残量を効率良く使うことができる。
本発明の各実施の形態における電子血圧計の外観を示す図である。 本発明の各実施の形態における電子血圧計の本体部を後方から見た斜視図である。 本発明の各実施の形態における電子血圧計のハードウェア構成を示すブロック図である。 本発明の各実施の形態における電子血圧計の機能ブロック図である。 本発明の実施の形態1における測定関連処理を示すフローチャートである。 本発明の実施の形態1における電源選択処理を示すフローチャートである。 本発明の実施の形態1の変形例1における電源選択処理を示すフローチャートである。 本発明の実施の形態1の変形例2における電源選択処理を示すフローチャートである。 充電池(二次電池)の電圧レベルに応じた表示例を示す図である。 本発明の実施の形態2における測定関連処理を示すフローチャートである。 本発明の実施の形態2における加圧制御を示すフローチャートである。 本発明の実施の形態2における電源切替タイミングを示すタイミングチャートである。 本発明の実施の形態2の変形例における加圧制御を示すフローチャートである。 本発明の実施の形態2の変形例における電源切替タイミングを示すタイミングチャートである。 本発明の実施の形態3におけるアラーム処理を示すフローチャートである。 本発明の実施の形態3におけるアラーム処理の電源切替タイミングを示すタイミングチャートである。
 本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 [実施の形態1]
 <外観および構成について>
 (外観について)
 はじめに図1および図2を参照して、本実施の形態における電子血圧計(以下「血圧計」と略す)1の外観について説明する。
 図1は、本発明の実施の形態1における血圧計1の外観を示す図である。
 図1を参照して、血圧計1は、本体部10と、被測定者のたとえば上腕に巻付けるためのカフ20と、本体部10とカフ20とを接続するためのエアチューブ24とを備える。
 図2は、本発明の実施の形態1における本体部10を後方から見た斜視図である。
 図1および図2を参照して、本体部10は、5面体であり、机などの台と接する設置面と、設置面と所定の角度をなす表面10Aと、設置面に対して垂直な面である2つの側面10B,10Cおよび背面10Dとを有している。
 本体部10の表面10Aには、測定結果などを表示するための表示部40と、ユーザ(代表的に被測定者)からの指示の入力を受付けるための操作部41とが配置される。操作部41は、たとえば、電源のON/OFFを切替えるための電源スイッチ41A、測定開始の指示を入力するための測定スイッチ41B、および、過去の測定結果を読出して表示する指示を入力するためのメモリスイッチ41Cとを含む。
 表示部40は、たとえば液晶等のディスプレイにより構成される。
 本体部10の左側面10Bには、上述のエアチューブ24が接続されている。
 本体部10の背面10Dには、太陽電池(ソーラーパネル)50が配置される。これにより、血圧計1を室内の窓際など外光が差す場所に置くと、太陽電池50が太陽光を受光し、受光した光エネルギーを電気エネルギーに変換する。つまり、太陽電池50は、受光量に応じて、電気エネルギーを発生する。発生した電気エネルギーは、本体部10に内蔵された充電池(二次電池)51(図3参照)に出力される。
 なお、血圧計1の本体部10の形状はこのような例に限定されない。
 (ハードウェア構成について)
 図3は、本発明の実施の形態1における血圧計1のハードウェア構成を示すブロック図である。
 図3を参照して、血圧計1のカフ20は、空気が内包される空気袋21を含む。空気袋21は、エアチューブ24を介して、本体部10に内蔵されたエア系25と接続される。
 エア系25は、空気袋21内の圧力(以下、「カフ圧」という)を検出するための圧力センサ32と、空気袋21に空気を供給するためのポンプ33と、空気袋21の空気を排出しまたは封入するために開閉される排気弁34とを含む。
 本体部10は、各部を集中的に制御および監視するためのCPU(Central Processing Unit)100と、不揮発性のメモリ39と、表示部40と、操作部41と、電源部60と、時刻を計測するための計時部43と、アラーム音を発生するためのブザー44とを備える。また、本体部10は、エア系25に関連して、発振回路35と、ポンプ33を駆動するためのポンプ駆動回路36と、排気弁34を駆動するための弁駆動回路37とをさらに備える。
 ポンプ駆動回路36は、CPU100から与えられる制御信号に基づいて、ポンプ33の駆動を制御する。弁駆動回路37は、CPU100から与えられる制御信号に基づいて、排気弁34の開閉制御を行なう。
 圧力センサ32は、カフ圧により容量値が変化する。発振回路35は、圧力センサ32の容量値に応じた発振周波数の信号をCPU100に出力する。CPU100は、発振回路35から得られる信号を圧力に変換し圧力を検知する。
 メモリ39は、各種プログラムや各種データを記憶する。メモリ39は、血圧の測定結果を記憶するための測定結果記憶領域を含む。
 電源部60は、太陽電池50が発電した電気エネルギーを蓄えるための充電池51と、着脱可能な乾電池(一次電池)52と、電源制御回路53とを含む。なお、電源部60は、さらに、充電池51を急速充電するたえのACアダプタ(図示せず)を含んでいてもよい。
 電源制御回路53は、充電池51および乾電池52と電気的に接続され、両者が蓄えている電力を、選択的にポンプ駆動回路36や弁駆動回路37などの各種デバイスに供給する。電源制御回路53は、CPU100と電気的に接続され、CPU100との間で信号の送受信を行なう。電源制御回路53の構成例については後述する。
 充電池51は、たとえばニッケル水素電池である。乾電池52は、たとえばアルカリ電池である。
 (機能構成について)
 図4は、本発明の実施の形態1における血圧計1の機能ブロック図である。
 図4を参照して、電源制御回路53は、充電池51の電圧を検出するための電圧検出部56と、乾電池52の電圧を検出するための電圧検出部57と、充電池51および乾電池52の出力を切替えるための切替部58とを含む。
