WO2010047349A1 - Polymerizable composition, resin molded article, laminated article, and dielectric device - Google Patents

Polymerizable composition, resin molded article, laminated article, and dielectric device Download PDF

Info

Publication number
WO2010047349A1
WO2010047349A1 PCT/JP2009/068135 JP2009068135W WO2010047349A1 WO 2010047349 A1 WO2010047349 A1 WO 2010047349A1 JP 2009068135 W JP2009068135 W JP 2009068135W WO 2010047349 A1 WO2010047349 A1 WO 2010047349A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin molded
polymerizable composition
dielectric constant
laminate
present
Prior art date
Application number
PCT/JP2009/068135
Other languages
French (fr)
Japanese (ja)
Inventor
清茂 児島
孝司 木内
直実 志賀
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2010534831A priority Critical patent/JPWO2010047349A1/en
Publication of WO2010047349A1 publication Critical patent/WO2010047349A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/067Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/14Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers obtained by ring-opening polymerisation of carbocyclic compounds having one or more carbon-to-carbon double bonds in the carbocyclic ring, i.e. polyalkeneamers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/76Post-treatment crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0158Polyalkene or polyolefin, e.g. polyethylene [PE], polypropylene [PP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important

Definitions

  • the present invention relates to a polymerizable composition, a resin molded body, a laminate, and a dielectric device. More specifically, it has a high dielectric constant and a low dielectric loss tangent, a change in temperature of the dielectric constant is small, and it is useful for producing a laminate having excellent heat resistance and crack resistance in a thermal shock test.
  • the present invention relates to a composition, a crosslinkable resin molded body and a crosslinked resin molded body, a laminate obtained by using them, and a dielectric device obtained by using the laminate.
  • New materials with high relative permittivity and low dielectric loss tangent are required in the electronics industry for use in high frequency devices and for further miniaturization of devices. If such new materials can be made into thin films, sheets, plaques and other shaped shapes, these include circuit boards, high energy density capacitors, dielectric filters, dielectric antennas, embedded devices and the like that are compatible with use at microwave frequencies. Since it can be used as a dielectric device such as a multichip module, it is particularly useful. These have various uses, for example, in wireless communication technology. Many ceramic materials have desirable high dielectric constants and low dielectric loss tangents, but cannot be easily made into thin films due to poor workability. In addition, a ceramic material formed into a film or other molded product has a problem that it is generally brittle.
  • Patent Document 1 includes (1) a polymer matrix; (2) (a) at least one first ceramic material in which K ′ ⁇ 30, TCK ′> 0 ppm / ° C., and (b) K ′. > 30, a granular ceramic filler comprising a mixture with at least one second ceramic material with TCK ′ ⁇ 300 ppm / ° C., K ′ ⁇ 5, (absolute value of TCK ′) ⁇ 200 ppm / ° C.
  • An electric substrate composite material containing a granular ceramic filler in which (a) and (b) are blended in an effective ratio is disclosed.
  • Patent Document 1 exemplifies fluoropolymers, thermosetting resins containing polybutadiene, polyolefins such as polyethylene, etc. as the polymer matrix, and the first ceramic material includes alumina, silica, magnesium oxide, and magnesium titanate.
  • the second ceramic material include titania, calcium titanate, and strontium titanate.
  • Patent Document 2 discloses a polymer composition having a high dielectric constant that hardly changes with temperature, a thermoplastic polymer, a high dielectric ceramic having a dielectric constant of at least about 50 at 1 GHz and 20 ° C., and 1 GHz and 20 A second ceramic material having a dielectric constant of at least about 5 at 0 ° C., wherein one of the dielectric constants increases with increasing temperature and the other dielectric constant decreases with increasing temperature, and the high dielectric ceramic and Disclosed is a composition characterized in that the second ceramic material is included in the polymer composition in an amount sufficient for the dielectric constant of the polymer composition to be at least 4 at 1 GHz. .
  • High dielectric ceramics include strontium titanate, barium neodymium titanate, barium strontium titanate / magnesium zirconate, titanium dioxide, barium titanate, calcium titanate, barium magnesium titanate, lead zirconium titanate and mixtures thereof, and second ceramic materials include Alumina, mica, magnesium titanate and mixtures thereof are exemplified, and examples of the thermoplastic polymer include poly (phenylene sulfide) and a cycloolefin copolymer obtained by polymerizing ethylene and norbornene.
  • the polymer composite materials of Patent Documents 1 and 2 have dielectric properties such as a high relative dielectric constant, a low dielectric loss tangent, and a small change in temperature of the relative dielectric constant. It is difficult to uniformly disperse the high dielectric filler, and it cannot be used in the state of being impregnated with a fibrous reinforcing material such as glass cloth. Also, the molded product obtained from the composite material has a heat resistance and cold shock test. The present inventors have revealed that there are problems such as inferior reliability such as crack resistance in the present invention.
  • the object of the present invention is a high dielectric constant and a low dielectric loss tangent, the temperature change of the dielectric constant is small, and useful for the production of a laminate having excellent heat resistance and crack resistance in a thermal shock test, It is providing the polymeric composition, a crosslinkable resin molding, a crosslinked resin molding, a laminated body obtained by using them, and a dielectric device obtained by using the laminated body.
  • the present inventors have determined that the temperature change rate of the dielectric constant as a filler in a polymerizable composition containing a cycloolefin monomer, a polymerization catalyst, a crosslinking agent, a crosslinking aid, and a filler.
  • a positive inorganic filler and an inorganic filler whose relative dielectric constant has a negative temperature change rate are blended, according to the composition, a prepreg excellent in resin fluidity at the time of heating and melting can be produced.
  • the present inventors have found that a laminate excellent in both properties of heat resistance and crack resistance in a thermal shock test can be obtained.
  • the present inventors have completed the present invention based on such findings.
  • a polymerizable composition comprising: [2] The polymerizable composition according to [1], wherein the relative dielectric constant of the inorganic filler 1 having a positive temperature change rate of the relative dielectric constant is 30 or less, [3] The polymerizable composition according to the above [1] or [2], wherein the relative dielectric constant of the inorganic filler 2 having a negative temperature change rate of the dielectric constant is 30 or more, [4] The polymerizable composition as set forth in any one of [1] to [3], further comprising a chain transfer agent, [5] A crosslinkable resin molded article obtained by bulk polymerization of the polymerizable composition according to any one of [1] to [4], [6] A crosslinked resin molded article obtained by bulk polymerization of the polymerizable composition according to any one of [1] to [4] and crosslinking.
  • the present invention has a high dielectric constant and a low dielectric loss tangent, a temperature change of the dielectric constant is small, and is useful for producing a laminate having excellent heat resistance and crack resistance in a thermal shock test,
  • a polymerizable composition a crosslinkable resin molded body and a crosslinked resin molded body, a laminate obtained using them, and a dielectric device obtained using the laminate. Since the laminate of the present invention has the characteristics as described above, a circuit board, a high energy density capacitor, a dielectric filter, a dielectric antenna, an embedded device, a multichip module, and the like corresponding to use at a microwave frequency It can be suitably used for a dielectric device.
  • FIG. 2 is a circuit diagram of a power amplifier unit PA included in the transmission unit Tx module of FIG. 1. It is a perspective view in the completed state of PA lamination module concerning an example. It is sectional drawing which shows schematically the internal connection structure in the completion state of the PA laminated module of FIG. It is a measurement result of the transmission loss of the microstrip line produced with various materials. It is an example of the circuit of a band pass filter. It is a perspective view of an example of the band pass filter produced by arrange
  • the polymerizable composition of the present invention includes a cycloolefin monomer, a polymerization catalyst, a crosslinking agent, a crosslinking aid, an inorganic filler 1 having a positive relative dielectric constant temperature change rate, and an inorganic having a negative relative dielectric constant temperature change rate.
  • Filler 2 is contained.
  • the cycloolefin monomer used in the present invention is a compound having an alicyclic structure formed of carbon atoms and having one polymerizable carbon-carbon double bond in the alicyclic structure.
  • polymerizable carbon-carbon double bond refers to a carbon-carbon double bond capable of chain polymerization (ring-opening polymerization).
  • ring-opening polymerization There are various types of ring-opening polymerization such as ionic polymerization, radical polymerization, and metathesis polymerization. In the present invention, it usually refers to metathesis ring-opening polymerization.
  • Examples of the alicyclic structure of the cycloolefin monomer include monocycles, polycycles, condensed polycycles, bridged rings, and combination polycycles thereof.
  • the number of carbon atoms constituting each alicyclic structure is not particularly limited, but is usually 4 to 30, preferably 5 to 20, and more preferably 5 to 15.
  • the cycloolefin monomer has a hydrocarbon group having 1 to 30 carbon atoms such as an alkyl group, an alkenyl group, an alkylidene group, and an aryl group, and a polar group such as a carboxyl group or an acid anhydride group as a substituent.
  • those having no polar group that is, comprising only carbon atoms and hydrogen atoms are preferable.
  • cycloolefin monomer either a monocyclic cycloolefin monomer or a polycyclic cycloolefin monomer can be used. From the viewpoint of highly balancing the dielectric properties and heat resistance properties of the resulting laminate, polycyclic cycloolefin monomers are preferred.
  • polycyclic cycloolefin monomer a norbornene-based monomer is particularly preferable.
  • the “norbornene monomer” refers to a cycloolefin monomer having a norbornene ring structure in the molecule. Examples include norbornenes, dicyclopentadiene, and tetracyclododecene.
  • crosslinkable carbon-carbon unsaturated bond refers to a carbon-carbon unsaturated bond that does not participate in ring-opening polymerization and can participate in a crosslinking reaction.
  • the crosslinking reaction is a reaction that forms a bridge structure, and there are various forms such as a condensation reaction, an addition reaction, a radical reaction, and a metathesis reaction. In the present invention, usually, a radical crosslinking reaction or a metathesis crosslinking is performed. A reaction, particularly a radical crosslinking reaction.
  • crosslinkable carbon-carbon unsaturated bond examples include carbon-carbon unsaturated bonds other than aromatic carbon-carbon unsaturated bonds, that is, aliphatic carbon-carbon double bonds or triple bonds. Usually refers to an aliphatic carbon-carbon double bond.
  • the position of the unsaturated bond is not particularly limited, and other than within the alicyclic structure formed of carbon atoms, other than the alicyclic structure It may be present at any position of, for example, at the end or inside of the side chain.
  • the aliphatic carbon-carbon double bond may exist as a vinyl group (CH 2 ⁇ CH—), a vinylidene group (CH 2 ⁇ C ⁇ ), or a vinylene group (—CH ⁇ CH—), Since it exhibits radical crosslinkability, it preferably exists as a vinyl group and / or vinylidene group, and more preferably as a vinylidene group.
  • cycloolefin monomer having no crosslinkable carbon-carbon unsaturated bond examples include cyclopentene, 3-methylcyclopentene, 4-methylcyclopentene, 3,4-dimethylcyclopentene, 3,5-dimethylcyclopentene, and 3-chlorocyclopentene.
  • Monocyclic cycloolefin monomers such as cyclohexene, 3-methylcyclohexene, 4-methylcyclohexene, 3,4-dimethylcyclohexene, 3-chlorocyclohexene, and cycloheptene; norbornene, 5-methyl-2-norbornene, 5-ethyl-2-norbornene, 5-propyl-2-norbornene, 5,6-dimethyl-2-norbornene, 1-methyl-2-norbornene, 7-methyl-2-norbornene, 5,5,6-trimethyl- 2-norbornene, 5 Phenyl-2-norbornene, tetracyclododecene, 1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene (TCD), 2-methyl-1, 4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octa
  • cycloolefin monomers having one or more crosslinkable carbon-carbon unsaturated bonds include 3-vinylcyclohexene, 4-vinylcyclohexene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1,4- Monocyclic cycloolefin monomers such as cyclohexadiene, 5-ethyl-1,3-cyclohexadiene, 1,3-cycloheptadiene, and 1,3-cyclooctadiene; 5-ethylidene-2-norbornene, 5- Methylidene-2-norbornene, 5-isopropylidene-2-norbornene, 5-vinyl-2-norbornene, 5-allyl-2-norbornene, 5,6-diethylidene-2-norbornene, dicyclopentadiene, and 2,5- Norbornene-based monomers such as norbornadiene; Ku crosslinkable carbon
  • the cycloolefin monomer used in the present invention preferably includes a cycloolefin monomer having one or more crosslinkable carbon-carbon unsaturated bonds.
  • a cycloolefin monomer having one or more crosslinkable carbon-carbon unsaturated bonds.
  • the ratio is appropriately selected as desired, but is usually in a weight ratio (cycloolefin monomer having at least one crosslinkable carbon-carbon unsaturated bond / cycloolefin monomer having no crosslinkable carbon-carbon unsaturated bond).
  • the range is 5/95 to 100/0, preferably 10/90 to 90/10, and more preferably 15/85 to 70/30. If the said mixture ratio exists in this range, in the obtained laminated body, characteristics, such as heat resistance and crack resistance in a thermal shock test, can be improved highly, and it is suitable.
  • the polymerizable composition of the present invention may contain any monomer copolymerizable with the above cycloolefin monomer as long as the expression of the effect of the present invention is not inhibited.
  • the polymerization catalyst used in the present invention is not particularly limited as long as it can polymerize the cycloolefin monomer, but the polymerizable composition of the present invention is directly agglomerated in the production of a crosslinkable resin molded article described later. It is preferable to use it for polymerization, and it is usually preferable to use a metathesis polymerization catalyst.
  • Examples of the metathesis polymerization catalyst include a complex formed by bonding a plurality of ions, atoms, polyatomic ions, compounds, etc. with a transition metal atom as a central atom, which is capable of metathesis ring-opening polymerization of the cycloolefin monomer. It is done.
  • transition metal atoms atoms of Group 5, Group 6, and Group 8 (according to the long-period periodic table; the same applies hereinafter) are used.
  • examples of the Group 5 atom include tantalum
  • examples of the Group 6 atom include molybdenum and tungsten
  • examples of the Group 8 atom include: Examples include ruthenium and osmium.
  • the group 8 ruthenium or osmium is preferable as the transition metal atom. That is, the metathesis polymerization catalyst used in the present invention is preferably a complex having ruthenium or osmium as a central atom, and more preferably a complex having ruthenium as a central atom.
  • the complex having ruthenium as a central atom a ruthenium carbene complex in which a carbene compound is coordinated to ruthenium is preferable.
  • the “carbene compound” is a general term for compounds having a methylene free group, and refers to a compound having an uncharged divalent carbon atom (carbene carbon) as represented by (> C :).
  • the ruthenium carbene complex is excellent in catalytic activity during bulk polymerization, when the crosslinkable resin molded body is obtained by subjecting the polymerizable composition of the present invention to bulk polymerization, the resulting molded body is derived from unreacted monomers. A molded article with low odor and good productivity can be obtained. In addition, it is relatively stable to oxygen and moisture in the air and is not easily deactivated, so that it can be used even in the atmosphere.
  • ruthenium carbene complex examples include complexes represented by the following formula (1) or formula (2).
  • R 1 and R 2 may each independently contain a hydrogen atom, a halogen atom, or a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom. It represents a cyclic or chain hydrocarbon group having 1 to 20 carbon atoms.
  • X 1 and X 2 each independently represent an arbitrary anionic ligand.
  • L 1 and L 2 each independently represent a hetero atom-containing carbene compound or a neutral electron donating compound other than the hetero atom-containing carbene compound.
  • R 1 and R 2 may be bonded to each other to form an aliphatic ring or an aromatic ring that may contain a hetero atom.
  • R 1 , R 2 , X 1 , X 2 , L 1 and L 2 may be bonded together in any combination to form a multidentate chelating ligand.
  • a heteroatom means an atom of groups 15 and 16 of the periodic table, and specifically, a nitrogen atom (N), an oxygen atom (O), a phosphorus atom (P), a sulfur atom (S), an arsenic atom (As), selenium atom (Se), and the like.
  • N nitrogen atom
  • O oxygen atom
  • P phosphorus atom
  • S sulfur atom
  • As arsenic atom
  • Se selenium atom
  • the mechanical strength and impact resistance of the resulting crosslinked resin molded product and laminate can be highly balanced, so that a carbene compound having a heterocyclic structure is coordinated as a heteroatom-containing carbene compound. What has at least 1 child is preferable.
  • a carbene compound having a heterocyclic structure is coordinated as a heteroatom-containing carbene compound. What has at least 1 child is preferable.
  • the heterocyclic structure an imidazoline ring structure or an imidazolidine ring structure is preferable.
  • Examples of the carbene compound having a heterocyclic structure include compounds represented by the following formula (3) or formula (4).
  • R 3 to R 6 may each independently contain a hydrogen atom; a halogen atom; or a halogen atom, oxygen atom, nitrogen atom, sulfur atom, phosphorus atom, or silicon atom. Represents a cyclic or chain hydrocarbon group having 1 to 20 carbon atoms. R 3 to R 6 may be bonded to each other in any combination to form a ring.
  • Examples of the compound represented by the formula (3) or the formula (4) include 1,3-dimesitylimidazolidine-2-ylidene, 1,3-di (1-adamantyl) imidazolidin-2-ylidene, , 3-dicyclohexylimidazolidine-2-ylidene, 1,3-dimesityloctahydrobenzimidazol-2-ylidene, 1,3-diisopropyl-4-imidazoline-2-ylidene, 1,3-di (1-phenyl) Ethyl) -4-imidazoline-2-ylidene, 1,3-dimesityl-2,3-dihydrobenzimidazol-2-ylidene and the like.
  • the anionic (anionic) ligands X 1 and X 2 are ligands having a negative charge when separated from the central metal atom.
  • halogen atoms such as fluorine atom (F), chlorine atom (Cl), bromine atom (Br), and iodine atom (I), diketonate group, substituted cyclopentadienyl group, alkoxy group, aryloxy group, and carboxyl Examples include groups. Among these, a halogen atom is preferable and a chlorine atom is more preferable.
  • the neutral electron donating compound may be any ligand as long as it has a neutral charge when it is separated from the central metal.
  • Specific examples thereof include carbonyls, amines, pyridines, ethers, nitriles, esters, phosphines, thioethers, aromatic compounds, olefins, isocyanides, thiocyanates, and the like.
  • phosphines, ethers and pyridines are preferable, and trialkylphosphine is more preferable.
  • Examples of the complex compound represented by the formula (1) include benzylidene (1,3-dimesityl-4-imidazolidin-2-ylidene) (tricyclohexylphosphine) ruthenium dichloride, benzylidene (1,3-dimesityl-4,5 -Dibromo-4-imidazoline-2-ylidene) (tricyclohexylphosphine) ruthenium dichloride, (1,3-dimesityl-4-imidazoline-2-ylidene) (3-phenyl-1H-indene-1-ylidene) (tricyclohexyl) Phosphine) ruthenium dichloride, (1,3-dimesitylimidazolidine-2-ylidene) (3-methyl-2-buten-1-ylidene) (tricyclopentylphosphine) ruthenium dichloride, benzylidene (1,3-dimesityl-oc
  • Ruthenium compounds in which two neutral electron-donating compounds are bonded such as benzylidenebis (tricyclohexylphosphine) ruthenium dichloride, (3-methyl-2-buten-1-ylidene) bis (tricyclopentylphosphine) ruthenium dichloride;
  • Examples of the complex compound represented by the formula (2) include (1,3-dimesitymylimidazolidine-2-ylidene) (phenylvinylidene) (tricyclohexylphosphine) ruthenium dichloride, (t-butylvinylidene) (1, And 3-diisopropyl-4-imidazoline-2-ylidene) (tricyclopentylphosphine) ruthenium dichloride, bis (1,3-dicyclohexyl-4-imidazoline-2-ylidene) phenylvinylidene ruthenium dichloride, and the like.
  • the metathesis polymerization catalysts are used alone or in combination of two or more.
  • the amount of the metathesis polymerization catalyst used is usually 1: 2,000 to 1: 2,000,000, preferably 1: 5,000 to 1 in terms of molar ratio (metal atom in the metathesis polymerization catalyst: cycloolefin monomer). : 1,000,000, more preferably in the range of 1: 10,000 to 1: 500,000.
  • the metathesis polymerization catalyst can be used by dissolving or suspending in a small amount of an inert solvent, if desired.
  • solvents include chain aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane, liquid paraffin, and mineral spirits; cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethyl Cycloaliphatic hydrocarbons such as cyclohexane, decahydronaphthalene, dicycloheptane, tricyclodecane, hexahydroindene and cyclooctane; aromatic hydrocarbons such as benzene, toluene and xylene; alicyclic rings such as indene and tetrahydronaphthalene And hydrocarbons having an aromatic ring; nitrogen-
  • the crosslinking agent used in the present invention is used for the purpose of inducing a crosslinking reaction in a polymer (cycloolefin polymer) obtained by subjecting the polymerizable composition of the present invention to a polymerization reaction. Accordingly, the polymer becomes a post-crosslinkable thermoplastic resin.
  • “after-crosslinking is possible” means that the resin can be heated to advance a crosslinking reaction to form a crosslinked resin.
  • the crosslinkable resin molded product of the present invention using the polymer as a matrix resin is melted by heating and has a high viscosity, its shape is maintained, while when an arbitrary member is brought into contact with the surface, Exhibits followability to the shape of the member, and finally crosslinks and cures.
  • Such characteristics of the crosslinkable resin molded product of the present invention are considered to contribute to the improvement of interlayer adhesion in a laminate obtained by laminating, melting, and crosslinking the crosslinkable resin molded product of the present invention. .
  • a radical generator is used suitably.
  • the radical generator include organic peroxides, diazo compounds, and nonpolar radical generators, and organic peroxides and nonpolar radical generators are preferable.
  • organic peroxide examples include hydroperoxides such as t-butyl hydroperoxide, p-menthane hydroperoxide, and cumene hydroperoxide; dicumyl peroxide, t-butylcumyl peroxide, ⁇ , ⁇ ′-bis (t -Butylperoxy-m-isopropyl) benzene, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) -3-hexyne, and 2,5-dimethyl-2,5- Dialkyl peroxides such as di (t-butylperoxy) hexane; diacyl peroxides such as dipropionyl peroxide and benzoyl peroxide; 2,2-di (t-butylperoxy) butane, 1,1-di (t-hexylperoxy) Cyclohexane, 1,1-di (t-butylperoxy)
  • diazo compound examples include 4,4'-bisazidobenzal (4-methyl) cyclohexanone and 2,6-bis (4'-azidobenzal) cyclohexanone.
  • Nonpolar radical generators include 2,3-dimethyl-2,3-diphenylbutane, 3,4-dimethyl-3,4-diphenylhexane, 1,1,2-triphenylethane, and 1,1,1 -Triphenyl-2-phenylethane and the like.
  • the half-life temperature for 1 minute is appropriately selected depending on the conditions of curing (crosslinking of a polymer obtained by subjecting the polymerizable composition of the present invention to a polymerization reaction). 100 to 300 ° C., preferably 150 to 250 ° C., more preferably 160 to 230 ° C.
  • the half-life temperature for 1 minute is a temperature at which half of the radical generator decomposes in 1 minute.
  • the 1-minute half-life temperature of the radical generator may be referred to, for example, a catalog or homepage of each radical generator manufacturer (for example, NOF Corporation).
  • the radical generators can be used alone or in combination of two or more.
  • the amount of the radical generator added to the polymerizable composition of the present invention is usually 0.01 to 10 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 100 parts by weight of the cycloolefin monomer. Is in the range of 0.5 to 5 parts by weight.
  • the crosslinking aid used in the present invention is used for the purpose of improving the heat resistance and crack resistance of the resulting laminate.
  • a polyfunctional compound having two or more crosslinkable carbon-carbon unsaturated bonds that can participate in the crosslinking reaction induced by the crosslinking agent without involving in the ring-opening polymerization is preferable.
  • Such a crosslinkable carbon-carbon unsaturated bond is preferably present, for example, as a vinylidene group present at the molecular terminal, particularly as an isopropenyl group or a methacryl group, as a methacryl group. More preferably it is present.
  • crosslinking aid examples include isopropenyl groups such as polyfunctional compounds having two isopropenyl groups, such as p-diisopropenylbenzene, m-diisopropenylbenzene, and o-diisopropenylbenzene.
  • polyfunctional compounds ethylene dimethacrylate, 1,3-butylene dimethacrylate, 1,4-butylene dimethacrylate, 1,6-hexanediol dimethacrylate, polyethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, ethylene glycol dimethacrylate
  • Polyfunctional compounds having two methacrylic groups such as triethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and 2,2′-bis (4-methacryloxydiethoxyphenyl) propane; Methylol - such as Le propane trimethacrylate and pentaerythritol trimethacrylate, such as a polyfunctional compound having three methacryl groups, a polyfunctional compound having two or more methacryl groups; and the like.
  • the polyfunctional compound which has 2 or more of methacryl groups is preferable from a viewpoint of improving the heat resistance and crack resistance of the laminated body obtained.
  • polyfunctional compounds having two or more methacryl groups polyfunctional compounds having three methacryl groups such as trimethylolpropane trimethacrylate and pentaerythritol trimethacrylate are more preferable.
  • the crosslinking aids can be used alone or in combination of two or more.
  • the amount of crosslinking aid added to the polymerizable composition of the present invention is usually 0.1 to 100 parts by weight, preferably 0.5 to 50 parts by weight, more preferably 100 parts by weight of the cycloolefin monomer. Is 1 to 30 parts by weight.
  • the inorganic filler 1 having a positive relative dielectric constant temperature change rate and the inorganic filler 2 having a negative relative dielectric constant temperature change rate are used.
  • the resulting laminate has a high relative dielectric constant and a low dielectric loss tangent, and is excellent in that the temperature change of the relative dielectric constant is small. Appears dielectric properties.
  • the polymerizable composition of the present invention has a low viscosity as compared with a polymer varnish that is conventionally used in the production of prepregs and laminates and in which an epoxy resin or the like is dissolved in a solvent. Can be highly blended.
  • the filler may be contained in excess of the limit content of the conventional prepreg or laminate. Therefore, the dielectric properties of the laminate of the present invention are particularly remarkably superior to conventional laminates.
  • the temperature change rate of the relative permittivity refers to the temperature change rate of the relative permittivity in the temperature range of ⁇ 30 to + 100 ° C. at 2 GHz.
  • the relative dielectric constant is usually 30 or less.
  • the inorganic filler 2 having a negative relative dielectric constant temperature change rate those having a relative dielectric constant of usually 30 or more when measured at 20 ° C. at 1 GHz are preferably used.
  • the relative dielectric constant of the inorganic filler can be obtained by measuring the dielectric constant by a cavity resonator method using a network analyzer and converting the dielectric constant into a relative dielectric constant.
  • the temperature change rate of the relative dielectric constant of the inorganic filler is measured by introducing the cavity resonator into the oven, measuring the dielectric constant in the temperature range of ⁇ 30 to + 100 ° C., and converting the dielectric constant into the relative dielectric constant. It can be obtained as the ratio of relative permittivity change to temperature change.
  • the relative dielectric constant temperature change rate is a positive value
  • the relative dielectric constant temperature change rate is positive
  • the relative dielectric constant temperature change rate is negative.
