WO2010064428A1 - Reflow furnace - Google Patents

Reflow furnace Download PDF

Info

Publication number
WO2010064428A1
WO2010064428A1 PCT/JP2009/006569 JP2009006569W WO2010064428A1 WO 2010064428 A1 WO2010064428 A1 WO 2010064428A1 JP 2009006569 W JP2009006569 W JP 2009006569W WO 2010064428 A1 WO2010064428 A1 WO 2010064428A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot air
printed circuit
circuit board
plate
rail
Prior art date
Application number
PCT/JP2009/006569
Other languages
French (fr)
Japanese (ja)
Inventor
檜山勉
角屋敷敏丸
Original Assignee
千住金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千住金属工業株式会社 filed Critical 千住金属工業株式会社
Priority to CN2009801485948A priority Critical patent/CN102239752A/en
Priority to JP2010541235A priority patent/JPWO2010064428A1/en
Publication of WO2010064428A1 publication Critical patent/WO2010064428A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3494Heating methods for reflowing of solder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1509Horizontally held PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0097Processing two or more printed circuits simultaneously, e.g. made from a common substrate, or temporarily stacked circuit boards

Definitions

  • the present invention relates to a reflow furnace that performs soldering by melting solder materials such as solder paste, solder balls, and solder bumps.
  • a tunnel-like muffle is composed of a preheating zone, a main heating zone, and a cooling zone.
  • a heater is installed in the preheating zone and the main heating zone, and a cooler is installed in the cooling zone.
  • a printed circuit board on which soldering is performed is conveyed by a conveyance path. This conveyance path is provided above the heater, and is composed of a conveyance conveyor that extends over the longitudinal direction of the furnace body of the reflow furnace.
  • Patent Document 1 two side conveyors whose installation positions are variable in the width direction of the furnace body are arranged on both sides of the center conveyor fixedly arranged in the width direction of the furnace body, and the same type of printed circuit boards are conveyed simultaneously.
  • the invention is disclosed.
  • Patent Document 2 two brackets whose installation positions are variable in the furnace body width direction are arranged on both sides of one bracket whose installation position is variable in the furnace body width direction, and the moving speed of the two brackets is further increased.
  • An invention is disclosed in which a temperature profile suitable for each of different types of printed circuit boards is provided by making it variable.
  • Patent Document 3 the first movable rail and the second movable rail whose installation positions are variable in the furnace body width direction are arranged on one side of the fixed rail fixedly arranged in the furnace body width direction.
  • the heater used for the reflow furnace generally includes an infrared heater and a hot air blowing heater.
  • Infrared type heaters penetrate the inside of printed circuit boards and electronic equipment and melt the solder paste applied to the soldering part, but since the infrared rays go straight, There is a problem that the soldered portion that becomes the gap cannot be heated sufficiently.
  • the hot air blowing heater convects hot air inside the muffle, so the hot air enters the shadows of electronic components and narrow gaps, so the entire printed circuit board is heated more uniformly than the infrared heater. It has the feature that it can be used, and is used in many reflow furnaces today.
  • hot air blowing heaters installed in this reflow furnace: one that blows hot air from a wide area blowing port and one that blows hot air from many holes.
  • a hot air blowing heater that blows out hot air from a large area blowing port has a low flow rate of hot air, so that the heating efficiency is not so good when it hits a printed circuit board.
  • the hot air blowing heater that blows hot air from a large number of holes can heat the hot air efficiently because the hot air speed is high and the hot air penetrates to the back side of the surface mount component. For this reason, hot air blowers used in reflow furnaces often have many holes.
  • the heater described below is a hot air blowing heater having a large number of holes unless otherwise specified.
  • the printed circuit board is heated in the order of preheating and main heating.
  • the printed board is heated slowly with hot air at a low temperature to acclimate the printed board to heat, and the solvent in the solder paste is volatilized.
  • preheating in the reflow furnace is preferably performed with hot air having a low temperature and less than the main heating.
  • the printed circuit board gets used to the heat by preheating, the solvent in the solder paste is volatilized, and the electronic components are fixed to some extent firmly, and then heated by the main heating in the reflow furnace.
  • soldering is performed by blowing hot hot air to melt the solder powder in the solder paste.
  • the amount of hot air blown to the printed circuit board by this main heating is larger than the amount of hot air by preheating, the temperature rise can be accelerated.
  • the main heating if the heating time at a high temperature becomes long, the printed circuit board and the electronic component are thermally damaged, and thus heating is performed in a short time.
  • a large number of hot air blowing heaters are installed above and below the preheating zone and the main heating zone. For example, if the preheating zone is 5 zones, 10 hot air blowing heaters are installed above and below, and if the heating zone is 3 zones, 6 hot air blowing heaters are installed above and below, so one reflow furnace Then, upper and lower 16 hot air blowing heaters are installed.
  • the flow rate of the hot air blown from each hot air blowing heater is controlled so that the temperature profile is suitable for the printed circuit board.
  • the flow rate of the hot air is controlled by changing the rotational speed of the motor.
  • the printed circuit board may be mounted with high-density mounting parts where electronic components are concentrated and power transistors with high heat capacity, transformers, etc. A lot of heat is needed.
  • a single printed circuit board may include a soldering portion that requires a large amount of heat and a weak heat-resistant electronic component that causes thermal damage or functional deterioration when a large amount of heat is sprayed. If such a mixed printed circuit board is simply heated uniformly over the entire printed circuit board, defective soldering and electronic components will be thermally damaged.
  • An object of the present invention is to provide a reflow furnace that can reliably provide a temperature profile suitable for each of a plurality of types of printed circuit boards of different types.
  • the present inventor (A) In a reflow furnace equipped with a first transport conveyor and a second transport conveyor, the first transport conveyor is composed of a first rail and a second rail, and the second transport conveyor is a third And the fourth rail, the printed board carrying speed by the first conveyor and the printed board carrying speed by the second conveyor can be set to different speeds, so that a plurality of different types can be set. It is possible to reliably provide a temperature profile suitable for each kind of printed circuit board, and (b) in the hot air blowing heater of the reflow furnace, the size of the hole drilled in one plate is stepless.
  • the other plate in which the same hole as that of one plate is drilled is overlapped with one plate so that each hole matches, and the other plate is shifted. Knowing that the hole in one plate can be adjusted steplessly, and this makes it possible to more reliably provide a temperature profile suitable for each of multiple types of printed circuit boards. Completed.
  • the present invention is a reflow furnace comprising a furnace body having a heater, and a printed circuit board conveyance path that extends in the longitudinal direction of the furnace body inside the furnace body and above the heater, wherein the conveyance path is: It consists of a first transfer conveyor arranged in parallel in the width direction of the furnace body and a second transfer conveyor different from the first transfer conveyor, and the first transfer conveyor is aligned in the width direction of the furnace body.
  • a reflow furnace comprising a rail and a fourth rail, wherein the printed board conveyance speed by the first conveyor and the printed board conveyance speed by the second conveyor can be set to different speeds. is there. According to the present invention, it is possible to reliably provide a temperature profile suitable for each of a plurality of types of printed circuit boards of different types.
  • the installation position of at least one of the first rail and the second rail is variable in the width direction of the furnace body, and among the third rail and the fourth rail. It is desirable that at least one of the installation positions is variable in the width direction of the furnace body.
  • the heater is a heater in which a large number of holes are formed in the hot air blowing plate, and the printed circuit board is heated by blowing hot air from the holes, and the heater is provided in the hot air blowing plate.
  • the hot air adjusting plate in which the hole substantially the same as the hole of the hot air blowing plate is drilled in the same place as the hole, so that the hole drilled in the hot air blowing plate and the hole drilled in the hot air adjusting plate match It is desirable that the opening area of the hole of the hot air blowing plate can be adjusted by closely contacting the hot air blowing plate and moving the hot air adjusting plate along the hot air blowing plate. As a result, it is possible to more reliably provide temperature profiles suitable for different types of printed circuit boards.
  • the hot air adjusting plate is composed of a plurality of components, and each of the plurality of components is independently movable with respect to the hot air blowing plate.
  • the hot air adjusting plate covers the hot air blowing plate of the hot air blowing heater and may be one sheet, but may be divided into a plurality of sheets so that each can move independently.
  • a single hot air adjustment plate is suitable for adjusting the hot air for each zone, and the one divided into multiple sheets is a print in which soldered parts that require a large amount of heat and weak heat-resistant electronic components are mixed. Suitable for substrate heating.
  • the hot air blowing plate used in the present invention may be simply a hole having a hole, but if a blowing nozzle is attached to the hole, the direction of the hot air becomes good and the printed circuit board can be efficiently heated.
  • the blowing nozzle one blowing nozzle may be attached to one hole, or a plate-like object may be attached to a large number of holes, and an ejection port communicating with the hole may be formed in this plate-like object.
  • the plate-like blowing nozzle can be any plate shape such as a long straight shape, a short straight shape, a meandering shape, a zigzag shape, or the like.
  • the hot air When the reflow furnace is in operation, the hot air first passes through the hole in the hot air adjusting plate, and then passes through the hole in the hot air blowing plate and hits the printed circuit board to heat the printed circuit board. At this time, if the hot air adjusting plate and the hot air blowing plate are not in close contact with each other, the hot air that has passed through the hot air adjusting plate flows out from another hole of the hot air blowing plate and becomes a biased blowing. Therefore, when the reflow furnace is in operation, the hot air adjusting plate and the hot air blowing plate must be in close contact with each other, and the hot air adjusting plate can be moved along the hot air blowing plate when adjusting the opening area of the hole of the hot air blowing plate. It must be.
  • the hot air adjusting plate has a screw attached and a long hole is formed in the hot air blowing plate at a position corresponding to the screw. That is, in order to allow the hot air adjusting plate and the hot air blowing plate to adhere to each other and to allow the hot air adjusting plate to move, a screw is erected on the hot air adjusting plate, and the hot air blowing plate that coincides with the screw has a hot air adjusting plate. A long hole that is longer in the moving direction is drilled. Thus, after passing the screw of the hot air adjusting plate through the long hole of the hot air blowing plate, the nut is screwed from the top of the screw.
  • the nut When the hot air adjusting plate is moved, the nut is not firmly tightened, but is set so that the hot air adjusting plate can be moved. After that, when the hot air adjusting plate is moved and the opening area of the hole of the hot air blowing plate becomes a predetermined size, the nut is firmly tightened to bring the hot air adjusting plate into close contact with the hot air blowing plate. In order to bring the hot air adjusting plate and the hot air blowing plate into close contact, a plurality of screws standing on the hot air adjusting plate are required. When another plate-like material is installed on the hot air blowing plate, a long hole is also drilled in this plate-like material, and a nut is screwed into the long hole of the plate-like material through a screw.
  • the hot air blowing plate is adjusted along the hot air blowing plate to adjust the opening area of the hot air blowing plate. If it can be confirmed, there is no problem. However, when the hot air nozzle is attached to the hole of the hot air blowing plate, the hole area of the hole cannot be confirmed because the hole of the hot air blowing plate cannot be seen. In such a case, a scale capable of measuring the moving distance of the hot air adjusting plate is attached. As this scale, there is one in which a long hole is formed in a portion where a screw protrudes and a scale is attached to a side portion of the long hole. Then, the moving distance of the screw is measured with respect to this scale. In addition, as the scale, a bar material may be erected on the hot air adjusting plate, a long hole may be formed in a portion where the bar material protrudes, and the long hole may be graduated.
  • the movement of the hot air adjustment plate may be performed by the user's hand, but when it is performed by hand, an accurate moving distance cannot be obtained. Therefore, if the hot air adjusting plate is accurately moved, rotation of the screw is suitable.
  • the screw is rotatably attached to the hot air adjusting plate, and the female screw into which the screw is screwed is fixed to the main body of the hot air blowing heater or the hot air blowing plate.
  • the hot air adjusting plate is moved, when the screw is rotated, the screw moves relative to the fixed female screw, and the hot air adjusting plate attached with the screw moves little by little.
  • the conveyance speed of the printed circuit board by the first conveyance conveyor and the conveyance speed of the printed circuit board by the second conveyor can be set to different speeds.
  • a reflow furnace capable of reliably providing a suitable temperature profile can be provided.
  • the amount of hot air in each zone can be changed without using an expensive inverter motor, the high-density mounting part can be efficiently heated, and the work of adjusting the size of the holes is extremely difficult.
  • a reflow furnace that can be easily performed can be provided.
  • the ideal temperature profile suitable for the printed circuit board can be obtained by changing the hole size with respect to the traveling direction of the printed circuit board, and there is no soldering failure or thermal damage.
  • the present invention has an excellent effect not found in conventional reflow furnaces in that there is no scattering of small parts and small-diameter balls.
  • FIG. 3 is a block diagram illustrating a configuration example of a control system of a conveyance path 30.
  • FIG. 3 is a plan view illustrating a configuration example of a conveyance path 30.
  • FIG. 3 is a front view illustrating a configuration example of a conveyance path 30.
  • FIG. 2 is a front sectional view showing a configuration example of a hot air blowing heater 1.
  • FIG. It is side surface sectional drawing which shows the structural example of the hot air blowing heater. It is an enlarged bottom view which shows the example of arrangement
  • FIG. 4 is a bottom view showing a configuration example of a hot air adjusting plate 20.
  • FIG. It is explanatory drawing which shows the temperature profile example of the reflow furnace which concerns on this invention. It is explanatory drawing which shows the temperature profile example of the reflow furnace of a comparative example.
  • FIG. 1 is a perspective view illustrating a main part of a furnace body 0 of a reflow furnace according to the present invention, which is extracted and disassembled and a part thereof is simplified.
  • the reflow furnace according to the present invention includes a furnace body 0 having a hot air blowing heater (hereinafter referred to as heater 1) and a conveyance path 30.
  • the conveyance path 30 is located inside the furnace body 0 and above the heater 1 by a predetermined distance from the upper surface of the heater 1, so that the longitudinal direction of the furnace body 0 (the same direction as the conveyance direction X of the printed board in FIG. 1). ) Is placed and arranged.
  • the conveyance path 30 includes a first conveyance conveyor 31 that is an example of a first conveyance unit, and a second conveyance conveyor 32 that is an example of a second conveyance unit.
  • the 1st conveyance conveyor 31 and the 2nd conveyance conveyor 32 are arranged in parallel in the width direction of the furnace body 0 (direction orthogonal to the conveyance direction X of the printed circuit board in FIG. 1 in a horizontal surface).
  • the in the present invention, the first conveyor 31 and the second conveyor 32 are independent of each other.
  • the first transport conveyor 31 includes a first chain (hereinafter referred to as a chain 33) that is an example of a first rail and a second chain (hereinafter referred to as a chain 34) that is an example of a second rail. Is done.
  • the chain 33 and the chain 34 are juxtaposed in the width direction of the furnace body 0, and transport the printed circuit board by moving in the transport direction X of the printed circuit board at the same speed.
  • the chain 33 and the chain 34 are configured to be able to move endlessly by a well-known and commonly used first transport drive mechanism (for example, an endless drive mechanism including a chain, a sprocket wheel, a drive motor, a control device, and the like). There is no need to use a drive mechanism having a specific structure.
  • the chain 34 is configured to be able to change its installation position in the width direction of the furnace body 0 by the first moving mechanism. As a result, various printed circuit boards having different dimensions can be transported by the first transport conveyor 31.
  • the second conveyor 32 includes a third chain (hereinafter referred to as a chain 35) which is an example of a third rail and a fourth chain (hereinafter referred to as a chain 36) which is an example of a fourth rail. Consists of.
  • the chain 35 and the chain 36 are juxtaposed in the width direction of the furnace body 0, and transport the printed circuit board by moving in the transport direction X of the printed circuit board at the same speed.
  • the chain 35 and the chain 36 are also moved endlessly by a second transport drive mechanism (for example, an endless drive mechanism including a chain, a sprocket wheel, a drive motor, a control device, and the like) independent of the known first transport drive mechanism. It is only necessary to be configured so that a drive mechanism having a specific structure is not necessary.
  • the chain 36 is configured to be able to change its installation position in the width direction of the furnace body 0 by the second moving mechanism. As a result, various printed circuit boards having different dimensions can be transported by the second transport conveyor 32.
  • FIG. 2 is a block diagram illustrating a configuration example of a control system of the conveyance path 30.
  • the control system for the transport path 30 includes an operation unit 80 and a control unit 81.
  • the operation unit 80 is an input device such as a touch panel type liquid crystal display or a keyboard, and is operated by a user to set the temperature of the heater 1, the width of the first transfer conveyors 31 and 32, and the transfer speed. It is.
  • the operation unit 80 receives the temperature of the heater 1, the first transport conveyor 31 and the first transport conveyor 31.
  • the setting information D for individually setting the width and the conveying speed of the second conveyor 32 is generated, and the generated setting information D is output to the control unit 81.
  • the control unit 81 is connected to the operation unit 80.
  • the control unit 81 controls the first and second transport driving mechanisms and the first and second moving mechanisms described above based on the setting information D input to the operation unit 80.
  • a motor for driving the chains 33 and 34 (hereinafter referred to as motor M1) is provided in the first transport driving mechanism, and a motor for driving the chains 35 and 36 (hereinafter referred to as motor M1) is provided in the second transport driving mechanism.
  • the first moving mechanism is provided with a motor (hereinafter referred to as motor M3) for moving the chain 34 in the double-headed arrow shown in FIG. 1, and the second moving mechanism is provided with the second moving mechanism.
  • a motor (hereinafter referred to as motor M4) for moving the chain 36 in the double-headed arrow shown in FIG. 1 is provided.
  • the control unit 81 is connected to motors M1, M2, M3, and M4.
  • the control unit 81 generates drive information D1, D2, D3, D4 based on the setting information D, and the motors M1, M2, M3, M4 rotate based on the generated drive information D1, D2, D3, D4. To drive.
  • the drive information D1 includes information for rotationally driving the motor M1 so that the chains 33 and 34 are driven at a driving speed of 0.7 m / min.
  • the drive information D2 includes information for rotationally driving the motor M2 such that the drive speed of the chains 35 and 36 is driven at 1.0 m / min.
  • the drive information D3 includes information for rotationally driving the motor M3 that moves the chain 34 so that the distance between the chain 33 and the chain 34 matches the width of the first printed circuit board.
  • the drive information D4 includes information for rotationally driving the motor M4 that moves the chain 36 so that the distance between the chain 35 and the chain 36 matches the width of the second printed circuit board.
  • the conveyance path 30 is controlled by the first conveyance conveyor 31 and the second conveyance path.
  • the conveyance speed of the printed circuit board by the conveyance conveyor 32 can be set to a different speed so that the width of the printed circuit board conveyed by the first conveyance conveyor 31 and the width of the printed circuit board conveyed by the second conveyance conveyor 32 are different. Can be set.
  • FIG. 3 is a plan view showing a configuration example of the conveyance path 30, and FIG. 4 is a front view thereof. 3 and 4, the motors M1 and M2 are omitted for convenience of explanation.
  • the conveyance path 30 includes the first conveyance conveyor 31 having the chains 33 and 34 and the second conveyance conveyor 32 having the chains 35 and 36.
  • the first transport drive mechanism for driving the chains 33 and 34 includes a first chain sprocket wheel (hereinafter referred to as a first sprocket wheel 37), a second chain sprocket. A wheel (hereinafter referred to as a second sprocket wheel 38) and a motor M1 (not shown) are included.
  • the control unit 81 outputs drive information D1 based on the setting information D from the operation unit 80 shown in FIG. Transport by.
  • the chain 33 is driven by the first sprocket wheel 37, and the chain 34 is driven by the second sprocket wheel 38.
  • the first and second sprocket wheels 37 and 38 are connected to the motor M1, and the first and second sprocket wheels 37 and 38 are rotated at the same speed by the rotational drive of the motor M1, and the printed circuit board is shown in FIG.
  • the chains 33 and 34 are driven so as to be conveyed in the conveying direction X shown in FIG.
  • the second transport drive mechanism for driving the chains 35 and 36 includes a third chain sprocket wheel (hereinafter referred to as a third sprocket wheel 39), a fourth chain sprocket wheel (hereinafter referred to as a fourth sprocket wheel 40).
  • the motor M2 (not shown).
  • the control unit 81 outputs drive information D2 based on the setting information D from the operation unit 80 and rotationally drives the motor M2, thereby transporting the printed circuit board at a desired transport speed.
  • the chain 35 is driven by the third sprocket wheel 39, and the chain 36 is driven by the fourth sprocket wheel 40.
  • the third and fourth sprocket wheels 39, 40 are connected to the motor M2, and the third and fourth sprocket wheels 39, 40 are rotated at the same speed by the rotational drive of the motor M2, and the printed circuit board is shown in FIG.
  • the chains 35 and 36 are driven so as to be conveyed in the conveying direction X shown in FIG.
  • the conveyance speed of the printed circuit board by the 1st conveyance conveyor 31 is obtained.
  • the printed board conveyance speed by the second conveyance conveyor 32 can be set to a different speed.
  • the first printed circuit board having the first temperature profile is heated by the first transport conveyor 31 and the second transport profile 32 has a second temperature profile different from the first temperature profile.
  • the first printed circuit board has a first speed by appropriately setting the transport speed of the first transport conveyor 31 and the transport speed of the second transport conveyor 32 to be different. It is possible to reliably give the temperature profile and reliably give the second temperature profile to the second printed circuit board.
  • a first fixing plate 41 is provided on the chain 33 in parallel with the conveying direction of the chain 33.
  • the chain 34 is provided with a first moving plate 42 parallel to the transport direction of the chain 34.
  • the chain 35 is provided with a second fixing plate 43 parallel to the transport direction of the chain 35.
  • the chain 36 is provided with a second moving plate 44 in parallel with the transport direction of the chain 36.
  • a motor fixing plate 45 is provided in the outer direction of the second moving plate 44 (the right direction in FIGS. 3 and 4).
  • a slide shaft 51 is provided between the first fixed plate 41 and the motor fixed plate 45 via a first moving plate 42 and a second fixed plate 43.
  • the first fixing plate 41, the second fixing plate 43, and the motor fixing plate 45 fix the slide shaft 51, and the first moving plate 42 and the second moving plate 44 slide along the slide shaft 51. Move.
  • a first screw shaft 52 is provided between the first fixed plate 41 and the motor fixed plate 45 via a first moving plate 42.
  • the first screw shaft 52 has a threaded portion, and engages with the first moving plate 42 by the threaded portion.
  • the first screw shaft 52 rotates together with the rotation of the first variable width shaft for changing the distance between the chain 33 and the chain 34, and moves the first moving plate 42 in the direction of the arrow Y1.
  • the first fixing plate 41, the second fixing plate 43, the motor fixing plate 45 and the second moving plate 44 are penetrated so as not to contact the first screw shaft 52.
  • a motor M3 is provided on a fixed plate 64 extended from the first fixed plate 41.
  • the motor M3 is provided with a motor pulley (hereinafter referred to as a first pulley 61), and the motor M3 rotates the first pulley 61.
  • a shaft pulley (hereinafter referred to as a second pulley 62) is provided above the first pulley 61, and a first drive belt 63 is wound around the first pulley 61 and the second pulley 62. . That is, when the first pulley 61 rotates by driving the motor M3, the second pulley 62 also follows and rotates via the first drive belt 63.
  • a first variable width shaft 54 is provided at the center of the second pulley 62.
  • the first screw shaft 52 is provided at the tip of the first variable width shaft 54 via the first fixed plate 41.
  • the user uses the operation unit 80 to provide information on the width of the printed board (for example, the board width). 70mm etc.). Then, the setting information D is output from the operation unit 80 to the control unit 81, and the control unit 81 outputs drive information D3 to the motor M3. Based on the drive information D3 output from the controller 81, the motor M3 is rotationally driven to rotate the first pulley 61, and the second pulley 62 connected via the first drive belt 63 is rotated. . The first variable width shaft 54 and the first screw shaft 52 are rotated by a predetermined number by the rotation of the second pulley 62.
  • the first screw shaft 52 Since the first screw shaft 52 has a threaded portion as described above and this threaded portion is engaged with the first moving plate 42, the first screw shaft 52 rotates with the first screw shaft 52.
  • the first moving plate 42 slides (moves) along the slide shaft 51 in the direction of the arrow Y1.
  • the amount of movement of the first moving plate 42 is based on the width of the printed circuit board previously input to the input device by the user. Thereby, the distance between the chain 33 and the chain 34 can be changed in accordance with the width of the printed circuit board conveyed by the first conveyor 31.
  • a second screw shaft 53 is provided between the first fixed plate 41 and the motor fixed plate 45 via a second moving plate 44.
  • the second screw shaft 53 has a threaded portion, and is engaged with the second moving plate 44 by the threaded portion.
  • the second screw shaft 53 rotates with the rotation of the second variable width shaft 55 for changing the distance between the chain 35 and the chain 36, and moves the second moving plate 44 in the direction of the arrow Y2.
  • the first fixed plate 41, the second fixed plate 43, the motor fixed plate 45 and the second moving plate 44 are penetrated so as not to contact the second screw shaft 53.
  • a motor M4 is provided on a fixing plate 74 extended from the motor fixing plate 45.
  • the motor M4 is provided with a motor pulley (hereinafter referred to as a third pulley 71), and the motor M4 rotates the third pulley 71.
  • a shaft pulley (hereinafter referred to as a fourth pulley 72) is provided below the third pulley 71, and a second drive belt 73 is wound around the third pulley 71 and the fourth pulley 72. . That is, when the third pulley 71 rotates by driving the motor M4, the fourth pulley 72 also follows and rotates.
  • a second variable width shaft 55 is provided at the center of the fourth pulley 72.
  • the above-described second screw shaft 53 is provided at the tip of the second variable width shaft 55 via a motor fixing plate 45.
  • the user When the user wishes to change the distance between the chain 35 and the chain 36 in accordance with the width of the printed board transported by the second transport conveyor 32, first, the user inputs information regarding the width of the printed board using the operation unit 80. Then, setting information D is output from the operation unit 80 to the control unit 81, and the control unit 81 outputs drive information D4 to the motor M4. Based on the drive information D4 output from the control unit 81, the motor M4 is rotationally driven to rotate the third pulley 71, and the fourth pulley 72 connected via the second drive belt 73 is rotated. . Then, by the rotation of the fourth pulley 72, the second variable width shaft 55 and the second screw shaft 53 rotate by a predetermined number.
  • the second screw shaft 53 Since the second screw shaft 53 has a threaded portion as described above and this threaded portion is engaged with the second moving plate 44, the second screw shaft 53 is rotated along with the rotation of the second screw shaft 53.
  • the moving plate 44 slides (moves) along the slide shaft 51 in the direction of the arrow Y2.
  • the amount of movement of the second moving plate 44 is based on the width of the printed board previously input by the user to the input device. Thereby, the distance between the chain 35 and the chain 36 can be changed according to the width of the printed circuit board conveyed by the second conveyor 32.
  • the width of the printed board conveyed by the first conveyor 31 and the second conveyor can be set differently.
  • FIG. 5 is a front sectional view showing a configuration example of the heater 1
  • FIG. 6 is a side sectional view thereof.
  • the hot air blowing type heater 1 used in the reflow furnace of the present invention is installed in the upper and lower parts of the furnace body 0 of the reflow furnace.
  • the heater 1 described in FIG. 6 will be described up and down as seen in FIGS. 5 and 6 assuming that it is installed below the furnace body 0 of the reflow furnace.
  • the heater 1 has a box shape, and has a blower chamber 2, a heating chamber 3, a hot air chamber 4, and a suction chamber 5 in the vertical direction.
  • a blower 6 is disposed in the center of the blow chamber 2.
  • a sirocco fan is used as the blower 6 and is driven by a motor 7 provided outside.
  • the motor 7 is not an expensive inverter motor but a normal inexpensive motor.
  • partition walls 8 one is not shown) on both sides of the air blowing chamber 2, and one end of the partition wall is an opening 9. The opening of each partition is not at a position facing each other, but at both ends.
  • channels 10 and 10 are formed on both sides, and a plurality of electric heaters 11 are arranged inside the heating chamber 3.
  • a suction hole 13 is formed in the partition plate 12 that separates the heating chamber 3 and the blower chamber 2.
  • the suction hole 13 is disposed immediately above the blower 6 and its diameter is slightly smaller than the diameter of a sirocco fan that is a blower.
  • the hot air chamber 4 communicates with the opening 9 of the air blowing chamber 2 described above, and hot air is sent from the air blowing chamber 2.
  • a hot air blowing plate 14 is stretched between the hot air chamber 4 and the suction chamber 5, and the suction chamber 5 communicates with the heating chamber 3 through flow paths 10 and 10.
  • a heater surface 15 is formed above the suction chamber 5.
  • blowing nozzles 17 are respectively attached to these holes 16.
  • the blowout nozzle 17 of this example is a zigzag plate, and the plate-like blowout nozzle 17 is provided with a jet outlet 18 communicating with the hole 16 of the hot air blowout plate.
  • the blowing nozzle 17 is erected so as to protrude from the heater surface 15.
  • the plate-like blowing nozzle 17 is installed in a direction crossing the traveling direction (conveying direction X) of the printed board.
  • zigzag suction ports 19 are formed along the blowing nozzle.
  • FIG. 7 is an enlarged bottom view showing an arrangement example of the hot air adjusting plate 20 and the hot air blowing plate 14. As shown in FIG. 7, a hot air adjusting plate 20 is disposed in close contact with the lower surface of the hot air blowing plate 14. The hot air adjusting plate 20 has a hole 21 having substantially the same shape at the same position as the hole 16 of the hot air blowing plate 14.
  • FIG. 8 is a bottom view showing a configuration example of the hot air adjusting plate 20.
  • the hot air adjusting plate 20 is divided into three constituent members (20A, 20B, 20C) along the traveling direction (conveying direction X) of the printed circuit board, and each constituent member is indicated by an arrow a. , B and c are configured to be movable.
  • the hot air adjusting plate 20 has a plurality of screws 22. Slots 23 and 24 are formed in the hot air blowing plate 14 and the heater surface 15 at the same position as these screws 22. A scale 25 is attached to the side of the long hole 24 of the heater surface 15. At all times, the screw 22 is inserted into the long holes 23 and 24, and a nut 26 is screwed from above.
  • the first printed circuit board having the first temperature profile is heated by the first transfer conveyor 31 and the first transfer conveyor 32 is used to heat the first printed circuit board.
  • the transport speed of the first transport conveyor 31 and the transport speed of the second transport conveyor 32 are set differently. Therefore, the first temperature profile can be reliably given to the first printed circuit board and the second temperature profile can be reliably given to the second printed circuit board. By doing so, an optimum temperature profile is given to each of the first printed circuit board and the second printed circuit board. Because the door is possible, to illustrate this point.
  • the electric heater 11 provided in the heating chamber 3 of the heater 1 is energized, and the motor 7 is driven to rotate the sirocco fan as the blower 6. Then, the gas in the heating chamber 3 is heated by the electric heater 11 and becomes hot hot air, and is drawn into the blower chamber 2 from the suction hole 13 of the blower 6 by the blower 6.
  • the hot air drawn into the blower chamber 2 is sent to the blower chamber 2 through the opening 9 from the blower side of the blower by the blower 6, passes through the hole 21 of the hot air adjusting plate 20 and the hole 16 of the hot air blower plate 14, and It blows out from the jet outlet 18 of the blowing nozzle 17.
  • the hot air blown out from the jet outlet 18 hits the first printed circuit board transported by the first transport conveyor 31 and the second printed circuit board transported by the second transport conveyor 32, and the first printed circuit board is transported to the first printed circuit board.
  • the printed circuit board and the second printed circuit board are heated.
  • the solder paste applied to the soldering portion is melted, and the first printed circuit board or the second printed circuit board and the electronic component are soldered.
  • the conveying speed of the first conveying conveyor 31 is made higher than the conveying speed of the second conveying conveyor 32.
  • a hole 16 of a hot air blowing plate corresponding to the first printed board for example, a hot air blowing plate corresponding to the hot air adjusting plate 20A shown in FIG. Keep the hole in the hot air blowing plate corresponding to.
  • the opening area of the hole 21 of the hot air adjusting plate 20A corresponding to the portion that requires a large amount of heat is made to completely coincide with the hole 16 of the hot air blowing plate 14 so that the opening area of the hole 21 of the hot air adjusting plate 20A is sufficient.
  • the hot air adjusting plates 20B and 20C corresponding to portions that do not require a large amount of heat are moved slightly in the directions of arrows b and c to reduce the opening area of the holes 16 of the hot air blowing plate 14. .
  • the opening area of the hole 16 of the hot air blowing plate 14 is adjusted by the hot air adjusting plate 20
  • the opening area of the hole 16 of the hot air blowing plate 14 is increased from the portion that requires a large amount of heat.
  • a large amount of hot air blows out, and the first printed circuit board can be heated to a temperature sufficiently higher than that of the second printed circuit board.
  • the hot air whose temperature has been lowered is sucked from the suction port 19 in the vicinity where the plate-like blowing nozzle 17 is erected, and enters the heating chamber 3 through the flow path 10.
  • the hot air that has entered the heating chamber 3 is heated to a predetermined temperature by the electric heater 11 and sucked into the blower chamber 2 by the blower 6. Then, the hot air is sent from the opening 9 to the hot air chamber 4 and is blown again from the outlet 18 of the blowing nozzle 17 to heat the first printed board and the second printed board.
  • the conveyance speed of the printed circuit board by the 1st conveyance conveyor 31 and the conveyance speed of the printed circuit board by the 2nd conveyance conveyor 32 can be set to a different speed
  • a temperature profile suitable for each of a plurality of types of printed circuit boards can be reliably provided.
  • the chains 33 and 35 provided on the first fixed plate and the second fixed plate 43 are fixedly arranged in the width direction of the furnace body 0, and the first moving plate 42 and the second moving plate 42
  • the present invention is not limited to this embodiment, and at least one of the chain 33 and the chain 34 is not limited thereto.
  • the installation position may be variable in the width direction of the furnace body, and the installation position of at least one of the chain 35 and the chain 36 may be variable in the width direction of the furnace body.
  • a fixed plate is provided on the chain 33 and the chain 36, and a movable plate is provided on the chains 34 and 35, or a movable plate is provided.
  • the chain 33, 34, 35 may be provided with a moving plate and may be movably arranged.
  • the moving plate is moved by a driving device such as a motor, a transmission mechanism such as a pulley and a belt that transmits the rotation of the motor shaft, a screw shaft that is rotated by the transmission mechanism, and the like.
  • the movement of the first moving plate 42 and the second moving plate 44 has been described as being performed by a motor according to the width of the printed board to be conveyed.
  • variable shaft 54 or the second variable width shaft 55 may be operated so as to be manually adjusted. Accordingly, the motor M3, the first pulley 61, the second pulley 62, the first drive belt 63, the fixed plate 64, the motor M4, the third pulley 71, the fourth pulley 72, and the second drive belt 73. And the manufacturing cost of a conveyance path can be reduced by deleting the fixed plate 74.
  • the reflow furnace according to the present invention will be specifically described with reference to a temperature profile.
  • the first printed circuit board and the second printed circuit board having different temperature profiles were soldered using the reflow furnace according to the present invention shown in FIGS. 1 to 8 and the reflow furnace of the comparative example.
  • the reflow furnace of the comparative example is obtained by removing the function of setting the transport speeds of the first transport conveyor 31 and the second transport conveyor 32 from the reflow furnace according to the present invention and the hot air adjusting plate 20. .
  • substrate dimension has changed thickness, the thickness of the 1st printed circuit board is 1 mm, and the thickness of the 2nd printed circuit board is 5 mm.
  • a solder paste mixed with powder of Sn-3Ag-0.5Cu (melting temperature: 217 to 219 ° C.) was applied to the soldering portion of the printed circuit board.
  • the temperature of the preheating zone is set to 150 to 180 ° C. at the operation unit 80, and the temperature of the main heating zone is set to 220 ° C. or higher (peak temperature is 230 to 250 ° C.) Set.
  • the operation unit 80 was set to heat the printed circuit board in the preheating zone for 60 to 100 seconds and in the main heating zone for 30 to 60 seconds.
  • the thermocouple was made to contact the 1st and 2nd printed circuit board, and the temperature of the printed circuit board was measured.
  • the diameter of the holes of both hot air blowing plates is 4 mm, and 50 holes are formed in a zigzag line in a zigzag position that crosses the traveling direction of the printed circuit board. Then, 10 zigzag rows are arranged in the traveling direction of the printed circuit board, and the total number of holes is 500.
  • the operation unit 80 sets the conveyance speed of the first conveyance conveyor 31 to 0.7 m / min and the conveyance speed of the second conveyance conveyor 32 to 1.0 m / min. Set.
  • the operation speed of both the first conveyor 31 and the second conveyor 32 was set to 1.0 m / min by the operation unit 80.
  • a hot air adjusting plate divided into three parts with respect to the traveling direction of the printed circuit board was used as the hot air blowing heater.
  • the hole of the hot air blowing plate corresponding to the first printed circuit board is aligned with the hole of the hot air blowing plate, the hole of the hot air blowing plate is completely opened, and the other hot air adjusting plate is moved.
  • the hole of the hot air blowing plate corresponding to this hot air adjusting plate is made small.
  • FIG. 9 is an explanatory view showing a temperature profile example of the reflow furnace according to the present invention in which the heating temperature and the conveyance speed are set as described above.
  • the vertical axis represents the temperature of the printed circuit board
  • the horizontal axis represents the elapsed time (transport time) after the printed circuit board is placed in the reflow furnace.
  • the first printed circuit board transported by the first transport conveyor 31 has the characteristics of the temperature profile L1. That is, the first printed circuit board reaches 150 ° C. to 180 ° C., which is the preset temperature of the preheating zone, when the conveyance time is about 90 (sec) to about 175 (sec).
  • the second printed circuit board reaches 220 ° C., which is the set temperature of the main heating zone, when the transport time is about 205 (sec) to about 255 (sec).
  • the second printed circuit board transported by the second transport conveyor 32 has the characteristics of the temperature profile L2. That is, the second printed circuit board reaches 150 ° C. to 180 ° C., which is the preset temperature of the preheating zone, when the conveyance time is about 180 (sec) to about 260 (sec).
  • the first printed circuit board reaches 220 ° C. or higher, which is the set temperature of the main heating zone, when the conveyance time is about 320 (sec) to about 365 (sec).
  • Both the first printed circuit board and the second printed circuit board soldered in this reflow furnace are sufficiently wetted with solder, there is no soldering failure, and electronic components in other soldered parts are not It was not burnt or discolored.
  • the reflow furnace reserves both the first printed circuit board transported by the first transport conveyor 31 and the second printed circuit board transported by the second transport conveyor 32 as a spare.
  • heating can be performed at a set temperature of 150 to 180 ° C. for a set time of 60 to 100 seconds.
  • heating can be performed at a set temperature of 220 ° C. or more for a set time of 30 to 60 seconds.
  • FIG. 10 is an explanatory diagram showing a temperature profile example of a reflow furnace of a comparative example in which the heating temperature and the conveyance speed are set as described above.
  • the vertical axis represents the temperature of the printed circuit board
  • the horizontal axis represents the elapsed time (transport time) after the printed circuit board is placed in the reflow furnace.
  • the first printed circuit board conveyed by the first conveyance conveyor 31 has a characteristic of a temperature profile L3. That is, the first printed circuit board reaches 150 ° C. to 180 ° C., which is the preset temperature of the preheating zone, when the conveyance time is about 90 (sec) to about 175 (sec). In addition, the first printed circuit board reaches 220 ° C., which is the set temperature of the main heating zone, when the conveyance time is about 205 (sec) to about 255 (sec) (the temperature profile L3 is the temperature described above). It is substantially the same as the profile L1.)
  • the second printed circuit board conveyed by the second conveyance conveyor 32 has the characteristic of the temperature profile L4. That is, the second printed circuit board reaches 150 ° C. to 180 ° C., which is the preset temperature of the preheating zone, when the conveyance time is about 150 (sec) to about 190 (sec). Further, the second printed circuit board cannot reach 220 ° C. or higher which is the set temperature of the main heating zone.
  • the first printed circuit board soldered in the reflow furnace can be soldered without defects because the temperature profile L3 is high as described above.
  • the main heating is performed. Since it did not reach 220 ° C. in the zone, the solder was not melted and soldering could not be performed.
  • an appropriate temperature profile could be given to the first printed board, but an appropriate temperature profile could not be given to the second printed board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