 一般的に、電圧によって電池の残量が検出(推定)できる。したがって、本実施の形態においても、電池51,52それぞれの残量と関連する(相関関係のある)特徴値として電圧を検出することとする。しかしながら、残量と相関関係のあるものであれば電圧に限らない。
 切替部58は、たとえばスイッチにより構成される。
 なお、本実施の形態では、電圧検出部56,57は、電源部60の電源制御回路53内に含まれることとしたが、これらは、電源部60とは独立して設けられてもよい。
 CPU100は、その機能として、切替制御部102と、測定制御部104と、アラーム制御部106とを含む。
 切替制御部102は、電圧検出部56,57が検出した電圧値に基づいて、充電池51および乾電池52の切替制御を行なう。より具体的には、切替部58に制御信号を送信することで、切替部58に充電池51および乾電池52のいずれか一方を選択させる。詳細な切替制御については後述する。
 測定制御部104は、図3に示したポンプ駆動回路36および弁駆動回路37を制御する。測定制御部104は、たとえばオシロメトリック法に従い、図3に示した発振回路35からの信号(カフ圧信号)に基づいて、血圧値(たとえば最高血圧、最低血圧)を算出する。また、公知の手法に従い、脈拍数を算出する。
 アラーム制御部106は、図3に示したブザー44と接続され、ユーザにより指定された特定タイミング(たとえば日時)でアラーム音を発生させるための制御を行なう。
 なお、各機能ブロックの動作は、メモリ39中に格納されたソフトウェアを実行することで実現されてもよいし、これらの機能ブロックのうち少なくとも1つについては、ハードウェアで実現されてもよい。
 <動作について>
 本実施の形態における血圧計1の動作について説明する。
 なお、以下の説明において、メモリ39には、充電池51を優先的に使用するモード、つまり、充電池優先モードであるとの情報が記憶されているものと仮定する。優先的に使用する電池は、予め、血圧計1の出荷時にデフォルトで定められていてもよい。または、ユーザが、操作部41を操作することによって、指定(設定および変更)できてもよい。
 図5は、本発明の実施の形態1において、CPU100が血圧の測定制御に関連して実行する処理(以下「測定関連処理」という)を示すフローチャートである。図5のフローチャートに示す処理は、予めプログラムとしてメモリ39に格納されており、CPU100がこのプログラムを読み出して実行する。
 図5を参照して、電源スイッチ41Aが押下されると、初めに、起動時の電源選択処理が実行される(ステップS102)。当該処理については、図6にサブルーチンを挙げて詳細に説明する。
 図6は、本発明の実施の形態1における電源選択処理を示すフローチャートである。
 なお、以下の説明において、はじめは、充電池51が切替部58において選択されているものと仮定する。また、乾電池52の残量は十分にあるものと仮定する。つまり、電圧検出部57から得られる乾電池52の電圧が、後述する閾値THm(たとえば4.5V)以上であると仮定する。
 図6を参照して、切替制御部102は、充電池51の電圧が予め定められた閾値THmより大きいか否かを判断する(ステップS212)。充電池51の電圧は、図4に示した電圧検出部56からの出力より得られる。
 閾値THmは、少なくとも1回の血圧測定処理の完遂に必要な電圧以上の値であればよい。ここでは、たとえば、1回の血圧測定処理の完遂に必要な電圧に所定値加算した値である。
 充電池51の電圧が閾値THmより大きければ(ステップS212においてYES)、切替制御部102は、充電池51を選択する(ステップS214)。当該処理のはじめの時点で、充電池51が選択されているので、この場合、切替制御部102は、電源の切替えは行なわない。
 一方、充電池51の電圧が閾値THm以下であれば(ステップS212においてNO)、切替制御部102は、乾電池52を選択する(ステップS216)。この場合、切替制御部102は、電源の切替処理を行なう。つまり、切替部58に対し、乾電池52を選択するよう制御信号を送信する。
 ステップS216において、CPU100は、充電池51を充電するよう報知することが好ましい。
 ステップS214またはステップS216の処理が終わると、切替制御部102は、表示部40に使用電池が充電池51および乾電池52のうちいずれであるかを表示する(ステップS218)。
 この処理が終わると、処理はメインルーチンに戻される。
 再び図5を参照して、起動時の電源選択処理が終わり、測定スイッチ41Bが押下されると、測定開始の指示が入力される(ステップS104)。
 そうすると、測定制御部104は、ポンプ33を駆動開始し、空気袋21の圧力を徐々に上昇させる(ステップS106)。電源制御回路53の切替部58に充電池51が選択されている場合には、充電池51に蓄えられた電力がポンプ33の駆動源となる。電源制御回路53の切替部58に乾電池52が選択されている場合には、乾電池52に蓄えられた電力がポンプ33の駆動源となる。
 カフ圧が血圧測定のための所定レベルにまで達すると、測定制御部104はポンプ33を停止し、閉じていた排気弁34を徐々に開いて、空気袋21の空気を徐々に排気する。これにより、カフ圧は徐々に減圧される(ステップS107)。
 次に、測定制御部104は、公知の手法で血圧(最高血圧、最低血圧)を算出する(ステップS108)。具体的には、カフ圧が徐々に減圧する過程において、測定制御部104は、発振回路35から得られる発振周波数に基づき脈波情報を抽出する。そして、抽出された脈波情報により血圧を算出する。測定制御部104は、脈拍数をさらに算出してよい。
 なお、本実施の形態では、減圧過程で得られる脈波情報に基づいて血圧を算出することとしたが、加圧過程で得られる脈波情報に基づいて血圧を算出してもよい。
 次に、測定制御部104は、測定結果すなわち、ステップS108で算出された血圧値および脈拍数を表示部40に表示する(ステップS110)。
 そして、測定結果を、メモリ39内の測定結果記憶領域(不図示)に格納する(ステップS112)。メモリ39の測定結果記憶領域には、たとえば、測定ごとに、測定日時と測定値(最高血圧、最低血圧、脈拍数)とを含む測定データが、レコード形式で格納される。
 以上で、一連の測定処理は終了される(電源OFF)。
 測定処理終了後も、電源選択処理(ステップS102)において選択された電池が継続して選択されるものとする。
