WO2012105508A1 - Euvリソグラフィ用反射型マスクブランク - Google Patents

Euvリソグラフィ用反射型マスクブランク Download PDF

Info

Publication number
WO2012105508A1
WO2012105508A1 PCT/JP2012/052012 JP2012052012W WO2012105508A1 WO 2012105508 A1 WO2012105508 A1 WO 2012105508A1 JP 2012052012 W JP2012052012 W JP 2012052012W WO 2012105508 A1 WO2012105508 A1 WO 2012105508A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hard mask
film
reflective
euv
Prior art date
Application number
PCT/JP2012/052012
Other languages
English (en)
French (fr)
Inventor
和幸 林
和伸 前重
俊之 宇野
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020137015772A priority Critical patent/KR20140004101A/ko
Priority to JP2012555867A priority patent/JP5971122B2/ja
Publication of WO2012105508A1 publication Critical patent/WO2012105508A1/ja
Priority to US13/956,691 priority patent/US9097976B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to a reflective mask blank for EUV (Extreme Ultra Violet) lithography (hereinafter, also referred to as “EUV mask blank” in the present specification) used in semiconductor manufacturing and the like.
  • EUV mask blank Extreme Ultra Violet
  • the resolution limit of the pattern is about 1 ⁇ 2 of the exposure wavelength, and it is said that the immersion wavelength is about 1 ⁇ 4 of the exposure wavelength, and the ArF laser (wavelength: 193 nm) is used. Even if the immersion method is used, the exposure wavelength is expected to be about 45 nm.
  • EUV lithography which is an exposure technique using EUV light having a wavelength shorter than that of an ArF laser, is promising as a next-generation exposure technique using a wavelength shorter than 45 nm.
  • EUV light refers to light having a wavelength in the soft X-ray region or the vacuum ultraviolet region, and specifically refers to light having a wavelength of about 10 to 20 nm, particularly about 13.5 nm ⁇ 0.3 nm.
  • EUV light is easily absorbed by any substance, and the refractive index of the substance is close to 1 at this wavelength, so that a conventional refractive optical system such as photolithography using visible light or ultraviolet light cannot be used.
  • a reflective optical system that is, a reflective photomask and a mirror are used.
  • the mask blank is a layered body before patterning used for manufacturing a photomask.
  • the EUV mask blank has a structure in which a reflective layer that reflects EUV light and an absorption layer that absorbs EUV light are formed in this order on a substrate such as glass.
  • a low reflection layer for a pattern inspection wavelength (190 to 260 nm) is formed as necessary.
  • a material having a high absorption coefficient for EUV light specifically, a material mainly composed of Ta, for example, is used.
  • a material having low reflection characteristics with respect to the pattern inspection wavelength specifically, a material mainly containing Ta and O is used.
  • a resist film is applied to the uppermost layer of the mask blank (absorbing layer, or the low reflecting layer if a low reflecting layer is formed on the absorbing layer).
  • the A pattern is formed on the resist film using an electron beam drawing machine, and then the resist film on which the pattern is formed is used as a mask to undergo an etching process, whereby the pattern is reduced to an absorption layer (on the absorption layer).
  • a reflective layer is formed, it is transferred to an absorbing layer and a low reflective layer.
  • the film thickness of the resist film must be sufficiently thick.
  • the thickness of the resist is usually about 150 nm.
  • a layer of a material having resistance to etching conditions of an absorption layer in the case where a low reflection layer is formed on the absorption layer, the absorption layer and the low reflection layer
  • the resist can be thinned by providing the (hard mask layer) on the absorption layer (or on the low reflection layer when the low reflection layer is formed on the absorption layer) (Patent Document 1, Patent Document). 2).
  • the absorption layer low reflection on the absorption layer
  • the etching selectivity between the absorption layer and the low reflection layer and the hard mask layer specifically, the absorption layer (when the low reflection layer is formed on the absorption layer, the absorption layer and The etching rate of the absorption layer under the etching conditions of the low reflection layer (if the low reflection layer is formed on the absorption layer, the etching rate of the absorption layer and the low reflection layer) and the etching rate of the hard mask layer
  • the resist can be thinned.
  • Patent Document 1 since it has high etching resistance with respect to the fluorine-type gas plasma used for the etching of the light absorption layer (absorption layer) which has Ta as a main component, and it can etch easily by chlorine-type gas plasma, A material mainly composed of chromium (Cr), zirconium (Zr) or indium (In) is considered preferable as a constituent material of the hard mask layer.
  • Patent Document 2 since a high etching resistance is exhibited in a fluorine-based dry etching process, a layer containing any one of silicon, oxygen, carbon, and chromium is preferable as the hard mask layer.
  • a hard mask layer made of a material that increases the etching selectivity under the etching conditions of the absorption layer is provided on the absorption layer (or on the low reflection layer when a low reflection layer is formed on the absorption layer).
  • the resist can be thinned.
  • the hard mask layer has a high etching selectivity ratio under the etching conditions of the absorption layer, and the properties of the hard mask layer, specifically, The inventors of the present application have found that the crystal state of the hard mask layer (that is, whether it is a film having a crystal structure or an amorphous film) and the surface roughness are also important.
  • the hard mask layer when the hard mask layer is a film having a crystal structure or a film having a large surface roughness, it is predicted that the line edge roughness after pattern formation becomes large and a high-resolution pattern cannot be obtained. For this reason, the inventors of the present application have found that the hard mask layer preferably has a high etching selectivity under the etching conditions of the absorption layer, an amorphous crystal state, and a sufficiently small surface roughness.
  • the hard mask layer that is, the main component constituting the hard mask layer, but there is no description regarding the crystal state and surface roughness of the hard mask layer. Points are not taken into account.
  • the hard mask layer may be a film having a crystal structure or a film having a large surface roughness. It is possible to become.
  • the present invention has a sufficiently high etching selectivity in the etching conditions of the absorption layer or the absorption layer and the low reflection layer, and increases the line edge roughness after pattern formation.
  • An object of the present invention is to provide an EUV mask blank capable of obtaining a high-resolution pattern.
  • a mask blank having an absorption layer mainly composed of at least one of tantalum (Ta) and palladium (Pd), or the tantalum (Ta) And a low reflection layer mainly comprising at least one of tantalum (Ta) and palladium (Pd) and oxygen (O) on the absorption layer mainly comprising at least one of palladium (Pd).
  • a hard mask layer formed on the absorption layer (on the low reflection layer when a low reflection layer is formed on the absorption layer), Cr, one of N and O, H and a film containing a specific ratio (CrNH film or CrOH film), the etching selectivity in the etching conditions of the absorption layer is sufficiently high, One, the crystalline state becomes amorphous, found that the surface roughness can be sufficiently reduced.
  • the present invention has been made on the basis of the above findings, and a reflective layer that reflects EUV light, an absorption layer that absorbs EUV light, and a hard mask layer are formed in this order on a substrate.
  • a reflective mask blank for EUV lithography The absorption layer is mainly composed of at least one of tantalum (Ta) and palladium (Pd),
  • the hard mask layer contains chromium (Cr), nitrogen (N) and hydrogen (H);
  • Cr chromium
  • N nitrogen
  • H hydrogen
  • the total content of Cr and N is 85 to 99.9 atomic% (hereinafter, atomic% is referred to as at%), and the content of H is 0.1 to 15 at%.
  • a reflective mask blank for EUV lithography is provided.
  • the present invention provides a reflective layer that reflects EUV light, an absorption layer that absorbs EUV light, a low reflective layer for mask pattern inspection light (wavelength 190 to 260 nm), a hard mask layer, Is a reflective mask blank for EUV lithography formed in this order,
  • the absorption layer is mainly composed of at least one of tantalum (Ta) and palladium (Pd)
  • the low reflection layer is mainly composed of at least one of tantalum (Ta) and palladium (Pd) and oxygen (O)
  • the hard mask layer contains chromium (Cr), nitrogen (N) and hydrogen (H);
  • a reflective mask blank for EUV lithography wherein the total content of Cr and N in the hard mask layer is 85 to 99.9 at% and the content of H is 0.1 to 15 at% To do.
  • the hard mask layer containing Cr, N, and H includes at least one selected from the group consisting of helium (He), argon (Ar), neon (Ne), krypton (Kr), and xenon (Xe). It is preferably formed by performing a sputtering method using a Cr target in an atmosphere containing an inert gas, nitrogen (N 2 ), and hydrogen (H 2 ).
  • the present invention is a reflective mask blank for EUV lithography in which a reflective layer that reflects EUV light, an absorption layer that absorbs EUV light, and a hard mask layer are formed in this order on a substrate.
  • the absorption layer is mainly composed of at least one of tantalum (Ta) and palladium (Pd)
  • the hard mask layer contains chromium (Cr), oxygen (O) and hydrogen (H);
  • a reflective mask blank for EUV lithography wherein the total content of Cr and O in the hard mask layer is 85 to 99.9 at% and the content of H is 0.1 to 15 at% To do.
  • the present invention provides a reflective layer that reflects EUV light, an absorption layer that absorbs EUV light, a low reflective layer for mask pattern inspection light (wavelength 190 to 260 nm), a hard mask layer, Is a reflective mask blank for EUV lithography formed in this order,
  • the absorption layer is mainly composed of at least one of tantalum (Ta) and palladium (Pd)
  • the low reflection layer is mainly composed of at least one of tantalum (Ta) and palladium (Pd) and oxygen (O)
  • the hard mask layer contains chromium (Cr), oxygen (O) and hydrogen (H);
  • a reflective mask blank for EUV lithography wherein the total content of Cr and O in the hard mask layer is 85 to 99.9 at% and the content of H is 0.1 to 15 at% To do.
  • the hard mask layer containing Cr, O, and H includes at least one selected from the group consisting of helium (He), argon (Ar), neon (Ne), krypton (Kr), and xenon (Xe). It is preferably formed by performing a sputtering method using a Cr target in an atmosphere containing an inert gas, oxygen (O 2 ), and hydrogen (H 2 ).
  • the crystal state of the hard mask layer is amorphous.
  • the surface roughness (rms) of the surface of the hard mask layer is preferably 0.5 nm or less.
  • the hard mask layer preferably has a thickness of 2 to 30 nm.
  • a protective layer for protecting the reflective layer may be formed between the reflective layer and the absorbent layer when forming a pattern on the absorbent layer.
  • the protective layer is formed of at least one selected from the group consisting of Ru, Ru compound, SiO 2 and Cr compound.
  • the etching selectivity in the etching conditions of the absorption layer or the absorption layer and the low reflection layer is sufficiently high, so that the resist thinning required when obtaining a high-resolution pattern can be achieved. Further, since the crystal state of the hard mask layer is amorphous and the surface roughness is sufficiently small, the line edge roughness after pattern formation does not increase and a high resolution pattern can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the EUV mask blank of the present invention.
  • FIG. 2 is a diagram showing a procedure for forming a pattern on the EUV mask blank 1 shown in FIG. 1 and shows a state in which a resist film 20 is formed on the hard mask layer 15 of the EUV mask blank 1.
  • FIG. 3 is a diagram showing a procedure following FIG. 2 and shows a state in which a pattern is formed on the resist film 20.
  • FIG. 4 is a diagram showing a procedure following FIG. 3 and shows a state in which a pattern is formed on the hard mask layer 15.
  • FIG. 5 is a diagram showing a procedure following FIG. 4, and shows a state where patterns are formed on the absorption layer 13 and the low reflection layer 14.
  • FIG. 6 is a diagram showing a procedure following FIG. 5 and shows a state where the hard mask layer 15 is removed.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the EUV mask blank of the present invention.
  • a mask blank 1 shown in FIG. 1 includes a reflection layer 12 that reflects EUV light on a substrate 11, an absorption layer 13 that absorbs EUV light, a low reflection layer 14 in inspection light used for inspection of a mask pattern, The mask layer 15 is formed in this order.
  • the EUV mask blank of the present invention in the configuration shown in FIG. 1, only the substrate 11, the reflective layer 12, the absorption layer 13, and the hard mask layer 15 are essential, and the low reflective layer 14 is an optional component.
  • a protective layer may be formed between the reflective layer 12 and the absorption layer 13.
  • the protective layer referred to here is a layer provided for the purpose of protecting the reflective layer 12 during pattern formation of the absorption layer (in the case of the illustrated EUV mask blank 1, the absorption layer 13 and the low reflection layer 14).
  • the absorption layer in the case of the illustrated EUV mask blank 1, the absorption layer 13 and the low reflection layer 14.
  • the substrate 11 is required to satisfy the characteristics as a substrate for an EUV mask blank. Therefore, the substrate 11 is required to have a low thermal expansion coefficient.
  • the thermal expansion coefficient at 20 ° C. is preferably 0 ⁇ 0.05 ⁇ 10 ⁇ 7 / ° C., and in particular, 0 ⁇ 0. 0.03 ⁇ 10 ⁇ 7 / ° C. is preferable.
  • the substrate preferably has excellent smoothness, flatness, and resistance to a cleaning liquid used for cleaning a mask blank or a photomask after pattern formation.
  • the substrate 11 is made of glass having a low thermal expansion coefficient, such as SiO 2 —TiO 2 glass, but is not limited to this.
  • Crystallized glass, quartz glass, silicon or the like on which ⁇ quartz solid solution is precipitated is used.
  • a substrate such as metal can be used. Since the substrate 11 has a smooth surface with a surface roughness (rms) of 0.15 nm or less and a flatness of 100 nm or less, high reflectivity and transfer accuracy can be obtained in a photomask after pattern formation. Is preferred.
  • the size and thickness of the substrate 11 are appropriately determined according to the design value of the mask. In the examples described later, SiO 2 —TiO 2 glass having an outer shape of 6 inches (152 mm) square and a thickness of 0.25 inches (6.3 mm) was used. It is preferable that the surface of the substrate 11 on the side where the reflective layer 12 is formed has no defects.
  • the depth of the concave defect and the height of the convex defect are not more than 2 nm so that the phase defect does not occur due to the concave defect and / or the convex defect.
  • the full width at half maximum of the size of the defect and the convex defect is preferably 60 nm or less.
  • the reflective layer 12 is not particularly limited as long as it has desired characteristics as a reflective layer of an EUV mask blank.
  • the characteristic particularly required for the reflective layer 12 is a high EUV light reflectance.
  • the maximum value of light reflectance near a wavelength of 13.5 nm is preferably 60% or more, More preferably, it is 65% or more.
  • the maximum value of the light reflectance near the wavelength of 13.5 nm is preferably 60% or more, and more preferably 65% or more. preferable.
  • the reflective layer 12 can achieve high EUV light reflectance, a multilayer reflective film in which a high refractive layer and a low refractive index layer are alternately laminated a plurality of times is usually used as the reflective layer 12.
  • a multilayer reflective film in which a high refractive layer and a low refractive index layer are alternately laminated a plurality of times is usually used as the reflective layer 12.
  • Si is widely used for the high refractive index layer
  • Mo is widely used for the low refractive index layer. That is, the most common is a Mo / Si multilayer reflective film (a multilayer reflective layer in which Mo layers and Si layers are alternately laminated a plurality of times).
  • the multilayer reflective film is not limited to this, for example, Ru / Si multilayer reflective film, Mo / Be multilayer reflective film, Mo compound / Si compound multilayer reflective film, Si / Mo / Ru multilayer reflective film, Si / Mo / A Ru / Mo multilayer reflective film and a Si / Ru / Mo / Ru multilayer reflective film can also be used.
  • each layer constituting the multilayer reflective film constituting the reflective layer 12 and the number of repeating units of the layer can be appropriately selected according to the film material used and the EUV light reflectance required for the reflective layer.
  • the multilayer reflective film is composed of a Mo layer having a film thickness of 2.3 ⁇ 0.1 nm, A Si layer having a thickness of 4.5 ⁇ 0.1 nm may be stacked so that the number of repeating units is 30 to 60.
