WO2010050518A1 - Euvリソグラフィ用反射型マスクブランク - Google Patents

Euvリソグラフィ用反射型マスクブランク Download PDF

Info

Publication number
WO2010050518A1
WO2010050518A1 PCT/JP2009/068517 JP2009068517W WO2010050518A1 WO 2010050518 A1 WO2010050518 A1 WO 2010050518A1 JP 2009068517 W JP2009068517 W JP 2009068517W WO 2010050518 A1 WO2010050518 A1 WO 2010050518A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
reflective
mask blank
absorber layer
low
Prior art date
Application number
PCT/JP2009/068517
Other languages
English (en)
French (fr)
Inventor
和幸 林
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2010535821A priority Critical patent/JP5348140B2/ja
Priority to CN200980143726.8A priority patent/CN102203907B/zh
Publication of WO2010050518A1 publication Critical patent/WO2010050518A1/ja
Priority to US13/070,728 priority patent/US8133643B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • G03F1/86Inspecting by charged particle beam [CPB]

Definitions

  • the present invention relates to a reflective mask blank for EUV (Extreme Ultra Violet) lithography (hereinafter referred to as “EUV mask blank” in the present specification) used in semiconductor manufacturing and the like.
  • EUV mask blank Extreme Ultra Violet
  • a photolithography method using visible light or ultraviolet light has been used as a technique for transferring a fine pattern necessary for forming an integrated circuit having a fine pattern on a Si substrate or the like.
  • the limits of conventional photolithography methods have been approached.
  • the resolution limit of the pattern is about 1 ⁇ 2 of the exposure wavelength, and it is said that the immersion wavelength is about 1 ⁇ 4 of the exposure wavelength, and the immersion of ArF laser (193 nm) is used. Even if the method is used, the limit of about 45 nm is expected.
  • EUV lithography which is an exposure technique using EUV light having a wavelength shorter than that of an ArF laser, is promising as an exposure technique for 45 nm and beyond.
  • EUV light refers to light having a wavelength in the soft X-ray region or the vacuum ultraviolet region, and specifically refers to light having a wavelength of about 10 to 20 nm, particularly about 13.5 nm ⁇ 0.3 nm.
  • a conventional refractive optical system such as photolithography using visible light or ultraviolet light may be used. Can not. For this reason, in the EUV light lithography, a reflective optical system, that is, a reflective photomask and a mirror are used.
  • the mask blank is a layered product before patterning used for manufacturing a photomask.
  • a reflective layer that reflects EUV light and an absorber layer that absorbs EUV light are formed in this order on a substrate such as glass.
  • a multilayer reflective film is generally used in which a high refractive layer and a low refractive layer are alternately laminated to increase the light reflectivity when EUV light is irradiated onto the layer surface.
  • the absorber layer a material having a high absorption coefficient for EUV light, specifically, a material mainly composed of Cr or Ta, for example, is used.
  • Patent Document 1 discloses that a tantalum boron alloy nitride (TaBN), a tantalum boron alloy oxide (TaBO), and a tantalum boron alloy oxynitride (TaBNO) have a high absorption coefficient for EUV light. Since the reflectivity of deep ultraviolet light in the wavelength region (190 nm to 260 nm) of pattern inspection light is low, it is considered preferable as a material for the absorber layer.
  • TaBN tantalum boron alloy nitride
  • TaBO tantalum boron alloy oxide
  • TaBNO tantalum boron alloy oxynitride
  • Patent Document 1 states that in order to make the surface of the absorber layer excellent in smoothness, it is preferable that the crystal structure of the absorber layer is amorphous, and a TaBN film, a TaBO film, and a TaBNO In order to make the crystal structure of the films amorphous, it is preferable that the B content in these films is 5 to 25 at% (atomic percentage, the same applies hereinafter).
  • Patent Document 2 exemplifies TaBSiN as another absorber layer material.
  • the absorber layer is a TaBO film or a TaBNO film
  • the insulation of the absorber layer increases, and charge-up occurs when drawing an electron beam on the absorber layer. Therefore, it is not preferable.
  • the absorber layer is a TaBN film, there is no possibility that charge-up occurs during electron beam drawing.
  • the absorber layer is a TaBN film
  • the film is formed using a magnetron sputtering method or the like, which is a method in which defects are unlikely to occur.
  • a TaBN film can be formed by using a Ta target and a B target and simultaneously discharging these targets in a nitrogen atmosphere.
  • a TaBN film can also be formed by using a TaB compound target and discharging the target in a nitrogen atmosphere.
  • the film formation rate is often 1/10 or less compared to the Ta target. Therefore, as described in Patent Document 1, in order to add the B content (5 at% or more) necessary for making the crystal structure of the film amorphous, the deposition rate of the Ta target is decreased. Although it is necessary, it is not desirable because the production efficiency is significantly reduced.
  • the method using the TaB compound target for example, when a compound target containing 20 at% B and 80 at% Ta is used, the maximum content of B actually added to the film is about 6 at%. It is difficult to control the B content to 5 at% or more.
  • the B content of the film becomes 4 at% or less, and it becomes difficult to make the crystal structure of the film amorphous.
  • an increase in the B content in the TaB compound target is expected (for example, B is 50 at%, Ta is 50 at%).
  • the resistance value of the TaB target increases, the discharge becomes unstable, and the deposition rate decreases. If the discharge becomes unstable, the composition and thickness of the film may vary, and in some cases, the film formation may become impossible.
  • the present invention is excellent in properties as an EUV mask blank, particularly has low reflectance in the wavelength region of EUV light and pattern inspection light, and has the desired film composition and film thickness.
  • An object of the present invention is to provide an EUV mask blank having an absorber layer that can be easily controlled.
  • the present inventors have determined that the film composition is not a TaBN film, but a TaBNH film containing at least tantalum (Ta), boron (B), nitrogen (N), and hydrogen (H).
  • Ta tantalum
  • B boron
  • N nitrogen
  • H hydrogen
  • the present invention has been made on the basis of the above findings, and a reflective mask for EUV lithography in which a reflective layer for reflecting EUV light and an absorber layer for absorbing EUV light are formed in this order on a substrate.
  • Blank The absorber layer contains at least tantalum (Ta), boron (B), nitrogen (N) and hydrogen (H);
  • the B content is 1 at% or more and less than 5 at%
  • the H content is 0.1 to 5 at%
  • the total content of Ta and N is 90 to 98.9 at%.
  • a reflective mask blank for EUV lithography characterized in that the composition ratio of Ta to N (Ta: N) is 8: 1 to 1: 1.
  • the composition ratio means an atomic ratio.
  • the present invention is a reflective mask blank for EUV lithography in which a reflective layer for reflecting EUV light and an absorber layer for absorbing EUV light are formed in this order on a substrate,
  • the absorber layer contains at least tantalum (Ta), boron (B), nitrogen (N) and hydrogen (H);
  • a reflective mask blank for EUV lithography characterized in that the crystalline state of the absorber layer is amorphous.
  • the surface roughness of the absorber layer surface is preferably 0.5 nm rms or less.
  • the absorber layer preferably has a thickness of 30 to 100 nm.
  • a low reflection layer in inspection light used for inspection of a mask pattern is formed on the absorber layer,
  • the low reflective layer contains at least tantalum (Ta), boron (B), oxygen (O) and hydrogen (H);
  • the B content is 1 at% or more and less than 5 at%
  • the H content is 0.1 to 15 at%
  • the total content of Ta and O is 80 to 98.9 at%.
  • the composition ratio of Ta to O (Ta: O) is preferably 1: 8 to 3: 1.
  • a low reflection layer in inspection light used for inspection of a mask pattern is formed on the absorber layer,
  • the low reflective layer contains at least tantalum (Ta), boron (B), oxygen (O), nitrogen (N) and hydrogen (H);
  • the B content is 1 at% or more and less than 5 at%
  • the H content is 0.1 to 15 at%
  • the total content of Ta, O and N is 80 to 98.9 at%.
  • the composition ratio of Ta, O and N (Ta: (O + N)) is preferably 1: 8 to 3: 1.
  • the present invention is a reflective mask blank for EUV lithography in which a reflective layer for reflecting EUV light, an absorber layer for absorbing EUV light, and a low reflective layer in mask pattern inspection are formed in this order on a substrate.
  • the low reflective layer contains at least tantalum (Ta), boron (B), oxygen (O), and hydrogen (H);
  • the B content is 1 at% or more and less than 5 at%
  • the H content is 0.1 to 15 at%
  • the total content of Ta and O is 80 to 98.9 at.
  • the reflective mask blank for EUV lithography is characterized in that the composition ratio of Ta and O (Ta: O) is 1: 8 to 3: 1.
  • the present invention is for EUV lithography in which a reflective layer for reflecting EUV light, an absorber layer for absorbing EUV light, and a low reflection layer for inspection light used for inspection of a mask pattern are formed in this order on a substrate.
  • a reflective mask blank The low reflective layer contains at least tantalum (Ta), boron (B), oxygen (O), nitrogen (N) and hydrogen (H);
  • the B content is 1 at% or more and less than 5 at%
  • the H content is 0.1 to 15 at%
  • the total content of Ta, O, and N is 80 to 98.
  • a reflective mask blank for EUV lithography characterized in that the composition ratio of Ta, O, and N (Ta: (O + N)) is 1: 8 to 3: 1.
  • the surface roughness of the low reflection layer surface is preferably 0.5 nm rms or less.
  • the thickness of the low reflection layer is preferably 5 to 30 nm.
  • a protective layer is formed between the reflective layer and the absorber layer to protect the reflective layer when forming a pattern on the absorber layer.
  • the contrast between the reflected light on the surface of the protective layer and the reflected light on the surface of the low reflective layer with respect to the wavelength of the light used for the inspection of the pattern formed on the absorber layer is preferably 30% or more. .
  • the H concentration of the low reflection layer is 1.5 at% or more higher than the H concentration of the absorber layer.
  • the reflectance of the low reflection layer surface with respect to the wavelength of light used for the inspection of the pattern formed on the absorber layer is preferably 15% or less.
  • the absorber layer includes an inert gas containing at least one of helium (He), argon (Ar), neon (Ne), krypton (Kr), and xenon (Xe), nitrogen, It is preferably formed by performing a sputtering method using a TaB compound target in an atmosphere containing (N) and hydrogen (H).
  • the low reflective layer is at least one of helium (He), argon (Ar), neon (Ne), krypton (Kr), and xenon (Xe). It is preferably formed by performing a sputtering method using a TaB compound target in an atmosphere containing an inert gas containing oxygen, oxygen (O), and hydrogen (H).
  • the low reflection layer is made of helium (He), argon (Ar), neon (Ne), krypton (Kr), or xenon (Xe). It is preferably formed by performing a sputtering method using a TaB compound target in an atmosphere containing at least one inert gas and oxygen (O), nitrogen (N), and hydrogen (H).
  • the present invention also provides a reflective mask for EUV lithography in which the absorber layer and the low reflective layer of the reflective mask blank for EUV lithography of the present invention are patterned.
  • the present invention also provides a semiconductor integrated circuit manufacturing method for manufacturing a semiconductor integrated circuit by exposing an object to be exposed using the reflective mask for EUV lithography of the present invention.
  • the EUV mask blank of the present invention has a low B content (less than 5 at%) in the absorber layer, the deposition rate is reduced when the absorber layer is formed, and the discharge becomes unstable during film formation. Therefore, there is no possibility that problems such as variations in film composition and film thickness, or problems that the film formation becomes impossible can be caused.
  • the EUV mask blank of the present invention has an amorphous crystal structure of the absorber layer, the surface of the absorber is excellent in smoothness. Further, the absorber layer has excellent characteristics as an EUV mask blank, such as low light reflectance of EUV light and low light reflectance in the wavelength region of pattern inspection light.
  • the EUV mask blank of the present invention by forming a low reflection layer on the absorber layer, the light reflectance in the wavelength region of pattern inspection light can be further reduced, and this is performed after pattern formation on the mask blank.
  • the contrast at the time of pattern inspection is good.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the EUV mask blank of the present invention.
  • FIG. 2 shows a state where a pattern is formed on the absorber layer 14 (and the low reflective layer 15) of the EUV mask blank 1 shown in FIG.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the EUV mask blank of the present invention.
  • a reflective layer 12 that reflects EUV light and an absorber layer 14 that absorbs EUV light are formed on a substrate 11 in this order.
  • a protective layer 13 is formed between the reflective layer 12 and the absorber layer 14 to protect the reflective layer 12 when forming a pattern on the absorber layer 14.
  • On the absorber layer 14, a low reflection layer 15 for inspection light used for inspection of a mask pattern is formed.
  • the protective layer 13 and the low reflective layer 15 are optional components. .
  • individual components of the mask blank 1 will be described.
  • the substrate 11 is required to satisfy the characteristics as a substrate for an EUV mask blank. Therefore, the substrate 11 preferably has a low thermal expansion coefficient (0 ⁇ 1.0 ⁇ 10 ⁇ 7 / ° C., more preferably 0 ⁇ 0.3 ⁇ 10 ⁇ 7 / ° C., and further preferably 0 ⁇ 0.2. ⁇ 10 ⁇ 7 / ° C., more preferably 0 ⁇ 0.1 ⁇ 10 ⁇ 7 / ° C., particularly preferably 0 ⁇ 0.05 ⁇ 10 ⁇ 7 / ° C.), smoothness, flatness, and mask blank Or the thing excellent in the tolerance to the washing
  • the substrate 11 is made of glass having a low thermal expansion coefficient, such as SiO 2 —TiO 2 glass, but is not limited to this. Crystallized glass, quartz glass, silicon or the like on which ⁇ quartz solid solution is precipitated is used. A substrate made of metal or the like can also be used.
  • the hydrogen molecule concentration is 1 ⁇ 10 16 molecules / cm 3 , 5 ⁇ 10 16 molecules / cm 3 , 1 ⁇ 10 17 molecules / in terms of the cleaning effect of carbon contamination and the reduction effect of the oxidized film.
  • it is cm 3 , 5 ⁇ 10 17 molecules / cm 3 or more.
  • the hydrogen molecule concentration is 1 ⁇ 10 18 molecules / cm 3 or more, more preferably 5 ⁇ 10 18 molecules / cm 3 or more, and particularly preferably 1 ⁇ 10 19 molecules / cm 3 or more. In order to maintain the above effect for a longer period, it is preferably 5 ⁇ 10 19 molecules / cm 3 or more.
  • the measurement of the hydrogen molecule concentration is preferably performed as follows using a thermal desorption spectrometer (TDS) manufactured by Electronic Science Co., Ltd. based on Japanese Patent No. 3298974.
  • a glass sample into which hydrogen molecules have been introduced is placed in a thermal desorption analyzer, the inside of the measurement chamber is evacuated to 5 ⁇ 10 ⁇ 7 Pa or less, the glass sample is heated, and the mass number of the generated gas is analyzed Measure with an internal mass spectrometer.
  • a peak is observed around 200 to 800 ° C. with a maximum around 420 ° C. as the maximum.
  • the peak observed around 100 to 200 ° C. with a maximum at around 150 ° C. in the desorption profile of water molecules is thought to be due to desorption of water physically adsorbed on the glass surface.
  • a glass sample into which no hydrogen molecule has been introduced is similarly placed in a temperature-programmed desorption analyzer, the inside of the measurement chamber is evacuated to 5 ⁇ 10 ⁇ 7 Pa or less and heated, and the mass number of the generated gas Measure.
  • a peak considered to be due to desorption of physically adsorbed water is observed in the vicinity of 100 to 200 ° C.
  • no peak with a maximum around 420 ° C. was observed. Therefore, it can be considered that the peak observed around 200 ° C. to 800 ° C. with the maximum around 420 ° C. is due to the desorption of hydrogen molecules introduced into the glass.
  • the number of desorbed hydrogen molecules of the measurement sample can be calculated from the integrated intensity ratio of the desorption peak of the hydrogen molecule between the measurement sample and a standard sample with a known hydrogen concentration.
  • silicon ion-implanted silicon used as the standard sample
  • the measurement method is as follows.
  • 1 ⁇ 10 16 hydrogen ion-implanted silicon manufactured by Electronic Science Co., Ltd.
  • 1 ⁇ 10 16 hydrogen ion-implanted silicon manufactured by Electronic Science Co., Ltd.
  • was placed in a temperature programmed desorption analyzer was placed in a temperature programmed desorption analyzer and the inside of the measurement chamber was evacuated to 5 ⁇ 10 ⁇ 7 Pa or less and then heated.
  • a desorption peak was observed around 350 to 750 ° C. with the maximum around 550 ° C. This peak is generated when 1 ⁇ 10 16 hydrogen ions in silicon are desorbed.
  • the substrate 11 preferably has a smooth surface of 0.15 nm rms or less and a flatness of 100 nm or less in order to obtain high reflectance and transfer accuracy in a photomask after pattern formation.
  • the size, thickness, etc. of the substrate 11 are appropriately determined by the design value of the mask. In the examples described later, SiO 2 —TiO 2 glass having an outer diameter of 6 inches (152.4 mm) square and a thickness of 0.25 inches (6.3 mm) was used. It is preferable that the surface of the substrate 11 on the side where the reflective layer 12 is formed has no defects.
  • the depth of the concave defect and the height of the convex defect are not more than 2 nm so that the phase defect does not occur due to the concave defect and / or the convex defect. It is preferable that the half width of the defect and the convex defect is 60 nm or less.
  • the reflective layer 12 is not particularly limited as long as it has desired characteristics as a reflective layer of an EUV mask blank.
  • the characteristic particularly required for the reflective layer 12 is a high EUV light reflectance.
  • the maximum value of light reflectance near the wavelength of 13.5 nm is preferably 60% or more, and 65% or more. It is more preferable.
  • the maximum value of the light reflectance near the wavelength of 13.5 nm is preferably 60% or more, and 65% or more. It is more preferable that
  • the reflective layer 12 can achieve high EUV light reflectance, a multilayer reflective film in which a high refractive layer and a low refractive index layer are alternately laminated a plurality of times is usually used as the reflective layer 12.
  • a multilayer reflective film in which a high refractive layer and a low refractive index layer are alternately laminated a plurality of times is usually used as the reflective layer 12.
  • Mo is widely used for the high refractive index layer
  • Si is widely used for the low refractive index layer. That is, the Mo / Si multilayer reflective film is the most common.
  • the multilayer reflective film is not limited to this, and Ru / Si multilayer reflective film, Mo / Be multilayer reflective film, Mo compound / Si compound multilayer reflective film, Si / Mo / Ru multilayer reflective film, Si / Mo / Ru / A Mo multilayer reflective film and a Si / Ru / Mo / Ru multilayer reflective film can also be used.