  • the rate of change in temperature is negative.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-269229
  • the inorganic filler 1 having a positive temperature change rate of relative permittivity include, for example, alumina (relative permittivity 11), silica (relative permittivity 3.8), magnesium oxide (relative permittivity 12), magnesium titanate ( Specific dielectric constant 18), aluminum hydroxide (relative dielectric constant 9), magnesium hydroxide (relative dielectric constant 11), and the like.
  • These inorganic fillers 1 having a positive dielectric constant temperature change rate can be used alone or in combination of two or more.
  • the inorganic filler 1 may also serve as a flame retardant when exhibiting a flame retardant effect.
  • the blending amount in the polymerizable composition of the present invention may be appropriately selected as desired, but is usually 10 to 300 parts by weight, preferably 20 to 200 parts by weight, more preferably 100 parts by weight of the cycloolefin monomer. Is in the range of 30 to 150 parts by weight.
  • Examples of the inorganic filler 2 having a negative relative dielectric constant temperature change rate include titania (relative permittivity 90), calcium titanate (relative permittivity 180), and strontium titanate (relative permittivity 250). It is done. These inorganic fillers 2 having a negative temperature change rate of relative permittivity can be used alone or in combination of two or more. The inorganic filler 2 may also serve as a flame retardant when exhibiting a flame retardant effect.
  • the blending amount in the polymerizable composition of the present invention may be appropriately selected as desired, but is usually 10 to 300 parts by weight, preferably 20 to 200 parts by weight, more preferably 100 parts by weight of the cycloolefin monomer. Is in the range of 30 to 150 parts by weight.
  • the former A combination of at least one selected from the group consisting of magnesium titanate, aluminum hydroxide and magnesium hydroxide and the latter with calcium titanate and / or strontium titanate can be given.
  • the blending ratio of the inorganic filler 1 having a positive relative dielectric constant temperature change rate and the inorganic filler 2 having a negative relative dielectric constant temperature change rate is obtained as a laminate.
  • the relative permittivity temperature change may be appropriately selected so as to be the minimum, but the weight ratio (the relative permittivity temperature change rate is a positive inorganic filler 1 / the relative permittivity temperature change rate is a negative inorganic filler.
  • the agent 2 it is usually in the range of 5/95 to 95/5, preferably 10/90 to 90/10, more preferably 20/80 to 80/20.
  • the total blending amount of the inorganic filler 1 having a positive relative dielectric constant temperature change rate and the inorganic filler 2 having a negative relative dielectric constant temperature change rate is appropriately determined as desired. Although it may be selected, it is usually in the range of 20 to 600 parts by weight, preferably 40 to 400 parts by weight, more preferably 60 to 300 parts by weight with respect to 100 parts by weight of the cycloolefin monomer.
  • fillers other than the inorganic filler used in the present invention can be blended. Among the fillers blended in the polymerizable composition of the present invention, the two kinds of inorganic fillers are used. In general, the total blending amount is preferably 30% by weight or more.
  • the above-mentioned cycloolefin monomer, polymerization catalyst, crosslinking agent, crosslinking aid, and the above-mentioned two kinds of inorganic fillers are essential components, and if desired, a non-halogen flame retardant, polymerization adjustment.
  • An agent, a polymerization reaction retarding agent, a chain transfer agent, a reactive fluidizing agent, an anti-aging agent and other compounding agents can be added.
  • non-halogen flame retardant is a flame retardant that does not contain halogen atoms. Any non-halogen flame retardant can be used without particular limitation as long as it is industrially used.
  • metal hydroxide flame retardants such as aluminum hydroxide and magnesium hydroxide
  • metal oxide flame retardants such as magnesium oxide and aluminum oxide
  • phosphinic acid salts such as aluminum dimethylphosphinate and aluminum diethylphosphinate
  • triphenyl phosphate Phosphorus-containing flame retardants other than phosphinates, such as tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, resorcinol bis (diphenyl) phosphate, bisphenol A bis (diphenyl) phosphate, and bisphenol A bis (dicresyl) phosphate
  • Nitrogen-containing flame retardants such as melamine derivatives, guanidines, and isocyanurs; ammonium polyphosphate, melamine phosphate, melamine polyphosphate, melam polyphosphate, guanidine phosphate, and Flame retardants containing both phosphorus and nitrogen phosphazene, and the
  • non-halogen flame retardants can be used alone or in combination of two or more.
  • the blending amount of the non-halogen flame retardant is appropriately selected within a range not impairing the effects of the present invention, but is usually 20 to 400 parts by weight, preferably 30 to 300 parts by weight, based on 100 parts by weight of the cycloolefin monomer.
  • the range is preferably 50 to 250 parts by weight.
  • the polymerization regulator is blended for the purpose of controlling the polymerization activity or improving the polymerization reaction rate.
  • trialkoxyaluminum, triphenoxyaluminum, dialkoxyalkylaluminum, alkoxydialkylaluminum, trialkyl Examples include aluminum, dialkoxyaluminum chloride, alkoxyalkylaluminum chloride, dialkylaluminum chloride, trialkoxyscandium, tetraalkoxytitanium, tetraalkoxytin, and tetraalkoxyzirconium. These polymerization regulators can be used alone or in combination of two or more.
  • the blending amount of the polymerization regulator is, for example, in a molar ratio (metal atom in the metathesis polymerization catalyst: polymerization regulator), usually 1: 0.05 to 1: 100, preferably 1: 0.2 to 1:20. More preferably, it is in the range of 1: 0.5 to 1:10.
  • the polymerization reaction retarder can suppress an increase in viscosity of the polymerizable composition of the present invention. Therefore, a polymerizable composition obtained by blending a polymerization reaction retarder is preferable because, as a crosslinkable resin composition, for example, when a prepreg is produced, a fibrous reinforcing material can be easily impregnated uniformly.
  • Polymerization retarders include phosphine compounds such as triphenylphosphine, tributylphosphine, trimethylphosphine, triethylphosphine, dicyclohexylphosphine, vinyldiphenylphosphine, allyldiphenylphosphine, triallylphosphine, styryldiphenylphosphine; Lewis bases such as aniline and pyridine Etc. can be used. What is necessary is just to adjust the compounding quantity suitably as needed.
  • the followability during heating and melting can be further improved on the surface of the crosslinkable resin molded body obtained by polymerizing the composition. Therefore, in a laminate obtained by laminating a crosslinkable resin molded article obtained by using a polymerizable composition containing a chain transfer agent, heating, melting, and crosslinking, interlayer adhesion is further enhanced. ,preferable.
  • a crosslinkable resin molded body can be melt-laminated when laminated with other members, for example, and in a laminated body obtained using the same, wiring embedding property, mechanical strength, heat resistance, and thermal shock The crack resistance in the test can be highly balanced, which is preferable.
  • the “other member” refers to a member other than the crosslinkable resin molded product or the crosslinked resin molded product of the present invention.
  • the wiring embeddability is obtained by obtaining a prepreg as a crosslinkable resin molded body, overlaying it on a circuit board having wiring, heat-pressing and crosslinking, and laminating the obtained laminate in a direction perpendicular to the wiring direction. It can evaluate by cutting and observing the said cut surface visually. It is preferable that there is no portion where the wiring is not embedded.
  • the chain transfer agent may have one or more crosslinkable carbon-carbon unsaturated bonds.
  • Specific examples of the chain transfer agent include 1-hexene, 2-hexene, styrene, vinylcyclohexane, allylamine, glycidyl acrylate, allyl glycidyl ether, ethyl vinyl ether, methyl vinyl ketone, 2- (diethylamino) ethyl acrylate, and 4- Chain transfer agents without crosslinkable carbon-carbon unsaturated bonds, such as vinylaniline; divinylbenzene, vinyl methacrylate, allyl methacrylate, styryl methacrylate, allyl acrylate, undecenyl methacrylate, styryl acrylate, and ethylene Chain transfer agent having one crosslinkable carbon-carbon unsaturated bond, such as glycol diacrylate; Chain transfer agent having two or more crosslinkable carbon-carbon unsaturated bonds, such as allyltrivinylsi
  • the obtained laminate has one or more crosslinkable carbon-carbon unsaturated bonds from the viewpoint of highly balancing dielectric properties, wiring embedding properties, heat resistance, and crack resistance properties.
  • Those having one crosslinkable carbon-carbon unsaturated bond are more preferable.
  • chain transfer agents chain transfer agents having one vinyl group and one methacryl group are preferable, and vinyl methacrylate, allyl methacrylate, styryl methacrylate, and undecenyl methacrylate are particularly preferable.
  • These chain transfer agents can be used alone or in combination of two or more.
  • the amount of the chain transfer agent added to the polymerizable composition of the present invention is usually 0.01 to 10 parts by weight, preferably 0.1 to 5 parts by weight, per 100 parts by weight of the cycloolefin monomer.
  • the polymer obtained by subjecting the polymerizable composition of the present invention to a polymerization reaction becomes a post-crosslinkable thermoplastic resin.
  • the “reactive fluidizing agent” is present in such a polymer in a substantially free state, and is heated and melted by lowering the glass transition temperature (Tg) of the polymer as a fluidizing agent.
  • Tg glass transition temperature
  • the crosslinkable resin molded product of the present invention having the polymer as a matrix resin is heated and melted, the surface of the molded product is in contact with the surface of the arbitrary member.
  • it refers to a monofunctional compound that exhibits a binding reactivity to a polymer by being involved in the reaction after the crosslinking reaction is induced by the crosslinking agent while improving the followability.
  • the polymer containing the reactive fluidizing agent when used as a matrix resin for a cross-linkable resin molded body, which will be described later, when the molded body is laminated with a circuit board or the like, it is easily melt-laminated by heating the molded body. In addition, in the obtained laminate, sufficient interlayer adhesion and wiring embedding can be obtained. Furthermore, the reactive fluidizing agent is involved in the crosslinking reaction induced by the crosslinking agent by heating during lamination, and exhibits binding reactivity to the polymer. It is presumed that what is present in the state decreases, and that there is substantially no free state at the end of the crosslinking reaction. Therefore, unlike what is called a plasticizer, it does not become a factor which reduces the heat resistance of the laminated body obtained. Rather, the resulting laminate can have the effect of increasing heat resistance and crack resistance.
  • the reactive fluidizing agent used in the present invention for example, it has no polymerizable carbon-carbon unsaturated bond and participates in the crosslinking reaction induced by the crosslinking agent to increase the binding reactivity to the polymer. And monofunctional compounds having one of the groups shown.
  • the polymerizable carbon-carbon unsaturated bond include a polymerizable carbon-carbon double bond in a cycloolefin monomer alicyclic structure and a vinyl group. Examples thereof include an aliphatic carbon-carbon unsaturated bond group that can participate in ring-opening polymerization.
  • Examples of the group exhibiting the binding reactivity to the polymer in relation to the crosslinking reaction induced by the crosslinking agent include a crosslinkable carbon-carbon unsaturated bond, or an organic group exhibiting the binding reactivity.
  • the reactive fluidizing agent has no polymerizable carbon-carbon unsaturated bond and has a single crosslinkable carbon-carbon unsaturated bond because it has excellent bond reactivity to the resulting polymer. Functional compounds are preferred.
  • the crosslinkable carbon-carbon unsaturated bond is preferably present, for example, as a vinylidene group present at the molecular end, particularly as an isopropenyl group or a methacryl group. More preferably present as Examples of the organic group include an epoxy group, an isocyanate group, and a sulfonic acid group.
  • a cyclic hydrocarbon group-containing methacrylate compound represented by the following general formula (A) is particularly preferable because of particularly excellent binding reactivity to the resulting polymer.
  • R represents a substituted or unsubstituted saturated alicyclic group having 3 to 30 carbon atoms, or a substituted or unsubstituted aromatic group having 6 to 30 carbon atoms, and n represents 0 to It is an integer of 10.
  • saturated alicyclic group having 3 to 30 carbon atoms include monocyclic groups such as cyclobutyl group, cyclopentyl group, cyclohexyl group, and cyclooctyl group; bicyclic groups such as bicyclohexyl group; tricyclo [5, and the like; tetracyclic groups such as adamantyl group; 2,1,0 2,6] (.
  • dicyclopentanyl group decanyl group tricyclic groups such as.
  • the saturated alicyclic group is preferably a tricyclic group or a tetracyclic group from the viewpoint of improving the heat resistance of the resulting crosslinked resin molded product or laminate, and tricyclo [5,2,1,0 2,6 A decanyl group or an adamantyl group is more preferred, and a tricyclo [5,2,1,0 2,6 ] decanyl group is particularly preferred.
  • the aromatic group having 6 to 30 carbon atoms include monocyclic groups such as phenyl groups; bicyclic groups such as naphthyl groups and biphenyl groups; tricyclic groups such as fluorenyl groups; and the like.
  • the aromatic group from the same viewpoint as the saturated alicyclic group, a monocyclic group is preferable, and a phenyl group is more preferable.
  • substituent for the saturated alicyclic group and aromatic group include polar groups such as alkyl groups having 3 to 11 carbon atoms, alkoxy groups having 3 to 11 carbon atoms, carboxyl groups, and acid anhydride groups.
  • n is preferably 0 to 5, particularly preferably 1.
  • Specific examples of the compound represented by the general formula (A) include cyclohexyl methacrylate, cyclooctyl methacrylate, phenyl methacrylate, benzyl methacrylate, tolyl methacrylate, adamantyl methacrylate, and dicyclopentanyl methacrylate, and preferably cyclohexyl.
  • the reactive fluidizing agent used in the present invention in addition to the above compounds, for example, monofunctional compounds having one methacryl group such as lauryl methacrylate, cyclooctenyl methacrylate, tetrahydrofurfuryl methacrylate, and methoxydiethylene glycol methacrylate; Monofunctional compounds having one isopropenyl group, such as isopropenylbenzene; and the like, and monofunctional compounds having one methacryl group are preferred.
  • These reactive fluidizing agents can be used alone or in combination of two or more.
  • the amount of the reactive fluidizing agent may be appropriately selected as desired, but is usually 0.1 to 100 parts by weight, preferably 0.5 to 50 parts by weight, more preferably 100 parts by weight of the cycloolefin monomer. Is 1 to 30 parts by weight.
  • Both the reactive fluidizing agent and the crosslinking aid used in the present invention are present in a substantially free state in the polymer constituting the crosslinkable resin molded article of the present invention. On the other hand, it produces a plastic effect. Therefore, when the molded body is heated, the polymer melts and exhibits an appropriate fluidity. On the other hand, if the molded body is continuously heated, a crosslinking reaction is induced by the crosslinking agent, but both the reactive fluidizing agent and the crosslinking auxiliary agent are involved in the crosslinking reaction and exhibit binding reactivity to the polymer.
  • the crosslinking reaction proceeds, the amount that exists in a free state decreases, and at the end of the crosslinking reaction, there is no material that exists substantially in a free state.
  • the reactive fluidizing agent and the crosslinking aid have similar characteristics, the binding reactivity to the polymer is considered to be higher for the crosslinking aid than the reactive fluidizing agent. Therefore, the plasticizing effect can be expressed longer by the reactive fluidizing agent than by the crosslinking aid.
  • the use of a crosslinking aid is preferable from the viewpoint of increasing the crosslinking density in the resulting laminate, but when the crosslinked resin molded body is heated, the polymer constituting the molded body forms a crosslinked structure earlier.
  • Reactive fluidizing agent monofunctional compound
  • polyfunctional compound having two crosslinkable carbon-carbon unsaturated bonds bifunctional compound
  • polyfunctional compound having three crosslinkable carbon-carbon unsaturated bonds It is preferable to use a combination of (trifunctional compounds).
  • the blending ratio of the reactive fluidizing agent and the crosslinking aid may be appropriately selected as desired, but the weight ratio (reactive fluidization) Agent / crosslinking aid), usually in the range of 5/95 to 90/10, preferably 10/90 to 70/30, more preferably 15/85 to 70/30. If the blending ratio is within such a range, in the crosslinkable resin molded body, the fluidity of the surface at the time of heating is improved, and in the laminate, the wiring embedding property, heat resistance and crack resistance in the thermal shock test are improved. Each characteristic is balanced and suitable.
  • the combination of the reactive fluidizing agent and the crosslinking aid suitable in the present invention includes at least one compound selected from the group consisting of benzyl methacrylate, adamantyl methacrylate and dicyclopentanyl methacrylate (above, reactive fluidization). Agent) and trimethylolpropane trimethacrylate (hereinafter referred to as a crosslinking aid).
  • a crosslinking aid trimethylolpropane trimethacrylate
  • the cycloolefin monomer is 100 weights.
  • the amount is usually 0.2 to 200 parts by weight, preferably 1 to 100 parts by weight, and more preferably 2 to 60 parts by weight with respect to parts.
  • an anti-aging agent blending at least one anti-aging agent selected from the group consisting of a phenol-based anti-aging agent, an amine-based anti-aging agent, a phosphorus-based anti-aging agent and a sulfur-based anti-aging agent causes a crosslinking reaction. Without being hindered, the heat resistance of the obtained laminate can be highly improved, which is preferable. Among these, a phenolic antiaging agent and an amine antiaging agent are preferable, and a phenolic antiaging agent is more preferable. These anti-aging agents can be used alone or in combination of two or more.
  • the amount of the anti-aging agent is appropriately selected as desired, but is usually 0.0001 to 10 parts by weight, preferably 0.001 to 5 parts by weight, and more preferably 0 to 100 parts by weight of the cycloolefin monomer. .01 to 2 parts by weight.
  • the polymerizable composition of the present invention can contain other compounding agents.
  • compounding agents colorants, light stabilizers, pigments, foaming agents, and the like can be used.
  • colorant a dye or a pigment is used.
  • dyes There are various kinds of dyes, and known ones may be appropriately selected and used.
  • These other compounding agents can be used alone or in combination of two or more, and the amount used is appropriately selected within a range not impairing the effects of the present invention.
  • the polymerizable composition of the present invention can be obtained by mixing the above components.
  • a mixing method a conventional method may be followed.
  • a liquid (catalyst liquid) in which a polymerization catalyst is dissolved or dispersed in an appropriate solvent is prepared, and other essential components such as a cycloolefin monomer and a crosslinking agent are optionally added.
  • It can be prepared by preparing a liquid (monomer liquid) containing other compounding agents, adding the catalyst liquid to the monomer liquid, and stirring.
  • the crosslinkable resin molded article of the present invention can be obtained by bulk polymerization of the polymerizable composition.
  • a method for obtaining a crosslinkable resin molded body by bulk polymerization of the polymerizable composition include, for example, (a) a method in which a polymerizable composition is applied on a support and then bulk polymerization, and (b) a polymerizable composition. Are injected into a mold, and then bulk polymerization is performed, and (c) a fibrous reinforcing material is impregnated with a polymerizable composition and then bulk polymerization is performed.
  • the polymerizable composition of the present invention has a low viscosity, the application in the method (a) can be carried out smoothly, and in the injection in the method (b), even if it is a space portion having a complicated shape, the foam bite is rapidly formed.
  • the polymerizable composition can be spread without causing it, and in the method (c), the fibrous reinforcing material can be impregnated with the polymerizable composition quickly and uniformly.
  • a crosslinkable resin molded product such as a film or plate
  • the thickness of the molded body is usually 15 mm or less, preferably 5 mm or less, more preferably 0.5 mm or less, and most preferably 0.1 mm or less.
  • the support include films and plates made of resins such as polytetrafluoroethylene, polyethylene terephthalate, polypropylene, polyethylene, polycarbonate, polyethylene naphthalate, polyarylate, and nylon; iron, stainless steel, copper, aluminum, nickel, chromium And films and plates made of metal materials such as gold, silver, and the like. Among these, use of a metal foil or a resin film is preferable.
  • the thickness of the metal foil or resin film is usually 1 to 150 ⁇ m, preferably 2 to 100 ⁇ m, more preferably 3 to 75 ⁇ m from the viewpoint of workability and the like.
  • the metal foil preferably has a smooth surface, and the surface roughness (Rz) is a value measured by an AFM (atomic force microscope) and is usually 10 ⁇ m or less, preferably 5 ⁇ m or less. Preferably it is 3 micrometers or less, More preferably, it is 2 micrometers or less. If the surface roughness of the metal foil is in the above range, it is preferable in the obtained dielectric device that noise, delay, transmission loss, and the like in high frequency transmission are suppressed.
  • the surface of the metal foil is preferably treated with a known coupling agent or adhesive such as a silane coupling agent, a thiol coupling agent, and a titanate coupling agent.
  • a resin-coated copper foil [Resin Coated Copper (RCC)] can be obtained.
  • Examples of the method for applying the polymerizable composition of the present invention on the support include known coating methods such as spray coating, dip coating, roll coating, curtain coating, die coating, and slit coating. .
  • the polymerizable composition coated on the support is optionally dried and then bulk polymerized. Bulk polymerization is performed by heating the polymerizable composition at a predetermined temperature.
  • the method for heating the polymerizable composition is not particularly limited, and the polymerizable composition applied to the support is heated on a heating plate, and heated (hot press) while being pressed using a press. Examples thereof include a method, a method of pressing with a heated roller, and a method of heating in a heating furnace.
  • a crosslinkable resin molded article having an arbitrary shape can be obtained.
  • the shape include a sheet shape, a film shape, a column shape, a columnar shape, and a polygonal column shape.
  • a conventionally known mold for example, a split mold structure, that is, a mold having a core mold and a cavity mold, can be used, and a polymerizable composition is formed in these voids (cavities). Is injected to cause bulk polymerization.
  • the core mold and the cavity mold are produced so as to form a gap that matches the shape of the target molded product.
  • the shape, material, size, etc. of the mold are not particularly limited.
  • a plate-shaped mold such as a glass plate or a metal plate and a spacer having a predetermined thickness are prepared, and the polymerizable composition is injected into a space formed by sandwiching the spacer between two plate-shaped molds.
  • the filling pressure (injection pressure) when filling the polymerizable composition into the mold cavity is usually 0.01 to 10 MPa, preferably 0.02 to 5 MPa. If the filling pressure is too low, the transfer surface formed on the inner peripheral surface of the cavity tends not to be transferred well. If the filling pressure is too high, the mold must be rigid and economical. is not.
  • the mold clamping pressure is usually in the range of 0.01 to 10 MPa. Examples of the method for heating the polymerizable composition include a method using a heating means such as an electric heater and steam disposed in the mold, and a method for heating the mold in an electric furnace.
  • the method of c) (c) is suitably used for obtaining a sheet-like or film-like crosslinkable resin molded article.
  • the thickness of the obtained molded body is usually in the range of 0.001 to 10 mm, preferably 0.005 to 1 mm, more preferably 0.01 to 0.5 mm. If it exists in this range, the shaping property at the time of lamination
  • the impregnation of the polymerizable composition into the fibrous reinforcing material is performed by using a predetermined amount of the polymerizable composition such as a spray coating method, a dip coating method, a roll coating method, a curtain coating method, a die coating method, and a slit coating method. It can apply by apply
  • the impregnated material is heated to a predetermined temperature to cause the polymerizable composition to undergo bulk polymerization to obtain a desired crosslinkable resin molded article.
  • the content of the fibrous reinforcing material in the crosslinkable resin molded body is usually in the range of 10 to 90% by weight, preferably 20 to 80% by weight, more preferably 30 to 70% by weight. Within this range, the dielectric properties and mechanical strength of the resulting laminate are balanced, which is preferable.
  • inorganic and / or organic fibers can be used, for example, PET (polyethylene terephthalate) fibers, aramid fibers, ultra-high molecular polyethylene fibers, polyamide (nylon) fibers, and liquid crystal polyester fibers.
  • Organic fibers; inorganic fibers such as glass fibers, carbon fibers, alumina fibers, tungsten fibers, molybdenum fibers, budene fibers, titanium fibers, steel fibers, boron fibers, silicon carbide fibers, and silica fibers;
  • organic fibers and glass fibers are preferable, and aramid fibers, liquid crystal polyester fibers, and glass fibers are particularly preferable.
  • fibers such as E glass, NE glass, S glass, D glass, and H glass can be suitably used. These can be used individually by 1 type or in combination of 2 or more types.
  • the shape of the fibrous reinforcing material is not particularly limited, and examples thereof include mats, cloths, and nonwoven fabrics.
  • Examples of the heating method of the impregnated product obtained by impregnating the fibrous reinforcing material with the polymerizable composition include, for example, a method in which the impregnated product is placed on a support and heated as in the method (a) above, Examples thereof include a method in which a fibrous reinforcing material is placed in the mold, an impregnated product is obtained by impregnating the polymerizable composition in the mold, and heating is performed as in the method (b).
  • the heating temperature for polymerizing the polymerizable composition is usually 30 to 250 ° C., preferably 50 to 200 ° C., more preferably 90 In the range of ⁇ 150 ° C. and less than 1 minute half-life temperature of the crosslinking agent, usually radical generator, preferably less than 10 ° C. of 1 minute half-life temperature, more preferably less than 20 ° C. of 1 minute half-life temperature It is.
  • the polymerization time may be appropriately selected, but is usually 1 second to 20 minutes, preferably 10 seconds to 5 minutes. Heating the polymerizable composition under such conditions is preferable because a crosslinkable resin molded article with less unreacted monomer can be obtained.
  • the polymer constituting the crosslinkable resin molded body obtained as described above has substantially no crosslink structure and is soluble in, for example, toluene.
  • the molecular weight of the polymer is a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (eluent: tetrahydrofuran), and is usually 1,000 to 1,000,000, preferably 5,000 to It is in the range of 500,000, more preferably 10,000 to 100,000.
  • the crosslinkable resin molded product of the present invention is a post-crosslinkable resin molded product, but a part of the constituent resin may be crosslinked.
  • a part of the constituent resin may be crosslinked.
  • the temperature of a part of the mold may become too high because the polymerization reaction heat hardly diffuses in the central part of the mold. In the high temperature part, a cross-linking reaction occurs, and cross-linking may occur.
  • the surface part that easily dissipates heat is formed of a crosslinkable resin that can be postcrosslinked, the crosslinkable resin molded article of the present invention can sufficiently exhibit the desired effect.
  • the crosslinkable resin molded article of the present invention is obtained by completing bulk polymerization, and there is no fear that the polymerization reaction further proceeds during storage.
  • the crosslinkable resin molded article of the present invention contains a crosslinking agent such as a radical generator, but does not cause a problem such as a change in surface hardness unless it is heated to a temperature at which a crosslinking reaction is caused or not. Excellent stability.
  • the crosslinkable resin molded article of the present invention is suitably used for the production of the crosslinked resin molded article and laminate of the present invention, for example, as a prepreg.
  • the crosslinked resin molded product of the present invention is obtained by bulk polymerization of the polymerizable composition of the present invention and crosslinking.
  • a crosslinked resin molded body can be obtained, for example, by crosslinking the crosslinkable resin molded body.
  • Crosslinking of the crosslinkable resin molded body can be performed by maintaining the molded body at a temperature higher than the temperature at which a crosslinking reaction occurs in the polymer constituting the molded body.
  • the heating temperature is usually equal to or higher than the temperature at which a crosslinking reaction is induced by the crosslinking agent.
  • a radical generator is used as a crosslinking agent, it is usually at least 1 minute half-life temperature, preferably at least 5 ° C.
  • above 1-minute half-life temperature more preferably at least 10 ° C. above 1-minute half-life temperature. It is. Typically, it is in the range of 100 to 300 ° C, preferably 150 to 250 ° C.