 上述のように、本実施の形態によると、起動時(電源ON時)に、充電池51の残量が、少なくとも1回の測定処理を完遂できる分だけ存在しているか否かを判断し、そうでない場合には、乾電池52が選択される。したがって、測定途中に、充電池51の容量不足となり、測定中止となる事態を確実に避けることができる。
 なお、上述した動作では、充電池優先モードを例にしたが、乾電池52を優先的に使うモードすなわち、乾電池優先モードの場合でも、同様の処理を行なうことができる。
 また、本実施の形態では、起動時にのみ上述の電源選択処理を行なうこととしたが、血圧の測定制御と関連しないフェーズであれば、他のタイミングにも実行してもよい。たとえば、充電池51の充電終了時、乾電池52の挿入時、あるいは、ユーザによる電源の切替制御の指示が入力された時に実行されてもよい。
 また、本実施の形態では、自動的に加圧および減圧するための自動加圧ユニット(たとえば、ポンプ33、排気弁34など)を備えた血圧計を例に説明したが、手動で加圧および減圧するための自動加圧ユニット(たとえば、ゴム球)を備えた血圧計であってもよい。手動加圧ユニットを備えている場合には、図3に示したポンプ33、排気弁34、ポンプ駆動回路36および弁駆動回路37が不要である。その代わり、血圧計は、チューブ24を介して空気袋21と接続されるゴム球(不図示)を備えていればよい。
 <変形例1>
 本実施の形態における血圧計1は太陽電池50を備えているため、天気がくもりや雨の場合には、充電池51を充電したくてもできない場合がある。そこで、電池の電圧だけでなく、さらに、天気の予測結果に基づいて、電源の切替制御を行なってもよい。
 図7は、本発明の実施の形態1の変形例1における電源選択処理を示すフローチャートである。
 図7においては、電池の残量と関連する特徴値として、電圧に代えて、残りの測定可能回数(「残測定回数」という)を用いる。
 本例では、被測定者の1日の測定回数を10回と想定する。
 図7を参照して、切替制御部102は、充電池51の残測定回数を算出し、表示部40に表示する(ステップS222)。残測定回数は、たとえば、充電池51の電圧と、電圧と測定回数との関係を予め定義したデータテーブル(メモリ39内に格納)とに基づいて、算出される。このように、本変形例における特徴値(残測定回数)は、電圧検出部56,57からの出力に基づいてCPU100によって演算される値である。
 次に、切替制御部102は、算出された残測定回数が20回以上であるか否かを判断する(ステップS224)。残測定回数が20回以上であれば(ステップS224においてYES)、ステップS228に進む。一方、残測定回数が20回未満であれば(ステップS224においてNO)、ステップS225に進む。
 ステップS225において、切替制御部102は、天気の予測処理を実行する。切替制御部102は、圧力センサ32を利用して天気を予測する。圧力センサ32は、大気圧の絶対値または相対値を検知する。
 なお、切替制御部102は、発振回路35からの信号を定期的に受付け、大気圧の絶対値または相対値のトレンドをメモリ39に記録しているものとする。そして、所定の時間(たとえば6時間)ごとに、大気圧の絶対値または相対値のトレンドに基づいて、未来の天気(たとえば3時間後の天気)を予測する。天気の予測方法については、公知の手法が採用されてよい。
 次に、切替制御部102は、残測定回数が10回以上であり、かつ、天気予測が晴れであるか否かを判断する(ステップS226)。当該条件を満たしていれば(ステップS226においてYES)、ステップS228に進む。一方、当該条件を満たしていなければ(ステップS226においてNO)、ステップS230に進む。
 ステップS228において、切替制御部102は、充電池51を選択する。電源OFF時に乾電池52が選択されている場合にのみ、切替部58に切替信号を送信する。
 ステップS230において、切替制御部102は、乾電池52を選択する。電源OFF時に充電池51が選択されている場合にのみ、切替部58に切替信号を送信する。
 ステップS228またはステップS230の処理が終わると、電源選択処理は終了される。
 なお、残測定回数の判断に用いる閾値(20回、10回)は、固定(所定値)であってもよいし、メモリ39に記録された測定データに基づいて設定されてもよい。後者の場合、切替制御部102は、被測定者の1日の平均測定回数を算出し、一つ目の閾値(ステップS224)を2日分、二つ目の閾値(ステップS226)を1日分としてもよい。
 あるいは、ユーザが、直接的に2つの閾値を設定および変更できてもよい。
 また、本変形例では、残測定回数を、電池の残量に関連する特徴値として用いたが、上記実施の形態1と同様に、電池の電圧を用いてもよい。
 <変形例2>
 電池の残量と関連する特徴値は、実施の形態1では電圧、実施の形態1の変形例1では残測定回数に対応していたが、電圧レベルを表わしてもよい。
 充電池51の電圧レベルに基づく電源の切替制御について以下に説明する。なお、説明の簡単のために、上記変形例1と比較して説明する。
 図8は、本発明の実施の形態1の変形例2における電源選択処理を示すフローチャートである。図8において、図7に示した電源選択処理と同様の処理については、同じステップ番号を付してある。したがってそれらについての説明はここでは繰返さない。
 実施の形態1の変形例2では、図7のステップS222、S224およびS226それぞれに代えて、ステップS222A、S224AおよびS226Aが実行される。
 ステップS222Aにおいて、切替制御部102は、充電池51の電圧レベルを算出し、表示部40に表示する。電圧レベルは、たとえば、充電池51の電圧と、電圧と電圧レベル(たとえばレベル0~3)との関係を予め定義したデータテーブル(メモリ39内に格納)とに基づいて、算出される。このように、本変形例における特徴値(電圧レベル)も、電圧検出部56,57からの出力に基づいて、CPU100によって演算される値である。
 図9は、充電池51の電圧レベルに応じた表示例を示す図である。
 ステップS224Aにおいて、切替制御部102は、充電池51の電圧レベルがレベル2以上であるか否かを判断する。
 ステップS226Aにおいて、切替制御部102は、充電池51の電圧レベルがレベル1以上であり、かつ、天気予測が晴れであるか否かを判断する。