  • each layer which comprises the multilayer reflective film which comprises the reflective layer 12 so that it may become desired thickness using well-known film-forming methods, such as a magnetron sputtering method and an ion beam sputtering method.
  • film-forming methods such as a magnetron sputtering method and an ion beam sputtering method.
  • a Mo / Si multilayer reflective film is formed by ion beam sputtering
  • an Si target is used as a target and Ar gas (gas pressure 1.3 ⁇ 10 ⁇ 2 Pa to 2.7 ⁇ 10 ⁇ as a sputtering gas). 2 Pa)
  • an Si film is formed to have a thickness of 4.5 nm at an ion acceleration voltage of 300 to 1500 V and a film formation rate of 0.03 to 0.30 nm / sec.
  • the Mo film is formed by laminating 30 to 60 cycles of the Si film and the Mo film.
  • the uppermost layer of the multilayer reflective film forming the reflective layer 12 is preferably a layer made of a material that is not easily oxidized.
  • the layer of material that is not easily oxidized functions as a cap layer of the reflective layer 12.
  • a Si layer can be exemplified as a specific example of the layer of a material that is hardly oxidized and functions as a cap layer.
  • the multilayer reflective film forming the reflective layer 12 is a Mo / Si film
  • the uppermost layer can be made to function as a cap layer by forming the uppermost layer as an Si layer. In that case, the thickness of the cap layer is preferably 11 ⁇ 2 nm.
  • a protective layer may be formed between the reflective layer 12 and the absorption layer 13.
  • the protective layer is provided for the purpose of protecting the reflective layer 12 so that the reflective layer 12 is not damaged by the etching process when the absorption layer 13 is patterned by an etching process, usually a dry etching process. Therefore, as the material of the protective layer, a material that is not easily affected by the etching process of the absorption layer 13, that is, the etching rate is slower than that of the absorption layer 13 and is not easily damaged by this etching process is selected.
  • Examples of the material satisfying this condition include Cr, Al, Ta and nitrides thereof, Ru and Ru compounds (RuB, RuSi, etc.), and SiO 2 , Si 3 N 4 , Al 2 O 3 and mixtures thereof. Is done. Among these, Ru and Ru compounds (RuB, RuSi, etc.), CrN and SiO 2 are preferable, and Ru and Ru compounds (RuB, RuSi, etc.) are particularly preferable.
  • the thickness of the protective layer is preferably 1 to 60 nm.
  • the protective layer is formed using a known film formation method such as a magnetron sputtering method or an ion beam sputtering method.
  • a Ru film is formed by magnetron sputtering
  • a Ru target is used as a target
  • Ar gas gas pressure: 1.0 ⁇ 10 ⁇ 2 Pa to 10 ⁇ 10 ⁇ 1 Pa
  • an input voltage is 30 V. It is preferable to form a film at a thickness of 2 to 5 nm at a film thickness of 0.01 to 1500 V and a film formation rate of 0.02 to 1.0 nm / sec.
  • the characteristic particularly required for the absorption layer 13 is that the EUV light reflectance is extremely low. Specifically, when the surface of the absorption layer 13 is irradiated with light in the wavelength region of EUV light, the maximum light reflectance near a wavelength of 13.5 nm is preferably 0.5% or less, and 0.1% or less. It is more preferable that In the EUV mask blank 1 of the present invention, even when the surface of the low reflection layer 14 is irradiated with light in the wavelength region of EUV light, the maximum light reflectance near a wavelength of 13.5 nm may be 0.5% or less. Preferably, it is 0.1% or less.
  • the absorption layer 13 is made of a material having a high EUV light absorption coefficient.
  • a material having at least one of tantalum (Ta) and palladium (Pd) as a main component is used as a material having a high absorption coefficient of EUV light constituting the absorption layer 13.
  • at least one of Ta or Pd in the material is 40 at% or more, preferably 50 at% or more. More preferably, it means a material containing 55 at% or more.
  • the material may contain both Ta and Pd, and TaPd is exemplified.
  • a material mainly composed of at least one of Ta and Pd used for the absorption layer 13 is not only Ta or Pd but also hafnium (Hf), silicon (Si), zirconium (Zr), germanium (Ge), boron (B), It may contain at least one element selected from nitrogen (N) and hydrogen (H).
  • the material containing the above elements other than Ta or Pd include, for example, TaN, TaNH, PdN, PdNH, TaPdN, TaPdNH, TaHf, TaHfN, TaBSi, TaBSiH, TaBSiN, TaBSiNH, TaB, TaBH, TaBN, Examples include TaBNH, TaSi, TaSiN, TaGe, TaGeN, TaZr, TaZrN, and the like.
  • TaNH is preferable because the crystalline state of the absorption layer becomes amorphous and the surface of the absorption layer is excellent in smoothness.
  • TaPd, TaPdN, and TaPdNH are preferable because the absorption layer can be made thin because the crystalline state of the absorption layer is amorphous, the refractive index value is small, and a desired extinction coefficient is obtained. Note that in this specification, when the crystal state is referred to as amorphous, what state is indicated will be described later.
  • the absorption layer 13 having the above-described configuration can be formed by performing a known film formation method, for example, a magnetron sputtering method or an ion beam sputtering method.
  • a known film formation method for example, a magnetron sputtering method or an ion beam sputtering method.
  • a TaNH film is formed as the absorption layer 13 by using a magnetron sputtering method
  • a Ta target is used as a target, and a mixed gas of Ar, N 2 and H 2 (H 2 gas concentration 1 to 50 vol%) as a sputtering gas.
  • a mixed gas of Ar and N 2 (N 2 gas concentration 1 to 80 vol%, Ar gas concentration 5 to 95 vol%, gas pressure 1.0 ⁇ 10 ⁇ 1 Pa to 50 ⁇ 10 ⁇ 1 Pa) is used.
  • N 2 gas concentration 1 to 80 vol%, Ar gas concentration 5 to 95 vol%, gas pressure 1.0 ⁇ 10 ⁇ 1 Pa to 50 ⁇ 10 ⁇ 1 Pa) is used.
  • the TaPdN film so as to have a thickness of 20 to 50 nm at an input power of 30 to 1000 W and a film formation rate of 0.5 to 60 nm / min.
  • concentration of the inert gas sets it as the same concentration range as above-mentioned Ar gas concentration.
  • the absorption layer 13 is preferably set such that the total thickness of the absorption layer 13 and the low reflection layer 14 is 10 to 90 nm, and the total thickness of both is 15 to 87 nm. Is more preferable, and it is more preferable to set the film thickness so that the total film thickness of both is 15 to 85 nm.
  • the low reflection layer 14 is composed of a film that exhibits low reflection in the inspection light used for inspection of the mask pattern.
  • an inspection machine that normally uses light of about 190 to 260 nm as inspection light is used. That is, the difference in reflectance of light of about 190 to 260 nm, specifically, the surface where the absorbing layer 13 is removed by pattern formation and the surface of the absorbing layer 13 remaining without being removed by pattern formation, It is inspected by the difference in reflectance.
  • the former is the surface of the reflective layer 12, and when the protective layer is formed on the reflective layer 12, it is the surface of the protective layer.
  • the difference in reflectance between the surface of the reflective layer 12 with respect to the wavelength of the inspection light (the protective layer surface when a protective layer is formed on the reflective layer 12) and the surface of the absorption layer 13 is small, the contrast at the time of inspection Will be worse and accurate inspection will not be possible.
  • the absorption layer 13 having the above-described configuration has extremely low EUV light reflectance, and has excellent characteristics as the absorption layer of the EUV mask blank 1, but the light reflectance is not always sufficient when viewed with respect to the wavelength of the inspection light. It's not low. As a result, the difference between the reflectance of the surface of the absorption layer 13 at the wavelength of the inspection light and the reflectance of the surface of the reflective layer 12 (or the surface of the protective layer when a protective layer is formed on the reflective layer 12) is small. Therefore, there is a possibility that sufficient contrast at the time of inspection cannot be obtained. If sufficient contrast at the time of inspection is not obtained, pattern defects cannot be sufficiently determined in mask inspection, and accurate defect inspection cannot be performed.
  • the EUV mask blank 1 of the present invention by forming the low reflection layer 14 for the inspection light on the absorption layer 13, the light reflectance at the wavelength of the inspection light becomes extremely low, and the contrast at the time of inspection becomes good.
  • the low reflection layer 14 is preferably made of a material whose refractive index at the wavelength of the inspection light is lower than that of the absorption layer 13, and its crystal state is preferably amorphous.
  • the EUV mask blank 1 of the present invention as a constituent material of the low reflection layer 14, at least one of tantalum (Ta) and palladium (Pd) and oxygen (O) are main components.
  • the material to be used is used.
  • at least one of Ta or Pd in the material and O is 40 at% in total content.
  • it means a material containing preferably 50 at% or more, more preferably 55 at% or more, and TaO and PdO are exemplified as those containing one of Ta or Pd and O.
  • the material may contain both Ta and Pd, and TaPdO is exemplified.
  • a material mainly composed of at least one of Ta and Pd used for the low reflection layer 14 and O is hafnium (Hf), silicon (Si), zirconium (Zr), germanium (other than Ta, Pd and O). It may contain at least one element selected from Ge), boron (B), nitrogen (N) and hydrogen (H).
  • Specific examples of materials containing at least one of Ta and Pd and the above-described elements other than O include TaON, TaONH, PdON, PdONH, TaPdON, TaPdONH, TaHfO, TaHfON, TaBSiO, TaBSiON, and the like. .
  • TaO, TaON, and TaONH are preferable because the crystalline state of the absorption layer becomes amorphous and the surface of the absorption layer is excellent in smoothness.
  • TaPdO, TaPdON, and TaPdONH are preferable because the absorption layer can be made thin because the crystalline state of the absorption layer is amorphous, the refractive index is small, and a desired extinction coefficient is obtained. Note that in this specification, when the crystal state is referred to as amorphous, what state is indicated will be described later.
  • the total thickness of both is preferably 10 to 90 nm, more preferably 15 to 87 nm, and 15 to 85 nm. Is more preferable.
  • the film thickness of the low reflection layer 14 is larger than the film thickness of the absorption layer 13, the EUV light absorption characteristics in the absorption layer 13 may be deteriorated. Therefore, the film thickness of the low reflection layer 14 is absorbed. It is preferable that the thickness of the layer 13 is smaller. For this reason, the film thickness of the low reflection layer 14 is preferably 1 to 20 nm, more preferably 1 to 15 nm, and even more preferably 1 to 10 nm.
  • the low reflection layer 14 having the above-described configuration can be formed by performing a known film forming method, for example, a magnetron sputtering method or an ion beam sputtering method.
  • a known film forming method for example, a magnetron sputtering method or an ion beam sputtering method.
  • a TaONH film is formed as the low reflection layer 14 by using a magnetron sputtering method
  • a Ta target is used as a target
  • a mixed gas (H 2 gas) of Ar, O 2 , N 2 and H 2 is used as a sputtering gas.
  • the low reflection layer 14 on the absorption layer 13 because the wavelength of the pattern inspection light and the wavelength of the EUV light are different. Therefore, when EUV light (near 13.5 nm) is used as the pattern inspection light, it is considered unnecessary to form the low reflection layer 14 on the absorption layer 13.
  • the wavelength of the inspection light tends to shift to the short wavelength side as the pattern size becomes smaller, and it is conceivable that it will shift to 193 nm and further to 13.5 nm in the future.
  • the wavelength of the inspection light is 193 nm, it may not be necessary to form the low reflection layer 14 on the absorption layer 13.
  • the wavelength of the inspection light is 13.5 nm, it is considered unnecessary to form the low reflection layer 14 on the absorption layer 13.
  • the hard mask layer 15 is required to have a sufficiently high etching selectivity in the etching conditions of the absorption layer 13 and the low reflection layer 14. In order to achieve this, it is necessary that the hard mask layer 15 has sufficient etching resistance with respect to the etching conditions of the absorption layer 13 and the low reflection layer 14.
  • a chlorine-based gas process or a fluorine-based gas process is used for etching an absorption layer or a low reflection layer of an EUV mask blank.
  • the low reflection layer 14 of the present invention is mainly composed of at least one of Ta and Pd and O, but generally, in the case of a film containing oxygen, it is resistant to etching with respect to a chlorine-based gas process.
  • the absorption layer 13 mainly composed of at least one of Ta and Pd in the present invention can also be easily etched for the fluorine-based gas process.
  • the etching characteristics of these layers by the chlorine-based gas process and the fluorine-based gas process are also shown in the examples described later.
  • the hard mask layer 15 is preferably chlorine. It is easy to etch by the system gas process, and has high etching resistance to the fluorine system gas process. In this case, by using a fluorine-based gas process for etching the absorption layer 13 and the low reflection layer 14, the etching selectivity in the etching conditions of the absorption layer 13 and the low reflection layer 14 is increased. On the other hand, by using a chlorine-based gas process for etching the hard mask layer 15, the etching selectivity obtained by the following formula is increased, and only the hard mask layer 15 can be selectively etched.
  • Etching selectivity (during etching of hard mask layer 15) (Etching rate of hard mask layer 15) / (Etching rate of low reflection layer 14)
  • the etching selectivity is preferably 2.0 or more, more preferably 2.5 or more, and further preferably 3.0 or more.
  • the low reflection layer 14 is not provided on the TaPdN film as the absorption layer 13, but as shown in Table 1, the TaPdN film has etching resistance against the chlorine-based gas process. .
  • etching can be easily performed for a fluorine-based gas process.
  • the etching selectivity under the etching conditions of the absorption layer 13 is increased.
  • the etching selectivity obtained by the following formula is increased, and only the hard mask layer 15 can be selectively etched.
  • Etching selectivity (during etching of hard mask layer 15) (Etching rate of hard mask layer 15) / (Etching rate of absorption layer 13)
  • the etching selectivity is preferably 4.0 or more, more preferably 4.5 or more, and further preferably 5.0 or more.
  • the hard mask layer 15 is required to be made of a material having a sufficiently high etching resistance with respect to the fluorine-based gas process and a high etching rate with respect to the chlorine-based gas process. It is done.
  • the hard mask layer 15 is required to have an amorphous crystal state and a sufficiently small surface roughness.
  • the hard mask layer is a crystalline film or a film having a large surface roughness, it is predicted that the line edge roughness after pattern formation becomes large and a high resolution pattern cannot be obtained.
  • the hard mask layer 15 is in an amorphous state and the surface roughness is sufficiently small, the line edge roughness after pattern formation does not increase and a high-resolution pattern can be obtained.
  • the hard mask layer 15 of the EUV mask blank 1 of the present invention satisfies the above characteristics by containing the elements described below in a specific ratio.
  • the first aspect of the hard mask layer 15 is a CrNH film containing chromium (Cr), nitrogen (N) and hydrogen (H).
  • the hard mask layer 15 is a CrNH film
  • the total content of Cr and N is 85 to 99.9 at%, and the content of H is 0.1 to 15 at%. If the H content is less than 0.1 at%, the crystal state of the CrNH film does not become amorphous, and the surface roughness of the CrNH film may increase. On the other hand, even when the H content is higher than 15 at%, the crystal state of the CrNH film does not become amorphous, and the surface roughness of the CrNH film may increase.
  • the H content is more preferably 0.1 to 13 at%, further preferably 0.1 to 10 at%, and 0.1 to 8 at%. It is particularly preferred. Further, the total content of Cr and N is more preferably 87 to 99.9 at%, further preferably 90 to 99.9 at%, and particularly preferably 92 to 99.9 at%.
  • the composition ratio (atomic ratio) of Cr and N is preferably 9: 1 to 2.5: 7.5, more preferably 8.5: 1.5 to 2.5: 7.5. A ratio of 8: 2 to 2.5: 7.5 is particularly preferable.
  • the second mode of the hard mask layer 15 is a CrOH film containing chromium (Cr), oxygen (O), and hydrogen (H).
  • Cr chromium
  • O oxygen
  • H hydrogen
  • the total content of Cr and O is 15 to 99.9 at%, and the content of H is 0.1 to 15 at%. If the H content is less than 0.1 at%, the CrOH film does not have an amorphous structure, and the surface roughness of the CrOH film may increase. On the other hand, even when H is higher than 15 at%, the crystal state of the CrOH film does not become amorphous, and the surface roughness of the CrOH film may increase.