  • the heating time is in the range of 0.1 to 180 minutes, preferably 0.5 to 120 minutes, more preferably 1 to 60 minutes.
  • the polymerizable composition of the present invention at a temperature equal to or higher than the temperature at which the crosslinkable resin molded article is crosslinked, specifically, by heating at the temperature and time described herein, the cycloolefin monomer
  • the crosslinked resin molded article of the present invention by proceeding together with the bulk polymerization of the polymer and the crosslinking reaction in the cycloolefin polymer produced by the polymerization.
  • a copper clad laminate Copper Clad Laminates (CCL)
  • CCL Copper Clad Laminates
  • the laminate of the present invention is formed by laminating at least the crosslinkable resin molded product or the crosslinked resin molded product. Both molded bodies may be continuously laminated or indirectly laminated with another layer interposed therebetween.
  • a laminated body formed by laminating the crosslinkable resin molded body of the present invention for example, RCC obtained by integrating the copper foil and the crosslinkable resin molded body in a layered manner obtained by the method (a) can be mentioned. .
  • a laminated body formed by laminating the cross-linked resin molded body of the present invention for example, CCL obtained by integrating the copper foil and the cross-linked resin molded body in a layered manner is obtained according to the method (a). Can be mentioned.
  • a laminate of the crosslinkable resin molded body and the crosslinked resin molded body can be obtained.
  • the crosslinkable resin molded body is in the form of a sheet or film
  • the molded body and, optionally, the sheet-shaped or film-shaped crosslinked resin molded body is arbitrarily laminated, or further, for example, the metal foil
  • the laminate of the present invention is obtained by laminating and cross-linking by hot pressing to form a crosslinked resin molded body. In that case, you may laminate
  • the pressure at the time of hot pressing is usually 0.5 to 20 MPa, preferably 3 to 10 MPa.
  • the hot pressing may be performed in a vacuum or a reduced pressure atmosphere.
  • the hot pressing can be performed using a known press having a press frame mold for flat plate forming, a press molding machine such as a sheet mold compound (SMC) or a bulk mold compound (BMC).
  • SMC sheet mold compound
  • BMC bulk mold compound
  • the laminate of the present invention thus obtained has a high dielectric constant and a low dielectric loss tangent, and has excellent dielectric properties such that the temperature change of the dielectric constant is small.
  • the relative dielectric constant of the laminate of the present invention at 1 GHz at 20 ° C. is preferably 5 or more, more preferably 7 or more, and the dielectric loss tangent at 1 GHz at 20 ° C. is usually 0.008 or less.
  • the temperature change rate of the relative dielectric constant under the condition that the temperature changes in the range of ⁇ 30 to + 100 ° C.
  • the laminated body of this invention is excellent also in characteristics, such as heat resistance and crack resistance in a thermal shock test.
  • the laminated body of the present invention includes, for example, a circuit board, a capacitor (C), an inductor (L), an LC filter, a stripline resonance filter, a dielectric antenna, an embedded device, and a multichip module that are compatible with use at microwave frequencies. And can be suitably used for manufacturing dielectric devices such as high-frequency modules.
  • a microwave circuit board with a small transmission loss at high frequencies is preferable.
  • the transmission loss is the sum of dielectric loss (corresponding to tan ⁇ ) and conductor loss (depending on the roughness of the conductor), tan ⁇ (measured at 20 ° C. at 1 GHz) is 0.006 or less, and the roughness of the conductor (Rz) Is preferably 1 ⁇ m or less.
  • Rz roughness of the conductor
  • the capacitance depends on the design of the circuit pattern.
  • tan ⁇ (measured at 20 ° C. at 1 GHz) is preferably 0.006 or less.
  • the relative dielectric constant is preferably high, and is usually 5 or more, preferably 7 or more, more preferably 9 or more under the condition of 1 GHz and 20 ° C.
  • the filter can be made smaller by embedding the filter inside the circuit board.
  • High integration, high sensitivity, and low power consumption are possible.
  • the temperature dependence of the relative permittivity of the circuit board is small.
  • the change rate of the relative permittivity at 2 GHz at ⁇ 30 ° C. to + 100 ° C. is usually 200 ppm / ° C. or less, preferably 100 ppm / ° C in absolute value.
  • the laminate of the present invention can be suitably used for the production of these dielectric devices.
  • each characteristic in an Example and a comparative example was measured and evaluated according to the following methods.
  • Dielectric loss tangent Using an impedance analyzer (Model number E4991A, manufactured by Agilent Technologies), the dielectric loss tangent at 20 ° C. was measured at a frequency of 1 GHz by the capacitance method.
  • the evaluation was based on the following criteria. A: 0.003 or less B: More than 0.003, 0.008 or less X: More than 0.008 (3) Temperature change rate of relative permittivity A microstrip line resonator that resonates at 2 GHz was designed and manufactured. The resonator was connected to a network analyzer (manufactured by Agilent Technologies), and after measuring the temperature change of the dielectric constant ( ⁇ ) in the temperature range of ⁇ 30 to + 100 ° C. at a frequency of 2 GHz, the vacuum dielectric constant was set to ⁇ 0.
  • Temperature change rate of relative permittivity
  • the rate of change was determined as an absolute value by the following formula and evaluated according to the following criteria.
  • Heat resistance The laminate was cut into 20 mm squares to obtain test pieces. The test piece was allowed to flow on a solder bath at 260 ° C. for 20 seconds.
  • Example 1 A catalyst solution was prepared by dissolving 51 parts of benzylidene (1,3-dimesityl-4-imidazolidin-2-ylidene) (tricyclohexylphosphine) ruthenium dichloride and 79 parts of triphenylphosphine in 952 parts of toluene.
  • TCD tetracyclododecene
  • divinylbenzene as a chain transfer agent
  • 3,3,5,7,7-pentamethyl-1,2,4 as a crosslinking agent -2 parts of trioxepane (1 minute half-life temperature 205 ° C)
  • 15 parts of benzyl methacrylate as a reactive fluidizing agent 15 parts of trimethylolpropane trimethacrylate as a multifunctional crosslinking aid
  • positive temperature change rate of relative permittivity is positive 100 parts of aluminum hydroxide (also functioning as a flame retardant) as the inorganic filler 1
  • 180 parts of calcium titanate as the inorganic filler 2 having a negative relative dielectric constant temperature change
  • phenolic anti-aging agent A monomer solution was prepared by mixing 1 part of 5-di-t-butyl-4-hydroxyanisole. The said catalyst liquid was added here in the ratio of 0.12mL per
  • the obtained polymerizable composition was impregnated into glass cloth (E glass), and this was subjected to a polymerization reaction at 120 ° C. for 5 minutes to obtain a prepreg (crosslinkable resin molded article) having a thickness of 0.15 mm. It was.
  • the glass cloth content of the prepreg was 40%.
  • the obtained laminate was evaluated for relative permittivity, dielectric loss tangent, temperature change rate of relative permittivity, heat resistance and crack resistance. The results are shown in Table 1.
  • Example 2 Example except that 80 parts of TCD and 20 parts of dicyclopentadiene are used as the cycloolefin monomer, and 140 parts of the inorganic filler 1 whose temperature change rate of the relative dielectric constant is positive is used as magnesium hydroxide (also functioning as a flame retardant).
  • magnesium hydroxide also functioning as a flame retardant
  • Example 3 Example 1 except that inorganic filler 1 having a positive relative dielectric constant temperature change rate is 140 parts of magnesium titanate and inorganic filler 2 having a negative relative dielectric constant temperature change rate is 130 parts of strontium titanate. Similarly, a prepreg and a laminate were obtained, and each characteristic was evaluated. The results are shown in Table 1.
  • Example 4 The chain transfer agent is allyl methacrylate, the inorganic filler 1 whose relative dielectric constant temperature change rate is positive is 140 parts of magnesium titanate, and the inorganic filler 2 whose relative dielectric constant temperature change rate is negative is 130 parts of strontium titanate. Except that, a prepreg and a laminate were obtained in the same manner as in Example 1, and each characteristic was evaluated. The results are shown in Table 1.
  • Example 5 Example 2 except that inorganic filler 1 having a positive relative dielectric constant temperature change rate is 140 parts of magnesium titanate and inorganic filler 2 having a negative relative dielectric constant temperature change rate is 130 parts of strontium titanate. Similarly, a prepreg and a laminate were obtained, and each characteristic was evaluated. The results are shown in Table 1.
  • Comparative Example 1 A prepreg and a laminate were obtained in the same manner as in Example 1 except that benzyl methacrylate and trimethylolpropane trimethacrylate were not used, and each characteristic was evaluated. The results are shown in Table 1.
  • Teflon registered trademark (polytetrafluoroethylene) is blended with the same inorganic filler as that blended with the prepreg obtained in Example 1 in the same amount as in the case of the prepreg, and a sheet having a thickness of 0.15 mm is prepared. Thus, a laminate was produced in the same manner as in Example 1, and each characteristic was evaluated. The results are shown in Table 1.
  • the laminates obtained in Examples 1 to 5 are generally excellent in balance in each of the evaluated properties.
  • the laminate of Comparative Example 1 obtained using a polymerizable composition that does not contain a crosslinking aid is inferior in heat resistance and crack resistance, and the matrix resin of the resin layer is obtained as Teflon (registered trademark).
  • Teflon registered trademark
  • the laminate of Comparative Example 2 has a large relative dielectric constant temperature change and is inferior in heat resistance and crack resistance.
  • Example 6 A capacitor, an inductor, and a microstrip line were placed on the laminate produced in Example 5, and a dielectric device was produced according to a conventional method in the printed circuit board manufacturing field.
  • a power amplifier PA and a bandpass filter BPF constituting a transmitter Tx module of a wireless communication device are arranged on the surface of a multilayer substrate, and PA is a multilayer module PA combined with BPF A laminated module was produced.
  • FIG. 1 shows a block diagram of a transmission unit Tx module of a wireless communication device.
  • the Tx module includes a voltage controlled oscillator VCO, a mixer MIX, a power amplifier unit PA, and a band pass filter BPF.
  • a high frequency carrier wave is generated by the VCO, a baseband signal is input from the signal input terminal BB IN, and a high frequency signal in which the high frequency carrier wave and the baseband signal are mixed is created by MIX.
  • the high frequency signal is amplified by the PA, and only the necessary high frequency signal is selected through the BPF and connected to the antenna unit via the signal output terminal TX OUT.
  • PA and BPF are formed into a laminated module.
  • the produced PA laminated module will be specifically described.
  • FIG. 2 shows a circuit diagram of the PA included in the Tx module of FIG.
  • the PA includes an IC 1 having a two-stage configuration of semiconductor elements, an input matching circuit unit IM1, an output matching circuit unit OM1, and a bias circuit unit BC1.
  • IC1 plays a role of amplifying the signal input from the signal input terminal Pin1
  • IM1 is a circuit for matching the impedance at Pin1 with the input impedance of IC1.
  • OM1 is a circuit that matches the input impedance of the BPF with the output impedance of IC1.
  • BC1 plays a role of supplying DC power and operating a semiconductor included in IC1 as an amplifying element.
  • IM1 includes a circuit in which an inductor L1 and capacitors C1 and C2 are connected. The inductor L2 and the capacitors C3 and C4 are connected to the OM1.
  • BC1 is composed of inductor elements inductors L3 and L4 having high impedance and grounding capacitors C5 and C6 so as not to leak the signal amplified by IC1 to the power supply terminal Vcc1.
  • FIG. 3 is a perspective view in a completed state of a PA laminated module in which PA and BPF are arranged on the surface of the laminated substrate, and PA is made into a BPF laminated module.
  • FIG. 4 is a perspective view of the PA laminated module of FIG. It is sectional drawing which shows schematically the internal connection structure in a completion state.
  • the PA laminated module includes a laminated substrate 100, an active element IC1, a passive element BPF1, passive elements 60 and 70 such as an inductor element and a capacitor element, Vcc1, Pin1, BPF input terminals, and a BPF output terminal. And Tx Out, a grounding pattern, a through via hole 40, a blind via hole 30, an inner via hole 20, and a conductor pattern 50.
  • the passive element 60 is a passive element that configures BC1 of FIG. 2
  • the passive element 70 is a passive element that configures IM1 and OM1 of FIG. 2 (see FIG. 2).
  • the laminated substrate 100 is formed by laminating five laminated bodies obtained in Example 5.
  • IC1 which is an active element is disposed on the surface of the laminated substrate 100.
  • the electrodes of the IC 1 are connected to a conductor pattern formed on the surface of the multilayer substrate 100 by soldering. The connection may be made by wire bonding or the like.
  • Passive elements 60 and 70 and BPF are also connected to the conductor pattern by soldering.
  • the through via hole 40 penetrates the multilayer substrate 100 in the thickness direction and is electrically connected to the ground conductor layer.
  • the blind via hole 30 connects between the conductor layer 50 provided on the surface of the multilayer substrate 100 and the next conductor layer 50.
  • the inner via hole 20 connects the conductor layer 50 formed inside the multilayer substrate 100. One end of the blind via hole 30 is terminated inside the multilayer substrate 100, and both ends of the inner via hole 20 are terminated inside the multilayer substrate 100.
  • FIG. 5 shows the measurement results of the transmission loss of the microstrip line formed on the laminated substrate made of various materials.
  • a laminate substrate made of the laminate produced in Example 5 was used (this example), and the crosslinked resin molded body portion (dielectric layer) constituting the laminate was used as a low-temperature fired ceramic (LTCC).
  • LTCC low-temperature fired ceramic
  • a laminated substrate made of a changed laminated body manufactured by LTCC
  • a laminated substrate made of a laminated body in which the matrix resin of the cross-linked resin molded part constituting the laminated body is changed to a bismaleimide / triazine resin (Product made from BT resin) and the thing (product made from FR4) using the laminated substrate which consists of the laminated body which changed the matrix resin of the crosslinked resin molded object part which comprises the said laminated body into the epoxy resin were used. According to the results shown in FIG.
  • Example 7 When producing a laminate using the crosslinkable resin molding or the crosslinked resin molding of the present invention, for example, a copper foil is laminated on the molded body to provide a conductor layer, and a conductor pattern is formed on the conductor layer. Thus, a desired passive element can be manufactured.
  • FIG. 6 shows an example of a circuit of a band-pass filter BPF which is a typical passive element.
  • FIG. 7 shows an example in which an inductor element and a capacitor element are manufactured by patterning a conductor layer provided in the multilayer body of the present invention. The perspective view of an example of the obtained band pass filter is shown. In FIG.
  • the band-pass filter formed in the multilayer substrate is covered with the ground electrode on the top and bottom to prevent power leakage in the filter and to prevent noise from the outside, and further, the surroundings of the pass frequency are Surrounded by inner via holes or through holes that are arranged at intervals of ⁇ / 2 or less and are connected to the ground electrode.
  • Such a band-pass filter also exhibits the desired electrical characteristics described in the section (Dielectric device).
  • FIG. 8 shows the measurement results of transmission loss in the pass band of a 1.8 GHz band pass filter made of various materials.
  • BPF this example
  • BPF manufactured by LTCC
  • LTCC low-temperature fired ceramic
  • FR4 manufactured by FR4
  • the bandpass filter circuit is not limited to a combination of lumped constants such as an inductor element and a capacitor element as described above, and can be formed using distributed constants.
  • a bandpass filter using a ⁇ / 4 resonator as shown in FIG. 9 or a bandpass filter using a ⁇ / 2 resonator as shown in FIG. It may be provided inside the substrate. Even when a circuit with such a distributed constant is used, the laminate of the present invention has an excellent Q value and is useful for producing a low-loss bandpass filter.
  • Example 8 when producing the laminate of the present invention, a copper foil is laminated to provide a conductor layer, and a conductor pattern is formed on the conductor layer to produce a desired passive element such as an inductor or a capacitor.
  • a multilayer substrate in which passive elements such as a bandpass filter are incorporated in the multilayer body of the present invention.
  • the bandpass filter formed in the multilayer substrate is covered with ground electrodes on the top and bottom to prevent power leakage in the filter and noise from the outside, and the surroundings are less than ⁇ / 2 of the pass frequency. And is surrounded by an inner via hole or a through hole that is electrically connected to the ground electrode.
  • Such a substrate with a built-in bandpass filter has both the low loss characteristic of the transmission line described in the sixth embodiment (FIG. 5) and the low loss characteristic of the bandpass filter described in the seventh embodiment (FIG. 8), and has excellent low loss. It is possible to demonstrate the nature. Further, by incorporating the BPF that has been conventionally disposed on the upper surface of the multilayer substrate, the mounting area of the high-frequency module is increased, the mounting area of the surface of the multilayer substrate is increased, which is advantageous for integration and miniaturization. Furthermore, the reduction of the number of parts and the number of soldering greatly contribute to the improvement of productivity and reliability.

Abstract

Provided are: a polymerizable composition comprising a cylcoolefin monomer, a polymerization catalyst, a crosslinking agent, an auxiliary crosslinking agent, an inorganic filler (1) having a positive temperature coefficient of dielectric constant, and an inorganic filler (2) having a negative temperature coefficient of dielectric constant; a crosslinkable resin molded article obtained by the bulk polymerization of the polymerizable composition; a crosslinked resin molded article obtained by the bulk polymerization and crosslinking of the polymerizable composition; a laminated article obtained by laminating at least the crosslinkable resin molded article or the crosslinked resin molded article; and a dielectric device obtained using the laminated article.

Description

重合性組成物、樹脂成形体、積層体、及び誘電体デバイスPolymerizable composition, resin molded body, laminate, and dielectric device
  本発明は、重合性組成物、樹脂成形体、積層体、及び誘電体デバイスに関する。さらに詳しくは、高比誘電率かつ低誘電正接であり、比誘電率の温度変化が小さく、しかも耐熱性、及び冷熱衝撃試験での耐クラック性に優れた積層体の製造に有用な、重合性組成物、架橋性樹脂成形体及び架橋樹脂成形体、それらを用いて得られる積層体、並びに、前記積層体を用いて得られる誘電体デバイスに関する。 The present invention relates to a polymerizable composition, a resin molded body, a laminate, and a dielectric device. More specifically, it has a high dielectric constant and a low dielectric loss tangent, a change in temperature of the dielectric constant is small, and it is useful for producing a laminate having excellent heat resistance and crack resistance in a thermal shock test. The present invention relates to a composition, a crosslinkable resin molded body and a crosslinked resin molded body, a laminate obtained by using them, and a dielectric device obtained by using the laminate.
 高比誘電率と低誘電正接とを有する新材料は、エレクトロニクス産業において、高周波デバイスでの使用や、デバイスのさらなる小型化に必要とされている。かかる新材料を、薄膜、シート、プラーク及び他の成形形状にできれば、これらは、マイクロ波の周波数での使用に対応した回路基板、高エネルギー密度キャパシタ、誘電体フィルタ、誘電体アンテナ、埋設デバイス及びマルチチップモジュール等の誘電体デバイスとして使用できるため、特に有用である。これらには、例えば、無線通信技術において様々な用途がある。多くのセラミック材料は、望ましい高比誘電率と低誘電正接とを有するが、加工性に乏しいために容易に薄膜にはできない。また、フィルムやその他の成形品に成形したセラミック材料は一般に脆いという問題がある。 New materials with high relative permittivity and low dielectric loss tangent are required in the electronics industry for use in high frequency devices and for further miniaturization of devices. If such new materials can be made into thin films, sheets, plaques and other shaped shapes, these include circuit boards, high energy density capacitors, dielectric filters, dielectric antennas, embedded devices and the like that are compatible with use at microwave frequencies. Since it can be used as a dielectric device such as a multichip module, it is particularly useful. These have various uses, for example, in wireless communication technology. Many ceramic materials have desirable high dielectric constants and low dielectric loss tangents, but cannot be easily made into thin films due to poor workability. In addition, a ceramic material formed into a film or other molded product has a problem that it is generally brittle.
 そこで、近年提案されている一つの試みは、高比誘電率を有するセラミックフィラーとポリマーマトリックスとを含む高分子複合材料(コンポジット)を使用することであるが、誘電体デバイスとして機能させるためには、比誘電率の温度変化率(TCK)の低減が課題となる。 Therefore, one attempt recently proposed is to use a polymer composite material (composite) containing a ceramic filler having a high relative dielectric constant and a polymer matrix, but in order to function as a dielectric device. Reducing the temperature change rate (TCK) of the relative permittivity is an issue.
 例えば、特許文献1には、(1)ポリマーマトリックスと;(2)(a)K’<30、TCK’>0ppm/℃である少なくとも1種の第1のセラミック材料と、(b)K’>30、TCK’<-300ppm/℃である少なくとも1種の第2のセラミック材料との混合物を含む粒状セラミック充填剤であって、K’≧5、(TCK’の絶対値)≦200ppm/℃となるように(a)と(b)を効果的な比率で配合した粒状セラミック充填剤とを含有する電気基板複合材料が開示されている。特許文献1には、ポリマーマトリックスとして、フルオロポリマー、ポリブタジエンを含む熱硬化性樹脂、ポリエチレン等のポリオレフィンなどが例示され、第1のセラミック材料としては、アルミナ、シリカ、酸化マグネシウム、及びチタン酸マグネシウムが例示され、第2のセラミック材料としては、チタニア、チタン酸カルシウム、及びチタン酸ストロンチウムが例示されている。 For example, Patent Document 1 includes (1) a polymer matrix; (2) (a) at least one first ceramic material in which K ′ <30, TCK ′> 0 ppm / ° C., and (b) K ′. > 30, a granular ceramic filler comprising a mixture with at least one second ceramic material with TCK ′ <− 300 ppm / ° C., K ′ ≧ 5, (absolute value of TCK ′) ≦ 200 ppm / ° C. An electric substrate composite material containing a granular ceramic filler in which (a) and (b) are blended in an effective ratio is disclosed. Patent Document 1 exemplifies fluoropolymers, thermosetting resins containing polybutadiene, polyolefins such as polyethylene, etc. as the polymer matrix, and the first ceramic material includes alumina, silica, magnesium oxide, and magnesium titanate. Illustrative examples of the second ceramic material include titania, calcium titanate, and strontium titanate.
 特許文献2には、温度によって殆ど変化しない高い誘電率を有するポリマー組成物であって、熱可塑性ポリマー、1GHz及び20℃において少なくとも約50の誘電率を有する高誘電性セラミック、及び、1GHz及び20℃において少なくとも約5の誘電率を有する第二のセラミック材料の、いずれか一方の誘電率が温度の上昇によって増加し、他方の誘電率が、温度の上昇によって減少し、該高誘電性セラミック及び該第二のセラミック材料は、ポリマー組成物中に、該ポリマー組成物の誘電率が1GHzにおいて少なくとも4であるのに十分な量で含まれていることを特徴とする組成物が開示されている。高誘電性セラミックとしては、ストロンチウムチタネート、バリウムネオジウムチタネート、バリウムストロンチウムチタネート/マグネシウムジルコネート、二酸化チタン、バリウムチタネート、カルシウムチタネート、バリウムマグネシウムチタネート、鉛ジルコニウムチタネート及びこれらの混合物、第二のセラミック材料としては、アルミナ、マイカ、マグネシウムチタネート及びこれらの混合物が例示され、熱可塑性ポリマーとしては、ポリ(フェニレンスルフィド)やエチレンとノルボルネンを重合したシクロオレフィン性コポリマーなどが例示されている。 Patent Document 2 discloses a polymer composition having a high dielectric constant that hardly changes with temperature, a thermoplastic polymer, a high dielectric ceramic having a dielectric constant of at least about 50 at 1 GHz and 20 ° C., and 1 GHz and 20 A second ceramic material having a dielectric constant of at least about 5 at 0 ° C., wherein one of the dielectric constants increases with increasing temperature and the other dielectric constant decreases with increasing temperature, and the high dielectric ceramic and Disclosed is a composition characterized in that the second ceramic material is included in the polymer composition in an amount sufficient for the dielectric constant of the polymer composition to be at least 4 at 1 GHz. . High dielectric ceramics include strontium titanate, barium neodymium titanate, barium strontium titanate / magnesium zirconate, titanium dioxide, barium titanate, calcium titanate, barium magnesium titanate, lead zirconium titanate and mixtures thereof, and second ceramic materials include Alumina, mica, magnesium titanate and mixtures thereof are exemplified, and examples of the thermoplastic polymer include poly (phenylene sulfide) and a cycloolefin copolymer obtained by polymerizing ethylene and norbornene.
米国特許第5552210号明細書US Pat. No. 5,552,210 国際公開第97/042639号International Publication No. 97/042039
 しかしながら、特許文献1や2の高分子複合材料は、高比誘電率、低誘電正接及び比誘電率の温度変化が小さい等の誘電特性を有するが、流動性に劣り、高分子材料に多量の高誘電フィラーを均一に分散するのが難しく、ガラスクロス等の繊維状強化材に含浸させた状態で用いることが出来ない、また、該複合材料から得られる成形品は、耐熱性及び冷熱衝撃試験での耐クラック性等の信頼性に劣るなどの問題があることが、本発明者らの検討により明らかとなった。
 本発明の目的は、高比誘電率かつ低誘電正接であり、比誘電率の温度変化が小さく、しかも耐熱性、及び冷熱衝撃試験での耐クラック性に優れた積層体の製造に有用な、重合性組成物、架橋性樹脂成形体及び架橋樹脂成形体、それらを用いて得られる積層体、並びに、前記積層体を用いて得られる誘電体デバイスを提供することにある。
However, the polymer composite materials of Patent Documents 1 and 2 have dielectric properties such as a high relative dielectric constant, a low dielectric loss tangent, and a small change in temperature of the relative dielectric constant. It is difficult to uniformly disperse the high dielectric filler, and it cannot be used in the state of being impregnated with a fibrous reinforcing material such as glass cloth. Also, the molded product obtained from the composite material has a heat resistance and cold shock test. The present inventors have revealed that there are problems such as inferior reliability such as crack resistance in the present invention.
The object of the present invention is a high dielectric constant and a low dielectric loss tangent, the temperature change of the dielectric constant is small, and useful for the production of a laminate having excellent heat resistance and crack resistance in a thermal shock test, It is providing the polymeric composition, a crosslinkable resin molding, a crosslinked resin molding, a laminated body obtained by using them, and a dielectric device obtained by using the laminated body.
 本発明者らは、上記課題に鑑み鋭意検討の結果、シクロオレフィンモノマー、重合触媒、架橋剤、架橋助剤及び充填剤を含む重合性組成物において、充填剤として、比誘電率の温度変化率が正の無機充填剤と比誘電率の温度変化率が負の無機充填剤とを配合すると、該組成物によれば、加熱溶融時の樹脂流動性に優れたプリプレグを製造でき、さらに誘電特性、耐熱性及び冷熱衝撃試験での耐クラック性のいずれの特性にも優れた積層体が得られることを見出した。本発明者らは、かかる知見に基づいて本発明を完成するに至った。 As a result of intensive studies in view of the above problems, the present inventors have determined that the temperature change rate of the dielectric constant as a filler in a polymerizable composition containing a cycloolefin monomer, a polymerization catalyst, a crosslinking agent, a crosslinking aid, and a filler. When a positive inorganic filler and an inorganic filler whose relative dielectric constant has a negative temperature change rate are blended, according to the composition, a prepreg excellent in resin fluidity at the time of heating and melting can be produced. The present inventors have found that a laminate excellent in both properties of heat resistance and crack resistance in a thermal shock test can be obtained. The present inventors have completed the present invention based on such findings.
