WO2010070990A1 - 高合金管の製造方法 - Google Patents

高合金管の製造方法 Download PDF

Info

Publication number
WO2010070990A1
WO2010070990A1 PCT/JP2009/068954 JP2009068954W WO2010070990A1 WO 2010070990 A1 WO2010070990 A1 WO 2010070990A1 JP 2009068954 W JP2009068954 W JP 2009068954W WO 2010070990 A1 WO2010070990 A1 WO 2010070990A1
Authority
WO
WIPO (PCT)
Prior art keywords
high alloy
cold rolling
less
yield strength
mpa
Prior art date
Application number
PCT/JP2009/068954
Other languages
English (en)
French (fr)
Inventor
均 諏訪部
敏秀 小野
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to EP09833295.0A priority Critical patent/EP2380998B1/en
Priority to ES09833295.0T priority patent/ES2693151T3/es
Priority to CN2009801508850A priority patent/CN102257167B/zh
Publication of WO2010070990A1 publication Critical patent/WO2010070990A1/ja
Priority to US13/153,567 priority patent/US8312751B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • B21C23/085Making tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • C21D7/12Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars by expanding tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B21/00Pilgrim-step tube-rolling, i.e. pilger mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel

Definitions

  • the present invention relates to a method for producing a high alloy tube that exhibits excellent corrosion resistance even in a carbon dioxide corrosive environment or a stress corrosion environment and has high strength.
  • the high alloy pipe produced according to the present invention can be used, for example, in oil wells and gas wells (hereinafter collectively referred to as “oil wells”).
  • high Cr has been used as oil well pipes used in harsh corrosive environments including corrosive substances such as deep wells, wet carbon dioxide (CO 2 ), hydrogen sulfide (H 2 S), and chlorine ions (Cl ⁇ ).
  • -High alloy tubes made of high Ni alloys are used.
  • oil wells have a tendency to become deep wells, and have a high strength of 110 to 140 ksi grade (minimum yield strength of 758.3 to 965.2 MPa), especially for use in harsher environments.
  • Patent Documents 1 to 4 disclose a method of obtaining a high-strength, high-alloy oil well pipe by cold working a high Cr-high Ni alloy at a thickness reduction rate of 10 to 60% after hot working and solution treatment. Has been.
  • Patent Document 5 in order to obtain an austenitic alloy excellent in corrosion resistance in a hydrogen sulfide environment, each of La, Al, Ca, S, and O is contained in a specific relationship, and the shape of inclusions is controlled to cool. It is disclosed to perform inter-processing. The cold working here is performed for strength addition, but thickness reduction processing of 30% or less is performed from the viewpoint of corrosion resistance.
  • Patent Document 6 discloses a high Cr-high Ni alloy in which the SCC resistance in a hydrogen sulfide environment is improved by adjusting the contents of Cu and Mo, and the degree of workability is 30% or less after hot working. It is described that it is preferable to adjust the strength by cold working.
  • Patent Document 7 discloses an oil well having excellent resistance to stress corrosion cracking by containing an appropriate amount of N, limiting S to 0.01 wt% or less, and performing 5 to 25% cold working after solution heat treatment. A method for producing a high Ni alloy for pipes is disclosed.
  • Patent Document 8 discloses a sour gas well pipe that is subjected to plastic working with a cross-section reduction rate of 35% or more in a temperature range of 200 ° C. to normal temperature, and then heated and held immediately above the recrystallization temperature to cool and then cold work. A manufacturing method is disclosed, and an example in which 15-30% cold drawing is performed in the final cold working is described.
  • the present invention provides a method for producing a high alloy pipe that has not only the corrosion resistance required for oil well pipes used in deep wells and severe corrosive environments, but also the target strength. For the purpose.
  • the present inventors made various changes in the degree of workability of the final cold rolling when manufacturing high alloy pipes by cold rolling for high alloy materials having various chemical compositions. As a result of conducting an experiment to confirm the tensile strength by changing, the following findings (a) to (h) were obtained.
  • Corrosion resistance is required for high alloy pipes used in deep wells and oil wells used in harsh corrosive environments. If the basic chemical composition of the high alloy tube is (20-30%) Cr— (25-40%) Ni, it is necessary to reduce the C content from the viewpoint of corrosion resistance.
  • the degree of processing at that time exceeds 80% in terms of the cross-sectional reduction rate, it has high strength, but since work hardening occurs, ductility and toughness are reduced. Further, if the degree of processing at that time is 30% or less in terms of the cross-sectional reduction rate, a desired high strength cannot be obtained. Therefore, the degree of work in the cold rolling needs to be 30% or more and 80% or less in terms of the cross-sectional reduction rate. Preferably it is 35 to 80%.
  • the N content is greatly affected by the strength of the high alloy tube, and that a high alloy tube with higher strength can be obtained with a higher N material. This is considered to be because when more N is contained, more solid solution strengthening due to N is expressed and the strength is improved.
  • FIG. 1 plots the workability Rd (%) at the cross-section reduction rate and the yield strength YS (MPa) obtained in the tensile test for the high alloy tubes having various chemical compositions used in the examples described later. Is. Both the high N material (N content: 0.1963 mass%) and the low N material (N content: 0.0784 to 0.0831 mass%), respectively, the workability Rd and the yield strength at the cross-section reduction rate. YS is shown to be in a linear relationship. And it is shown that the yield strength YS obtained from the high N material is higher than that from the low N material, and it is understood that a higher strength high alloy tube can be obtained by increasing the N content.
  • the alloy composition of the material can be obtained without changing the alloy composition of the material each time in order to obtain a high alloy tube having the target strength.
  • the cold rolling may be performed under the target cold rolling conditions obtained in consideration of the above, that is, with the target working degree Rd or higher.
  • YS 3.1 ⁇ (Rd + Cr + 6 ⁇ Mo + 300 ⁇ N) +520 (2)
  • YS and Rd in the formulas mean the yield strength (MPa) and the degree of work (%) at the cross-section reduction rate, respectively, and Cr, Mo and N mean the content (% by mass) of each element. To do.
  • cold working methods include cold drawing using a die and a plug using a drawing machine, and cold rolling using a roll die and a mandrel using a pilger mill.
  • the present inventors show that the strength of the tube obtained by cold drawing is higher than the strength of the tube obtained by the cold rolling of the present invention, even at the workability obtained with the same cross-sectional reduction rate. I found out that Therefore, in this invention, it limited to the method of manufacturing a high alloy pipe through a cold rolling process.
  • FIG. 2 shows values obtained by substituting the degree of processing Rd (%) at the chemical composition and the reduction rate of the cross section for the various high alloy pipes used in the examples described later into the right side of the above equation (2).
  • the Y-axis is a plot of the yield strength YS (MPa) actually taken in the tensile test on the X-axis.
  • the chemical composition and the degree of workability Rd (the cross-section reduction rate) according to the equation (2) %) Shows that the yield strength can be obtained accurately.
  • the amount of the alloy component of the raw material that is, the yield strength expressed by the content of Cr, Mo and N, is removed by cold rolling. It only has to be expressed.
  • MYS 110 to 140 ksi grade (minimum yield strength is 758.3 to 965.2 MPa)
  • Ni is the basic chemical composition.
  • the processing degree Rd (%) obtained from the above formula (2) or higher processing degree the final cold rolling may be performed. Therefore, the cold rolling should be performed under the condition that the workability Rd at the cross-section reduction rate in the final cold rolling process is in the range of more than 30% and not more than 80% and satisfying the following expression (1). become.
  • Rd (%) ⁇ (MYS ⁇ 520) /3.1 ⁇ (Cr + 6 ⁇ Mo + 300 ⁇ N) (1)
  • Rd and MYS in the formula mean the workability (%) and the target yield strength (MPa) at the cross-section reduction rate, respectively, and Cr, Mo and N are the contents (mass%) of the respective elements. means.
  • the degree of work Rd at the cross-section reduction rate in the hot rolling process should be specified in the range of 60 to 80%, or the N content in the high alloy should be increased to 0.16 to 0.50%. Also found out. Therefore, even if the N content remains 0.05 to 0.50% by limiting the working degree Rd at the cross-section reduction rate in the final cold rolling process to a range of 60 to 80% in particular.
  • the workability Rd at the cross-section reduction rate in the final cold rolling process is specified to be in the range of 60 to 80%, and the N content in the high alloy is increased to 0.16 to 0.50%.
  • the present invention has been completed based on such new knowledge, and the gist thereof is as shown in the following (1) to (4).
  • a method for producing a high-alloy tube having a minimum yield strength of 758.3 to 965.2 MPa characterized by being cold-rolled under conditions that satisfy the following formula (1): Rd (%) ⁇ (MYS ⁇ 520) /3.1 ⁇ (Cr + 6 ⁇ Mo + 300 ⁇ N) (1)
  • Rd and MYS in the formula mean the workability (%) and the target yield strength (MPa) at the cross-section reduction rate, respectively, and Cr, Mo and N are the contents (mass%) of the respective elements. means.
  • Rd and MYS in the formula mean the workability (%) and the target yield strength (MPa) at the cross-section reduction rate, respectively, and Cr, Mo and N are the contents (mass%) of the respective elements. means.
  • Rd and MYS in the formula mean the workability (%) and the target yield strength (MPa) at the cross-section reduction rate, respectively, and Cr, Mo and N are the contents (mass%) of the respective elements. means.