  • the H content is more preferably 0.1 to 13 at%, further preferably 0.1 to 10 at%, and 0.1 to 8 at%. It is particularly preferred. Further, the total content of Cr and O is more preferably 87 to 99.9 at%, further preferably 90 to 99.9 at%, and particularly preferably 92 to 99.9 at%.
  • the composition ratio (atomic ratio) of Cr and O is preferably 9: 1 to 2.5: 7.5, more preferably 8.5: 1.5 to 2.5: 7.5. A ratio of 8: 2 to 2.5: 7.5 is particularly preferable.
  • the crystalline state thereof is amorphous.
  • the phrase “crystalline state is amorphous” includes a microcrystalline structure other than an amorphous structure having no crystal structure.
  • the hard mask layer 15 CrNH film, CrOH film
  • the surface roughness (rms) of the hard mask layer 15 is preferably 0.5 nm or less.
  • the surface roughness of the hard mask layer 15 can be measured by using an atomic force microscope (Atomic Force Microscope).
  • the hard mask layer 15 When the surface roughness of the hard mask layer 15 is large, the edge roughness of the pattern formed on the hard mask layer 15 increases, and the dimensional accuracy of the pattern deteriorates. Since the influence of edge roughness becomes more prominent as the pattern becomes finer, the hard mask layer 15 is required to have a smooth surface. If the surface roughness (rms) of the hard mask layer 15 is 0.5 nm or less, since the surface of the hard mask layer 15 is sufficiently smooth, there is no possibility that the dimensional accuracy of the pattern is deteriorated due to the influence of edge roughness.
  • the surface roughness (rms) of the hard mask layer 15 is more preferably 0.4 nm or less, and further preferably 0.3 nm or less.
  • the crystal state of the hard mask layer 15 (CrNH film, CrOH film) can be confirmed by an X-ray diffraction (XRD) method to be amorphous, that is, an amorphous structure or a microcrystalline structure. If the crystal state of the hard mask layer 15 is an amorphous structure or a microcrystalline structure, a sharp peak is not seen in a diffraction peak obtained by XRD measurement.
  • XRD X-ray diffraction
  • the hard mask layer 15 is a film having a crystal structure
  • the edge roughness of the pattern formed on the hard mask layer 15 increases due to the selective etching of only a specific crystal orientation. There is a risk that accuracy may deteriorate. For this reason, it is preferable that the crystal state of the hard mask layer 15 (CrNH film, CrOH film) is amorphous.
  • the film thickness of the hard mask layer 15 is preferably 2 to 28 nm, and more preferably 2 to 25 nm.
  • the hard mask layer 15 (CrNH film, CrOH film) can be formed by performing a known film forming method, for example, a sputtering method such as a magnetron sputtering method or an ion beam sputtering method.
  • a sputtering method such as a magnetron sputtering method or an ion beam sputtering method.
  • the hard mask layer 15 (CrNH film, CrOH film) is formed by sputtering, it is selected from the group consisting of helium (He), argon (Ar), neon (Ne), krypton (Kr), and xenon (Xe).
  • a sputtering method using a Cr target is performed in an atmosphere containing an inert gas containing at least one kind, oxygen (O 2 ) or nitrogen (N 2 ), and hydrogen (H 2 ) Good.
  • the magnetron sputtering method When the magnetron sputtering method is used, specifically, it may be performed under the following film forming conditions.
  • Sputtering gas Mixed gas of Ar, N 2 and H 2 (H 2 gas concentration 1 to 50 vol%, preferably 1 to 30 vol%, N 2 gas concentration 1 to 80 vol%, preferably 5 to 75 vol%, Ar gas concentration 5 ⁇ 95 vol%, preferably 10 to 94 vol%, gas pressure 1.0 x 10 -1 Pa to 50 x 10 -1 Pa, preferably 1.0 x 10 -1 Pa to 40 x 10 -1 Pa, more preferably 1.0 ⁇ 10 ⁇ 1 Pa to 30 ⁇ 10 ⁇ 1 Pa.)
  • Input power 30 to 3000 W, preferably 100 to 3000 W, more preferably 500 to 3000 W
  • Deposition rate 0.5 to 60 nm / min, preferably 1.0 to 45 nm / min, more preferably 1.5 to 30 nm / min
  • the EUV mask blank 1 of the present invention is a functional film known in the field of EUV mask blanks in addition to the reflective layer 12, the absorbing layer 13, the low reflective layer 14, the hard mask layer 15, and a protective layer formed as necessary. You may have.
  • a functional film for example, as described in Japanese Patent Application Publication No. 2003-501823, a high dielectric material applied to the back side of the substrate in order to promote electrostatic chucking of the substrate.
  • a functional coating As a specific example of such a functional film, for example, as described in Japanese Patent Application Publication No. 2003-501823, a high dielectric material applied to the back side of the substrate in order to promote electrostatic chucking of the substrate. A functional coating.
  • the back surface of the substrate refers to the surface of the substrate 11 in FIG. 1 opposite to the side on which the reflective layer 12 is formed.
  • the electrical conductivity and thickness of the constituent material are selected so that the sheet resistance is 100 ⁇ / ⁇ or less.
  • the constituent material of the high dielectric coating can be widely selected from those described in known literature.
  • a high dielectric constant coating described in JP-A-2003-501823 specifically, a coating made of silicon, TiN, molybdenum, chromium, or TaSi can be applied.
  • the thickness of the high dielectric coating can be, for example, 10 to 1000 nm.
  • the high dielectric coating can be formed using a known film forming method, for example, a sputtering method such as a magnetron sputtering method or an ion beam sputtering method, a CVD method, a vacuum evaporation method, or an electrolytic plating method.
  • a sputtering method such as a magnetron sputtering method or an ion beam sputtering method
  • a CVD method a vacuum evaporation method
  • electrolytic plating method electrolytic plating method
  • FIG. 2 When forming a pattern on the EUV mask blank of the present invention, as shown in FIG. 2, a resist film 20 is formed on the hard mask layer 15 of the EUV mask blank 1, and as shown in FIG. 3 using an electron beam drawing machine. Then, a pattern is formed on the resist film 20. Next, using the patterned resist film as a mask, a pattern is formed on the hard mask layer 15 as shown in FIG. FIG. 4 shows a state in which the resist film 20 is removed after the pattern formation of the hard mask layer 15. For the pattern formation of the hard mask layer 15, etching by a chlorine-based gas process may be performed.
  • a pattern is formed on the absorption layer 13 and the low reflection layer 14 as shown in FIG.
  • etching by a fluorine-based gas process may be performed.
  • the hard mask layer 15 is removed.
  • the hard mask layer 15 may be removed by etching using a chlorine-based gas process.
  • Example 1 In this example, the EUV mask blank 1 shown in FIG. 1 was produced. However, a protective layer was formed between the reflective layer 12 and the absorbing layer 13.
  • a SiO 2 —TiO 2 glass substrate (outer diameter 6 inches (152 mm) square, thickness 6.3 mm) was used. This glass substrate has a thermal expansion coefficient at 20 ° C. of 0.05 ⁇ 10 ⁇ 7 / ° C., Young's modulus of 67 GPa, Poisson's ratio of 0.17, and specific rigidity of 3.07 ⁇ 10 7 m 2 / s 2 .
  • This glass substrate was polished to form a smooth surface with a surface roughness (rms) of 0.15 nm or less and a flatness of 100 nm or less.
  • a high dielectric coating having a sheet resistance of 100 ⁇ / ⁇ was applied to the back side of the substrate 11 by depositing a Cr film having a thickness of 100 nm using a magnetron sputtering method.
  • the substrate 11 is fixed to a normal electrostatic chuck having a flat plate shape via a formed Cr film, and an Si film and a Mo film are alternately formed on the surface of the substrate 11 by using an ion beam sputtering method.
  • Mo / Si having a total thickness of 272 nm ((4.5 nm (Si film) +2.3 nm (Mo film)) ⁇ 40 times) having a Si film in the lowermost layer on the substrate surface side
  • a multilayer reflective film (reflective layer 12) was formed.
  • a protective layer was formed on the Mo / Si multilayer reflective film (reflective layer 12) by forming a Ru film (film thickness 2.5 nm) using an ion beam sputtering method.
  • the deposition conditions for the Si film, the Mo film, and the Ru film are as follows.
  • Si film formation conditions Target: Si target (boron doped) Sputtering gas: Ar gas (gas pressure 0.02 Pa) Voltage: 700V Deposition rate: 0.077 nm / sec Film thickness: 4.5nm
  • Mo target Sputtering gas Ar gas (gas pressure 0.02 Pa) Voltage: 700V Deposition rate: 0.064 nm / sec Film thickness: 2.3 nm
  • Ru target Sputtering gas Ar gas (gas pressure 0.02 Pa) Voltage: 500V Deposition rate: 0.023 nm / sec Film thickness: 2.5nm
  • an absorption layer 13 (TaNH film) containing Ta, N and H was formed on the protective layer by using a magnetron sputtering method.
  • the film forming conditions of the absorption layer 13 are as follows.
  • Target Ta target Sputtering gas: Mixed gas of Ar, N 2 and H 2 (Ar: 89 vol%, N 2 : 8.3 vol%, H 2 : 2.7 vol%, gas pressure: 0.46 Pa)
  • Input power 300W
  • Deposition rate 1.5 nm / min Film thickness: 70nm
  • a low reflection layer 14 (TaONH film) containing Ta, O, N, and H was formed on the absorption layer 13 (TaNH film).
  • the film forming conditions of the low reflective layer 14 (TaONH film) are as follows.
  • Target Ta target Sputtering gas: Mixed gas of Ar, O 2 , N 2 and H 2 (Ar: 48 vol%, O 2 : 36 vol%, N 2 : 14 vol%, H 2 : 2 vol%, gas pressure: 0.3 Pa )
  • a hard mask layer 15 (CrNH film) containing Cr, N, and H is formed on the low reflective layer 14 by using a magnetron sputtering method, whereby the reflective layer 12, the protective layer, The EUV mask blank 1 in which the absorption layer 13, the low reflection layer 14, and the hard mask layer 15 were formed in this order was obtained.
  • the conditions for forming the hard mask layer 15 are as follows.
  • the following evaluations (1) to (4) were performed on the hard mask layer 15 (CrNH film) of the EUV mask blank 1 obtained by the above procedure.
  • (1) Film composition The composition of the hard mask layer 15 (CrNH film) is determined using an X-ray photoelectron spectrometer (manufactured by PERKIN ELEMER-PHI), a secondary ion mass spectrometer (Secondary Ion Mass Spectrometer). (PHI-ATOMIKA) and Rutherford Back Scattering Spectroscopy (Kobe Steel) were used.
  • the surface roughness of the hard mask layer 15 was measured with a dynamic force mode using an atomic force microscope (SII, SPI-3800).
  • the surface roughness measurement area was 1 ⁇ m ⁇ 1 ⁇ m, and SI-DF40 (manufactured by SII) was used as the cantilever.
  • the surface roughness (rms) of the hard mask layer 15 was 0.35 nm.
  • Etching characteristics were evaluated by the following method instead of using the EUV mask blank 1 produced by the above procedure.
  • An absorption layer 13 (TaNH film), a low reflection layer 14 (TaONH film), and a hard mask layer 15 (CrNH film) are sampled on the sample stage (4-inch quartz substrate) of the RF plasma etching apparatus under the same conditions as above.
  • a deposited Si chip (10 mm ⁇ 30 mm) was installed. The sample was subjected to plasma RF etching by the following chlorine-based gas process and fluorine-based process.
  • Bias RF 50W Etching time: 120 sec Trigger pressure: 3 Pa Etching pressure: 0.3 Pa Etching gas: Cl 2 / He Gas flow rate (Cl 2 / Ar): 4/16 sccm Distance between electrode substrates: 55 mm
  • Bias RF 50W Etching time: 120 sec Trigger pressure: 3Pa Etching pressure: 0.3 Pa Etching gas: CF 4 / He Gas flow rate (CF 4 / He): 4/16 sccm Distance between electrode substrates: 55 mm
  • Table 1 shows the results of determining the etching rates of the TaNH film, TaONH film, and CrNH film.
  • the CrNH film cannot confirm the amount of film loss after etching, and the etching rate is N.P. D. It was. That is, the CrNH film has high etching resistance to the fluorine-based gas process used for etching the absorption layer 13 (TaNH film) and the low reflection layer 14, and the absorption layer 13 (TaNH film) and the low reflection layer 14 ( The etching selectivity under the etching conditions of the TaONH film is sufficiently high.
  • the CrNH film had a sufficiently high etching rate with respect to the chlorine-based gas process used for etching the hard mask layer 15.
  • Example 2 an EUV mask blank was produced in the same procedure as in Example 1 except that the hard mask layer 15 was a CrOH film.
  • the CrOH film was formed under the following conditions.
  • Target Cr target Sputtering gas: Mixed gas of Ar, O 2 and H 2 (Ar: 89 vol%, O 2 : 8.3 vol%, H 2 : 2.7 vol%, gas pressure: 0.46 Pa)
  • Input power 2000W Deposition rate: 5.5 nm / min Film thickness: 20nm
  • Table 1 shows the results of the etching characteristics measured by the same method as in Example 1.
  • the CrOH film cannot confirm the amount of film loss after etching, and the etching rate is N.P. D. It was. That is, the CrOH film has a high etching resistance against the fluorine-based gas process used for etching the absorption layer 13 (TaNH film) and the low reflection layer 14, and the absorption layer 13 (TaNH film) and the low reflection layer 14.
  • the etching selectivity in the etching conditions of (TaONH film) is sufficiently high.
  • the CrOH film had a sufficiently high etching rate with respect to the chlorine-based gas process used for etching the hard mask layer 15.
  • Table 1 shows the etching rate of the TaPdN film measured by the same method as in Example 1.
  • the etching rate of the absorption layer 13 (TaPdN film) was 4.0 nm / min.
  • the etching selection under the etching conditions of the absorption layer 13 (TaPdN film) is performed. The ratio is high enough.
  • the etching selectivity of the CrNH film and the CrOH film with respect to the TaPdN film was calculated based on the following formula.
  • Etching selectivity in the case of CrNH film
  • Etching selectivity in the case of CrOH film
  • the etching selectivity with respect to the TaPdN film calculated from the above is 6.2 in the case of the CrNH film and 18.3 in the case of the CrOH film, and it was confirmed that a sufficient etching selectivity was ensured.
  • Comparative Example 1 an EUV mask blank was produced in the same procedure as in Example 1 except that the hard mask layer 15 was a CrN film not containing hydrogen.
  • the CrN film was formed under the following conditions.
  • Target Cr target Sputtering gas: Mixed gas of Ar and N 2 (Ar: 89 vol%, N 2 : 11 vol%, gas pressure: 0.46 Pa)
  • Input power 2000W Deposition rate: 5.5 nm / min Film thickness: 20nm
  • the surface roughness of the hard mask layer 15 was measured by the same method as in Example 1, and as a result, the surface roughness (rms) was 0.65 nm.
  • the CrN film of this comparative example has a crystal structure and a large surface roughness, it is predicted that the line edge roughness at the time of pattern formation will increase, which is not preferable as a hard mask layer of an EUV mask blank.
  • Comparative Example 2 an EUV mask blank was produced in the same procedure as in Example 1 except that the hard mask layer 15 was a CrNH film having a hydrogen content higher than 15 at%.
  • the CrNH film was formed under the following conditions.
  • Target Cr target Sputtering gas: Mixed gas of Ar, N 2 and H 2 (Ar: 80 vol%, N 2 : 5 vol%, H 2 : 15 vol%, gas pressure: 0.46 Pa)
  • Input power 2000W Deposition rate: 4.0 nm / min Film thickness: 20nm
  • the film composition of the hard mask layer 15 (CrNH film) of the EUV mask blank obtained by the above procedure was measured by the same method as in Example 1.
  • the surface roughness of the hard mask layer 15 was measured by the same method as in Example 1, and as a result, the surface roughness (rms) was 0.70 nm.
  • the CrNH film of this comparative example has a crystal structure and a large surface roughness, it is predicted that the line edge roughness at the time of pattern formation will increase, which is not preferable as a hard mask layer of an EUV mask blank.
  • Comparative Example 3 an EUV mask blank was produced in the same procedure as in Example 2 except that the hard mask layer 15 was a CrO film not containing hydrogen.
  • the CrO film was formed under the following conditions.
  • Target Cr target Sputtering gas: Mixed gas of Ar and O 2 (Ar: 89 vol%, O 2 : 11 vol%, gas pressure: 0.46 Pa)
  • Input power 2000W Deposition rate: 5.5 nm / min Film thickness: 20nm
  • the surface roughness of the hard mask layer 15 was measured by the same method as in Example 1, and as a result, the surface roughness (rms) was 0.65 nm.
  • the CrO film of this comparative example has a crystal structure and a large surface roughness, it is predicted that the line edge roughness at the time of pattern formation will increase, which is not preferable as a hard mask layer of an EUV mask blank.
  • Comparative Example 4 an EUV mask blank was produced in the same procedure as in Example 1 except that the hard mask layer 15 was a CrOH film having a hydrogen content higher than 15 at%.
  • the CrOH film was formed under the following conditions.
  • Target Cr target Sputtering gas: Mixed gas of Ar, O 2 and H 2 (Ar: 80 vol%, O 2 : 5 vol%, H 2 : 15 vol%, gas pressure: 0.46 Pa)
  • Input power 2000W Deposition rate: 4.2 nm / min Film thickness: 20nm
  • the film composition of the hard mask layer 15 (CrOH film) of the EUV mask blank obtained by the above procedure was measured by the same method as in Example 1.
  • the surface roughness of the hard mask layer 15 was measured by the same method as in Example 1, and as a result, the surface roughness (rms) was 0.75 nm.
  • the CrOH film of this comparative example has a crystal structure and a large surface roughness, it is predicted that the line edge roughness at the time of pattern formation will increase, which is not preferable as a hard mask layer of an EUV mask blank.
  • EUV mask blank 11 Substrate 12: Reflective layer (multilayer reflective film) 13: Absorption layer 14: Low reflection layer 15: Hard mask layer 20: Resist film