 すなわち、本発明によれば、
〔1〕シクロオレフィンモノマー、重合触媒、架橋剤、架橋助剤、比誘電率の温度変化率が正の無機充填剤1、及び比誘電率の温度変化率が負の無機充填剤2を含有してなる重合性組成物、
〔2〕比誘電率の温度変化率が正の無機充填剤1の比誘電率が30以下である前記〔1〕記載の重合性組成物、
〔3〕比誘電率の温度変化率が負の無機充填剤2の比誘電率が30以上である前記〔1〕または〔2〕記載の重合性組成物、
〔4〕連鎖移動剤をさらに含むものである前記〔1〕~〔3〕いずれか記載の重合性組成物、
〔5〕前記〔1〕~〔4〕いずれかに記載の重合性組成物を塊状重合してなる架橋性樹脂成形体、
〔6〕前記〔1〕~〔4〕いずれかに記載の重合性組成物を塊状重合し、架橋してなる架橋樹脂成形体、
〔7〕少なくとも、前記〔5〕に記載の架橋性樹脂成形体、又は前記〔6〕に記載の架橋樹脂成形体を積層してなる積層体、
〔8〕比誘電率の温度変化率が絶対値で200ppm/℃以下である前記〔7〕記載の積層体、並びに
〔9〕前記〔7〕または〔8〕に記載の積層体を用いてなる誘電体デバイス、
が提供される。
That is, according to the present invention,
[1] A cycloolefin monomer, a polymerization catalyst, a crosslinking agent, a crosslinking aid, an inorganic filler 1 having a positive relative dielectric constant temperature change rate, and an inorganic filler 2 having a negative relative dielectric constant temperature change rate. A polymerizable composition comprising:
[2] The polymerizable composition according to [1], wherein the relative dielectric constant of the inorganic filler 1 having a positive temperature change rate of the relative dielectric constant is 30 or less,
[3] The polymerizable composition according to the above [1] or [2], wherein the relative dielectric constant of the inorganic filler 2 having a negative temperature change rate of the dielectric constant is 30 or more,
[4] The polymerizable composition as set forth in any one of [1] to [3], further comprising a chain transfer agent,
[5] A crosslinkable resin molded article obtained by bulk polymerization of the polymerizable composition according to any one of [1] to [4],
[6] A crosslinked resin molded article obtained by bulk polymerization of the polymerizable composition according to any one of [1] to [4] and crosslinking.
[7] At least a cross-linked resin molded product according to [5], or a laminate obtained by laminating the cross-linked resin molded product according to [6],
[8] The laminate according to [7], wherein the temperature change rate of relative permittivity is 200 ppm / ° C. or less in absolute value, and [9] the laminate according to [7] or [8] is used. Dielectric devices,
Is provided.
 本発明によれば、高比誘電率かつ低誘電正接であり、比誘電率の温度変化が小さく、しかも耐熱性、及び冷熱衝撃試験での耐クラック性に優れた積層体の製造に有用な、重合性組成物、架橋性樹脂成形体及び架橋樹脂成形体、それらを用いて得られる積層体、並びに、前記積層体を用いて得られる誘電体デバイスが提供される。本発明の積層体は、前記の通りの特性を有することから、マイクロ波の周波数での使用に対応した回路基板、高エネルギー密度キャパシタ、誘電体フィルタ、誘電体アンテナ、埋設デバイス及びマルチチップモジュール等の誘電体デバイスに好適に使用することができる。 According to the present invention, it has a high dielectric constant and a low dielectric loss tangent, a temperature change of the dielectric constant is small, and is useful for producing a laminate having excellent heat resistance and crack resistance in a thermal shock test, There are provided a polymerizable composition, a crosslinkable resin molded body and a crosslinked resin molded body, a laminate obtained using them, and a dielectric device obtained using the laminate. Since the laminate of the present invention has the characteristics as described above, a circuit board, a high energy density capacitor, a dielectric filter, a dielectric antenna, an embedded device, a multichip module, and the like corresponding to use at a microwave frequency It can be suitably used for a dielectric device.
実施例に係る無線通信機器の送信部Txモジュールを示すブロック図である。It is a block diagram which shows the transmission part Tx module of the radio | wireless communication apparatus which concerns on an Example. 図1の送信部Txモジュールに含まれるパワーアンプ部PAの回路図である。FIG. 2 is a circuit diagram of a power amplifier unit PA included in the transmission unit Tx module of FIG. 1. 実施例に係るPA積層モジュールの完成状態における斜視図である。It is a perspective view in the completed state of PA lamination module concerning an example. 図3のPA積層モジュールの完成状態における内部の接続構造を概略的に示す断面図である。It is sectional drawing which shows schematically the internal connection structure in the completion state of the PA laminated module of FIG. 各種材料で作製したマイクロストリップラインの伝送損失の測定結果である。It is a measurement result of the transmission loss of the microstrip line produced with various materials. バンドパスフィルタの回路の一例である。It is an example of the circuit of a band pass filter. インダクタ素子(L)及びコンデンサ素子(C)を、本発明の積層体の内部に配置して作製したバンドパスフィルタの一例の斜視図である。It is a perspective view of an example of the band pass filter produced by arrange | positioning the inductor element (L) and the capacitor | condenser element (C) inside the laminated body of this invention. 各種材料で作製した1.8GHz帯バンドパスフィルタの通過帯域における伝送損失の測定結果である。It is the measurement result of the transmission loss in the pass band of the 1.8 GHz band band pass filter produced with various materials. λ/4共振器によるバンドパスフィルタの一構成例である。It is a structural example of the band pass filter by a λ / 4 resonator. λ/2共振器によるバンドパスフィルタの一構成例である。It is an example of 1 structure of the band pass filter by a lambda / 2 resonator.
 本発明の重合性組成物は、シクロオレフィンモノマー、重合触媒、架橋剤、架橋助剤、比誘電率の温度変化率が正の無機充填剤1、及び比誘電率の温度変化率が負の無機充填剤2を含有してなる。 The polymerizable composition of the present invention includes a cycloolefin monomer, a polymerization catalyst, a crosslinking agent, a crosslinking aid, an inorganic filler 1 having a positive relative dielectric constant temperature change rate, and an inorganic having a negative relative dielectric constant temperature change rate. Filler 2 is contained.
(シクロオレフィンモノマー)
 本発明に使用されるシクロオレフィンモノマーは、炭素原子で形成される脂環構造を有し、かつ該脂環構造中に重合性の炭素-炭素二重結合を1つ有する化合物である。本明細書において「重合性の炭素-炭素二重結合」とは、連鎖重合(開環重合)可能な炭素-炭素二重結合をいう。開環重合には、イオン重合、ラジカル重合、及びメタセシス重合など種々の形態のものが存在するが、本発明においては、通常、メタセシス開環重合をいう。
(Cycloolefin monomer)
The cycloolefin monomer used in the present invention is a compound having an alicyclic structure formed of carbon atoms and having one polymerizable carbon-carbon double bond in the alicyclic structure. As used herein, “polymerizable carbon-carbon double bond” refers to a carbon-carbon double bond capable of chain polymerization (ring-opening polymerization). There are various types of ring-opening polymerization such as ionic polymerization, radical polymerization, and metathesis polymerization. In the present invention, it usually refers to metathesis ring-opening polymerization.
 シクロオレフィンモノマーの脂環構造としては、単環、多環、縮合多環、橋かけ環及びこれらの組み合わせ多環などが挙げられる。各脂環構造を構成する炭素数に特に限定はないが、通常、4~30個、好ましくは5~20個、より好ましくは5~15個である。
 シクロオレフィンモノマーは、アルキル基、アルケニル基、アルキリデン基、及びアリール基などの、炭素数1~30の炭化水素基や、カルボキシル基又は酸無水物基などの極性基を置換基として有していてもよいが、得られる積層体を低誘電正接とする観点から、極性基を持たない、すなわち、炭素原子と水素原子のみで構成されるものが好ましい。
Examples of the alicyclic structure of the cycloolefin monomer include monocycles, polycycles, condensed polycycles, bridged rings, and combination polycycles thereof. The number of carbon atoms constituting each alicyclic structure is not particularly limited, but is usually 4 to 30, preferably 5 to 20, and more preferably 5 to 15.
The cycloolefin monomer has a hydrocarbon group having 1 to 30 carbon atoms such as an alkyl group, an alkenyl group, an alkylidene group, and an aryl group, and a polar group such as a carboxyl group or an acid anhydride group as a substituent. However, from the viewpoint of making the obtained laminate a low dielectric loss tangent, those having no polar group, that is, comprising only carbon atoms and hydrogen atoms are preferable.
 シクロオレフィンモノマーとしては、単環のシクロオレフィンモノマーと多環のシクロオレフィンモノマーのいずれをも用いることができる。得られる積層体の誘電特性、及び耐熱性の特性を高度にバランスさせる観点から、多環のシクロオレフィンモノマーが好ましい。多環のシクロオレフィンモノマーとしては、特にノルボルネン系モノマーが好ましい。「ノルボルネン系モノマー」とは、ノルボルネン環構造を分子内に有するシクロオレフィンモノマーをいう。例えば、ノルボルネン類、ジシクロペンタジエン類、及びテトラシクロドデセン類などが挙げられる。 As the cycloolefin monomer, either a monocyclic cycloolefin monomer or a polycyclic cycloolefin monomer can be used. From the viewpoint of highly balancing the dielectric properties and heat resistance properties of the resulting laminate, polycyclic cycloolefin monomers are preferred. As the polycyclic cycloolefin monomer, a norbornene-based monomer is particularly preferable. The “norbornene monomer” refers to a cycloolefin monomer having a norbornene ring structure in the molecule. Examples include norbornenes, dicyclopentadiene, and tetracyclododecene.
 シクロオレフィンモノマーとしては、架橋性の炭素-炭素不飽和結合を持たないものと、架橋性の炭素-炭素不飽和結合を1以上有するもののいずれをも用いることができる。本明細書において「架橋性の炭素-炭素不飽和結合」とは、開環重合には関与せず、架橋反応に関与可能な炭素-炭素不飽和結合をいう。架橋反応とは橋架け構造を形成する反応であり、縮合反応、付加反応、ラジカル反応、及びメタセシス反応など種々の形態のものが存在するが、本発明においては、通常、ラジカル架橋反応又はメタセシス架橋反応、特にラジカル架橋反応をいう。架橋性の炭素-炭素不飽和結合としては、芳香族炭素-炭素不飽和結合を除く炭素-炭素不飽和結合、すなわち、脂肪族炭素-炭素二重結合又は三重結合が挙げられ、本発明においては、通常、脂肪族炭素-炭素二重結合をいう。架橋性の炭素-炭素不飽和結合を1以上有するシクロオレフィンモノマー中、不飽和結合の位置は特に限定されるものではなく、炭素原子で形成される脂環構造内の他、該脂環構造以外の任意の位置、例えば、側鎖の末端や内部に存在していてもよい。例えば、前記脂肪族炭素-炭素二重結合は、ビニル基(CH=CH-)、ビニリデン基(CH=C<)、又はビニレン基(-CH=CH-)として存在し得、良好にラジカル架橋性を発揮することから、ビニル基及び/又はビニリデン基として存在するのが好ましく、ビニリデン基として存在するのがより好ましい。 As the cycloolefin monomer, either a monomer having no crosslinkable carbon-carbon unsaturated bond or a monomer having one or more crosslinkable carbon-carbon unsaturated bonds can be used. As used herein, “crosslinkable carbon-carbon unsaturated bond” refers to a carbon-carbon unsaturated bond that does not participate in ring-opening polymerization and can participate in a crosslinking reaction. The crosslinking reaction is a reaction that forms a bridge structure, and there are various forms such as a condensation reaction, an addition reaction, a radical reaction, and a metathesis reaction. In the present invention, usually, a radical crosslinking reaction or a metathesis crosslinking is performed. A reaction, particularly a radical crosslinking reaction. Examples of the crosslinkable carbon-carbon unsaturated bond include carbon-carbon unsaturated bonds other than aromatic carbon-carbon unsaturated bonds, that is, aliphatic carbon-carbon double bonds or triple bonds. Usually refers to an aliphatic carbon-carbon double bond. In the cycloolefin monomer having one or more crosslinkable carbon-carbon unsaturated bonds, the position of the unsaturated bond is not particularly limited, and other than within the alicyclic structure formed of carbon atoms, other than the alicyclic structure It may be present at any position of, for example, at the end or inside of the side chain. For example, the aliphatic carbon-carbon double bond may exist as a vinyl group (CH 2 ═CH—), a vinylidene group (CH 2 ═C <), or a vinylene group (—CH═CH—), Since it exhibits radical crosslinkability, it preferably exists as a vinyl group and / or vinylidene group, and more preferably as a vinylidene group.
 架橋性の炭素-炭素不飽和結合を持たないシクロオレフィンモノマーとしては、例えば、シクロペンテン、3-メチルシクロペンテン、4-メチルシクロペンテン、3,4-ジメチルシクロペンテン、3,5-ジメチルシクロペンテン、3-クロロシクロペンテン、シクロへキセン、3-メチルシクロへキセン、4-メチルシクロヘキセン、3,4-ジメチルシクロヘキセン、3-クロロシクロヘキセン、及びシクロへプテンなどの単環シクロオレフィンモノマー;ノルボルネン、5-メチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-プロピル-2-ノルボルネン、5,6-ジメチル-2-ノルボルネン、1-メチル-2-ノルボルネン、7-メチル-2-ノルボルネン、5,5,6-トリメチル-2-ノルボルネン、5-フェニル-2-ノルボルネン、テトラシクロドデセン、1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン(TCD)、2-メチル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、2-エチル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、2,3-ジメチル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、2-ヘキシル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、2-エチリデン-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、2-フルオロ-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、1,5-ジメチル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、2-シクロへキシル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、2,3-ジクロロ-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、2-イソブチル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、1,2-ジヒドロジシクロペンタジエン、5-クロロ-2-ノルボルネン、5,5-ジクロロ-2-ノルボルネン、5-フルオロ-2-ノルボルネン、5,5,6-トリフルオロ-6-トリフルオロメチル-2-ノルボルネン、5-クロロメチル-2-ノルボルネン、5-メトキシ-2-ノルボルネン、5,6-ジカルボキシル-2-ノルボルネンアンハイドレート、5-ジメチルアミノ-2-ノルボルネン、及び5-シアノ-2-ノルボルネンなどのノルボルネン系モノマー;を挙げることができ、好ましくは架橋性の炭素-炭素不飽和結合を持たないノルボルネン系モノマーである。 Examples of the cycloolefin monomer having no crosslinkable carbon-carbon unsaturated bond include cyclopentene, 3-methylcyclopentene, 4-methylcyclopentene, 3,4-dimethylcyclopentene, 3,5-dimethylcyclopentene, and 3-chlorocyclopentene. Monocyclic cycloolefin monomers such as cyclohexene, 3-methylcyclohexene, 4-methylcyclohexene, 3,4-dimethylcyclohexene, 3-chlorocyclohexene, and cycloheptene; norbornene, 5-methyl-2-norbornene, 5-ethyl-2-norbornene, 5-propyl-2-norbornene, 5,6-dimethyl-2-norbornene, 1-methyl-2-norbornene, 7-methyl-2-norbornene, 5,5,6-trimethyl- 2-norbornene, 5 Phenyl-2-norbornene, tetracyclododecene, 1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene (TCD), 2-methyl-1, 4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 2-ethyl-1,4,5,8-dimethano-1,2,3,4 4a, 5,8,8a-octahydronaphthalene, 2,3-dimethyl-1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 2- Hexyl-1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 2-ethylidene-1,4,5,8-dimethano-1,2, 3,4,4a, 5,8,8a-octahydronaphthalene, 2-fluoro-1 4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 1,5-dimethyl-1,4,5,8-dimethano-1,2,3 4,4a, 5,8,8a-octahydronaphthalene, 2-cyclohexyl-1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 2,3-dichloro-1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 2-isobutyl-1,4,5,8-dimethano- 1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 1,2-dihydrodicyclopentadiene, 5-chloro-2-norbornene, 5,5-dichloro-2-norbornene, 5-fluoro -2-Norbornene, 5,5,6-trifluoro-6-to Lifluoromethyl-2-norbornene, 5-chloromethyl-2-norbornene, 5-methoxy-2-norbornene, 5,6-dicarboxyl-2-norbornene anhydrate, 5-dimethylamino-2-norbornene, and 5 -Norbornene monomers such as cyano-2-norbornene; and preferred are norbornene monomers having no crosslinkable carbon-carbon unsaturated bond.
 架橋性の炭素-炭素不飽和結合を1以上有するシクロオレフィンモノマーとしては、例えば、3-ビニルシクロヘキセン、4-ビニルシクロヘキセン、1,3-シクロペンタジエン、1,3-シクロへキサジエン、1,4-シクロへキサジエン、5-エチル-1,3-シクロへキサジエン、1,3-シクロへプタジエン、及び1,3-シクロオクタジエンなどの単環シクロオレフィンモノマー;5-エチリデン-2-ノルボルネン、5-メチリデン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、5-ビニル-2-ノルボルネン、5-アリル-2-ノルボルネン、5,6-ジエチリデン-2-ノルボルネン、ジシクロペンタジエン、及び2,5-ノルボルナジエンなどのノルボルネン系モノマー;を挙げることができ、好ましくは架橋性の炭素-炭素不飽和結合を1以上有するノルボルネン系モノマーである。
 これらのシクロオレフィンモノマーは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
Examples of cycloolefin monomers having one or more crosslinkable carbon-carbon unsaturated bonds include 3-vinylcyclohexene, 4-vinylcyclohexene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1,4- Monocyclic cycloolefin monomers such as cyclohexadiene, 5-ethyl-1,3-cyclohexadiene, 1,3-cycloheptadiene, and 1,3-cyclooctadiene; 5-ethylidene-2-norbornene, 5- Methylidene-2-norbornene, 5-isopropylidene-2-norbornene, 5-vinyl-2-norbornene, 5-allyl-2-norbornene, 5,6-diethylidene-2-norbornene, dicyclopentadiene, and 2,5- Norbornene-based monomers such as norbornadiene; Ku crosslinkable carbon - is a norbornene-based monomer having one or more carbon unsaturated bond.
These cycloolefin monomers can be used alone or in combination of two or more.
 本発明に使用されるシクロオレフィンモノマーとしては、架橋性の炭素-炭素不飽和結合を1以上有するシクロオレフィンモノマーを含むものが好ましい。かかるシクロオレフィンモノマーを用いると、得られる積層体において耐熱性や耐クラック性等の信頼性が向上し、好適である。
 本発明の重合性組成物に配合するシクロオレフィンモノマー中、架橋性の炭素-炭素不飽和結合を1以上有するシクロオレフィンモノマーと架橋性の炭素-炭素不飽和結合を持たないシクロオレフィンモノマーとの配合割合は所望により適宜選択されるが、重量比(架橋性の炭素-炭素不飽和結合を1以上有するシクロオレフィンモノマー/架橋性の炭素-炭素不飽和結合を持たないシクロオレフィンモノマー)で、通常、5/95~100/0、好ましくは10/90~90/10、より好ましくは15/85~70/30の範囲である。当該配合割合がかかる範囲にあれば、得られる積層体において、耐熱性、及び冷熱衝撃試験での耐クラック性等の特性を高度に向上させることができ、好適である。
The cycloolefin monomer used in the present invention preferably includes a cycloolefin monomer having one or more crosslinkable carbon-carbon unsaturated bonds. When such a cycloolefin monomer is used, reliability such as heat resistance and crack resistance is improved in the obtained laminate, which is preferable.
Compounding of cycloolefin monomer having one or more crosslinkable carbon-carbon unsaturated bond and cycloolefin monomer having no crosslinkable carbon-carbon unsaturated bond in cycloolefin monomer to be blended in polymerizable composition of the present invention The ratio is appropriately selected as desired, but is usually in a weight ratio (cycloolefin monomer having at least one crosslinkable carbon-carbon unsaturated bond / cycloolefin monomer having no crosslinkable carbon-carbon unsaturated bond). The range is 5/95 to 100/0, preferably 10/90 to 90/10, and more preferably 15/85 to 70/30. If the said mixture ratio exists in this range, in the obtained laminated body, characteristics, such as heat resistance and crack resistance in a thermal shock test, can be improved highly, and it is suitable.
 なお、本発明の重合性組成物には、本発明の効果の発現が阻害されない限り、以上のシクロオレフィンモノマーと共重合可能な任意のモノマーが含まれていてもよい。 The polymerizable composition of the present invention may contain any monomer copolymerizable with the above cycloolefin monomer as long as the expression of the effect of the present invention is not inhibited.
(重合触媒)
 本発明に使用される重合触媒としては、前記シクロオレフィンモノマーを重合できるものであれば特に限定はないが、本発明の重合性組成物は、後述の架橋性樹脂成形体の製造において、直接塊状重合に供して用いるのが好適であり、通常、メタセシス重合触媒を用いるのが好ましい。
(Polymerization catalyst)
The polymerization catalyst used in the present invention is not particularly limited as long as it can polymerize the cycloolefin monomer, but the polymerizable composition of the present invention is directly agglomerated in the production of a crosslinkable resin molded article described later. It is preferable to use it for polymerization, and it is usually preferable to use a metathesis polymerization catalyst.
 メタセシス重合触媒としては、前記シクロオレフィンモノマーをメタセシス開環重合可能である、通常、遷移金属原子を中心原子として、複数のイオン、原子、多原子イオン、及び化合物などが結合してなる錯体が挙げられる。遷移金属原子としては、5族、6族及び8族(長周期型周期表による。以下、同じ。)の原子が使用される。それぞれの族の原子は特に限定されないが、5族の原子としては、例えば、タンタルが挙げられ、6族の原子としては、例えば、モリブデンやタングステンが挙げられ、8族の原子としては、例えば、ルテニウムやオスミウムが挙げられる。遷移金属原子としては、中でも、8族のルテニウムやオスミウムが好ましい。すなわち、本発明に使用されるメタセシス重合触媒としては、ルテニウム又はオスミウムを中心原子とする錯体が好ましく、ルテニウムを中心原子とする錯体がより好ましい。ルテニウムを中心原子とする錯体としては、カルベン化合物がルテニウムに配位してなるルテニウムカルベン錯体が好ましい。ここで、「カルベン化合物」とは、メチレン遊離基を有する化合物の総称であり、(>C:)で表されるような電荷のない2価の炭素原子(カルベン炭素)を持つ化合物をいう。ルテニウムカルベン錯体は、塊状重合時の触媒活性に優れるため、本発明の重合性組成物を塊状重合に供して架橋性樹脂成形体を得る場合、得られる成形体には未反応のモノマーに由来する臭気が少なく、生産性良く良質な成形体が得られる。また、酸素や空気中の水分に対して比較的安定であって、失活しにくいので、大気下でも使用可能である。 Examples of the metathesis polymerization catalyst include a complex formed by bonding a plurality of ions, atoms, polyatomic ions, compounds, etc. with a transition metal atom as a central atom, which is capable of metathesis ring-opening polymerization of the cycloolefin monomer. It is done. As transition metal atoms, atoms of Group 5, Group 6, and Group 8 (according to the long-period periodic table; the same applies hereinafter) are used. Although the atoms of each group are not particularly limited, examples of the Group 5 atom include tantalum, examples of the Group 6 atom include molybdenum and tungsten, and examples of the Group 8 atom include: Examples include ruthenium and osmium. Among them, the group 8 ruthenium or osmium is preferable as the transition metal atom. That is, the metathesis polymerization catalyst used in the present invention is preferably a complex having ruthenium or osmium as a central atom, and more preferably a complex having ruthenium as a central atom. As the complex having ruthenium as a central atom, a ruthenium carbene complex in which a carbene compound is coordinated to ruthenium is preferable. Here, the “carbene compound” is a general term for compounds having a methylene free group, and refers to a compound having an uncharged divalent carbon atom (carbene carbon) as represented by (> C :). Since the ruthenium carbene complex is excellent in catalytic activity during bulk polymerization, when the crosslinkable resin molded body is obtained by subjecting the polymerizable composition of the present invention to bulk polymerization, the resulting molded body is derived from unreacted monomers. A molded article with low odor and good productivity can be obtained. In addition, it is relatively stable to oxygen and moisture in the air and is not easily deactivated, so that it can be used even in the atmosphere.
 ルテニウムカルベン錯体の具体例としては、以下の式(1)又は式(2)で表される錯体が挙げられる。 Specific examples of the ruthenium carbene complex include complexes represented by the following formula (1) or formula (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)及び(2)において、R及びRは、それぞれ独立して水素原子、ハロゲン原子、又はハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子若しくは珪素原子を含んでもよい、環状又は鎖状の、炭素数1~20の炭化水素基を表す。X及びXは、それぞれ独立して任意のアニオン性配位子を示す。L及びLはそれぞれ独立して、ヘテロ原子含有カルベン化合物又はヘテロ原子含有カルベン化合物以外の中性電子供与性化合物を表す。また、RとRは互いに結合して、ヘテロ原子を含んでいてもよい脂肪族環又は芳香族環を形成してもよい。さらに、R、R、X、X、L及びLは、任意の組合せで互いに結合して多座キレート化配位子を形成してもよい。 In the formulas (1) and (2), R 1 and R 2 may each independently contain a hydrogen atom, a halogen atom, or a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom. It represents a cyclic or chain hydrocarbon group having 1 to 20 carbon atoms. X 1 and X 2 each independently represent an arbitrary anionic ligand. L 1 and L 2 each independently represent a hetero atom-containing carbene compound or a neutral electron donating compound other than the hetero atom-containing carbene compound. R 1 and R 2 may be bonded to each other to form an aliphatic ring or an aromatic ring that may contain a hetero atom. Furthermore, R 1 , R 2 , X 1 , X 2 , L 1 and L 2 may be bonded together in any combination to form a multidentate chelating ligand.
 ヘテロ原子とは、周期律表15族及び16族の原子を意味し、具体的には、窒素原子(N)、酸素原子(O)、リン原子(P)、硫黄原子(S)、砒素原子(As)、セレン原子(Se)などを挙げることができる。これらの中でも、安定なカルベン化合物が得られる観点から、N、O、P、及びSなどが好ましく、Nが特に好ましい。 A heteroatom means an atom of groups 15 and 16 of the periodic table, and specifically, a nitrogen atom (N), an oxygen atom (O), a phosphorus atom (P), a sulfur atom (S), an arsenic atom (As), selenium atom (Se), and the like. Among these, N, O, P, and S are preferable from the viewpoint of obtaining a stable carbene compound, and N is particularly preferable.
 前記ルテニウムカルベン錯体としては、得られる架橋樹脂成形体及び積層体の機械的強度と耐衝撃性とが高度にバランスされ得ることから、ヘテロ原子含有カルベン化合物としてヘテロ環構造を有するカルベン化合物を配位子として少なくとも1つ有するものが好ましい。ヘテロ環構造としては、イミダゾリン環構造又はイミダゾリジン環構造が好ましい。 As the ruthenium carbene complex, the mechanical strength and impact resistance of the resulting crosslinked resin molded product and laminate can be highly balanced, so that a carbene compound having a heterocyclic structure is coordinated as a heteroatom-containing carbene compound. What has at least 1 child is preferable. As the heterocyclic structure, an imidazoline ring structure or an imidazolidine ring structure is preferable.