 なお、実施の形態1と変形例2とを組合わせてもよい。つまり、切替制御部102は、天気予測を行なわなくてもよい。
 また、残測定回数と電圧レベルとのうちいずれを特徴値とするかを、ユーザが選択できてもよい。これにより、ユーザごとに希望のタイミングで電源を切り替えることが可能となる。また、希望する特徴値が直接的または間接的に表示されるため、ユーザビリティを向上させることができる。
 [実施の形態2]
 上記実施の形態1およびその変形例1,2では、起動時に一度だけ電源の切替制御が実行されるものであった。これに対し、本実施の形態では、血圧の測定処理と関連するタイミングで、複数回、電源の切替制御が実行される。
 本実施の形態における血圧計の構成およびその基本的な動作は、実施の形態1と同様である。したがって、図1~4に示した血圧計1を例に、実施の形態1と異なる部分のみ以下に説明する。なお、本実施の形態における血圧計1は、自動加圧ユニットを備えていることが前提である。
 以下の説明において、メモリ39には、乾電池優先モード(乾電池52が装着されている場合には、乾電池52を優先的に使用するモード)であるとの情報が記憶されているものと仮定する。
 図10は、本発明の実施の形態2における測定関連処理を示すフローチャートである。図10のフローチャートに示す処理も、予めプログラムとしてメモリ39に格納されており、CPU100がこのプログラムを読み出して実行する。
 図10を参照して、電源スイッチ41Aが押下されると、はじめに、切替制御部102は、起動時の電源選択処理(ステップS402,S404,S406)を実行する。
 なお、当該処理の開始時点において、乾電池52が切替部58において選択されているものと仮定する。また、充電池51の残量は十分にあるものと仮定する。つまり、電圧検出部56から得られる充電池51の電圧が、実施の形態1で説明した閾値THm以上であると仮定する。
 ステップS402において、切替制御部102は、乾電池52の電圧が閾値THo(たとえば4.1V)より大きいか否かを判断する。閾値THoは、たとえば、最低限、血圧計1を動作可能にできる(たとえば、表示部40や操作部41を有効にできる)電圧値を表わす。つまり、乾電池52の電圧が閾値THo程度あったとしても、乾電池52のみによって適切な値(たとえば180mmHg)まで加圧することはできないことを意味する。
 乾電池52の電圧が閾値THoより大きい場合(ステップS402においてYES)、切替制御部102は、乾電池52を選択する(ステップS404)。
 一方、乾電池52の電圧が閾値THo以下であれば(ステップS402においてNO)、切替制御部102は、充電池51を選択する(ステップS406)。この場合、切替制御部102は、電源の切替処理を行なう。つまり、切替部58に対し、充電池51を選択するよう制御信号を送信する。
 本実施の形態においても、切替制御部102は、表示部40に使用電池が充電池51および乾電池52のうちいずれであるかを表示することが好ましい。以下の電源選択処理においても同様である。
 次に、ユーザより、測定開始の指示が入力される(ステップS408)。
 そうすると、加圧制御が実行される(ステップS410)。加圧制御については、図11にサブルーチンを挙げて説明する。
 図11は、本発明の実施の形態2における加圧制御を示すフローチャートである。
 図11を参照して、まず、切替制御部102が、ポンプ駆動直前の電源選択処理(ステップS502,S504,S508)を実行する。
 ステップS502において、乾電池52の電圧が、予め定められた閾値THp(たとえば4.5V)より大きいか否かを判断する。閾値THpは、起動時の閾値THo(動作可能電圧)よりも十分に高い値であり、ポンプ33の駆動に必要な電圧値(+所定値)を表わす。
 乾電池52の電圧が閾値THpより大きい場合(ステップS502においてYES)、切替制御部102は、乾電池52を選択する(ステップS504)。一方、乾電池52の電圧が閾値THp以下であれば(ステップS502においてNO)、切替制御部102は、充電池51を選択する(ステップS506)。
 電源としていずれかの電池が選択されると、測定制御部104は、ポンプ33の駆動を開始し、空気袋21の圧力を徐々に上昇させる(ステップS508)。
 そして、測定制御部104は、加圧終了タイミングになったか否かを判断する(ステップS510)。ここでは、たとえば、カフ圧が所定値(たとえば180mmHg)に達したか否かが判断される。なお、公知の手法により加圧中に最高血圧が推定された時点を加圧終了タイミングとしてもよい。
 加圧終了タイミングになるまで加圧が続けられる(ステップS510においてNO)。
 加圧終了タイミングが到来すると(ステップS510においてYES)、測定制御部104は、ポンプ33の駆動を停止する(ステップS512)。この処理が終わると、処理はメインルーチンに戻される。
 再び図10を参照して、測定制御部104は、減圧を開始する(ステップS412)。
 同時に、切替制御部102は、減圧開始時(ポンプ停止直後)の電源選択処理(ステップS414,S416,S418)を実行する。
 ステップS414,S416,S418の処理は、それぞれ、起動時におけるステップS402,S404,S406と同様であってよい。したがって、ここでの説明は繰返さない。
 加圧終了時の電源選択処理が終わると、測定制御部104は、公知の手法で血圧(最高血圧、最低血圧)、および、脈拍数を算出する(ステップS420)。
 血圧が算出されると、測定制御部104は、測定結果を表示部40に表示する(ステップS422)。また、測定結果をメモリ39内の測定結果記憶領域(不図示)に格納する(ステップS424)。
 なお、ステップS420,S422,S424の処理は、それぞれ、実施の形態1における図5のステップS108,S110,S112と同様であってよい。
 以上で、一連の測定関連処理は終了される(電源OFF)。
 図12は、本発明の実施の形態2における電源切替タイミングを示すタイミングチャートである。このタイミングチャートにおいても、乾電池優先モードである場合の例が示されている。