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

 吸収層のエッチング条件におけるエッチング選択比が十分高く、かつパターン形成後のラインエッジラフネスが大きくなることがなく、高解像度のパターンを得ることができるEUVマスクブランクの提供。 基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収層と、ハードマスク層と、が、この順に形成されたEUVリソグラフィ用反射型マスクブランクであって、前記吸収層が、タンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方を主成分とし、前記ハードマスク層が、クロム(Cr)と、窒素(N)および酸素(O)のいずれか一方と、水素(H)と、を含有し、前記ハードマスク層における、Crと、NおよびOのいずれか一方と、の合計含有率が85~99.9at%であり、Hの含有率が0.1~15at%であることを特徴とするEUVリソグラフィ用反射型マスクブランク。

Description

EUVリソグラフィ用反射型マスクブランク
 本発明は、半導体製造等に使用されるEUV(Extreme Ultra Violet:極端紫外)リソグラフィ用反射型マスクブランク(以下、本明細書において、「EUVマスクブランク」ともいう。)に関する。
 従来、半導体産業において、Si基板等に微細なパターンからなる集積回路を形成する上で必要な微細パターンの転写技術として、可視光や紫外光を用いたフォトリソグラフィ法が用いられてきた。しかし、半導体デバイスの微細化が加速している一方で、従来のフォトリソグラフィ法の限界に近づいてきた。フォトリソグラフィ法の場合、パターンの解像限界は露光波長の1/2程度であり、液浸法を用いても露光波長の1/4程度と言われており、ArFレーザ(波長:193nm)の液浸法を用いても、その露光波長は45nm程度が限界と予想される。そこで、45nmよりも短い波長を用いる次世代の露光技術として、ArFレーザよりさらに短波長のEUV光を用いた露光技術であるEUVリソグラフィが有望視されている。本明細書において、EUV光とは、軟X線領域または真空紫外線領域の波長の光線をさし、具体的には波長10~20nm程度、特に13.5nm±0.3nm程度の光線を指す。
 EUV光は、あらゆる物質に対して吸収されやすく、かつこの波長で物質の屈折率が1に近いため、従来の可視光または紫外光を用いたフォトリソグラフィのような屈折光学系を使用できない。このため、EUV光リソグラフィでは、反射光学系、すなわち反射型フォトマスクとミラーとが用いられる。
 マスクブランクは、フォトマスク製造用に用いられるパターニング前の積層体である。
 EUVマスクブランクの場合、ガラス等の基板上にEUV光を反射する反射層と、EUV光を吸収する吸収層と、がこの順で形成された構造を有している。吸収層上には、必要に応じて、パターン検査波長(190~260nm)に対する低反射層が形成されている。吸収層には、EUV光に対する吸収係数の高い材料、具体的にはたとえば、Taを主成分とする材料が用いられる。低反射層には、パターン検査波長に対して低反射特性を有する材料、具体的にはTaおよびOを主成分とする材料が用いられる。
 上記の構造のマスクブランクからフォトマスクを製造する際、マスクブランクの最上層(吸収層、該吸収層上に低反射層が形成されている場合は該低反射層)に、レジスト膜が塗布される。該レジスト膜に対して、電子線描画機を用いてパターンを形成し、次に、パターンが形成されたレジスト膜をマスクとして、エッチング工程を経ることにより、パターンが吸収層(吸収層上に低反射層が形成されている場合は吸収層および低反射層)へ転写される。ここで、上記のエッチング工程において、レジスト膜も消耗するため、レジスト膜の膜厚は、十分厚くなければならない。レジストの種類およびエッチング条件にも依存するが、通常、レジストの厚さは150nm程度である。
 近年、パターンの微細化・高密度化が進む中で、より高解像度のパターンが求められており、高解像度のパターンを得るためには、レジストの膜厚を薄くすることが必要とされる。
 しかしながら、レジストの膜厚を薄くすると、エッチング工程実施中にレジスト膜が消耗することによって、吸収層(吸収層上に低反射層が形成されている場合は吸収層および低反射層)へ転写されるパターン精度が低下するおそれがある。
 上述した問題点を解決するために、一般的に、吸収層(吸収層上に低反射層が形成されている場合は吸収層および低反射層)のエッチング条件に対して耐性を有する材料の層(ハードマスク層)を吸収層上(吸収層上に低反射層が形成されている場合は低反射層上)に設けることでレジストを薄膜化できることが知られている(特許文献1、特許文献2参照)。すなわち、このようなハードマスク層を形成して、吸収層(吸収層上に低反射層が形成されている場合は吸収層および低反射層)のエッチング条件における吸収層(吸収層上に低反射層が形成されている場合は吸収層および低反射層)とハードマスク層とのエッチング選択比、具体的には、吸収層(吸収層上に低反射層が形成されている場合は吸収層および低反射層)のエッチング条件での吸収層のエッチング速度(吸収層上に低反射層が形成されている場合は吸収層および低反射層のエッチング速度)と、ハードマスク層のエッチング速度と、の比を高めることで、レジストを薄膜化できる。
 以下、本明細書において、「吸収層のエッチング条件におけるエッチング選択比」と言った場合、吸収層(吸収層上に低反射層が形成されている場合は吸収層および低反射層)のエッチング条件における吸収層(吸収層上に低反射層が形成されている場合は吸収層および低反射層)とハードマスク層とのエッチング選択比を意味し、該エッチング選択比は下記式によって求めることができる。
  エッチング選択比=(吸収層のエッチング速度(吸収層上に低反射層が形成されている場合は吸収層および低反射層のエッチング速度))/(ハードマスク層のエッチング速度)
 特許文献1では、Taを主成分とする光吸収層(吸収層)のエッチングに用いられるフッ素系ガスプラズマに対して高いエッチング耐性を有し、かつ、塩素系ガスプラズマにより容易にエッチングできることから、クロム(Cr)、ジルコニウム(Zr)又はインジウム(In)を主成分とする材料がハードマスク層の構成材料として好ましいとされている。
 特許文献2では、フッ素ベースのドライエッチング工程において、高いエッチング耐性を示すことから、ケイ素、酸素、炭素、クロムのいずれかを含む層がハードマスク層として好ましいとしている。
日本特開2009-54899号公報 日本特開2009-21582号公報
 上述したように、吸収層のエッチング条件におけるエッチング選択比が高くなるような材料のハードマスク層を吸収層上(吸収層上に低反射層が形成されている場合は低反射層上)に設けることで、レジストを薄膜化できる。
 しかしながら、高解像度のパターンを得るためには、ハードマスク層に必要な特性として、吸収層のエッチング条件におけるエッチング選択比が高いだけでは不十分であり、該ハードマスク層の性状、具体的には該ハードマスク層の結晶状態(すなわち、結晶構造を有する膜であるか、アモルファス膜であるか)や表面粗さも重要であることを本願発明者らは見出した。
 すなわち、ハードマスク層が、結晶構造を有する膜あるいは表面粗さが大きい膜の場合、パターン形成後のラインエッジラフネスが大きくなり、高解像度のパターンが得られないことが予測される。そのため、ハードマスク層は、吸収層のエッチング条件におけるエッチング選択比が高く、かつ、結晶状態がアモルファスであり、表面粗さが十分小さいことが好ましいことを本願発明者らは見出した。
 特許文献1および2のいずれの場合も、ハードマスク層の組成、すなわち、ハードマスク層を構成する主成分に関する記載はあるが、該ハードマスク層の結晶状態や表面粗さに関する記載はなく、かかる点が考慮されていない。また、ハードマスク層の組成、具体的には、ハードマスク層を構成する成分の比率や主成分以外の元素によっては、ハードマスク層が結晶構造を有する膜となったり、表面粗さが大きい膜となることが考えられる。
 本発明は、上記した従来技術の問題点を解決するため、吸収層、または、吸収層および低反射層のエッチング条件におけるエッチング選択比が十分高く、かつパターン形成後のラインエッジラフネスが大きくなることがなく、高解像度のパターンを得ることができるEUVマスクブランクを提供することを目的とする。
 本願発明者らは、上記課題を解決するために鋭意検討した結果、タンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方を主成分とする吸収層を有するマスクブランク、あるいは、該タンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方を主成分とする吸収層上にタンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方と、酸素(O)と、を主成分とする低反射層をさらに有するマスクブランクにおいて、該吸収層上(該吸収層上に低反射層が形成されている場合は該低反射層上)に形成するハードマスク層を、Crと、NおよびOのいずれか一方と、Hと、を特定の比率で含有する膜(CrNH膜またはCrOH膜)とすることにより、吸収層のエッチング条件におけるエッチング選択比が十分高く、かつ、結晶状態がアモルファスとなり、表面粗さを十分小さくできることを見出した。
 本発明は、上記の知見に基づいてなされたものであり、基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収層と、ハードマスク層と、が、この順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
 前記吸収層が、タンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方を主成分とし、
 前記ハードマスク層が、クロム(Cr)、窒素(N)および水素(H)を含有し、
 前記ハードマスク層における、CrおよびNの合計含有率が85~99.9原子%(以下、原子%をat%と記す。)であり、Hの含有率が0.1~15at%であることを特徴とするEUVリソグラフィ用反射型マスクブランクを提供する。
 また、本発明は、基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収層と、マスクパターンの検査光(波長190~260nm)に対する低反射層と、ハードマスク層と、が、この順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
 前記吸収層が、タンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方を主成分とし、
 前記低反射層が、タンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方と、酸素(O)と、を主成分とし、
 前記ハードマスク層が、クロム(Cr)、窒素(N)および水素(H)を含有し、
 前記ハードマスク層における、CrおよびNの合計含有率が85~99.9at%であり、Hの含有率が0.1~15at%であることを特徴とするEUVリソグラフィ用反射型マスクブランクを提供する。
 Cr、NおよびHを含有する前記ハードマスク層において、CrとNの組成比(原子比)がCr:N=9:1~3:7であることが好ましい。
 Cr、NおよびHを含有する前記ハードマスク層は、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、およびキセノン(Xe)からなる群から選ばれる少なくとも1種を含む不活性ガスと、窒素(N2)と、水素(H2)と、を含む雰囲気中でCrターゲットを用いたスパッタリング法を行うことにより形成されることが好ましい。
 また、本発明は、基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収層と、ハードマスク層と、が、この順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
 前記吸収層が、タンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方を主成分とし、
 前記ハードマスク層が、クロム(Cr)、酸素(O)および水素(H)を含有し、
 前記ハードマスク層における、CrおよびOの合計含有率が85~99.9at%であり、Hの含有率が0.1~15at%であることを特徴とするEUVリソグラフィ用反射型マスクブランクを提供する。
 また、本発明は、基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収層と、マスクパターンの検査光(波長190~260nm)に対する低反射層と、ハードマスク層と、が、この順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
 前記吸収層が、タンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方を主成分とし、
 前記低反射層が、タンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方と、酸素(O)と、を主成分とし、
 前記ハードマスク層が、クロム(Cr)、酸素(O)および水素(H)を含有し、
 前記ハードマスク層における、CrおよびOの合計含有率が85~99.9at%であり、Hの含有率が0.1~15at%であることを特徴とするEUVリソグラフィ用反射型マスクブランクを提供する。
 Cr、OおよびHを含有する前記ハードマスク層において、CrとOの組成比(原子比)がCr:O=9:1~3:7であることが好ましい。
 Cr、OおよびHを含有する前記ハードマスク層は、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、およびキセノン(Xe)からなる群から選ばれる少なくとも1種を含む不活性ガスと、酸素(O2)と、水素(H2)と、を含む雰囲気中でCrターゲットを用いたスパッタリング法を行うことにより形成されることが好ましい。
 本発明のEUVマスクブランクにおいて、前記ハードマスク層の結晶状態が、アモルファスであることが好ましい。
 本発明のEUVマスクブランクにおいて、前記ハードマスク層の表面の表面粗さ(rms)が、0.5nm以下であることが好ましい。
 本発明のEUVマスクブランクにおいて、前記ハードマスク層の膜厚が、2~30nmであることが好ましい。
 本発明のEUVマスクブランクにおいて、前記反射層と前記吸収層との間に、前記吸収層へのパターン形成時に前記反射層を保護するための保護層が形成されていてもよい。この場合、前記保護層は、Ru、Ru化合物、SiOおよびCr化合物の群から選ばれる少なくとも1種で形成される。
 上記した数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用され、特段の定めがない限り、以下本明細書において「~」は、同様の意味をもって使用される。
 本発明のEUVマスクブランクでは、吸収層または、吸収層および低反射層のエッチング条件におけるエッチング選択比が十分高いため、高解像度のパターンを得る際に求められるレジストの薄膜化を達成できる。
 また、ハードマスク層の結晶状態がアモルファスであり、表面粗さが十分小さいことから、パターン形成後のラインエッジラフネスが大きくなることがなく、高解像度のパターンを得ることができる。
図1は、本発明のEUVマスクブランクの1実施形態を示す概略断面図である。 図2は、図1に示すEUVマスクブランク1にパターン形成する手順を示した図であり、EUVマスクブランク1のハードマスク層15上にレジスト膜20が形成された状態を示している。 図3は、図2に続く手順を示した図であり、レジスト膜20にパターンが形成された状態を示している。 図4は、図3に続く手順を示した図であり、ハードマスク層15にパターンが形成された状態を示している。 図5は、図4に続く手順を示した図であり、吸収層13および低反射層14にパターンが形成された状態を示している。 図6は、図5に続く手順を示した図であり、ハードマスク層15が除去された状態を示している。
 以下、図面を参照して本発明のEUVマスクブランクを説明する。