Suitable temperature profiles are reliably applied to a plurality of different kinds of printed boards, respectively. A furnace (0) having a heater (1), and a printed board transfer path (30) arranged over above the heater (1) in the longitudinal direction of the furnace (0) inside the furnace (0) are provided.  The transfer path (30) is composed of a first transfer conveyer (31) and a second transfer conveyer (32).  The first transfer conveyer (31) is composed of a chain (33) and a chain (34), and the second transfer conveyer (32) is composed of a chain (35) and a chain (36).  The printed board transfer speed of the first transfer conveyer (31) and the printed board transfer speed of the second transfer conveyer (32) are differently set.  Thus, the suitable temperature profiles are reliably applied to the different kinds of printed boards, respectively.

Description

リフロー炉Reflow furnace
 本発明は、ソルダペースト、はんだボール及びはんだバンプ等のはんだ材を溶融させてはんだ付けを行うリフロー炉に関する。 The present invention relates to a reflow furnace that performs soldering by melting solder materials such as solder paste, solder balls, and solder bumps.
 一般に、はんだ材を溶融させてプリント基板や電子部品等(以下、本明細書では「プリント基板」と総称する)のはんだ付けを行う場合、リフロー炉で行うことが多い。リフロー炉とは、トンネル状のマッフル内が予備加熱ゾーン、本加熱ゾーン及び冷却ゾーンで構成され、予備加熱ゾーン及び本加熱ゾーンにはヒータが設置され、冷却ゾーンには冷却機が設置される。はんだ付けが行われるプリント基板は、搬送路によって搬送される。この搬送路は、ヒータの上方に設けられ、リフロー炉の炉体の長手方向へ架け渡される搬送コンベヤからなる。 Generally, when a solder material is melted and soldering a printed circuit board, an electronic component or the like (hereinafter collectively referred to as “printed circuit board” in this specification), it is often performed in a reflow furnace. In the reflow furnace, a tunnel-like muffle is composed of a preheating zone, a main heating zone, and a cooling zone. A heater is installed in the preheating zone and the main heating zone, and a cooler is installed in the cooling zone. A printed circuit board on which soldering is performed is conveyed by a conveyance path. This conveyance path is provided above the heater, and is composed of a conveyance conveyor that extends over the longitudinal direction of the furnace body of the reflow furnace.
 従来のリフロー炉は、搬送路が一つであったが、生産性を向上するために二つの搬送路を有するリフロー炉が提案されている。例えば、特許文献1には、炉体の幅方向に固定配置されたセンターコンベヤの両側に、炉体幅方向へ設置位置が可変の二つのサイドコンベヤを配置して同一種類のプリント基板を同時に搬送する発明が開示されている。 Conventional reflow furnaces have only one transfer path, but in order to improve productivity, reflow furnaces having two transfer paths have been proposed. For example, in Patent Document 1, two side conveyors whose installation positions are variable in the width direction of the furnace body are arranged on both sides of the center conveyor fixedly arranged in the width direction of the furnace body, and the same type of printed circuit boards are conveyed simultaneously. The invention is disclosed.
 また、特許文献2には、炉体幅方向に設置位置が可変の一つのブラケットの両側に、炉体幅方向へ設置位置が可変の二つのブラケットを配置し、さらに二つのブラケットの移動速度を可変とすることにより、異なる種類のプリント基板それぞれに適した温度プロファイルを与える発明が開示されている。 Further, in Patent Document 2, two brackets whose installation positions are variable in the furnace body width direction are arranged on both sides of one bracket whose installation position is variable in the furnace body width direction, and the moving speed of the two brackets is further increased. An invention is disclosed in which a temperature profile suitable for each of different types of printed circuit boards is provided by making it variable.
 さらに、特許文献3には、炉体の幅方向に固定配置された固定レールの一方の側に、炉体幅方向へ設置位置が可変の第1の可動レール及び第2の可動レールを配置し、搬送可能なプリント基板の幅を拡大することによりプリント基板の搬送効率を高める発明が開示されている。 Further, in Patent Document 3, the first movable rail and the second movable rail whose installation positions are variable in the furnace body width direction are arranged on one side of the fixed rail fixedly arranged in the furnace body width direction. An invention has been disclosed in which the width of a printed circuit board that can be conveyed is increased to increase the efficiency of conveying the printed circuit board.
 一方、リフロー炉に用いるヒータには、一般に、赤外線型ヒータと熱風吹き出しヒータとがある。赤外線型ヒータは、赤外線がプリント基板や電子機器の内部まで浸透して、はんだ付け部に塗布されたソルダペーストを溶融させるが、赤外線は直進するために、電子部品の影となるはんだ付け部や隙間となるはんだ付け部を充分に加熱できないという問題がある。 On the other hand, the heater used for the reflow furnace generally includes an infrared heater and a hot air blowing heater. Infrared type heaters penetrate the inside of printed circuit boards and electronic equipment and melt the solder paste applied to the soldering part, but since the infrared rays go straight, There is a problem that the soldered portion that becomes the gap cannot be heated sufficiently.
 これに対し、熱風吹き出しヒータは、マッフル内で熱風が対流するため、熱風が電子部品の影となるところや狭い隙間にも侵入することから、赤外線型ヒータに比べてプリント基板全体を均一に加熱することができるという特長を有しており、今日では多くのリフロー炉に採用されている。 On the other hand, the hot air blowing heater convects hot air inside the muffle, so the hot air enters the shadows of electronic components and narrow gaps, so the entire printed circuit board is heated more uniformly than the infrared heater. It has the feature that it can be used, and is used in many reflow furnaces today.
 このリフロー炉に設置される熱風吹き出しヒータには、広い面積の吹き出し口から熱風を吹き出すものと、多数の穴から熱風を吹き出すものとがある。広い面積の吹き出し口から熱風を吹き出す熱風吹き出しヒータは、熱風の流速が遅いため、プリント基板に当たったときに加熱効率があまりよくない。 There are two types of hot air blowing heaters installed in this reflow furnace: one that blows hot air from a wide area blowing port and one that blows hot air from many holes. A hot air blowing heater that blows out hot air from a large area blowing port has a low flow rate of hot air, so that the heating efficiency is not so good when it hits a printed circuit board.
 これに対し、多数の穴から熱風を吹き出す熱風吹き出しヒータは、熱風の風速が速く、また、熱風が表面実装部品の裏側まで侵入するため、効率よく加熱できる。そのため、リフロー炉に用いられる熱風を吹き出しヒータとしては、多数の穴を有するものが多い。以後に説明するヒータは、断りがないかぎり多数の穴を有する熱風吹き出しヒータである。 On the other hand, the hot air blowing heater that blows hot air from a large number of holes can heat the hot air efficiently because the hot air speed is high and the hot air penetrates to the back side of the surface mount component. For this reason, hot air blowers used in reflow furnaces often have many holes. The heater described below is a hot air blowing heater having a large number of holes unless otherwise specified.
 リフロー炉では、プリント基板を予備加熱、本加熱の順序で加熱する。この予備加熱では、温度の低い熱風で加熱することにより、プリント基板をゆっくりと加熱してプリント基板を熱に慣らすとともに、ソルダペースト中の溶剤を揮散させる。しかしながら、この予備加熱時に高温で大量の熱風で加熱すると、プリント基板がヒートショックで変形したり、電子部品が吹き飛ばされたりする。そのためリフロー炉での予備加熱は温度が低く本加熱よりも少ない熱風で加熱することが好ましい。 In the reflow furnace, the printed circuit board is heated in the order of preheating and main heating. In this preheating, the printed board is heated slowly with hot air at a low temperature to acclimate the printed board to heat, and the solvent in the solder paste is volatilized. However, if the preheating is performed with a large amount of hot air at a high temperature, the printed circuit board may be deformed by a heat shock, or electronic components may be blown away. Therefore, preheating in the reflow furnace is preferably performed with hot air having a low temperature and less than the main heating.
 プリント基板は、予備加熱で熱に慣れ、ソルダペースト中の溶剤が揮散して、電子部品がある程度強固に固着した後、リフロー炉の本加熱で加熱される。この本加熱では、高温の熱風を吹き付けてソルダペースト中のはんだ紛を溶融させることによりはんだ付けを行う。この本加熱でプリント基板に吹き付ける熱風量は、予備加熱での熱風量よりも多いほうが昇温を早くすることができる。本加熱時、高温での加熱時間が長くなるとプリント基板や電子部品を熱損傷させるため、短時間で加熱する。 The printed circuit board gets used to the heat by preheating, the solvent in the solder paste is volatilized, and the electronic components are fixed to some extent firmly, and then heated by the main heating in the reflow furnace. In this main heating, soldering is performed by blowing hot hot air to melt the solder powder in the solder paste. When the amount of hot air blown to the printed circuit board by this main heating is larger than the amount of hot air by preheating, the temperature rise can be accelerated. During the main heating, if the heating time at a high temperature becomes long, the printed circuit board and the electronic component are thermally damaged, and thus heating is performed in a short time.
 一般に、リフロー炉は、予備加熱ゾーン及び本加熱ゾーンの上下部に多数の熱風吹き出しヒータが設置される。例えば、予備加熱ゾーンが5ゾーンであれば上下に10個の熱風吹き出しヒータが設置され、本加熱ゾーンが3ゾーンであれば上下に6個の熱風吹き出しヒータが設置されるため、一つのリフロー炉では上下16個の熱風吹き出しヒータを設置される。 Generally, in a reflow furnace, a large number of hot air blowing heaters are installed above and below the preheating zone and the main heating zone. For example, if the preheating zone is 5 zones, 10 hot air blowing heaters are installed above and below, and if the heating zone is 3 zones, 6 hot air blowing heaters are installed above and below, so one reflow furnace Then, upper and lower 16 hot air blowing heaters are installed.
 予備加熱ゾーン及び本加熱ゾーンでは、それぞれの熱風吹き出しヒータから吹き出される熱風の流速をコントロールされて、プリント基板に適した温度プロファイルにする。この熱風の流速をコントロールするには、モータの回転速度を変えることにより行う。リフロー炉に用いられるモータとしては、回転速度をコントロールしやすいインバータモータが多い。 In the preheating zone and the main heating zone, the flow rate of the hot air blown from each hot air blowing heater is controlled so that the temperature profile is suitable for the printed circuit board. The flow rate of the hot air is controlled by changing the rotational speed of the motor. As a motor used in a reflow furnace, there are many inverter motors that can easily control the rotation speed.
 ところで、単に予備加熱及び本加熱における熱風の速度を制御してプリント基板全体を均一加熱するだけでは、はんだ付け不良や電子部品の熱損傷をなくすことができない。つまり、プリント基板には、電子部品が集中して搭載されるものである高密度実装部分や熱容量の大きいパワートランジスタ、トランス等が搭載されることがあり、これらのはんだ付け部は、集中的に大量の熱が必要となる。また、一枚のプリント基板には大量の熱を必要とするはんだ付け部と、大量の熱を吹き付けると熱損傷や機能劣化を起こす弱耐熱性の電子部品が混載されることがある。このような混載プリント基板に対して、単にプリント基板全体を均一加熱しただけでは、はんだ付け不良や電子部品を熱損傷させることになる。 By the way, simply controlling the speed of hot air in preheating and main heating to uniformly heat the entire printed circuit board cannot eliminate poor soldering and thermal damage to electronic components. In other words, the printed circuit board may be mounted with high-density mounting parts where electronic components are concentrated and power transistors with high heat capacity, transformers, etc. A lot of heat is needed. In addition, a single printed circuit board may include a soldering portion that requires a large amount of heat and a weak heat-resistant electronic component that causes thermal damage or functional deterioration when a large amount of heat is sprayed. If such a mixed printed circuit board is simply heated uniformly over the entire printed circuit board, defective soldering and electronic components will be thermally damaged.
 例えば、高密度実装部分と弱耐熱性電子部品とが混載されたプリント基板に対してプリント基板全体を均一加熱しても、大量の熱を必要とする高密度実装部分に対しては充分な加熱ができず、ソルダペーストが完全に溶融しなかったり、ソルダペーストが溶融してもはんだ付け部の温度が低いため、溶融したはんだが完全に濡れ広がらなかったりする。そこで、高密度実装部分を充分に加熱しようとすると、弱耐熱性の電子部品がオーバーヒートとなって熱損傷や機能劣化してしまう。 For example, even if the entire printed circuit board is uniformly heated for a printed circuit board in which high-density mounting parts and weak heat-resistant electronic components are mixedly mounted, sufficient heating is required for high-density mounting parts that require a large amount of heat. The solder paste cannot be completely melted, or even if the solder paste is melted, the temperature of the soldering portion is low, so that the melted solder is not completely wetted and spread. Therefore, if the high-density mounting part is sufficiently heated, the weak heat-resistant electronic component is overheated, resulting in thermal damage and functional deterioration.
 このように、大量の熱を必要とするはんだ付け部と弱耐熱性の電子部品とを混載したプリント基板をソルダペーストではんだ付けする場合、熱風吹き出しヒータは、大量の熱を必要とするはんだ付け部が通過する部分の穴は大きくしたり、穴の数を多くしたりし、他方、弱耐熱性の電子部品が通過する部分の穴は小さくしたり少なくしたりする手段がとられていた(特許文献4及び5)。また、別の手段として、弱耐熱性の電子部品が通過する部分の穴を塞ぐことも行われていた(特許文献6乃至8)。 In this way, when soldering a printed circuit board in which a soldered part that requires a large amount of heat and a weak heat-resistant electronic component are mounted with solder paste, the hot air blowing heater is soldered that requires a large amount of heat. The part where the part passes is made larger or the number of holes is increased, and on the other hand, the part where the weak heat-resistant electronic part passes is made smaller or less ( Patent Documents 4 and 5). Further, as another means, a hole where a weak heat-resistant electronic component passes has been closed (Patent Documents 6 to 8).
実公平3-44375号公報Japanese Utility Model Publication No. 3-44375 特開平10-163623号公報JP 10-163623 A 特開2005-59030号公報JP 2005-59030 A 特開平10-284831号公報Japanese Patent Laid-Open No. 10-284831 特開2002-43733号公報JP 2002-43733 A 特開平11-307927号公報Japanese Patent Laid-Open No. 11-307927 特開2000-124593号公報JP 2000-124593 A 特開2001-144428号公報JP 2001-144428 A
 特許文献1乃至3により開示された発明によっても、二つの搬送路それぞれの搬送速度を大幅に異ならせることは難しい。特に、特許文献2により開示された発明では二つの搬送路が炉体幅方向に設置位置が可変の一のブラケットを共用することとなるため、二つの搬送路を流されるプリント基板の温度プロファイルが大きく相違する場合には対応できない。 Even with the inventions disclosed in Patent Documents 1 to 3, it is difficult to greatly vary the conveyance speeds of the two conveyance paths. In particular, in the invention disclosed in Patent Document 2, since the two conveyance paths share one bracket whose installation position is variable in the furnace body width direction, the temperature profile of the printed circuit board flowing through the two conveyance paths is It is not possible to deal with a large difference.
 また、特許文献4乃至8により開示された発明では、大量の熱を必要とするはんだ付け部と弱耐熱性の電子部品とを混載したプリント基板をソルダペーストではんだ付けする場合に、高密度実装部分はプリント基板の片側、両側、或いは中央に偏っていることが多いため、このようなプリント基板に対して、単に穴の大きさや穴の数を変えただけでは高密度実装部分を効率よく加熱することはできなかった。その結果、従来の熱風吹き出しヒータでは、高密度実装部分がはんだ付け不良になったり、その他の部分が熱損傷したりすることがあった。このように、特許文献4乃至8により開示された発明では、プリント基板に適した温度プロファイルを確実に与えることは難しい。このため、仮に特許文献4乃至8により開示された発明を流用しても、二つの搬送路を搬送される異なる種類のプリント基板それぞれに適した温度プロファイルを与えることは困難である。 In the inventions disclosed in Patent Documents 4 to 8, when a printed circuit board in which a soldering portion that requires a large amount of heat and a weak heat-resistant electronic component are mixed is soldered with a solder paste, high-density mounting is performed. Since the part is often biased to one side, both sides, or the center of the printed circuit board, the high-density mounting part can be efficiently heated by simply changing the hole size or number of holes for such a printed circuit board. I couldn't. As a result, in the conventional hot air blowing heater, the high-density mounting portion may be poorly soldered or the other portion may be thermally damaged. As described above, in the inventions disclosed in Patent Documents 4 to 8, it is difficult to reliably provide a temperature profile suitable for the printed circuit board. For this reason, even if the inventions disclosed in Patent Documents 4 to 8 are diverted, it is difficult to provide temperature profiles suitable for different types of printed circuit boards that are transported through the two transport paths.
 本発明の目的は、異なる種類の複数種のプリント基板それぞれに適した温度プロファイルを確実に与えることができるリフロー炉を提供することである。 An object of the present invention is to provide a reflow furnace that can reliably provide a temperature profile suitable for each of a plurality of types of printed circuit boards of different types.
 本発明者は、上記課題を解決するために鋭意検討を重ねた結果、
(a)第1の搬送コンベヤ及び第2の搬送コンベヤを備えるリフロー炉では、第1の搬送コンベヤを、第1のレール及び第2のレールから構成するとともに、第2の搬送コンベヤを、第3のレール及び第4のレールから構成し、第1の搬送コンベヤによるプリント基板の搬送速度と、第2のコンベヤによるプリント基板の搬送速度とを異なる速度に設定可能とすることにより、異なる種類の複数種のプリント基板それぞれに適した温度プロファイルを確実に与えることができるようになること、及び
(b)リフロー炉の熱風吹き出しヒータにおいて、一方の板に穿設された穴の大きさを無段階的に調整するには、一方の板の穴と同一穴が穿設された他方の板を一方の板に、それぞれの穴が一致するようにして重ね合わせ、他方の板をずらすと、一方の板の穴が無段階的に調整でき、これにより、異なる種類の複数種のプリント基板それぞれに適した温度プロファイルをさらに確実に与えることができるようになることを知見して、本発明を完成させた。
As a result of intensive studies to solve the above problems, the present inventor,
(A) In a reflow furnace equipped with a first transport conveyor and a second transport conveyor, the first transport conveyor is composed of a first rail and a second rail, and the second transport conveyor is a third And the fourth rail, the printed board carrying speed by the first conveyor and the printed board carrying speed by the second conveyor can be set to different speeds, so that a plurality of different types can be set. It is possible to reliably provide a temperature profile suitable for each kind of printed circuit board, and (b) in the hot air blowing heater of the reflow furnace, the size of the hole drilled in one plate is stepless. To adjust to the other plate, the other plate in which the same hole as that of one plate is drilled is overlapped with one plate so that each hole matches, and the other plate is shifted. Knowing that the hole in one plate can be adjusted steplessly, and this makes it possible to more reliably provide a temperature profile suitable for each of multiple types of printed circuit boards. Completed.