 なお、このタイミングチャートにおいて、充電池51の電圧VAは、閾値THpより大きく、乾電池52の電圧VBは、閾値THoより大きくかつ閾値THp以下であるものとする。
 図12を参照して、乾電池52が血圧計1に装着されていない場合、充電池51が電源として選択されている。
 乾電池52がユーザによって挿入されて(時間t1)、最初に、電源スイッチ41Aが押下されたとする(時間t2)。その場合、乾電池52の電圧VBが、動作可能電圧である閾値THoより大きいため(図10のステップS402にてYES)、電源が充電池51から乾電池52に切替えられる(図10のステップS404)。
 また、乾電池52の電圧VBは、加圧動作のための閾値THp以下であるため(図11のステップS502にてNO)、ポンプ33の駆動が開始される時点(t3)では、乾電池52から充電池51に電源が切替えられる(図11のステップS506)。これにより、充電池51の残量がポンプ33の駆動に消費される。
 ポンプ33の駆動が停止されると(時間t4)、再び、充電池51から乾電池52に切替えられる(図10のステップS414にてYES,S416)。
 このように、本実施の形態によると、乾電池52の残量が、ポンプ33を駆動できるだけの量未満であったとしても、ポンプ33駆動以外のフェーズでは、乾電池52を電源と選択することができる。その結果、乾電池52の残量を効率的に使用することができる。自動加圧式の血圧計の場合、乾電池52を使い切ることは難しいが、本実施の形態によると、乾電池52を使い切ることができる。
 上記では、乾電池優先モードを例に説明したが、充電池優先モードの場合にも、充電池51を下限値まで使い切ることで、充電池51の寿命を延ばすことができる。
 なお、本実施の形態では、乾電池52を挿入した時点(t1)では、電源選択処理を行なわないこととしたが、当該時点においても、電源選択処理を行なってもよい。
 また、ポンプ停止時(t4)だけでなく、血圧算出完了時(t5)においても電源選択処理を行なってもよい。時間t5は、減圧終了時に相当する。
 または、本実施の形態では、特定のタイミングにのみ、電源選択処理を行なうこととしたが、血圧計1の動作中は、定期的に両電池51,52の電圧値を監視し、定期的に電源選択処理を行なうこととしてもよい。これにより、より一層、効率的な電池の使用が可能となる。
 なお、実施の形態2と実施の形態1の変形例1,2とを組合わせてもよい。
 <変形例>
 上記実施の形態2では、加圧期間中は、ポンプ駆動直前に判定された電池に固定された。しかし、加圧期間中、最も電力を消費するのは、ポンプ33の駆動開始時である。そのため、優先電池(優先的に使用するよう定められた電池)をより十分に使い切るためには、ポンプ33の駆動開始後、一定期間経過すると、優先電池に切り替えられるかを再び判定してもよい。
 実施の形態2の変形例では、加圧期間中も電池の選択処理を行なう。
 図13は、本発明の実施の形態2の変形例における加圧制御を示すフローチャートである。なお、図13において、実施の形態2で用いた図11のフローチャートと同様の処理については同じステップ番号を付してある。したがって、これらについての説明はここでは繰返さない。
 図13を参照して、本変形例では、図11のステップS502に代えて、ステップS502Aの処理が実行される。また、図11のステップS508とステップS510との間に、ステップS602~S608の処理が追加される。
 ステップS502Aでは、切替制御部102は、乾電池52の電圧が、予め定められた閾値THpa(たとえば4.5V)より大きいか否かを判断する。閾値THpaは、ポンプ33の駆動初期に必要な電圧値(+所定値)を表わす。THpaは、実施の形態2における閾値THpよりも低くてよいが、起動時の閾値THoよりも十分に高い。
 ステップS508においてポンプ33の駆動が開始されると、切替制御部102は、ポンプ33の駆動を開始してからの経過時間(すなわち、ポンプ駆動時間)が所定時間Ta未満か否かを判断する(ステップS602)。ポンプ駆動時間は、計時部43からの出力(現在の日、時、分、秒)に基づいて計算されてもよい。あるいは、図示しないタイマによってカウントされてもよい。
 ポンプ33の駆動開始時(および直後)は大きく電圧が降下する。ステップS602では、使用している電池の電圧が回復したか否かを判断している。なお、所定時間Taの判断に代えて、使用中の電池の電圧が駆動初期の閾値THpaに戻ったか否かを判断してもよい。
 ポンプ駆動時間が所定時間Ta以上と判断されるまで待機する(ステップS602においてYES)。
 ポンプ駆動時間が所定時間Ta以上と判断された場合(ステップS602においてNO)、切替制御部102は、乾電池52の電圧が閾値THpb(たとえば4.2V)より大きいか否かを判断する(ステップS604)。閾値THpbは、ポンプ33の駆動の継続に必要な電圧値(+所定値)を表わす。閾値THpbは、加圧初期の閾値THpaよりも低い値である。また、閾値THpbは、起動時の閾値THoと等しい値、もしくは、それよりも高い値である。
 乾電池52の電圧が閾値THpbより大きいと判断された場合(ステップS604においてYES)、乾電池52を選択する(ステップS606)。一方、乾電池52の電圧が閾値THpb以下と判断された場合には(ステップS604においてNO)、充電池51を選択する(ステップS608)。
 いずれかの電池が選択されると、上述のステップS510において、加圧終了タイミングとなったか否かが判断される。加圧終了タイミングでなければ(ステップS510にてNO)、ステップS604に戻る。加圧終了タイミングとなれば(ステップS510にてYES)、上述のステップS512において、ポンプ33を停止する。
 図14は、本発明の実施の形態2の変形例における電源切替タイミングを示すタイミングチャートである。このタイミングチャートにおいても、乾電池優先モードである場合の例が示されている。
 なお、このタイミングチャートにおいて、充電池51の電圧VAは、実施の形態2で用いた閾値THp(ポンプ33を駆動可能な電圧)より大きいものとする。また、タイミングチャートの開始時点において、乾電池52の電圧VBは、閾値THpb(継続可能電圧)より大きくかつ閾値THpa(駆動初期電圧)以下であるものとする。