 図1は、本発明のEUVマスクブランクの1実施形態を示す概略断面図である。図1に示すマスクブランク1は、基板11上にEUV光を反射する反射層12と、EUV光を吸収する吸収層13と、マスクパターンの検査に使用する検査光における低反射層14と、ハードマスク層15と、が、この順に形成されている。但し、本発明のEUVマスクブランクにおいて、図1に示す構成中、基板11、反射層12、吸収層13およびハードマスク層15のみが必須であり、低反射層14は任意の構成要素である。また、反射層12と、吸収層13と、の間には保護層が形成されていてもよい。ここで言う保護層とは、吸収層(図示したEUVマスクブランク1の場合、吸収層13および低反射層14)のパターン形成時に反射層12を保護する目的で設けられる層である。
 以下、マスクブランク1の個々の構成要素について説明する。
 基板11は、EUVマスクブランク用の基板としての特性を満たすことが要求される。そのため、基板11は、低熱膨張係数であることが要求され、具体的には、20℃における熱膨張係数が0±0.05×10-7/℃であることが好ましく、特に、0±0.03×10-7/℃であることが好ましい。また、基板は、平滑性、平坦度、およびマスクブランクまたはパターン形成後のフォトマスクの洗浄等に用いる洗浄液への耐性に優れたものが好ましい。基板11としては、具体的には低熱膨張係数を有するガラス、例えばSiO2-TiO2系ガラス等を用いるが、これに限定されず、β石英固溶体を析出した結晶化ガラスや石英ガラスやシリコンや金属などの基板を使用できる。
 基板11は、表面粗さ(rms)が0.15nm以下の平滑な表面と、100nm以下の平坦度を有していることがパターン形成後のフォトマスクにおいて高反射率および転写精度が得られるために好ましい。
 基板11の大きさや厚さなどはマスクの設計値等により適宜決定されるものである。後で示す実施例では外形6インチ(152mm)角で、厚さ0.25インチ(6.3mm)のSiO2-TiO2系ガラスを用いた。
 基板11の反射層12が形成される側の表面には欠点が存在しないことが好ましい。しかし、存在している場合であっても、凹状欠点および/または凸状欠点によって位相欠点が生じないように、凹状欠点の深さおよび凸状欠点の高さが2nm以下であり、かつこれら凹状欠点および凸状欠点の大きさの半値幅が60nm以下であることが好ましい。
 反射層12は、EUVマスクブランクの反射層として所望の特性を有するものである限り特に限定されない。ここで、反射層12に特に要求される特性は、高EUV光線反射率であることである。具体的には、EUV光の波長領域の光線を入射角6度で反射層12表面に照射した際に、波長13.5nm付近の光線反射率の最大値が60%以上であることが好ましく、65%以上であることがより好ましい。また、反射層12の上に保護層13を設けた場合であっても、波長13.5nm付近の光線反射率の最大値が60%以上であることが好ましく、65%以上であることがより好ましい。
 反射層12は、高EUV光線反射率を達成できることから、通常は高屈折層と低屈折率層を交互に複数回積層させた多層反射膜が反射層12として用いられる。反射層12をなす多層反射膜において、高屈折率層には、Siが広く使用され、低屈折率層にはMoが広く使用される。すなわち、Mo/Si多層反射膜(Mo層とSi層とが交互に複数回、積層された多層反射層)が最も一般的である。但し、多層反射膜はこれに限定されず、例えば、Ru/Si多層反射膜、Mo/Be多層反射膜、Mo化合物/Si化合物多層反射膜、Si/Mo/Ru多層反射膜、Si/Mo/Ru/Mo多層反射膜、Si/Ru/Mo/Ru多層反射膜も使用できる。
 反射層12をなす多層反射膜を構成する各層の膜厚および層の繰り返し単位の数は、使用する膜材料および反射層に要求されるEUV光線反射率に応じて適宜選択できる。Mo/Si反射膜を例にとると、EUV光線反射率の最大値が60%以上の反射層12とするには、多層反射膜は膜厚2.3±0.1nmのMo層と、膜厚4.5±0.1nmのSi層とを繰り返し単位数が30~60になるように積層させればよい。
 なお、反射層12をなす多層反射膜を構成する各層は、マグネトロンスパッタリング法、イオンビームスパッタリング法など、周知の成膜方法を用いて所望の厚さになるように成膜すればよい。例えば、イオンビームスパッタリング法を用いてMo/Si多層反射膜を形成する場合、ターゲットとしてSiターゲットを用い、スパッタガスとしてArガス(ガス圧1.3×10-2Pa~2.7×10-2Pa)を使用して、イオン加速電圧300~1500V、成膜速度0.03~0.30nm/secで厚さ4.5nmとなるようにSi膜を成膜し、次に、ターゲットとしてMoターゲットを用い、スパッタガスとしてArガス(ガス圧1.3×10-2Pa~2.7×10-2Pa)を使用して、イオン加速電圧300~1500V、成膜速度0.03~0.30nm/secで厚さ2.3nmとなるようにMo膜を成膜することが好ましい。これを1周期として、Si膜およびMo膜を30~60周期積層させることによりMo/Si多層反射膜が成膜される。
 反射層12表面が酸化されるのを防止するため、反射層12をなす多層反射膜の最上層は酸化されにくい材料の層とすることが好ましい。酸化されにくい材料の層は反射層12のキャップ層として機能する。キャップ層として機能する酸化されにくい材料の層の具体例としては、Si層を例示できる。反射層12をなす多層反射膜がMo/Si膜である場合、最上層をSi層とすることによって、該最上層をキャップ層として機能させることができる。その場合キャップ層の膜厚は、11±2nmであることが好ましい。
 上述したように、反射層12と、吸収層13と、の間には保護層を形成してもよい。保護層は、エッチングプロセス、通常はドライエッチングプロセスにより吸収層13にパターン形成する際に、反射層12がエッチングプロセスによるダメージを受けないよう、反射層12を保護することを目的として設けられる。したがって保護層の材質としては、吸収層13のエッチングプロセスによる影響を受けにくい、つまりこのエッチング速度が吸収層13よりも遅く、しかもこのエッチングプロセスによるダメージを受けにくい物質が選択される。この条件を満たす物質としては、たとえばCr、Al、Ta及びこれらの窒化物、Ru及びRu化合物(RuB、RuSi等)、ならびにSiO2、Si34、Al23やこれらの混合物が例示される。これらの中でも、Ru及びRu化合物(RuB、RuSi等)、CrNおよびSiO2が好ましく、Ru及びRu化合物(RuB、RuSi等)が特に好ましい。
 保護層の厚さは1~60nmであることが好ましい。
 保護層は、マグネトロンスパッタリング法、イオンビームスパッタリング法など周知の成膜方法を用いて成膜する。マグネトロンスパッタリング法によりRu膜を成膜する場合、ターゲットとしてRuターゲットを用い、スパッタガスとしてArガス(ガス圧1.0×10-2Pa~10×10-1Pa)を使用して投入電圧30V~1500V、成膜速度0.02~1.0nm/secで厚さ2~5nmとなるように成膜することが好ましい。
 吸収層13に特に要求される特性は、EUV光線反射率が極めて低いことである。具体的には、EUV光の波長領域の光線を吸収層13表面に照射した際に、波長13.5nm付近の最大光線反射率が0.5%以下であることが好ましく、0.1%以下であることがより好ましい。
 本発明のEUVマスクブランク1においては、EUV光の波長領域の光線を低反射層14表面に照射した際にも、波長13.5nm付近の最大光線反射率が0.5%以下であることが好ましく、0.1%以下であることがより好ましい。
 上記の特性を達成するため、吸収層13は、EUV光の吸収係数が高い材料で構成される。本発明のEUVマスクブランク1では、吸収層13を構成するEUV光の吸収係数が高い材料として、タンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方を主成分とする材料を用いる。本明細書において、タンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方を主成分とする材料と言った場合、当該材料中TaあるいはPdのうち少なくとも一方を40at%以上、好ましくは50at%以上、より好ましくは55at%以上含有する材料を意味する。ここで、当該材料はTaおよびPdの両方を含有してもよく、TaPdが例示される。
 吸収層13に用いるTaおよびPdのうち少なくとも一方を主成分とする材料は、TaあるいはPd以外にハフニウム(Hf)、珪素(Si)、ジルコニウム(Zr)、ゲルマニウム(Ge)、硼素(B)、窒素(N)および水素(H)から選ばれる少なくとも1種類の元素を含んでも良い。TaあるいはPd以外に上記の元素を含有する材料の具体例としては、例えば、TaN、TaNH、PdN、PdNH、TaPdN、TaPdNH、TaHf、TaHfN、TaBSi、TaBSiH、TaBSiN、TaBSiNH、TaB、TaBH、TaBN、TaBNH、TaSi、TaSiN、TaGe、TaGeN、TaZr、TaZrNなどが挙げられる。
 これらの中でもTaNHが、吸収層の結晶状態がアモルファスとなり、該吸収層表面が平滑性に優れることから好ましい。
 また、TaPd、TaPdN、TaPdNHが、吸収層の結晶状態がアモルファスとなることに加えて、屈折率の値が小さく、所望の消衰係数を有することから、吸収層を薄膜化できることから好ましい。
 なお、本明細書において、結晶状態がアモルファスと言った場合、どのような状態を指すかは後述する。
 上記した構成の吸収層13は、公知の成膜方法、例えば、マグネトロンスパッタリング法またはイオンビームスパッタリング法を実施することにより形成できる。
 例えば、吸収層13として、マグネトロンスパッタリング法を用いてTaNH膜を形成する場合、ターゲットとしてTaターゲットを用い、スパッタガスとして、ArとN2とH2の混合ガス(H2ガス濃度1~50vol%、N2ガス濃度1~80vol%、Arガス濃度5~95vol%、ガス圧1.0×10-1Pa~50×10-1Pa)を使用して、投入電力30~3000W、成膜速度0.5~60nm/minで、厚さ10~80nmとなるようにTaNH膜を成膜することが好ましい。
 また、吸収層13として、マグネトロンスパッタリング法を用いてTaPdN膜を形成する場合、ターゲットとして、Taターゲットと、Pdターゲットと、を使用し、または、Taと、Pdと、を含む化合物ターゲットを使用し、スパッタガスとして、ArとN2の混合ガス(N2ガス濃度1~80vol%、Arガス濃度5~95vol%、ガス圧1.0×10-1Pa~50×10-1Pa)を使用して、投入電力30~1000W、成膜速度0.5~60nm/minで、厚さ20~50nmとなるようにTaPdN膜を成膜することが好ましい。
 なお、Ar以外の不活性ガスを使用する場合、その不活性ガスの濃度が上記したArガス濃度と同じ濃度範囲にすることが好ましい。また、複数種類の不活性ガスを使用する場合、不活性ガスの合計濃度を上記したArガス濃度と同じ濃度範囲にすることが好ましい。
 吸収層13は、吸収層13と低反射層14との合計膜厚が10~90nmとなるように膜厚を設定することが好ましく、両者の合計膜厚が15~87nmとなるように膜厚を設定することがより好ましく、両者の合計膜厚が15~85nmとなるように膜厚を設定することがさらに好ましい。
 低反射層14はマスクパターンの検査に使用する検査光において、低反射となるような膜で構成される。EUVマスクを作製する際、吸収層にパターンを形成した後、このパターンが設計通りに形成されているかどうか検査する。このマスクパターンの検査では、検査光として通常190~260nm程度の光を使用した検査機が使用される。つまり、この190~260nm程度の光の反射率の差、具体的には、吸収層13がパターン形成により除去されて露出した面と、パターン形成により除去されずに残った吸収層13表面と、の反射率の差によって検査される。ここで、前者は反射層12表面であり、反射層12上に保護層が形成されている場合は保護層表面である。したがって、検査光の波長に対する反射層12表面(反射層12上に保護層が形成されている場合は保護層表面)と、吸収層13表面と、の反射率の差が小さいと検査時のコントラストが悪くなり、正確な検査が出来ないことになる。
 上記した構成の吸収層13は、EUV光線反射率が極めて低く、EUVマスクブランク1の吸収層として優れた特性を有しているが、検査光の波長について見た場合、光線反射率が必ずしも十分低いとは言えない。この結果、検査光の波長での吸収層13表面の反射率と、反射層12表面(反射層12上に保護層が形成されている場合は保護層表面)の反射率と、の差が小さくなり、検査時のコントラストが十分得られない可能性がある。検査時のコントラストが十分得られないと、マスク検査においてパターンの欠陥を十分判別できず、正確な欠陥検査を行えないことになる。
 本発明のEUVマスクブランク1では、吸収層13上に検査光における低反射層14を形成することにより、検査光の波長での光線反射率が極めて低くなり、検査時のコントラストが良好となる。
 低反射層14は、上記の特性を達成するため、検査光の波長の屈折率が吸収層13よりも低い材料で構成され、その結晶状態がアモルファスであることが好ましい。
 上記の特性を達成するため、本発明のEUVマスクブランク1では、低反射層14の構成材料として、タンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方と、酸素(O)と、を主成分とする材料を用いる。本明細書において、TaおよびPdのうち少なくとも一方と、Oと、を主成分とする材料と言った場合、当該材料中TaあるいはPdのうち少なくとも一方と、Oと、を合計含有率で40at%以上、好ましくは50at%以上、より好ましくは55at%以上含有する材料を意味し、TaあるいはPdのうち一方と、Oと、を含有するものとして、TaO、PdOが例示される。さらに、当該材料はTaおよびPdの両方を含有してもよく、TaPdOが例示される。
 低反射層14に用いるTaおよびPdのうち少なくとも一方と、Oと、を主成分とする材料は、Ta、PdおよびO以外にハフニウム(Hf)、珪素(Si)、ジルコニウム(Zr)、ゲルマニウム(Ge)、硼素(B)、窒素(N)および水素(H)から選ばれる少なくとも一つの元素を含んでも良い。TaおよびPdのうち少なくとも一方と、O以外に上記の元素を含有する材料の具体例としては、例えば、TaON、TaONH、PdON、PdONH、TaPdON、TaPdONH、TaHfO、TaHfON、TaBSiO、TaBSiON等が挙げられる。
 これらの中でもTaO、TaON、TaONHが、吸収層の結晶状態がアモルファスとなり、該吸収層表面が平滑性に優れることから好ましい。
 また、TaPdO、TaPdON、TaPdONHが、吸収層の結晶状態がアモルファスとなることに加えて、屈折率の値が小さく、所望の消衰係数を有することから、吸収層を薄膜化できることから好ましい。
 なお、本明細書において、結晶状態がアモルファスと言った場合、どのような状態を指すかは後述する。
 上述したように、吸収層13上に低反射層14を形成する場合、両者の合計膜厚が10~90nmであることが好ましく、15~87nmであることがより好ましく、15~85nmであることがさらに好ましい。ここで、また、低反射層14の膜厚が吸収層13の膜厚よりも厚いと、吸収層13でのEUV光吸収特性が低下するおそれがあるので、低反射層14の膜厚は吸収層13の膜厚よりも薄いことが好ましい。このため、低反射層14の膜厚は1~20nmであることが好ましく、1~15nmであることがより好ましく、1~10nmであることがさらに好ましい。
 上記した構成の低反射層14は、公知の成膜方法、例えば、マグネトロンスパッタリング法またはイオンビームスパッタリング法を実施することにより形成できる。
 例えば、低反射層14として、マグネトロンスパッタリング法を用いてTaONH膜を形成する場合、ターゲットとして、Taターゲットを用い、スパッタガスとして、ArとO2とN2とH2の混合ガス(H2ガス濃度1~50vol%、O2ガス濃度1~80vol%、N2ガス濃度1~80vol%、Arガス濃度5~95vol%、ガス圧1.0×10-1Pa~50×10-1Pa)を使用して、投入電力30~3000W、成膜速度0.01~60nm/minで、厚さ3~30nmで成膜することが好ましい。
 なお、Ar以外の不活性ガスを使用する場合、その不活性ガスの濃度が上記したArガス濃度と同じ濃度範囲にすることが好ましい。