  • Rd and MYS in the formula mean the workability (%) and the target yield strength (MPa) at the cross-section reduction rate, respectively, and Cr, Mo and N are the contents (mass%) of the respective elements. means.
  • the present invention not only the corrosion resistance required for oil well pipes used in deep wells and harsh corrosive environments, but also high alloy pipes having the target strength, excessively adding alloy components However, it can be manufactured by selecting processing conditions during cold rolling.
  • the degree of work Rd (%) at the cross-section reduction rate and the yield strength YS (MPa) obtained by the tensile test are plotted.
  • the value obtained by substituting the degree of processing Rd (%) at the chemical composition and the rate of reduction of the cross section for the right side of the above equation (2) is taken as the X axis, and the yield obtained by the tensile test is taken.
  • the strength YS (MPa) is plotted on the Y axis.
  • C 0.03% or less
  • the content of C exceeds 0.03%, Cr carbide is formed at the crystal grain boundary, and the stress corrosion cracking susceptibility at the grain boundary increases. For this reason, the upper limit was made 0.03%.
  • a preferable upper limit is 0.02%.
  • Si 1.0% or less Si is an element effective as a deoxidizer for the alloy, and can be contained as necessary.
  • the effect as a deoxidizer is obtained at a content of 0.05% or more. However, when the content exceeds 0.5%, the hot workability decreases, so the Si content is set to 1.0% or less.
  • the preferred range is 0.5% or less, more preferably 0.4% or less.
  • Mn 0.3 to 5.0%
  • Mn is an element that is effective as a deoxidizing agent for the alloy, and is an element that is effective for stabilizing the austenite phase. The effect is obtained with a content of 0.3% or more. However, when the content exceeds 5.0%, the hot workability decreases. In addition, when the upper limit of the N content effective for increasing the strength is increased to 0.5%, pinholes are likely to be generated near the surface of the alloy during solidification after melting, so that the effect of increasing the solubility of N is obtained. It is preferable to contain some Mn, and the upper limit of the Mn content is 5.0%. Therefore, the Mn content is set to 0.3 to 5.0%. A preferred range is 0.3 to 3.0%. A more preferable range is 0.4 to 1.0%.
  • Ni 25-40%
  • Ni is an important element for stabilizing the austenite phase and maintaining the corrosion resistance.
  • the content is less than 25%, the Ni sulfide film is not sufficiently formed on the outer surface of the alloy, so that the effect of containing Ni cannot be obtained.
  • the content exceeds 40%, the effect is saturated, resulting in an increase in the price of the alloy and impairing the economy. Therefore, the Ni content is 25 to 40%.
  • a preferred range is 29-37%.
  • Cr 20-30% Cr is an effective component for improving the hydrogen sulfide corrosion resistance represented by stress corrosion cracking resistance in the coexistence with Ni and increasing the strength by solid solution strengthening. However, if the content is less than 20%, the effect cannot be obtained. On the other hand, when the content exceeds 30%, the effect is saturated, which is not preferable from the viewpoint of hot workability. Therefore, the Cr content is 20-30%. The preferred range is 23-27%.
  • Mo 0 to 4% (including no additive) Mo is an effective component for improving the strength by solid solution strengthening and has the effect of improving the stress corrosion cracking resistance in the coexistence with Ni and Cr. it can.
  • the content is preferably 0.01% or more.
  • the Mo content is preferably 0.01 to 4%.
  • the lower limit is preferably 1.5%.
  • Cu 0 to 3% (including no additive) Cu has the effect of remarkably improving the resistance to hydrogen sulfide corrosion under a hydrogen sulfide environment, and can be contained as required.
  • the content is preferably 0.1% or more.
  • the content is preferably 0.1 to 3%. More preferably, it is 0.5 to 2%.
  • N 0.05 to 0.50%
  • the high alloy of the present invention needs to lower the C content from the viewpoint of corrosion resistance. Therefore, N is positively contained, and the strength is increased by solid solution strengthening without deteriorating the corrosion resistance. Further, by positively containing N, a high alloy pipe having higher strength can be obtained after the solution heat treatment. Thereby, since the desired strength can be ensured even at a low workability without unnecessarily increasing the workability (cross-sectional reduction rate) at the time of cold working, a decrease in ductility due to the high workability can be suppressed. In order to acquire the effect, 0.05% or more must be contained.
  • the N content is set to 0.05 to 0.50% or less.
  • a preferred range is 0.06 to 0.30%, and a more preferred range is 0.06 to 0.22%.
  • P, S, and O contained as impurities are preferably limited to P: 0.03% or less, S: 0.03% or less, and O: 0.010% or less for the following reasons.
  • P 0.03% or less P is contained as an impurity.
  • the content exceeds 0.03%, the sensitivity to stress corrosion cracking in a hydrogen sulfide environment increases. For this reason, it is preferable to make the upper limit into 0.03% or less.
  • a more preferred upper limit is 0.025%.
  • S 0.03% or less S is contained as an impurity in the same manner as P described above, but when its content exceeds 0.03%, hot workability is significantly reduced. For this reason, it is preferable that the upper limit is 0.03%. A more preferred upper limit is 0.005%.
  • the O content is preferably 0.010% or less.
  • the high alloy steel according to the present invention may further contain one or more of Ca, Mg and rare earth elements (REM) in addition to the above alloy elements.
  • REM rare earth elements
  • Ca 0.01% or less
  • Mg 0.01% or less
  • rare earth elements 0.2% or less
  • These components can be contained as necessary. If any of them is contained, S that inhibits hot workability is fixed as a sulfide, and there is an effect of improving hot workability.
  • S that inhibits hot workability is fixed as a sulfide, and there is an effect of improving hot workability.
  • Ca and Mg exceed 0.01%
  • REM exceeds 0.2%
  • coarse oxides coarse oxides are formed, which leads to a decrease in hot workability.
  • REM is a general term of 17 elements which combined Y and Sc with 15 elements of lanthanoid, and can include 1 type or 2 types or more of these elements. Note that the content of REM means the total content of these elements.
  • the high alloy tube according to the present invention contains the above essential elements or the above optional elements, with the balance being Fe and impurities.
  • impurities are components that are mixed due to various factors in the manufacturing process, including raw materials such as ore and scrap, when industrially manufacturing high alloy tubes, and have an adverse effect on the present invention. It means what is allowed in the range not given.
  • tube which concerns on this invention can be manufactured with the manufacturing equipment and manufacturing method which are normally used for commercial production.
  • an electric furnace, an Ar—O 2 mixed gas bottom blowing decarburization furnace (AOD furnace), a vacuum decarburization furnace (VOD furnace), or the like can be used for melting the alloy.
  • the molten metal may be cast into an ingot, or may be cast into a rod-shaped billet by a continuous casting method.
  • a high-alloy cold-rolling blank can be manufactured by hot working such as an extruded pipe manufacturing method such as the Eugene Sejurne method or a Mannesmann pipe manufacturing method.
  • tube after a hot working can be made into the product pipe
  • the degree of workability at the time of the final cold rolling is defined, and after the cold rolling raw tube obtained by hot working is subjected to a solution heat treatment if necessary, the scale of the pipe surface
  • the removal may be descaled to produce a high alloy tube with the desired strength in a single cold rolling, or one or more intermediate colds before the final cold rolling Processing may be performed to perform solution heat treatment, and final cold rolling may be performed after descaling.
  • the final cold working may be cold rolling, and the cold working performed in the middle may be cold rolling or cold drawing.
  • an alloy having the chemical composition shown in Table 1 was melted in an electric furnace, adjusted to almost the target chemical composition, and then melted by a method of decarburization and desulfurization using an AOD furnace.
  • the obtained molten metal was cast into an ingot having a weight of 1500 kg and a diameter of 500 mm. And it cut
  • the billet was formed into a cold rolling blank by a hot extrusion pipe manufacturing method based on the Eugene Sejurne method.
  • the obtained cold-working raw tube was subjected to a solution heat treatment under the condition of being water-cooled after being held at 1100 ° C. for 2 minutes or longer, and further, the processing degree Rd (%) at the cross-section reduction rate Various changes were made, and the final cold working by cold rolling using a pilger mill was performed to obtain a high alloy. Prior to cold rolling, the pipe was shot blasted to remove the surface scale. Table 2 shows the tube dimensions (outer diameter mm ⁇ thickness mm) before and after the final cold working.
  • a solution heat treatment that is water-cooled after holding at 1100 ° C. for 2 minutes or more is performed, and then the final cold working by cold rolling is performed. It was.
  • the minimum yield strength is 758.3 to 965.2 MPa (110 to 140 ksi grade) as the target strength by appropriately selecting the alloy composition and the working degree Rd at the cross-section reduction rate in the cold rolling process.
  • High strength alloy pipes can be manufactured.
  • the minimum yield strength is 861.8 to 965.2 MPa (125 to 140 ksi grade) as the target strength by increasing the workability Rd to 60 to 80% or increasing the N content to 0.16 to 0.50%.
  • High-strength and high-alloy pipes can be manufactured.
  • the target yield strength is 965.2MPa (140ksi grade) with a higher yield strength. Alloy tubes can be manufactured.
  • the present invention not only the corrosion resistance required for oil well pipes used in deep wells and harsh corrosive environments, but also high alloy pipes having the target strength, It can manufacture by selecting the processing conditions at the time of cold rolling, without adding an alloy component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Extrusion Of Metal (AREA)