 図14を参照して、時間t11~t13における状態は、それぞれ、図12の時間t1~t3と同様である。また時間t16,t17における状態は、それぞれ、図12の時間t4,t5と同様である。したがって、これらのタイミングにおける状態については、詳細な説明を繰返さない。
 ポンプ33の駆動が開始される時点(t13)では、充電池51が選択されている(図13のステップS506)。
 ポンプ33の駆動開始後、加圧初期時間(所定時間Ta)が経過すると(t14)、乾電池52の電圧は、閾値THpb(継続可能電圧)より大きいので、電源は充電池51から乾電池52に切替えられる(図13のステップS604にてYES、S606)。
 その後、加圧途中に、乾電池52の容量(残量)が低下したとする(時間t15)。つまり、乾電池52の電圧値VBが、閾値THpb以下となったとする。そうすると、再度、乾電池52から充電池51に電源が切替えられる(ステップS604にてNO、S608)。
 充電池51は、ポンプ33が停止されるまで選択される。
 ポンプ33の駆動が停止されると(時間t16)、再び、電源選択処理が行なわれる。乾電池52の電圧VBが、閾値THpb以下であるが、動作可能電圧THpoよりも大きいとする。その場合、再度、充電池51から、優先電池である乾電池52に電源が切替えられる(図10のステップS414にてYES,S416)。
 以上のように、本実施の形態2の変形例によると、加圧期間中にも電源の切替えが可能である。したがって、優先電池をより優先的に使用することができる。
 [実施の形態3]
 上述の各実施の形態では、血圧の測定制御に関連して電源選択処理(切替制御)を行なった。
 これに対し、本実施の形態では、アラーム制御に関連して電源選択処理を行なう。
 図15は、本発明の実施の形態3におけるアラーム処理を示すフローチャートである。図15のフローチャートに示す処理も、予めプログラムとしてメモリ39に格納されており、CPU100がこのプログラムを読み出して実行することにより、アラーム処理の機能が実現される。
 この例においても、乾電池優先モードであることとする。
 図15を参照して、この処理は、乾電池52が挿入された場合に実行されるものとする。なお、限定的ではなく、これに代えて/加えて、充電池51の充電終了時、ユーザによる電源の切替制御の指示が入力された時などに実行されてもよい。
 乾電池52が挿入されると(ステップS800)、切替制御部102は、乾電池52の電圧が閾値THoより大きいか否かを判断する(ステップS802)。
 乾電池52の電圧が閾値THoより大きいと判断された場合(ステップS802においてYES)、切替制御部102は、乾電池52を選択する(ステップS804)。一方、乾電池52の電圧が閾値THo以下と判断された場合(ステップS802においてNO)、切替制御部102は、充電池51を選択する(ステップS806)。
 切替制御部102によっていずれかの電池が選択されると、血圧計1は、電源オフ状態とされる(ステップS808)。
 切替制御部102は、メモリ39に記録されたアラーム時刻が到来したか否かを判断する(ステップS810)。ここでは、実際には、計時部43から得られる現在時刻が、アラーム時刻よりも所定時間(たとえば10秒)前になったか否かが判断される。
 アラーム時刻が到来したと判断すると、切替制御部102に、電源選択処理を実行する。
 具体的には、切替制御部102は、乾電池52の電圧が、閾値THb(たとえば4.3V)より大きいか否かを判断する(ステップS812)。閾値THbは、ブザー44の駆動に必要な電圧(+所定値)であり、動作可能電圧である閾値THoよりも大きい。
 乾電池52の電圧が閾値THbより大きいと判断した場合(ステップS812においてYES)、切替制御部102は、乾電池52を選択する(ステップS814)。一方、乾電池52の電圧が閾値THb以下と判断した場合(ステップS812においてNO)、切替制御部102は、充電池51を選択する(ステップS816)。
 アラーム制御部106は、メモリ39に記録されたアラーム時刻が到来すると、ブザー44を鳴動(動作)させる(ステップS818)。その結果、ブザー44はアラーム音を発生する。
 以上で、アラーム処理は終了される。
 図16は、本発明の実施の形態3におけるアラーム処理の電源切替タイミングを示すタイミングチャートである。このタイミングチャートにおいても、乾電池優先モードである場合の例が示されている。
 なお、このタイミングチャートにおいて、充電池51の電圧VAは、閾値THbよりも大きく、乾電池52の電圧VBが、閾値THoより大きくかつ閾値THb以下であるものとする。
 図16を参照して、乾電池52が血圧計1に装着されると(時間t21)、乾電池52の電圧は閾値THoよりも大きいので、電源を充電池51から乾電池52に切替える(図15のステップS802においてYES、S804)。
 乾電池52の挿入からアラーム時刻(時間t22)となるまで、血圧計1は電源OFF状態である。
 アラーム時刻が到来すると、乾電池52の電圧は、ブザー44の動作を可能にするだけの電圧値THb以下であるため、この時点で再び充電池51が電源として選択される(図15のステップS812にてNO、S816)。
 アラームが停止されると(時間t23)、再び乾電池52が選択される。
 なお、実施の形態3と実施の形態1の変形例1,2とを組合わせてもよい。
 上記各実施の形態では、説明の簡単のために、優先電池ではない方の電池(以下「補助電池」という)の電圧値は十分高いものとして説明したが、補助電池の電圧値が各種閾値以下の場合には、ACアダプタによる充電池51の急速充電を促してもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 電子血圧計、10 本体部、20 カフ、21 空気袋、24 エアチューブ、25 エア系、32 圧力センサ、33 ポンプ、34 排気弁、35 発振回路、36 ポンプ駆動回路、37 弁駆動回路、39 メモリ、40 表示部、41 操作部、41A 電源スイッチ、41B 測定スイッチ、41C メモリスイッチ、43 計時部、44 ブザー、50 太陽電池、51 充電池、52 乾電池、53 電源制御回路、56,57 電圧検出部、58 切替部、60 電源部、100 CPU、102 切替制御部、104 測定制御部、106 アラーム制御部。