 なお、本発明のEUVマスクブランク1において、吸収層13上に低反射層14を形成することが好ましいのは、パターンの検査光の波長とEUV光の波長とが異なるからである。したがって、パターンの検査光としてEUV光(13.5nm付近)を使用する場合、吸収層13上に低反射層14を形成する必要はないと考えられる。検査光の波長は、パターン寸法が小さくなるに伴い短波長側にシフトする傾向があり、将来的には193nm、さらには13.5nmにシフトすることも考えられる。また、検査光の波長が193nmである場合、吸収層13上に低反射層14を形成する必要がない場合がある。さらに、検査光の波長が13.5nmである場合、吸収層13上に低反射層14を形成する必要はないと考えられる。
 ハードマスク層15は、吸収層13および低反射層14のエッチング条件におけるエッチング選択比が十分高いことが求められる。これを達成するためには、吸収層13および低反射層14のエッチング条件に対して、ハードマスク層15が十分なエッチング耐性を有することが必要である。
 一般的に、EUVマスクブランクの吸収層や低反射層のエッチングには、塩素系ガスプロセス、もしくはフッ素系ガスプロセスが用いられる。
 本発明の低反射層14は、TaおよびPdのうち少なくとも一方と、Oと、を主成分としているが、一般的に、酸素を含有する膜の場合、塩素系ガスプロセスに対してはエッチング耐性を有し、フッ素系ガスプロセスでは容易にエッチング可能である。
 本発明におけるTaおよびPdのうち少なくとも一方を主成分とする吸収層13も、フッ素系ガスプロセスに対しては、容易にエッチングが可能である。
 なお、塩素系ガスプロセスおよびフッ素系ガスプロセスによるこれらの層のエッチング特性については後述する実施例にも示されている。
 TaおよびPdのうち少なくとも一方と、Oと、を主成分とする低反射層14が、塩素系ガスプロセスに対して、エッチング耐性を有することを考慮すると、ハードマスク層15として好ましいのは、塩素系ガスプロセスにより、容易にエッチング可能であり、かつフッ素系ガスプロセスに対して、高いエッチング耐性を有することである。この場合、吸収層13および低反射層14のエッチングにフッ素系ガスプロセスを使用することにより、吸収層13および低反射層14のエッチング条件におけるエッチング選択比が高くなる。一方、ハードマスク層15のエッチングに塩素系ガスプロセスを使用することにより、下記式で求められるエッチング選択比が高くなり、ハードマスク層15のみを選択的にエッチングできる。
  エッチング選択比(ハードマスク層15のエッチング時)=
   (ハードマスク層15のエッチング速度)/(低反射層14のエッチング速度)
 上記のエッチング選択比は、具体的に、2.0以上が好ましく、2.5以上がより好ましく、3.0以上がさらに好ましい。
 また、後述の実施例3では、吸収層13としてのTaPdN膜上に低反射層14を設けていないが、表1に示すように、TaPdN膜は塩素系ガスプロセスに対して、エッチング耐性を有する。一方、フッ素系ガスプロセスに対しては、容易にエッチングが可能である。
 このため、吸収層13としてのTaPdN膜のエッチングにフッ素系ガスプロセスを使用することにより、吸収層13のエッチング条件におけるエッチング選択比が高くなる。一方、ハードマスク層15のエッチングに塩素系ガスプロセスを使用することにより、下記式で求められるエッチング選択比が高くなり、ハードマスク層15のみを選択的にエッチングできる。
  エッチング選択比(ハードマスク層15のエッチング時)=
   (ハードマスク層15のエッチング速度)/(吸収層13のエッチング速度)
 上記のエッチング選択比は、具体的に、4.0以上が好ましく、4.5以上がより好ましく、5.0以上がさらに好ましい。
 上記の特性を達成するため、ハードマスク層15は、フッ素系ガスプロセスに対して、十分高いエッチング耐性を有し、塩素系ガスプロセスに対して高いエッチング速度を有する材料で構成されることが求められる。
 また、本発明のEUVマスクブランク1において、ハードマスク層15は、結晶状態がアモルファスであり、表面粗さが十分小さいことが求められる。ハードマスク層が、結晶質膜あるいは表面粗さが大きい膜の場合、パターン形成後のラインエッジラフネスが大きくなり、高解像度のパターンが得られないことが予測される。これに対し、ハードマスク層15は、結晶状態がアモルファスであり、表面粗さが十分小さい場合、パターン形成後のラインエッジラフネスが大きくなることがなく、高解像度のパターンを得ることができる。
 本発明のEUVマスクブランク1のハードマスク層15では、以下に述べる元素を特定の比率で含有することで上記の特性を満足する。
 本発明のEUVマスクブランク1において、ハードマスク層15の第1の態様は、クロム(Cr)、窒素(N)および水素(H)を含有するCrNH膜である。ハードマスク層15がCrNH膜である場合、CrおよびNの合計含有率が85~99.9at%であり、Hの含有率が0.1~15at%である。Hの含有率が0.1at%未満であると、CrNH膜の結晶状態がアモルファスとならず、CrNH膜の表面粗さが大きくなるおそれがある。一方、Hの含有率が15at%より高い場合も、CrNH膜の結晶状態がアモルファスとならず、CrNH膜の表面粗さが大きくなるおそれがある。なお、ハードマスク層15がCrNH膜である場合、CrとNの組成比(原子比)がCr:N=9:1~3:7であることが好ましい。
 ハードマスク層15がCrNH膜である場合、Hの含有率は、0.1~13at%であることがより好ましく、0.1~10at%であることがさらに好ましく、0.1~8at%であることが特に好ましい。また、CrとNの合計含有率は、87~99.9at%であることがより好ましく、90~99.9at%であることがさらに好ましく、92~99.9at%であることが特に好ましい。またCrとNの組成比(原子比)は、9:1~2.5:7.5であることが好ましく、8.5:1.5~2.5:7.5であることがさらに好ましく、8:2~2.5:7.5であることが特に好ましい。
 ハードマスク層15の第2の態様は、クロム(Cr)、酸素(O)、および水素(H)を含有するCrOH膜である。ハードマスク層15がCrOH膜である場合、CrおよびOの合計含有率が15~99.9at%であり、Hの含有率が0.1~15at%である。Hの含有率が0.1at%未満であると、CrOH膜がアモルファス構造とならず、CrOH膜の表面粗さが大きくなるおそれがある。一方、Hが15at%より高い場合も、CrOH膜の結晶状態がアモルファスとならず、CrOH膜の表面粗さが大きくなるおそれがある。なお、ハードマスク層15がCrOH膜である場合、CrとOの組成比(原子比)がCr:O=9:1~3:7であることが好ましい。
 ハードマスク層15がCrOH膜である場合、Hの含有率は、0.1~13at%であることがより好ましく、0.1~10at%であることがさらに好ましく、0.1~8at%であることが特に好ましい。また、CrとOの合計含有率は、87~99.9at%であることがより好ましく、90~99.9at%であることがさらに好ましく、92~99.9at%であることが特に好ましい。またCrとOの組成比(原子比)は、9:1~2.5:7.5であることが好ましく、8.5:1.5~2.5:7.5であることがさらに好ましく、8:2~2.5:7.5であることが特に好ましい。
 ハードマスク層15(すなわち、CrNH膜、CrOH膜)は、上記の構成であることにより、その結晶状態はアモルファスである。なお、本明細書において、「結晶状態がアモルファスである」と言った場合、全く結晶構造を持たないアモルファス構造となっているもの以外に、微結晶構造のものを含む。
 ハードマスク層15(CrNH膜、CrOH膜)がアモルファス構造の膜または微結晶構造の膜であることにより、ハードマスク層15の表面粗さが小さくなる。ハードマスク層15の表面粗さ(rms)は0.5nm以下であることが好ましい。ここで、ハードマスク層15の表面粗さは原子間力顕微鏡(Atomic Force Microscope)を用いて測定できる。ハードマスク層15の表面粗さが大きいと、ハードマスク層15に形成されるパターンのエッジラフネスが大きくなり、パターンの寸法精度が悪くなる。パターンが微細になるに従いエッジラフネスの影響が顕著になるため、ハードマスク層15は表面が平滑であることが要求される。
 ハードマスク層15の表面粗さ(rms)が0.5nm以下であれば、ハードマスク層15の表面が十分平滑であるため、エッジラフネスの影響によってパターンの寸法精度が悪化するおそれがない。ハードマスク層15の表面粗さ(rms)は0.4nm以下であることがより好ましく、0.3nm以下であることがさらに好ましい。
 なお、ハードマスク層15(CrNH膜、CrOH膜)の結晶状態がアモルファスであること、すなわち、アモルファス構造であること、または微結晶構造であることは、X線回折(XRD)法によって確認できる。ハードマスク層15の結晶状態がアモルファス構造であるか、または微結晶構造であれば、XRD測定により得られる回折ピークにシャープなピークが見られない。
 ハードマスク層15が結晶構造を有する膜であると、特定の結晶方位のみ選択的にエッチングが進むなどの理由によっても、ハードマスク層15に形成されるパターンのエッジラフネスが大きくなり、パターンの寸法精度が悪くなるおそれがある。
 このような理由からも、ハードマスク層15(CrNH膜、CrOH膜)の結晶状態がアモルファスであることが好ましい。
 ハードマスク層15の膜厚は、2~28nmであることが好ましく、2~25nmであることがより好ましい。
 上記のハードマスク層15(CrNH膜、CrOH膜)は公知の成膜方法、例えば、マグネトロンスパッタリング法、イオンビームスパッタリング法といったスパッタリング法を実施することにより形成できる。スパッタリング法によって、ハードマスク層15(CrNH膜、CrOH膜)を形成する場合、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、およびキセノン(Xe)からなる群から選ばれる少なくとも一種を含む不活性ガスと、酸素(O2)および窒素(N2)のいずれか一方と、水素(H2)と、を含む雰囲気中でCrターゲットを用いたスパッタリング法を実施すればよい。マグネトロンスパッタリング法を用いる場合、具体的には以下の成膜条件で実施すればよい。
[ハードマスク層の形成方法(CrNH膜の場合)]
   スパッタガス:ArとN2とH2の混合ガス(H2ガス濃度1~50vol%、好ましくは1~30vol%、N2ガス濃度1~80vol%、好ましくは5~75vol%、Arガス濃度5~95vol%、好ましくは10~94vol%、ガス圧1.0×10-1Pa~50×10-1Pa、好ましくは1.0×10-1Pa~40×10-1Pa、より好ましくは1.0×10-1Pa~30×10-1Pa。)
   投入電力:30~3000W、好ましくは100~3000W、より好ましくは500~3000W
   成膜速度:0.5~60nm/min、好ましくは1.0~45nm/min、より好ましくは1.5~30nm/min
[ハードマスク層の形成方法(CrOH膜の場合)]
   スパッタガス:ArとO2とH2の混合ガス(H2ガス濃度1~50vol%、好ましくは1~30vol%、O2ガス濃度1~80vol%、好ましくは5~75vol%、Arガス濃度5~95vol%、好ましくは10~94vol%、ガス圧1.0×10-1Pa~50×10-1Pa、好ましくは1.0×10-1Pa~40×10-1Pa、より好ましくは1.0×10-1Pa~30×10-1Pa。)
   投入電力:30~3000W、好ましくは100~3000W、より好ましくは500~3000W
   成膜速度:0.5~60nm/min、好ましくは1.0~45nm/min、より好ましくは1.5~30nm/min
 なお、Ar以外の不活性ガスを使用する場合、その不活性ガスの濃度が上記したArガス濃度と同じ濃度範囲にすることが好ましい。また、複数種類の不活性ガスを使用する場合、不活性ガスの合計濃度を上記したArガス濃度と同じ濃度範囲にすることが好ましい。
 本発明のEUVマスクブランク1は、反射層12、吸収層13、低反射層14およびハードマスク層15、ならびに必要に応じて形成される保護層以外に、EUVマスクブランクの分野において公知の機能膜を有していてもよい。このような機能膜の具体例としては、例えば、特表2003-501823号公報に記載されているもののように、基板の静電チャッキングを促すために、基板の裏面側に施される高誘電性コーティングが挙げられる。ここで、基板の裏面とは、図1の基板11において、反射層12が形成されている側とは反対側の面を指す。このような目的で基板の裏面に施す高誘電性コーティングは、シート抵抗が100Ω/□以下となるように、構成材料の電気伝導率と厚さを選択する。高誘電性コーティングの構成材料としては、公知の文献に記載されているものから広く選択できる。例えば、特表2003-501823号公報に記載の高誘電率のコーティング、具体的には、シリコン、TiN、モリブデン、クロム、TaSiからなるコーティングを適用できる。高誘電性コーティングの厚さは、例えば10~1000nmとできる。
 高誘電性コーティングは、公知の成膜方法、例えば、マグネトロンスパッタリング法、イオンビームスパッタリング法といったスパッタリング法、CVD法、真空蒸着法、電解メッキ法を用いて形成できる。
 次に、本発明のEUVマスクブランクにパターン形成する手順を図2~図6を参照して説明する。本発明のEUVマスクブランクにパターン形成する場合、図2に示すように、EUVマスクブランク1のハードマスク層15上にレジスト膜20を形成し、電子線描画機を用いて、図3に示すようにレジスト膜20にパターン形成する。次に、パターン形成されたレジスト膜をマスクとして、図4に示すように、ハードマスク層15にパターン形成する。なお、図4は、ハードマスク層15のパターン形成後、レジスト膜20を除去した状態を示している。ハードマスク層15のパターン形成には、塩素系ガスプロセスによるエッチングを実施すればよい。次に、パターン形成されたハードマスク層15をマスクとして、図5に示すように、吸収層13および低反射層14にパターン形成する。吸収層13および低反射層14のパターン形成には、フッ素系ガスプロセスによるエッチングを実施すればよい。次に、図6に示すように、ハードマスク層15を除去する。ハードマスク層15の除去には、塩素系ガスプロセスによるエッチングを実施すればよい。
 以下、実施例を用いて本発明をさらに説明する。
(実施例1)
 本実施例では、図1に示すEUVマスクブランク1を作製した。但し、反射層12と吸収層13と、の間には保護層を形成した。
 成膜用の基板11として、SiO2-TiO2系のガラス基板(外形6インチ(152mm)角、厚さが6.3mm)を使用した。このガラス基板の20℃における熱膨張率は0.05×10-7/℃、ヤング率は67GPa、ポアソン比は0.17、比剛性は3.07×1072/s2である。このガラス基板を研磨により、表面粗さ(rms)が0.15nm以下の平滑な表面と100nm以下の平坦度に形成した。
 基板11の裏面側には、マグネトロンスパッタリング法を用いて厚さ100nmのCr膜を成膜することによって、シート抵抗100Ω/□の高誘電性コーティングを施した。
 平板形状をした通常の静電チャックに、形成したCr膜を介して前記基板11を固定して、該基板11の表面上にイオンビームスパッタリング法を用いてSi膜およびMo膜を交互に成膜することを40周期繰り返すことにより、基板面側の最下層にSi膜を有する、合計膜厚272nm((4.5nm(Si膜)+2.3nm(Mo膜))×40回)のMo/Si多層反射膜(反射層12)を形成した。
 さらに、Mo/Si多層反射膜(反射層12)上に、イオンビームスパッタリング法を用いてRu膜(膜厚2.5nm)と成膜することにより、保護層を形成した。
 Si膜、Mo膜およびRu膜の成膜条件は以下の通りである。
 [Si膜の成膜条件]
   ターゲット:Siターゲット(ホウ素ドープ)
   スパッタガス:Arガス(ガス圧0.02Pa)
   電圧:700V
   成膜速度:0.077nm/sec
   膜厚:4.5nm
 [Mo膜の成膜条件]
   ターゲット:Moターゲット
   スパッタガス:Arガス(ガス圧0.02Pa)
   電圧:700V
   成膜速度:0.064nm/sec
   膜厚:2.3nm
 [Ru膜の成膜条件]
   ターゲット:Ruターゲット
   スパッタガス:Arガス(ガス圧0.02Pa)
   電圧:500V
   成膜速度:0.023nm/sec
   膜厚:2.5nm