 本発明は、ヒータを有する炉体と、この炉体の内部であってヒータの上方に炉体の長手方向へ架け渡されるプリント基板の搬送路とを備えるリフロー炉であって、搬送路が、炉体の幅方向へ並設される、第1の搬送コンベヤと、この第1の搬送コンベヤとは異なる第2の搬送コンベヤとからなり、第1の搬送コンベヤが、炉体の幅方向へ並設されてプリント基板を搬送するための第1のレール及び第2のレールからなるとともに、第2の搬送コンベヤが、炉体の幅方向へ並設されてプリント基板を搬送するための第3のレール及び第4のレールからなるとともに、第1の搬送コンベヤによるプリント基板の搬送速度と、第2のコンベヤによるプリント基板の搬送速度とを異なる速度に設定可能であることを特徴とするリフロー炉である。この本発明により、異なる種類の複数種のプリント基板それぞれに適した温度プロファイルを確実に与えることができるようになる。 The present invention is a reflow furnace comprising a furnace body having a heater, and a printed circuit board conveyance path that extends in the longitudinal direction of the furnace body inside the furnace body and above the heater, wherein the conveyance path is: It consists of a first transfer conveyor arranged in parallel in the width direction of the furnace body and a second transfer conveyor different from the first transfer conveyor, and the first transfer conveyor is aligned in the width direction of the furnace body. A first rail for transporting the printed circuit board and a second rail, and a second transport conveyor arranged in parallel in the width direction of the furnace body for transporting the printed circuit board. A reflow furnace comprising a rail and a fourth rail, wherein the printed board conveyance speed by the first conveyor and the printed board conveyance speed by the second conveyor can be set to different speeds. is there. According to the present invention, it is possible to reliably provide a temperature profile suitable for each of a plurality of types of printed circuit boards of different types.
 この本発明に係るリフロー炉では、第1のレール及び第2のレールのうちの少なくとも一方の設置位置が、炉体の幅方向に可変であるとともに、第3のレール及び第4のレールのうちの少なくとも一方の設置位置が、炉体の幅方向に可変であることが望ましい。 In the reflow furnace according to the present invention, the installation position of at least one of the first rail and the second rail is variable in the width direction of the furnace body, and among the third rail and the fourth rail. It is desirable that at least one of the installation positions is variable in the width direction of the furnace body.
 これらの本発明に係るリフロー炉では、ヒータが、熱風吹き出し板に多数の穴が穿設され、この穴から熱風を吹き出すことによってプリント基板を加熱するヒータであって、熱風吹き出し板に穿設された穴と同一箇所に熱風吹き出し板の穴と略同一の穴が穿設された熱風調整板を、熱風吹き出し板に穿設された穴と熱風調整板に穿設された穴とが一致するようにして、熱風吹き出し板に密着させるとともに、熱風調整板を前記熱風吹き出し板に沿って移動させることにより熱風吹き出し板の穴の開口面積を調整できることが望ましい。これにより、異なる種類の複数種のプリント基板それぞれに適した温度プロファイルをさらに確実に与えることができるようになる。 In these reflow furnaces according to the present invention, the heater is a heater in which a large number of holes are formed in the hot air blowing plate, and the printed circuit board is heated by blowing hot air from the holes, and the heater is provided in the hot air blowing plate. The hot air adjusting plate in which the hole substantially the same as the hole of the hot air blowing plate is drilled in the same place as the hole, so that the hole drilled in the hot air blowing plate and the hole drilled in the hot air adjusting plate match It is desirable that the opening area of the hole of the hot air blowing plate can be adjusted by closely contacting the hot air blowing plate and moving the hot air adjusting plate along the hot air blowing plate. As a result, it is possible to more reliably provide temperature profiles suitable for different types of printed circuit boards.
 この場合に、熱風調整板は、複数の構成部材からなり、複数の構成部材それぞれが独自に前記熱風吹き出し板に対して移動可能であることが望ましい。熱風調整板は、熱風吹き出しヒータの熱風吹き出し板を覆うものであり、1枚でもよいが、複数枚に分割して、それぞれが独自に移動できるようにしてもよい。熱風調整板が1枚のものはゾーン毎の熱風の調整を行うのに適し、複数枚に分割したものは大量の熱を必要とするはんだ付け部と弱耐熱性の電子部品が混載されたプリント基板の加熱に適する。 In this case, it is desirable that the hot air adjusting plate is composed of a plurality of components, and each of the plurality of components is independently movable with respect to the hot air blowing plate. The hot air adjusting plate covers the hot air blowing plate of the hot air blowing heater and may be one sheet, but may be divided into a plurality of sheets so that each can move independently. A single hot air adjustment plate is suitable for adjusting the hot air for each zone, and the one divided into multiple sheets is a print in which soldered parts that require a large amount of heat and weak heat-resistant electronic components are mixed. Suitable for substrate heating.
 また、熱風吹き出し板の穴に吹き出しノズルが取り付けられていることが望ましい。本発明に使用する熱風吹き出し板は、単に穴が穿設されただけのものでもよいが、穴に吹き出しノズルを取り付けておくと、熱風の方向性が良好となり、プリント基板を効率よく加熱できる。吹き出しノズルとしては、一つの穴に一本の吹き出しノズルを取り付けてもよいし、あるいは多数の穴に板状物を取り付け、この板状物に穴と連通する噴出口を穿設してもよい。板状の吹き出しノズルは、長い直線状、短い直線状、蛇行状、ジグザグ状等の如何なる板状のものでも採用できる。 Also, it is desirable that a blowing nozzle is installed in the hole of the hot air blowing plate. The hot air blowing plate used in the present invention may be simply a hole having a hole, but if a blowing nozzle is attached to the hole, the direction of the hot air becomes good and the printed circuit board can be efficiently heated. As the blowing nozzle, one blowing nozzle may be attached to one hole, or a plate-like object may be attached to a large number of holes, and an ejection port communicating with the hole may be formed in this plate-like object. . The plate-like blowing nozzle can be any plate shape such as a long straight shape, a short straight shape, a meandering shape, a zigzag shape, or the like.
 また吹き出し板の穴の近傍に熱風吸い込み口を形成しておくと、プリント基板に当たって温度が下がった熱風が、直ぐに熱風吸い込み口から吸い込まれるため、熱風吹き出し板の穴から吹き出す高温となった熱風の吹き出しの妨げとならない。その結果、このような構造の熱風吹き出しヒータを設置したリフロー炉では、炉内で乱流が発生しなくなり、さらに効率のよい加熱が行えるようになる。 Also, if a hot air inlet is formed near the hole in the blower plate, the hot air that has fallen in temperature when it hits the printed circuit board is immediately sucked in from the hot air inlet. Does not interfere with the balloon. As a result, in the reflow furnace in which the hot air blowing heater having such a structure is installed, turbulent flow does not occur in the furnace, and more efficient heating can be performed.
 リフロー炉の稼働時、熱風は先ず熱風調整板の穴を通過し、その後、熱風吹き出し板の穴を通過してプリント基板に当たってプリント基板を加熱する。このとき、熱風調整板と熱風吹き出し板が密着していないと、熱風調整板を通過した熱風は熱風吹き出し板の別の穴から流出して、偏った吹き出しとなってしまう。そのため、リフロー炉の稼働時には、熱風調整板と熱風吹き出し板とは密着していなければならず、また熱風吹き出し板の穴の開口面積調整時には熱風調整板は熱風吹き出し板に沿って移動できるようになっていなければならない。 When the reflow furnace is in operation, the hot air first passes through the hole in the hot air adjusting plate, and then passes through the hole in the hot air blowing plate and hits the printed circuit board to heat the printed circuit board. At this time, if the hot air adjusting plate and the hot air blowing plate are not in close contact with each other, the hot air that has passed through the hot air adjusting plate flows out from another hole of the hot air blowing plate and becomes a biased blowing. Therefore, when the reflow furnace is in operation, the hot air adjusting plate and the hot air blowing plate must be in close contact with each other, and the hot air adjusting plate can be moved along the hot air blowing plate when adjusting the opening area of the hole of the hot air blowing plate. It must be.
 熱風調整板は、ネジが取り付けられているとともに、このネジと一致する位置の熱風吹き出し板に長穴が穿設されていることが望ましい。すなわち、熱風調整板と熱風吹き出し板を密着させるとともに熱風調整板が移動できようにするため、熱風調整板にネジを立設し、このネジと一致したところの熱風吹き出し板には熱風調整板の移動方向に長くなった長穴を穿設しておく。このように、熱風調整板のネジを熱風吹き出し板の長穴に通してからネジの頂部からナットを螺入する。熱風調整板の移動時、ナットは強固に締め付けず、熱風調整板が移動できる程度にしておく。その後、熱風調整板を移動させて熱風吹き出し板の穴の開口面積が所定の大きさになったならば、ナットを強固に締め付けて熱風調整板を熱風吹き出し板に密着させる。熱風調整板と熱風吹き出し板を密着させるためには、熱風調整板へ立設するネジは複数本必要である。熱風吹き出し板の上に、さらに他の板状材が設置される場合は、この板状材にも長穴を穿設し、板状材の長穴にネジを通してからナットを螺入する。 It is desirable that the hot air adjusting plate has a screw attached and a long hole is formed in the hot air blowing plate at a position corresponding to the screw. That is, in order to allow the hot air adjusting plate and the hot air blowing plate to adhere to each other and to allow the hot air adjusting plate to move, a screw is erected on the hot air adjusting plate, and the hot air blowing plate that coincides with the screw has a hot air adjusting plate. A long hole that is longer in the moving direction is drilled. Thus, after passing the screw of the hot air adjusting plate through the long hole of the hot air blowing plate, the nut is screwed from the top of the screw. When the hot air adjusting plate is moved, the nut is not firmly tightened, but is set so that the hot air adjusting plate can be moved. After that, when the hot air adjusting plate is moved and the opening area of the hole of the hot air blowing plate becomes a predetermined size, the nut is firmly tightened to bring the hot air adjusting plate into close contact with the hot air blowing plate. In order to bring the hot air adjusting plate and the hot air blowing plate into close contact, a plurality of screws standing on the hot air adjusting plate are required. When another plate-like material is installed on the hot air blowing plate, a long hole is also drilled in this plate-like material, and a nut is screwed into the long hole of the plate-like material through a screw.
 本発明では、熱風調整板を熱風吹き出し板に沿って移動させることにより熱風吹き出し板の穴の開口面積を調整するものであり、熱風吹き出し板が単なる板状のもので穴の開口面積を目視で確認できる場合は問題ない。しかしながら、熱風吹き出し板の穴に熱風ノズルを取り付けたものでは、熱風吹き出し板の穴が見えないため穴の開口面積を確認できない。このような場合は、熱風調整板の移動距離を測ることができるスケールを取り付けておく。このスケールとしては、ネジが突出した部分に長穴を穿設し、長穴の側部に目盛りを付したものがある。そしてこのスケールに対してネジの移動距離を測るようにする。その他、スケールとしては、熱風調整板に棒材を立設し、該棒材該棒材が突出した部分に長穴を穿設して、該長穴に目盛りを付してもよい。 In the present invention, the hot air blowing plate is adjusted along the hot air blowing plate to adjust the opening area of the hot air blowing plate. If it can be confirmed, there is no problem. However, when the hot air nozzle is attached to the hole of the hot air blowing plate, the hole area of the hole cannot be confirmed because the hole of the hot air blowing plate cannot be seen. In such a case, a scale capable of measuring the moving distance of the hot air adjusting plate is attached. As this scale, there is one in which a long hole is formed in a portion where a screw protrudes and a scale is attached to a side portion of the long hole. Then, the moving distance of the screw is measured with respect to this scale. In addition, as the scale, a bar material may be erected on the hot air adjusting plate, a long hole may be formed in a portion where the bar material protrudes, and the long hole may be graduated.
 熱風調整板の移動は、ユーザの手で行ってもよいが、手で行う場合正確な移動距離が出せない。そこで熱風調整板の移動を正確に行うのであれば、ネジの回動が適している。ネジの回動の例としては、熱風調整板にネジを回動自在に取り付け、該ネジを螺入した牝ネジを熱風吹き出しヒータの本体や熱風吹き出し板に固定しておく。そして熱風調整板を移動させるときには、ネジを回動させると、固定された牝ネジに対してネジが移動するとともに、ネジを取り付けた熱風調整板が少しずつ移動する。 The movement of the hot air adjustment plate may be performed by the user's hand, but when it is performed by hand, an accurate moving distance cannot be obtained. Therefore, if the hot air adjusting plate is accurately moved, rotation of the screw is suitable. As an example of the rotation of the screw, the screw is rotatably attached to the hot air adjusting plate, and the female screw into which the screw is screwed is fixed to the main body of the hot air blowing heater or the hot air blowing plate. When the hot air adjusting plate is moved, when the screw is rotated, the screw moves relative to the fixed female screw, and the hot air adjusting plate attached with the screw moves little by little.
 本発明によれば、第1の搬送コンベヤによるプリント基板の搬送速度と、第2のコンベヤによるプリント基板の搬送速度とを異なる速度に設定可能であるので、異なる種類の複数種のプリント基板それぞれに適した温度プロファイルを確実に与えることができるリフロー炉を提供できる。 According to the present invention, the conveyance speed of the printed circuit board by the first conveyance conveyor and the conveyance speed of the printed circuit board by the second conveyor can be set to different speeds. A reflow furnace capable of reliably providing a suitable temperature profile can be provided.
 さらに、本発明によれば、高価なインバータモータを使用することなく、各ゾーンの熱風量を変えることができ、高密度実装部分を効率よく加熱できるとともに、穴の大きさを調整する作業が極めて簡単に行えるというリフロー炉を提供できる。 Furthermore, according to the present invention, the amount of hot air in each zone can be changed without using an expensive inverter motor, the high-density mounting part can be efficiently heated, and the work of adjusting the size of the holes is extremely difficult. A reflow furnace that can be easily performed can be provided.
 従来のリフロー炉は、熱風吹き出し板の穴の調整ができないため、プリント基板に適した穴が穿設された熱風吹き出し板を何種類も用意しておき、その都度、プリント基板に適した熱風吹き出し板に交換したり、あるいはプリント基板に適した穴にするため、その都度、穴を塞いだりするという手間のかかる作業を行わなければならなかったが、本発明のリフロー炉は、熱風調整板を少し移動させるだけで熱風吹き出し板の穴の開口面積を容易に調整できるものである。したがって、温度プロファイルが大きく異なる種類の複数種のプリント基板や、高密度実装部分が偏っているプリント基板に対しては、高い温度プロファイルを与えたい部分が通過するところの熱風吹き出し板の穴を大きく開けて大量の熱風を吹き出させることにより、充分な加熱を行い、その他の大量の熱を必要としない部分に対応する穴は小さく開けてオーバーヒートを防止できる。 Conventional reflow furnaces do not allow adjustment of the holes in the hot air blowing plate, so various types of hot air blowing plates with holes suitable for the printed circuit board are prepared. In order to change to a board or to make a hole suitable for a printed circuit board, it was necessary to perform a laborious process of closing the hole each time. The opening area of the hole of the hot air blowing plate can be easily adjusted by moving it a little. Therefore, for multiple types of printed circuit boards with greatly different temperature profiles, or printed circuit boards with high-density mounting parts, the hot air blowing plate hole where the part where the high temperature profile is to pass passes through is enlarged. By opening and blowing a large amount of hot air, sufficient heating can be performed, and other holes that do not require a large amount of heat can be made small to prevent overheating.
 また、複数ゾーンから成る予備加熱ゾーンでは、プリント基板の進行方向に対して穴の大きさを変えることにより、プリント基板に適した理想的な温度プロファイルが得られ、はんだ付け不良や熱損傷のないはんだ付け部が得られるばかりでなく、小部品や小径ボールの飛散もないという従来のリフロー炉にない優れた効果を奏するものである。 In the preheating zone consisting of multiple zones, the ideal temperature profile suitable for the printed circuit board can be obtained by changing the hole size with respect to the traveling direction of the printed circuit board, and there is no soldering failure or thermal damage. In addition to obtaining a soldered portion, the present invention has an excellent effect not found in conventional reflow furnaces in that there is no scattering of small parts and small-diameter balls.
本発明に係るリフロー炉の炉体の主要部を抽出かつ分解し、一部を簡略化して示す斜視図である。It is a perspective view which extracts and decomposes | disassembles the principal part of the furnace body of the reflow furnace which concerns on this invention, and simplifies and shows a part. 搬送路30の制御系の構成例を示すブロック図である。3 is a block diagram illustrating a configuration example of a control system of a conveyance path 30. FIG. 搬送路30の構成例を示す平面図である。3 is a plan view illustrating a configuration example of a conveyance path 30. FIG. 搬送路30の構成例を示す正面図である。3 is a front view illustrating a configuration example of a conveyance path 30. FIG. 熱風吹き出しヒータ1の構成例を示す正面断面図である。2 is a front sectional view showing a configuration example of a hot air blowing heater 1. FIG. 熱風吹き出しヒータ1の構成例を示す側面断面図である。It is side surface sectional drawing which shows the structural example of the hot air blowing heater. 熱風調整板20及び熱風吹き出し板14の配置例を示す拡大底面図である。It is an enlarged bottom view which shows the example of arrangement | positioning of the hot air adjustment board 20 and the hot air blowing board 14. FIG. 熱風調整板20の構成例を示す底面図である。4 is a bottom view showing a configuration example of a hot air adjusting plate 20. FIG. 本発明に係るリフロー炉の温度プロファイル例を示す説明図である。It is explanatory drawing which shows the temperature profile example of the reflow furnace which concerns on this invention. 比較例のリフロー炉の温度プロファイル例を示す説明図である。It is explanatory drawing which shows the temperature profile example of the reflow furnace of a comparative example.
 以下、本発明を実施するための最良の形態を、添付図面を参照しながら詳細に説明する。 
 図1は、本発明に係るリフロー炉の炉体0の主要部を抽出かつ分解し、一部を簡略化して示す斜視図である。図1に示すように、本発明に係るリフロー炉は、熱風吹き出しヒータ(以下、ヒータ1という)を有する炉体0と搬送路30とを備える。搬送路30は、炉体0の内部であってヒータ1の上方にヒータ1の上面から所定の距離だけ離されて、炉体0の長手方向(図1におけるプリント基板の搬送方向Xと同じ方向)へ向けて架け渡されて、配置される。
The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is a perspective view illustrating a main part of a furnace body 0 of a reflow furnace according to the present invention, which is extracted and disassembled and a part thereof is simplified. As shown in FIG. 1, the reflow furnace according to the present invention includes a furnace body 0 having a hot air blowing heater (hereinafter referred to as heater 1) and a conveyance path 30. The conveyance path 30 is located inside the furnace body 0 and above the heater 1 by a predetermined distance from the upper surface of the heater 1, so that the longitudinal direction of the furnace body 0 (the same direction as the conveyance direction X of the printed board in FIG. 1). ) Is placed and arranged.