Claims (10)

  1.  被測定者の血圧を測定するための電子血圧計(1)であって、
     被測定者の所定の身体部位に巻き付けるためのカフ(20)と、
     前記カフ内の圧力を検知するための圧力センサ(32)と、
     前記圧力センサからの信号に基づいて、前記被測定者の血圧を測定するための制御を行なうための測定制御部(104)と、
     一次電池(52)および二次電池(61)を含み、前記電子血圧計を動作させるための電力を蓄えるための電源部(60)と、
     前記一次電池および前記二次電池それぞれの特徴値を検出するための特徴値検出部(56,57)とを備え、
     前記特徴値は、前記一次電池および前記二次電池それぞれの残量に関連する値であり、
     前記特徴値検出部による検出結果に基づいて、前記一次電池および前記二次電池の切替制御を行なうための切替制御部(102)をさらに備える、電子血圧計。
  2.  太陽光を受光し、受光した光エネルギーを電気エネルギーに変換するための太陽電池(50)をさらに備え、
     前記二次電池は、前記太陽電池が発電した電気エネルギーを蓄える、請求の範囲第1項に記載の電子血圧計。
  3.  前記切替制御部は、前記圧力センサからの信号に基づいて天気を予測し、天気の予測結果に応じて、前記一次電池または前記二次電池を選択する、請求の範囲第2項に記載の電子血圧計。
  4.  前記切替制御部は、起動時に、前記二次電池の前記特徴値が第1の閾値以上である場合に、前記二次電池を選択し、前記二次電池の前記特徴値が前記第1の閾値未満である場合には、前記天気の予測結果に応じて、前記一次電池または前記二次電池を選択する、請求の範囲第3項に記載の電子血圧計。
  5.  前記切替制御部は、起動時に、前記一次電池および前記二次電池のうち優先的に使用することが定められた第1の電池の前記特徴値が第1の閾値より大きい場合に、前記第1の電池を選択し、前記第1の電池の前記特徴値が前記第1の閾値以下である場合には、前記一次電池および前記二次電池のうちの他方の電池である第2の電池を選択する、請求の範囲第1項に記載の電子血圧計。
  6.  前記電源部から供給される電力を駆動源として前記カフを加圧するための加圧部(33,36)をさらに備え、
     前記切替制御部は、さらに、起動時に前記第1の電池が選択されている場合、前記加圧部による加圧前における前記第1の電池の前記特徴値が、前記第1の閾値よりも高い第2の閾値以下であると判定したときには、前記第2の電池に電源を切替える、請求の範囲第5項に記載の電子血圧計。
  7.  前記切替制御部は、さらに、加圧前に前記第2の電池が選択されている場合に、前記加圧部による加圧途中における前記第1の電池の電圧が、前記第2の閾値よりも低い第3の閾値以上であると判定したときには、再度、前記第2の電池から前記第1の電池に切替える、請求の範囲第6項に記載の電子血圧計。
  8.  前記切替制御部は、前記一次電池および前記二次電池のうち、ユーザにより予め指定された方の電池を優先的に選択する、請求の範囲第1項に記載の電子血圧計。
  9.  ユーザにより指定された特定タイミングでアラーム音を発生するための発生部(44)をさらに備え、
     前記切替制御部は、前記特定タイミングが到来したときに、さらに、前記特徴値検出部による検出結果に基づいて、前記一次電池および前記二次電池の切替制御を行なう、請求の範囲第1項に記載の電子血圧計。
  10.  前記特徴値は、電圧値、電圧値に基づく電圧レベル、および、電圧値により算出される測定可能回数のいずれかを表わす、請求の範囲第1項に記載の電子血圧計。
PCT/JP2009/070472 2008-12-17 2009-12-07 電子血圧計 WO2010071043A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112009003746.1T DE112009003746B4 (de) 2008-12-17 2009-12-07 Elektronisches Blutdruckmessgerät
RU2011129623/14A RU2520156C2 (ru) 2008-12-17 2009-12-07 Электронный сфигмоманометр
CN200980151141.0A CN102256538B (zh) 2008-12-17 2009-12-07 电子血压计
US13/162,278 US9161702B2 (en) 2008-12-17 2011-06-16 Electronic sphygmomanometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008321471A JP5228880B2 (ja) 2008-12-17 2008-12-17 電子血圧計
JP2008-321471 2008-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/162,278 Continuation US9161702B2 (en) 2008-12-17 2011-06-16 Electronic sphygmomanometer