 ヘテロ環構造を有するカルベン化合物としては、以下の式(3)又は式(4)で示される化合物が挙げられる。 Examples of the carbene compound having a heterocyclic structure include compounds represented by the following formula (3) or formula (4).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
式(3)又は式(4)において、R~Rは、それぞれ独立して水素原子;ハロゲン原子;又はハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子若しくは珪素原子を含んでもよい、環状又は鎖状の、炭素数1~20個の炭化水素基を表す。また、R~Rは任意の組合せで互いに結合して環を形成していてもよい。 In formula (3) or formula (4), R 3 to R 6 may each independently contain a hydrogen atom; a halogen atom; or a halogen atom, oxygen atom, nitrogen atom, sulfur atom, phosphorus atom, or silicon atom. Represents a cyclic or chain hydrocarbon group having 1 to 20 carbon atoms. R 3 to R 6 may be bonded to each other in any combination to form a ring.
 前記式(3)又は式(4)で表される化合物としては、1,3-ジメシチルイミダゾリジン-2-イリデン、1,3-ジ(1-アダマンチル)イミダゾリジン-2-イリデン、1,3-ジシクロヘキシルイミダゾリジン-2-イリデン、1,3-ジメシチルオクタヒドロベンズイミダゾール-2-イリデン、1,3-ジイソプロピル-4-イミダゾリン-2-イリデン、1,3-ジ(1-フェニルエチル)-4-イミダゾリン-2-イリデン、1,3-ジメシチル-2,3-ジヒドロベンズイミダゾール-2-イリデンなどが挙げられる。 Examples of the compound represented by the formula (3) or the formula (4) include 1,3-dimesitylimidazolidine-2-ylidene, 1,3-di (1-adamantyl) imidazolidin-2-ylidene, , 3-dicyclohexylimidazolidine-2-ylidene, 1,3-dimesityloctahydrobenzimidazol-2-ylidene, 1,3-diisopropyl-4-imidazoline-2-ylidene, 1,3-di (1-phenyl) Ethyl) -4-imidazoline-2-ylidene, 1,3-dimesityl-2,3-dihydrobenzimidazol-2-ylidene and the like.
 また、前記式(3)又は式(4)で示される化合物のほかに、1,3,4-トリフェニル-2,3,4,5-テトラヒドロ-1H-1,2,4-トリアゾール-5-イリデン、1,3-ジシクロヘキシルヘキサヒドロピリミジン-2-イリデン、N,N,N’,N’-テトライソプロピルホルムアミジニリデン、1,3,4-トリフェニル-4,5-ジヒドロ-1H-1,2,4-トリアゾール-5-イリデン、3-(2,6-ジイソプロピルフェニル)-2,3-ジヒドロチアゾール-2-イリデンなどのヘテロ原子含有カルベン化合物も用い得る。 In addition to the compound represented by formula (3) or formula (4), 1,3,4-triphenyl-2,3,4,5-tetrahydro-1H-1,2,4-triazole-5 -Iridene, 1,3-dicyclohexylhexahydropyrimidine-2-ylidene, N, N, N ', N'-tetraisopropylformamidinylidene, 1,3,4-triphenyl-4,5-dihydro-1H- Heteroatom-containing carbene compounds such as 1,2,4-triazole-5-ylidene and 3- (2,6-diisopropylphenyl) -2,3-dihydrothiazol-2-ylidene can also be used.
 前記式(1)及び式(2)において、アニオン(陰イオン)性配位子X、Xは、中心金属原子から引き離されたときに負の電荷を持つ配位子である。例えば、弗素原子(F)、塩素原子(Cl)、臭素原子(Br)、及び沃素原子(I)などのハロゲン原子、ジケトネート基、置換シクロペンタジエニル基、アルコキシ基、アリールオキシ基、及びカルボキシル基などを挙げることができる。これらの中でもハロゲン原子が好ましく、塩素原子がより好ましい。 In the formulas (1) and (2), the anionic (anionic) ligands X 1 and X 2 are ligands having a negative charge when separated from the central metal atom. For example, halogen atoms such as fluorine atom (F), chlorine atom (Cl), bromine atom (Br), and iodine atom (I), diketonate group, substituted cyclopentadienyl group, alkoxy group, aryloxy group, and carboxyl Examples include groups. Among these, a halogen atom is preferable and a chlorine atom is more preferable.
 また、中性の電子供与性化合物は、中心金属から引き離されたときに中性の電荷を持つ配位子であればいかなるものでもよい。その具体例としては、カルボニル類、アミン類、ピリジン類、エーテル類、ニトリル類、エステル類、ホスフィン類、チオエーテル類、芳香族化合物、オレフィン類、イソシアニド類、チオシアネート類などが挙げられる。これらの中でも、ホスフィン類、エーテル類及びピリジン類が好ましく、トリアルキルホスフィンがより好ましい。 Further, the neutral electron donating compound may be any ligand as long as it has a neutral charge when it is separated from the central metal. Specific examples thereof include carbonyls, amines, pyridines, ethers, nitriles, esters, phosphines, thioethers, aromatic compounds, olefins, isocyanides, thiocyanates, and the like. Among these, phosphines, ethers and pyridines are preferable, and trialkylphosphine is more preferable.
 前記式(1)で表される錯体化合物としては、ベンジリデン(1,3-ジメシチル-4-イミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン(1,3-ジメシチル-4,5-ジブロモ-4-イミダゾリン-2-イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、(1,3-ジメシチル-4-イミダゾリン-2-イリデン)(3-フェニル-1H-インデン-1-イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、(1,3-ジメシチルイミダゾリジン-2-イリデン)(3-メチル-2-ブテン-1-イリデン)(トリシクロペンチルホスフィン)ルテニウムジクロリド、ベンジリデン(1,3-ジメシチル-オクタヒドロベンズイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン[1,3-ジ(1-フェニルエチル)-4-イミダゾリン-2-イリデン](トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン(1,3-ジメシチル-2,3-ジヒドロベンズイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン(トリシクロヘキシルホスフィン)(1,3,4-トリフェニル-2,3,4,5-テトラヒドロ-1H-1,2,4-トリアゾール-5-イリデン)ルテニウムジクロリド、(1,3-ジイソプロピルヘキサヒドロピリミジン-2-イリデン)(エトキシメチレン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン(1,3-ジメシチルイミダゾリジン-2-イリデン)ピリジンルテニウムジクロリド、(1,3-ジメシチルイミダゾリジン-2-イリデン)(2-フェニルエチリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、(1,3-ジメシチル-4-イミダゾリン-2-イリデン)(2-フェニルエチリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、(1,3-ジメシチル-4,5-ジブロモ-4-イミダゾリン-2-イリデン)[(フェニルチオ)メチレン](トリシクロヘキシルホスフィン)ルテニウムジクロリド、(1,3-ジメシチル-4,5-ジブロモ-4-イミダゾリン-2-イリデン)(2-ピロリドン-1-イルメチレン)(トリシクロヘキシルホスフィン)ルテニウムジクロリドなどの、ヘテロ原子含有カルベン化合物及び中性の電子供与性化合物が各々1つ結合したルテニウム錯体化合物; Examples of the complex compound represented by the formula (1) include benzylidene (1,3-dimesityl-4-imidazolidin-2-ylidene) (tricyclohexylphosphine) ruthenium dichloride, benzylidene (1,3-dimesityl-4,5 -Dibromo-4-imidazoline-2-ylidene) (tricyclohexylphosphine) ruthenium dichloride, (1,3-dimesityl-4-imidazoline-2-ylidene) (3-phenyl-1H-indene-1-ylidene) (tricyclohexyl) Phosphine) ruthenium dichloride, (1,3-dimesitylimidazolidine-2-ylidene) (3-methyl-2-buten-1-ylidene) (tricyclopentylphosphine) ruthenium dichloride, benzylidene (1,3-dimesityl-octa Hydrobenzimidazole 2-Ilidene) (tricyclohexylphosphine) ruthenium dichloride, benzylidene [1,3-di (1-phenylethyl) -4-imidazoline-2-ylidene] (tricyclohexylphosphine) ruthenium dichloride, benzylidene (1,3-dimesityl- 2,3-dihydrobenzimidazol-2-ylidene) (tricyclohexylphosphine) ruthenium dichloride, benzylidene (tricyclohexylphosphine) (1,3,4-triphenyl-2,3,4,5-tetrahydro-1H-1, 2,4-triazole-5-ylidene) ruthenium dichloride, (1,3-diisopropylhexahydropyrimidine-2-ylidene) (ethoxymethylene) (tricyclohexylphosphine) ruthenium dichloride, benzylidene (1, -Dimesityloimidazolidine-2-ylidene) pyridine ruthenium dichloride, (1,3-Dimesityloimidazolidine-2-ylidene) (2-phenylethylidene) (tricyclohexylphosphine) ruthenium dichloride, (1,3-Dimesityl) -4-imidazoline-2-ylidene) (2-phenylethylidene) (tricyclohexylphosphine) ruthenium dichloride, (1,3-dimesityl-4,5-dibromo-4-imidazoline-2-ylidene) [(phenylthio) methylene] Heterogenes such as (tricyclohexylphosphine) ruthenium dichloride, (1,3-dimesityl-4,5-dibromo-4-imidazoline-2-ylidene) (2-pyrrolidone-1-ylmethylene) (tricyclohexylphosphine) ruthenium dichloride A ruthenium complex compound in which each of a child-containing carbene compound and a neutral electron-donating compound is bonded;
 ベンジリデンビス(トリシクロヘキシルホスフィン)ルテニウムジクロリド、(3-メチル-2-ブテン-1-イリデン)ビス(トリシクロペンチルホスフィン)ルテニウムジクロリドなどの、2つの中性電子供与性化合物が結合したルテニウム化合物; Ruthenium compounds in which two neutral electron-donating compounds are bonded, such as benzylidenebis (tricyclohexylphosphine) ruthenium dichloride, (3-methyl-2-buten-1-ylidene) bis (tricyclopentylphosphine) ruthenium dichloride;
 ベンジリデンビス(1,3-ジシクロヘキシルイミダゾリジン-2-イリデン)ルテニウムジクロリド、ベンジリデンビス(1,3-ジイソプロピル-4-イミダゾリン-2-イリデン)ルテニウムジクロリドなどの、2つのヘテロ原子含有カルベン化合物が結合したルテニウム錯体化合物;などが挙げられる。 Two heteroatom-containing carbene compounds such as benzylidenebis (1,3-dicyclohexylimidazolidine-2-ylidene) ruthenium dichloride and benzylidenebis (1,3-diisopropyl-4-imidazoline-2-ylidene) ruthenium dichloride bonded together Ruthenium complex compounds; and the like.
 前記式(2)で表される錯体化合物としては、(1,3-ジメシチルイミダゾリジン-2-イリデン)(フェニルビニリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、(t-ブチルビニリデン)(1,3-ジイソプロピル-4-イミダゾリン-2-イリデン)(トリシクロペンチルホスフィン)ルテニウムジクロリド、ビス(1,3-ジシクロヘキシル-4-イミダゾリン-2-イリデン)フェニルビニリデンルテニウムジクロリドなどが挙げられる。 Examples of the complex compound represented by the formula (2) include (1,3-dimesitymylimidazolidine-2-ylidene) (phenylvinylidene) (tricyclohexylphosphine) ruthenium dichloride, (t-butylvinylidene) (1, And 3-diisopropyl-4-imidazoline-2-ylidene) (tricyclopentylphosphine) ruthenium dichloride, bis (1,3-dicyclohexyl-4-imidazoline-2-ylidene) phenylvinylidene ruthenium dichloride, and the like.
 これらの錯体化合物の中でも、前記式(1)で表され、かつ配位子として前記式(4)で表される化合物を1つ有するものが最も好ましい。 Among these complex compounds, those having one compound represented by the formula (1) and represented by the formula (4) as a ligand are most preferable.
 これらのルテニウムカルベン錯体は、Org. Lett., 1999年, 第1巻, 953頁や、Tetrahedron. Lett., 1999年, 第40巻, 2247頁などに記載された方法によって製造することができる。 These ruthenium carbene complexes can be produced by the methods described in Org. Lett., 1999, Vol. 1, や 953, Tetrahedron. Lett., 1999, 40 Vol.
 前記メタセシス重合触媒は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。メタセシス重合触媒の使用量は、モル比(メタセシス重合触媒中の金属原子:シクロオレフィンモノマー)で、通常、1:2,000~1:2,000,000、好ましくは1:5,000~1:1,000,000、より好ましくは1:10,000~1:500,000の範囲である。 The metathesis polymerization catalysts are used alone or in combination of two or more. The amount of the metathesis polymerization catalyst used is usually 1: 2,000 to 1: 2,000,000, preferably 1: 5,000 to 1 in terms of molar ratio (metal atom in the metathesis polymerization catalyst: cycloolefin monomer). : 1,000,000, more preferably in the range of 1: 10,000 to 1: 500,000.
 メタセシス重合触媒は所望により、少量の不活性溶媒に溶解又は懸濁して使用することができる。かかる溶媒としては、n-ペンタン、n-ヘキサン、n-ヘプタン、流動パラフィン、及びミネラルスピリットなどの鎖状脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ジシクロヘプタン、トリシクロデカン、ヘキサヒドロインデン、及びシクロオクタンなどの脂環式炭化水素;ベンゼン、トルエン、及びキシレンなどの芳香族炭化水素;インデンやテトラヒドロナフタレンなどの脂環と芳香環とを有する炭化水素;ニトロメタン、ニトロベンゼン、及びアセトニトリルなどの含窒素炭化水素;ジエチルエーテルやテトラヒドロフランなどの含酸素炭化水素;などが挙げられる。これらの中では、鎖状脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、及び脂環と芳香環とを有する炭化水素の使用が好ましい。 The metathesis polymerization catalyst can be used by dissolving or suspending in a small amount of an inert solvent, if desired. Such solvents include chain aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane, liquid paraffin, and mineral spirits; cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethyl Cycloaliphatic hydrocarbons such as cyclohexane, decahydronaphthalene, dicycloheptane, tricyclodecane, hexahydroindene and cyclooctane; aromatic hydrocarbons such as benzene, toluene and xylene; alicyclic rings such as indene and tetrahydronaphthalene And hydrocarbons having an aromatic ring; nitrogen-containing hydrocarbons such as nitromethane, nitrobenzene, and acetonitrile; oxygen-containing hydrocarbons such as diethyl ether and tetrahydrofuran; Among these, it is preferable to use a chain aliphatic hydrocarbon, an alicyclic hydrocarbon, an aromatic hydrocarbon, and a hydrocarbon having an alicyclic ring and an aromatic ring.
(架橋剤)
 本発明で使用される架橋剤は、本発明の重合性組成物を重合反応に供して得られる重合体(シクロオレフィンポリマー)において架橋反応を誘起する目的で使用される。従って、該重合体は、後架橋可能な熱可塑性樹脂となる。ここで「後架橋可能な」とは、該樹脂を加熱することにより架橋反応を進行させて架橋樹脂になし得ることを意味する。前記重合体をマトリックス樹脂とする本発明の架橋性樹脂成形体は、加熱により溶融し、高粘度であるため、その形状は保持する一方、任意の部材を接触させた場合、その表面では、該部材の形状に対し追従性を発揮し、最終的に架橋して硬化する。本発明の架橋性樹脂成形体のかかる特性は、本発明の架橋性樹脂成形体を積層し、加熱して溶融、架橋して得られる積層体において層間密着性の向上に寄与するものと考えられる。
(Crosslinking agent)
The crosslinking agent used in the present invention is used for the purpose of inducing a crosslinking reaction in a polymer (cycloolefin polymer) obtained by subjecting the polymerizable composition of the present invention to a polymerization reaction. Accordingly, the polymer becomes a post-crosslinkable thermoplastic resin. Here, “after-crosslinking is possible” means that the resin can be heated to advance a crosslinking reaction to form a crosslinked resin. Since the crosslinkable resin molded product of the present invention using the polymer as a matrix resin is melted by heating and has a high viscosity, its shape is maintained, while when an arbitrary member is brought into contact with the surface, Exhibits followability to the shape of the member, and finally crosslinks and cures. Such characteristics of the crosslinkable resin molded product of the present invention are considered to contribute to the improvement of interlayer adhesion in a laminate obtained by laminating, melting, and crosslinking the crosslinkable resin molded product of the present invention. .
 本発明において架橋剤としては、特に限定されないが、通常、ラジカル発生剤が好適に用いられる。ラジカル発生剤としては、例えば、有機過酸化物、ジアゾ化合物、及び非極性ラジカル発生剤などが挙げられ、好ましくは有機過酸化物、及び非極性ラジカル発生剤である。
 有機過酸化物としては、例えば、t-ブチルヒドロペルオキシド、p-メンタンヒドロペルオキシド、及びクメンヒドロペルオキシドなどのヒドロペルオキシド類;ジクミルペルオキシド、t-ブチルクミルペルオキシド、α,α’-ビス(t-ブチルペルオキシ-m-イソプロピル)ベンゼン、ジ-t-ブチルペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)-3-ヘキシン、及び2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサンなどのジアルキルペルオキシド類;ジプロピオニルペルオキシドやベンゾイルペルオキシドなどのジアシルペルオキシド類;2,2-ジ(t-ブチルペルオキシ)ブタン、1,1-ジ(t-ヘキシルペルオキシ)シクロヘキサン、1,1-ジ(t-ブチルペルオキシ)-2-メチルシクロヘキサン、及び1,1-ジ(t-ブチルペルオキシ)シクロヘキサンなどのペルオキシケタール類;t-ブチルペルオキシアセテートやt-ブチルペルオキシベンゾエートなどのペルオキシエステル類;t-ブチルペルオキシイソプロピルカルボナートやジ(イソプロピルペルオキシ)ジカルボナートなどのペルオキシカルボナート類;t-ブチルトリメチルシリルペルオキシドなどのアルキルシリルペルオキシド類;3,3,5,7,7-ペンタメチル-1,2,4-トリオキセパン、3,6,9-トリエチル-3,6,9-トリメチル-1,4,7-トリパーオキソナン、及び3,6-ジエチル-3,6-ジメチル-1,2,4,5-テトロキサンなどの環状パーオキサイド類;が挙げられる。中でも、重合反応に対する障害が少ない点で、ジアルキルペルオキシド類、ペルオキシケタール類、及び環状パーオキサイド類が好ましい。
Although it does not specifically limit as a crosslinking agent in this invention, Usually, a radical generator is used suitably. Examples of the radical generator include organic peroxides, diazo compounds, and nonpolar radical generators, and organic peroxides and nonpolar radical generators are preferable.
Examples of the organic peroxide include hydroperoxides such as t-butyl hydroperoxide, p-menthane hydroperoxide, and cumene hydroperoxide; dicumyl peroxide, t-butylcumyl peroxide, α, α′-bis (t -Butylperoxy-m-isopropyl) benzene, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) -3-hexyne, and 2,5-dimethyl-2,5- Dialkyl peroxides such as di (t-butylperoxy) hexane; diacyl peroxides such as dipropionyl peroxide and benzoyl peroxide; 2,2-di (t-butylperoxy) butane, 1,1-di (t-hexylperoxy) Cyclohexane, 1,1-di (t-butylperoxy)- Peroxyketals such as methylcyclohexane and 1,1-di (t-butylperoxy) cyclohexane; peroxyesters such as t-butylperoxyacetate and t-butylperoxybenzoate; t-butylperoxyisopropylcarbonate and di ( Peroxycarbonates such as isopropylperoxy) dicarbonate; alkylsilyl peroxides such as t-butyltrimethylsilyl peroxide; 3,3,5,7,7-pentamethyl-1,2,4-trioxepane, 3,6,9-triethyl Cyclic peroxides such as 3,6,9-trimethyl-1,4,7-triperoxonane and 3,6-diethyl-3,6-dimethyl-1,2,4,5-tetroxane; Can be mentioned. Among these, dialkyl peroxides, peroxyketals, and cyclic peroxides are preferable in that there are few obstacles to the polymerization reaction.
 ジアゾ化合物としては、例えば、4,4’-ビスアジドベンザル(4-メチル)シクロヘキサノンや2,6-ビス(4’-アジドベンザル)シクロヘキサノンなどが挙げられる。 Examples of the diazo compound include 4,4'-bisazidobenzal (4-methyl) cyclohexanone and 2,6-bis (4'-azidobenzal) cyclohexanone.
 非極性ラジカル発生剤としては、2,3-ジメチル-2,3-ジフェニルブタン、3,4-ジメチル-3,4-ジフェニルヘキサン、1,1,2-トリフェニルエタン、及び1,1,1-トリフェニル-2-フェニルエタンなどが挙げられる。 Nonpolar radical generators include 2,3-dimethyl-2,3-diphenylbutane, 3,4-dimethyl-3,4-diphenylhexane, 1,1,2-triphenylethane, and 1,1,1 -Triphenyl-2-phenylethane and the like.
 ラジカル発生剤を架橋剤として使用する場合、1分間半減期温度は、硬化(本発明の重合性組成物を重合反応に供して得られる重合体の架橋)の条件により適宜選択されるが、通常、100~300℃、好ましくは150~250℃、より好ましくは160~230℃の範囲である。ここで1分間半減期温度は、ラジカル発生剤の半量が1分間で分解する温度である。ラジカル発生剤の1分間半減期温度は、例えば、各ラジカル発生剤メーカー(例えば、日本油脂株式会社)のカタログやホームページを参照すればよい。 When a radical generator is used as a crosslinking agent, the half-life temperature for 1 minute is appropriately selected depending on the conditions of curing (crosslinking of a polymer obtained by subjecting the polymerizable composition of the present invention to a polymerization reaction). 100 to 300 ° C., preferably 150 to 250 ° C., more preferably 160 to 230 ° C. Here, the half-life temperature for 1 minute is a temperature at which half of the radical generator decomposes in 1 minute. The 1-minute half-life temperature of the radical generator may be referred to, for example, a catalog or homepage of each radical generator manufacturer (for example, NOF Corporation).
 前記ラジカル発生剤は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。本発明の重合性組成物へのラジカル発生剤の配合量としては、シクロオレフィンモノマー100重量部に対して、通常、0.01~10重量部、好ましくは0.1~10重量部、より好ましくは0.5~5重量部の範囲である。 The radical generators can be used alone or in combination of two or more. The amount of the radical generator added to the polymerizable composition of the present invention is usually 0.01 to 10 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 100 parts by weight of the cycloolefin monomer. Is in the range of 0.5 to 5 parts by weight.
(架橋助剤)
 本発明に使用される架橋助剤は、得られる積層体の耐熱性や耐クラック性を向上する目的で使用される。架橋助剤としては、開環重合には関与せず、架橋剤により誘起される架橋反応に関与可能な架橋性の炭素-炭素不飽和結合を2以上有する多官能化合物が好ましい。かかる架橋性の炭素-炭素不飽和結合は、架橋助剤を構成する化合物中、例えば、分子末端に存在するビニリデン基として、特に、イソプロペニル基やメタクリル基として存在するのが好ましく、メタクリル基として存在するのがより好ましい。
(Crosslinking aid)
The crosslinking aid used in the present invention is used for the purpose of improving the heat resistance and crack resistance of the resulting laminate. As the crosslinking aid, a polyfunctional compound having two or more crosslinkable carbon-carbon unsaturated bonds that can participate in the crosslinking reaction induced by the crosslinking agent without involving in the ring-opening polymerization is preferable. Such a crosslinkable carbon-carbon unsaturated bond is preferably present, for example, as a vinylidene group present at the molecular terminal, particularly as an isopropenyl group or a methacryl group, as a methacryl group. More preferably it is present.
 架橋助剤の具体例としては、p-ジイソプロペニルベンゼン、m-ジイソプロペニルベンゼン、及びo-ジイソプロペニルベンゼンなどの、イソプロペニル基を2つ有する多官能化合物などの、イソプロペニル基を2以上有する多官能化合物;エチレンジメタクリレート、1,3-ブチレンジメタクリレート、1,4-ブチレンジメタクリレート、1,6-ヘキサンジオールジメタクリレート、ポリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、及び2,2’-ビス(4-メタクリロキシジエトキシフェニル)プロパンなどの、メタクリル基を2つ有する多官能化合物や、トリメチロ-ルプロパントリメタクリレートやペンタエリトリトールトリメタクリレートなどの、メタクリル基を3つ有する多官能化合物などの、メタクリル基を2以上有する多官能化合物;などを挙げることができる。中でも、架橋助剤としては、得られる積層体の耐熱性や耐クラック性を向上させる観点から、メタクリル基を2以上有する多官能化合物が好ましい。メタクリル基を2以上有する多官能化合物の中では、特に、トリメチロ-ルプロパントリメタクリレートやペンタエリトリトールトリメタクリレートなどの、メタクリル基を3つ有する多官能化合物がより好適である。 Specific examples of the crosslinking aid include isopropenyl groups such as polyfunctional compounds having two isopropenyl groups, such as p-diisopropenylbenzene, m-diisopropenylbenzene, and o-diisopropenylbenzene. 2 or more polyfunctional compounds; ethylene dimethacrylate, 1,3-butylene dimethacrylate, 1,4-butylene dimethacrylate, 1,6-hexanediol dimethacrylate, polyethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, ethylene glycol dimethacrylate Polyfunctional compounds having two methacrylic groups, such as triethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and 2,2′-bis (4-methacryloxydiethoxyphenyl) propane; Methylol - such as Le propane trimethacrylate and pentaerythritol trimethacrylate, such as a polyfunctional compound having three methacryl groups, a polyfunctional compound having two or more methacryl groups; and the like. Especially, as a crosslinking adjuvant, the polyfunctional compound which has 2 or more of methacryl groups is preferable from a viewpoint of improving the heat resistance and crack resistance of the laminated body obtained. Among polyfunctional compounds having two or more methacryl groups, polyfunctional compounds having three methacryl groups such as trimethylolpropane trimethacrylate and pentaerythritol trimethacrylate are more preferable.
 前記架橋助剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。本発明の重合性組成物への架橋助剤の配合量としては、シクロオレフィンモノマー100重量部に対して、通常、0.1~100重量部、好ましくは0.5~50重量部、より好ましくは1~30重量部である。 The crosslinking aids can be used alone or in combination of two or more. The amount of crosslinking aid added to the polymerizable composition of the present invention is usually 0.1 to 100 parts by weight, preferably 0.5 to 50 parts by weight, more preferably 100 parts by weight of the cycloolefin monomer. Is 1 to 30 parts by weight.