Abstract

 質量%で、C:0.03%以下、Si:1.0%以下、Mn:0.3~5.0%、Ni:25~40%、Cr:20~30%、Mo:0~4%、Cu:0~3%、N:0.05~0.50%を含有し、残部がFeおよび不純物からなる化学組成を有する高合金素管を熱間加工によりあるいはさらに固溶化熱処理することにより作製した後、冷間圧延によって高合金管を製造する方法であって、最終の冷間圧延工程における断面減少率での加工度Rdが30%を超えて80%以下の範囲内であってかつ下記(1)式を満足する条件で冷間圧延することを特徴とする、758.3~965.2MPaの最低降伏強度を有する高合金管の製造方法。 Rd(%)≧(MYS-520)/3.1-(Cr+6×Mo+300×N) ・・・・(1)但し、式中のRdおよびMYSはそれぞれ断面減少率での加工度(%)および目標降伏強度(MPa)を意味し、そして、Cr、MoおよびNはそれぞれの元素の含有量(質量%)を意味する。

Description

高合金管の製造方法
 本発明は、炭酸ガス腐食環境や応力腐食環境においても優れた耐食性を発揮すると共に高い強度をも兼ね備えた高合金管の製造方法に関する。本発明によって製造される高合金管は、例えば油井やガス井(以下、合わせて、「油井」と称する。)に使用することができる。
 深井戸や湿潤な炭酸ガス(CO),硫化水素(HS),塩素イオン(Cl)等の腐食性物質を含む過酷な腐食環境で使用される油井管として、従来から、高Cr-高Ni合金からなる高合金管が使用されている。ところが、近年、油井は深井戸化する傾向が著しく、従来よりも過酷な環境での使用を目的として、特に110~140ksiグレード(最低降伏強度が758.3~965.2MPa)と高強度であって、かつ耐食性を有する合金管が要求されている。
 特許文献1~4には、高Cr-高Ni合金を熱間加工および溶体化処理後10~60%の肉厚減少率で冷間加工して高強度の高合金油井管を得る方法が開示されている。
 特許文献5には、硫化水素環境での耐食性に優れたオーステナイト合金を得るために、La、Al、Ca、S、Oのそれぞれを特定の関係で含有させて介在物の形状を制御して冷間加工することが開示されている。ここでの冷間加工は強度付加のため行うが、耐食性の観点で30%以下の肉厚減少加工を行っている。
 特許文献6には、CuとMoの含有量を調整して硫化水素環境での耐SCC性を改善した高Cr-高Ni合金が開示されており、熱間加工後にさらに加工度30%以下の冷間加工で強度を調整するのが好ましいことが記載されている。
 特許文献7には、Nを適量含有させ、Sを0.01wt%以下に制限し、溶体化熱処理してから5~25%の冷間加工をすることで耐応力腐食割れ性に優れた油井管用高Ni合金の製造方法が開示されている。
 特許文献8には、200℃~常温の温度域で、断面減少率35%以上の塑性加工を加え、次いで再結晶温度直上に加熱保持して冷却後、冷間加工する耐サワーガス油井用管の製造方法が開示されており、最終の冷間加工において15~30%の冷間引抜加工を行った実施例が記載されている。
特開昭58-6927号公報 特開昭58-9922号公報 特開昭58-11735号公報 米国特許4421571号明細書 特開昭63-274743号公報 特開平11-302801号公報 特開昭63-83248号公報 特開昭63-203722号公報
 しかしながら、上記の文献には、高合金管の組成を考慮した冷間加工による高強度化についての具体的な検討はされておらず、目標とする強度、特に降伏強度を得るための適切な成分設計や冷間加工条件については、いずれも、なんら示唆するところがない。
 本発明は、このような状況に鑑み、深井戸や過酷な腐食環境で使用される油井管に要求される耐食性だけでなく、目標とする強度をも兼ね備えた高合金管の製造方法を提供することを目的とする。
 本発明者らは、上記の課題を解決するために、種々の化学組成を有する高合金材について、冷間圧延により高合金管を製造する際に、最終の冷間圧延の加工度を種々に変化させてその引張強度を確認する実験を行った結果、次の(a)~(h)に示す知見を得た。
 (a) 深井戸や過酷な腐食環境で使用される油井に使用される高合金管には、耐食性が要求される。高合金管の基本的な化学組成を、(20~30%)Cr-(25~40%)Niとすると、耐食性の観点からはC含有量を下げる必要がある。
 (b) C含有量を下げると、そのままでは強度が不足することになるが、熱間加工あるいはさらに固溶化熱処理によって形成された高合金素管は、その後の冷間圧延により、その強度を向上させることができる。ただし、その際の加工度が断面減少率で80%を超えると、高強度を有するが、加工硬化が発生するため延性や靱性が低下する。また、その際の加工度が断面減少率で30%以下であると所望の高強度を得ることができない。したがって、冷間圧延の際の加工度は断面減少率で30%を超えて80%以下とする必要がある。好ましくは35~80%である。
 (c) そして、冷間圧延を行う際の加工度Rdが断面減少率で30%を超えて80%以下の範囲においては、(20~30%)Cr-(25~40%)Niを基本的な化学組成とする高合金管では、最終の冷間圧延での加工度Rdが大きいほど高い降伏強度YSを得られ、その加工度Rdと降伏強度YSが直線関係で表されることが分かった。
 さらに、高合金管の強度にはN含有量の影響が大きく、高N材ほどより高強度の高合金管を得ることができることも分かった。これは、Nをより多く含有させると、Nによる固溶強化がより多く発現されて、強度が向上するためであると考えられる。
 図1は、後述する実施例において用いた種々の化学組成を有する高合金管について、断面減少率での加工度Rd(%)と引張試験で得られた降伏強度YS(MPa)とをプロットしたものである。高N材(N含有量:0.1963質量%)と低N材(N含有量:0.0784~0.0831質量%)の両方とも、それぞれ、断面減少率での加工度Rdと降伏強度YSが直線関係にあることが示されている。そして、高N材は低N材よりも大きい降伏強度YSが得られることが示されており、N含有量を多くすることによって、より高強度の高合金管を得ることができることが判る。
 (d) 次に、本発明者らは、高合金管の降伏強度が、冷間圧延を行う際の加工度Rdと高合金管の化学組成に依存するのであれば、この高合金管の目標とする降伏強度を得るために、管加工条件に関連づけた適切な成分設計手法を確立することが可能となると考えた。すなわち、この高合金管の目標とする降伏強度を得るために、高合金管の化学組成による微調整でなく、冷間圧延を行う際の加工度Rdによる微調整が可能となる。そして、強度レベル毎に合金組成を変更して多種類の高合金を溶製する必要がなくなり、したがって、材料ビレットの在庫を抑制できる。