 搬送路30は、第1の搬送部の一例である第1の搬送コンベヤ31と、第2の搬送部の一例である第2の搬送コンベヤ32とにより構成される。図1に示すように、第1の搬送コンベヤ31及び第2の搬送コンベヤ32は、炉体0の幅方向(図1におけるプリント基板の搬送方向Xと水平面内で直交する方向)へ並設される。本発明では、第1の搬送コンベヤ31と、第2の搬送コンベヤ32とは互いに独立したものである。 The conveyance path 30 includes a first conveyance conveyor 31 that is an example of a first conveyance unit, and a second conveyance conveyor 32 that is an example of a second conveyance unit. As shown in FIG. 1, the 1st conveyance conveyor 31 and the 2nd conveyance conveyor 32 are arranged in parallel in the width direction of the furnace body 0 (direction orthogonal to the conveyance direction X of the printed circuit board in FIG. 1 in a horizontal surface). The In the present invention, the first conveyor 31 and the second conveyor 32 are independent of each other.
 第1の搬送コンベヤ31は、第1のレールの一例である第1のチェーン(以下、チェーン33という)及び第2のレールの一例である第2のチェーン(以下、チェーン34という)とにより構成される。チェーン33及びチェーン34は、炉体0の幅方向へ並設され、互いに同じ速度でプリント基板の搬送方向Xへ移動することによりプリント基板を搬送する。チェーン33及びチェーン34は、周知慣用の第1の搬送駆動機構(例えば、チェーン、スプロケットホイール、駆動モータ及び制御装置等からなるエンドレスの駆動機構)によりエンドレスに移動することができるように構成されていればよく、特定の構造の駆動機構を用いる必要はない。 The first transport conveyor 31 includes a first chain (hereinafter referred to as a chain 33) that is an example of a first rail and a second chain (hereinafter referred to as a chain 34) that is an example of a second rail. Is done. The chain 33 and the chain 34 are juxtaposed in the width direction of the furnace body 0, and transport the printed circuit board by moving in the transport direction X of the printed circuit board at the same speed. The chain 33 and the chain 34 are configured to be able to move endlessly by a well-known and commonly used first transport drive mechanism (for example, an endless drive mechanism including a chain, a sprocket wheel, a drive motor, a control device, and the like). There is no need to use a drive mechanism having a specific structure.
 図1で示した両向き矢印により示すように、チェーン34は、第1の移動機構により、その設置位置を、炉体0の幅方向へ変更することが可能に構成されている。これにより、寸法が異なる多種のプリント基板を第1の搬送コンベヤ31により搬送することが可能になる。 As shown by the double-headed arrow shown in FIG. 1, the chain 34 is configured to be able to change its installation position in the width direction of the furnace body 0 by the first moving mechanism. As a result, various printed circuit boards having different dimensions can be transported by the first transport conveyor 31.
 一方、第2の搬送コンベヤ32は、第3のレールの一例である第3のチェーン(以下、チェーン35という)及び第4のレールの一例である第4のチェーン(以下、チェーン36という)とにより構成される。チェーン35及びチェーン36は、炉体0の幅方向へ並設され、互いに同じ速度でプリント基板の搬送方向Xへ移動することによりプリント基板を搬送する。チェーン35及びチェーン36も、周知慣用の第1の搬送駆動機構から独立した第2の搬送駆動機構(例えばチェーン、スプロケットホイール、駆動モータ及び制御装置等からなるエンドレスの駆動機構)によりエンドレスに移動することができるように構成されていればよく、特定の構造の駆動機構を用いる必要はない。 On the other hand, the second conveyor 32 includes a third chain (hereinafter referred to as a chain 35) which is an example of a third rail and a fourth chain (hereinafter referred to as a chain 36) which is an example of a fourth rail. Consists of. The chain 35 and the chain 36 are juxtaposed in the width direction of the furnace body 0, and transport the printed circuit board by moving in the transport direction X of the printed circuit board at the same speed. The chain 35 and the chain 36 are also moved endlessly by a second transport drive mechanism (for example, an endless drive mechanism including a chain, a sprocket wheel, a drive motor, a control device, and the like) independent of the known first transport drive mechanism. It is only necessary to be configured so that a drive mechanism having a specific structure is not necessary.
 図1で示した両向き矢印により示すように、チェーン36は、第2の移動機構により、その設置位置を、炉体0の幅方向へ変更することが可能に構成されている。これにより、寸法が異なる多種のプリント基板を第2の搬送コンベヤ32により搬送することが可能になる。 As shown by the double-headed arrow shown in FIG. 1, the chain 36 is configured to be able to change its installation position in the width direction of the furnace body 0 by the second moving mechanism. As a result, various printed circuit boards having different dimensions can be transported by the second transport conveyor 32.
 図2は、搬送路30の制御系の構成例を示すブロック図である。図2に示すように、搬送路30の制御系は、操作部80及び制御部81で構成される。操作部80は、例えば、タッチパネル式の液晶ディスプレイやキーボード等の入力装置であり、ヒータ1の温度や第1の搬送コンベヤ31,32の幅及び搬送速度を設定するためにユーザによって操作されるものである。操作部80は、ユーザによってヒータ1の温度や第1の搬送コンベヤ31及び第2の搬送コンベヤ32の幅及び搬送速度等が入力されると、ヒータ1の温度や第1の搬送コンベヤ31及び第2の搬送コンベヤ32の幅及び搬送速度等を個別に設定するための設定情報Dを生成して、該生成した設定情報Dを制御部81に出力する。 FIG. 2 is a block diagram illustrating a configuration example of a control system of the conveyance path 30. As shown in FIG. 2, the control system for the transport path 30 includes an operation unit 80 and a control unit 81. The operation unit 80 is an input device such as a touch panel type liquid crystal display or a keyboard, and is operated by a user to set the temperature of the heater 1, the width of the first transfer conveyors 31 and 32, and the transfer speed. It is. When the user inputs the temperature of the heater 1, the widths and the transport speeds of the first transport conveyor 31 and the second transport conveyor 32, etc., the operation unit 80 receives the temperature of the heater 1, the first transport conveyor 31 and the first transport conveyor 31. The setting information D for individually setting the width and the conveying speed of the second conveyor 32 is generated, and the generated setting information D is output to the control unit 81.
 操作部80には制御部81が接続される。制御部81は、操作部80に入力された設定情報Dに基づいて前述の第1及び第2の搬送駆動機構や第1及び第2の移動機構を制御する。 The control unit 81 is connected to the operation unit 80. The control unit 81 controls the first and second transport driving mechanisms and the first and second moving mechanisms described above based on the setting information D input to the operation unit 80.
 第1の搬送駆動機構にはチェーン33,34を駆動するためのモータ(以下、モータM1という)が設けられ、第2の搬送駆動機構にはチェーン35,36を駆動するためのモータ(以下、モータM2という)が設けられ、第1の移動機構にはチェーン34を図1で示した両向き矢印に移動させるためのモータ(以下、モータM3という)が設けられ、第2の移動機構にはチェーン36を図1で示した両向き矢印に移動させるためのモータ(以下、モータM4という)が設けられる。 A motor for driving the chains 33 and 34 (hereinafter referred to as motor M1) is provided in the first transport driving mechanism, and a motor for driving the chains 35 and 36 (hereinafter referred to as motor M1) is provided in the second transport driving mechanism. 1 is provided, the first moving mechanism is provided with a motor (hereinafter referred to as motor M3) for moving the chain 34 in the double-headed arrow shown in FIG. 1, and the second moving mechanism is provided with the second moving mechanism. A motor (hereinafter referred to as motor M4) for moving the chain 36 in the double-headed arrow shown in FIG. 1 is provided.
 制御部81にはモータM1,M2,M3,M4が接続される。制御部81は、設定情報Dに基づいて、駆動情報D1,D2,D3,D4を生成し、該生成した駆動情報D1,D2,D3,D4に基づいてモータM1,M2,M3,M4が回転駆動する。 The control unit 81 is connected to motors M1, M2, M3, and M4. The control unit 81 generates drive information D1, D2, D3, D4 based on the setting information D, and the motors M1, M2, M3, M4 rotate based on the generated drive information D1, D2, D3, D4. To drive.
 例えば、駆動情報D1には、チェーン33,34の駆動速度を0.7m/minで駆動させるようにモータM1を回転駆動させる情報が含まれる。駆動情報D2には、チェーン35,36の駆動速度を1.0m/minで駆動させるようにモータM2を回転駆動させる情報が含まれる。駆動情報D3には、チェーン33とチェーン34との間の距離を第1のプリント基板の幅に合うように、チェーン34を移動させるモータM3を回転駆動させる情報が含まれる。駆動情報D4には、チェーン35とチェーン36との間の距離を第2のプリント基板の幅に合うように、チェーン36を移動させるモータM4を回転駆動させる情報が含まれる。 For example, the drive information D1 includes information for rotationally driving the motor M1 so that the chains 33 and 34 are driven at a driving speed of 0.7 m / min. The drive information D2 includes information for rotationally driving the motor M2 such that the drive speed of the chains 35 and 36 is driven at 1.0 m / min. The drive information D3 includes information for rotationally driving the motor M3 that moves the chain 34 so that the distance between the chain 33 and the chain 34 matches the width of the first printed circuit board. The drive information D4 includes information for rotationally driving the motor M4 that moves the chain 36 so that the distance between the chain 35 and the chain 36 matches the width of the second printed circuit board.
 このように、搬送路30は、制御部81が設定情報Dに基づいてモータM1,M2,M3,M4をそれぞれ制御するので、第1の搬送コンベヤ31によるプリント基板の搬送速度と、第2の搬送コンベヤ32によるプリント基板の搬送速度とを異なる速度に設定でき、第1の搬送コンベヤ31が搬送するプリント基板の幅と、第2の搬送コンベヤ32が搬送するプリント基板の幅とが異なるように設定できる。 Thus, since the control part 81 controls each of the motors M1, M2, M3, and M4 based on the setting information D, the conveyance path 30 is controlled by the first conveyance conveyor 31 and the second conveyance path. The conveyance speed of the printed circuit board by the conveyance conveyor 32 can be set to a different speed so that the width of the printed circuit board conveyed by the first conveyance conveyor 31 and the width of the printed circuit board conveyed by the second conveyance conveyor 32 are different. Can be set.
 図3は、搬送路30の構成例を示す平面図であり、図4は、その正面図である。この図3及び図4では、説明の便宜上、モータM1,M2を省略している。搬送路30は、前述のように、チェーン33,34を有する第1の搬送コンベヤ31と、チェーン35,36を有する第2の搬送コンベヤ32とで構成される。 FIG. 3 is a plan view showing a configuration example of the conveyance path 30, and FIG. 4 is a front view thereof. 3 and 4, the motors M1 and M2 are omitted for convenience of explanation. As described above, the conveyance path 30 includes the first conveyance conveyor 31 having the chains 33 and 34 and the second conveyance conveyor 32 having the chains 35 and 36.
 まず、第1の搬送コンベヤ31及び第2の搬送コンベヤ32が異なる搬送速度でプリント基板を搬送することについて説明する。
 図3及び図4に示すように、チェーン33,34を駆動させる第1の搬送駆動機構は、第1のチェーン用スプロケットホイール(以下、第1のスプロケットホイール37という)、第2のチェーン用スプロケットホイール(以下、第2のスプロケットホイール38という)、モータM1(図示せず)で構成される。第1の搬送駆動機構は、図2で示した操作部80からの設定情報Dに基づき制御部81が駆動情報D1を出力してモータM1を回転駆動することで、プリント基板を所望の搬送速度で搬送する。
First, it will be described that the first transport conveyor 31 and the second transport conveyor 32 transport printed boards at different transport speeds.
As shown in FIGS. 3 and 4, the first transport drive mechanism for driving the chains 33 and 34 includes a first chain sprocket wheel (hereinafter referred to as a first sprocket wheel 37), a second chain sprocket. A wheel (hereinafter referred to as a second sprocket wheel 38) and a motor M1 (not shown) are included. In the first transport drive mechanism, the control unit 81 outputs drive information D1 based on the setting information D from the operation unit 80 shown in FIG. Transport by.
 チェーン33は、第1のスプロケットホイール37によって駆動され、チェーン34は、第2のスプロケットホイール38によって駆動される。第1及び第2のスプロケットホイール37,38にはモータM1に接続され、モータM1の回転駆動によって第1及び第2のスプロケットホイール37,38を同じ速さで回転させると共に、プリント基板が図1に示した搬送方向Xに搬送されるようにチェーン33,34を駆動させる。 The chain 33 is driven by the first sprocket wheel 37, and the chain 34 is driven by the second sprocket wheel 38. The first and second sprocket wheels 37 and 38 are connected to the motor M1, and the first and second sprocket wheels 37 and 38 are rotated at the same speed by the rotational drive of the motor M1, and the printed circuit board is shown in FIG. The chains 33 and 34 are driven so as to be conveyed in the conveying direction X shown in FIG.
 チェーン35,36を駆動させる第2の搬送駆動機構は、第3のチェーン用スプロケットホイール(以下、第3のスプロケットホイール39という)、第4のチェーン用スプロケットホイール(以下、第4のスプロケットホイール40という)、モータM2(図示せず)で構成される。第3の搬送駆動機構は、操作部80からの設定情報Dに基づき制御部81が駆動情報D2を出力してモータM2を回転駆動することで、プリント基板を所望の搬送速度で搬送する。 The second transport drive mechanism for driving the chains 35 and 36 includes a third chain sprocket wheel (hereinafter referred to as a third sprocket wheel 39), a fourth chain sprocket wheel (hereinafter referred to as a fourth sprocket wheel 40). The motor M2 (not shown). In the third transport drive mechanism, the control unit 81 outputs drive information D2 based on the setting information D from the operation unit 80 and rotationally drives the motor M2, thereby transporting the printed circuit board at a desired transport speed.
 チェーン35は、第3のスプロケットホイール39によって駆動され、チェーン36は、第4のスプロケットホイール40によって駆動される。第3及び第4のスプロケットホイール39,40にはモータM2に接続され、モータM2の回転駆動によって第3及び第4のスプロケットホイール39,40を同じ速さで回転させると共に、プリント基板が図1に示した搬送方向Xに搬送されるようにチェーン35,36を駆動させる。 The chain 35 is driven by the third sprocket wheel 39, and the chain 36 is driven by the fourth sprocket wheel 40. The third and fourth sprocket wheels 39, 40 are connected to the motor M2, and the third and fourth sprocket wheels 39, 40 are rotated at the same speed by the rotational drive of the motor M2, and the printed circuit board is shown in FIG. The chains 35 and 36 are driven so as to be conveyed in the conveying direction X shown in FIG.
 このように、第1の搬送コンベヤ31は第1の搬送駆動機構を有すると共に、第2の搬送コンベヤ32は第2の搬送駆動機構を有するため、第1の搬送コンベヤ31によるプリント基板の搬送速度と、第2の搬送コンベヤ32によるプリント基板の搬送速度とを異なる速度に設定可能である。 Thus, since the 1st conveyance conveyor 31 has a 1st conveyance drive mechanism and the 2nd conveyance conveyor 32 has a 2nd conveyance drive mechanism, the conveyance speed of the printed circuit board by the 1st conveyance conveyor 31 is obtained. In addition, the printed board conveyance speed by the second conveyance conveyor 32 can be set to a different speed.
 従って、第1の搬送コンベヤ31により第1の温度プロファイルを有する第1のプリント基板を加熱すると共に、第2の搬送コンベヤ32によりこの第1の温度プロファイルとは異なる第2の温度プロファイルを有する第2のプリント基板を加熱する場合には、第1の搬送コンベヤ31の搬送速度と第2の搬送コンベヤ32の搬送速度を異ならせて適宜設定することにより、第1のプリント基板には第1の温度プロファイルを確実に与えると共に、第2のプリント基板には第2の温度プロファイルを確実に与えることが可能になる。 Accordingly, the first printed circuit board having the first temperature profile is heated by the first transport conveyor 31 and the second transport profile 32 has a second temperature profile different from the first temperature profile. In the case of heating the second printed circuit board, the first printed circuit board has a first speed by appropriately setting the transport speed of the first transport conveyor 31 and the transport speed of the second transport conveyor 32 to be different. It is possible to reliably give the temperature profile and reliably give the second temperature profile to the second printed circuit board.
 次に、第1の搬送コンベヤ31及び第2の搬送コンベヤ32が異なる幅を有するプリント基板を搬送することについて説明する。
 チェーン33には当該チェーン33の搬送方向と平行に第1の固定プレート41が設けられる。チェーン34には当該チェーン34の搬送方向と平行に第1の移動プレート42が設けられる。チェーン35には当該チェーン35の搬送方向と平行に第2の固定プレート43が設けられる。チェーン36には当該チェーン36の搬送方向と平行に第2の移動プレート44が設けられる。また、第2の移動プレート44の外側方向(図3及び図4では右側方向)にはモータ用固定プレート45が設けられる。
Next, it will be described that the first transport conveyor 31 and the second transport conveyor 32 transport printed boards having different widths.
A first fixing plate 41 is provided on the chain 33 in parallel with the conveying direction of the chain 33. The chain 34 is provided with a first moving plate 42 parallel to the transport direction of the chain 34. The chain 35 is provided with a second fixing plate 43 parallel to the transport direction of the chain 35. The chain 36 is provided with a second moving plate 44 in parallel with the transport direction of the chain 36. Further, a motor fixing plate 45 is provided in the outer direction of the second moving plate 44 (the right direction in FIGS. 3 and 4).
 第1の固定プレート41とモータ用固定プレート45との間には第1の移動プレート42及び第2の固定プレート43を介してスライドシャフト51が設けられる。第1の固定プレート41,第2の固定プレート43及びモータ用固定プレート45は、スライドシャフト51を固定し、第1の移動プレート42及び第2の移動プレート44は、スライドシャフト51に沿って摺動する。 A slide shaft 51 is provided between the first fixed plate 41 and the motor fixed plate 45 via a first moving plate 42 and a second fixed plate 43. The first fixing plate 41, the second fixing plate 43, and the motor fixing plate 45 fix the slide shaft 51, and the first moving plate 42 and the second moving plate 44 slide along the slide shaft 51. Move.
 まず、第1の搬送コンベヤ31側の搬送路30について説明する。第1の固定プレート41とモータ用固定プレート45との間には第1の移動プレート42を介して第1のスクリュシャフト52が設けられる。第1のスクリュシャフト52は、ネジ部を有し、このネジ部によって第1の移動プレート42と係合する。第1のスクリュシャフト52は、チェーン33とチェーン34との距離を変更するための第1の幅可変シャフトの回転と共に回転して、第1の移動プレート42を矢印Y1の方向に移動させる。因みに、第1の固定プレート41,第2の固定プレート43、モータ用固定プレート45及び第2の移動プレート44は、第1のスクリュシャフト52に接触しないように貫通されている。 First, the conveyance path 30 on the first conveyance conveyor 31 side will be described. A first screw shaft 52 is provided between the first fixed plate 41 and the motor fixed plate 45 via a first moving plate 42. The first screw shaft 52 has a threaded portion, and engages with the first moving plate 42 by the threaded portion. The first screw shaft 52 rotates together with the rotation of the first variable width shaft for changing the distance between the chain 33 and the chain 34, and moves the first moving plate 42 in the direction of the arrow Y1. Incidentally, the first fixing plate 41, the second fixing plate 43, the motor fixing plate 45 and the second moving plate 44 are penetrated so as not to contact the first screw shaft 52.
 第1のスクリュシャフト52を回転させるためにモータM3が第1の固定プレート41から延設された固定プレート64に設けられる。モータM3にはモータ用プーリ(以下、第1のプーリ61という)が設けられ、モータM3は第1のプーリ61を回転させる。第1のプーリ61の上方にはシャフト用プーリ(以下、第2のプーリ62という)が設けられ、第1のプーリ61と第2のプーリ62には第1の駆動ベルト63が巻き回される。つまり、モータM3の駆動によって第1のプーリ61が回転すると、第1の駆動ベルト63を介して第2のプーリ62も追従して回転する。第2のプーリ62の中心には第1の幅可変シャフト54が設けられる。第1の幅可変シャフト54の先端には第1の固定プレート41を介して前述の第1のスクリュシャフト52が設けられる。 In order to rotate the first screw shaft 52, a motor M3 is provided on a fixed plate 64 extended from the first fixed plate 41. The motor M3 is provided with a motor pulley (hereinafter referred to as a first pulley 61), and the motor M3 rotates the first pulley 61. A shaft pulley (hereinafter referred to as a second pulley 62) is provided above the first pulley 61, and a first drive belt 63 is wound around the first pulley 61 and the second pulley 62. . That is, when the first pulley 61 rotates by driving the motor M3, the second pulley 62 also follows and rotates via the first drive belt 63. A first variable width shaft 54 is provided at the center of the second pulley 62. The first screw shaft 52 is provided at the tip of the first variable width shaft 54 via the first fixed plate 41.