Publications (1)

Publication Number Publication Date
WO2010071043A1 true WO2010071043A1 (ja) 2010-06-24

Family

ID=42268714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070472 WO2010071043A1 (ja) 2008-12-17 2009-12-07 電子血圧計

Country Status (6)

Country Link
US (1) US9161702B2 (ja)
JP (1) JP5228880B2 (ja)
CN (1) CN102256538B (ja)
DE (1) DE112009003746B4 (ja)
RU (1) RU2520156C2 (ja)
WO (1) WO2010071043A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102785217A (zh) * 2011-05-19 2012-11-21 喜利得股份公司 销钉安置工具和用于运行销钉安置工具的方法
JP2016537149A (ja) * 2013-09-16 2016-12-01 ヴェリリー ライフ サイエンシズ エルエルシー デュアル電力源を備えたデバイス

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5853587B2 (ja) * 2011-10-26 2016-02-09 オムロンヘルスケア株式会社 電子血圧計
US9131857B2 (en) 2012-02-13 2015-09-15 Tianren Wang Apparatus and method for battery-free blood pressure monitor
US20130298664A1 (en) * 2012-05-08 2013-11-14 Logimesh IP, LLC Pipe with vibrational analytics
JP6103131B2 (ja) * 2014-08-11 2017-03-29 株式会社村田製作所 流体制御装置
TWD181573S (zh) * 2015-06-02 2017-03-01 塞卡股份公司 身體質量指數計量錶
JP6257820B1 (ja) * 2017-03-13 2018-01-10 株式会社フジクラ センサ装置およびセンサネットワークシステム
JP6324574B1 (ja) * 2017-03-31 2018-05-16 シチズン時計株式会社 血圧計
JP6419910B1 (ja) * 2017-07-26 2018-11-07 ダンレックス株式会社 表示装置
CN110013234A (zh) * 2019-04-08 2019-07-16 清华大学深圳研究生院 一种柔性压力传感器及脉诊仪
JPWO2020213034A1 (ja) * 2019-04-15 2021-10-21 三菱電機株式会社 センサ装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375035A (ja) * 1989-08-17 1991-03-29 Terumo Corp 電子血圧計
JPH05145463A (ja) * 1991-11-19 1993-06-11 Toshiba Corp コードレスホンの子機及び親機
JPH0938047A (ja) * 1995-07-28 1997-02-10 Nec Corp 医用テレメータ送信機
JP2001245857A (ja) * 2000-03-02 2001-09-11 Matsushita Electric Ind Co Ltd 生体情報測定装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743128B2 (ja) * 1986-10-28 1995-05-15 松下電器産業株式会社 ガス遮断装置
JPS63113223U (ja) 1987-01-12 1988-07-21
JPH0235707U (ja) 1988-08-29 1990-03-08
US4969466A (en) * 1988-09-15 1990-11-13 Spacelabs, Inc. Inflation rate control circuit for blood pressure cuffs
JPH05235823A (ja) 1992-02-21 1993-09-10 Nec Corp 受信機
US5711302A (en) * 1994-03-03 1998-01-27 Merit Medical Systems, Inc. Disposable transducer with digital processing and readout
RU2197895C1 (ru) * 2002-02-27 2003-02-10 Общество с ограниченной ответственностью "ТелекомЭксперт" Способ контроля состояния человека и устройство для его осуществления
US6946753B2 (en) * 2002-11-14 2005-09-20 Fyre Storm, Inc. Switching power converter controller with watchdog timer
US8016765B2 (en) * 2005-01-10 2011-09-13 Ramsey Medical Inc. Integrated manual mechanical and electronic sphygmomanometer within a single enclosure
JP2008145101A (ja) * 2005-03-25 2008-06-26 Konica Minolta Medical & Graphic Inc カセッテ型放射線画像検出器及び放射線画像検出システム
US7813801B2 (en) 2005-12-15 2010-10-12 Cardiac Pacemakers, Inc. Implantable medical device powered by rechargeable battery
JP5261942B2 (ja) * 2007-02-14 2013-08-14 株式会社リコー 充電制御回路への電源供給を行う電源回路、その電源回路を備えた充電装置及び充電制御回路への電源供給方法
US20080231226A1 (en) * 2007-03-23 2008-09-25 Eveready Battery Company, Inc. Battery Powered Device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375035A (ja) * 1989-08-17 1991-03-29 Terumo Corp 電子血圧計
JPH05145463A (ja) * 1991-11-19 1993-06-11 Toshiba Corp コードレスホンの子機及び親機
JPH0938047A (ja) * 1995-07-28 1997-02-10 Nec Corp 医用テレメータ送信機
JP2001245857A (ja) * 2000-03-02 2001-09-11 Matsushita Electric Ind Co Ltd 生体情報測定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102785217A (zh) * 2011-05-19 2012-11-21 喜利得股份公司 销钉安置工具和用于运行销钉安置工具的方法
JP2016537149A (ja) * 2013-09-16 2016-12-01 ヴェリリー ライフ サイエンシズ エルエルシー デュアル電力源を備えたデバイス

Also Published As

Publication number Publication date
JP2010142371A (ja) 2010-07-01
DE112009003746T5 (de) 2013-03-14
JP5228880B2 (ja) 2013-07-03
CN102256538A (zh) 2011-11-23
CN102256538B (zh) 2014-12-17
US9161702B2 (en) 2015-10-20
DE112009003746B4 (de) 2024-05-29
US20110245696A1 (en) 2011-10-06
RU2520156C2 (ru) 2014-06-20
RU2011129623A (ru) 2013-01-27

Similar Documents

Publication Publication Date Title
JP5228880B2 (ja) 電子血圧計
CN101896116B (zh) 用电池供电的液体分析仪的快速充电和电源管理
JP5394376B2 (ja) バッテリの充電状態を決定する方法及び装置
TWI343249B (en) Electronic blood pressure monitor calculating average value of blood pressure
WO2013061780A9 (ja) 電子血圧計
WO2020039830A1 (ja) 測定装置、測定方法及び測定プログラム
JPH10164764A (ja) 電池容量監視方法
JP5353232B2 (ja) 電子血圧計
JP2009273611A (ja) 生体情報検出装置
JP2005010032A (ja) 電池残量検出方法およびその方法を用いた小型電気機器並びに電池パック
JP2001245857A (ja) 生体情報測定装置
JP2009195599A (ja) 電子血圧計
CN201831887U (zh) 电子血压计
JP2009225842A (ja) 電子血圧計および充電ガイド方法
JP5697746B2 (ja) 生体情報測定装置
JPH11233156A (ja) 充電装置
JP4090650B2 (ja) バッテリー残容量検知回路及び内視鏡装置
CN114222523A (zh) 血压计、血压计算方法、以及程序
JP2009195598A (ja) 生体情報測定装置
JP2009219704A (ja) 電子血圧計
JPH1050355A (ja) バッテリー充電容量表示装置
JP2001174533A (ja) 電池残存容量算出装置および電池残存容量算出方法
JP2013132325A (ja) 生体インピーダンス測定装置及び生体インピーダンス測定方法
JP2016131809A (ja) 電子血圧計
JPH06153413A (ja) 充電制御装置および充電制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151141.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833347

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 112009003746

Country of ref document: DE

Ref document number: 1120090037461

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2011129623

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 09833347

Country of ref document: EP

Kind code of ref document: A1