 このように、管加工条件に関連づけた適切な成分設計手法が確立できれば、目標とする強度を有する高合金管を得るために、素材の合金組成をその都度変化させなくても、素材の合金組成を考慮して求められる目標とする冷間圧延条件、すなわち、目標とする加工度Rdまたはそれ以上の加工度でもって冷間圧延をすればよい。
 (e) このような着想の下で、高合金管の降伏強度と冷間圧延を行う際の加工度Rdと高合金管の化学組成との間の相関関係について、鋭意検討と実験を重ねた。その結果、(20~30%)Cr-(25~40%)Niを基本的な化学組成とし、N含有量を0.05~0.30%の範囲内とする高合金管は、冷間圧延を行う際の加工度Rdが断面減少率で30%を超えて80%以下の範囲においては、降伏強度YS(MPa)は、冷間圧延を行う際の断面減少率で求まる加工度Rdと、高合金管の化学組成のうちのCrとMoとNの各成分の含有量に基づいて、次の(2)式に基づいて計算することができることを知見した。
 YS=3.1×(Rd+Cr+6×Mo+300×N)+520 ・・・・(2)
 但し、式中のYSおよびRdはそれぞれ降伏強度(MPa)および断面減少率での加工度(%)を意味し、そして、Cr、MoおよびNはそれぞれの元素の含有量(質量%)を意味する。
 なお、冷間加工方法として、一般には、抽伸機を用いたダイスとプラグによる冷間引抜加工とピルガーミルを用いたロールダイスとマンドレルによる冷間圧延があげられる。しかしながら、本発明者らは、同じ断面減少率で求まる加工度であっても、本発明の冷間圧延で得られた管の強度よりも冷間引抜加工で得られる管の強度の方が高くなることを知見した。そのため、本発明では、冷間圧延工程を経て高合金管を製造する方法に限定した。
 図2は、後述する実施例において用いた種々の高合金管について、化学組成とその断面減少率での加工度Rd(%)を上記(2)式の右辺に代入して得られた値をX軸にとり、そして、実際に引張試験で得られた降伏強度YS(MPa)をY軸にとって、プロットしたものである。(20~30%)Cr-(25~40%)Niを基本的な化学組成とする高合金管であれば、(2)式によって、その化学組成とその断面減少率での加工度Rd(%)から降伏強度を精度良く求めることでできることが示されている。
 (f) したがって、目標とする強度を有する高合金管を得るためには、素材の合金成分、すなわち、Cr、MoおよびNの含有量で発現される降伏強度を除いた分を冷間圧延によって発現すればよいことになる。そして、目標とする降伏強度MYS(110~140ksiグレード(最低降伏強度が758.3~965.2MPa))を得るには、(20~30%)Cr-(25~40%)Niを基本的な化学組成とし、N含有量を0.05~0.50%の範囲内とする高合金管の化学組成を選定した後、上記(2)式から得られる加工度Rd(%)またはそれ以上の加工度でもって最終の冷間圧延をすればよい。したがって、最終の冷間圧延工程における断面減少率での加工度Rdが30%を超えて80%以下の範囲内であってかつ下記(1)式を満足する条件で冷間圧延すればよいことになる。
 Rd(%)≧(MYS-520)/3.1-(Cr+6×Mo+300×N) ・・・・(1)
 但し、式中のRdおよびMYSはそれぞれ断面減少率での加工度(%)および目標降伏強度(MPa)を意味し、そして、Cr、MoおよびNはそれぞれの元素の含有量(質量%)を意味する。
 (g) なお、より高強度の高合金管、すなわち、目標とする降伏強度MYS(125~140ksiグレード(最低降伏強度が861.8~965.2MPa))の高合金管を得るためには、最終の冷間圧延工程における断面減少率での加工度Rdを特に60~80%の範囲内と規定するか、又は、高合金中のN含有量を特に0.16~0.50%と高めればよいことも、知見した。したがって、最終の冷間圧延工程における断面減少率での加工度Rdを特に60~80%の範囲内と限定することによって、N含有量が0.05~0.50%のままであっても、目標とする降伏強度MYS(125~140ksiグレード(最低降伏強度が861.8~965.2MPa))の高合金管を製造することができる。あるいは、N含有量を特に0.16~0.50%と高めることによって、最終の冷間圧延工程における断面減少率での加工度Rdが30%を超えて80%以下の範囲内のままであっても、目標とする降伏強度MYS(125~140ksiグレード(最低降伏強度が861.8~965.2MPa))の高合金管を製造することができる。さらに、最終の冷間圧延工程における断面減少率での加工度Rdを60~80%の範囲内と規定し、かつ、高合金中のN含有量を0.16~0.50%と高めたときには、目標とする降伏強度がより高強度の140ksiグレード(最低降伏強度が965.2MPa)の高合金管を製造することができる。
 (h) このように、(20~30%)Cr-(25~40%)Niを基本的な化学組成とする高合金管について、過度に合金成分を添加することもなく、冷間圧延時の加工条件を選択することによって目標とする降伏強度を得ることができるので、材料コストの低減を図ることができる。さらに、素材の合金組成に合わせて冷間圧延時の加工条件を選択することで目標とする強度を有する高合金管を得ることができるため、強度レベル毎に合金組成を変更して多種類の高合金を溶製する必要がなくなり、したがって、材料ビレットの在庫を抑制できる。
 本発明はこのような新たな知見のもとに完成したものであり、その要旨は次の(1)~(4)に示すとおりである。
 (1) 質量%で、C:0.03%以下、Si:1.0%以下、Mn:0.3~5.0%、Ni:25~40%、Cr:20~30%、Mo:0~4%、Cu:0~3%、N:0.05~0.50%を含有し、残部がFeおよび不純物からなる化学組成を有する高合金素管を熱間加工によりあるいはさらに固溶化熱処理することにより作製した後、冷間圧延によって高合金管を製造する方法であって、最終の冷間圧延工程における断面減少率での加工度Rdが30%を超えて80%以下の範囲内であってかつ下記(1)式を満足する条件で冷間圧延することを特徴とする、758.3~965.2MPaの最低降伏強度を有する高合金管の製造方法。
 Rd(%)≧(MYS-520)/3.1-(Cr+6×Mo+300×N) ・・・・(1)
 但し、式中のRdおよびMYSはそれぞれ断面減少率での加工度(%)および目標降伏強度(MPa)を意味し、そして、Cr、MoおよびNはそれぞれの元素の含有量(質量%)を意味する。
 (2) 質量%で、C:0.03%以下、Si:1.0%以下、Mn:0.3~5.0%、Ni:25~40%、Cr:20~30%、Mo:0~4%、Cu:0~3%、N:0.05~0.50%を含有し、残部がFeおよび不純物からなる化学組成を有する高合金素管を熱間加工によりあるいはさらに固溶化熱処理することにより作製した後、冷間圧延によって高合金管を製造する方法であって、最終の冷間圧延工程における断面減少率での加工度Rdが60~80%の範囲内であってかつ下記(1)式を満足する条件で冷間圧延することを特徴とする、861.8~965.2MPaの最低降伏強度を有する高合金管の製造方法。