(無機充填剤)
 本発明においては、比誘電率の温度変化率が正の無機充填剤1、及び比誘電率の温度変化率が負の無機充填剤2が用いられる。本発明の重合性組成物に、かかる2種類の無機充填剤を配合することで、得られる積層体は、高比誘電率かつ低誘電正接であり、比誘電率の温度変化が小さいという優れた誘電特性を発現する。また、本発明の重合性組成物は、従来、プリプレグや積層体の製造に用いられている、エポキシ樹脂等を溶媒に溶かしてなる重合体ワニスと比べて低粘度であるため、容易に充填剤を高配合することができる。よって、得られる架橋性樹脂成形体、架橋樹脂成形体又は積層体中には、充填剤が、従来のプリプレグ又は積層体の限界含有量を超えて含まれ得る。従って、本発明の積層体の前記誘電特性は、従来の積層体と比べて、格別顕著に優れたものとなる。
(Inorganic filler)
In the present invention, the inorganic filler 1 having a positive relative dielectric constant temperature change rate and the inorganic filler 2 having a negative relative dielectric constant temperature change rate are used. By blending these two types of inorganic fillers with the polymerizable composition of the present invention, the resulting laminate has a high relative dielectric constant and a low dielectric loss tangent, and is excellent in that the temperature change of the relative dielectric constant is small. Appears dielectric properties. In addition, the polymerizable composition of the present invention has a low viscosity as compared with a polymer varnish that is conventionally used in the production of prepregs and laminates and in which an epoxy resin or the like is dissolved in a solvent. Can be highly blended. Therefore, in the obtained crosslinkable resin molded body, crosslinked resin molded body, or laminate, the filler may be contained in excess of the limit content of the conventional prepreg or laminate. Therefore, the dielectric properties of the laminate of the present invention are particularly remarkably superior to conventional laminates.
 本発明において、比誘電率の温度変化率とは、2GHzでの-30~+100℃の温度範囲における比誘電率の温度変化率をいう。本発明の所望の効果を高める観点から、比誘電率の温度変化率が正の無機充填剤1としては、1GHzにて20℃で測定した時、その比誘電率が、通常、30以下のものが好適に用いられる。また、比誘電率の温度変化率が負の無機充填剤2としては、1GHzにて20℃で測定した時、その比誘電率が、通常、30以上のものが好適に用いられる。
 なお、無機充填剤の比誘電率は、ネットワークアナライザーを用いて空洞共振器法により誘電率を測定し、該誘電率を比誘電率に変換して求めることができる。一方、無機充填剤の比誘電率の温度変化率は、空洞共振器をオーブンに導入して-30~+100℃の温度範囲にて誘電率を測定し、該誘電率を比誘電率に変換し、温度変化に対する比誘電率変化の割合として求めることができる。上記温度範囲において、比誘電率の温度変化率が正の値となる場合を、比誘電率の温度変化率が正と、比誘電率の温度変化率が負の値となる場合を、比誘電率の温度変化率が負と、それぞれいう。
In the present invention, the temperature change rate of the relative permittivity refers to the temperature change rate of the relative permittivity in the temperature range of −30 to + 100 ° C. at 2 GHz. From the viewpoint of enhancing the desired effect of the present invention, as the inorganic filler 1 having a positive relative dielectric constant temperature change rate, when measured at 20 ° C. at 1 GHz, the relative dielectric constant is usually 30 or less. Are preferably used. In addition, as the inorganic filler 2 having a negative relative dielectric constant temperature change rate, those having a relative dielectric constant of usually 30 or more when measured at 20 ° C. at 1 GHz are preferably used.
The relative dielectric constant of the inorganic filler can be obtained by measuring the dielectric constant by a cavity resonator method using a network analyzer and converting the dielectric constant into a relative dielectric constant. On the other hand, the temperature change rate of the relative dielectric constant of the inorganic filler is measured by introducing the cavity resonator into the oven, measuring the dielectric constant in the temperature range of −30 to + 100 ° C., and converting the dielectric constant into the relative dielectric constant. It can be obtained as the ratio of relative permittivity change to temperature change. In the above temperature range, the relative dielectric constant temperature change rate is a positive value, the relative dielectric constant temperature change rate is positive, and the relative dielectric constant temperature change rate is negative. The rate of change in temperature is negative.
 かかる無機充填剤としては、前記特許文献1(特開平8-269229号公報)に記載されるものを格別な限定なく用いることができる。比誘電率の温度変化率が正の無機充填剤1としては、例えば、アルミナ(比誘電率11)、シリカ(比誘電率3.8)、酸化マグネシウム(比誘電率12)、チタン酸マグネシウム(比誘電率18)、水酸化アルミニウム(比誘電率9)、及び水酸化マグネシウム(比誘電率11)などが挙げられる。これらの比誘電率の温度変化率が正の無機充填剤1は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。かかる無機充填剤1は、難燃効果を発揮する場合、難燃剤としての機能を兼ねてもよい。本発明の重合性組成物への配合量は、所望により適宜選択すればよいが、シクロオレフィンモノマー100重量部に対して、通常、10~300重量部、好ましくは20~200重量部、より好ましくは30~150重量部の範囲である。 As such an inorganic filler, those described in Patent Document 1 (Japanese Patent Laid-Open No. 8-269229) can be used without any particular limitation. Examples of the inorganic filler 1 having a positive temperature change rate of relative permittivity include, for example, alumina (relative permittivity 11), silica (relative permittivity 3.8), magnesium oxide (relative permittivity 12), magnesium titanate ( Specific dielectric constant 18), aluminum hydroxide (relative dielectric constant 9), magnesium hydroxide (relative dielectric constant 11), and the like. These inorganic fillers 1 having a positive dielectric constant temperature change rate can be used alone or in combination of two or more. The inorganic filler 1 may also serve as a flame retardant when exhibiting a flame retardant effect. The blending amount in the polymerizable composition of the present invention may be appropriately selected as desired, but is usually 10 to 300 parts by weight, preferably 20 to 200 parts by weight, more preferably 100 parts by weight of the cycloolefin monomer. Is in the range of 30 to 150 parts by weight.
 比誘電率の温度変化率が負の無機充填剤2としては、例えば、チタニア(比誘電率90)、チタン酸カルシウム(比誘電率180)、及びチタン酸ストロンチウム(比誘電率250)などが挙げられる。これらの比誘電率の温度変化率が負の無機充填剤2は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。かかる無機充填剤2は、難燃効果を発揮する場合、難燃剤としての機能を兼ねてもよい。本発明の重合性組成物への配合量は、所望により適宜選択すればよいが、シクロオレフィンモノマー100重量部に対して、通常、10~300重量部、好ましくは20~200重量部、より好ましくは30~150重量部の範囲である。 Examples of the inorganic filler 2 having a negative relative dielectric constant temperature change rate include titania (relative permittivity 90), calcium titanate (relative permittivity 180), and strontium titanate (relative permittivity 250). It is done. These inorganic fillers 2 having a negative temperature change rate of relative permittivity can be used alone or in combination of two or more. The inorganic filler 2 may also serve as a flame retardant when exhibiting a flame retardant effect. The blending amount in the polymerizable composition of the present invention may be appropriately selected as desired, but is usually 10 to 300 parts by weight, preferably 20 to 200 parts by weight, more preferably 100 parts by weight of the cycloolefin monomer. Is in the range of 30 to 150 parts by weight.
 比誘電率の温度変化率が正の無機充填剤1と比誘電率の温度変化率が負の無機充填剤2の好適な組合せとしては、本発明の所望の効果を向上させる観点から、前者としてチタン酸マグネシウム、水酸化アルミニウム及び水酸化マグネシウムからなる群より選ばれる少なくとも1種と、後者としてチタン酸カルシウム及び/又はチタン酸ストロンチウムとの組合せが挙げられる。 As a suitable combination of the inorganic filler 1 having a positive relative dielectric constant temperature change rate and the inorganic filler 2 having a negative relative dielectric constant temperature change rate, from the viewpoint of improving the desired effect of the present invention, the former A combination of at least one selected from the group consisting of magnesium titanate, aluminum hydroxide and magnesium hydroxide and the latter with calcium titanate and / or strontium titanate can be given.
 本発明の重合性組成物中での、比誘電率の温度変化率が正の無機充填剤1と比誘電率の温度変化率が負の無機充填剤2との配合割合は、得られる積層体の比誘電率の温度変化が最低になるように適宜選択すればよいが、重量比(比誘電率の温度変化率が正の無機充填剤1/比誘電率の温度変化率が負の無機充填剤2)で、通常、5/95~95/5、好ましくは10/90~90/10、より好ましくは20/80~80/20の範囲である。また、本発明の重合性組成物中、比誘電率の温度変化率が正の無機充填剤1と比誘電率の温度変化率が負の無機充填剤2との合計配合量は、所望により適宜選択すればよいが、シクロオレフィンモノマー100重量部に対して、通常、20~600重量部、好ましくは40~400重量部、より好ましくは60~300重量部の範囲である。本発明の重合性組成物には、本発明に用いる無機充填剤以外の充填剤を配合可能であるが、本発明の重合性組成物に配合する全充填剤中、前記2種類の無機充填剤の合計配合量としては、通常、30重量%以上が好適である。 In the polymerizable composition of the present invention, the blending ratio of the inorganic filler 1 having a positive relative dielectric constant temperature change rate and the inorganic filler 2 having a negative relative dielectric constant temperature change rate is obtained as a laminate. The relative permittivity temperature change may be appropriately selected so as to be the minimum, but the weight ratio (the relative permittivity temperature change rate is a positive inorganic filler 1 / the relative permittivity temperature change rate is a negative inorganic filler. In the case of the agent 2), it is usually in the range of 5/95 to 95/5, preferably 10/90 to 90/10, more preferably 20/80 to 80/20. In the polymerizable composition of the present invention, the total blending amount of the inorganic filler 1 having a positive relative dielectric constant temperature change rate and the inorganic filler 2 having a negative relative dielectric constant temperature change rate is appropriately determined as desired. Although it may be selected, it is usually in the range of 20 to 600 parts by weight, preferably 40 to 400 parts by weight, more preferably 60 to 300 parts by weight with respect to 100 parts by weight of the cycloolefin monomer. In the polymerizable composition of the present invention, fillers other than the inorganic filler used in the present invention can be blended. Among the fillers blended in the polymerizable composition of the present invention, the two kinds of inorganic fillers are used. In general, the total blending amount is preferably 30% by weight or more.
(重合性組成物)
 本発明の重合性組成物には、上記する、シクロオレフィンモノマー、重合触媒、架橋剤、架橋助剤、及び前記2種類の無機充填剤を必須成分として、所望により、非ハロゲン難燃剤、重合調整剤、重合反応遅延剤、連鎖移動剤、反応性流動化剤、老化防止剤及びその他の配合剤を添加することができる。
(Polymerizable composition)
In the polymerizable composition of the present invention, the above-mentioned cycloolefin monomer, polymerization catalyst, crosslinking agent, crosslinking aid, and the above-mentioned two kinds of inorganic fillers are essential components, and if desired, a non-halogen flame retardant, polymerization adjustment. An agent, a polymerization reaction retarding agent, a chain transfer agent, a reactive fluidizing agent, an anti-aging agent and other compounding agents can be added.
 本発明においては、架橋樹脂成形体や積層体が民生用途の場合は、重合性組成物に非ハロゲン難燃剤を配合することが好ましい。非ハロゲン難燃剤とは、ハロゲン原子を含まない難燃剤である。非ハロゲン難燃剤としては、工業的に用いられるものであれば格別な限定なく用いることができる。例えば、水酸化アルミニウムや水酸化マグネシウム等の金属水酸化物難燃剤;酸化マグネシウムや酸化アルミニウム等の金属酸化物難燃剤;ジメチルホスフィン酸アルミニウムやジエチルホスフィン酸アルミニウムなどのホスフィン酸塩;トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、レゾルシノールビス(ジフェニル)ホスフェート、ビスフェノールAビス(ジフェニル)ホスフェート、及びビスフェノールAビス(ジクレジル)ホスフェートなどの、ホスフィン酸塩以外の含燐難燃剤;メラミン誘導体類、グアニジン類、及びイソシアヌル類等の含窒素難燃剤;ポリ燐酸アンモニウム、燐酸メラミン、ポリ燐酸メラミン、ポリ燐酸メラム、燐酸グアニジン、及びフォスファゼン類等の燐及び窒素の双方を含有する難燃剤;などを挙げることができる。
 これらの非ハロゲン難燃剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。非ハロゲン難燃剤の配合量は、本発明の効果を損ねない範囲で適宜選択されるが、シクロオレフィンモノマー100重量部に対して、通常、20~400重量部、好ましくは30~300部、より好ましくは50~250重量部の範囲である。
In the present invention, when the crosslinked resin molded body or laminate is for consumer use, it is preferable to add a non-halogen flame retardant to the polymerizable composition. A non-halogen flame retardant is a flame retardant that does not contain halogen atoms. Any non-halogen flame retardant can be used without particular limitation as long as it is industrially used. For example, metal hydroxide flame retardants such as aluminum hydroxide and magnesium hydroxide; metal oxide flame retardants such as magnesium oxide and aluminum oxide; phosphinic acid salts such as aluminum dimethylphosphinate and aluminum diethylphosphinate; triphenyl phosphate, Phosphorus-containing flame retardants other than phosphinates, such as tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, resorcinol bis (diphenyl) phosphate, bisphenol A bis (diphenyl) phosphate, and bisphenol A bis (dicresyl) phosphate Nitrogen-containing flame retardants such as melamine derivatives, guanidines, and isocyanurs; ammonium polyphosphate, melamine phosphate, melamine polyphosphate, melam polyphosphate, guanidine phosphate, and Flame retardants containing both phosphorus and nitrogen phosphazene, and the like; and the like.
These non-halogen flame retardants can be used alone or in combination of two or more. The blending amount of the non-halogen flame retardant is appropriately selected within a range not impairing the effects of the present invention, but is usually 20 to 400 parts by weight, preferably 30 to 300 parts by weight, based on 100 parts by weight of the cycloolefin monomer. The range is preferably 50 to 250 parts by weight.
 重合調整剤は、重合活性を制御したり、重合反応率を向上させたりする目的で配合されるものであり、例えば、トリアルコキシアルミニウム、トリフェノキシアルミニウム、ジアルコキシアルキルアルミニウム、アルコキシジアルキルアルミニウム、トリアルキルアルミニウム、ジアルコキシアルミニウムクロリド、アルコキシアルキルアルミニウムクロリド、ジアルキルアルミニウムクロリド、トリアルコキシスカンジウム、テトラアルコキシチタン、テトラアルコキシスズ、テトラアルコキシジルコニウムなどが挙げられる。これらの重合調整剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。重合調整剤の配合量は、例えば、モル比(メタセシス重合触媒中の金属原子:重合調整剤)で、通常、1:0.05~1:100、好ましくは1:0.2~1:20、より好ましくは1:0.5~1:10の範囲である。 The polymerization regulator is blended for the purpose of controlling the polymerization activity or improving the polymerization reaction rate. For example, trialkoxyaluminum, triphenoxyaluminum, dialkoxyalkylaluminum, alkoxydialkylaluminum, trialkyl Examples include aluminum, dialkoxyaluminum chloride, alkoxyalkylaluminum chloride, dialkylaluminum chloride, trialkoxyscandium, tetraalkoxytitanium, tetraalkoxytin, and tetraalkoxyzirconium. These polymerization regulators can be used alone or in combination of two or more. The blending amount of the polymerization regulator is, for example, in a molar ratio (metal atom in the metathesis polymerization catalyst: polymerization regulator), usually 1: 0.05 to 1: 100, preferably 1: 0.2 to 1:20. More preferably, it is in the range of 1: 0.5 to 1:10.
 重合反応遅延剤は、本発明の重合性組成物の粘度増加を抑制し得るものである。従って、重合反応遅延剤を配合してなる重合性組成物は、架橋性樹脂組成物として、例えば、プリプレグを作製する際、容易に繊維状強化材に均一に含浸させることができ、好ましい。重合反応遅延剤としては、トリフェニルホスフィン、トリブチルホスフィン、トリメチルホスフィン、トリエチルホスフィン、ジシクロヘキシルホスフィン、ビニルジフェニルホスフィン、アリルジフェニルホスフィン、トリアリルホスフィン、スチリルジフェニルホスフィンなどのホスフィン化合物;アニリン、ピリジンなどのルイス塩基;等を用いることができる。その配合量は、所望により適宜調整すればよい。 The polymerization reaction retarder can suppress an increase in viscosity of the polymerizable composition of the present invention. Therefore, a polymerizable composition obtained by blending a polymerization reaction retarder is preferable because, as a crosslinkable resin composition, for example, when a prepreg is produced, a fibrous reinforcing material can be easily impregnated uniformly. Polymerization retarders include phosphine compounds such as triphenylphosphine, tributylphosphine, trimethylphosphine, triethylphosphine, dicyclohexylphosphine, vinyldiphenylphosphine, allyldiphenylphosphine, triallylphosphine, styryldiphenylphosphine; Lewis bases such as aniline and pyridine Etc. can be used. What is necessary is just to adjust the compounding quantity suitably as needed.
 本発明の重合性組成物に連鎖移動剤を配合することにより、該組成物を重合して得られる架橋性樹脂成形体の表面では、加熱溶融時の追従性がより向上し得る。それゆえ、連鎖移動剤を配合してなる重合性組成物を用いて得られた架橋性樹脂成形体を積層し、加熱して溶融、架橋して得られる積層体では、層間密着性が一層高まり、好ましい。かかる架橋性樹脂成形体は、例えば、他の部材と積層する際、溶融積層が可能であり、それを用いて得られた積層体においては、配線埋め込み性、機械的強度、耐熱性及び冷熱衝撃試験での耐クラック性を高度にバランスさせることができ、好適である。本明細書において「他の部材」とは、本発明の架橋性樹脂成形体又は架橋樹脂成形体以外の部材をいう。なお、配線埋め込み性は、架橋性樹脂成形体としてプリプレグを得、それを、配線を有する回路基板上に重ねて加熱プレスして架橋し、得られた積層体を配線方向に対し垂直な方向で切断し、当該切断面を目視により観察することにより評価することができる。配線が埋め込まれていない部分がないのが好ましい。 By adding a chain transfer agent to the polymerizable composition of the present invention, the followability during heating and melting can be further improved on the surface of the crosslinkable resin molded body obtained by polymerizing the composition. Therefore, in a laminate obtained by laminating a crosslinkable resin molded article obtained by using a polymerizable composition containing a chain transfer agent, heating, melting, and crosslinking, interlayer adhesion is further enhanced. ,preferable. Such a crosslinkable resin molded body can be melt-laminated when laminated with other members, for example, and in a laminated body obtained using the same, wiring embedding property, mechanical strength, heat resistance, and thermal shock The crack resistance in the test can be highly balanced, which is preferable. In the present specification, the “other member” refers to a member other than the crosslinkable resin molded product or the crosslinked resin molded product of the present invention. The wiring embeddability is obtained by obtaining a prepreg as a crosslinkable resin molded body, overlaying it on a circuit board having wiring, heat-pressing and crosslinking, and laminating the obtained laminate in a direction perpendicular to the wiring direction. It can evaluate by cutting and observing the said cut surface visually. It is preferable that there is no portion where the wiring is not embedded.
 連鎖移動剤は、架橋性の炭素-炭素不飽和結合を1以上有していてもよい。連鎖移動剤の具体例としては、1-ヘキセン、2-ヘキセン、スチレン、ビニルシクロヘキサン、アリルアミン、アクリル酸グリシジル、アリルグリシジルエーテル、エチルビニルエーテル、メチルビニルケトン、2-(ジエチルアミノ)エチルアクリレート、及び4-ビニルアニリンなどの、架橋性の炭素-炭素不飽和結合を持たない連鎖移動剤;ジビニルベンゼン、メタクリル酸ビニル、メタクリル酸アリル、メタクリル酸スチリル、アクリル酸アリル、メタクリル酸ウンデセニル、アクリル酸スチリル、及びエチレングリコールジアクリレートなどの、架橋性の炭素-炭素不飽和結合を1つ有する連鎖移動剤;アリルトリビニルシランやアリルメチルジビニルシランなどの、架橋性の炭素-炭素不飽和結合を2以上有する連鎖移動剤などが挙げられる。これらの中でも、得られる積層体において、誘電特性、配線埋め込み性、耐熱性、及び耐クラック性の各特性を高度にバランスさせる観点から、架橋性の炭素-炭素不飽和結合を1以上有するものが好ましく、架橋性の炭素-炭素不飽和結合を1つ有するものがより好ましい。かかる連鎖移動剤の中でも、ビニル基とメタクリル基とを1つずつ有する連鎖移動剤が好ましく、メタクリル酸ビニル、メタクリル酸アリル、メタクリル酸スチリル、及びメタクリル酸ウンデセニルなどが特に好ましい。
 これらの連鎖移動剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。本発明の重合性組成物への連鎖移動剤の配合量としては、シクロオレフィンモノマー100重量部に対して、通常、0.01~10重量部、好ましくは0.1~5重量部である。
The chain transfer agent may have one or more crosslinkable carbon-carbon unsaturated bonds. Specific examples of the chain transfer agent include 1-hexene, 2-hexene, styrene, vinylcyclohexane, allylamine, glycidyl acrylate, allyl glycidyl ether, ethyl vinyl ether, methyl vinyl ketone, 2- (diethylamino) ethyl acrylate, and 4- Chain transfer agents without crosslinkable carbon-carbon unsaturated bonds, such as vinylaniline; divinylbenzene, vinyl methacrylate, allyl methacrylate, styryl methacrylate, allyl acrylate, undecenyl methacrylate, styryl acrylate, and ethylene Chain transfer agent having one crosslinkable carbon-carbon unsaturated bond, such as glycol diacrylate; Chain transfer agent having two or more crosslinkable carbon-carbon unsaturated bonds, such as allyltrivinylsilane and allylmethyldivinylsilane Na And the like. Among these, the obtained laminate has one or more crosslinkable carbon-carbon unsaturated bonds from the viewpoint of highly balancing dielectric properties, wiring embedding properties, heat resistance, and crack resistance properties. Those having one crosslinkable carbon-carbon unsaturated bond are more preferable. Among such chain transfer agents, chain transfer agents having one vinyl group and one methacryl group are preferable, and vinyl methacrylate, allyl methacrylate, styryl methacrylate, and undecenyl methacrylate are particularly preferable.
These chain transfer agents can be used alone or in combination of two or more. The amount of the chain transfer agent added to the polymerizable composition of the present invention is usually 0.01 to 10 parts by weight, preferably 0.1 to 5 parts by weight, per 100 parts by weight of the cycloolefin monomer.
 前記の通り、本発明の重合性組成物を重合反応に供して得られる重合体は、後架橋可能な熱可塑性樹脂となる。本発明において「反応性流動化剤」とは、かかる重合体中において、実質的に遊離の状態で存在しており、流動化剤として重合体のガラス転移温度(Tg)を低下させて加熱溶融時の重合体の流動性を高め、当該重合体をマトリックス樹脂とする本発明の架橋性樹脂成形体を加熱溶融させた際、該成形体表面の、当該表面に接触させる任意の部材の形状に対する追従性を向上させる一方、架橋剤により架橋反応が誘起された後においては当該反応に関与して重合体への結合反応性を示す単官能化合物をいう。 As described above, the polymer obtained by subjecting the polymerizable composition of the present invention to a polymerization reaction becomes a post-crosslinkable thermoplastic resin. In the present invention, the “reactive fluidizing agent” is present in such a polymer in a substantially free state, and is heated and melted by lowering the glass transition temperature (Tg) of the polymer as a fluidizing agent. When the crosslinkable resin molded product of the present invention having the polymer as a matrix resin is heated and melted, the surface of the molded product is in contact with the surface of the arbitrary member. On the other hand, it refers to a monofunctional compound that exhibits a binding reactivity to a polymer by being involved in the reaction after the crosslinking reaction is induced by the crosslinking agent while improving the followability.
 反応性流動化剤を含む前記重合体を後述の架橋性樹脂成形体のマトリックス樹脂として用いた場合、当該成形体を回路基板などと積層する際、該成形体を加熱することで容易に溶融積層することができ、しかも得られる積層体においては充分な層間密着性と配線埋め込み性が得られる。さらに、反応性流動化剤は、積層する際の加熱で架橋剤により誘起される架橋反応に関与して重合体への結合反応性を示すため、架橋反応の進行と共に、重合体中、遊離の状態で存在するものが減少し、架橋反応の終了時点では実質的に遊離の状態で存在するものがないと推定される。従って、いわゆる可塑剤のように、得られる積層体の耐熱性を低下させる因子となることがない。むしろ、得られる積層体において耐熱性や耐クラック性を高める効果を奏し得る。 When the polymer containing the reactive fluidizing agent is used as a matrix resin for a cross-linkable resin molded body, which will be described later, when the molded body is laminated with a circuit board or the like, it is easily melt-laminated by heating the molded body. In addition, in the obtained laminate, sufficient interlayer adhesion and wiring embedding can be obtained. Furthermore, the reactive fluidizing agent is involved in the crosslinking reaction induced by the crosslinking agent by heating during lamination, and exhibits binding reactivity to the polymer. It is presumed that what is present in the state decreases, and that there is substantially no free state at the end of the crosslinking reaction. Therefore, unlike what is called a plasticizer, it does not become a factor which reduces the heat resistance of the laminated body obtained. Rather, the resulting laminate can have the effect of increasing heat resistance and crack resistance.
 本発明に使用される反応性流動化剤としては、例えば、重合性の炭素-炭素不飽和結合を持たず、かつ架橋剤により誘起される架橋反応に関与して重合体への結合反応性を示す基を1つ有する単官能化合物が挙げられる。重合性の炭素-炭素不飽和結合(炭素-炭素二重結合又は三重結合)としては、例えば、シクロオレフィンモノマーの脂環構造中の重合性の炭素-炭素二重結合や、ビニル基などの、開環重合に関与し得る脂肪族炭素-炭素不飽和結合基などが挙げられる。架橋剤により誘起される架橋反応に関与して重合体への結合反応性を示す基としては、例えば、架橋性の炭素-炭素不飽和結合、又は前記結合反応性を示す有機基が挙げられる。得られる重合体への結合反応性に優れることから、反応性流動化剤としては、重合性の炭素-炭素不飽和結合を持たず、かつ架橋性の炭素-炭素不飽和結合を1つ有する単官能化合物が好ましい。反応性流動化剤を構成する化合物中、架橋性の炭素-炭素不飽和結合は、例えば、分子末端に存在するビニリデン基として、特に、イソプロペニル基やメタクリル基として存在するのが好ましく、メタクリル基として存在するのがより好ましい。前記有機基としては、例えば、エポキシ基、イソシアネート基、及びスルホン酸基などが挙げられる。 As the reactive fluidizing agent used in the present invention, for example, it has no polymerizable carbon-carbon unsaturated bond and participates in the crosslinking reaction induced by the crosslinking agent to increase the binding reactivity to the polymer. And monofunctional compounds having one of the groups shown. Examples of the polymerizable carbon-carbon unsaturated bond (carbon-carbon double bond or triple bond) include a polymerizable carbon-carbon double bond in a cycloolefin monomer alicyclic structure and a vinyl group. Examples thereof include an aliphatic carbon-carbon unsaturated bond group that can participate in ring-opening polymerization. Examples of the group exhibiting the binding reactivity to the polymer in relation to the crosslinking reaction induced by the crosslinking agent include a crosslinkable carbon-carbon unsaturated bond, or an organic group exhibiting the binding reactivity. The reactive fluidizing agent has no polymerizable carbon-carbon unsaturated bond and has a single crosslinkable carbon-carbon unsaturated bond because it has excellent bond reactivity to the resulting polymer. Functional compounds are preferred. In the compound constituting the reactive fluidizing agent, the crosslinkable carbon-carbon unsaturated bond is preferably present, for example, as a vinylidene group present at the molecular end, particularly as an isopropenyl group or a methacryl group. More preferably present as Examples of the organic group include an epoxy group, an isocyanate group, and a sulfonic acid group.