  • each layer constituting the multilayer reflective film constituting the reflective layer 12 and the number of repeating units of the layers can be appropriately selected according to the film material used and the EUV light reflectance required for the reflective layer.
  • the multilayer reflective film is composed of a Mo layer having a film thickness of 2.3 ⁇ 0.1 nm, A Si layer having a thickness of 4.5 ⁇ 0.1 nm may be stacked so that the number of repeating units is 30 to 60.
  • each layer which comprises the multilayer reflective film which comprises the reflective layer 12 so that it may become desired thickness using well-known film-forming methods, such as a magnetron sputtering method and an ion beam sputtering method.
  • film-forming methods such as a magnetron sputtering method and an ion beam sputtering method.
  • an Si / Mo multilayer reflective film is formed by ion beam sputtering
  • an Si target is used as a target and Ar gas (gas pressure 1.3 ⁇ 10 ⁇ 2 Pa to 2.7 ⁇ 10 ⁇ as a sputtering gas). 2 Pa)
  • an Si film is formed to have a thickness of 4.5 nm at an ion acceleration voltage of 300 to 1500 V and a film formation rate of 0.03 to 0.30 nm / sec.
  • the Si / Mo multilayer reflective film is formed by laminating the Si film and the Mo film for 40 to 50 periods.
  • the uppermost layer of the multilayer reflective film forming the reflective layer 12 is preferably a layer made of a material that is not easily oxidized.
  • the layer of material that is not easily oxidized functions as a cap layer of the reflective layer 12.
  • a Si layer can be exemplified.
  • the uppermost layer can be made to function as a cap layer by making the uppermost layer an Si layer. In that case, the thickness of the cap layer is preferably 11.0 ⁇ 1.0 nm.
  • the protective layer 13 is provided for the purpose of protecting the reflective layer 12 so that the reflective layer 12 is not damaged by the etching process when the absorption layer 14 is patterned by an etching process, usually a dry etching process. Therefore, as the material of the protective layer 13, a material that is not easily affected by the etching process of the absorber layer 14, that is, the etching rate is slower than that of the absorber layer 14 and is not easily damaged by the etching process is selected. Examples of the material satisfying this condition include Cr, Al, Ta and nitrides thereof, Ru and Ru compounds (RuB, RuSi, etc.), and SiO 2 , Si 3 N 4 , Al 2 O 3 and mixtures thereof. Is done.
  • the thickness of the protective layer 13 is preferably 1 to 60 nm. Further, the protective layer may be a single layer or a plurality of layers.
  • the protective layer 13 is formed using a known film formation method such as magnetron sputtering or ion beam sputtering.
  • a Ru film is formed by magnetron sputtering
  • a Ru target is used as a target
  • Ar gas gas pressure: 1.0 ⁇ 10 ⁇ 1 Pa to 10 ⁇ 10 ⁇ 1 Pa
  • the characteristic particularly required for the absorber layer 14 is that the EUV light reflectance is extremely low. Specifically, when the surface of the absorber layer 14 is irradiated with light in the wavelength region of EUV light, the maximum light reflectance near a wavelength of 13.5 nm is preferably 0.5% or less, 0.1% The following is more preferable. In order to achieve the above characteristics, it is preferable that the material is made of a material having a high EUV light absorption coefficient.
  • the absorber layer 14 of the EUV mask blank 1 of the present invention achieves the above characteristics by containing tantalum (Ta), boron (B), nitrogen (N) and hydrogen (H) in the specific ratio described below. To do.
  • the B content in the absorber layer 14 is 1 at% or more and less than 5 at%.
  • a film containing Ta and B TaB film, TaBN film, TaBO film, TaBNO film
  • the content ratio of B in the film is 5 at It was necessary to make more than%.
  • the B content of the film is set to 5 at% or more, the film formation rate is slow, and it is difficult to control the B content and film thickness of the film. There was a problem of becoming.
  • the absorber layer 14 contains Ta, B, N, and H at a specific ratio, so that even if the B content of the absorber layer 14 is less than 5 at%, absorption is performed. It is preferable because the crystalline state of the body layer 14 is amorphous. If the B content of the absorber layer 14 is less than 1 at%, it is necessary to increase the amount of H added to make the crystalline state of the absorber layer 14 amorphous. Specifically, it is preferable that the H content is more than 5 at%, and as a result, the required thickness of the absorption layer becomes thicker due to a request for the EUV light reflectance to be 0.5% or less. It is not preferable.
  • the B content in the absorber layer 14 is 5 at% or more, the above-described problems such as a slow deposition rate are likely to occur.
  • the B content in the absorber layer 14 is more preferably 1 to 4.5 at%, and further preferably 1.5 to 4 at%.
  • a film thickness of 1.5 to 4 at% is very preferable because it can stably form a film and is excellent in smoothness, which is a required characteristic of a mask, and has a good balance.
  • the H content of the absorber layer 14 is 0.1 to 5 at%. When the H content of the absorber layer 14 is less than 0.1 at%, the crystalline state of the absorber layer 14 is unlikely to be amorphous. Since H is a material having a low EUV light absorption coefficient, if the H content of the absorber layer 14 is more than 5 at%, the absorption layer necessary for making the EUV light reflectance 0.5% or less is required. The film thickness may increase.
  • the H content in the absorber layer 14 is more preferably 0.1 to 4.5 at%, further preferably 0.5 to 4.5 at%, and 1 to 4 at%.
  • the remainder excluding B and H is preferably Ta and N.
  • the total content of Ta and N in the absorber layer 14 is 90 to 98.9 at%.
  • the total content of Ta and N in the absorber layer 14 is preferably 91 to 98.9 at%, and more preferably 91.5 to 98 at%.
  • the composition ratio (Ta: N) of Ta and N in the absorber layer 14 is 8: 1 to 1: 1. If the ratio of Ta is higher than the above composition ratio, the light reflectance in the wavelength region of the pattern inspection light cannot be made sufficiently low. On the other hand, when the ratio of N is higher than the above composition ratio, the film density decreases, the EUV light absorption coefficient decreases, and sufficient EUV light absorption characteristics cannot be obtained.
  • the composition ratio (Ta: N) of Ta and N in the absorber layer 14 is preferably 5: 1 to 1: 1 and 3: 1 to 1: 1. Further, the content of Ta in the absorber layer 14 is more preferably 50 to 90 at%, further preferably 55 to 80 at%, and further preferably 60 to 80 at%. The N content in the absorber layer 14 is more preferably 5 to 30 at%, and further preferably 10 to 25 at%.
  • the absorber layer 14 may contain elements other than Ta, B, N, and H, but it is important to satisfy suitability as a mask blank such as an absorption characteristic of EUV light.
  • the Cr content is preferably 3 at% or less, particularly 1 at% or less, and further preferably not containing Cr from the viewpoint of low reflection performance. Further, in the absorber layer, it is preferable in terms of low reflection performance that the Ti content is 3 at% or less, particularly 1 at% or less, and further Ti is not contained.
  • the crystalline state thereof is preferably amorphous.
  • the phrase “crystalline state is amorphous” includes a microcrystalline structure other than an amorphous structure having no crystal structure. If the absorber layer 14 is a film having an amorphous structure or a film having a microcrystalline structure, the surface of the absorber layer 14 is excellent in smoothness. In the EUV mask blank 1 of the present invention, since the absorber layer 14 is an amorphous structure film or a microcrystalline structure film, the surface roughness of the absorber layer 14 surface is 0.5 nm rms or less.
  • the surface of the absorber layer 14 is preferably smooth. If the surface roughness of the surface of the absorber layer 14 is 0.5 nm rms or less, the surface of the absorber layer 14 is sufficiently smooth, and there is no possibility that the dimensional accuracy of the pattern is deteriorated due to the influence of edge roughness.
  • the surface roughness of the absorber layer 14 surface is more preferably 0.4 nm rms or less, and further preferably 0.3 nm rms or less.
  • the crystalline state of the absorber layer 14 is amorphous, that is, an amorphous structure or a microcrystalline structure. If the crystalline state of the absorber layer 14 is an amorphous structure or a microcrystalline structure, a sharp peak is not observed in a diffraction peak obtained by XRD measurement.
  • XRD X-ray diffraction
  • the thickness of the absorber layer 14 is preferably 30 to 100 nm.
  • the absorption layer 14 having the above-described configuration can be formed using a known film formation method such as a sputtering method such as a magnetron sputtering method or an ion beam sputtering method.
  • the absorber layer 14 can be formed by the following method (1) or (2).
  • the absorber layer 14 is formed by simultaneously discharging these targets in an atmosphere containing hydrogen (H).
  • the absorber layer 14 is formed by discharging in an atmosphere containing hydrogen (H).
  • the method (2) is preferable because it can avoid unstable discharge and variations in film composition and film thickness.
  • the following film forming conditions may be used.
  • the concentration of the inert is used, the concentration of the inert
  • the low reflection layer 15 is composed of a film that exhibits low reflection in inspection light used for inspection of a mask pattern.
  • an inspection machine that normally uses light of about 257 nm as inspection light is used. That is, the difference in reflectance of light of about 257 nm, specifically, the surface where the absorber layer 14 is removed by pattern formation and the surface of the absorber layer 14 that remains without being removed by pattern formation, It is inspected by the difference in reflectance.
  • the former is the surface of the reflective layer 12 or the surface of the protective layer 13, and is usually the surface of the protective layer 13. Therefore, if the difference in reflectance between the surface of the protective layer 13 and the surface of the absorber layer 14 with respect to the wavelength of the inspection light is small, the contrast at the time of inspection deteriorates and accurate inspection cannot be performed.
  • the absorber layer 14 having the above-described configuration has extremely low EUV light reflectance, and has excellent characteristics as an absorption layer of the EUV mask blank 1.
  • the light reflectance is not necessarily high. It's not low enough.
  • the difference between the reflectance of the surface of the absorber layer 14 and the reflectance of the surface of the protective layer 13 at the wavelength of the inspection light becomes small, and there is a possibility that sufficient contrast at the time of inspection cannot be obtained. If sufficient contrast at the time of inspection is not obtained, pattern defects cannot be sufficiently determined in mask inspection, and accurate defect inspection cannot be performed.
  • the low reflection layer 15 for the inspection light is formed on the absorber layer 14 so that the contrast at the time of inspection is good.
  • the reflectivity is extremely low.
  • the maximum light reflectance of the wavelength of the inspection light is preferably 15% or less, and preferably 10% or less. Is more preferable, and it is further more preferable that it is 5% or less. If the light reflectance at the wavelength of the inspection light in the low reflection layer 15 is 15% or less, the contrast at the time of the inspection is good.
  • the contrast between the reflected light having the wavelength of the inspection light on the surface of the protective layer 13 and the reflected light having the wavelength of the inspection light on the surface of the low reflective layer 15 is 40% or more.
  • R 2 at the wavelength of the inspection light is the reflectance at the surface of the protective layer 13
  • R 1 is the reflectance at the surface of the low reflective layer 15.
  • the above R 1 and R 2 are, as shown in FIG. 2, it is measured in a state of forming a pattern on the absorber layer 14 of the EUV mask blank 1 (and the low reflective layer 15) shown in FIG.
  • the R 2 is a value measured on the surface of the reflective layer 12 or the protective layer 13 exposed to the outside after the absorber layer 14 and the low reflective layer 15 are removed by pattern formation in FIG. 2, and R 1 is the pattern formation. This is a value measured on the surface of the low reflective layer 15 remaining without being removed by.
  • the contrast represented by the above formula is more preferably 45% or more, further preferably 60% or more, and particularly preferably 80% or more.
  • the low reflection layer 15 is preferably made of a material whose refractive index at the wavelength of the inspection light is lower than that of the absorber layer 14, and its crystal state is preferably amorphous.
  • the above characteristics are achieved by containing Ta, B, oxygen (O) and H in the specific ratio described below.
  • the B content of the low reflective layer 15 is 1 at% or more and less than 5 at%.
  • the absorber layer when a film containing Ta and B (TaB film, TaBN film, TaBO film, TaBNO film) is used, in order to make the crystalline state of the film amorphous, the B content of the film Must be 5 at% or more.
  • the low reflective layer 15 contains Ta, B, O and H in a specific ratio, so that even if the B content of the low reflective layer 15 is less than 5 at%, the layer This is preferable because the crystalline state is amorphous.
  • the absorber layer may be oxidized by oxygen plasma treatment or the like to form a low reflection layer.
  • the B content of the low reflection layer 15 is less than 1 at%, it is necessary to increase the amount of H added to make the crystal state of the low reflection layer 15 amorphous. Specifically, the H content needs to be more than 15 at%, and depending on the H content and film thickness of the absorber layer 14, the EUV light reflectance is 0.5% or less. This is not preferable because the total film thickness of the necessary absorber layer 14 and low reflection layer 15 may increase.
  • the B content of the low reflective layer 15 is 5 at% or more, problems similar to those described for the absorber layer 14, such as a slow deposition rate, are likely to occur.
  • the B content in the low reflective layer 15 is more preferably 1 to 4.5 at%, and further preferably 1.5 to 4 at%.
  • the H content of the low reflective layer 15 is 0.1 to 15 at%. When the H content of the low reflective layer 15 is less than 0.1 at%, the crystal state of the low reflective layer 15 is unlikely to be amorphous. H is a material having a low EUV light absorption coefficient. Therefore, if the H content of the low reflective layer 15 exceeds 15 at%, the EUV light will depend on the H content and film thickness of the absorber layer 14. This is not preferable because the total film thickness of the absorber layer 14 and the low reflection layer 15 required for the reflectance to be 0.5% or less may increase.
  • the H concentration of the low reflective layer 15 is more preferably 0.5 to 10 at%, and further preferably about 1 to 10 at%, 3 to 10 at%, and 5 to 9 at%.
  • the H concentration of the low reflection layer 15 is preferably 1.5 at% or more, 2.5 at% or more, particularly about 3.5 to 8 at% higher than the H concentration of the absorber layer 14.
  • the remainder except B and H is preferably Ta and O.
  • the total content of Ta and O in the low reflective layer 15 is 80 to 98.9 at%.
  • the total content of Ta and O in the low reflective layer 15 is preferably 85.5 to 98.5 at%, more preferably 86 to 97.5 at%.
  • the composition ratio (Ta: O) of Ta and O in the low reflection layer 15 is 1: 8 to 3: 1. If the ratio of Ta is higher than the above composition ratio, the light reflectance in the wavelength region of the pattern inspection light cannot be made sufficiently low. On the other hand, when the proportion of O is higher than the above composition ratio, the insulating property becomes high, and charge-up may occur due to electron beam irradiation.
  • the film density is lowered, the insulating property of the low reflective layer 15 is increased, and charge-up occurs easily when drawing an electron beam on the low reflective layer 15, which is not preferable.
  • the low reflective layer 15 is thinner than the absorber layer 14 and charge-up is relatively unlikely.
  • the upper limit of the O content is gentler than that of the absorber layer 14.
  • the content ratio (Ta: O) of Ta and O in the low reflective layer 15 is preferably 1: 7 to 2: 1, and more preferably 1: 5 to 1: 1.
  • the low reflective layer 15 may contain N in addition to Ta, B, O and H. That is, in the EUV mask blank 1 of the present invention, the second embodiment of the low reflective layer 15 achieves the above characteristics by containing Ta, B, O, H, and N in a specific ratio described below. In addition, when the low reflection layer 15 contains N, it is thought that the smoothness of the surface of the low reflection layer 15 improves.
  • the first embodiment of the low reflection layer is described as a low reflection layer (TaBOH), and the second embodiment is described as a low reflection layer (TaBONH), so that the two are distinguished.
  • TaOH which is a material of the low reflection layer
  • TaBONH low reflection layer
  • the B content in the low reflective layer is preferably 1 at% or more and less than 5 at%. If the B content of the low reflection layer 15 is less than 1 at%, it is necessary to increase the amount of H added to make the crystal state of the low reflection layer 15 amorphous. Specifically, the H content needs to be more than 15 at%, and depending on the H content and film thickness of the absorber layer 14, the EUV light reflectance is 0.5% or less. This is not preferable because the total film thickness of the necessary absorber layer 14 and low reflective layer 15 may increase. When the B content of the low reflection layer 15 is 5 at% or more, problems similar to those described for the absorber layer 14, such as a slow deposition rate, are likely to occur.
  • the content of B in the low reflection layer (TaBONH) is more preferably 1 to 4.5 at%, and further preferably 2 to 4.0 at%.
  • the content of H in the low reflection layer (TaBONH) is 0.1 to 15 at%.
  • H content of the low reflection layer (TaBONH) is less than 0.1 at%, the crystal state of the low reflection layer (TaBONH) does not become amorphous.
  • H is a material having a low EUV light absorption coefficient. Therefore, if the H content of the low reflective layer 15 exceeds 15 at%, the EUV light will depend on the H content and film thickness of the absorber layer 14. This is not preferable because the total film thickness of the absorber layer 14 and the low reflection layer 15 required to make the reflectance 0.5% or less may increase.
  • the H content in the low reflective layer (TaBONH) is more preferably 0.5 to 10 at%, and further preferably 1 to 10 at%.
  • the remainder excluding B and H is preferably Ta, O and N.
  • the total content of Ta, O and N in the low reflection layer 15 is 80 to 98.9 at%.
  • the total content of Ta, O and N in the low reflective layer 15 is preferably 85.5 to 98.5 at%, and more preferably 86 to 97.5 at%.
  • the composition ratio of Ta, O, and N (Ta: (O + N)) in the low reflective layer (TaBONH) is 1: 8 to 3: 1.
  • the composition ratio of Ta, O, and N (Ta: (O + N)) in the low reflection layer (TaBONH) is preferably 2: 7 to 1: 1, and more preferably 1: 3 to 1: 1. Note that it is preferable to combine the low reflective layer (TaBONH) with the absorber layer (TaBNH) in view of film formability.
  • the low reflection layer (TaBOH) film is a film containing at least Ta, B, O and H
  • the film may contain other elements than these elements.