 Rd(%)≧(MYS-520)/3.1-(Cr+6×Mo+300×N) ・・・・(1)
 但し、式中のRdおよびMYSはそれぞれ断面減少率での加工度(%)および目標降伏強度(MPa)を意味し、そして、Cr、MoおよびNはそれぞれの元素の含有量(質量%)を意味する。
 (3) 質量%で、C:0.03%以下、Si:1.0%以下、Mn:0.3~5.0%、Ni:25~40%、Cr:20~30%、Mo:0~4%、Cu:0~3%、N:0.16~0.50%を含有し、残部がFeおよび不純物からなる化学組成を有する高合金素管を熱間加工によりあるいはさらに固溶化熱処理することにより作製した後、冷間圧延によって高合金管を製造する方法であって、最終の冷間圧延工程における断面減少率での加工度Rdが30%を超えて80%以下の範囲内であってかつ下記(1)式を満足する条件で冷間圧延することを特徴とする、861.8~965.2MPaの最低降伏強度を有する高合金管の製造方法。
 Rd(%)≧(MYS-520)/3.1-(Cr+6×Mo+300×N) ・・・・(1)
 但し、式中のRdおよびMYSはそれぞれ断面減少率での加工度(%)および目標降伏強度(MPa)を意味し、そして、Cr、MoおよびNはそれぞれの元素の含有量(質量%)を意味する。
 (4) 質量%で、C:0.03%以下、Si:1.0%以下、Mn:0.3~5.0%、Ni:25~40%、Cr:20~30%、Mo:0~4%、Cu:0~3%、N:0.16~0.50%を含有し、残部がFeおよび不純物からなる化学組成を有する高合金素管を熱間加工によりあるいはさらに固溶化熱処理することにより作製した後、冷間圧延によって高合金管を製造する方法であって、最終の冷間圧延工程における断面減少率での加工度Rdが60~80%の範囲内であってかつ下記(1)式を満足する条件で冷間圧延することを特徴とする、965.2MPaの最低降伏強度を有する高合金管の製造方法。
 Rd(%)≧(MYS-520)/3.1-(Cr+6×Mo+300×N) ・・・・(1)
 但し、式中のRdおよびMYSはそれぞれ断面減少率での加工度(%)および目標降伏強度(MPa)を意味し、そして、Cr、MoおよびNはそれぞれの元素の含有量(質量%)を意味する。
 本発明によれば、深井戸や過酷な腐食環境で使用される油井管に要求される耐食性だけでなく、目標とする強度をも兼ね備えた高合金管を、過度に合金成分を添加することもなく、冷間圧延時の加工条件を選択することによって製造することができる。
高合金管について、断面減少率での加工度Rd(%)と引張試験で得られた降伏強度YS(MPa)とをプロットしたものである。 高合金管について、その化学組成と断面減少率での加工度Rd(%)を上記(2)式の右辺に代入して得られた値をX軸にとり、そして、引張試験で得られた降伏強度YS(MPa)をY軸にとって、プロットしたものである。
 次に、本発明に係る高合金管の製造方法において用いる高合金鋼の化学組成の限定理由について述べる。なお、各元素の含有量の「%」は「質量%」を表す。
 C:0.03%以下
 Cは、その含有量が0.03%を超えると結晶粒界にCr炭化物を形成し、粒界での応力腐食割れ感受性が増大する。このため、その上限を0.03%とした。好ましい上限は0.02%である。
 Si:1.0%以下
 Siは、合金の脱酸剤として有効な元素であり、必要に応じて含有させることができる。脱酸剤としての効果は0.05%以上の含有量で得られる。しかしながら、その含有量が0.5%を超えると熱間加工性が低下するため、Si含有量は1.0%以下とした。好ましい範囲は0.5%以下、より好ましくは0.4%以下である。
 Mn:0.3~5.0%
 Mnは、上記のSiと同様に、合金の脱酸剤として有効な元素であり、オーステナイト相の安定に有効な元素である。その効果は0.3%以上の含有量で得られる。しかし、その含有量が5.0%を超えると熱間加工性が低下する。また、高強度化に有効なNの含有量の上限を0.5%と高くした場合、溶解後の凝固時に合金の表面近傍にピンホールを発生しやすいため、Nの溶解度を高くする効果があるMnを含有させることが好ましく、Mn含有量の上限を5.0%とする。このため、Mn含有量は0.3~5.0%とした。好ましい範囲は、0.3~3.0%である。より好ましい範囲は0.4~1.0%である。
 Ni:25~40%
 Niは、オーステナイト相を安定させ耐食性を維持するために重要な元素である。しかし、その含有量が25%未満では、合金の外表面にNi硫化物皮膜が十分に生成しないので、Niを含有させる効果が得られない。一方、40%を超えて含有させてもその効果は飽和し、合金の価格上昇を招いて経済性を損なうことになる。したがって、Ni含有量は25~40%とした。好ましい範囲は29~37%である。
 Cr:20~30%
 Crは、Niとの共存下で耐応力腐食割れ性に代表される耐硫化水素腐食性を向上させ、固溶強化により高強度化を図るのに有効な成分である。しかし、その含有量が20%未満ではその効果が得られない。一方、その含有量が30%を超えるとその効果は飽和し、熱間加工性の観点からも好ましくない。したがってCr含有量は20~30%とした。好ましい範囲は23~27%である。
 Mo:0~4%(無添加も含む)
 Moは、Ni及びCrとの共存下において、耐応力腐食割れ性を改善させる作用を有するとともに固溶強化により強度向上に寄与するのに有効な成分であるので、必要に応じて含有させることができる。この効果を得たい場合には、0.01%以上含有させるのが好ましい。一方、その含有量が4%以上ではその効果は飽和し、過度の含有は熱間加工性を低下させる。このため、Mo含有量は0.01~4%とするのが好ましい。より優れた耐応力腐食割れ性を得るには下限を1.5%とするのが好ましい。
 Cu:0~3%(無添加も含む)
 Cuは、硫化水素環境下での耐硫化水素腐食性を著しく向上させる作用があり、必要に応じて含有させることができる。この効果を得たい場合には、0.1%以上含有させるのが好ましい。しかし、含有量が3%を超えるとその効果は飽和し、逆に熱間加工性が低下する。このため、Cuを含有させる場合には、その含有量は0.1~3%とするのが好ましい。より好ましくは0.5~2%である。
 N:0.05~0.50%
 本発明の高合金は、耐食性の観点からC含有量を下げる必要がある。そのため、Nを積極的に含有させて、耐食性を劣化させることなく、固溶強化により高強度化を図る。また、Nを積極的に含有させることによって、固溶化熱処理後においてより高強度な高合金管を得ることができる。それにより、冷間加工を行う際の加工度(断面減少率)をむやみに高めることなく低加工度でも所望とする強度を確保できるため、高加工度による延性低下を抑制することができる。その効果を得るには0.05%以上の含有が必要である。一方、0.50%を超えると熱間加工性が低下するだけでなく、溶解後の凝固時に合金の表面近傍にピンホールが発生しやすくなる。そのため、N含有量は0.05~0.50%以下とした。好ましい範囲は0.06~0.30%、より好ましい範囲は0.06~0.22%である。なお、より高強度を得たい場合は、N含有量の下限を0.16%とするのが好ましい。