 第1の搬送コンベヤ31が搬送するプリント基板の幅に合わせてチェーン33とチェーン34との間の距離を変更したい場合、まず、ユーザが操作部80でプリント基板の幅に関する情報(例えば、基板幅70mm等)を入力する。すると、操作部80から設定情報Dが制御部81に出力されて、制御部81は、駆動情報D3をモータM3に出力する。制御部81から出力された駆動情報D3に基づいてモータM3が回転駆動して第1のプーリ61が回転すると共に、第1の駆動ベルト63を介して連結された第2のプーリ62が回転する。そして、第2のプーリ62の回転によって第1の幅可変シャフト54及び第1のスクリュシャフト52が所定の数だけ回転する。 When the user wants to change the distance between the chain 33 and the chain 34 in accordance with the width of the printed board conveyed by the first conveyor 31, first, the user uses the operation unit 80 to provide information on the width of the printed board (for example, the board width). 70mm etc.). Then, the setting information D is output from the operation unit 80 to the control unit 81, and the control unit 81 outputs drive information D3 to the motor M3. Based on the drive information D3 output from the controller 81, the motor M3 is rotationally driven to rotate the first pulley 61, and the second pulley 62 connected via the first drive belt 63 is rotated. . The first variable width shaft 54 and the first screw shaft 52 are rotated by a predetermined number by the rotation of the second pulley 62.
 第1のスクリュシャフト52は、前述のようにネジ部を有し、このネジ部が第1の移動プレート42に係合しているので、当該第1のスクリュシャフト52の回転と共に、第1の第1の移動プレート42がスライドシャフト51に沿って矢印Y1の方向に摺動(移動)する。この第1の移動プレート42の移動量は、先にユーザが入力装置に入力したプリント基板の幅に基づくものである。これにより、第1の搬送コンベヤ31が搬送するプリント基板の幅に合わせてチェーン33とチェーン34との間の距離を変更できる。 Since the first screw shaft 52 has a threaded portion as described above and this threaded portion is engaged with the first moving plate 42, the first screw shaft 52 rotates with the first screw shaft 52. The first moving plate 42 slides (moves) along the slide shaft 51 in the direction of the arrow Y1. The amount of movement of the first moving plate 42 is based on the width of the printed circuit board previously input to the input device by the user. Thereby, the distance between the chain 33 and the chain 34 can be changed in accordance with the width of the printed circuit board conveyed by the first conveyor 31.
 次に、第2の搬送コンベヤ32側の搬送路30について説明する。第1の固定プレート41とモータ用固定プレート45との間には第2の移動プレート44を介して第2のスクリュシャフト53とが設けられる。第2のスクリュシャフト53は、ネジ部を有し、このネジ部によって第2の移動プレート44と係合する。第2のスクリュシャフト53は、チェーン35とチェーン36との距離を変更するための第2の幅可変シャフト55の回転と共に回転して、第2の移動プレート44を矢印Y2の方向に移動させる。因みに、第1の固定プレート41,第2の固定プレート43、モータ用固定プレート45及び第2の移動プレート44は、第2のスクリュシャフト53に接触しないように貫通されている。 Next, the conveyance path 30 on the second conveyance conveyor 32 side will be described. A second screw shaft 53 is provided between the first fixed plate 41 and the motor fixed plate 45 via a second moving plate 44. The second screw shaft 53 has a threaded portion, and is engaged with the second moving plate 44 by the threaded portion. The second screw shaft 53 rotates with the rotation of the second variable width shaft 55 for changing the distance between the chain 35 and the chain 36, and moves the second moving plate 44 in the direction of the arrow Y2. Incidentally, the first fixed plate 41, the second fixed plate 43, the motor fixed plate 45 and the second moving plate 44 are penetrated so as not to contact the second screw shaft 53.
 第2のスクリュシャフト53を回転させるためにモータM4がモータ用固定プレート45から延設された固定プレート74に設けられる。モータM4にはモータ用プーリ(以下、第3のプーリ71という)が設けられ、モータM4は第3のプーリ71を回転させる。第3のプーリ71の下方にはシャフト用プーリ(以下、第4のプーリ72という)が設けられ、第3のプーリ71と第4のプーリ72には第2の駆動ベルト73が巻き回される。つまり、モータM4の駆動により第3のプーリ71が回転すると、第4のプーリ72も追従して回転する。第4のプーリ72の中心には第2の幅可変シャフト55が設けられる。第2の幅可変シャフト55の先端にはモータ用固定プレート45を介して前述の第2のスクリュシャフト53が設けられる。 In order to rotate the second screw shaft 53, a motor M4 is provided on a fixing plate 74 extended from the motor fixing plate 45. The motor M4 is provided with a motor pulley (hereinafter referred to as a third pulley 71), and the motor M4 rotates the third pulley 71. A shaft pulley (hereinafter referred to as a fourth pulley 72) is provided below the third pulley 71, and a second drive belt 73 is wound around the third pulley 71 and the fourth pulley 72. . That is, when the third pulley 71 rotates by driving the motor M4, the fourth pulley 72 also follows and rotates. A second variable width shaft 55 is provided at the center of the fourth pulley 72. The above-described second screw shaft 53 is provided at the tip of the second variable width shaft 55 via a motor fixing plate 45.
 第2の搬送コンベヤ32が搬送するプリント基板の幅に合わせてチェーン35とチェーン36との間の距離を変更したい場合、まず、ユーザが操作部80でプリント基板の幅に関する情報を入力する。すると、操作部80から設定情報Dが制御部81に出力されて、制御部81は、駆動情報D4をモータM4に出力する。制御部81から出力された駆動情報D4に基づいてモータM4が回転駆動して第3のプーリ71が回転すると共に、第2の駆動ベルト73を介して連結された第4のプーリ72が回転する。そして、第4のプーリ72の回転によって第2の幅可変シャフト55及び第2のスクリュシャフト53が所定の数だけ回転する。 When the user wishes to change the distance between the chain 35 and the chain 36 in accordance with the width of the printed board transported by the second transport conveyor 32, first, the user inputs information regarding the width of the printed board using the operation unit 80. Then, setting information D is output from the operation unit 80 to the control unit 81, and the control unit 81 outputs drive information D4 to the motor M4. Based on the drive information D4 output from the control unit 81, the motor M4 is rotationally driven to rotate the third pulley 71, and the fourth pulley 72 connected via the second drive belt 73 is rotated. . Then, by the rotation of the fourth pulley 72, the second variable width shaft 55 and the second screw shaft 53 rotate by a predetermined number.
 第2のスクリュシャフト53は、前述のようにネジ部を有し、このネジ部が第2の移動プレート44に係合しているので、当該第2のスクリュシャフト53の回転と共に、第2の移動プレート44がスライドシャフト51に沿って矢印Y2の方向に摺動(移動)する。この第2の移動プレート44の移動量は、先にユーザが入力装置に入力したプリント基板の幅に基づくものである。これにより、第2の搬送コンベヤ32が搬送するプリント基板の幅に合わせてチェーン35とチェーン36との間の距離を変更できる。 Since the second screw shaft 53 has a threaded portion as described above and this threaded portion is engaged with the second moving plate 44, the second screw shaft 53 is rotated along with the rotation of the second screw shaft 53. The moving plate 44 slides (moves) along the slide shaft 51 in the direction of the arrow Y2. The amount of movement of the second moving plate 44 is based on the width of the printed board previously input by the user to the input device. Thereby, the distance between the chain 35 and the chain 36 can be changed according to the width of the printed circuit board conveyed by the second conveyor 32.
 このように、チェーン33とチェーン34との間を変更でき、チェーン35とチェーン36との間の距離を変更できるので、第1の搬送コンベヤ31が搬送するプリント基板の幅と、第2の搬送コンベヤ32が搬送するプリント基板の幅とが異なるように設定できる。 Thus, since the distance between the chain 33 and the chain 34 can be changed and the distance between the chain 35 and the chain 36 can be changed, the width of the printed board conveyed by the first conveyor 31 and the second conveyor The width of the printed circuit board conveyed by the conveyor 32 can be set differently.
 図5は、ヒータ1の構成例を示す正面断面図であり、図6は、その側面断面図である。図5及び図6に示すように、本発明のリフロー炉で用いる熱風吹き出し型のヒータ1は、リフロー炉の炉体0の上下部に設置するため、ヒータ1に上下はないが、図5及び図6で説明するヒータ1は、リフロー炉の炉体0の下部に設置した場合を想定して、図5及び図6で見る通りの上下で説明する。 FIG. 5 is a front sectional view showing a configuration example of the heater 1, and FIG. 6 is a side sectional view thereof. As shown in FIGS. 5 and 6, the hot air blowing type heater 1 used in the reflow furnace of the present invention is installed in the upper and lower parts of the furnace body 0 of the reflow furnace. The heater 1 described in FIG. 6 will be described up and down as seen in FIGS. 5 and 6 assuming that it is installed below the furnace body 0 of the reflow furnace.
 ヒータ1は箱状であり、上下方向に下から、送風室2、加熱室3、熱風室4及び吸い込み室5を有する。送風室2の中央には送風機6が配置される。送風機6は、例えば、シロッコファンが用いられ、外部に設けられたモータ7により駆動する。モータ7は、高価なインバータモータでなく通常の安価なモータである。図5及び図6に示すように、送風室2の両側には隔壁8(一方は図示せず)があり、該隔壁の一端は開口9となっている。それぞれの隔壁の開口は相対向する位置ではなく、両端に離れている。 The heater 1 has a box shape, and has a blower chamber 2, a heating chamber 3, a hot air chamber 4, and a suction chamber 5 in the vertical direction. A blower 6 is disposed in the center of the blow chamber 2. For example, a sirocco fan is used as the blower 6 and is driven by a motor 7 provided outside. The motor 7 is not an expensive inverter motor but a normal inexpensive motor. As shown in FIGS. 5 and 6, there are partition walls 8 (one is not shown) on both sides of the air blowing chamber 2, and one end of the partition wall is an opening 9. The opening of each partition is not at a position facing each other, but at both ends.
 加熱室3には、両側に流路10、10が形成されており、また、加熱室3の内部には複数の電熱ヒータ11が配置されている。加熱室3と送風室2を隔てている仕切板12には、吸い込み孔13が穿設されている。吸い込み孔13は、送風機6の真上となるところに配置されており、その直径は送風機であるシロッコファンの直径よりも少し小さい。 In the heating chamber 3, channels 10 and 10 are formed on both sides, and a plurality of electric heaters 11 are arranged inside the heating chamber 3. A suction hole 13 is formed in the partition plate 12 that separates the heating chamber 3 and the blower chamber 2. The suction hole 13 is disposed immediately above the blower 6 and its diameter is slightly smaller than the diameter of a sirocco fan that is a blower.
 熱風室4は、前述した送風室2の開口9と連通しており、送風室2から熱風が送り込まれるようになっている。熱風室4と吸い込み室5間には、熱風吹き出し板14が張設されており、吸い込み室5は流路10、10で加熱室3と連通する。吸い込み室5の上はヒータ面15を構成する。 The hot air chamber 4 communicates with the opening 9 of the air blowing chamber 2 described above, and hot air is sent from the air blowing chamber 2. A hot air blowing plate 14 is stretched between the hot air chamber 4 and the suction chamber 5, and the suction chamber 5 communicates with the heating chamber 3 through flow paths 10 and 10. A heater surface 15 is formed above the suction chamber 5.
 熱風吹き出し板14には多数の穴16が穿設されており、これらの穴16にはそれぞれ吹き出しノズル17が取り付けられている。本例の吹き出しノズル17は、図1に示したように、ジグザグの板状であり、板状の吹き出しノズル17には熱風吹き出し板の穴16と通じた噴出口18が穿設されている。吹き出しノズル17は、ヒータ面15よりも突出して立設される。板状の吹き出しノズル17は、プリント基板の進行方向(搬送方向X)に対して横切る方向に設置されている。板状の吹き出しノズル17の両側には、該吹き出しノズルに沿ってジグザグ状の吸い込み口19が形成される。 A large number of holes 16 are formed in the hot air blowing plate 14, and blowing nozzles 17 are respectively attached to these holes 16. As shown in FIG. 1, the blowout nozzle 17 of this example is a zigzag plate, and the plate-like blowout nozzle 17 is provided with a jet outlet 18 communicating with the hole 16 of the hot air blowout plate. The blowing nozzle 17 is erected so as to protrude from the heater surface 15. The plate-like blowing nozzle 17 is installed in a direction crossing the traveling direction (conveying direction X) of the printed board. On both sides of the plate-like blowing nozzle 17, zigzag suction ports 19 are formed along the blowing nozzle.
 図7は、熱風調整板20及び熱風吹き出し板14の配置例を示す拡大底面図である。図7に示すように、熱風吹き出し板14の下面には、熱風調整板20が密着して配置される。熱風調整板20には、熱風吹き出し板14の穴16と同一位置に、略同一形状の穴21が穿設される。 FIG. 7 is an enlarged bottom view showing an arrangement example of the hot air adjusting plate 20 and the hot air blowing plate 14. As shown in FIG. 7, a hot air adjusting plate 20 is disposed in close contact with the lower surface of the hot air blowing plate 14. The hot air adjusting plate 20 has a hole 21 having substantially the same shape at the same position as the hole 16 of the hot air blowing plate 14.
 図8は、熱風調整板20の構成例を示す底面図である。図8に示すように、熱風調整板20は、プリント基板の進行方向(搬送方向X)に沿って三枚の構成部材(20A、20B、20C)に分割されており、各構成部材が矢印a、b、c方向に移動可能に構成される。 FIG. 8 is a bottom view showing a configuration example of the hot air adjusting plate 20. As shown in FIG. 8, the hot air adjusting plate 20 is divided into three constituent members (20A, 20B, 20C) along the traveling direction (conveying direction X) of the printed circuit board, and each constituent member is indicated by an arrow a. , B and c are configured to be movable.
 熱風調整板20には複数箇所にネジ22・・・が立設される。これらのネジ22と同一位置にある熱風吹き出し板14とヒータ面15とには長穴23、24が穿設される。ヒータ面15の長穴24の側部にはスケール25が付される。常時、ネジ22は長穴23、24に挿入され、その上からナット26が螺入される。 The hot air adjusting plate 20 has a plurality of screws 22. Slots 23 and 24 are formed in the hot air blowing plate 14 and the heater surface 15 at the same position as these screws 22. A scale 25 is attached to the side of the long hole 24 of the heater surface 15. At all times, the screw 22 is inserted into the long holes 23 and 24, and a nut 26 is screwed from above.
 上述したように、本発明に係るリフロー炉によれば、第1の搬送コンベヤ31により第1の温度プロファイルを有する第1のプリント基板を加熱するとともに、第2の搬送コンベヤ32によりこの第1の温度プロファイルとは異なる第2の温度プロファイルを有する第2のプリント基板を加熱する場合には、第1の搬送コンベヤ31の搬送速度と第2の搬送コンベヤ32の搬送速度を異ならせて適宜設定することができるので、第1のプリント基板には第1の温度プロファイルを確実に与えるとともに第2のプリント基板には第2の温度プロファイルを確実に与えることができるが、さらに、ヒータ1の調整を行うことによってさらに確実に、第1のプリント基板及び第2の第2のプリント基板それぞれに最適な温度プロファイルを与えることができるので、この点を説明する。 As described above, according to the reflow furnace of the present invention, the first printed circuit board having the first temperature profile is heated by the first transfer conveyor 31 and the first transfer conveyor 32 is used to heat the first printed circuit board. When heating a second printed circuit board having a second temperature profile different from the temperature profile, the transport speed of the first transport conveyor 31 and the transport speed of the second transport conveyor 32 are set differently. Therefore, the first temperature profile can be reliably given to the first printed circuit board and the second temperature profile can be reliably given to the second printed circuit board. By doing so, an optimum temperature profile is given to each of the first printed circuit board and the second printed circuit board. Because the door is possible, to illustrate this point.
 ヒータ1の加熱室3内に配設された電熱ヒータ11に通電するとともに、モータ7を駆動して送風機6であるシロッコファンを回転させる。すると、加熱室3内にある気体が電熱ヒータ11で加熱されて高温の熱風となり、送風機6で送風機の吸い込み孔13から送風室2内に引き込まれる。送風室2内に引き込まれた熱風は、送風機6で送風機の吹き出し側から開口9を通って送風室2に送られ、熱風調整板20の穴21と熱風吹き出し板14の穴16を通り、さらに吹き出しノズル17の噴出口18から吹き出される。 The electric heater 11 provided in the heating chamber 3 of the heater 1 is energized, and the motor 7 is driven to rotate the sirocco fan as the blower 6. Then, the gas in the heating chamber 3 is heated by the electric heater 11 and becomes hot hot air, and is drawn into the blower chamber 2 from the suction hole 13 of the blower 6 by the blower 6. The hot air drawn into the blower chamber 2 is sent to the blower chamber 2 through the opening 9 from the blower side of the blower by the blower 6, passes through the hole 21 of the hot air adjusting plate 20 and the hole 16 of the hot air blower plate 14, and It blows out from the jet outlet 18 of the blowing nozzle 17.
 第1の搬送コンベヤ31により搬送される第1のプリント基板と、第2の搬送コンベヤ32により搬送される第2のプリント基板とへ向けて、噴出口18から吹き出た熱風が当たって第1のプリント基板と第2のプリント基板とが加熱される。熱風で加熱された第1のプリント基板及び第2のプリント基板は、はんだ付け部に塗布されたソルダペーストが溶融し、第1のプリント基板又は第2のプリント基板と電子部品とがはんだ付けされる。 The hot air blown out from the jet outlet 18 hits the first printed circuit board transported by the first transport conveyor 31 and the second printed circuit board transported by the second transport conveyor 32, and the first printed circuit board is transported to the first printed circuit board. The printed circuit board and the second printed circuit board are heated. In the first printed circuit board and the second printed circuit board heated by hot air, the solder paste applied to the soldering portion is melted, and the first printed circuit board or the second printed circuit board and the electronic component are soldered. The
 ここで、第1のプリント基板の温度を、第2のプリント基板の温度よりも高い温度としたい場合には、第1の搬送コンベヤ31の搬送速度を第2の搬送コンベヤ32の搬送速度よりも低く設定するのみならず、第1のプリント基板に対応する熱風吹き出し板、例えば、図7に示した熱風調整板20Aに対応する熱風吹き出し板の穴16を大きく開けておき、第2のプリント基板に対応する熱風吹き出し板の穴を小さくしておく。 Here, when the temperature of the first printed circuit board is desired to be higher than the temperature of the second printed circuit board, the conveying speed of the first conveying conveyor 31 is made higher than the conveying speed of the second conveying conveyor 32. In addition to setting it low, a hole 16 of a hot air blowing plate corresponding to the first printed board, for example, a hot air blowing plate corresponding to the hot air adjusting plate 20A shown in FIG. Keep the hole in the hot air blowing plate corresponding to.
つまり、大量の熱を必要とする部分に対応する熱風調整板20Aの穴21の開口面積は、熱風吹き出し板14の穴16と完全に一致させて熱風調整板20Aの穴21の開口面積を充分に大きくしておき、大量の熱を必要としない部分に対応する熱風調整板20Bと20Cは矢印b、c方向に少し移動させて、熱風吹き出し板14の穴16の開口面積を小さくしておく。 That is, the opening area of the hole 21 of the hot air adjusting plate 20A corresponding to the portion that requires a large amount of heat is made to completely coincide with the hole 16 of the hot air blowing plate 14 so that the opening area of the hole 21 of the hot air adjusting plate 20A is sufficient. The hot air adjusting plates 20B and 20C corresponding to portions that do not require a large amount of heat are moved slightly in the directions of arrows b and c to reduce the opening area of the holes 16 of the hot air blowing plate 14. .