  • the low reflection layer (TaBONH) is a film containing at least Ta, B, O, N, and H, the film may contain other elements other than these elements.
  • the content of other elements is preferably 2 at% or less, and particularly preferably 1 at% or less.
  • the low reflection layer in the present invention contains Ta, B, O and H as essential components, N as an optional component, and a B content of 1 at% or more and less than 5 at%.
  • the H content is 0.1 to 15 at%
  • the total content of Ta and O (O and N when N is contained) is 80 to 98.9 at%
  • Ta and O The composition ratio (Ta: O) to (when N is contained is O and N) is preferably 1: 8 to 3: 1.
  • the crystal state thereof is amorphous and the surface thereof is excellent in smoothness.
  • the surface roughness of the surface of the low reflection layer (TaBOH) or (TaBONH) is 0.5 nm rms or less.
  • the surface of the absorber layer is preferably smooth in order to prevent deterioration of the dimensional accuracy of the pattern due to the influence of edge roughness. Since the low reflection layers (TaBOH) and (TaBONH) are formed on the absorber layer, the surface thereof is preferably smooth for the same reason.
  • the surface roughness of the surface of the low reflection layer (TaBOH) and (TaBONH) is 0.5 nm rms or less, the surface of the low reflection layer (TaBOH) and (TaBONH) is sufficiently smooth. There is no possibility that the dimensional accuracy deteriorates.
  • the surface roughness of the surface of the low reflective layer 15 is more preferably 0.4 nm rms or less, and further preferably 0.3 nm rms or less.
  • N is contained, that is, the low reflection layer (TaBONH) is more preferable than the low reflection layer (TaBOH) in terms of smoothness.
  • the crystal state of the low reflective layer (TaBOH) or (TaBONH) is amorphous, that is, an amorphous structure or a microcrystalline structure. it can. If the crystal state of the low reflective layer (TaBOH) or (TaBONH) is an amorphous structure or a microcrystalline structure, a sharp peak is not observed in a diffraction peak obtained by XRD measurement.
  • the total film thickness of the absorber layer and the low reflection layer (TaBOH) and (TaBONH) is preferably 55 to 130 nm.
  • the thickness of the low reflective layer (TaBOH) or (TaBONH) is larger than the thickness of the absorber layer, the EUV light absorption characteristics in the absorber layer may be degraded. Therefore, the low reflective layer (TaBOH) , (TaBONH) is preferably smaller than the thickness of the absorber layer. For this reason, the thickness of the low reflection layer (TaBOH) or (TaBONH) is preferably 5 to 30 nm, and more preferably 10 to 20 nm.
  • the low reflection layers (TaBOH) and (TaBONH) can be formed using a known film formation method such as a sputtering method such as a magnetron sputtering method or an ion beam sputtering method.
  • the low reflection layer (TaBOH) can be formed by the method 1) or (2).
  • an inert gas containing at least one of helium (He), argon (Ar), neon (Ne), krypton (Kr), and xenon (Xe), oxygen (O ) And hydrogen (H) are simultaneously discharged in an atmosphere containing hydrogen (H) to form a low reflection layer (TaBOH).
  • an inert gas containing at least one of helium (He), argon (Ar), neon (Ne), krypton (Kr), and xenon (Xe), oxygen (O) and A low reflective layer (TaBOH) is formed by discharging in an atmosphere containing hydrogen (H).
  • H hydrogen
  • the composition of the low reflection layer (TaBOH) to be formed is controlled by adjusting the input power of each target. Can do.
  • the method (2) is preferable because it can avoid unstable discharge and variations in film composition and film thickness.
  • an inert gas containing at least one of helium (He), argon (Ar), neon (Ne), krypton (Kr), and xenon (Xe), and oxygen (O) In the atmosphere containing nitrogen (N) and hydrogen (H), the same procedure as described above may be performed.
  • TaB compound target (2) Sputtering gas: Ar, O 2 and H 2 mixed gas (H 2 gas concentration 1 to 50 vol%, preferably 1 to 30 vol%, O 2 gas concentration 1 to 80 vol%, preferably 5 to 75 vol%, Ar gas concentration 5 to 95 vol%, preferably 10 to 94 vol%, gas pressure 1.0 ⁇ 10 ⁇ 1 Pa to 50 ⁇ 10 ⁇ 1 Pa, preferably 1.0 ⁇ 10 ⁇ 1 Pa to 40 ⁇ 10 ⁇ 1 Pa, more preferably 1 .0 ⁇ 10 ⁇ 1 Pa to 30 ⁇ 10 ⁇ 1 Pa.)
  • Input power 30 to 1000 W, preferably 50 to 750 W, more preferably 80 to 500 W
  • Deposition rate 0.01 to 60 nm / min, preferably 0.05 to 45 nm / min, more preferably 0.1 to 30 nm / min
  • the low reflection layer 15 on the absorber layer 14 because the wavelength of the pattern inspection light and the wavelength of the EUV light are different. Therefore, when EUV light (around 13.5 nm) is used as the pattern inspection light, it is considered unnecessary to form the low reflection layer 15 on the absorber layer 14.
  • the wavelength of the inspection light tends to shift to the short wavelength side as the pattern size becomes smaller, and it is conceivable that it will shift to 193 nm and further to 13.5 nm in the future.
  • the wavelength of the inspection light is 13.5 nm, it is considered unnecessary to form the low reflection layer 15 on the absorber layer 14.
  • the EUV mask blank 1 of the present invention may have a functional film known in the field of EUV mask blanks in addition to the reflective layer 12, the protective layer 13, the absorber layer 14, and the low reflective layer 15.
  • a functional film for example, as described in JP-A-2003-501823, a high dielectric material applied to the back side of the substrate in order to promote electrostatic chucking of the substrate.
  • a functional coating here, the back surface of the substrate refers to the surface of the substrate 11 in FIG. 1 opposite to the side on which the reflective layer 12 is formed.
  • the electrical conductivity and thickness of the constituent material are selected so that the sheet resistance is 100 ⁇ / ⁇ or less.
  • the constituent material of the high dielectric coating can be widely selected from those described in known literature.
  • a high dielectric constant coating described in JP-A-2003-501823 specifically, a coating made of silicon, TiN, molybdenum, chromium, or TaSi can be applied.
  • the thickness of the high dielectric coating can be, for example, 10 to 1000 nm.
  • the high dielectric coating can be formed using a known film formation method, for example, a sputtering method such as a magnetron sputtering method or an ion beam sputtering method, a CVD method, a vacuum evaporation method, or an electrolytic plating method.
  • the patterning method of the absorber layer is not particularly limited, and for example, a method of applying a resist on the absorber layer to form a resist pattern and etching the absorber layer using this as a mask can be employed.
  • the resist material and the resist pattern drawing method may be appropriately selected in consideration of the material of the absorber layer and the like.
  • the method for etching the absorber layer is not particularly limited, and dry etching such as reactive ion etching or wet etching can be employed.
  • the EUV mask is obtained by stripping the resist with a stripping solution.
  • the present invention can be applied to a method for manufacturing a semiconductor integrated circuit by a photolithography method using EUV light as an exposure light source.
  • a substrate such as a silicon wafer coated with a resist is placed on a stage, and the EUV mask is installed in a reflective exposure apparatus configured by combining a reflecting mirror.
  • the EUV light is irradiated from the light source to the EUV mask through the reflecting mirror, and the EUV light is reflected by the EUV mask and irradiated to the substrate coated with the resist.
  • the circuit pattern is transferred onto the substrate.
  • the substrate on which the circuit pattern has been transferred is subjected to development to etch the photosensitive portion or the non-photosensitive portion, and then the resist is removed.
  • a semiconductor integrated circuit is manufactured by repeating such steps.
  • Example 1 In this example, the EUV mask blank 1 shown in FIG. 1 was produced. However, in the EUV mask blank 1 of Example 1, the low reflection layer 15 was not formed on the absorber layer 14.
  • a SiO 2 —TiO 2 glass substrate (outer diameter 6 inches (152.4 mm) square, thickness 6.3 mm) was used. This glass substrate has a thermal expansion coefficient of 0.2 ⁇ 10 ⁇ 7 / ° C., a Young's modulus of 67 GPa, a Poisson's ratio of 0.17, and a specific rigidity of 3.07 ⁇ 10 7 m 2 / s 2 .
  • This glass substrate was polished to form a smooth surface with an rms of 0.15 nm or less and a flatness of 100 nm or less.
  • a high dielectric coating having a sheet resistance of 100 ⁇ / ⁇ was applied to the back side of the substrate 11 by depositing a Cr film having a thickness of 100 nm using a magnetron sputtering method.
  • a substrate 11 (outer dimensions 6 inches (152.4 mm) square, thickness 6.3 mm) is fixed to a normal electrostatic chuck having a flat plate shape by using the formed Cr film, and ions are formed on the surface of the substrate 11.
  • Si / Mo multilayer reflective film (reflective layer) having a total film thickness of 272 nm ((4.5 nm + 2.3 nm) ⁇ 40) is obtained by repeating 40 cycles of alternately forming Si films and Mo films using beam sputtering. 12) was formed.
  • the protective layer 13 was formed by forming a Ru film (film thickness: 2.5 nm) on the Si / Mo multilayer reflective film (reflective layer 12) by ion beam sputtering.
  • the deposition conditions for the Si film, the Mo film, and the Ru film are as follows. Conditions for forming the Si film Target: Si target (boron doped) Sputtering gas: Ar gas (gas pressure 0.02 Pa) Voltage: 700V Deposition rate: 0.077 nm / sec Film thickness: 4.5nm Conditions for forming the Mo film Target: Mo target Sputtering gas: Ar gas (gas pressure 0.02 Pa) Voltage: 700V Deposition rate: 0.064 nm / sec Film thickness: 2.3 nm Ru film formation conditions Target: Ru target sputtering gas: Ar gas (gas pressure 0.02 Pa) Voltage: 500V Deposition rate: 0.023 nm / sec Film thickness: 2.5nm
  • TaBNH layer is formed as the absorber layer 14 on the protective layer 13 by using the magnetron sputtering method, so that the reflective layer 12, the protective layer 13 and the absorber layer 14 are formed on the substrate 11 in this order.
  • the obtained EUV mask blank 1 was obtained.
  • the conditions for forming the TaBNH layer are as follows. Film formation conditions for TaBNH layer Target: TaB compound target (composition ratio: Ta 80 at%, B 20 at%)
  • Sputtering gas Mixed gas of Ar, N 2 and H 2 (Ar: 89 vol%, N 2 : 8.3 vol%, H 2 : 2.7 vol%, gas pressure: 0.46 Pa)
  • Input power 300W Deposition rate: 1.5 nm / min Film thickness: 60nm
  • the following evaluations (1) to (5) were performed on the absorber layer of the EUV mask blank obtained by the above procedure.
  • Etching characteristics were evaluated by the following method instead of using the EUV mask blank produced by the above procedure.
  • a Si chip (10 mm ⁇ 30 mm) on which a Ru film or a TaBNH film was formed by the method described below was installed as a sample.
  • the Ru film or TaBNH film of the Si chip placed on the sample stage was subjected to plasma RF etching under the following conditions.
  • Bias RF 50W Etching time: 120 sec
  • Trigger pressure 3Pa Etching pressure: 1Pa Etching gas: Cl 2 / Ar Gas flow rate (Cl 2 / Ar): 20/80 sccm Distance between electrode substrates: 55 mm
  • the Ru film was formed by ion beam sputtering under the following film formation conditions.
  • Ru film formation conditions Target: Ru target Sputter gas: Ar gas (gas pressure: 2 mTorr, flow rate: 15 sccm) Output: 150W Deposition rate: 0.023 nm / sec Film thickness: 2.5nm
  • the TaBNH film was formed under the same conditions as in Example 1 except that the substrate was a Si substrate.
  • the etching rate was determined for the Ru film and the TaBNH film formed under the above conditions, and the etching selectivity was determined using the following formula.
  • Etching selectivity (TaBNH film etching rate) / (Ru film etching rate)
  • the etching selectivity with the protective layer 13 is desirably 10 or more, but the etching selectivity of the TaBNH film is as follows, and all of them had a sufficient selectivity.
  • Example 2 the EUV mask blank 1 in which the low reflection layer 15 was formed on the absorber 14 was produced.
  • the procedure up to forming the absorber layer 14 on the protective layer 13 was performed in the same manner as in Example 1.
  • a TaBONH film was formed as a low reflection layer 15 for inspection light having a wavelength of 257 nm by using a magnetron sputtering method.
  • the composition ratio (at%) of the low reflective layer was measured by the same method as in Example 1.
  • Ta: B: N: O: H 25: 3: 5: 59: 8.
  • the conditions for forming the TaBONH film are as follows.
  • TaB target Composition ratio: Ta 80 at%, B 20 at%)
  • Sputtering gas Ar, N 2, and O 2 and H 2 mixed gas (Ar: 60vol%, N 2 : 17.3vol%, O 2: 20vol%, N 2: 2.7vol%, gas pressure: 0.3 Pa)
  • Input power 450W Deposition rate: 1.5 nm / sec Film thickness: 10nm
  • Example 1 Reflection characteristics (contrast evaluation)
  • the protective layer (Ru layer) 13 when the protective layer (Ru layer) 13 was formed, the reflectance of the pattern inspection light (wavelength 257 nm) on the surface of the protective layer 13 was measured using a spectrophotometer.
  • the low reflection layer (TaBONH) 15 in Example 2 after forming the low reflection layer (TaBONH) 15 in Example 2, the reflectance of the pattern inspection light on the surface of the low reflection layer was measured.
  • the reflectance on the surface of the protective layer 13 was 60.0%, and the reflectance on the surface of the low reflective layer 15 was 6.9%.
  • the contrast was determined to be 79.4%.
  • the EUV light (wavelength 13.5nm) was irradiated to the low reflective layer 15 surface, and the reflectance of EUV light was measured. As a result, the reflectance of EUV light was 0.4%, and it was confirmed that the EUV absorption characteristics were excellent.
  • Example 3 In this example, the same procedure as in Example 2 was performed, except that the low reflective layer 15 formed on the absorber 14 was TaBOH.
  • the low reflection layer 15 (TaBOH) was formed using a magnetron sputtering method.
  • the composition ratio (at%) of the low reflective layer 15 was measured by the same method as in Example 1.
  • Ta: B: O: H 29: 4: 59: 8.
  • the conditions for forming the TaBOH film are as follows.
  • TaBOH layer Target TaB target (Composition ratio: Ta 80 at%, B 20 at%)
  • Sputtering gas Ar, O 2 and H 2 mixed gas (Ar: 60 vol%, O 2 : 37.3 vol%, H 2 : 2.7 vol%, gas pressure: 0.3 Pa)
  • Input power 450W Deposition rate: 2.0 nm / sec Film thickness: 10nm
  • the reflection characteristics of the low reflection layer of the EUV mask blank obtained by the above procedure were evaluated in the same manner as in Example 2, the reflectance of the surface of the low reflection layer 15 with respect to pattern inspection light (257 nm) was 6.0%. there were. Using these results and the above formula, the contrast was determined to be 81.8%.
  • TaBN tantalum boron alloy nitride
  • TaBN layer Target TaB target (composition ratio: Ta 80 at%, B 20 at%)
  • Sputtering gas Ar gas, N 2 gas (Ar: 86% by volume, N 2 : 14% by volume, gas pressure: 0.3 Pa)
  • Input power 150W
  • Deposition rate 6.4 nm / sec Film thickness: 60nm
  • the surface roughness of the TaBN film surface was confirmed by an atomic force microscope, it was 0.5 nm rms, and the surface roughness was larger than that of the absorber layer (TaBNH layer) of Example 1. It was.
  • the film forming conditions were optimized using the TaB target, the content of B was less than 5 at%, and no TaBN film having an amorphous structure was obtained.
  • Comparative Example 2 Comparative Example 2 was carried out in the same procedure as Example 1 except that the absorber layer was a tantalum boron alloy nitride (TaBN) film not containing hydrogen (H).
  • Film formation conditions for TaBN layer Target TaB target (composition ratio: Ta50at%, B50at%)
  • Input power 150W Deposition rate: 4.0 nm / sec Film thickness: 60nm
  • the B content was 5 at% or more.
  • the crystal structure of the TaBN film after film formation was confirmed with an X-ray diffractometer, no sharp peak was observed in the obtained diffraction peak, so the crystal structure of the absorber layer was amorphous. A structure or a microcrystalline structure was confirmed. Further, the surface roughness of the TaBN film surface after film formation was confirmed by an atomic force microscope, and it was 0.2 nm rms.
  • the reflectance of the pattern inspection light (wavelength 257 nm) on the surface of the protective layer (Ru layer) 13 and the TaBN layer was measured in the same procedure as in Example 1.
  • the reflectance on the surface of the protective layer 13 was 60.0%, and the reflectance on the surface of the TaBN layer was 9.9%.
  • the contrast was calculated to be 71.7%, confirming that the contrast was lower than that of Example 1.
  • the etching characteristics of the TaBN film were evaluated in the same procedure as described above. As a result, the etching selectivity of the TaBN film was 12.8.
  • the deposition rate of the TaBN layer of Comparative Example 2 was considerably slow, about 2/3 of the deposition rate of Example 1. Moreover, in order to confirm reproducibility, although it implemented several times on the conditions of the comparative example 2, discharge may be unstable, film formation may be impossible, and film composition and film thickness control are extremely difficult. Was confirmed.
  • Comparative Example 3 Comparative Example 3 is performed in the same procedure as Example 1 except that the B concentration in the TaBNH layer is less than 1 at%.
  • the crystal structure of the obtained TaBNH layer is confirmed using an X-ray diffractometer, a sharp peak is observed in the obtained diffraction peak, so that the TaBNH layer is confirmed to be crystalline.
  • Comparative Example 4 Comparative Example 4 is performed in the same procedure as Example 1 except that the B content in the TaBNH layer is more than 5 at%. In Comparative Example 4, the deposition rate of the TaBNH layer is significantly slower than that in Example 1. Further, in order to confirm the reproducibility, when the process is carried out a plurality of times under the conditions of Comparative Example 4, since the discharge is unstable, the film formation may not be possible or the film composition and the film thickness are extremely difficult to control. That is confirmed.
  • Comparative Example 5 is carried out in the same procedure as in Example 1, except that the H content of the TaBNH layer is less than 0.1 at%.
  • the crystal structure of the obtained TaBNH layer is confirmed using an X-ray diffractometer, a sharp peak is observed in the obtained diffraction peak, so that the TaBNH layer is confirmed to be crystalline.
  • Comparative Example 6 Comparative Example 6 is carried out in the same procedure as in Example 1 except that the H content in the TaBNH layer exceeds 5 at%. When the EUV light reflectance on the surface of the obtained TaBNH layer was measured, it was 0.8%, confirming that the EUV light absorption characteristics were inferior to the absorber layer of Example 1.
  • the mask blank of the present invention can be used for manufacturing a semiconductor integrated circuit by a photolithography method using EUV light as an exposure light source. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2008-279859 filed on Oct. 30, 2008 are cited here as disclosure of the specification of the present invention. Incorporated.
  • EUV mask blank 11 Substrate 12: Reflective layer (multilayer reflective film) 13: Protective layer 14: Absorber layer 15: Low reflective layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 EUV光およびパターン検査光の波長域の反射率が低く、かつ該所望の膜組成および膜厚に制御することが容易な吸収体層を有するEUVリソグラフィ用反射型マスクブランクの提供。  基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収体層とがこの順に形成されたEUVリソグラフィ用反射型マスクブランクであって、前記吸収体層が、タンタル(Ta)、ホウ素(B)、窒素(N)および水素(H)を少なくとも含有し、  前記吸収体層において、Bの含有率が1at%以上5at%未満であり、Hの含有率が0.1~5at%であり、TaおよびNの合計含有率が90~98.9%であり、TaとNとの組成比(Ta:N)が8:1~1:1であることを特徴とするEUVリソグラフィ用反射型マスクブランク。