 さらに、不純物として含有される、P,S,Oは下記の理由により、P:0.03%以下、S:0.03%以下、O:0.010%以下に制限するのが好ましい。
 P:0.03%以下
 Pは、不純物として含有されるが、その含有量が0.03%を超えると硫化水素環境での応力腐食割れ感受性が増大する。このため、その上限を0.03%以下とするのが好ましい。さらに好ましい上限は0.025%である。
 S:0.03%以下
 Sは、上記のPと同様に、不純物として含有されるが、その含有量が0.03%を超えると熱間加工性が著しく低下する。このため、その上限値を0.03%とするのが好ましい。さらに好ましい上限は0.005%である。
 O:0.010%以下
 本発明ではN含有量を0.05%~0.3%以下と多量に含有させるため、熱間加工性が劣化し易い。Oの含有量が0.010%を超えると熱間加工性を劣化させる。そのため、O含有量は0.010%以下とするのが好ましい。
 本発明に係る高合金鋼は、上記の合金元素の他に、さらにCa、Mgおよび希土類元素(REM)のうちの1種または2種以上を含有してもよい。これらの元素の含有させてもよい理由とそのときの含有量は、次の通りである。
 Ca:0.01%以下、Mg:0.01%以下および希土類元素:0.2%以下の1種または2種以上
 これらの成分は、必要に応じて含有させることができる。いずれも、含有させれば、熱間加工性を阻害するSを硫化物として固着し、熱間加工性を向上させる効果がある。しかしながら、CaおよびMgについてはいずれも0.01%を超えると、そして、REMについては0.2%を超えると、粗大な酸化物が生成し、かえって熱間加工性の低下を招くので、それらの上限は、CaおよびMgについては0.01%、そして、REMについては0.2%とする。なお、この熱間加工性の向上効果を確実に発現させるためには、CaおよびMgについては0.0005%以上、そして、REMについては0.001%以上、含有させるのが好ましい。なお、REMとは、ランタノイドの15元素にYおよびScを合わせた17元素の総称であり、これらの元素のうちの1種又は2種以上を含有させることができる。なお、REMの含有量はこれらの元素の合計含有量を意味する。
 本発明に係る高合金管は、上記の必須元素あるいはさらに上記の任意元素を含有し、残部がFeおよび不純物からなる。ここで、不純物とは、高合金管を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
 そして、本発明に係る高合金管は、通常商業的な生産に用いられている製造設備および製造方法によって製造することができる。例えば、合金の溶製は、電気炉、Ar-O混合ガス底吹き脱炭炉(AOD炉)や真空脱炭炉(VOD炉)などを利用することができる。溶製された溶湯は、インゴットに鋳造してもよいし、連続鋳造法で棒状のビレットなどに鋳造してもよい。これらのビレットを用いて、ユジーンセジュルネ法などの押し出し製管法またはマンネスマン製管法などの熱間加工によって、高合金の冷間圧延用素管を製造することができる。そして、熱間加工後の素管は、冷間圧延により所望の強度を有する製品管とすることができる。
 また、本発明では、最終の冷間圧延の際の加工度を規定しており、熱間加工で得た冷間圧延用素管を、必要により固溶化熱処理を行った後、管表面のスケール除去のデスケーリングを行い、1回の冷間圧延で所望の強度を有する高合金管を製造してもよいし、あるいは、最終の冷間圧延の前に1回または複数回の途中の冷間加工を行って固溶化熱処理を行い、デスケーリング後に最終の冷間圧延を行ってもよい。なお、本発明では最終の冷間加工が冷間圧延であればよく、途中に行う冷間加工は冷間圧延であってもよいし、冷間引抜加工であってもよい。途中に冷間加工を行うことで、最終の冷間圧延での加工度を調整しやすいと同時に、熱間加工のままで最終の冷間圧延を行う場合と比べて、最終の冷間圧延でより精度の高い管寸法を有する管を得ることができる。
 まず、表1に示す化学組成を有する合金を、電気炉で溶解し、目標の化学組成にほぼ成分調整した後、AOD炉を用いて脱炭および脱硫処理を行う方法で溶製した。得られた溶湯は、重さ1500kg、直径500mmのインゴットに鋳造した。そして、長さ1000mmに切断して押し出し製管用ビレットを得た。次に、このビレットを用いてユジーンセジュルネ法による熱間押出製管法で冷間圧延用素管に成形した。
Figure JPOXMLDOC01-appb-T000001
 得られた冷間加工用素管に、1100℃で2分以上保持後に水冷する条件の溶体化熱処理を施した後、さらに、断面減少率での加工度Rd(%)を表2に示すとおり、種々変更して、ピルガーミルを用いた冷間圧延による最終の冷間加工を行って、高合金を得た。なお、冷間圧延を行う前には、管に対してショットブラストを行い、表面のスケールを除去しておいた。最終冷間加工の前後の管寸法(外径mm×肉厚mm)を表2に示す。ここで、一部の冷間加工用素管については、冷間引抜加工した後、1100℃で2分以上保持後に水冷する溶体化熱処理を施してから冷間圧延による最終の冷間加工を行った。
Figure JPOXMLDOC01-appb-T000002
 その後、得られた高合金管から、管軸方向の弧状引張試験片を採取し、引張試験を行った。その結果の実測値を、引張試験での降伏強度(0.2%耐力)YS(Mpa)および引張強度TS(MPa)を、(2)式の右辺の数値とともに表2に示す。
 表2に示すように、合金組成および冷間圧延工程における断面減少率での加工度Rdを適切に選ぶことで、目標強度として、最低降伏強度が758.3~965.2MPa(110~140ksiグレード)の高強度の高合金管を製造することができる。さらに、加工度Rdを特に60~80%とするか、N含有量を特に0.16~0.50%と高めることによって、目標強度として、最低降伏強度が861.8~965.2MPa(125~140ksiグレード)のより高強度の高合金管を製造することができる。また、加工度Rdを60~80%とし、かつN含有量を0.16~0.50%と高めることによって、目標強度として、最低降伏強度が965.2MPa(140ksiグレード)のさらに高強度の高合金管を製造することができる。
 以上のとおりであるから、本発明によれば、深井戸や過酷な腐食環境で使用される油井管に要求される耐食性だけでなく、目標とする強度をも兼ね備えた高合金管を、過度に合金成分を添加することなく、冷間圧延時の加工条件を選択することによって製造することができる。
 