 このように、熱風調整板20で熱風吹き出し板14の穴16の開口面積を調整すると、大量の熱を必要とする部分からは、熱風吹き出し板14の穴16の開口面積が大きくなっているため、大量の熱風が吹き出て第1のプリント基板を、第2のプリント基板よりも十分に高い温度に加熱することができるようになる。 Thus, when the opening area of the hole 16 of the hot air blowing plate 14 is adjusted by the hot air adjusting plate 20, the opening area of the hole 16 of the hot air blowing plate 14 is increased from the portion that requires a large amount of heat. A large amount of hot air blows out, and the first printed circuit board can be heated to a temperature sufficiently higher than that of the second printed circuit board.
 板状ノズルから吹き出た熱風は、第1のプリント基板及び第2のプリント基板に熱を奪われるため、温度が低下する。この温度が下がった熱風は、板状の吹き出しノズル17が立設された近傍の吸い込み口19から吸い込まれ、流路10を通って加熱室3に入る。加熱室3に入った熱風は、電熱ヒータ11で所定の温度まで加熱され、送風機6で送風室2に吸い込まれる。そして熱風は、開口9から熱風室4に送られ、再度吹き出しノズル17の噴出口18から吹き出されて第1のプリント基板及び第2のプリント基板を加熱する。 Since the hot air blown from the plate-like nozzle is deprived of heat by the first printed circuit board and the second printed circuit board, the temperature decreases. The hot air whose temperature has been lowered is sucked from the suction port 19 in the vicinity where the plate-like blowing nozzle 17 is erected, and enters the heating chamber 3 through the flow path 10. The hot air that has entered the heating chamber 3 is heated to a predetermined temperature by the electric heater 11 and sucked into the blower chamber 2 by the blower 6. Then, the hot air is sent from the opening 9 to the hot air chamber 4 and is blown again from the outlet 18 of the blowing nozzle 17 to heat the first printed board and the second printed board.
 このように、本発明に係るリフロー炉によれば、第1の搬送コンベヤ31によるプリント基板の搬送速度と、第2の搬送コンベヤ32によるプリント基板の搬送速度とを異なる速度に設定可能であるので、異なる種類の複数種のプリント基板それぞれに適した温度プロファイルを確実に与えることができる。 Thus, according to the reflow furnace which concerns on this invention, since the conveyance speed of the printed circuit board by the 1st conveyance conveyor 31 and the conveyance speed of the printed circuit board by the 2nd conveyance conveyor 32 can be set to a different speed | rate. Thus, a temperature profile suitable for each of a plurality of types of printed circuit boards can be reliably provided.
 なお、以上の説明では、炉体0の幅方向に関して、第1の固定プレート及び第2の固定プレート43に設けられたチェーン33,35を固定配置すると共に、第1の移動プレート42及び第2の移動プレート44に設けられたチェーン34,36を移動自在に配置する場合を例にとったが、本発明はこの形態に限定されるものではなく、チェーン33及びチェーン34のうちの少なくとも一方の設置位置が炉体の幅方向に可変であるとともに、チェーン35及びチェーン36のうちの少なくとも一方の設置位置が炉体の幅方向に可変であればよい。 In the above description, the chains 33 and 35 provided on the first fixed plate and the second fixed plate 43 are fixedly arranged in the width direction of the furnace body 0, and the first moving plate 42 and the second moving plate 42 However, the present invention is not limited to this embodiment, and at least one of the chain 33 and the chain 34 is not limited thereto. The installation position may be variable in the width direction of the furnace body, and the installation position of at least one of the chain 35 and the chain 36 may be variable in the width direction of the furnace body.
 例えば、炉体0の幅方向に関して、チェーン33,チェーン36に固定プレートを設けて固定配置すると共に、チェーン34,35に移動プレートを設けて移動自在に配置したり、又は、チェーン36に固定プレートを設けて固定配置する共に、チェーン33,34,35に移動プレートを設けて移動自在に配置してもよい。なお、この移動プレートは、前述のように、モータ等の駆動装置、モータ軸の回転を伝えるプーリ及びベルト等の伝達機構、伝達機構によって回転されるスクリュシャフト等によって移動される。
 また、本実施の形態では、第1の移動プレート42及び第2の移動プレート44の移動を、搬送するプリント基板の幅に応じてモータによって行ったものを説明したが、ユーザが第1の幅可変シャフト54又は第2の幅可変シャフト55を操作して、手動で合わせるようにしても良い。これにより、モータM3、第1のプーリ61、第2のプーリ62、第1の駆動ベルト63、固定プレート64、モータM4、第3のプーリ71、第4のプーリ72、第2の駆動ベルト73及び固定プレート74を削除して、搬送路の製造コストを低減できる。
For example, with respect to the width direction of the furnace body 0, a fixed plate is provided on the chain 33 and the chain 36, and a movable plate is provided on the chains 34 and 35, or a movable plate is provided. The chain 33, 34, 35 may be provided with a moving plate and may be movably arranged. As described above, the moving plate is moved by a driving device such as a motor, a transmission mechanism such as a pulley and a belt that transmits the rotation of the motor shaft, a screw shaft that is rotated by the transmission mechanism, and the like.
In the present embodiment, the movement of the first moving plate 42 and the second moving plate 44 has been described as being performed by a motor according to the width of the printed board to be conveyed. The variable shaft 54 or the second variable width shaft 55 may be operated so as to be manually adjusted. Accordingly, the motor M3, the first pulley 61, the second pulley 62, the first drive belt 63, the fixed plate 64, the motor M4, the third pulley 71, the fourth pulley 72, and the second drive belt 73. And the manufacturing cost of a conveyance path can be reduced by deleting the fixed plate 74.
 本発明に係るリフロー炉を、温度プロファイルを参照しながら具体的に説明する。 
 図1乃至図8に示した本発明に係るリフロー炉と比較例のリフロー炉とを用いて異なる温度プロファイルを有する第1のプリント基板及び第2のプリント基板のはんだ付けを行った。比較例のリフロー炉は、本発明に係るリフロー炉から第1の搬送コンベヤ31及び第2の搬送コンベヤ32の搬送速度を異ならせて設定する機能と、熱風調整板20とを取り除いたものである。また、基板寸法は厚みを変更しており、第1のプリント基板の厚みは1mm、第2のプリント基板の厚みは5mmである。
The reflow furnace according to the present invention will be specifically described with reference to a temperature profile.
The first printed circuit board and the second printed circuit board having different temperature profiles were soldered using the reflow furnace according to the present invention shown in FIGS. 1 to 8 and the reflow furnace of the comparative example. The reflow furnace of the comparative example is obtained by removing the function of setting the transport speeds of the first transport conveyor 31 and the second transport conveyor 32 from the reflow furnace according to the present invention and the hot air adjusting plate 20. . Moreover, the board | substrate dimension has changed thickness, the thickness of the 1st printed circuit board is 1 mm, and the thickness of the 2nd printed circuit board is 5 mm.
 プリント基板のはんだ付け部にはSn-3Ag-0.5Cu(溶融温度:217~219℃)の粉末を混合したソルダペーストを塗布した。本発明に係るリフロー炉及び比較例のリフロー炉ともに操作部80で予備加熱ゾーンの温度を150~180℃に設定し、本加熱ゾーンの温度を220℃以上(ピーク温度は230~250℃)に設定した。プリント基板を予備加熱ゾーンで60~100秒間、本加熱ゾーンで30~60秒間の加熱を行うように操作部80で設定した。そして、第1及び第2のプリント基板に熱電対を接触させて、プリント基板の温度を測定した。 A solder paste mixed with powder of Sn-3Ag-0.5Cu (melting temperature: 217 to 219 ° C.) was applied to the soldering portion of the printed circuit board. In both the reflow furnace according to the present invention and the reflow furnace of the comparative example, the temperature of the preheating zone is set to 150 to 180 ° C. at the operation unit 80, and the temperature of the main heating zone is set to 220 ° C. or higher (peak temperature is 230 to 250 ° C.) Set. The operation unit 80 was set to heat the printed circuit board in the preheating zone for 60 to 100 seconds and in the main heating zone for 30 to 60 seconds. And the thermocouple was made to contact the 1st and 2nd printed circuit board, and the temperature of the printed circuit board was measured.
 両者の熱風吹き出し板の穴の直径は4mmであり、プリント基板の進行方向に対して横切るジグザグ位置に、一列のジグザグに50個の穴が穿設されている。そしてジグザグ列はプリント基板の進行方向に10列並んでおり、穴数は合計で500個である。 The diameter of the holes of both hot air blowing plates is 4 mm, and 50 holes are formed in a zigzag line in a zigzag position that crosses the traveling direction of the printed circuit board. Then, 10 zigzag rows are arranged in the traveling direction of the printed circuit board, and the total number of holes is 500.
 また、本発明に係るリフロー炉では、操作部80で、第1の搬送コンベヤ31の搬送速度を0.7m/minに設定し、第2の搬送コンベヤ32の搬送速度を1.0m/minに設定した。これに対して、比較例のリフロー炉では、操作部80で、第1の搬送コンベヤ31及び第2の搬送コンベヤ32のいずれも搬送速度を1.0m/minに設定した。 In the reflow furnace according to the present invention, the operation unit 80 sets the conveyance speed of the first conveyance conveyor 31 to 0.7 m / min and the conveyance speed of the second conveyance conveyor 32 to 1.0 m / min. Set. On the other hand, in the reflow furnace of the comparative example, the operation speed of both the first conveyor 31 and the second conveyor 32 was set to 1.0 m / min by the operation unit 80.
 熱風吹き出しヒータは、熱風調整板がプリント基板の進行方向に対して三分割されたものを用いた。第1のプリント基板に対応するところの片側の熱風調整板の穴を熱風吹き出し板の穴と一致させて、熱風吹き出し板の穴を完全に開いた状態とし、他の熱風調整板は移動させてこの熱風調整板に対応する熱風吹き出し板の穴を小さくしておく。 As the hot air blowing heater, a hot air adjusting plate divided into three parts with respect to the traveling direction of the printed circuit board was used. The hole of the hot air blowing plate corresponding to the first printed circuit board is aligned with the hole of the hot air blowing plate, the hole of the hot air blowing plate is completely opened, and the other hot air adjusting plate is moved. The hole of the hot air blowing plate corresponding to this hot air adjusting plate is made small.
 図9は、上述のように加熱温度や搬送速度を設定した本発明に係るリフロー炉の温度プロファイル例を示す説明図である。図9に示すように、縦軸をプリント基板の温度とし、横軸をプリント基板をリフロー炉に投入してからの経過時間(搬送時間)としている。 FIG. 9 is an explanatory view showing a temperature profile example of the reflow furnace according to the present invention in which the heating temperature and the conveyance speed are set as described above. As shown in FIG. 9, the vertical axis represents the temperature of the printed circuit board, and the horizontal axis represents the elapsed time (transport time) after the printed circuit board is placed in the reflow furnace.
 第1の搬送コンベヤ31で搬送される第1のプリント基板は、温度プロファイルL1の特性を有する。つまり、第1のプリント基板は、搬送時間が約90(sec)から約175(sec)のときに、予備加熱ゾーンの設定温度である150℃から180℃に達している。また、第2のプリント基板は、搬送時間が約205(sec)から約255(sec)のときに、本加熱ゾーンの設定温度である220℃に達している。 The first printed circuit board transported by the first transport conveyor 31 has the characteristics of the temperature profile L1. That is, the first printed circuit board reaches 150 ° C. to 180 ° C., which is the preset temperature of the preheating zone, when the conveyance time is about 90 (sec) to about 175 (sec). The second printed circuit board reaches 220 ° C., which is the set temperature of the main heating zone, when the transport time is about 205 (sec) to about 255 (sec).
 第2の搬送コンベヤ32で搬送される第2のプリント基板は、温度プロファイルL2の特性を有する。つまり、第2のプリント基板は、搬送時間が約180(sec)から約260(sec)のときに、予備加熱ゾーンの設定温度である150℃から180℃に達している。また、第1のプリント基板は、搬送時間が約320(sec)から約365(sec)のときに、本加熱ゾーンの設定温度である220℃以上に達している。 The second printed circuit board transported by the second transport conveyor 32 has the characteristics of the temperature profile L2. That is, the second printed circuit board reaches 150 ° C. to 180 ° C., which is the preset temperature of the preheating zone, when the conveyance time is about 180 (sec) to about 260 (sec). The first printed circuit board reaches 220 ° C. or higher, which is the set temperature of the main heating zone, when the conveyance time is about 320 (sec) to about 365 (sec).
 このリフロー炉ではんだ付けされた第1のプリント基板及び第2のプリント基板は、いずれも、充分にはんだが濡れ広がっており、はんだ付け不良がなく、しかも、他のはんだ付け部の電子部品は焼け焦げしたり変色したりしていなかった。 Both the first printed circuit board and the second printed circuit board soldered in this reflow furnace are sufficiently wetted with solder, there is no soldering failure, and electronic components in other soldered parts are not It was not burnt or discolored.
 このように、本発明に係るリフロー炉は、第1の搬送コンベヤ31で搬送される第1のプリント基板と、第2の搬送コンベヤ32で搬送される第2のプリント基板との両方を、予備加熱ゾーンでは、設定時間の60~100秒間、設定温度の150~180℃で加熱し、本加熱ゾーンでは、設定時間の30~60秒間、設定温度の220℃以上で加熱することができる。これにより、異なる種類の複数種のプリント基板それぞれに適した温度プロファイルを与えることができ、確実にはんだ付けを行うことができる。 As described above, the reflow furnace according to the present invention reserves both the first printed circuit board transported by the first transport conveyor 31 and the second printed circuit board transported by the second transport conveyor 32 as a spare. In the heating zone, heating can be performed at a set temperature of 150 to 180 ° C. for a set time of 60 to 100 seconds. In this heating zone, heating can be performed at a set temperature of 220 ° C. or more for a set time of 30 to 60 seconds. Thereby, temperature profiles suitable for different types of printed circuit boards can be provided, and soldering can be performed reliably.
 図10は、上述のように加熱温度や搬送速度を設定した比較例のリフロー炉の温度プロファイル例を示す説明図である。図10に示すように、縦軸をプリント基板の温度とし、横軸をプリント基板をリフロー炉に投入してからの経過時間(搬送時間)としている。 FIG. 10 is an explanatory diagram showing a temperature profile example of a reflow furnace of a comparative example in which the heating temperature and the conveyance speed are set as described above. As shown in FIG. 10, the vertical axis represents the temperature of the printed circuit board, and the horizontal axis represents the elapsed time (transport time) after the printed circuit board is placed in the reflow furnace.
 第1の搬送コンベヤ31で搬送される第1のプリント基板は、温度プロファイルL3の特性を有する。つまり、第1のプリント基板は、搬送時間が約90(sec)から約175(sec)のときに、予備加熱ゾーンの設定温度である150℃から180℃に達している。また、第1のプリント基板は、搬送時間が約205(sec)から約255(sec)のときに、本加熱ゾーンの設定温度である220℃に達している(温度プロファイルL3は、前述の温度プロファイルL1と略同じである。)。 The first printed circuit board conveyed by the first conveyance conveyor 31 has a characteristic of a temperature profile L3. That is, the first printed circuit board reaches 150 ° C. to 180 ° C., which is the preset temperature of the preheating zone, when the conveyance time is about 90 (sec) to about 175 (sec). In addition, the first printed circuit board reaches 220 ° C., which is the set temperature of the main heating zone, when the conveyance time is about 205 (sec) to about 255 (sec) (the temperature profile L3 is the temperature described above). It is substantially the same as the profile L1.)
 第2の搬送コンベヤ32で搬送される第2のプリント基板は、温度プロファイルL4の特性を有する。つまり、第2のプリント基板は、搬送時間が約150(sec)から約190(sec)のときに、予備加熱ゾーンの設定温度である150℃から180℃に達している。また、第2のプリント基板は、本加熱ゾーンの設定温度である220℃以上に達することができていない。 The second printed circuit board conveyed by the second conveyance conveyor 32 has the characteristic of the temperature profile L4. That is, the second printed circuit board reaches 150 ° C. to 180 ° C., which is the preset temperature of the preheating zone, when the conveyance time is about 150 (sec) to about 190 (sec). Further, the second printed circuit board cannot reach 220 ° C. or higher which is the set temperature of the main heating zone.
 また、このリフロー炉ではんだ付けされた第1のプリント基板では、上述のように温度プロファイルL3が高温であるために、不良のないはんだ付けができたが、第2のプリント基板では、本加熱ゾーンで220℃に到達しないためにはんだ未溶融となり、はんだ付けができなかった。 In addition, the first printed circuit board soldered in the reflow furnace can be soldered without defects because the temperature profile L3 is high as described above. However, in the second printed circuit board, the main heating is performed. Since it did not reach 220 ° C. in the zone, the solder was not melted and soldering could not be performed.
 このように、比較例のリフロー炉では、第1のプリント基板には適正な温度プロファイルを与えることができたが、第2のプリント基板には適正な温度プロファイルを与えることができなかった。 Thus, in the reflow furnace of the comparative example, an appropriate temperature profile could be given to the first printed board, but an appropriate temperature profile could not be given to the second printed board.
0・・・リフロー炉の炉体、1・・・熱風吹き出しヒータ、14・・・熱風吹き出し板、15・・・ヒータ面、16・・・熱風吹き出し板の穴、17・・・吹き出しノズル、18・・・噴出口、19・・・吸い込み口、20・・・熱風調整板、21・・・熱風調整板の穴、22・・・ネジ、23、24・・・長穴、25・・・スケール、26・・・ナット、30・・・搬送路、31・・・第1の搬送コンベヤ、32・・・第2の搬送コンベヤ、33・・・第1のチェーン、34・・・第2のチェーン、35・・・第3のチェーン、36・・・第4のチェーン、37・・・第1のチェーン用スプロケットホイール、38・・・第2のチェーン用スプロケットホイール、39・・・第3のチェーン用スプロケットホイール、40・・・第4のチェーン用スプロケットホイール、41・・・第1の固定プレート、42・・・第1の移動プレート、43・・・第2の固定プレート、44・・・第2の移動プレート、45・・・側面プレート、51・・・第1のスライドシャフト、52・・・第2のスライドシャフト、53・・・第1のスクリュシャフト、54・・・第2のスクリュシャフト、61・・・第1のモータ用プーリ、62・・・第1のスクリュシャフト用プーリ、63・・・第1の駆動ベルト、71・・・第2のモータ用プーリ、72・・・第2のスクリュシャフト用プーリ、73・・・第2の駆動ベルト、80・・・操作部、81・・・制御部 DESCRIPTION OF SYMBOLS 0 ... Reflow furnace body, 1 ... Hot air blowing heater, 14 ... Hot air blowing plate, 15 ... Heater surface, 16 ... Hole of hot air blowing plate, 17 ... Blowing nozzle, 18 ... Spout, 19 ... Suction port, 20 ... Hot air adjusting plate, 21 ... Hot air adjusting plate hole, 22 ... Screw, 23, 24 ... Long hole, 25 ... Scale, 26 ... nut, 30 ... transport path, 31 ... first transport conveyor, 32 ... second transport conveyor, 33 ... first chain, 34 ... first 2 chain 35 ... third chain 36 ... fourth chain 37 ... first chain sprocket wheel 38 ... second chain sprocket wheel 39 ... Third chain sprocket wheel, 40... Fourth chain Sprocket wheel, 41 ... first fixed plate, 42 ... first moving plate, 43 ... second fixed plate, 44 ... second moving plate, 45 ... side surface Plate 51... First slide shaft 52. Second slide shaft 53 ... First screw shaft 54 ... Second screw shaft 61 ... First motor Pulley, 62 ... first screw shaft pulley, 63 ... first drive belt, 71 ... second motor pulley, 72 ... second screw shaft pulley, ..Second drive belt, 80 ... operation unit, 81 ... control unit