Description

EUVリソグラフィ用反射型マスクブランク
 本発明は、半導体製造等に使用されるEUV(Extreme Ultra Violet:極端紫外)リソグラフィ用反射型マスクブランク(以下、本明細書において、「EUVマスクブランク」という。)に関する。
 従来、半導体産業において、Si基板等に微細なパターンからなる集積回路を形成する上で必要な微細パターンの転写技術として、可視光や紫外光を用いたフォトリソグラフィ法が用いられてきた。しかし、半導体デバイスの微細化が加速している一方で、従来のフォトリソグラフィ法の限界に近づいてきた。フォトリソグラフィ法の場合、パターンの解像限界は露光波長の1/2程度であり、液浸法を用いても露光波長の1/4程度と言われており、ArFレーザ(193nm)の液浸法を用いても45nm程度が限界と予想される。そこで45nm以降の露光技術として、ArFレーザよりさらに短波長のEUV光を用いた露光技術であるEUVリソグラフィが有望視されている。本明細書において、EUV光とは、軟X線領域または真空紫外線領域の波長の光線をさし、具体的には波長10~20nm程度、特に13.5nm±0.3nm程度の光線を指す。
 EUV光は、あらゆる物質に対して吸収されやすく、かつこの波長で物質の屈折率が1に近いため、従来の可視光または紫外光を用いたフォトリソグラフィのような屈折光学系を使用することができない。このため、EUV光リソグラフィでは、反射光学系、すなわち反射型フォトマスクとミラーとが用いられる。
 マスクブランクは、フォトマスク製造用に用いられるパターニング前の積層体である。EUVマスクブランクの場合、ガラス等の基板上にEUV光を反射する反射層と、EUV光を吸収する吸収体層とがこの順で形成された構造を有している。反射層としては、高屈折層と低屈折層とを交互に積層することで、EUV光を層表面に照射した際の光線反射率が高められた多層反射膜が通常使用される。吸収体層には、EUV光に対する吸収係数の高い材料、具体的にはたとえば、CrやTaを主成分とする材料が用いられる。
 特許文献1には、タンタルホウ素合金の窒化物(TaBN)、タンタルホウ素合金の酸化物(TaBO)、及びタンタルホウ素合金の酸窒化物(TaBNO)が、EUV光に対する吸収係数が高いことに加えて、パターン検査光の波長域(190nm~260nm)の深紫外光の反射率が低いことから、吸収体層の材料として好ましいとされている。
 また、特許文献1には、吸収体層表面を平滑性に優れた面にするためには、吸収体層の結晶構造がアモルファスであることが好ましいとされており、TaBN膜、TaBO膜およびTaBNO膜の結晶構造をアモルファスとするためには、これらの膜におけるBの含有率が5~25at%(原子百分率、以下、同じ。)であることが好ましいとされている。特許文献2には、別の吸収体層の材料として、TaBSiNが例示されている。
特開2004-6799号公報(米国特許7390596号公報) 国際公開公報2007/123263号公報(米国公開公報2009-11341号公報)
 しかしながら、吸収体層をTaBO膜またはTaBNO膜とした場合、膜のOの含有率が増加すると、該吸収体層の絶縁性が増し、該吸収体層に電子線描画する際にチャージアップが起こるので好ましくない。
 一方、吸収体層をTaBN膜とした場合、電子線描画時にチャージアップが発生するおそれはない。
 吸収体層をTaBN膜とする場合、欠点が発生しにくい方法であるマグネトロンスパッタリング法などを用いて成膜する。この際、例えば、TaターゲットおよびBターゲットを使用し、窒素雰囲気中でこれらターゲットを同時に放電させることによってTaBN膜を形成することができる。また、TaBの化合物ターゲットを用いて、該ターゲットを窒素雰囲気中で放電させることによってもTaBN膜を形成することができる。
 しかしながら、例えば、TaターゲットおよびBターゲットを用いた手法の場合、Bターゲットは、抵抗値が高くかつ軽元素であるため、Taターゲットと比較して成膜速度が1/10以下であることが多い。そのため、特許文献1に記載されているように、膜の結晶構造をアモルファスにするのに必要なBの含有率(5at%以上)を添加するためには、Taターゲットの成膜速度を低下させる必要があるが、生産効率が著しく低下するため望ましくない。
 一方、TaB化合物ターゲットを用いた手法において、例えばBを20at%、Taを80at%含む化合物ターゲットを使用した場合、実際に膜中に添加されるBの最大含有率は6at%程度であり、膜のBの含有率を5at%以上に制御するのは難しい。更に、Nを添加すると、膜のBの含有率は4at%以下になり、膜の結晶構造をアモルファスにすることが困難になる。
 この問題を解決するため、TaB化合物ターゲット中のB含有量を更に増やすこと(例えばBを50at%、Taを50at%)によって、膜のBの含有率の増加が期待されるが、TaBターゲット中のBの含有量が増すにつれて、TaBターゲットの抵抗値が大きくなり、放電が不安定になるとともに、成膜速度が遅くなる。放電が不安定になることによって、膜の組成や膜厚にばらつきが生じたり、場合によっては成膜不能となるおそれがある。
 本発明は、上記した従来技術の問題点を解決するため、EUVマスクブランクとしての特性に優れ、特にEUV光およびパターン検査光の波長域の反射率が低く、かつ該所望の膜組成および膜厚に制御することが容易な吸収体層を有するEUVマスクブランクを提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意検討した結果、膜組成をTaBN膜ではなく、タンタル(Ta)、ホウ素(B)、窒素(N)および水素(H)を少なくとも含有するTaBNH膜とした場合、膜のBの含有率が5at%未満でも、膜の結晶構造がアモルファスになり、エッチング特性および光学特性に優れ、かつ安定的に製造できる吸収体層が得られることを見出した。
 本発明は、上記の知見に基づいてなされたものであり、基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収体層とがこの順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
 前記吸収体層が、タンタル(Ta)、ホウ素(B)、窒素(N)および水素(H)を少なくとも含有し、
 前記吸収体層において、Bの含有率が1at%以上5at%未満であり、Hの含有率が0.1~5at%であり、TaおよびNの合計含有率が90~98.9at%であり、TaとNとの組成比(Ta:N)が8:1~1:1であることを特徴とするEUVリソグラフィ用反射型マスクブランクを提供する。
 なお、本発明において、組成比とは原子比を意味する。
 また、本発明は、基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収体層とがこの順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
 前記吸収体層が、タンタル(Ta)、ホウ素(B)、窒素(N)および水素(H)を少なくとも含有し、
 前記吸収体層の結晶状態が、アモルファスであることを特徴とするEUVリソグラフィ用反射型マスクブランクを提供する。
 本発明のEUVマスクブランクにおいて、前記吸収体層表面の表面粗さが0.5nm rms以下であることが好ましい。
 本発明のEUVマスクブランクにおいて、前記吸収体層の膜厚が30~100nmであることが好ましい。
 本発明のEUVマスクブランクは、前記吸収体層上に、マスクパターンの検査に使用する検査光における低反射層が形成されており、
 前記低反射層が、タンタル(Ta)、ホウ素(B)、酸素(O)および水素(H)を少なくとも含有し、
 前記低反射層において、Bの含有率が1at%以上5at%未満であり、Hの含有率が0.1~15at%であり、TaおよびOの合計含有率が80~98.9at%であり、TaとOとの組成比(Ta:O)が1:8~3:1であることが好ましい。
 また、本発明のEUVマスクブランクは、前記吸収体層上に、マスクパターンの検査に使用する検査光における低反射層が形成されており、
 前記低反射層が、タンタル(Ta)、ホウ素(B)、酸素(O)、窒素(N)および水素(H)を少なくとも含有し、
 前記低反射層において、Bの含有率が1at%以上5at%未満であり、Hの含有率が0.1~15at%であり、Ta、OおよびNの合計含有率が80~98.9at%であり、TaとO及びNの組成比(Ta:(O+N))が1:8~3:1であることが好ましい。
 また、本発明は、基板上に、EUV光を反射する反射層、EUV光を吸収する吸収体層、およびマスクパターンの検査における低反射層がこの順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
 前記低反射層が、タンタル(Ta)、ホウ素(B)、酸素(O)、および水素(H)を少なくとも含有し、
 前記低反射層(TaBOH)において、Bの含有率が1at%以上5at%未満であり、Hの含有率が0.1~15at%であり、TaおよびOの合計含有率が80~98.9at%であり、TaとOとの組成比(Ta:O)が1:8~3:1であることを特徴とするEUVリソグラフィ用反射型マスクブランクを提供する。
 また、本発明は、基板上に、EUV光を反射する反射層、EUV光を吸収する吸収体層、およびマスクパターンの検査に使用する検査光における低反射層がこの順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
 前記低反射層が、タンタル(Ta)、ホウ素(B)、酸素(O)、窒素(N)および水素(H)を少なくとも含有し、
 前記低反射層(TaBONH)において、Bの含有率が1at%以上5at%未満であり、Hの含有率が0.1~15at%であり、Ta、OおよびNの合計含有率が80~98.9at%であり、TaとO及びNの組成比(Ta:(O+N))が1:8~3:1であることを特徴とするEUVリソグラフィ用反射型マスクブランクを提供する。
 吸収層上に低反射層が形成されている場合、前記低反射層表面の表面粗さが0.5nm rms以下であることが好ましい。
 吸収層上に低反射層が形成されている場合、前記低反射層の膜厚が5~30nmであることが好ましい。
 また、本発明のEUVマスクブランクは、前記反射層と前記吸収体層との間に、前記吸収体層へのパターン形成時に前記反射層を保護するための保護層が形成されており、
 吸収体層に形成されるパターンの検査に用いられる光の波長に対する前記保護層表面での反射光と、前記低反射層表面での反射光と、のコントラストが、30%以上であることが好ましい。
 前記低反射層のH濃度が、前記吸収体層のH濃度よりも1.5at%以上高いことが好ましい。
 吸収層上に低反射層が形成されている場合、前記吸収体層に形成されるパターンの検査に用いられる光の波長に対する、前記低反射層表面の反射率が15%以下であることが好ましい。
 本発明のEUVマスクブランクは、前記吸収体層が、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)のうち少なくともひとつを含む不活性ガスと、窒素(N)および水素(H)を含む雰囲気中でTaB化合物ターゲットを用いたスパッタリング法を行うことにより形成されることが好ましい。
 前記TaB化合物ターゲットの組成が、Ta=80~99at%、B=1~20at%であることが好ましい。
 吸収層上に低反射層(TaBOH)が形成される場合、前記低反射層が、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)のうち少なくともひとつを含む不活性ガスと、酸素(O)および水素(H)を含む雰囲気中でTaB化合物ターゲットを用いたスパッタリング法を行うことにより形成されることが好ましい。
 前記TaB化合物ターゲットの組成が、Ta=80~99at%、B=1~20at%であることが好ましい。
 また、吸収層上に低反射層(TaBONH)が形成される場合、前記低反射層が、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)のうち少なくともひとつを含む不活性ガスと、酸素(O)、窒素(N)および水素(H)を含む雰囲気中でTaB化合物ターゲットを用いたスパッタリング法を行うことにより形成されることが好ましい。
 前記TaB化合物ターゲットの組成が、Ta=80~99at%、B=1~20at%であることが好ましい。
 また、本発明は、本発明のEUVリソグラフィ用反射型マスクブランクの吸収体層および低反射層にパターニングを施したEUVリソグラフィ用反射型マスクを提供する。
 また、本発明は、本発明のEUVリソグラフィ用反射型マスクを用いて、被露光体に露光を行うことにより半導体集積回路を製造する半導体集積回路の製造方法を提供する。
 本発明のEUVマスクブランクは、吸収体層におけるBの含有率が低い(5at%未満)ため、吸収体層を成膜する際に、成膜速度の低下や、成膜時に放電が不安定になることによって生じる問題、具体的には、膜組成や膜厚にばらつきが生じたり、さらには成膜不能になるといった問題が生じるおそれがない。
 本発明のEUVマスクブランクは、吸収体層の結晶構造がアモルファスであるため、吸収体表面が平滑性に優れている。
 また、吸収体層が、EUV光の光線反射率、およびパターン検査光の波長域の光線反射率が低い等、EUVマスクブランクとして優れた特性を有している。
 本発明のEUVマスクブランクにおいて、吸収体層上に低反射層を形成することにより、パターン検査光の波長域の光線反射率をさらに低くおさえることができ、該マスクブランクにパターン形成した後で実施されるパターン検査時のコントラストが良好である。
 本発明のEUVマスクブランクにおいて、スパッタリング法によって吸収体層および低反射層を形成する際、特定の組成を有するTaB化合物ターゲットを用いることにより、放電の不安定化や膜の組成や膜厚のばらつきを回避できる。
図1は、本発明のEUVマスクブランクの1実施形態を示す概略断面図である。 図2は、図1に示すEUVマスクブランク1の吸収体層14(および低反射層15)にパターン形成した状態を示している。
 以下、図面を参照して本発明のEUVマスクブランクを説明する。
 図1は、本発明のEUVマスクブランクの1実施形態を示す概略断面図である。図1に示すマスクブランク1は、基板11上にEUV光を反射する反射層12と、EUV光を吸収する吸収体層14とがこの順に形成されている。反射層12と吸収体層14との間には、吸収体層14へのパターン形成時に反射層12を保護するための保護層13が形成されている。吸収体層14上には、マスクパターンの検査に使用する検査光における低反射層15が形成されている。但し、本発明のEUVマスクブランク1において、図1に示す構成中、基板11、反射層12および吸収体層14のみが必須であり、保護層13および低反射層15は任意の構成要素である。
 以下、マスクブランク1の個々の構成要素について説明する。
 基板11は、EUVマスクブランク用の基板としての特性を満たすことが要求される。そのため、基板11は、低熱膨張係数(0±1.0×10-7/℃であることが好ましく、より好ましくは0±0.3×10-7/℃、さらに好ましくは0±0.2×10-7/℃、さらに好ましくは0±0.1×10-7/℃、特に好ましくは0±0.05×10-7/℃)を有し、平滑性、平坦度、およびマスクブランクまたはパターン形成後のフォトマスクの洗浄等に用いる洗浄液への耐性に優れたものが好ましい。基板11としては、具体的には低熱膨張係数を有するガラス、例えばSiO2-TiO2系ガラス等を用いるが、これに限定されず、β石英固溶体を析出した結晶化ガラスや石英ガラスやシリコンや金属などの基板を用いることもできる。
 前記ガラスにおいて、カーボンコンタミネーションのクリーニング効果や、酸化した膜の還元効果の点で、水素分子濃度が1×1016分子/cm、5×1016分子/cm、1×1017分子/cm、5×1017分子/cm以上であることが好ましい。より好ましくは水素分子濃度は1×1018分子/cm以上、さらに好ましくは5×1018分子/cm以上、特に好ましくは1×1019分子/cm以上である。より長期にわたって上記の効果を持続させるには、5×1019分子/cm以上であることが好ましい。