Claims (4)

  1.  質量%で、C:0.03%以下、Si:1.0%以下、Mn:0.3~5.0%、Ni:25~40%、Cr:20~30%、Mo:0~4%、Cu:0~3%、N:0.05~0.50%を含有し、残部がFeおよび不純物からなる化学組成を有する高合金素管を熱間加工によりあるいはさらに固溶化熱処理することにより作製した後、冷間圧延によって高合金管を製造する方法であって、最終の冷間圧延工程における断面減少率での加工度Rdが30%を超えて80%以下の範囲内であってかつ下記(1)式を満足する条件で冷間圧延することを特徴とする、758.3~965.2MPaの最低降伏強度を有する高合金管の製造方法。
     Rd(%)≧(MYS-520)/3.1-(Cr+6×Mo+300×N) ・・・・(1)
     但し、式中のRdおよびMYSはそれぞれ断面減少率での加工度(%)および目標降伏強度(MPa)を意味し、そして、Cr、MoおよびNはそれぞれの元素の含有量(質量%)を意味する。
  2.  質量%で、C:0.03%以下、Si:1.0%以下、Mn:0.3~5.0%、Ni:25~40%、Cr:20~30%、Mo:0~4%、Cu:0~3%、N:0.05~0.50%を含有し、残部がFeおよび不純物からなる化学組成を有する高合金素管を熱間加工によりあるいはさらに固溶化熱処理することにより作製した後、冷間圧延によって高合金管を製造する方法であって、最終の冷間圧延工程における断面減少率での加工度Rdが60~80%の範囲内であってかつ下記(1)式を満足する条件で冷間圧延することを特徴とする、861.8~965.2MPaの最低降伏強度を有する高合金管の製造方法。
     Rd(%)≧(MYS-520)/3.1-(Cr+6×Mo+300×N) ・・・・(1)
     但し、式中のRdおよびMYSはそれぞれ断面減少率での加工度(%)および目標降伏強度(MPa)を意味し、そして、Cr、MoおよびNはそれぞれの元素の含有量(質量%)を意味する。
  3.  質量%で、C:0.03%以下、Si:1.0%以下、Mn:0.3~5.0%、Ni:25~40%、Cr:20~30%、Mo:0~4%、Cu:0~3%、N:0.16~0.50%を含有し、残部がFeおよび不純物からなる化学組成を有する高合金素管を熱間加工によりあるいはさらに固溶化熱処理することにより作製した後、冷間圧延によって高合金管を製造する方法であって、最終の冷間圧延工程における断面減少率での加工度Rdが30%を超えて80%以下の範囲内であってかつ下記(1)式を満足する条件で冷間圧延することを特徴とする、861.8~965.2MPaの最低降伏強度を有する高合金管の製造方法。
     Rd(%)≧(MYS-520)/3.1-(Cr+6×Mo+300×N) ・・・・(1)
     但し、式中のRdおよびMYSはそれぞれ断面減少率での加工度(%)および目標降伏強度(MPa)を意味し、そして、Cr、MoおよびNはそれぞれの元素の含有量(質量%)を意味する。
  4.  質量%で、C:0.03%以下、Si:1.0%以下、Mn:0.3~5.0%、Ni:25~40%、Cr:20~30%、Mo:0~4%、Cu:0~3%、N:0.16~0.50%を含有し、残部がFeおよび不純物からなる化学組成を有する高合金素管を熱間加工によりあるいはさらに固溶化熱処理することにより作製した後、冷間圧延によって高合金管を製造する方法であって、最終の冷間圧延工程における断面減少率での加工度Rdが60~80%の範囲内であってかつ下記(1)式を満足する条件で冷間圧延することを特徴とする、965.2MPaの最低降伏強度を有する高合金管の製造方法。
     Rd(%)≧(MYS-520)/3.1-(Cr+6×Mo+300×N) ・・・・(1)
     但し、式中のRdおよびMYSはそれぞれ断面減少率での加工度(%)および目標降伏強度(MPa)を意味し、そして、Cr、MoおよびNはそれぞれの元素の含有量(質量%)を意味する。
     
PCT/JP2009/068954 2008-12-18 2009-11-06 高合金管の製造方法 WO2010070990A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09833295.0A EP2380998B1 (en) 2008-12-18 2009-11-06 Method for producing high alloy steel pipe
ES09833295.0T ES2693151T3 (es) 2008-12-18 2009-11-06 Método para producir tubo de alta aleación
CN2009801508850A CN102257167B (zh) 2008-12-18 2009-11-06 高合金管的制造方法
US13/153,567 US8312751B2 (en) 2008-12-18 2011-06-06 Method for producing high alloy pipe

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-321809 2008-12-18
JP2008321809 2008-12-18
JP2009008406A JP4462452B1 (ja) 2008-12-18 2009-01-19 高合金管の製造方法
JP2009-008406 2009-01-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/153,567 Continuation US8312751B2 (en) 2008-12-18 2011-06-06 Method for producing high alloy pipe

Publications (1)

Publication Number Publication Date
WO2010070990A1 true WO2010070990A1 (ja) 2010-06-24

Family

ID=42268666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068954 WO2010070990A1 (ja) 2008-12-18 2009-11-06 高合金管の製造方法

Country Status (6)

Country Link
US (1) US8312751B2 (ja)
EP (1) EP2380998B1 (ja)
JP (1) JP4462452B1 (ja)
CN (1) CN102257167B (ja)
ES (1) ES2693151T3 (ja)
WO (1) WO2010070990A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2464325C1 (ru) * 2011-03-22 2012-10-20 ОАО "Первоуральский новотрубный завод" Способ производства холоднодеформированных труб