 次に、保護層上に、Ta、NおよびHを含有する吸収層13(TaNH膜)を、マグネトロンスパッタリング法を用いて形成した。吸収層13の成膜条件は以下の通りである。なお、吸収層13の組成比(原子比)は、後述するハードマスク層の分析に用いた装置および測定方法によって分析したところ、Ta:N:H=55:39:6であった。
 [吸収層13(TaNH膜)の成膜条件]
   ターゲット:Taターゲット
   スパッタガス:ArとN2とH2の混合ガス(Ar:89vol%、N2:8.3vol%、H2:2.7vol%、ガス圧:0.46Pa)
   投入電力:300W
   成膜速度:1.5nm/min
   膜厚:70nm
 次に、吸収層13(TaNH膜)上にTa、O、NおよびHを含有する低反射層14(TaONH膜)を形成した。低反射層14(TaONH膜)の成膜条件は以下の通りである。なお、吸収層13の組成比(原子比)は、後述するハードマスク層の分析に用いた装置および測定方法によって分析したところ、Ta:O:N:H=22:65:5:8であった。
 [低反射層14(TaONH膜)の成膜条件]
   ターゲット:Taターゲット
   スパッタガス:ArとO2とN2とH2の混合ガス(Ar:48vol%、O2:36vol%、N2:14vol%、H2:2vol%、ガス圧:0.3Pa)
   投入電力:450W
   成膜速度:1.5nm/min
   膜厚:10nm
 次に、低反射層14上に、Cr、NおよびHを含有するハードマスク層15(CrNH膜)を、マグネトロンスパッタリング法を用いて形成することにより、基板11上に反射層12、保護層、吸収層13、低反射層14およびハードマスク層15がこの順で形成されたEUVマスクブランク1を得た。
 ハードマスク層15の成膜条件は以下の通りである。
 [ハードマスク層15(CrNH膜)の成膜条件]
   ターゲット:Crターゲット
   スパッタガス:ArとN2とH2の混合ガス(Ar:89vol%、N2:8.3vol%、H2:2.7vol%、ガス圧:0.46Pa)
   投入電力:2000W
   成膜速度:5.5nm/min
   膜厚:20nm
 上記の手順で得られたEUVマスクブランク1のハードマスク層15(CrNH膜)に対し下記の評価(1)~(4)を実施した。
(1)膜組成
 ハードマスク層15(CrNH膜)の組成を、X線光電子分光装置(X-ray Photoelectron Spectrometer)(PERKIN ELEMER-PHI社製)、二次イオン質量分析装置(Secondary Ion Mass Spectrometer)(PHI-ATOMIKA製)、およびラザフォード後方散乱分光装置(Rutherford Back Scattering Spectroscopy)(神戸製鋼社製)を用いてそれぞれ測定した。ハードマスク層15(CrNH膜)の組成比(at%)は、Cr:N:H=55:39:6(Crの含有率が55at%、Nの含有率が39at%、Hの含有率が6at%)である。
(2)結晶状態
 ハードマスク層15(CrNH膜)の結晶状態を、X線回折装置(X-Ray Diffractmeter)(RIGAKU社製)で確認した。得られる回折ピークにはシャープなピークが見られないことから、ハードマスク層15(CrNH膜)の結晶状態がアモルファス構造または微結晶構造であることを確認した。
(3)表面粗さ
 ハードマスク層15(CrNH膜)の表面粗さは、原子間力顕微鏡(SII製、SPI-3800)を用いて、dynamic force modeで測定した。表面粗さの測定領域は1μm×1μmであり、カンチレバーには、SI-DF40(SII製)を用いた。ハードマスク層15の表面粗さ(rms)は0.35nmであった。
(4)エッチング特性
 エッチング特性については、上記手順で作製されたEUVマスクブランク1を用いて評価する代わりに以下の方法で評価した。
 RFプラズマエッチング装置の試料台(4インチ石英基板)上に、試料として吸収層13(TaNH膜)、低反射層14(TaONH膜)、ハードマスク層15(CrNH膜)が各々前記と同条件で成膜されたSiチップ(10mm×30mm)を設置した。前記の試料に対して、以下に示す塩素系ガスプロセスおよびフッ素系プロセスでプラズマRFエッチングした。
 [塩素系ガスプロセス]
   バイアスRF:50W
   エッチング時間:120sec
   トリガー圧力:3Paエッチング圧力:0.3Pa
   エッチングガス:Cl2/He
   ガス流量(Cl2/Ar):4/16sccm
   電極基板間距離:55mm
 [フッ素系ガスプロセス]
   バイアスRF:50W
   エッチング時間:120sec
   トリガー圧力:3Pa
   エッチング圧力:0.3Pa
   エッチングガス:CF4/He
   ガス流量(CF4/He):4/16sccm
   電極基板間距離:55mm
 表1に、TaNH膜、TaONH膜およびCrNH膜のエッチング速度を求めた結果を示す。フッ素系ガスプロセスの場合、CrNH膜はエッチング後の膜減り量が確認できず、エッチング速度をN.D.とした。すなわち、CrNH膜は吸収層13(TaNH膜)および低反射層14のエッチングに用いるフッ素系ガスプロセスに対して高いエッチング耐性を有しており、吸収層13(TaNH膜)および低反射層14(TaONH膜)のエッチング条件におけるエッチング選択比が十分高い。
 一方、CrNH膜は、ハードマスク層15のエッチングに用いる塩素系ガスプロセスに対して十分速いエッチング速度を有していた。塩素系ガスプロセスについて、TaONH膜に対するCrNH膜のエッチング選択比を下記式に基づいて算出した。
   エッチング選択比=
    (CrNH膜のエッチング速度)/(TaONH膜のエッチング速度)
 上記から計算されるエッチング選択比は3.3であり、十分なエッチング選択比が確保できていることが確認できた。
(実施例2)
 実施例2は、ハードマスク層15がCrOH膜であること以外は、実施例1と同様の手順でEUVマスクブランクを作製した。CrOH膜は以下の条件で成膜した。
 [ハードマスク層15(CrOH膜)の成膜条件]
   ターゲット:Crターゲット
   スパッタガス:ArとO2とH2の混合ガス(Ar:89vol%、O2:8.3vol%、H2:2.7vol%、ガス圧:0.46Pa)
   投入電力:2000W
   成膜速度:5.5nm/min
   膜厚:20nm
 上記の手順で得られたEUVマスクブランクのハードマスク層15(CrOH膜)に対し下記の評価(1)~(4)を実施した。
(1)膜組成
 ハードマスク層15(CrOH膜)の組成を、実施例1と同様の方法で測定した結果、Cr:O:H=55:39:6(Crの含有率が55at%、Oの含有率が39at%、Hの含有率6at%)である。
(2)結晶状態
 ハードマスク層15(CrOH膜)の結晶状態を、実施例1と同様の方法で測定した結果、得られる回折ピークにはシャープなピークが見られないことから、ハードマスク層15(CrOH膜)の結晶状態がアモルファス構造または微結晶構造であることを確認した。
(3)表面粗さ
 ハードマスク層15(CrOH膜)の表面粗さは、実施例1と同様の方法で測定した結果、表面粗さ(rms)は0.40nmであった。
(4)エッチング特性
 エッチング特性については、実施例1と同様の方法で測定した結果を、表1に示す。フッ素系ガスプロセスの場合、CrOH膜はエッチング後の膜減り量が確認できず、エッチング速度をN.D.とした。すなわち、CrOH膜は、吸収層13(TaNH膜)および低反射層14のエッチングに用いるフッ素系ガスプロセスに対して高いエッチング耐性を有しており、吸収層13(TaNH膜)および低反射層14(TaONH膜)のエッチング条件におけるエッチング選択比が十分高い。
 一方、CrOH膜は、ハードマスク層15のエッチングに用いる塩素系ガスプロセスに対して十分速いエッチング速度を有していた。塩素系ガスプロセスについて、TaONH膜に対するCrOH膜のエッチング選択比を下記式に基づいて算出した。
   エッチング選択比=
    (CrOH膜のエッチング速度)/(TaONH膜のエッチング速度)
上記から計算されるエッチング選択比は9.7であり、十分なエッチング選択比が確保できていることが確認できた。
(実施例3)
 実施例3は、吸収層13をTaPdN膜として、さらに低反射層14を設けないこと以外は、実施例1および実施例2と同様の手順でEUVマスクブランクを作製し、これらについて前述と同様にエッチング特性の評価を実施した。すなわち吸収層13(TaPdN膜)と、ハードマスク層15(CrNH膜またはCrOH膜)のエッチング選択比を比較した。TaPdN膜は以下の条件で成膜した。なお、吸収層13の組成比(原子比)は、実施例1と同様の装置および測定方法によって分析したところ、Pd:Ta:N=80:15:5であった。
 [吸収層13(TaPdN膜)の成膜条件]
   ターゲット:TaターゲットおよびPdターゲット
   スパッタガス:ArとN2混合ガス(Ar:86vol%、N2:14vol%、ガス圧:0.3Pa)
   投入電力:Taターゲット=150W、Pdターゲット75W
   成膜速度:19.1nm/min膜厚:50nm
 表1に、実施例1と同様の方法で測定したTaPdN膜のエッチング速度を示す。フッ素系ガスプロセスの場合、吸収層13(TaPdN膜)のエッチング速度は、4.0nm/minであった。一方、実施例1および2で記載したように、CrNH膜およびCrOH膜は、フッ素系ガスプロセスに対して高いエッチング耐性を有しているため、吸収層13(TaPdN膜)のエッチング条件におけるエッチング選択比は十分高い。
 一方、塩素系ガスプロセスについて、TaPdN膜に対する、CrNH膜およびCrOH膜のエッチング選択比を下記式に基づいて算出した。
   エッチング選択比(CrNH膜の場合)=
    (CrNH膜のエッチング速度)/(TaPdN膜のエッチング速度)
   エッチング選択比(CrOH膜の場合)=
    (CrOH膜のエッチング速度)/(TaPdN膜のエッチング速度)
 上記から計算されるTaPdN膜に対するエッチング選択比は、CrNH膜の場合6.2であり、CrOH膜の場合18.3であり、十分なエッチング選択比が確保できていることが確認できた。
Figure JPOXMLDOC01-appb-T000001
(比較例1)
 比較例1は、ハードマスク層15が、水素を含まないCrN膜であること以外は、実施例1と同様の手順でEUVマスクブランクを作製した。CrN膜は以下の条件で成膜した。
 [ハードマスク層15(CrN膜)の成膜条件]
   ターゲット:Crターゲット
   スパッタガス:ArとN2との混合ガス(Ar:89vol%、N2:11vol%、ガス圧:0.46Pa)
   投入電力:2000W
   成膜速度:5.5nm/min
   膜厚:20nm
 上記の手順で得られたEUVマスクブランクのハードマスク層15(CrN膜)に対して、膜組成を、実施例1と同様の方法で測定した結果、Cr:N=55:45(Crの含有率が55at%、Nの含有率が45at%)である。
 また、ハードマスク層15(CrN膜)の結晶状態を、実施例1と同様の方法で測定した結果、得られる回折ピークにシャープなピークが見られることから、ハードマスク層15(CrN膜)が結晶構造を有することが確認される。
 また、ハードマスク層15(CrN膜)の表面粗さは、実施例1と同様の方法で測定した結果、表面粗さ(rms)は0.65nmである。
 本比較例のCrN膜は、結晶構造を有し、表面粗さが大きいため、パターン形成時のラインエッジラフネスが大きくなることが予測されるので、EUVマスクブランクのハードマスク層として好ましくない。
(比較例2)
 比較例2は、ハードマスク層15が、水素の含有率が15at%よりも高いCrNH膜であること以外は、実施例1と同様の手順でEUVマスクブランクを作製した。CrNH膜は以下の条件で成膜した。
 [ハードマスク層15(CrNH膜)の成膜条件]
   ターゲット:Crターゲット
   スパッタガス:ArとN2とH2の混合ガス(Ar:80vol%、N2:5vol%、H2:15vol%、ガス圧:0.46Pa)
   投入電力:2000W
   成膜速度:4.0nm/min
   膜厚:20nm
 上記の手順で得られたEUVマスクブランクのハードマスク層15(CrNH膜)に対して、膜組成を、実施例1と同様の方法で測定した結果、Cr:N:H=54:30:16(Crの含有率が54at%、Nの含有率が30at%、Hの含有率が16at%)である。
 また、ハードマスク層15(CrNH膜)の結晶状態を、実施例1と同様の方法で測定した結果、得られる回折ピークにシャープなピークが見られることから、ハードマスク層15(CrNH膜)が結晶構造を有することが確認される。
 また、ハードマスク層15(CrNH膜)の表面粗さは、実施例1と同様の方法で測定した結果、表面粗さ(rms)は0.70nmである。
 本比較例のCrNH膜は、結晶構造を有し、表面粗さが大きいため、パターン形成時のラインエッジラフネスが大きくなることが予測され、EUVマスクブランクのハードマスク層として好ましくない。
(比較例3)
 比較例3は、ハードマスク層15が、水素を含まないCrO膜であること以外は、実施例2と同様の手順でEUVマスクブランクを作製した。CrO膜は以下の条件で成膜した。
 [ハードマスク層15(CrO膜)の成膜条件]
   ターゲット:Crターゲット
   スパッタガス:ArとO2との混合ガス(Ar:89vol%、O2:11vol%、ガス圧:0.46Pa)
   投入電力:2000W
   成膜速度:5.5nm/min
   膜厚:20nm
 上記の手順で得られたEUVマスクブランクのハードマスク層15(CrO膜)に対して、膜組成を、実施例1と同様の方法で測定した結果、Cr:O=55:45(Crの含有率が55at%、Nの含有率が45at%)である。
 また、ハードマスク層15(CrO膜)の結晶状態を、実施例1と同様の方法で測定した結果、得られる回折ピークにシャープなピークが見られることから、ハードマスク層15(CrO膜)が結晶構造を有することが確認される。
 また、ハードマスク層15(CrO膜)の表面粗さは、実施例1と同様の方法で測定した結果、表面粗さ(rms)は0.65nmである。
 本比較例のCrO膜は、結晶構造を有し、表面粗さが大きいため、パターン形成時のラインエッジラフネスが大きくなることが予測され、EUVマスクブランクのハードマスク層として好ましくない。
(比較例4)
 比較例4は、ハードマスク層15が、水素の含有率が15at%よりも高いCrOH膜であること以外は、実施例1と同様の手順でEUVマスクブランクを作製した。CrOH膜は以下の条件で成膜した。
 [ハードマスク層15(CrOH膜)の成膜条件]
   ターゲット:Crターゲット
   スパッタガス:ArとO2とH2の混合ガス(Ar:80vol%、O2:5vol%、H2:15vol%、ガス圧:0.46Pa)
   投入電力:2000W
   成膜速度:4.2nm/min
   膜厚:20nm
 上記の手順で得られたEUVマスクブランクのハードマスク層15(CrOH膜)に対して、膜組成を、実施例1と同様の方法で測定した結果、Cr:O:H=54:30:16(Crの含有率が54at%、Oの含有率が30at%、Hの含有率が16at%)である。
 また、ハードマスク層15(CrOH膜)の結晶状態を、実施例1と同様の方法で測定した結果、得られる回折ピークにシャープなピークが見られることから、ハードマスク層15(CrOH膜)が結晶構造を有することが確認される。
 また、ハードマスク層15(CrOH膜)の表面粗さは、実施例1と同様の方法で測定した結果、表面粗さ(rms)は0.75nmである。
 本比較例のCrOH膜は、結晶構造を有し、表面粗さが大きいため、パターン形成時のラインエッジラフネスが大きくなることが予測され、EUVマスクブランクのハードマスク層として好ましくない。
 本発明によれば、高解像度のパターンを得る際に求められるレジストの薄膜化を達成でき、また、パターン形成後のラインエッジラフネスが大きくなることがなく、高解像度のパターンを得ることができ、EUVリソグラフィ用反射型マスクブランクとして有用である。
 なお、2011年2月1日に出願された日本特許出願2011-019391号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
  1:EUVマスクブランク
 11:基板
 12:反射層(多層反射膜)
 13:吸収層
 14:低反射層
 15:ハードマスク層
 20:レジスト膜