 水素分子濃度の測定は、特許第3298974号明細書に基づく電子科学社製の昇温脱離分析装置(Thermal Desorption Spectrometer;TDS)を用いて以下のように行うことが好ましい。
 水素分子を導入したガラス試料を昇温脱離分析装置内に入れ、その測定室内部を5×10-7Pa以下まで真空引きした後ガラス試料を加熱し、発生したガスの質量数を分析装置内部に設置された質量分析計にて測定する。水素分子の脱離プロファイルにおいて、420℃付近を最大とし200~800℃付近にピークが観測される。また水分子の脱離プロファイルにおいて150℃付近を最大とし100~200℃付近に観測されたピークは、ガラス表面に物理吸着した水が脱離したものによると考えられる。
 次に水素分子を導入していないガラス試料を、同様に、昇温脱離分析装置内に入れ測定室内部を5×10-7Pa以下まで真空引きした後加熱し、発生したガスの質量数を測定する。100~200℃付近に物理吸着水の脱離によると考えられるピークが観測される。これに対し420℃付近を最大としたピークは観測されなかった。
 よって、420℃付近を最大とし200~800℃付近に観測されたピークは、ガラス中に導入した水素分子が脱離したことによるものと考えることができる。したがって、測定サンプルと水素濃度が既知の標準サンプルとの上記水素分子の脱離ピークの積分強度比より、測定サンプルの脱離した水素分子数を算出することができる。
 例えば、標準サンプルとして水素イオン注入したシリコンを用いた場合、以下のような測定方法となる。1×1016個の水素イオン注入したシリコン(電子科学社製)を、同様に、昇温脱離分析装置内に入れ測定室内部を5×10-7Pa以下まで真空引きした後加熱した。550℃付近を最大とし350~750℃付近に脱離ピークが観測された。このピークはシリコン中の1×1016個の水素イオンが脱離した際に発生したものである。
 基板11は、0.15nm rms以下の平滑な表面と100nm以下の平坦度を有していることがパターン形成後のフォトマスクにおいて高反射率および転写精度が得られるために好ましい。
 基板11の大きさや厚みなどはマスクの設計値等により適宜決定されるものである。後で示す実施例では外形6インチ(152.4mm)角で、厚さ0.25インチ(6.3mm)のSiO2-TiO2系ガラスを用いた。
 基板11の反射層12が形成される側の表面には欠点が存在しないことが好ましい。しかし、存在している場合であっても、凹状欠点および/または凸状欠点によって位相欠点が生じないように、凹状欠点の深さおよび凸状欠点の高さが2nm以下であり、かつこれら凹状欠点および凸状欠点の半値幅が60nm以下であることが好ましい。
 反射層12は、EUVマスクブランクの反射層として所望の特性を有するものである限り特に限定されない。ここで、反射層12に特に要求される特性は、高EUV光線反射率であることである。具体的には、EUV光の波長領域の光線を反射層12表面に照射した際に、波長13.5nm付近の光線反射率の最大値が60%以上であることが好ましく、65%以上であることがより好ましい。また、反射層12の上に保護層13や低反射層15を設けた場合であっても、波長13.5nm付近の光線反射率の最大値が60%以上であることが好ましく、65%以上であることがより好ましい。
 反射層12は、高EUV光線反射率を達成できることから、通常は高屈折層と低屈折率層を交互に複数回積層させた多層反射膜が反射層12として用いられる。反射層12をなす多層反射膜において、高屈折率層には、Moが広く使用され、低屈折率層にはSiが広く使用される。すなわち、Mo/Si多層反射膜が最も一般的である。但し、多層反射膜はこれに限定されず、Ru/Si多層反射膜、Mo/Be多層反射膜、Mo化合物/Si化合物多層反射膜、Si/Mo/Ru多層反射膜、Si/Mo/Ru/Mo多層反射膜、Si/Ru/Mo/Ru多層反射膜も用いることができる。
 反射層12をなす多層反射膜を構成する各層の膜厚および層の繰り返し単位の数は、使用する膜材料および反射層に要求されるEUV光線反射率に応じて適宜選択することができる。Mo/Si反射膜を例にとると、EUV光線反射率の最大値が60%以上の反射層12とするには、多層反射膜は膜厚2.3±0.1nmのMo層と、膜厚4.5±0.1nmのSi層とを繰り返し単位数が30~60になるように積層させればよい。
 なお、反射層12をなす多層反射膜を構成する各層は、マグネトロンスパッタリング法、イオンビームスパッタリング法など、周知の成膜方法を用いて所望の厚さになるように成膜すればよい。例えば、イオンビームスパッタリング法を用いてSi/Mo多層反射膜を形成する場合、ターゲットとしてSiターゲットを用い、スパッタガスとしてArガス(ガス圧1.3×10-2Pa~2.7×10-2Pa)を使用して、イオン加速電圧300~1500V、成膜速度0.03~0.30nm/secで厚さ4.5nmとなるようにSi膜を成膜し、次に、ターゲットとしてMoターゲットを用い、スパッタガスとしてArガス(ガス圧1.3×10-2Pa~2.7×10-2Pa)を使用して、イオン加速電圧300~1500V、成膜速度0.03~0.30nm/secで厚さ2.3nmとなるようにMo膜を成膜することが好ましい。これを1周期として、Si膜およびMo膜を40~50周期積層させることによりSi/Mo多層反射膜が成膜される。
 反射層12表面が酸化されるのを防止するため、反射層12をなす多層反射膜の最上層は酸化されにくい材料の層とすることが好ましい。酸化されにくい材料の層は反射層12のキャップ層として機能する。キャップ層として機能する酸化されにくい材料の層の具体例としては、Si層を例示することができる。反射層12をなす多層反射膜がSi/Mo膜である場合、最上層をSi層とすることによって、該最上層をキャップ層として機能させることができる。その場合キャップ層の膜厚は、11.0±1.0nmであることが好ましい。
 保護層13は、エッチングプロセス、通常はドライエッチングプロセスにより吸収層14にパターン形成する際に、反射層12がエッチングプロセスによるダメージを受けないよう、反射層12を保護することを目的として設けられる。したがって保護層13の材質としては、吸収体層14のエッチングプロセスによる影響を受けにくい、つまりこのエッチング速度が吸収体層14よりも遅く、しかもこのエッチングプロセスによるダメージを受けにくい物質が選択される。この条件を満たす物質としては、たとえばCr、Al、Ta及びこれらの窒化物、Ru及びRu化合物(RuB、RuSi等)、ならびにSiO2、Si34、Al23やこれらの混合物が例示される。これらの中でも、Ru及びRu化合物(RuB、RuSi等)、CrNおよびSiO2の少なくとも1つであることが好ましく、Ru及びRu化合物(RuB、RuSi等)が特に好ましい。
 保護層13の厚さは1~60nmであることが好ましい。また、保護層は単層であっても、複数の層からなっていてもよい。
 保護層13は、マグネトロンスパッタリング法、イオンビームスパッタリング法など周知の成膜方法を用いて成膜する。マグネトロンスパッタリング法によりRu膜を成膜する場合、ターゲットとしてRuターゲットを用い、スパッタガスとしてArガス(ガス圧1.0×10-1Pa~10×10-1Pa)を使用して投入電力30W~500W、成膜速度5~50nm/minで厚さ2~5nmとなるように成膜することが好ましい。
 吸収体層14に特に要求される特性は、EUV光線反射率が極めて低いことである。具体的には、EUV光の波長領域の光線を吸収体層14表面に照射した際に、波長13.5nm付近の最大光線反射率が0.5%以下であることが好ましく、0.1%以下であることがより好ましい。
 上記の特性を達成するため、EUV光の吸収係数が高い材料で構成されることが好ましい。
 本発明のEUVマスクブランク1の吸収体層14は、タンタル(Ta)、ホウ素(B)、窒素(N)および水素(H)を以下に述べる特定の比率で含有することで上記の特性を達成する。
 吸収体層14のBの含有率は1at%以上5at%未満である。従来、吸収体層として、TaとBを含む膜(TaB膜、TaBN膜、TaBO膜、TaBNO膜)を使用した場合、膜の結晶状態をアモルファスとするには、膜のBの含有率を5at%以上にする必要があった。しかしながら、従来技術のところで述べたように、膜のBの含有率を5at%以上とした場合、成膜速度が遅くなることや、膜のBの含有率や膜厚を制御することが困難になるという問題があった。
 本発明のEUVマスクブランク1では、吸収体層14がTa、B、NおよびHを特定の比率で含有することにより、吸収体層14のBの含有率が5at%未満であっても、吸収体層14の結晶状態がアモルファスとなるため好ましい。
 吸収体層14のBの含有率が1at%未満だと、吸収体層14の結晶状態をアモルファスとするのにH添加量を増やす必要がある。具体的には、Hの含有率を5at%超とすることが好ましく、これによって、EUV光線反射率を0.5%以下とする要請から、必要な吸収層の膜厚が厚くなってしまうため好ましくない。吸収体層14のBの含有率が5at%以上であると、成膜速度が遅くなること等の上記した問題が生じやすい。
 吸収体層14のBの含有率は、1~4.5at%であることがより好ましく、1.5~4at%であることがさらに好ましい。1.5~4at%であれば、成膜を安定的に行うことができるほか、マスクの必要とされる特性である平滑性等にも優れ、これらがよいバランスとなるため、非常に好ましい。
 吸収体層14のHの含有率は0.1~5at%である。吸収体層14のHの含有率が0.1at%未満であると、吸収体層14の結晶状態がアモルファスになりにくい。HはEUV光の吸収係数が低い材料であるため、吸収体層14のHの含有率が5at%超であると、EUV光線反射率を0.5%以下とするのに必要な吸収層の膜厚が厚くなる可能性がある。
 吸収体層14のHの含有率は、0.1~4.5at%であることがより好ましく、0.5~4.5at%、1~4at%であることがさらに好ましい。
 吸収体層14において、BおよびHを除いた残部はTaおよびNであることが好ましい。具体的には、吸収体層14におけるTaおよびNの合計含有率は、90~98.9at%である。吸収体層14におけるTaおよびNの合計含有率は91~98.9at%であることが好ましく、91.5~98at%であることがより好ましい。
 吸収体層14におけるTaとNとの組成比(Ta:N)は8:1~1:1である。上記組成比よりもTaの割合が高いと、パターン検査光の波長域の光線反射率を十分低くすることができない。一方、上記組成比よりもNの割合が高い場合、膜密度が下がり、EUV光の吸収係数が低下し、十分なEUV光線の吸収特性が得られない。また、吸収体層14の耐酸性が低下する。吸収体層14におけるTaとNとの組成比(Ta:N)は5:1~1:1、3:1~1:1であることが好ましい。
 また、吸収体層14のTaの含有率は、50~90at%であることがより好ましく、55~80at%、60~80at%であることがさらに好ましい。吸収体層14のNの含有率は、5~30at%であることがより好ましく、10~25at%であることがさらに好ましい。
 なお、吸収体層14はTa、B、N、H以外の元素を含んでいてもよいが、EUV光線の吸収特性等のマスクブランクとしての適性を満たすことが重要である。
 吸収体層において、Crの含有量を3at%以下、特に1at%以下、さらにはCrを含有しないほうが、低反射性能の点で好ましい。また、吸収体層において、Tiの含有量を3at%以下、特に1at%以下、さらにはTiを含有しないほうが、低反射性能の点で好ましい。
 吸収体層14は、上記の構成であることにより、その結晶状態はアモルファスであることが好ましい。本明細書において、「結晶状態がアモルファスである」と言った場合、全く結晶構造を持たないアモルファス構造となっているもの以外に、微結晶構造のものを含む。吸収体層14が、アモルファス構造の膜または微結晶構造の膜であれば、吸収体層14の表面が平滑性に優れている。
 本発明のEUVマスクブランク1では、吸収体層14がアモルファス構造の膜または微結晶構造の膜であることにより、吸収体層14表面の表面粗さが0.5nm rms以下である。吸収体層14表面の表面粗さが大きいと、吸収体層14に形成されるパターンのエッジラフネスが大きくなり、パターンの寸法精度が悪くなる。パターンが微細になるに従いエッジラフネスの影響が顕著になるため、吸収体層14表面は平滑であることが好ましい。
 吸収体層14表面の表面粗さが0.5nm rms以下であれば、吸収体層14表面が十分平滑であるため、エッジラフネスの影響によってパターンの寸法精度が悪化するおそれがない。吸収体層14表面の表面粗さは0.4nm rms以下であることがより好ましく、0.3nm rms以下であることがさらに好ましい。
 なお、吸収体層14の結晶状態がアモルファスであること、すなわち、アモルファス構造であること、または微結晶構造であることは、X線回折(XRD)法によって確認することができる。吸収体層14の結晶状態がアモルファス構造であるか、または微結晶構造であれば、XRD測定により得られる回折ピークにシャープなピークが見られない。
 吸収体層14の厚さは、30~100nmであることが好ましい。上記した構成の吸収層14は、マグネトロンスパッタリング法やイオンビームスパッタリング法のようなスパッタリング法など、周知の成膜方法を用いて形成することができる。マグネトロンスパッタリング法を用いる場合、下記(1)または(2)の方法で吸収体層14を形成することができる。
(1)TaターゲットおよびBターゲット使用し、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)のうち少なくともひとつを含む不活性ガスと、窒素(N)および水素(H)を含む雰囲気中でこれらのターゲットを同時に放電させることによって吸収体層14を形成する。
(2)TaB化合物ターゲットを用いて、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)のうち少なくともひとつを含む不活性ガスと、窒素(N)および水素(H)を含む雰囲気中で放電させることによって吸収体層14を形成する。
 上記の中でも(2)の方法が、放電の不安定化や膜の組成や膜厚のばらつきを回避できる点で好ましい。TaB化合物ターゲットは、その組成がTa=80~99at%、B=1~20at%であることが、放電の不安定化や膜の組成や膜厚のばらつきを回避できる点で特に好ましい。
 上記例示した方法で吸収体層14を形成するには、具体的には以下の成膜条件で実施すればよい。
TaB化合物ターゲットを使用する方法(2)
スパッタガス:ArとN2とH2の混合ガス(H2ガス濃度1~50vol%、好ましくは1~30vol%、N2ガス濃度1~80vol%、好ましくは5~75vol%、Arガス濃度5~95vol%、好ましくは10~94vol%、ガス圧1.0×10-1Pa~50×10-1Pa、好ましくは1.0×10-1Pa~40×10-1Pa、より好ましくは1.0×10-1Pa~30×10-1Pa。)
投入電力:30~1000W、好ましくは50~750W、より好ましくは80~500W
成膜速度:0.5~60nm/min、好ましくは1.0~45nm/min、より好ましくは1.5~30nm/min
 なお、アルゴン以外の不活性ガスを使用する場合、その不活性ガスの濃度が上記したArガス濃度と同じ濃度範囲にする。また、複数種類の不活性ガスを使用する場合、不活性ガスの合計濃度を上記したArガス濃度と同じ濃度範囲にする。
 低反射層15はマスクパターンの検査に使用する検査光において、低反射となるような膜で構成される。EUVマスクを作製する際、吸収体層にパターンを形成した後、このパターンが設計通りに形成されているかどうか検査する。このマスクパターンの検査では、検査光として通常257nm程度の光を使用した検査機が使用される。つまり、この257nm程度の光の反射率の差、具体的には、吸収体層14がパターン形成により除去されて露出した面と、パターン形成により除去されずに残った吸収体層14表面と、の反射率の差によって検査される。ここで、前者は反射層12表面または保護層13表面であり、通常は保護層13表面である。したがって、検査光の波長に対する保護層13表面と吸収体層14表面との反射率の差が小さいと検査時のコントラストが悪くなり、正確な検査が出来ないことになる。