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012024047A1 (en) * 2010-08-18 2012-02-23 Huntington Alloys Corporation Process for producing large diameter, high strength, corrosion-resistant welded pipe and pipe made thereby
DK2617858T3 (en) * 2012-01-18 2015-10-05 Sandvik Intellectual Property Austenitic alloy
US10557574B2 (en) 2013-11-12 2020-02-11 Nippon Steel Corporation Ni—Cr alloy material and seamless oil country tubular goods using the same
WO2017114847A1 (en) * 2015-12-30 2017-07-06 Sandvik Intellectual Property Ab A process of producing a duplex stainless steel tube
JP7058601B2 (ja) * 2015-12-30 2022-04-22 サンドビック インテレクチュアル プロパティー アクティエボラーグ オーステナイトステンレス鋼管の製造方法
CN113088832A (zh) * 2021-03-26 2021-07-09 中国石油天然气集团有限公司 一种铁镍基耐蚀合金连续管及其制造方法
CN114345970B (zh) * 2021-12-06 2023-09-22 江苏理工学院 一种高强耐蚀铝合金钻杆及其制备方法
CN114472524A (zh) * 2022-01-26 2022-05-13 江苏银环精密钢管有限公司 一种铁镍基合金油井管的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586927A (ja) 1981-07-03 1983-01-14 Sumitomo Metal Ind Ltd 耐応力腐食割れ性に優れた高強度油井管の製造法
JPS589922A (ja) 1981-07-10 1983-01-20 Sumitomo Metal Ind Ltd 耐応力腐食割れ性に優れた高強度油井管の製造法
JPS5811735A (ja) 1981-07-13 1983-01-22 Sumitomo Metal Ind Ltd 耐応力腐食割れ性に優れた高強度油井管の製造法
JPS58181842A (ja) * 1982-04-02 1983-10-24 ヘインズ インタ−ナシヨナル インコ−ポレ−テツド 耐食性ニツケル−鉄合金
US4421571A (en) 1981-07-03 1983-12-20 Sumitomo Metal Industries, Ltd. Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
JPS6383248A (ja) 1986-09-25 1988-04-13 Nkk Corp 耐応力腐食割れ性に優れた油井管用高Ni合金およびその製造法
JPS63203722A (ja) 1987-02-18 1988-08-23 Sumitomo Metal Ind Ltd 耐サワ−ガス油井用管状部材の製造法
JPS63274743A (ja) 1987-04-30 1988-11-11 Nippon Steel Corp 硫化水素の存在する環境で高い割れ抵抗を有するオ−ステナイト合金
JPH11302801A (ja) 1998-04-24 1999-11-02 Sumitomo Metal Ind Ltd 耐応力腐食割れ性に優れた高Cr−高Ni合金
WO2009014000A1 (ja) * 2007-07-20 2009-01-29 Sumitomo Metal Industries, Ltd. 高合金管の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100420758C (zh) * 2002-10-01 2008-09-24 住友金属工业株式会社 具有优异抗氢致开裂性的高强度无缝钢管及其制备方法
JP5003151B2 (ja) * 2006-12-28 2012-08-15 住友金属工業株式会社 高Cr−高Ni基合金鋼からなる継目無鋼管の製造方法
JP5176561B2 (ja) * 2007-07-02 2013-04-03 新日鐵住金株式会社 高合金管の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586927A (ja) 1981-07-03 1983-01-14 Sumitomo Metal Ind Ltd 耐応力腐食割れ性に優れた高強度油井管の製造法
US4421571A (en) 1981-07-03 1983-12-20 Sumitomo Metal Industries, Ltd. Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
JPS589922A (ja) 1981-07-10 1983-01-20 Sumitomo Metal Ind Ltd 耐応力腐食割れ性に優れた高強度油井管の製造法
JPS5811735A (ja) 1981-07-13 1983-01-22 Sumitomo Metal Ind Ltd 耐応力腐食割れ性に優れた高強度油井管の製造法
JPS58181842A (ja) * 1982-04-02 1983-10-24 ヘインズ インタ−ナシヨナル インコ−ポレ−テツド 耐食性ニツケル−鉄合金
JPS6383248A (ja) 1986-09-25 1988-04-13 Nkk Corp 耐応力腐食割れ性に優れた油井管用高Ni合金およびその製造法
JPS63203722A (ja) 1987-02-18 1988-08-23 Sumitomo Metal Ind Ltd 耐サワ−ガス油井用管状部材の製造法
JPS63274743A (ja) 1987-04-30 1988-11-11 Nippon Steel Corp 硫化水素の存在する環境で高い割れ抵抗を有するオ−ステナイト合金
JPH11302801A (ja) 1998-04-24 1999-11-02 Sumitomo Metal Ind Ltd 耐応力腐食割れ性に優れた高Cr−高Ni合金
WO2009014000A1 (ja) * 2007-07-20 2009-01-29 Sumitomo Metal Industries, Ltd. 高合金管の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2464325C1 (ru) * 2011-03-22 2012-10-20 ОАО "Первоуральский новотрубный завод" Способ производства холоднодеформированных труб

Also Published As

Publication number Publication date
EP2380998B1 (en) 2018-08-01
JP4462452B1 (ja) 2010-05-12
US20110252854A1 (en) 2011-10-20
EP2380998A4 (en) 2016-11-30
US8312751B2 (en) 2012-11-20
ES2693151T3 (es) 2018-12-07
CN102257167A (zh) 2011-11-23
JP2010163669A (ja) 2010-07-29
CN102257167B (zh) 2013-03-27
EP2380998A1 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP5211841B2 (ja) 二相ステンレス鋼管の製造方法
WO2010082395A1 (ja) 二相ステンレス鋼管の製造方法
JP4462452B1 (ja) 高合金管の製造方法
JP4632000B2 (ja) 継目無鋼管の製造方法
JP4553073B1 (ja) 高強度Cr−Ni合金継目無管の製造方法
KR101838424B1 (ko) 후육 고인성 고장력 강판 및 그 제조 방법
CN107208212B (zh) 厚壁高韧性高强度钢板及其制造方法
JP5176561B2 (ja) 高合金管の製造方法
JP4288528B2 (ja) 高強度Cr−Ni合金材およびそれを用いた油井用継目無管
JP5217277B2 (ja) 高合金管の製造方法
EP3006585B1 (en) Seamless steel pipe for line pipe used in sour environment
EP4134462A1 (en) Martensitic stainless seamless steel pipe
EP2656931B1 (en) PRODUCTION METHOD FOR ROUND STEEL BAR FOR SEAMLESS PIPE COMPRISING HIGH Cr-Ni ALLOY, AND PRODUCTION METHOD FOR SEAMLESS PIPE USING ROUND STEEL BAR
US10280487B2 (en) High alloy for oil well
WO2020196595A1 (ja) 棒状鋼材
JP4462454B1 (ja) 二相ステンレス鋼管の製造方法
KR20170121267A (ko) 열간 압연 봉선재, 부품 및 열간 압연 봉선재의 제조 방법
JP7364955B1 (ja) 二相ステンレス鋼材
JP3456468B2 (ja) 被削性及び熱間加工性に優れたマルテンサイト系ステンレス鋼継目無鋼管
JPWO2020158111A1 (ja) 二相ステンレス鋼、継目無鋼管、および二相ステンレス鋼の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150885.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009833295

Country of ref document: EP