Claims (8)

  1.  ヒータを有する炉体と、該炉体の内部であって前記ヒータの上方に前記炉体の長手方向へ架け渡されるプリント基板の搬送路とを備えるリフロー炉であって、
     前記搬送路は、前記炉体の幅方向へ並設される、第1の搬送コンベヤと、該第1の搬送コンベヤとは異なる第2の搬送コンベヤとからなり、
     前記第1の搬送コンベヤは、前記炉体の幅方向へ並設されてプリント基板を搬送するための第1のレール及び第2のレールからなるとともに、前記第2の搬送コンベヤは、前記炉体の幅方向へ並設されてプリント基板を搬送するための第3のレール及び第4のレールからなるとともに、
     前記第1の搬送コンベヤによるプリント基板の搬送速度と、前記第2のコンベヤによるプリント基板の搬送速度とを異なる速度に設定可能であることを特徴とするリフロー炉。
    A reflow furnace comprising: a furnace body having a heater; and a printed circuit board conveyance path that extends in the longitudinal direction of the furnace body inside the furnace body and above the heater,
    The transport path includes a first transport conveyor arranged in parallel in the width direction of the furnace body, and a second transport conveyor different from the first transport conveyor,
    The first transport conveyor includes a first rail and a second rail that are arranged in parallel in the width direction of the furnace body to transport the printed circuit board, and the second transport conveyor includes the furnace body. Comprising a third rail and a fourth rail arranged side by side in the width direction for transporting the printed circuit board,
    A reflow furnace characterized in that the conveyance speed of the printed circuit board by the first conveyance conveyor and the conveyance speed of the printed circuit board by the second conveyor can be set to different speeds.
  2.  前記第1のレール及び第2のレールのうちの少なくとも一方の設置位置は、前記炉体の幅方向に可変であるとともに、前記第3のレール及び第4のレールのうちの少なくとも一方の設置位置は、前記炉体の幅方向に可変である請求項1に記載されたリフロー炉。 The installation position of at least one of the first rail and the second rail is variable in the width direction of the furnace body, and the installation position of at least one of the third rail and the fourth rail. The reflow furnace according to claim 1, which is variable in a width direction of the furnace body.
  3.  プリント基板を加熱するヒータを有する炉体と、
     前記炉体内に設けられて、プリント基板の搬送方向に並設され、プリント基板を所定の搬送速度で搬送する第1及び第2の搬送部と、
     前記第1及び第2の搬送部の搬送速度を個別に設定するための設定情報を生成する操作部と、
     前記操作部によって生成された前記設定情報を受信し、該受信した前記設定情報に基づいて前記第1及び第2の搬送部をそれぞれ駆動する制御部とを備えることを特徴とするリフロー炉。
    A furnace body having a heater for heating the printed circuit board;
    Provided in the furnace body, juxtaposed in the transport direction of the printed circuit board, and transports the printed circuit board at a predetermined transport speed;
    An operation unit that generates setting information for individually setting the conveyance speeds of the first and second conveyance units;
    A reflow furnace comprising: a control unit that receives the setting information generated by the operation unit and drives the first and second transfer units based on the received setting information.
  4.  前記第1の搬送部は、前記炉体の幅方向へ並設されてプリント基板を搬送するための第1のレール及び第2のレールを有し、
     前記第2の搬送部は、前記炉体の幅方向へ並設されてプリント基板を搬送するための第3のレール及び第4のレールを有し、
     前記第1のレール及び第2のレールのうちの少なくとも一方の設置位置は、前記炉体の幅方向に可変であるとともに、前記第3のレール及び第4のレールのうちの少なくとも一方の設置位置は、前記炉体の幅方向に可変である請求項3に記載されたリフロー炉。
    The first transport unit includes a first rail and a second rail that are arranged in parallel in the width direction of the furnace body and transport the printed circuit board.
    The second transport unit includes a third rail and a fourth rail that are arranged in parallel in the width direction of the furnace body and transport the printed circuit board.
    The installation position of at least one of the first rail and the second rail is variable in the width direction of the furnace body, and the installation position of at least one of the third rail and the fourth rail. The reflow furnace according to claim 3, which is variable in a width direction of the furnace body.
  5.  前記ヒータは、熱風吹き出し板に多数の穴が穿設され、該穴から熱風を吹き出すことによって前記プリント基板を加熱するヒータであって、前記熱風吹き出し板に穿設された穴と同一箇所に熱風吹き出し板の穴と略同一の穴が穿設された熱風調整板を、前記熱風吹き出し板に穿設された穴と前記熱風調整板に穿設された穴とが一致するようにして、前記熱風吹き出し板に密着させるとともに、前記熱風調整板を前記熱風吹き出し板に沿って移動させることにより前記熱風吹き出し板の穴の開口面積を調整できることを特徴とする請求項1から請求項4までのいずれか1項に記載されたリフロー炉。 The heater is a heater in which a large number of holes are formed in a hot air blowing plate, and the printed circuit board is heated by blowing hot air from the hole, and the hot air is blown into the same place as the hole formed in the hot air blowing plate. The hot air adjusting plate in which substantially the same hole as the hole of the blowing plate is drilled is made to match the hole drilled in the hot air blowing plate and the hole drilled in the hot air adjusting plate. 5. The opening area of the hole of the hot air blowing plate can be adjusted by bringing the hot air adjusting plate into close contact with the blowing plate and moving the hot air adjusting plate along the hot air blowing plate. 6. The reflow furnace described in item 1.
  6.  前記熱風調整板は、複数の構成部材からなり、該複数の構成部材それぞれが独自に前記熱風吹き出し板に対して移動可能であることを特徴とする請求項5に記載されたリフロー炉。 The reflow furnace according to claim 5, wherein the hot air adjusting plate includes a plurality of constituent members, and each of the plurality of constituent members is independently movable with respect to the hot air blowing plate.
  7.  前記熱風吹き出し板の穴に吹き出しノズルが取り付けられていることを特徴とする請求項5又は請求項6に記載されたリフロー炉。 The reflow furnace according to claim 5 or 6, wherein a blowing nozzle is attached to a hole of the hot air blowing plate.
  8.  前記熱風調整板にネジが取り付けられているとともに、該ネジと一致する位置の熱風吹き出し板に長穴が穿設されていることを特徴とする請求項5から請求項7までのいずれか1項に記載されたリフロー炉。 The screw is attached to the said hot air adjustment board, and the elongate hole is drilled in the hot air blowing board of the position which corresponds to this screw, The any one of Claim 5-7 characterized by the above-mentioned. Reflow furnace described in 1.
PCT/JP2009/006569 2008-12-02 2009-12-02 Reflow furnace WO2010064428A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801485948A CN102239752A (en) 2008-12-02 2009-12-02 Reflow furnace
JP2010541235A JPWO2010064428A1 (en) 2008-12-02 2009-12-02 Reflow furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008307563 2008-12-02
JP2008-307563 2008-12-02