Claims (12)

  1.  基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収層と、ハードマスク層と、が、この順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
     前記吸収層が、タンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方を主成分とし、
     前記ハードマスク層が、クロム(Cr)、窒素(N)および水素(H)を含有し、
     前記ハードマスク層における、CrおよびNの合計含有率が85~99.9at%であり、Hの含有率が0.1~15at%であることを特徴とするEUVリソグラフィ用反射型マスクブランク。
  2.  基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収層と、マスクパターンの検査光(波長190~260nm)に対する低反射層と、ハードマスク層と、が、この順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
     前記吸収層が、タンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方を主成分とし、
     前記低反射層が、タンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方と、酸素(O)と、を主成分とし、
     前記ハードマスク層が、クロム(Cr)、窒素(N)および水素(H)を含有し、
     前記ハードマスク層における、CrおよびNの合計含有率が85~99.9at%であり、Hの含有率が0.1~15at%であることを特徴とするEUVリソグラフィ用反射型マスクブランク。
  3.  前記ハードマスク層において、CrとNの組成比(原子比)がCr:N=9:1~3:7であることを特徴とする請求項1または2に記載のEUVリソグラフィ用反射型マスクブランク。
  4.  前記ハードマスク層が、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、およびキセノン(Xe)からなる群から選ばれる少なくとも1種を含む不活性ガスと、窒素(N2)と、水素(H2)と、を含む雰囲気中でCrターゲットを用いたスパッタリング法を行うことにより形成されることを特徴とする請求項1~3のいずれか一項に記載のEUVリソグラフィ用反射型マスクブランク。
  5.  基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収層と、ハードマスク層と、が、この順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
     前記吸収層が、タンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方を主成分とし、
     前記ハードマスク層が、クロム(Cr)、酸素(O)および水素(H)を含有し、
     前記ハードマスク層における、CrおよびOの合計含有率が85~99.9at%であり、Hの含有率が0.1~15at%であることを特徴とするEUVリソグラフィ用反射型マスクブランク。
  6.  基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収層と、マスクパターンの検査光(波長190~260nm)に対する低反射層と、ハードマスク層と、が、この順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
     前記吸収層が、タンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方を主成分とし、
     前記低反射層が、タンタル(Ta)およびパラジウム(Pd)のうち少なくとも一方と、酸素(O)と、を主成分とし、
     前記ハードマスク層が、クロム(Cr)、酸素(O)および水素(H)を含有し、
     前記ハードマスク層における、CrおよびOの合計含有率が85~99.9at%であり、Hの含有率が0.1~15at%であることを特徴とするEUVリソグラフィ用反射型マスクブランク。
  7.  前記ハードマスク層において、CrとOの組成比(原子比)がCr:O=9:1~3:7であることを特徴とする請求項5または6に記載のEUVリソグラフィ用反射型マスクブランク。
  8.  前記ハードマスク層が、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、およびキセノン(Xe)からなる群から選ばれる少なくとも1種を含む不活性ガスと、酸素(O2)と、水素(H2)と、を含む雰囲気中でCrターゲットを用いたスパッタリング法を行うことにより形成されることを特徴とする請求項5~7のいずれか一項に記載のEUVリソグラフィ用反射型マスクブランク。
  9.  前記ハードマスク層の結晶状態が、アモルファスであることを特徴とする請求項1~8のいずれか一項に記載のEUVリソグラフィ用反射型マスクブランク。
  10.  前記ハードマスク層の表面の表面粗さ(rms)が、0.5nm以下であることを特徴とする請求項1~9のいずれか一項に記載のEUVリソグラフィ用反射型マスクブランク。
  11.  前記ハードマスク層の膜厚が、2~30nmであることを特徴とする請求項1~10のいずれか一項に記載のEUVリソグラフィ用反射型マスクブランク。
  12.  前記反射層と前記吸収層との間に、前記吸収層へのパターン形成時に前記反射層を保護するための保護層が形成されており、
     前記保護層が、Ru、Ru化合物、SiOおよびCr化合物からなる群から選ばれる少なくとも1種で形成されることを特徴とする請求項1~11のいずれか一項に記載のEUVリソグラフィ用反射型マスクブランク。
PCT/JP2012/052012 2011-02-01 2012-01-30 Euvリソグラフィ用反射型マスクブランク WO2012105508A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137015772A KR20140004101A (ko) 2011-02-01 2012-01-30 Euv 리소그래피용 반사형 마스크 블랭크
JP2012555867A JP5971122B2 (ja) 2011-02-01 2012-01-30 Euvリソグラフィ用反射型マスクブランク
US13/956,691 US9097976B2 (en) 2011-02-01 2013-08-01 Reflective mask blank for EUV lithography

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-019391 2011-02-01
JP2011019391 2011-02-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/956,691 Continuation US9097976B2 (en) 2011-02-01 2013-08-01 Reflective mask blank for EUV lithography

Publications (1)

Publication Number Publication Date
WO2012105508A1 true WO2012105508A1 (ja) 2012-08-09

Family

ID=46602722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052012 WO2012105508A1 (ja) 2011-02-01 2012-01-30 Euvリソグラフィ用反射型マスクブランク

Country Status (4)

Country Link
US (1) US9097976B2 (ja)
JP (1) JP5971122B2 (ja)
KR (1) KR20140004101A (ja)
WO (1) WO2012105508A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008265A (ja) * 2013-05-31 2015-01-15 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
JP2015133514A (ja) * 2013-08-30 2015-07-23 Hoya株式会社 反射型マスクブランク、反射型マスクブランクの製造方法、反射型マスク及び半導体装置の製造方法
JP2015142083A (ja) * 2014-01-30 2015-08-03 Hoya株式会社 反射型マスクブランク、反射型マスクの製造方法、及び半導体装置の製造方法
WO2015141706A1 (ja) * 2014-03-18 2015-09-24 Hoya株式会社 現像促進層を有するレジスト層付ブランク
KR20160101920A (ko) * 2013-12-25 2016-08-26 호야 가부시키가이샤 반사형 마스크 블랭크 및 반사형 마스크, 및 반도체 장치의 제조 방법
JP2018173664A (ja) * 2018-08-01 2018-11-08 Hoya株式会社 反射型マスクブランク、反射型マスクの製造方法、及び半導体装置の製造方法
JP2020064307A (ja) * 2014-07-11 2020-04-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 吸収体を有する、平坦化された極紫外線リソグラフィブランク及びその製造システム
JP2021110952A (ja) * 2020-01-08 2021-08-02 エスアンドエス テック カンパニー リミテッド 極紫外線用反射型ブランクマスク及びフォトマスク
US20220075256A1 (en) * 2019-05-21 2022-03-10 AGC Inc. Reflective mask blank for euv lithography
EP4261614A1 (en) 2022-04-13 2023-10-18 Shin-Etsu Chemical Co., Ltd. Reflective photomask blank, method for manufacturing reflective photomask, and reflective photomask
EP4276532A1 (en) 2022-05-13 2023-11-15 Shin-Etsu Chemical Co., Ltd. Reflective photomask blank, and method for manufacturing reflective photomask

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140099226A (ko) 2011-11-25 2014-08-11 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크 및 그 제조 방법
JP2016057577A (ja) * 2014-09-12 2016-04-21 信越化学工業株式会社 フォトマスクブランク
KR102631779B1 (ko) 2016-10-21 2024-02-01 호야 가부시키가이샤 반사형 마스크 블랭크, 반사형 마스크의 제조 방법, 및 반도체 장치의 제조 방법
US10553428B2 (en) 2017-08-22 2020-02-04 Taiwan Semiconductor Manufacturing Company, Ltd. Reflection mode photomask and fabrication method therefore
US11086215B2 (en) * 2017-11-15 2021-08-10 Taiwan Semiconductor Manufacturing Co., Ltd. Extreme ultraviolet mask with reduced mask shadowing effect and method of manufacturing the same
US11619875B2 (en) * 2020-06-29 2023-04-04 Taiwan Semiconductor Manufacturing Co., Ltd. EUV photo masks and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250613A (ja) * 2006-03-14 2007-09-27 Toppan Printing Co Ltd 反射型マスクブランク、反射型マスク及び極端紫外線の露光方法
JP2008072127A (ja) * 2006-09-15 2008-03-27 Applied Materials Inc 極紫外線(euv)フォトマスクのエッチング方法
JP2008078551A (ja) * 2006-09-25 2008-04-03 Toppan Printing Co Ltd 反射型フォトマスクブランク及び反射型フォトマスク並びに半導体装置の製造方法
JP2009021582A (ja) * 2007-06-22 2009-01-29 Advanced Mask Technology Center Gmbh & Co Kg マスクブランク、フォトマスク、及びフォトマスクの製造方法
JP2009054899A (ja) * 2007-08-29 2009-03-12 Toppan Printing Co Ltd 反射型フォトマスクブランク及び反射型フォトマスクの製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10198023A (ja) * 1997-01-09 1998-07-31 Nec Corp X線露光マスク及びその製造方法
EP2317384B1 (en) 2002-04-11 2016-11-09 Hoya Corporation Reflective mask blank, reflective mask and methods of producing the mask blank and the mask
JP4483355B2 (ja) 2004-03-16 2010-06-16 凸版印刷株式会社 極限紫外線露光用マスクブランク及びマスク並びに転写方法
KR20070054651A (ko) 2004-09-17 2007-05-29 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크스 및 그 제조방법
JP4926521B2 (ja) 2006-03-30 2012-05-09 Hoya株式会社 反射型マスクブランクス及び反射型マスク並びに半導体装置の製造方法
TWI444757B (zh) 2006-04-21 2014-07-11 Asahi Glass Co Ltd 用於極紫外光(euv)微影術之反射性空白光罩
TWI417647B (zh) 2006-06-08 2013-12-01 Asahi Glass Co Ltd Euv微影術用之反射性空白遮光罩及用於彼之具有功能性薄膜的基板
JP2008101246A (ja) 2006-10-19 2008-05-01 Asahi Glass Co Ltd Euvリソグラフィ用反射型マスクブランクを製造する際に使用されるスパッタリングターゲット
JP5009590B2 (ja) 2006-11-01 2012-08-22 Hoya株式会社 マスクブランクの製造方法及びマスクの製造方法
EP1973147B1 (en) 2006-12-27 2011-09-28 Asahi Glass Company, Limited Reflective mask blanc for euv lithography
EP2028681B1 (en) 2007-01-31 2014-04-23 Asahi Glass Company, Limited Reflective mask blank for euv lithography
KR101409642B1 (ko) 2007-04-17 2014-06-18 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크
JP2009210802A (ja) 2008-03-04 2009-09-17 Asahi Glass Co Ltd Euvリソグラフィ用反射型マスクブランク
KR101571183B1 (ko) 2008-03-18 2015-11-23 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크
WO2009154238A1 (ja) 2008-06-19 2009-12-23 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
WO2010007955A1 (ja) 2008-07-14 2010-01-21 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
CN102203906B (zh) 2008-10-30 2013-10-09 旭硝子株式会社 Euv光刻用反射型掩模坯料
CN102203907B (zh) 2008-10-30 2014-03-26 旭硝子株式会社 Euv光刻用反射型掩模基板
JP5638769B2 (ja) 2009-02-04 2014-12-10 Hoya株式会社 反射型マスクブランクの製造方法及び反射型マスクの製造方法
JP5507876B2 (ja) 2009-04-15 2014-05-28 Hoya株式会社 反射型マスクブランク及び反射型マスクの製造方法
KR20120034074A (ko) 2009-07-08 2012-04-09 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크
WO2011030521A1 (ja) 2009-09-09 2011-03-17 Hoya株式会社 マスクブランクの製造方法、転写用マスクの製造方法および反射型マスクの製造方法
JP5221495B2 (ja) 2009-11-30 2013-06-26 Hoya株式会社 マスクブランクの製造方法
KR20130007537A (ko) 2010-03-02 2013-01-18 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크 및 그 제조 방법
JP6060636B2 (ja) 2012-01-30 2017-01-18 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250613A (ja) * 2006-03-14 2007-09-27 Toppan Printing Co Ltd 反射型マスクブランク、反射型マスク及び極端紫外線の露光方法
JP2008072127A (ja) * 2006-09-15 2008-03-27 Applied Materials Inc 極紫外線(euv)フォトマスクのエッチング方法
JP2008078551A (ja) * 2006-09-25 2008-04-03 Toppan Printing Co Ltd 反射型フォトマスクブランク及び反射型フォトマスク並びに半導体装置の製造方法
JP2009021582A (ja) * 2007-06-22 2009-01-29 Advanced Mask Technology Center Gmbh & Co Kg マスクブランク、フォトマスク、及びフォトマスクの製造方法
JP2009054899A (ja) * 2007-08-29 2009-03-12 Toppan Printing Co Ltd 反射型フォトマスクブランク及び反射型フォトマスクの製造方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008265A (ja) * 2013-05-31 2015-01-15 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
JP2015133514A (ja) * 2013-08-30 2015-07-23 Hoya株式会社 反射型マスクブランク、反射型マスクブランクの製造方法、反射型マスク及び半導体装置の製造方法
KR20170121315A (ko) * 2013-08-30 2017-11-01 호야 가부시키가이샤 반사형 마스크 블랭크, 반사형 마스크 블랭크의 제조방법, 반사형 마스크 및 반도체 장치의 제조방법
KR102012783B1 (ko) 2013-08-30 2019-08-21 호야 가부시키가이샤 반사형 마스크 블랭크, 반사형 마스크 블랭크의 제조방법, 반사형 마스크 및 반도체 장치의 제조방법
KR20160101920A (ko) * 2013-12-25 2016-08-26 호야 가부시키가이샤 반사형 마스크 블랭크 및 반사형 마스크, 및 반도체 장치의 제조 방법
KR102331865B1 (ko) 2013-12-25 2021-11-29 호야 가부시키가이샤 반사형 마스크 블랭크 및 반사형 마스크, 및 반도체 장치의 제조 방법
JP2015142083A (ja) * 2014-01-30 2015-08-03 Hoya株式会社 反射型マスクブランク、反射型マスクの製造方法、及び半導体装置の製造方法
WO2015141706A1 (ja) * 2014-03-18 2015-09-24 Hoya株式会社 現像促進層を有するレジスト層付ブランク
JP2015194741A (ja) * 2014-03-18 2015-11-05 Hoya株式会社 レジスト層付ブランク、その製造方法、マスクブランクおよびインプリント用モールドブランク、ならびに転写用マスク、インプリント用モールドおよびそれらの製造方法
KR20160132979A (ko) 2014-03-18 2016-11-21 호야 가부시키가이샤 레지스트층을 구비한 블랭크, 그 제조 방법, 마스크 블랭크 및 임프린트용 몰드 블랭크와, 전사용 마스크, 임프린트용 몰드 및 그들의 제조 방법
JP2020064307A (ja) * 2014-07-11 2020-04-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 吸収体を有する、平坦化された極紫外線リソグラフィブランク及びその製造システム
JP2018173664A (ja) * 2018-08-01 2018-11-08 Hoya株式会社 反射型マスクブランク、反射型マスクの製造方法、及び半導体装置の製造方法
US20220075256A1 (en) * 2019-05-21 2022-03-10 AGC Inc. Reflective mask blank for euv lithography
US11982935B2 (en) * 2019-05-21 2024-05-14 AGC Inc. Reflective mask blank for EUV lithography
JP2021110952A (ja) * 2020-01-08 2021-08-02 エスアンドエス テック カンパニー リミテッド 極紫外線用反射型ブランクマスク及びフォトマスク
US11815801B2 (en) 2020-01-08 2023-11-14 S & S Tech Co., Ltd. Reflective type blankmask and photomask for EUV
EP4261614A1 (en) 2022-04-13 2023-10-18 Shin-Etsu Chemical Co., Ltd. Reflective photomask blank, method for manufacturing reflective photomask, and reflective photomask
KR20230146998A (ko) 2022-04-13 2023-10-20 신에쓰 가가꾸 고교 가부시끼가이샤 반사형 포토마스크 블랭크, 반사형 포토마스크의 제조 방법 및 반사형 포토마스크
EP4276532A1 (en) 2022-05-13 2023-11-15 Shin-Etsu Chemical Co., Ltd. Reflective photomask blank, and method for manufacturing reflective photomask
KR20230159292A (ko) 2022-05-13 2023-11-21 신에쓰 가가꾸 고교 가부시끼가이샤 반사형 포토마스크 블랭크, 및 반사형 포토마스크의 제조 방법

Also Published As

Publication number Publication date
US9097976B2 (en) 2015-08-04
JP5971122B2 (ja) 2016-08-17
JPWO2012105508A1 (ja) 2014-07-03
KR20140004101A (ko) 2014-01-10
US20130316272A1 (en) 2013-11-28

Similar Documents

Publication Publication Date Title
JP5971122B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP5018789B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP5018787B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP5590113B2 (ja) Euvリソグラフィ用反射型マスクブランクおよびその製造方法
KR101335077B1 (ko) Euv 리소그래피용 반사형 마스크 블랭크
JP5040996B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP5067483B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP6287099B2 (ja) Euvリソグラフィ用反射型マスクブランク
US8927181B2 (en) Reflective mask blank for EUV lithography
US8133643B2 (en) Reflective mask blank for EUV lithography
JP5348141B2 (ja) Euvリソグラフィ用反射型マスクブランク
WO2011004850A1 (ja) Euvリソグラフィ用反射型マスクブランク
JP4867695B2 (ja) Euvリソグラフィ用反射型マスクブランク
WO2020235612A1 (ja) Euvリソグラフィ用反射型マスクブランク
JP2009210802A (ja) Euvリソグラフィ用反射型マスクブランク
JP5333016B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP2009252788A (ja) Euvリソグラフィ用反射型マスクブランク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555867

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137015772

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12742602

Country of ref document: EP

Kind code of ref document: A1