 上記した構成の吸収体層14は、EUV光線反射率が極めて低く、EUVマスクブランク1の吸収層として優れた特性を有しているが、検査光の波長について見た場合、光線反射率が必ずしも十分低いとは言えない。この結果、検査光の波長での吸収体層14表面の反射率と保護層13表面の反射率との差が小さくなり、検査時のコントラストが十分得られない可能性がある。検査時のコントラストが十分得られないと、マスク検査においてパターンの欠陥を十分判別できず、正確な欠陥検査を行えないことになる。
 本発明のEUVマスクブランク1では、吸収体層14上に検査光における低反射層15を形成することにより、検査時のコントラストが良好となる、別の言い方をすると、検査光の波長での光線反射率が極めて低くなる。具体的には、検査光の波長領域の光線を低反射層15表面に照射した際に、該検査光の波長の最大光線反射率が15%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることがさらに好ましい。
 低反射層15における検査光の波長の光線反射率が15%以下であれば、該検査時のコントラストが良好である。具体的には、保護層13表面における検査光の波長の反射光と、低反射層15表面における検査光の波長の反射光と、のコントラストが、40%以上となる。
 本明細書において、コントラストは下記式を用いて求めることができる。
コントラスト(%)=((R2-R1)/(R2+R1))×100
 ここで、検査光の波長におけるR2は保護層13表面での反射率であり、R1は低反射層15表面での反射率である。なお、上記R1およびR2は、図2に示すように、図1に示すEUVマスクブランク1の吸収体層14(および低反射層15)にパターンを形成した状態で測定する。上記R2は、図2中、パターン形成によって吸収体層14および低反射層15が除去され、外部に露出した反射層12表面または保護層13表面で測定した値であり、R1はパターン形成によって除去されずに残った低反射層15表面で測定した値である。
 本発明において、上記式で表されるコントラストが45%以上であることがより好ましく、60%以上であることがさらに好ましく、80%以上であることが特に好ましい。
 低反射層15は、上記の特性を達成するため、検査光の波長の屈折率が吸収体層14よりも低い材料で構成され、その結晶状態がアモルファスであることが好ましい。
 本発明のEUVマスクブランク1の低反射層15の第1実施形態では、Ta、B、酸素(O)およびHを以下に述べる特定の比率で含有することで上記の特性を達成する。
 低反射層15のBの含有率は1at%以上5at%未満である。吸収体層について上述したように、TaとBを含む膜(TaB膜、TaBN膜、TaBO膜、TaBNO膜)を使用した場合、膜の結晶状態をアモルファスとするには、膜のBの含有率を5at%以上にする必要があった。本発明のEUVマスクブランク1では、低反射層15がTa、B、OおよびHを特定の比率で含有することにより、低反射層15のBの含有率が5at%未満であっても該層の結晶状態がアモルファスとなるため好ましい。また、吸収体層を酸素プラズマ処理などをすることにより酸化して、低反射層としてもよい。
 低反射層15のBの含有率が1at%未満だと、低反射層15の結晶状態をアモルファスとするのにH添加量を増やす必要がある。具体的には、Hの含有率を15at%超とする必要があり、吸収体層14のHの含有率や膜厚にもよるが、EUV光線反射率を0.5%以下とするのに必要な吸収体層14および低反射層15の膜厚の合計が大きくなる可能性があり好ましくない。低反射層15のBの含有率が5at%以上であると、成膜速度が遅くなること等、吸収体層14について記載したのと同様の問題が生じやすい。
 低反射層15のBの含有率は、1~4.5at%であることがより好ましく、1.5~4at%であることがさらに好ましい。
 低反射層15のHの含有率は0.1~15at%である。低反射層15のHの含有率が0.1at%未満であると、低反射層15の結晶状態がアモルファスになりにくい。HはEUV光の吸収係数が低い材料であるため、低反射層15のHの含有率が15at%超であると、吸収体層14のHの含有率や膜厚にもよるが、EUV光線反射率を0.5%以下とするのに必要な吸収体層14および低反射層15の膜厚の合計が大きくなる可能性があり好ましくない。
 低反射層15のH濃度は、0.5~10at%であることがより好ましく、1~10at%、3~10at%、5~9at%程度であることがさらに好ましい。
 低反射層15のH濃度は、吸収体層14のH濃度よりも1.5at%以上、2.5at%以上、特に3.5~8at%程度高いことが好ましい。
 低反射層15において、BおよびHを除いた残部はTaおよびOであることが好ましい。具体的には、低反射層15におけるTaおよびOの合計含有率は、80~98.9at%である。低反射層15におけるTaおよびOの合計含有率は85.5~98.5at%であることが好ましく、86~97.5at%であることがより好ましい。
 低反射層15におけるTaとOとの組成比(Ta:O)は1:8~3:1である。上記組成比よりもTaの割合が高いと、パターン検査光の波長域の光線反射率を十分低くすることができない。一方、上記組成比よりもOの割合が高い場合、絶縁性が高くなり、電子線照射によりチャージアップが生じる可能性がある。膜密度が下がり、低反射層15の絶縁性が増し、低反射層15に電子線描画する際にチャージアップが起こりやすくなり好ましくない。なお、低反射層15は、吸収体層14よりも膜厚が薄く、チャージアップは比較的起こりにくい。このため、吸収体層14に比べてOの含有率の上限が緩やかである。
 低反射層15におけるTaとOとの含有比(Ta:O)は1:7~2:1であることが好ましく、1:5~1:1であることがさらに好ましい。
 本発明のEUVマスクブランク1において、低反射層15はTa、B、OおよびHに加えてNを含有してもよい。
 すなわち、本発明のEUVマスクブランク1において、低反射層15の第2実施形態は、Ta、B、O、HおよびNを以下に述べる特定の比率で含有することで上記の特性を達成する。
 なお、低反射層15がNを含有することにより、低反射層15表面の平滑性が向上すると考えられる。
 以下、本明細書において、低反射層の第1実施形態を低反射層(TaBOH)、第2実施形態を低反射層(TaBONH)と記載することで両者を区別する。なお、低反射層の材料であるTaOHは絶縁性であるが、低反射層は通常膜厚が薄いので、電子線描画におけるチャージアップの問題はほとんど生じない。
 低反射層がTaBONH膜である場合、低反射層のBの含有率は1at%以上5at%未満であることが好ましい。低反射層15のBの含有率が1at%未満だと、低反射層15の結晶状態をアモルファスとするのにH添加量を増やす必要がある。具体的には、Hの含有率を15at%超とする必要があり、吸収体層14のHの含有率や膜厚にもよるが、EUV光線反射率を0.5%以下とするのに必要な吸収体層14および低反射層15の膜厚の合計が大きくなる可能性があり好ましくない。低反射層15のBの含有率が5at%以上であると、成膜速度が遅くなること等、吸収体層14について記載したのと同様の問題が生じやすい。低反射層(TaBONH)のBの含有率は、1~4.5at%であることがより好ましく、2~4.0at%であることがさらに好ましい。
 低反射層(TaBONH)のHの含有率は0.1~15at%である。低反射層(TaBONH)のHの含有率が0.1at%未満であると、低反射層(TaBONH)の結晶状態がアモルファスにならない。HはEUV光の吸収係数が低い材料であるため、低反射層15のHの含有率が15at%超であると、吸収体層14のHの含有率や膜厚にもよるが、EUV光線反射率を0.5%以下とするのに必要な吸収体層14および低反射層15の膜厚の合計が大きくなる可能性があるため好ましくない。
 低反射層(TaBONH)のHの含有率は、0.5~10at%であることがより好ましく、1~10at%であることがさらに好ましい。
 低反射層(TaBONH)において、BおよびHを除いた残部はTa、OおよびNであることが好ましい。具体的には、低反射層15におけるTa、OおよびNの合計含有率は、80~98.9at%である。低反射層15におけるTa、OおよびNの合計含有率は85.5~98.5at%であることが好ましく、86~97.5at%であることがより好ましい。
 低反射層(TaBONH)におけるTaとO及びNの組成比(Ta:(O+N))が1:8~3:1である。上記組成比よりもTaの割合が高いと、パターン検査光の波長域の光線反射率を十分低くすることが困難となる。一方、上記組成比よりもO及びNの割合が高い場合、低反射層(TaBONH)の耐酸性が低下する、低反射層(TaBONH)の絶縁性が増し低反射層(TaBONH)に電子線描画する際にチャージアップが起こる等の問題が生じやすい。
 低反射層(TaBONH)におけるTaとO及びNの組成比(Ta:(O+N))は2:7~1:1であることが好ましく、1:3~1:1であることがさらに好ましい。
 なお、低反射層(TaBONH)は吸収体層(TaBNH)と組み合わせることが、成膜性などの点で好ましい。
 また、低反射層(TaBOH)膜はTa、B、OおよびHを少なくとも含有する膜であることから、膜中にこれらの元素以外の他の元素を含有してもよい。また、低反射層(TaBONH)はTa、B、O、NおよびHを少なくとも含有する膜であることから、膜中にこれらの元素以外の他の元素を含有してもよい。但し、マスクパターンの検査光の波長域に対して意図した低反射特性を奏するためには、他の元素の含有率が2at%以下であることが好ましく、1at%以下であることが特に好ましい。
 上述した点から明らかなように、本発明における低反射層は、Ta、B、OおよびHを必須成分として含有し、Nを任意成分として含有し、Bの含有率が1at%以上5at%未満であり、Hの含有率が0.1~15at%であり、Ta、O(Nが含有されている場合はO及びN)の合計含有率が80~98.9at%であり、TaとO(Nが含有されている場合はO及びN)との組成比(Ta:O)が1:8~3:1であることが好ましい。
 低反射層(TaBOH),(TaBONH)は、上記の構成であることにより、その結晶状態はアモルファスであり、その表面が平滑性に優れている。具体的には、低反射層(TaBOH),(TaBONH)表面の表面粗さが0.5nm rms以下である。
 上記したように、エッジラフネスの影響によってパターンの寸法精度の悪化が防止するため、吸収体層表面は平滑であることが好ましい。低反射層(TaBOH),(TaBONH)は、該吸収体層上に形成されるため、同様の理由から、その表面は平滑であることが好ましい。
 低反射層(TaBOH),(TaBONH)表面の表面粗さが0.5nm rms以下であれば、低反射層(TaBOH),(TaBONH)表面が十分平滑であるため、エッジラフネスの影響によってパターンの寸法精度が悪化するおそれがない。低反射層15表面の表面粗さは0.4nm rms以下であることがより好ましく、0.3nm rms以下であることがさらに好ましい。
 低反射層として、Nを含有させること、すなわち低反射層(TaBOH)よりも低反射層(TaBONH)が平滑性の点で好ましい。
 なお、低反射層(TaBOH),(TaBONH)の結晶状態がアモルファスであること、すなわち、アモルファス構造であること、または微結晶構造であることは、X線回折(XRD)法によって確認することができる。低反射層(TaBOH),(TaBONH)の結晶状態がアモルファス構造であるか、または微結晶構造であれば、XRD測定により得られる回折ピークにシャープなピークが見られない。
 吸収体層上に低反射層(TaBOH),(TaBONH)を形成する場合、吸収体層と低反射層(TaBOH),(TaBONH)との合計膜厚が55~130nmであることが好ましい。また、低反射層(TaBOH),(TaBONH)の膜厚が吸収体層の膜厚よりも大きいと、吸収体層でのEUV光吸収特性が低下するおそれがあるので、低反射層(TaBOH),(TaBONH)の膜厚は吸収体層の膜厚よりも小さいことが好ましい。このため、低反射層(TaBOH),(TaBONH)の厚さは5~30nmであることが好ましく、10~20nmであることがより好ましい。
 低反射層(TaBOH),(TaBONH)は、マグネトロンスパッタリング法やイオンビームスパッタリング法のようなスパッタリング法など、周知の成膜方法を用いて形成することができ、マグネトロンスパッタリング法を用いる場合、下記(1)または(2)の方法で低反射層(TaBOH)を形成することができる。
(1)TaターゲットおよびBターゲットを使用し、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)のうち少なくともひとつを含む不活性ガスと、酸素(O)および水素(H)を含む雰囲気中でこれらのターゲットを同時に放電させることによって低反射層(TaBOH)を形成する。
(2)TaB化合物ターゲットを用いて、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)のうち少なくともひとつを含む不活性ガスと、酸素(O)および水素(H)を含む雰囲気中で放電させることによって低反射層(TaBOH)を形成する。
 なお、上述した方法のうち、2以上のターゲットを同時に放電させる方法((1))では、各ターゲットの投入電力を調節することによって、形成される低反射層(TaBOH)の組成を制御することができる。
 上記の中でも(2)の方法が、放電の不安定化や膜の組成や膜厚のばらつきを回避できる点で好ましい。TaB化合物ターゲットは、その組成がTa=80~99at%、B=1~20at%であることが、放電の不安定化や膜の組成や膜厚のばらつきを回避できる点で特に好ましい。
 低反射層(TaBONH)を形成する場合、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)のうち少なくともひとつを含む不活性ガスと、酸素(O)、窒素(N)および水素(H)を含む雰囲気で、上記と同様の手順を実施すればよい。
 上記の方法で低反射層(TaBOH)を形成するには、具体的には以下の成膜条件で実施すればよい。
TaB化合物ターゲットを使用する方法(2)
スパッタガス:ArとO2とH2混合ガス(H2ガス濃度1~50vol%、好ましくは1~30vol%、O2ガス濃度1~80vol%、好ましくは5~75vol%、Arガス濃度5~95vol%、好ましくは10~94vol%、ガス圧1.0×10-1Pa~50×10-1Pa、好ましくは1.0×10-1Pa~40×10-1Pa、より好ましくは1.0×10-1Pa~30×10-1Pa。)
投入電力:30~1000W、好ましくは50~750W、より好ましくは80~500W
成膜速度:0.01~60nm/min、好ましくは0.05~45nm/min、より好ましくは0.1~30nm/min
 上記の方法で低反射層(TaBONH)を形成するには、具体的には以下の成膜条件で実施すればよい。
TaB化合物ターゲットを使用する方法(2)
スパッタガス:ArとO2とN2とH2の混合ガス(H2ガス濃度1~50vol%、好ましくは1~30vol%、O2ガス濃度1~80vol%、好ましくは5~75vol%、N2ガス濃度1~80vol%、好ましくは5~75vol%、Arガス濃度5~95vol%、好ましくは10~89vol%、ガス圧1.0×10-1Pa~50×10-1Pa、好ましくは1.0×10-1Pa~40×10-1Pa、より好ましくは1.0×10-1Pa~30×10-1Pa。)
投入電力:30~1000W、好ましくは50~750W、より好ましくは80~500W
成膜速度:0.5~60nm/min、好ましくは1.0~45nm/min、より好ましくは1.5~30nm/min
 なお、本発明のEUVマスクブランク1において、吸収体層14上に低反射層15を形成することが好ましいのは、パターンの検査光の波長とEUV光の波長とが異なるからである。したがって、パターンの検査光としてEUV光(13.5nm付近)を使用する場合、吸収体層14上に低反射層15層を形成する必要はないと考えられる。検査光の波長は、パターン寸法が小さくなるに伴い短波長側にシフトする傾向があり、将来的には193nm、さらには13.5nmにシフトすることも考えられる。検査光の波長が13.5nmである場合、吸収体層14上に低反射層15を形成する必要はないと考えられる。