Publications (1)

Publication Number Publication Date
WO2010064428A1 true WO2010064428A1 (en) 2010-06-10

Family

ID=42233086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006569 WO2010064428A1 (en) 2008-12-02 2009-12-02 Reflow furnace

Country Status (3)

Country Link
JP (1) JPWO2010064428A1 (en)
CN (1) CN102239752A (en)
WO (1) WO2010064428A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102212290B1 (en) * 2013-03-15 2021-02-03 선파워 코포레이션 Reduced contact resistance and improved lifetime of solar cells

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198980A (en) * 1989-12-27 1991-08-30 Tamura Seisakusho Co Ltd Hot wind reflow device
JPH06104563A (en) * 1992-09-18 1994-04-15 Sanyo Electric Co Ltd Hardening system
JPH09206927A (en) * 1996-01-30 1997-08-12 Nihon Dennetsu Kk Reflow soldering method and device
JPH10163623A (en) * 1996-11-28 1998-06-19 Nec Kansai Ltd Conveyor type substrate heating furnace
JP2002503161A (en) * 1997-02-21 2002-01-29 スピードライン・テクノロジーズ・インコーポレーテッド Double track stencil printing machine with solder collecting head
WO2006013895A1 (en) * 2004-08-04 2006-02-09 Senju Metal Industry Co., Ltd. Reflow oven

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128400A (en) 2002-10-07 2004-04-22 Fuji Mach Mfg Co Ltd Component mounting apparatus, program for controlling operation of the same apparatus, and component mounting system
CN100496844C (en) * 2004-08-04 2009-06-10 千住金属工业株式会社 Reflow oven

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198980A (en) * 1989-12-27 1991-08-30 Tamura Seisakusho Co Ltd Hot wind reflow device
JPH06104563A (en) * 1992-09-18 1994-04-15 Sanyo Electric Co Ltd Hardening system
JPH09206927A (en) * 1996-01-30 1997-08-12 Nihon Dennetsu Kk Reflow soldering method and device
JPH10163623A (en) * 1996-11-28 1998-06-19 Nec Kansai Ltd Conveyor type substrate heating furnace
JP2002503161A (en) * 1997-02-21 2002-01-29 スピードライン・テクノロジーズ・インコーポレーテッド Double track stencil printing machine with solder collecting head
WO2006013895A1 (en) * 2004-08-04 2006-02-09 Senju Metal Industry Co., Ltd. Reflow oven

Also Published As

Publication number Publication date
CN102239752A (en) 2011-11-09
JPWO2010064428A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP4896776B2 (en) Reflow device
JP2002185122A (en) Reflow device
WO2007023604A1 (en) Reflow furnace
WO2011135737A1 (en) Heating apparatus and cooling apparatus
WO2010064428A1 (en) Reflow furnace
JPH04300066A (en) Method and device for reflow soldering
JP4957797B2 (en) heating furnace
JP2003188524A (en) Reflow apparatus
JP4524377B2 (en) Reflow device
JP2022065287A (en) Transport heating device
JP3818834B2 (en) Reflow soldering equipment
JPS6138985B2 (en)
JP2740168B2 (en) Curing oven
JP3084942B2 (en) Reflow equipment
JPH06164130A (en) Reflow furnace for printed circuit board
JP2007281271A (en) Solder heating device and method therefor
WO2023188840A1 (en) Conveying heating apparatus
JP4092258B2 (en) Reflow furnace and temperature control method for reflow furnace
JP3974245B2 (en) Reflow device
JP3566780B2 (en) Reflow device and temperature control method thereof
JP2682085B2 (en) Reflow soldering equipment
JP3953797B2 (en) Reflow soldering equipment
JP4778998B2 (en) Reflow device
JP2002009430A (en) Method and device for reflow soldering
JP3929529B2 (en) Reflow device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980148594.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010541235

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830198

Country of ref document: EP

Kind code of ref document: A1