 本発明において反応性流動化剤としては、得られる重合体への結合反応性に特に優れることから、以下の一般式(A)で示される環状炭化水素基含有メタクリレート化合物が特に好ましい。 In the present invention, as the reactive fluidizing agent, a cyclic hydrocarbon group-containing methacrylate compound represented by the following general formula (A) is particularly preferable because of particularly excellent binding reactivity to the resulting polymer.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 前記一般式(A)中、Rは、置換又は非置換の炭素数3~30の飽和脂環式基、又は置換又は非置換の炭素数6~30の芳香族基を示し、nは0~10の整数である。
 炭素数3~30の飽和脂環式基としては、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基、及びシクロオクチル基などの単環式基;ビシクロヘキシル基などの二環式基;トリシクロ[5,2,1,02,6]デカニル基(ジシクロペンタニル基ともいう。)などの三環式基;アダマンチル基などの四環式基;などが挙げられる。飽和脂環式基としては、得られる架橋樹脂成形体や積層体の耐熱性を向上させる観点から、三環式基又は四環式基が好ましく、トリシクロ[5,2,1,02,6]デカニル基又はアダマンチル基がより好ましく、トリシクロ[5,2,1,02,6]デカニル基が特に好ましい。
 炭素数6~30の芳香族基としては、例えば、フェニル基などの単環式基;ナフチル基やビフェニル基などの二環式基;フルオレニル基などの三環式基;などが挙げられる。芳香族基としては、飽和脂環式基と同様の観点から、単環式基が好ましく、フェニル基がより好ましい。
 前記飽和脂環式基及び芳香族基の置換基としては、炭素数3~11のアルキル基や炭素数3~11のアルコキシ基、カルボキシル基や酸無水物基などの極性基などが挙げられる。
 nとしては、好ましくは0~5、特に好ましくは1である。
In the general formula (A), R represents a substituted or unsubstituted saturated alicyclic group having 3 to 30 carbon atoms, or a substituted or unsubstituted aromatic group having 6 to 30 carbon atoms, and n represents 0 to It is an integer of 10.
Examples of the saturated alicyclic group having 3 to 30 carbon atoms include monocyclic groups such as cyclobutyl group, cyclopentyl group, cyclohexyl group, and cyclooctyl group; bicyclic groups such as bicyclohexyl group; tricyclo [5, and the like; tetracyclic groups such as adamantyl group; 2,1,0 2,6] (. also called dicyclopentanyl group) decanyl group tricyclic groups such as. The saturated alicyclic group is preferably a tricyclic group or a tetracyclic group from the viewpoint of improving the heat resistance of the resulting crosslinked resin molded product or laminate, and tricyclo [5,2,1,0 2,6 A decanyl group or an adamantyl group is more preferred, and a tricyclo [5,2,1,0 2,6 ] decanyl group is particularly preferred.
Examples of the aromatic group having 6 to 30 carbon atoms include monocyclic groups such as phenyl groups; bicyclic groups such as naphthyl groups and biphenyl groups; tricyclic groups such as fluorenyl groups; and the like. As the aromatic group, from the same viewpoint as the saturated alicyclic group, a monocyclic group is preferable, and a phenyl group is more preferable.
Examples of the substituent for the saturated alicyclic group and aromatic group include polar groups such as alkyl groups having 3 to 11 carbon atoms, alkoxy groups having 3 to 11 carbon atoms, carboxyl groups, and acid anhydride groups.
n is preferably 0 to 5, particularly preferably 1.
 前記一般式(A)で示される化合物の具体例としては、シクロヘキシルメタクリレート、シクロオクチルメタクリレート、フェニルメタクリレート、ベンジルメタクリレート、トリルメタクリレート、アダマンチルメタクリレート、及びジシクロペンタニルメタクリレートなどが挙げられ、好ましくは、シクロヘキシルメタクリレート、フェニルメタクリレート、ベンジルメタクリレート、トリルメタクリレート、アダマンチルメタクリレート、及びジシクロペンタニルメタクリレート、より好ましくは、ベンジルメタクリレート、アダマンチルメタクリレート、及びジシクロペンタニルメタクリレート、さらに好ましくは、ベンジルメタクリレートである。 Specific examples of the compound represented by the general formula (A) include cyclohexyl methacrylate, cyclooctyl methacrylate, phenyl methacrylate, benzyl methacrylate, tolyl methacrylate, adamantyl methacrylate, and dicyclopentanyl methacrylate, and preferably cyclohexyl. Methacrylate, phenyl methacrylate, benzyl methacrylate, tolyl methacrylate, adamantyl methacrylate, and dicyclopentanyl methacrylate, more preferably benzyl methacrylate, adamantyl methacrylate, and dicyclopentanyl methacrylate, and more preferably benzyl methacrylate.
 本発明に用いられる反応性流動化剤としては、上記化合物の他、例えば、ラウリルメタクリレート、シクロオクテニルメタクリレート、テトラヒドロフルフリルメタクリレート、及びメトキシジエチレングリコールメタクリレートなどの、メタクリル基を1つ有する単官能化合物;イソプロペニルベンゼンなどの、イソプロペニル基を1つ有する単官能化合物;などが挙げられ、好ましくはメタクリル基を1つ有する単官能化合物である。
 以上の反応性流動化剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。反応性流動化剤の配合量は、所望により適宜選択すればよいが、シクロオレフィンモノマー100重量部に対し、通常、0.1~100重量部、好ましくは0.5~50重量部、より好ましくは1~30重量部である。
As the reactive fluidizing agent used in the present invention, in addition to the above compounds, for example, monofunctional compounds having one methacryl group such as lauryl methacrylate, cyclooctenyl methacrylate, tetrahydrofurfuryl methacrylate, and methoxydiethylene glycol methacrylate; Monofunctional compounds having one isopropenyl group, such as isopropenylbenzene; and the like, and monofunctional compounds having one methacryl group are preferred.
These reactive fluidizing agents can be used alone or in combination of two or more. The amount of the reactive fluidizing agent may be appropriately selected as desired, but is usually 0.1 to 100 parts by weight, preferably 0.5 to 50 parts by weight, more preferably 100 parts by weight of the cycloolefin monomer. Is 1 to 30 parts by weight.
 本発明に用いる反応性流動化剤と架橋助剤はいずれも、本発明の架橋性樹脂成形体を構成する重合体中、実質的に遊離の状態で存在しており、従って、該重合体に対し可塑効果を発現する。そのため、該成形体を加熱すると重合体が溶融し、適度な流動性を示す。一方、該成形体の加熱を続けると架橋剤により架橋反応が誘起されるが、反応性流動化剤と架橋助剤はいずれも、架橋反応に関与して重合体への結合反応性を示すことから、架橋反応の進行と共に、遊離の状態で存在するものが減少し、架橋反応の終了時点では実質的に遊離の状態で存在するものがないものと推定される。このように、反応性流動化剤と架橋助剤とは同様の特性を有するが、重合体への結合反応性は、反応性流動化剤に比べて架橋助剤の方が高いものと思われ、従って、可塑効果は、架橋助剤に比べて反応性流動化剤により、長く発現され得る。架橋助剤の使用は、得られる積層体において架橋密度を高める観点から好ましいが、架橋性樹脂成形体の加熱時に、該成形体を構成する重合体で、より早期に架橋構造が形成されると充分な重合体の流動性が得られず、架橋性樹脂成形体表面の、他の部材に対する追従性が低下する。その点、反応性流動化剤と架橋助剤とを併用すると、重合体において、架橋助剤による可塑効果の発現が消失した後においても、反応性流動化剤による可塑効果の持続的発現が期待され、得られる積層体では、配線埋め込み性、耐熱性、及び耐クラック性がバランス良く向上することになり、非常に好適である。 Both the reactive fluidizing agent and the crosslinking aid used in the present invention are present in a substantially free state in the polymer constituting the crosslinkable resin molded article of the present invention. On the other hand, it produces a plastic effect. Therefore, when the molded body is heated, the polymer melts and exhibits an appropriate fluidity. On the other hand, if the molded body is continuously heated, a crosslinking reaction is induced by the crosslinking agent, but both the reactive fluidizing agent and the crosslinking auxiliary agent are involved in the crosslinking reaction and exhibit binding reactivity to the polymer. Therefore, it is presumed that as the crosslinking reaction proceeds, the amount that exists in a free state decreases, and at the end of the crosslinking reaction, there is no material that exists substantially in a free state. Thus, although the reactive fluidizing agent and the crosslinking aid have similar characteristics, the binding reactivity to the polymer is considered to be higher for the crosslinking aid than the reactive fluidizing agent. Therefore, the plasticizing effect can be expressed longer by the reactive fluidizing agent than by the crosslinking aid. The use of a crosslinking aid is preferable from the viewpoint of increasing the crosslinking density in the resulting laminate, but when the crosslinked resin molded body is heated, the polymer constituting the molded body forms a crosslinked structure earlier. Sufficient polymer fluidity cannot be obtained, and the followability of the crosslinkable resin molded body surface to other members is reduced. In that regard, when a reactive fluidizing agent and a crosslinking aid are used in combination, the polymer can be expected to have a sustained plastic effect even after the plasticizing effect of the crosslinking aid disappears. In the obtained laminate, the wiring embedding property, heat resistance, and crack resistance are improved in a well-balanced manner, which is very suitable.
 本発明の重合性組成物に対し反応性流動化剤と架橋助剤とを共に配合する場合、得られる積層体において、配線埋め込み性、耐熱性、及び耐クラック性をバランス良く向上させる観点から、反応性流動化剤(単官能化合物)、架橋性の炭素-炭素不飽和結合を2つ有する多官能化合物(ニ官能化合物)、及び架橋性の炭素-炭素不飽和結合を3つ有する多官能化合物(三官能化合物)を組合わせて用いるのが好ましい。
 本発明の重合性組成物に対し反応性流動化剤を配合する場合、反応性流動化剤と架橋助剤との配合割合は、所望により適宜選択すればよいが、重量比(反応性流動化剤/架橋助剤)で、通常、5/95~90/10、好ましくは10/90~70/30、より好ましくは15/85~70/30の範囲である。配合割合がかかる範囲にあれば、架橋性樹脂成形体においては、加熱時の表面の流動性が向上し、また、積層体においては配線埋め込み性、耐熱性及び冷熱衝撃試験での耐クラック性の各特性がバランスされ、好適である。
In the case where the reactive fluidizing agent and the crosslinking aid are blended together with the polymerizable composition of the present invention, in the obtained laminate, from the viewpoint of improving the wiring embedding property, heat resistance, and crack resistance in a balanced manner, Reactive fluidizing agent (monofunctional compound), polyfunctional compound having two crosslinkable carbon-carbon unsaturated bonds (bifunctional compound), and polyfunctional compound having three crosslinkable carbon-carbon unsaturated bonds It is preferable to use a combination of (trifunctional compounds).
When the reactive fluidizing agent is blended with the polymerizable composition of the present invention, the blending ratio of the reactive fluidizing agent and the crosslinking aid may be appropriately selected as desired, but the weight ratio (reactive fluidization) Agent / crosslinking aid), usually in the range of 5/95 to 90/10, preferably 10/90 to 70/30, more preferably 15/85 to 70/30. If the blending ratio is within such a range, in the crosslinkable resin molded body, the fluidity of the surface at the time of heating is improved, and in the laminate, the wiring embedding property, heat resistance and crack resistance in the thermal shock test are improved. Each characteristic is balanced and suitable.
 また、本発明において好適な反応性流動化剤と架橋助剤との組合せとしては、ベンジルメタクリレート、アダマンチルメタクリレート及びジシクロペンタニルメタクリレートからなる群から選ばれる少なくとも1つの化合物(以上、反応性流動化剤)と、トリメチロ-ルプロパントリメタクリレート(以上、架橋助剤)とからなる組合せが挙げられる。かかる組合せによれば、架橋助剤としてニ官能化合物を含まずとも、架橋性樹脂成形体においては、加熱時の表面の流動性が向上し、また、積層体においては配線埋め込み性、耐熱性及び冷熱衝撃試験での耐クラック性の各特性が高度にバランスされ、非常に好適である。 Further, the combination of the reactive fluidizing agent and the crosslinking aid suitable in the present invention includes at least one compound selected from the group consisting of benzyl methacrylate, adamantyl methacrylate and dicyclopentanyl methacrylate (above, reactive fluidization). Agent) and trimethylolpropane trimethacrylate (hereinafter referred to as a crosslinking aid). According to such a combination, even if a bifunctional compound is not included as a crosslinking aid, the crosslinkable resin molded body has improved surface fluidity during heating, and in the laminate, wiring embedding property, heat resistance and Each characteristic of crack resistance in the thermal shock test is highly balanced and very suitable.
 反応性流動化剤と架橋助剤とからなる組合せの、本発明の重合性組成物への配合量(反応性流動化剤と架橋助剤との合計配合量)としては、シクロオレフィンモノマー100重量部に対して、通常、0.2~200重量部、好ましくは1~100重量部、より好ましくは2~60重量部である。 As a blending amount of the combination of the reactive fluidizing agent and the crosslinking aid into the polymerizable composition of the present invention (total blending amount of the reactive fluidizing agent and the crosslinking aid), the cycloolefin monomer is 100 weights. The amount is usually 0.2 to 200 parts by weight, preferably 1 to 100 parts by weight, and more preferably 2 to 60 parts by weight with respect to parts.
 老化防止剤として、フェノール系老化防止剤、アミン系老化防止剤、リン系老化防止剤及びイオウ系老化防止剤からなる群から選ばれる少なくとも1種の老化防止剤を配合することは、架橋反応を阻害しないで、得られる積層体の耐熱性を高度に向上させることができ、好適である。これらの中でも、フェノール系老化防止剤とアミン系老化防止剤が好ましく、フェノール系老化防止剤がより好ましい。これらの老化防止剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。老化防止剤の使用量は、所望により適宜選択されるが、シクロオレフィンモノマー100重量部に対して、通常、0.0001~10重量部、好ましくは0.001~5重量部、より好ましくは0.01~2重量部の範囲である。 As an anti-aging agent, blending at least one anti-aging agent selected from the group consisting of a phenol-based anti-aging agent, an amine-based anti-aging agent, a phosphorus-based anti-aging agent and a sulfur-based anti-aging agent causes a crosslinking reaction. Without being hindered, the heat resistance of the obtained laminate can be highly improved, which is preferable. Among these, a phenolic antiaging agent and an amine antiaging agent are preferable, and a phenolic antiaging agent is more preferable. These anti-aging agents can be used alone or in combination of two or more. The amount of the anti-aging agent is appropriately selected as desired, but is usually 0.0001 to 10 parts by weight, preferably 0.001 to 5 parts by weight, and more preferably 0 to 100 parts by weight of the cycloolefin monomer. .01 to 2 parts by weight.
 本発明の重合性組成物には、その他の配合剤を配合することができる。その他の配合剤としては、着色剤、光安定剤、顔料、及び発泡剤などを用いることができる。着色剤としては、染料や顔料などが用いられる。染料の種類は多様であり、公知のものを適宜選択して使用すればよい。これらのその他の配合剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その使用量は、本発明の効果を損ねない範囲で適宜選択される。 The polymerizable composition of the present invention can contain other compounding agents. As other compounding agents, colorants, light stabilizers, pigments, foaming agents, and the like can be used. As the colorant, a dye or a pigment is used. There are various kinds of dyes, and known ones may be appropriately selected and used. These other compounding agents can be used alone or in combination of two or more, and the amount used is appropriately selected within a range not impairing the effects of the present invention.
 本発明の重合性組成物は、上記成分を混合して得ることができる。混合方法としては、常法に従えばよく、例えば、重合触媒を適当な溶媒に溶解若しくは分散させた液(触媒液)を調製し、別にシクロオレフィンモノマーや架橋剤などの必須成分、及び所望によりその他の配合剤等を配合した液(モノマー液)を調製し、該モノマー液に該触媒液を添加し、攪拌することによって調製することができる。 The polymerizable composition of the present invention can be obtained by mixing the above components. As a mixing method, a conventional method may be followed. For example, a liquid (catalyst liquid) in which a polymerization catalyst is dissolved or dispersed in an appropriate solvent is prepared, and other essential components such as a cycloolefin monomer and a crosslinking agent are optionally added. It can be prepared by preparing a liquid (monomer liquid) containing other compounding agents, adding the catalyst liquid to the monomer liquid, and stirring.
(架橋性樹脂成形体)
  本発明の架橋性樹脂成形体は、前記重合性組成物を塊状重合することにより得られる。重合性組成物を塊状重合して架橋性樹脂成形体を得る方法としては、例えば、(a)重合性組成物を支持体上に塗布し、次いで塊状重合する方法、(b)重合性組成物を成形型内に注入し、次いで塊状重合する方法、(c)重合性組成物を繊維状強化材に含浸させ、次いで塊状重合する方法などが挙げられる。
(Crosslinkable resin molding)
The crosslinkable resin molded article of the present invention can be obtained by bulk polymerization of the polymerizable composition. Examples of a method for obtaining a crosslinkable resin molded body by bulk polymerization of the polymerizable composition include, for example, (a) a method in which a polymerizable composition is applied on a support and then bulk polymerization, and (b) a polymerizable composition. Are injected into a mold, and then bulk polymerization is performed, and (c) a fibrous reinforcing material is impregnated with a polymerizable composition and then bulk polymerization is performed.
本発明の重合性組成物は低粘度であるため、(a)の方法における塗布は円滑に実施でき、(b)の方法における注入では、複雑形状の空間部であっても迅速に泡かみを起こさずに重合性組成物を行き渡らせることができ、(c)の方法においては繊維状強化材に対して速やかに満遍なく重合性組成物を含浸させることができる。 Since the polymerizable composition of the present invention has a low viscosity, the application in the method (a) can be carried out smoothly, and in the injection in the method (b), even if it is a space portion having a complicated shape, the foam bite is rapidly formed. The polymerizable composition can be spread without causing it, and in the method (c), the fibrous reinforcing material can be impregnated with the polymerizable composition quickly and uniformly.
  (a)の方法によれば、フィルム状や板状等の架橋性樹脂成形体が得られる。該成形体の厚さは、通常、15mm以下、好ましくは5mm以下、より好ましくは0.5mm以下、最も好ましくは0.1mm以下である。支持体としては、例えば、ポリテトラフルオロエチレン、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリカーボネート、ポリエチレンナフタレート、ポリアリレート、及びナイロンなどの樹脂からなるフィルムや板;鉄、ステンレス、銅、アルミニウム、ニッケル、クロム、金、及び銀などの金属材料からなるフィルムや板;などが挙げられる。中でも、金属箔又は樹脂フィルムの使用が好ましい。金属箔又は樹脂フィルムの厚さは、作業性などの観点から、通常、1~150μm、好ましくは2~100μm、より好ましくは3~75μmである。金属箔としては、その表面が平滑であるものが好ましく、その表面粗度(Rz)としては、AFM(原子間力顕微鏡)により測定される値で、通常、10μm以下、好ましくは5μm以下、より好ましくは3μm以下、さらに好ましくは2μm以下である。金属箔の表面粗度が上記範囲にあれば、得られる誘電体デバイスにおいて、高周波伝送におけるノイズ、遅延、及び伝送ロス等の発生が抑えられ、好ましい。また、金属箔の表面は、シランカップリング剤、チオールカップリング剤、及びチタネートカップリング剤などの公知のカップリング剤や接着剤などで処理されているのが好ましい。(a)の方法によれば、例えば、支持体として銅箔を用いた場合、樹脂付き銅箔〔Resin Coated Copper (RCC)〕を得ることができる。 According to the method of) (a), a crosslinkable resin molded product such as a film or plate can be obtained. The thickness of the molded body is usually 15 mm or less, preferably 5 mm or less, more preferably 0.5 mm or less, and most preferably 0.1 mm or less. Examples of the support include films and plates made of resins such as polytetrafluoroethylene, polyethylene terephthalate, polypropylene, polyethylene, polycarbonate, polyethylene naphthalate, polyarylate, and nylon; iron, stainless steel, copper, aluminum, nickel, chromium And films and plates made of metal materials such as gold, silver, and the like. Among these, use of a metal foil or a resin film is preferable. The thickness of the metal foil or resin film is usually 1 to 150 μm, preferably 2 to 100 μm, more preferably 3 to 75 μm from the viewpoint of workability and the like. The metal foil preferably has a smooth surface, and the surface roughness (Rz) is a value measured by an AFM (atomic force microscope) and is usually 10 μm or less, preferably 5 μm or less. Preferably it is 3 micrometers or less, More preferably, it is 2 micrometers or less. If the surface roughness of the metal foil is in the above range, it is preferable in the obtained dielectric device that noise, delay, transmission loss, and the like in high frequency transmission are suppressed. The surface of the metal foil is preferably treated with a known coupling agent or adhesive such as a silane coupling agent, a thiol coupling agent, and a titanate coupling agent. According to the method (a), for example, when a copper foil is used as the support, a resin-coated copper foil [Resin Coated Copper (RCC)] can be obtained.
  支持体上に本発明の重合性組成物を塗布する方法としては、スプレーコート法、ディップコート法、ロールコート法、カーテンコート法、ダイコート法、及びスリットコート法などの公知の塗布方法が挙げられる。 Examples of the method for applying the polymerizable composition of the present invention on the support include known coating methods such as spray coating, dip coating, roll coating, curtain coating, die coating, and slit coating. .
  支持体上に塗布された重合性組成物を所望により乾燥させ、次いで塊状重合する。塊状重合は重合性組成物を所定の温度で加熱して行われる。重合性組成物の加熱方法としては特に制約されず、支持体に塗布された重合性組成物を、加熱プレート上に載せて加熱する方法、プレス機を用いて加圧しながら加熱(熱プレス)する方法、加熱したローラーで押圧する方法、加熱炉内で加熱する方法などが挙げられる。 重合 The polymerizable composition coated on the support is optionally dried and then bulk polymerized. Bulk polymerization is performed by heating the polymerizable composition at a predetermined temperature. The method for heating the polymerizable composition is not particularly limited, and the polymerizable composition applied to the support is heated on a heating plate, and heated (hot press) while being pressed using a press. Examples thereof include a method, a method of pressing with a heated roller, and a method of heating in a heating furnace.
  (b)の方法によれば、任意の形状の架橋性樹脂成形体を得ることができる。その形状としては、シート状、フィルム状、柱状、円柱状、及び多角柱状等が挙げられる。 According to the method of) (b), a crosslinkable resin molded article having an arbitrary shape can be obtained. Examples of the shape include a sheet shape, a film shape, a column shape, a columnar shape, and a polygonal column shape.
  ここで用いる型としては、従来公知の成形型、例えば、割型構造、すなわち、コア型とキャビティー型を有する成形型を用いることができ、それらの空隙部(キャビティー)に重合性組成物を注入して塊状重合させる。コア型とキャビティー型は、目的とする成形品の形状にあった空隙部を形成するように作製される。成形型の形状、材質、大きさなどは特に制限されない。さらに、ガラス板や金属板などの板状成形型と所定の厚さのスペーサーとを用意し、スペーサーを2枚の板状成形型で挟んで形成される空間内に重合性組成物を注入し塊状重合することにより、シート状又はフィルム状の架橋性樹脂成形体を得ることもできる。 As the mold used here, a conventionally known mold, for example, a split mold structure, that is, a mold having a core mold and a cavity mold, can be used, and a polymerizable composition is formed in these voids (cavities). Is injected to cause bulk polymerization. The core mold and the cavity mold are produced so as to form a gap that matches the shape of the target molded product. The shape, material, size, etc. of the mold are not particularly limited. Furthermore, a plate-shaped mold such as a glass plate or a metal plate and a spacer having a predetermined thickness are prepared, and the polymerizable composition is injected into a space formed by sandwiching the spacer between two plate-shaped molds. By carrying out bulk polymerization, a sheet-like or film-like crosslinkable resin molded article can also be obtained.
  重合性組成物を成形型のキャビティー内に充填する際の充填圧力(注入圧)は、通常、0.01~10MPa、好ましくは0.02~5MPaである。充填圧力が低すぎると、キャビティー内周面に形成された転写面の転写が良好に行われない傾向にあり、充填圧が高すぎると、成形型の剛性を高くしなければならず経済的ではない。型締圧力は、通常、0.01~10MPaの範囲内である。重合性組成物の加熱方法としては、成形型に配設された電熱器やスチームなどの加熱手段を利用する方法や、成形型を電気炉内で加熱する方法などが挙げられる。 The filling pressure (injection pressure) when filling the polymerizable composition into the mold cavity is usually 0.01 to 10 MPa, preferably 0.02 to 5 MPa. If the filling pressure is too low, the transfer surface formed on the inner peripheral surface of the cavity tends not to be transferred well. If the filling pressure is too high, the mold must be rigid and economical. is not. The mold clamping pressure is usually in the range of 0.01 to 10 MPa. Examples of the method for heating the polymerizable composition include a method using a heating means such as an electric heater and steam disposed in the mold, and a method for heating the mold in an electric furnace.
  (c)の方法は、シート状又はフィルム状の架橋性樹脂成形体を得るのに好適に使用される。得られる成形体の厚さは、通常、0.001~10mm、好ましくは0.005~1mm、より好ましくは0.01~0.5mmの範囲である。この範囲にあれば、積層時の賦形性、及び積層体の機械的強度や靭性などが向上し、好適である。例えば、重合性組成物の繊維状強化材への含浸は、重合性組成物の所定量を、スプレーコート法、ディップコート法、ロールコート法、カーテンコート法、ダイコート法、及びスリットコート法等の公知の方法により繊維状強化材に塗布し、所望によりその上に保護フィルムを重ね、上側からローラーなどで押圧することにより行うことができる。重合性組成物を繊維状強化材に含浸させた後、含浸物を所定温度に加熱することで重合性組成物を塊状重合させ、所望の架橋性樹脂成形体を得る。架橋性樹脂成形体中、繊維状強化材の含有量としては、通常、10~90重量%、好ましくは20~80重量%、より好ましくは30~70重量%の範囲である。この範囲にあれば、得られる積層体の誘電特性と機械的強度がバランスされ、好適である。 The method of c) (c) is suitably used for obtaining a sheet-like or film-like crosslinkable resin molded article. The thickness of the obtained molded body is usually in the range of 0.001 to 10 mm, preferably 0.005 to 1 mm, more preferably 0.01 to 0.5 mm. If it exists in this range, the shaping property at the time of lamination | stacking and the mechanical strength, toughness, etc. of a laminated body will improve, and it is suitable. For example, the impregnation of the polymerizable composition into the fibrous reinforcing material is performed by using a predetermined amount of the polymerizable composition such as a spray coating method, a dip coating method, a roll coating method, a curtain coating method, a die coating method, and a slit coating method. It can apply by apply | coating to a fibrous reinforcement by a well-known method, stacking a protective film on it as needed, and pressing with a roller etc. from an upper side. After impregnating the polymerizable composition with the fibrous reinforcing material, the impregnated material is heated to a predetermined temperature to cause the polymerizable composition to undergo bulk polymerization to obtain a desired crosslinkable resin molded article. The content of the fibrous reinforcing material in the crosslinkable resin molded body is usually in the range of 10 to 90% by weight, preferably 20 to 80% by weight, more preferably 30 to 70% by weight. Within this range, the dielectric properties and mechanical strength of the resulting laminate are balanced, which is preferable.