 本発明のEUVマスクブランク1は、反射層12、保護層13、吸収体層14および低反射層15以外に、EUVマスクブランクの分野において公知の機能膜を有していてもよい。このような機能膜の具体例としては、例えば、特表2003-501823号公報に記載されているものように、基板の静電チャッキングを促すために、基板の裏面側に施される高誘電性コーティングが挙げられる。ここで、基板の裏面とは、図1の基板11において、反射層12が形成されている側とは反対側の面を指す。このような目的で基板の裏面に施す高誘電性コーティングは、シート抵抗が100Ω/□以下となるように、構成材料の電気伝導率と厚さを選択する。高誘電性コーティングの構成材料としては、公知の文献に記載されているものから広く選択することができる。例えば、特表2003-501823号公報に記載の高誘電率のコーティング、具体的には、シリコン、TiN、モリブデン、クロム、又はTaSiからなるコーティングを適用することができる。高誘電性コーティングの厚さは、例えば10~1000nmとすることができる。
 高誘電性コーティングは、公知の成膜方法、例えば、マグネトロンスパッタリング法、イオンビームスパッタリング法といったスパッタリング法、CVD法、真空蒸着法、又は電解メッキ法を用いて形成することができる。
 本発明のマスクブランクの吸収層を少なくともパターニングすることで、EUVマスクを製造することが可能となる。吸収体層のパターニング方法は特に限定されず、例えば、吸収体層上にレジストを塗布してレジストパターンを形成し、これをマスクとして吸収体層をエッチングする方法を採用できる。レジストの材料やレジストパターンの描画法は、吸収体層の材質等を考慮して適宜選択すればよい。吸収体層のエッチング方法も特に限定されず、反応性イオンエッチング等のドライエッチングまたはウエットエッチングが採用できる。吸収体層をパターニングした後、レジストを剥離液で剥離することにより、EUVマスクが得られる。
 本発明に係るEUVマスクを用いた半導体集積回路の製造方法について説明する。本発明は、EUV光を露光用光源として用いるフォトリソグラフィ法による半導体集積回路の製造方法に適用できる。具体的には、レジストを塗布したシリコンウェハ等の基板をステージ上に配置し、反射鏡を組み合わせて構成した反射型の露光装置に上記EUVマスクを設置する。そして、EUV光を光源から反射鏡を介してEUVマスクに照射し、EUV光をEUVマスクによって反射させてレジストが塗布された基板に照射する。このパターン転写工程により、回路パターンが基板上に転写される。回路パターンが転写された基板は、現像によって感光部分または非感光部分をエッチングした後、レジストを剥離する。半導体集積回路は、このような工程を繰り返すことで製造される。
 以下、実施例を用いて本発明をさらに説明する。本発明はこれらの実施例に限定されるものではない。
実施例1
 本実施例では、図1に示すEUVマスクブランク1を作製した。但し、実施例1のEUVマスクブランク1では、吸収体層14上に低反射層15を形成しなかった。
 成膜用の基板11として、SiO2-TiO2系のガラス基板(外形6インチ(152.4mm)角、厚さが6.3mm)を使用した。このガラス基板の熱膨張率は0.2×10-7/℃、ヤング率は67GPa、ポアソン比は0.17、比剛性は3.07×1072/s2である。このガラス基板を研磨により、rmsが0.15nm以下の平滑な表面と100nm以下の平坦度に形成した。
 基板11の裏面側には、マグネトロンスパッタリング法を用いて厚さ100nmのCr膜を成膜することによって、シート抵抗100Ω/□の高誘電性コーティングを施した。
 平板形状をした通常の静電チャックに、形成したCr膜を用いて基板11(外形6インチ(152.4mm)角、厚さ6.3mm)を固定して、該基板11の表面上にイオンビームスパッタリング法を用いてSi膜およびMo膜を交互に成膜することを40周期繰り返すことにより、合計膜厚272nm((4.5nm+2.3nm)×40)のSi/Mo多層反射膜(反射層12)を形成した。
 さらに、Si/Mo多層反射膜(反射層12)上に、イオンビームスパッタリング法を用いてRu膜(膜厚2.5nm)を成膜することにより、保護層13を形成した。
 Si膜、Mo膜およびRu膜の成膜条件は以下の通りである。
Si膜の成膜条件
ターゲット:Siターゲット(ホウ素ドープ)
スパッタガス:Arガス(ガス圧0.02Pa)
電圧:700V
成膜速度:0.077nm/sec
膜厚:4.5nm
Mo膜の成膜条件
ターゲット:Moターゲット
スパッタガス:Arガス(ガス圧0.02Pa)
電圧:700V
成膜速度:0.064nm/sec
膜厚:2.3nm
Ru膜の成膜条件
ターゲット:Ruターゲット
スパッタガス:Arガス(ガス圧0.02Pa)
電圧:500V
成膜速度:0.023nm/sec
膜厚:2.5nm
 次に、保護層13上に、吸収体層14としてTaBNH層を、マグネトロンスパッタリング法を用いて形成することにより、基板11上に反射層12、保護層13および吸収体層14がこの順で形成されたEUVマスクブランク1を得た。
 TaBNH層を成膜条件は以下の通りである。
TaBNH層の成膜条件
ターゲット:TaB化合物ターゲット(組成比:Ta80at%、B20at%)
スパッタガス:ArとN2とH2の混合ガス(Ar:89vol%、N2:8.3vol%、H2:2.7vol%、ガス圧:0.46Pa)
投入電力:300W
成膜速度:1.5nm/min
膜厚:60nm
 上記の手順で得られるEUVマスクブランクの吸収体層に対し下記の評価(1)~(5)を実施した。
(1)膜組成
 吸収体層(TaBNH膜)の組成を、X線光電子分光装置(X-ray Photoelectron Spectrometer)(PERKIN ELEMER-PHI社製:番号5500)を用いて測定した。吸収体層の組成比(at%)は、Ta:B:N:H=60:3:33:4(Taの含有率が60at%、Bの含有率が3at%、Nの含有率が33at%、Hの含有率が4at%)である。
(2)結晶構造
 吸収体層(TaBNH膜)の結晶構造を、X線回折装置(X-Ray Diffractmeter)(RIGAKU社製)で確認した。得られる回折ピークにはシャープなピークが見られないことから、吸収体層の結晶構造がアモルファス構造または微結晶構造であることを確認した。
(3)表面粗さ
 吸収体層(TaBNH膜)の表面粗さを、JIS-B0601(1994年)にしたがって、原子間力顕微鏡(Atomic Force Microscope)(セイコーインスツルメンツ社製:番号SPI3800)を用いて確認した。吸収体層の表面粗さは0.15nm rmsであった。
(4)抵抗値
 吸収体層(TaBNH膜)の抵抗値を四探針測定器(三菱油化製:LorestaAP MCP-T400)を用いて測定したところ2.0×10-4Ω・cmであった。
(5)エッチング特性
 エッチング特性については、上記手順で作製されたEUVマスクブランクを用いて評価する代わりに以下の方法で評価した。
 RFプラズマエッチング装置の試料台(4インチ石英基板)上に、試料として下記に記載の方法でRu膜またはTaBNH膜が各々成膜されたSiチップ(10mm×30mm)を設置した。この状態で試料台に設置されたSiチップのRu膜またはTaBNH膜を以下の条件でプラズマRFエッチングした。
バイアスRF:50W
エッチング時間:120sec
トリガー圧力:3Pa
エッチング圧力:1Pa
エッチングガス:Cl2/Ar
ガス流量(Cl2/Ar):20/80sccm
電極基板間距離:55mm
 Ru膜の成膜は、イオンビームスパッタリング法により、以下の成膜条件で実施した。
Ru膜の成膜条件
ターゲット:Ruターゲット
スパッタガス:Arガス(ガス圧:2mTorr、流量:15sccm)
出力:150W
成膜速度:0.023nm/sec
膜厚:2.5nm
 TaBNH膜は、基板をSi基板とした以外は、実施例1と同様の条件で成膜した。
 上記条件で成膜したRu膜、およびTaBNH膜についてエッチング速度を求め、下記式を用いてエッチング選択比を求めた。
エッチング選択比
  =(TaBNH膜のエッチング速度)/(Ru膜のエッチング速度)
 保護層13とのエッチング選択比は、10以上が望ましいが、TaBNH膜のエッチング選択比は以下の通りであり、いずれも十分な選択比を有していた。
TaBNH膜:13.9
実施例2
 本実施例では、吸収体14上に低反射層15が形成されたEUVマスクブランク1を作製した。
 本実施例において、保護層13上に吸収体層14を形成する手順までは実施例1と同様に実施した。吸収体層14上に、波長257nmの検査光に対する低反射層15としてTaBONH膜を、マグネトロンスパッタリング法を用いて形成した。低反射層の組成比(at%)は、実施例1と同様の方法で測定した結果、Ta:B:N:O:H=25:3:5:59:8である。
 TaBONH膜の成膜条件は以下の通りである。
TaBONH層の成膜条件
ターゲット:TaBターゲット(組成比:Ta80at%、B20at%)
スパッタガス:ArとN2とO2とH2混合ガス(Ar:60vol%、N2:17.3vol%、O2:20vol%、N2:2.7vol%、ガス圧:0.3Pa)
投入電力:450W
成膜速度:1.5nm/sec
膜厚:10nm
 上記の手順で得られるEUVマスクブランクの低反射層に対し下記の評価(6)を実施した。
(6)反射特性(コントラスト評価)
 実施例1において、保護層(Ru層)13まで形成した段階で、該保護層13表面におけるパターン検査光(波長257nm)の反射率を分光光度計を用いて測定した。また、実施例2で低反射層(TaBONH)15を形成した後、該低反射層表面におけるパターン検査光の反射率を測定した。その結果、保護層13層表面での反射率は60.0%であり、低反射層15表面の反射率は6.9%であった。これらの結果と上記した式を用いてコントラストを求めたところ79.4%であった。
 得られたEUVマスクブランク1について、低反射層15表面にEUV光(波長13.5nm)を照射してEUV光の反射率を測定した。その結果、EUV光の反射率は0.4%であり、EUV吸収特性に優れていることが確認された。
実施例3
 本実施例では、吸収体14上に形成する低反射層15をTaBOHとする以外は、実施例2と同様の手順で実施した。
 低反射層15(TaBOH)は、マグネトロンスパッタ法を用いて形成した。低反射層15の組成比(at%)は、実施例1と同様の方法で測定した結果、Ta:B:O:H=29:4:59:8である。
 TaBOH膜の成膜条件は以下の通りである。
TaBOH層の成膜条件
ターゲット:TaBターゲット(組成比:Ta80at%、B20at%)
スパッタガス:ArとO2とH2混合ガス(Ar:60vol%、O2:37.3vol%、H2:2.7vol%、ガス圧:0.3Pa)
投入電力:450W
成膜速度:2.0nm/sec
膜厚:10nm
 上記の手順で得られるEUVマスクブランクの低反射層に対し、実施例2と同様に反射特性を評価したところ、パターン検査光(257nm)に対する低反射層15表面の反射率は6.0%であった。これらの結果と上記した式を用いてコントラストを求めたところ81.8%であった。
 得られたEUVマスクブランク1について、低反射層15表面にEUV光(波長13.5nm)を照射してEUV光の反射率を測定した。その結果、EUV光の反射率は0.5%であり、EUV吸収特性に優れていることが確認された。
比較例1
 比較例1は、吸収体層が水素(H)を含まないタンタルホウ素合金の窒化物(TaBN)膜であること以外は、実施例1と同様の手順で実施した。TaBN膜は、TaBターゲット(Ta:B=80at%:20at%)を用い、以下の条件で成膜した。
TaBN層の成膜条件
ターゲット:TaBターゲット(組成比:Ta80at%、B20at%)
スパッタガス:Arガス、N2ガス(Ar:86体積%、N2:14体積%、ガス圧:0.3Pa)
投入電力:150W
成膜速度:6.4nm/sec
膜厚:60nm
 得られたTaBN膜の組成(at%)を、X線光電子分光装置(X-ray Photoelectron Spectrometer)を用いて測定したところ、Ta:B:N=50:4:46であった。
 得られたTaBN膜の結晶構造を、X線回折装置(X-Ray Diffractmeter)で確認したところ、得られる回折ピークにシャープなピークが見られることから、TaBN層が結晶質であることが確認できた。
 TaBN膜表面の表面粗さを、原子間力顕微鏡(Atomic Force Microscope)で確認したところ、0.5nm rmsであり、実施例1の吸収体層(TaBNH層)と比較して表面粗さは大きかった。
 なお、上記TaBターゲットを用いて、成膜条件の最適化を行ったが、いずれもBの含有率が5at%未満であり、アモルファス構造のTaBN膜は得られなかった。
比較例2
 比較例2は、吸収体層が水素(H)を含まないタンタルホウ素合金の窒化物(TaBN)膜であること以外は、実施例1と同様の手順で実施した。TaBN膜は、TaBターゲット(Ta:B=50at%:50at%)を用いて以下の条件で成膜した。
TaBN層の成膜条件
ターゲット:TaBターゲット(組成比:Ta50at%、B50at%)
スパッタガス:Arガス、N2ガス(Ar:86体積%、N2:14体積%、ガス圧:0.3Pa)
投入電力:150W
成膜速度:4.0nm/sec
膜厚:60nm
 得られたTaBN膜の組成(at%)を、X線光電子分光装置(X-ray Photoelectron Spectrometer)を用いて測定したところ、Bの含有率は5at%以上であった。
 成膜後のTaBN膜の結晶構造を、X線回折装置(X-Ray Diffractmeter)で確認したところ、得られる回折ピークにはシャープなピークが見られないことから、吸収体層の結晶構造がアモルファス構造または微結晶構造であることを確認した。
 また、成膜後のTaBN膜表面の表面粗さを、原子間力顕微鏡(Atomic Force Microscope)で確認したところ、0.2nm rmsであった。
 また、実施例1と同様の手順で、保護層(Ru層)13およびTaBN層表面におけるパターン検査光(波長257nm)の反射率を測定した。その結果、保護層13層表面での反射率は60.0%であり、TaBN層表面の反射率は9.9%であった。これらの結果と上記した式を用いてコントラストを求めたところ71.7%であり、実施例1と比較してコントラストは低いことが確認された。
 TaBN膜について、上記と同様の手順でエッチング特性を評価した。その結果、TaBN膜のエッチング選択比は12.8であった。
 なお、比較例2のTaBN層の成膜速度は、実施例1の成膜速度の2/3程度とかなり遅かった。また、再現性を確認するため、比較例2の条件で複数回実施したが、放電が不安定であり、成膜ができない場合があったり、膜組成や膜厚の制御が著しく困難であることが確認された。
比較例3
 比較例3は、TaBNH層におけるB濃度が1at%未満であること以外、実施例1と同様の手順で実施する。
 得られるTaBNH層の結晶構造をX線回折装置を用いて確認すると、得られる回折ピークにシャープなピークが見られることから、TaBNH層が結晶質であることが確認される。
比較例4
 比較例4は、TaBNH層におけるBの含有率が5at%超であること以外、実施例1と同様の手順で実施する。
 比較例4では、TaBNH層の成膜速度が実施例1に比べて著しく遅くなる。また、再現性を確認するため、比較例4の条件で複数回実施すると、放電が不安定であることから、成膜ができない場合があったり、膜組成や膜厚の制御が著しく困難であることが確認される。
比較例5
 比較例5は、TaBNH層のHの含有率が0.1at%未満であること以外、実施例1と同様の手順で実施する。
 得られるTaBNH層の結晶構造をX線回折装置を用いて確認すると、得られる回折ピークにシャープなピークが見られることから、TaBNH層が結晶質であることが確認される。
比較例6
 比較例6は、TaBNH層のHの含有率が5at%超であること以外、実施例1と同様の手順で実施する。
 得られるTaBNH層表面のEUV光反射率を測定すると0.8%であり、実施例1の吸収体層に比べてEUV光吸収特性に劣っていることが確認される。
 本発明のマスクブランクは、EUV光を露光用光源として用いるフォトリソグラフィ法による半導体集積回路の製造に利用できる。

 なお、2008年10月30日に出願された日本特許出願2008-279859号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
  1:EUVマスクブランク
 11:基板
 12:反射層(多層反射膜)
 13:保護層
 14:吸収体層
 15:低反射層

Claims (20)

  1.  基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収体層と、がこの順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
     前記吸収体層が、タンタル(Ta)、ホウ素(B)、窒素(N)および水素(H)を少なくとも含有し、
     前記吸収体層において、Bの含有率が1at%以上5at%未満であり、Hの含有率が0.1~5at%であり、TaおよびNの合計含有率が90~98.9at%であり、TaとNとの組成比(Ta:N)が8:1~1:1であることを特徴とするEUVリソグラフィ用反射型マスクブランク。
  2.  基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収体層と、がこの順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
     前記吸収体層が、タンタル(Ta)、ホウ素(B)、窒素(N)および水素(H)を少なくとも含有し、
     前記吸収体層の結晶状態が、アモルファスであることを特徴とするEUVリソグラフィ用反射型マスクブランク。
  3.  前記吸収体層表面の表面粗さが、0.5nm rms以下である請求項1または2に記載のEUVリソグラフィ用反射型マスクブランク。
  4.  前記吸収体層の膜厚が、30~100nmである請求項1ないし3のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  5.  前記吸収体層上に、マスクパターンの検査に使用する検査光における低反射層が形成されており、
     前記低反射層が、タンタル(Ta)、ホウ素(B)、酸素(O)および水素(H)を少なくとも含有し、
     前記低反射層において、Bの含有率が1at%以上5at%未満であり、Hの含有率が0.1~15at%であり、TaおよびOの合計含有率が80~98.9at%であり、TaとOとの組成比(Ta:O)が1:8~3:1である請求項1~4のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  6.  前記吸収体層上に、マスクパターンの検査に使用する検査光における低反射層が形成されており、
     前記低反射層が、タンタル(Ta)、ホウ素(B)、酸素(O)、窒素(N)および水素(H)を少なくとも含有し、
     前記低反射層において、Bの含有率が1at%以上5at%未満であり、Hの含有率が0.1~15at%であり、Ta、OおよびNの合計含有率が80~98.9at%であり、TaとO及びNの組成比(Ta:(O+N))が1:8~3:1である請求項1~4のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  7.  基板上に、EUV光を反射する反射層、EUV光を吸収する吸収体層、およびマスクパターンの検査に使用する検査光における低反射層がこの順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
     前記低反射層が、タンタル(Ta)、ホウ素(B)、酸素(O)、および水素(H)を少なくとも含有し、
     前記低反射層において、Bの含有率が1at%以上5at%未満であり、Hの含有率が0.1~15at%であり、TaおよびOの合計含有率が80~98.9at%であり、TaとOとの組成比(Ta:O)が1:8~3:1であることを特徴とするEUVリソグラフィ用反射型マスクブランク。
  8.  基板上に、EUV光を反射する反射層、EUV光を吸収する吸収体層、およびマスクパターンの検査に使用する検査光における低反射層がこの順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
     前記低反射層が、タンタル(Ta)、ホウ素(B)、酸素(O)、窒素(N)および水素(H)を少なくとも含有し、
     前記低反射層において、Bの含有率が1at%以上5at%未満であり、Hの含有率が0.1~15at%であり、Ta、OおよびNの合計含有率が80~98.9at%であり、TaとO及びNの組成比(Ta:(O+N))が1:8~3:1であることを特徴とするEUVリソグラフィ用反射型マスクブランク。
  9.  前記低反射層表面の表面粗さが、0.5nm rms以下である請求項5~8のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  10.  前記低反射層の膜厚が、5~30nmである請求項5~9のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  11.  前記反射層と前記吸収体層との間に、前記吸収体層へのパターン形成時に前記反射層を保護するための保護層が形成されており、
     吸収体層に形成されるパターンの検査に用いられる光の波長に対する前記保護層表面での反射光と、前記低反射層表面での反射光と、のコントラストが、30%以上である請求項5~10のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  12.  前記低反射層のH濃度が、前記吸収体層のH濃度よりも1.5at%以上高い、請求項5~11のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  13.  前記吸収体層に形成されるパターンの検査に用いられる光の波長に対する、前記低反射層表面の反射率が15%以下である請求項5~12のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  14.  前記吸収体層が、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)のうち少なくともひとつを含む不活性ガスと、窒素(N)および水素(H)を含む雰囲気中でTaB化合物ターゲットを用いたスパッタリング法を行うことにより形成される請求項1~6のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  15.  前記TaB化合物ターゲットの組成が、Ta=80~99at%、B=1~20at%である請求項14に記載のEUVリソグラフィ用反射型マスクブランク。
  16.  前記低反射層が、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)のうち少なくともひとつを含む不活性ガスと、酸素(O)および水素(H)を含む雰囲気中でTaB化合物ターゲットを用いたスパッタリング法を行うことにより形成される請求項5または7に記載のEUVリソグラフィ用反射型マスクブランク。
  17.  前記低反射層が、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)のうち少なくともひとつを含む不活性ガスと、酸素(O)、窒素(N)及び水素(H)を含む雰囲気中でTaB化合物ターゲットを用いたスパッタリング法を行うことにより形成される請求項6または8に記載のEUVリソグラフィ用反射型マスクブランク。
  18.  前記TaB化合物ターゲットの組成が、Ta=80~99at%、B=1~20at%である請求項16または17に記載のEUVリソグラフィ用反射型マスクブランク。
  19.  請求項1~18のいずれかに記載のEUVリソグラフィ用反射型マスクブランクの吸収体層および低反射層にパターニングを施したことを特徴とするEUVリソグラフィ用反射型マスク。
  20.  請求項19に記載のEUVリソグラフィ用反射型マスクを用いて、被露光体に露光を行うことにより半導体集積回路を製造することを特徴とする半導体集積回路の製造方法。
PCT/JP2009/068517 2008-10-30 2009-10-28 Euvリソグラフィ用反射型マスクブランク WO2010050518A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010535821A JP5348140B2 (ja) 2008-10-30 2009-10-28 Euvリソグラフィ用反射型マスクブランク
CN200980143726.8A CN102203907B (zh) 2008-10-30 2009-10-28 Euv光刻用反射型掩模基板
US13/070,728 US8133643B2 (en) 2008-10-30 2011-03-24 Reflective mask blank for EUV lithography

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008279859 2008-10-30
JP2008-279859 2008-10-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/070,728 Continuation US8133643B2 (en) 2008-10-30 2011-03-24 Reflective mask blank for EUV lithography

Publications (1)

Publication Number Publication Date
WO2010050518A1 true WO2010050518A1 (ja) 2010-05-06

Family

ID=42128877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068517 WO2010050518A1 (ja) 2008-10-30 2009-10-28 Euvリソグラフィ用反射型マスクブランク

Country Status (6)

Country Link
US (1) US8133643B2 (ja)
JP (1) JP5348140B2 (ja)
KR (1) KR20110090887A (ja)
CN (1) CN102203907B (ja)
TW (1) TWI436158B (ja)
WO (1) WO2010050518A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242634A (ja) * 2011-05-20 2012-12-10 Hoya Corp マスクブランクの製造方法、転写用マスク用の製造方法、および半導体デバイスの製造方法
JP2016145993A (ja) * 2016-04-08 2016-08-12 Hoya株式会社 マスクブランクの製造方法、転写用マスク用の製造方法、および半導体デバイスの製造方法
KR20190017667A (ko) * 2017-08-10 2019-02-20 에이지씨 가부시키가이샤 반사형 마스크 블랭크 및 반사형 마스크
JP2019035929A (ja) * 2017-08-10 2019-03-07 Agc株式会社 反射型マスクブランク、および反射型マスク
JPWO2020256062A1 (ja) * 2019-06-20 2020-12-24
WO2020256064A1 (ja) * 2019-06-20 2020-12-24 Hoya株式会社 反射型マスクブランク、反射型マスク、並びに反射型マスク及び半導体装置の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8113730B2 (en) * 2007-09-17 2012-02-14 The Tapemark Company Dispensing package with applicator
KR20120034074A (ko) 2009-07-08 2012-04-09 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크
KR20140004057A (ko) 2010-08-24 2014-01-10 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크
WO2012105508A1 (ja) 2011-02-01 2012-08-09 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
KR20140099226A (ko) * 2011-11-25 2014-08-11 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크 및 그 제조 방법
JP6060636B2 (ja) 2012-01-30 2017-01-18 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
JP6082385B2 (ja) * 2012-03-23 2017-02-15 Hoya株式会社 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスクの製造方法、及び半導体装置の製造方法
KR101821304B1 (ko) * 2013-05-03 2018-01-23 어플라이드 머티어리얼스, 인코포레이티드 멀티-패터닝 애플리케이션들을 위한 광학적으로 튜닝된 하드마스크
US9703187B2 (en) 2013-05-24 2017-07-11 Mitsui Chemicals, Inc. Pellicle and EUV exposure device comprising same
JP6287099B2 (ja) 2013-05-31 2018-03-07 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
US10128016B2 (en) * 2016-01-12 2018-11-13 Asml Netherlands B.V. EUV element having barrier to hydrogen transport

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084680A1 (ja) * 2006-12-27 2008-07-17 Asahi Glass Company, Limited Euvリソグラフィ用反射型マスクブランク
WO2008093534A1 (ja) * 2007-01-31 2008-08-07 Asahi Glass Company, Limited Euvリソグラフィ用反射型マスクブランク
JP2009021582A (ja) * 2007-06-22 2009-01-29 Advanced Mask Technology Center Gmbh & Co Kg マスクブランク、フォトマスク、及びフォトマスクの製造方法
WO2009116348A1 (ja) * 2008-03-18 2009-09-24 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
WO2010007955A1 (ja) * 2008-07-14 2010-01-21 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198226A (ja) * 1987-10-12 1989-04-17 Fujitsu Ltd X線露光用マスク
JP2762104B2 (ja) * 1989-03-27 1998-06-04 日本電信電話株式会社 X線露光用マスクの製造方法
JP3866912B2 (ja) * 1999-10-13 2007-01-10 信越化学工業株式会社 リソグラフィ用マスク基板およびその製造方法
US6673520B2 (en) * 2001-08-24 2004-01-06 Motorola, Inc. Method of making an integrated circuit using a reflective mask
EP2317384B1 (en) * 2002-04-11 2016-11-09 Hoya Corporation Reflective mask blank, reflective mask and methods of producing the mask blank and the mask
JP4163038B2 (ja) 2002-04-15 2008-10-08 Hoya株式会社 反射型マスクブランク及び反射型マスク並びに半導体の製造方法
KR20070054651A (ko) * 2004-09-17 2007-05-29 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크스 및 그 제조방법
CN100454485C (zh) * 2004-12-10 2009-01-21 凸版印刷株式会社 反射型光掩模坯料、反射型光掩模及半导体装置的制造方法
TWI444757B (zh) * 2006-04-21 2014-07-11 Asahi Glass Co Ltd 用於極紫外光(euv)微影術之反射性空白光罩
JP2008101246A (ja) * 2006-10-19 2008-05-01 Asahi Glass Co Ltd Euvリソグラフィ用反射型マスクブランクを製造する際に使用されるスパッタリングターゲット
KR101409642B1 (ko) * 2007-04-17 2014-06-18 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크
WO2009154238A1 (ja) * 2008-06-19 2009-12-23 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
CN102203906B (zh) * 2008-10-30 2013-10-09 旭硝子株式会社 Euv光刻用反射型掩模坯料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084680A1 (ja) * 2006-12-27 2008-07-17 Asahi Glass Company, Limited Euvリソグラフィ用反射型マスクブランク
WO2008093534A1 (ja) * 2007-01-31 2008-08-07 Asahi Glass Company, Limited Euvリソグラフィ用反射型マスクブランク
JP2009021582A (ja) * 2007-06-22 2009-01-29 Advanced Mask Technology Center Gmbh & Co Kg マスクブランク、フォトマスク、及びフォトマスクの製造方法
WO2009116348A1 (ja) * 2008-03-18 2009-09-24 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
WO2010007955A1 (ja) * 2008-07-14 2010-01-21 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242634A (ja) * 2011-05-20 2012-12-10 Hoya Corp マスクブランクの製造方法、転写用マスク用の製造方法、および半導体デバイスの製造方法
JP2016145993A (ja) * 2016-04-08 2016-08-12 Hoya株式会社 マスクブランクの製造方法、転写用マスク用の製造方法、および半導体デバイスの製造方法
KR20190017667A (ko) * 2017-08-10 2019-02-20 에이지씨 가부시키가이샤 반사형 마스크 블랭크 및 반사형 마스크
JP2019035929A (ja) * 2017-08-10 2019-03-07 Agc株式会社 反射型マスクブランク、および反射型マスク
KR102617017B1 (ko) 2017-08-10 2023-12-26 에이지씨 가부시키가이샤 반사형 마스크 블랭크 및 반사형 마스크
JP7006078B2 (ja) 2017-08-10 2022-01-24 Agc株式会社 反射型マスクブランク、および反射型マスク
WO2020256062A1 (ja) * 2019-06-20 2020-12-24 Hoya株式会社 反射型マスクブランク、反射型マスク、並びに反射型マスク及び半導体装置の製造方法
JP7002700B2 (ja) 2019-06-20 2022-01-20 Hoya株式会社 反射型マスクブランク、反射型マスク、並びに反射型マスク及び半導体装置の製造方法
WO2020256064A1 (ja) * 2019-06-20 2020-12-24 Hoya株式会社 反射型マスクブランク、反射型マスク、並びに反射型マスク及び半導体装置の製造方法
KR20220021452A (ko) 2019-06-20 2022-02-22 호야 가부시키가이샤 반사형 마스크 블랭크, 반사형 마스크, 그리고 반사형 마스크 및 반도체 장치의 제조 방법
KR20220022474A (ko) 2019-06-20 2022-02-25 호야 가부시키가이샤 반사형 마스크 블랭크, 반사형 마스크, 그리고 반사형 마스크 및 반도체 장치의 제조 방법
JPWO2020256062A1 (ja) * 2019-06-20 2020-12-24
JP7503057B2 (ja) 2019-06-20 2024-06-19 Hoya株式会社 反射型マスクブランク、反射型マスク、並びに反射型マスク及び半導体装置の製造方法
US12019366B2 (en) 2019-06-20 2024-06-25 Hoya Corporation Reflective mask blank, reflective mask, and method for manufacturing reflective mask and semiconductor device

Also Published As

Publication number Publication date
TW201027240A (en) 2010-07-16
JP5348140B2 (ja) 2013-11-20
CN102203907B (zh) 2014-03-26
US20110171566A1 (en) 2011-07-14
CN102203907A (zh) 2011-09-28
TWI436158B (zh) 2014-05-01
US8133643B2 (en) 2012-03-13
JPWO2010050518A1 (ja) 2012-03-29
KR20110090887A (ko) 2011-08-10

Similar Documents

Publication Publication Date Title
JP5348140B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP5040996B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP5018787B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP5018789B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP5803919B2 (ja) Euvリソグラフィ用反射層付基板、およびeuvリソグラフィ用反射型マスクブランク
JP5696666B2 (ja) Euvリソグラフィ用光学部材およびeuvリソグラフィ用反射層付基板の製造方法
JP5348141B2 (ja) Euvリソグラフィ用反射型マスクブランク
TWI444757B (zh) 用於極紫外光(euv)微影術之反射性空白光罩
JP5067483B2 (ja) Euvリソグラフィ用反射型マスクブランク
KR101699574B1 (ko) Euv 리소그래피용 반사층이 형성된 기판, euv 리소그래피용 반사형 마스크 블랭크, euv 리소그래피용 반사형 마스크, 및 그 반사층이 형성된 기판의 제조 방법
JP4867695B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP5971122B2 (ja) Euvリソグラフィ用反射型マスクブランク
WO2011108470A1 (ja) Euvリソグラフィ用反射型マスクブランクおよびその製造方法
KR20140085350A (ko) Euv 리소그래피용 반사형 마스크 블랭크 및 그 제조 방법
JP2009210802A (ja) Euvリソグラフィ用反射型マスクブランク

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980143726.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823628

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010535821

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117006094

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823628

Country of ref document: EP

Kind code of ref document: A1