  繊維状強化材としては、無機系及び/又は有機系の繊維が使用でき、例えば、PET(ポリエチレンテレフタレート)繊維、アラミド繊維、超高分子ポリエチレン繊維、ポリアミド(ナイロン)繊維、及び液晶ポリエステル繊維などの有機繊維;ガラス繊維、炭素繊維、アルミナ繊維、タングステン繊維、モリブデン繊維、ブデン繊維、チタン繊維、スチール繊維、ボロン繊維、シリコンカーバイド繊維、及びシリカ繊維などの無機繊維;などを挙げることができる。これらの中でも、有機繊維やガラス繊維が好ましく、特にアラミド繊維、液晶ポリエステル繊維、及びガラス繊維が好ましい。ガラス繊維としては、Eガラス、NEガラス、Sガラス、Dガラス、及びHガラス等の繊維を好適に用いることができる。これらは1種単独で、又は2種以上を組合せて用いることができる。繊維状強化材の形状としては、特に限定されず、例えば、マット、クロス、及び不織布などが挙げられる。 As the fibrous reinforcement, inorganic and / or organic fibers can be used, for example, PET (polyethylene terephthalate) fibers, aramid fibers, ultra-high molecular polyethylene fibers, polyamide (nylon) fibers, and liquid crystal polyester fibers. Organic fibers; inorganic fibers such as glass fibers, carbon fibers, alumina fibers, tungsten fibers, molybdenum fibers, budene fibers, titanium fibers, steel fibers, boron fibers, silicon carbide fibers, and silica fibers; Among these, organic fibers and glass fibers are preferable, and aramid fibers, liquid crystal polyester fibers, and glass fibers are particularly preferable. As the glass fiber, fibers such as E glass, NE glass, S glass, D glass, and H glass can be suitably used. These can be used individually by 1 type or in combination of 2 or more types. The shape of the fibrous reinforcing material is not particularly limited, and examples thereof include mats, cloths, and nonwoven fabrics.
 繊維状強化材に重合性組成物を含浸させてなる含浸物の加熱方法としては、例えば、含浸物を支持体上に設置して前記(a)の方法のようにして加熱する方法、予め型内に繊維状強化材を設置しておき、該型内で重合性組成物を含浸させて含浸物を得、前記(b)の方法のようにして加熱する方法などが挙げられる。 Examples of the heating method of the impregnated product obtained by impregnating the fibrous reinforcing material with the polymerizable composition include, for example, a method in which the impregnated product is placed on a support and heated as in the method (a) above, Examples thereof include a method in which a fibrous reinforcing material is placed in the mold, an impregnated product is obtained by impregnating the polymerizable composition in the mold, and heating is performed as in the method (b).
  前記(a)、(b)及び(c)のいずれの方法においても、重合性組成物を重合させるための加熱温度は、通常、30~250℃、好ましくは50~200℃、より好ましくは90~150℃の範囲であって、かつ架橋剤、通常、ラジカル発生剤の1分間半減期温度以下、好ましくは1分間半減期温度の10℃以下、より好ましくは1分間半減期温度の20℃以下である。また、重合時間は適宜選択すればよいが、通常、1秒間~20分間、好ましくは10秒間~5分間である。重合性組成物をかかる条件で加熱することにより未反応モノマーの少ない架橋性樹脂成形体が得られるので好適である。 In any of the methods (a), (b) and (c), the heating temperature for polymerizing the polymerizable composition is usually 30 to 250 ° C., preferably 50 to 200 ° C., more preferably 90 In the range of ˜150 ° C. and less than 1 minute half-life temperature of the crosslinking agent, usually radical generator, preferably less than 10 ° C. of 1 minute half-life temperature, more preferably less than 20 ° C. of 1 minute half-life temperature It is. The polymerization time may be appropriately selected, but is usually 1 second to 20 minutes, preferably 10 seconds to 5 minutes. Heating the polymerizable composition under such conditions is preferable because a crosslinkable resin molded article with less unreacted monomer can be obtained.
 以上のようにして得られる架橋性樹脂成形体を構成する重合体は、実質的に架橋構造を有さず、例えば、トルエンに可溶である。当該重合体の分子量は、ゲル・パーミエーション・クロマトグラフィー(溶離液:テトラヒドロフラン)で測定されるポリスチレン換算の重量平均分子量で、通常、1,000~1,000,000、好ましくは5,000~500,000、より好ましくは10,000~100,000の範囲である。 The polymer constituting the crosslinkable resin molded body obtained as described above has substantially no crosslink structure and is soluble in, for example, toluene. The molecular weight of the polymer is a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (eluent: tetrahydrofuran), and is usually 1,000 to 1,000,000, preferably 5,000 to It is in the range of 500,000, more preferably 10,000 to 100,000.
  本発明の架橋性樹脂成形体は、後架橋可能な樹脂成形体であるが、その構成樹脂の一部分が架橋されたものであってもよい。例えば、型内で重合性組成物を塊状重合したときには、型の中心部分は重合反応熱が発散しにくいので、型内の一部の温度が高くなりすぎる場合がある。高温部では架橋反応が起き、架橋が生ずることがある。しかし、熱を発散しやすい表面部が後架橋可能な架橋性の樹脂で形成されていれば、本発明の架橋性樹脂成形体は所望の効果を充分に発揮し得る。 架橋 The crosslinkable resin molded product of the present invention is a post-crosslinkable resin molded product, but a part of the constituent resin may be crosslinked. For example, when the polymerizable composition is bulk-polymerized in the mold, the temperature of a part of the mold may become too high because the polymerization reaction heat hardly diffuses in the central part of the mold. In the high temperature part, a cross-linking reaction occurs, and cross-linking may occur. However, if the surface part that easily dissipates heat is formed of a crosslinkable resin that can be postcrosslinked, the crosslinkable resin molded article of the present invention can sufficiently exhibit the desired effect.
  本発明の架橋性樹脂成形体は、塊状重合を完結させて得られるものであり、保管中にさらに重合反応が進行するという恐れがない。また、本発明の架橋性樹脂成形体は、ラジカル発生剤などの架橋剤を含有してなるが、架橋反応を起す温度以上に加熱しない限り、表面硬度が変化するなどの不具合を生じず、保存安定性に優れる。
 本発明の架橋性樹脂成形体は、例えば、プリプレグとして、本発明の架橋樹脂成形体及び積層体の製造に好適に用いられる。
The crosslinkable resin molded article of the present invention is obtained by completing bulk polymerization, and there is no fear that the polymerization reaction further proceeds during storage. In addition, the crosslinkable resin molded article of the present invention contains a crosslinking agent such as a radical generator, but does not cause a problem such as a change in surface hardness unless it is heated to a temperature at which a crosslinking reaction is caused or not. Excellent stability.
The crosslinkable resin molded article of the present invention is suitably used for the production of the crosslinked resin molded article and laminate of the present invention, for example, as a prepreg.
(架橋樹脂成形体)
 本発明の架橋樹脂成形体は、本発明の重合性組成物を塊状重合し、架橋してなるものである。かかる架橋樹脂成形体は、例えば、前記架橋性樹脂成形体を架橋することにより得られる。架橋性樹脂成形体の架橋は、該成形体を、該成形体を構成する重合体において架橋反応が生ずる温度以上に維持することによって行うことができる。加熱温度は、通常、架橋剤により架橋反応が誘起される温度以上である。例えば、架橋剤としてラジカル発生剤を使用する場合、通常、1分間半減期温度以上、好ましくは1分間半減期温度より5℃以上高い温度、より好ましくは1分間半減期温度より10℃以上高い温度である。典型的には、100~300℃、好ましくは150~250℃の範囲である。加熱時間は、0.1~180分間、好ましくは0.5~120分間、より好ましくは1~60分間の範囲である。また、本発明の重合性組成物を、前記架橋性樹脂成形体が架橋する温度以上に維持することにより、具体的には、ここに記載する、温度及び時間で加熱することにより、シクロオレフィンモノマーの塊状重合と、当該重合により生ずるシクロオレフィンポリマーにおける架橋反応とを共に進行させて、本発明の架橋樹脂成形体を製造することも可能である。このようにして架橋樹脂成形体を製造する場合、前記(a)の方法に準じ、例えば、支持体として銅箔を用いれば、銅張積層板〔Copper Clad Laminates (CCL)〕を得ることができる。
(Crosslinked resin molding)
The crosslinked resin molded product of the present invention is obtained by bulk polymerization of the polymerizable composition of the present invention and crosslinking. Such a crosslinked resin molded body can be obtained, for example, by crosslinking the crosslinkable resin molded body. Crosslinking of the crosslinkable resin molded body can be performed by maintaining the molded body at a temperature higher than the temperature at which a crosslinking reaction occurs in the polymer constituting the molded body. The heating temperature is usually equal to or higher than the temperature at which a crosslinking reaction is induced by the crosslinking agent. For example, when a radical generator is used as a crosslinking agent, it is usually at least 1 minute half-life temperature, preferably at least 5 ° C. above 1-minute half-life temperature, more preferably at least 10 ° C. above 1-minute half-life temperature. It is. Typically, it is in the range of 100 to 300 ° C, preferably 150 to 250 ° C. The heating time is in the range of 0.1 to 180 minutes, preferably 0.5 to 120 minutes, more preferably 1 to 60 minutes. Further, by maintaining the polymerizable composition of the present invention at a temperature equal to or higher than the temperature at which the crosslinkable resin molded article is crosslinked, specifically, by heating at the temperature and time described herein, the cycloolefin monomer It is also possible to produce the crosslinked resin molded article of the present invention by proceeding together with the bulk polymerization of the polymer and the crosslinking reaction in the cycloolefin polymer produced by the polymerization. In the case of producing a crosslinked resin molded body in this way, a copper clad laminate (Copper Clad Laminates (CCL)) can be obtained in accordance with the method (a), for example, by using a copper foil as a support. .
(積層体)
 本発明の積層体は、少なくとも、前記架橋性樹脂成形体、又は前記架橋樹脂成形体を積層してなるものである。両成形体はそれぞれ、連続的に積層されていても、他の層を挟んで間接的に積層されていてもよい。
 本発明の架橋性樹脂成形体を積層してなる積層体としては、例えば、前記(a)の方法で得られる、銅箔と架橋性樹脂成形体とが層状に一体化してなるRCCが挙げられる。また、本発明の架橋樹脂成形体を積層してなる積層体としては、例えば、前記(a)の方法に準じて得られる、銅箔と架橋樹脂成形体とが層状に一体化してなるCCLが挙げられる。前記(a)の方法において、支持体として、別途得られた架橋樹脂成形体を用いれば、架橋性樹脂成形体と架橋樹脂成形体との積層体を得ることもできる。
 また、架橋性樹脂成形体がシート状又はフィルム状である場合、該成形体、及び所望により、シート状又はフィルム状の架橋樹脂成形体を、任意に積層し、又はさらに、例えば、前記金属箔を積層し、熱プレスして架橋することにより、架橋樹脂成形体を積層してなる、本発明の積層体が得られる。その際、前記RCCやCCLなどの積層体を積層してもよい。熱プレスするときの圧力は、通常、0.5~20MPa、好ましくは3~10MPaである。熱プレスは、真空又は減圧雰囲気下で行ってもよい。熱プレスは、平板成形用のプレス枠型を有する公知のプレス機、シートモールドコンパウンド(SMC)やバルクモールドコンパウンド(BMC)などのプレス成形機を用いて行なうことができる。
(Laminate)
The laminate of the present invention is formed by laminating at least the crosslinkable resin molded product or the crosslinked resin molded product. Both molded bodies may be continuously laminated or indirectly laminated with another layer interposed therebetween.
As a laminated body formed by laminating the crosslinkable resin molded body of the present invention, for example, RCC obtained by integrating the copper foil and the crosslinkable resin molded body in a layered manner obtained by the method (a) can be mentioned. . Moreover, as a laminated body formed by laminating the cross-linked resin molded body of the present invention, for example, CCL obtained by integrating the copper foil and the cross-linked resin molded body in a layered manner is obtained according to the method (a). Can be mentioned. In the method (a), if a separately obtained crosslinked resin molded body is used as the support, a laminate of the crosslinkable resin molded body and the crosslinked resin molded body can be obtained.
Further, when the crosslinkable resin molded body is in the form of a sheet or film, the molded body and, optionally, the sheet-shaped or film-shaped crosslinked resin molded body is arbitrarily laminated, or further, for example, the metal foil The laminate of the present invention is obtained by laminating and cross-linking by hot pressing to form a crosslinked resin molded body. In that case, you may laminate | stack laminated bodies, such as said RCC and CCL. The pressure at the time of hot pressing is usually 0.5 to 20 MPa, preferably 3 to 10 MPa. The hot pressing may be performed in a vacuum or a reduced pressure atmosphere. The hot pressing can be performed using a known press having a press frame mold for flat plate forming, a press molding machine such as a sheet mold compound (SMC) or a bulk mold compound (BMC).
 かくして得られる本発明の積層体は、高比誘電率かつ低誘電正接であり、比誘電率の温度変化が小さいという優れた誘電特性を有する。本発明の積層体の1GHzで20℃の条件での比誘電率としては、好ましくは5以上、より好ましくは7以上、1GHzで20℃の条件での誘電正接としては、通常、0.008以下、好ましくは0.005以下、より好ましくは0.003以下、2GHzで-30~+100℃の範囲で温度変化する条件での比誘電率の温度変化率としては、絶対値で、好ましくは200ppm/℃以下、より好ましくは100ppm/℃以下である。これらの特性値は、後述の実施例に記載の方法により測定することができる。また、本発明の積層体は、耐熱性及び冷熱衝撃試験での耐クラック性等の特性にも優れる。 The laminate of the present invention thus obtained has a high dielectric constant and a low dielectric loss tangent, and has excellent dielectric properties such that the temperature change of the dielectric constant is small. The relative dielectric constant of the laminate of the present invention at 1 GHz at 20 ° C. is preferably 5 or more, more preferably 7 or more, and the dielectric loss tangent at 1 GHz at 20 ° C. is usually 0.008 or less. Preferably, the temperature change rate of the relative dielectric constant under the condition that the temperature changes in the range of −30 to + 100 ° C. at 2 GHz, preferably 0.003 or less, more preferably 0.003 or less, in absolute value, preferably 200 ppm / ° C or lower, more preferably 100 ppm / ° C or lower. These characteristic values can be measured by the method described in Examples described later. Moreover, the laminated body of this invention is excellent also in characteristics, such as heat resistance and crack resistance in a thermal shock test.
(誘電体デバイス)
 本発明の積層体は、例えば、マイクロ波の周波数での使用に対応した回路基板、キャパシタ(C)、インダクタ(L)、LCフィルタ、ストリップライン共振フィルタ、誘電体アンテナ、埋設デバイス、マルチチップモジュール、及び高周波モジュール等の誘電体デバイスの製造に好適に使用することができる。
(Dielectric device)
The laminated body of the present invention includes, for example, a circuit board, a capacitor (C), an inductor (L), an LC filter, a stripline resonance filter, a dielectric antenna, an embedded device, and a multichip module that are compatible with use at microwave frequencies. And can be suitably used for manufacturing dielectric devices such as high-frequency modules.
 例えば、マイクロ波回路基板としては、高周波での伝送損失が小さいものが好ましい。伝送損失は誘電損失(tanδに相当)と導体損失(導体の粗度に依存)との和であり、tanδ(1GHzにて20℃で測定)が0.006以下、導体の粗度(Rz)が1μm以下であるのが好ましい。さらにマイクロ波回路基板を小型化する場合、比誘電率を大きくして波長短縮効果により面積縮小することが好ましい。好ましい比誘電率(1GHzにて20℃で測定)の範囲は、通常、5~25、好ましくは7~20である。この範囲であると、小型化しても配線間に寄生容量が生じにくい。 For example, a microwave circuit board with a small transmission loss at high frequencies is preferable. The transmission loss is the sum of dielectric loss (corresponding to tan δ) and conductor loss (depending on the roughness of the conductor), tan δ (measured at 20 ° C. at 1 GHz) is 0.006 or less, and the roughness of the conductor (Rz) Is preferably 1 μm or less. Further, when the microwave circuit board is downsized, it is preferable to increase the relative dielectric constant and reduce the area by the wavelength shortening effect. The range of preferable dielectric constant (measured at 20 ° C. at 1 GHz) is usually 5 to 25, preferably 7 to 20. Within this range, parasitic capacitance hardly occurs between the wirings even if the size is reduced.
 キャパシタ(C)としては、容量は回路パターンの設計に依存するが、例えば、面積S=1mm、絶縁体厚みd=50μmで設計した場合、誘電体デバイスとしてのQ値〔Q値=(誘電損失+導体損失)-1〕は、1GHzで20℃の条件で、通常、150以上であり、好ましくは200以上である。これらを構成する材料としては、tanδ(1GHzにて20℃で測定)が0.006以下であるのが好ましい。また、大きな容量を得るためには、比誘電率は高いほうがよく、1GHzで20℃の条件で、通常、5以上、好ましくは7以上、より好ましくは9以上である。 For the capacitor (C), the capacitance depends on the design of the circuit pattern. For example, in the case of designing with an area S = 1 mm 2 and an insulator thickness d = 50 μm, the Q value as a dielectric device [Q value = (dielectric Loss + conductor loss) −1 ] is usually 150 or more and preferably 200 or more under the condition of 1 GHz and 20 ° C. As a material constituting these, tan δ (measured at 20 ° C. at 1 GHz) is preferably 0.006 or less. In order to obtain a large capacity, the relative dielectric constant is preferably high, and is usually 5 or more, preferably 7 or more, more preferably 9 or more under the condition of 1 GHz and 20 ° C.
 インダクタ(L)としては、インダクタンスは回路パターンの設計に依存するが、L/S=80/80の5巻きインダクタを1mm内に作製した場合、誘電体デバイスとしてのQ値は、1GHzで20℃の条件で、通常、35以上であり、好ましくは40以上である。これらを構成する材料としては、tanδ(1GHzにて20℃で測定)が0.006以下であり、Rzが1μm以下であるのが好ましい。 As the inductor (L), the inductance depends on the design of the circuit pattern. However, when a 5-winding inductor with L / S = 80/80 is manufactured within 1 mm 2 , the Q value as a dielectric device is 20 at 1 GHz. Under the condition of ° C., it is usually 35 or more, preferably 40 or more. As materials constituting them, tan δ (measured at 20 ° C. at 1 GHz) is 0.006 or less, and Rz is preferably 1 μm or less.
 低伝送損失であり、高Q値のコンデンサと高Q値のインダクタからなる、非常に高性能なLCフィルターが得られれば、当該フィルターを回路基板内部に埋設することにより、該基板の小型化・高集積化・高感度化・低消費電力化が可能となる。回路基板にそれらのデバイスを埋設する上では、通常、回路基板の比誘電率の温度依存性が小さいことが求められる。比誘電率の温度変化率としては、回路基板使用環境とされる-30℃~+100℃における2GHzでの比誘電率の変化率として、通常、絶対値で、200ppm/℃以下、好ましくは100ppm/℃以下、より好ましくは50ppm/℃以下である。さらにパワーアンプや半導体チップを前記回路基板に実装することで、高集積・小型・高感度・低消費電力を可能にする、これまでにない高周波モジュールを作製することができる。本発明の積層体は、これらの誘電体デバイスの製造に好適に用いることができる。 If a very high performance LC filter consisting of a low Q loss capacitor and a high Q value inductor and a high Q value inductor can be obtained, the filter can be made smaller by embedding the filter inside the circuit board. High integration, high sensitivity, and low power consumption are possible. In order to embed these devices in a circuit board, it is usually required that the temperature dependence of the relative permittivity of the circuit board is small. As the temperature change rate of the relative permittivity, the change rate of the relative permittivity at 2 GHz at −30 ° C. to + 100 ° C., which is a circuit board use environment, is usually 200 ppm / ° C. or less, preferably 100 ppm / ° C in absolute value. ° C or lower, more preferably 50 ppm / ° C or lower. Further, by mounting a power amplifier and a semiconductor chip on the circuit board, an unprecedented high-frequency module that enables high integration, small size, high sensitivity, and low power consumption can be manufactured. The laminate of the present invention can be suitably used for the production of these dielectric devices.
 以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例及び比較例における部及び%は、特に断りのない限り重量基準である。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. In addition, the part and% in an Example and a comparative example are a basis of weight unless there is particular notice.
 実施例及び比較例における各特性は、以下の方法に従い測定して評価した。
(1)比誘電率
 インピーダンスアナライザー(アジレントテクノロジー社製、型番号E4991A)を用いて周波数1GHzで20℃における誘電率(ε)を容量法で測定し、比誘電率(εr)を算出して以下の基準で評価した。
◎:7以上
○:5以上、7未満
×:5未満
(2)誘電正接
 インピーダンスアナライザー(アジレントテクノロジー社製、型番号E4991A)を用いて周波数1GHzで20℃における誘電正接を容量法にて測定し、以下の基準で評価した。
◎:0.003以下
○:0.003超、0.008以下
×:0.008超
(3)比誘電率の温度変化率
 2GHzで共振するマイクロストリップライン共振器を設計し作製した。該共振器をネットワークアナライザー(アジレントテクノロジー社製)に接続し、周波数2GHzにおいて-30~+100℃の温度範囲での誘電率(ε)の温度変化を測定した後、真空の誘電率をεとして、
比誘電率の温度変化率=|〔(ε-ε)/ε〕/〔100-(-30)〕|
の式により、該変化率を絶対値として求め、以下の基準で評価した。
◎:100ppm/℃以下
○:100ppm/℃超、200ppm/℃以下
×:200ppm/℃超
(4)耐熱性
 積層体を20mm角に切断し、試験片を得た。該試験片を260℃の半田浴上に20秒間フローさせた。かかる操作を別々の試験片を用いて3回繰り返し(n=3)、それぞれの試験片表面の膨れを目視により観察し、以下の基準で評価した。
◎:n=3で膨れなし
○:n=2で膨れなし
×:n=2以上で膨れ発生
(5)耐クラック性
 積層体サンプルについて、-65~+150℃の温度範囲で所定回数の冷熱衝撃試験を行った後に外観観察を行い、以下の基準に従って評価した。なお、冷熱衝撃試験は、冷熱衝撃試験装置(エスペック社製、型番TSA-71H-W)により行った。
◎:500サイクル終了後のサンプルで、クラックの発生が確認されない
○:300サイクル終了後のサンプルで、クラックの発生が確認されない
×:300サイクル終了後のサンプルで、クラックの発生が確認される
Each characteristic in an Example and a comparative example was measured and evaluated according to the following methods.
(1) Relative permittivity Using an impedance analyzer (manufactured by Agilent Technologies, model number E4991A), the dielectric constant (ε) at 20 ° C. was measured at a frequency of 1 GHz by the capacitance method, and the relative dielectric constant (εr) was calculated. Evaluation based on the criteria.
◎: 7 or more ○: 5 or more, less than 7 ×: less than 5 (2) Dielectric loss tangent Using an impedance analyzer (Model number E4991A, manufactured by Agilent Technologies), the dielectric loss tangent at 20 ° C. was measured at a frequency of 1 GHz by the capacitance method. The evaluation was based on the following criteria.
A: 0.003 or less B: More than 0.003, 0.008 or less X: More than 0.008 (3) Temperature change rate of relative permittivity A microstrip line resonator that resonates at 2 GHz was designed and manufactured. The resonator was connected to a network analyzer (manufactured by Agilent Technologies), and after measuring the temperature change of the dielectric constant (ε) in the temperature range of −30 to + 100 ° C. at a frequency of 2 GHz, the vacuum dielectric constant was set to ε 0. ,
Temperature change rate of relative permittivity = | [(ε−ε 0 ) / ε 0 ] / [100 − (− 30)] |
The rate of change was determined as an absolute value by the following formula and evaluated according to the following criteria.
A: 100 ppm / ° C. or less ○: More than 100 ppm / ° C., 200 ppm / ° C. or less X: More than 200 ppm / ° C. (4) Heat resistance The laminate was cut into 20 mm squares to obtain test pieces. The test piece was allowed to flow on a solder bath at 260 ° C. for 20 seconds. This operation was repeated three times using separate test pieces (n = 3), and the swelling of the surface of each test piece was visually observed and evaluated according to the following criteria.
◎: No bulge when n = 3 ◯: No bulge when n = 2 x: Bulge occurs when n = 2 or more (5) Crack resistance A predetermined number of thermal shocks in the temperature range of −65 to + 150 ° C. After the test, the appearance was observed and evaluated according to the following criteria. The thermal shock test was conducted with a thermal shock test apparatus (manufactured by ESPEC Co., Ltd., model number TSA-71H-W).
A: No occurrence of crack in sample after 500 cycles. O: No occurrence of crack in sample after 300 cycles. X: Generation of crack in sample after 300 cycles.
実施例1
 ベンジリデン(1,3-ジメシチル-4-イミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド 51部と、トリフェニルホスフィン 79部とを、トルエン 952部に溶解させて触媒液を調製した。これとは別に、シクロオレフィンモノマーとしてテトラシクロドデセン(TCD)100部、連鎖移動剤としてジビニルベンゼン 0.74部、架橋剤として3,3,5,7,7-ペンタメチル-1,2,4-トリオキセパン(1分間半減期温度205℃)2部、反応性流動化剤としてベンジルメタクリレート 15部、多官能性架橋助剤としてトリメチロールプロパントリメタクリレート 20部、比誘電率の温度変化率が正の無機充填剤1として水酸化アルミニウム(難燃剤としての機能も兼ねる)100部、比誘電率の温度変化率が負の無機充填剤2としてチタン酸カルシウム 180部、及びフェノール系老化防止剤として3,5-ジ-t-ブチル-4-ヒドロキシアニソール 1部を混合してモノマー液を調製した。ここに上記触媒液をシクロオレフィンモノマー100gあたり0.12mLの割合で加えて撹拌し、重合性組成物を調製した。
Example 1
A catalyst solution was prepared by dissolving 51 parts of benzylidene (1,3-dimesityl-4-imidazolidin-2-ylidene) (tricyclohexylphosphine) ruthenium dichloride and 79 parts of triphenylphosphine in 952 parts of toluene. Separately, 100 parts of tetracyclododecene (TCD) as a cycloolefin monomer, 0.74 parts of divinylbenzene as a chain transfer agent, and 3,3,5,7,7-pentamethyl-1,2,4 as a crosslinking agent -2 parts of trioxepane (1 minute half-life temperature 205 ° C), 15 parts of benzyl methacrylate as a reactive fluidizing agent, 20 parts of trimethylolpropane trimethacrylate as a multifunctional crosslinking aid, positive temperature change rate of relative permittivity is positive 100 parts of aluminum hydroxide (also functioning as a flame retardant) as the inorganic filler 1, 180 parts of calcium titanate as the inorganic filler 2 having a negative relative dielectric constant temperature change, and 3, as the phenolic anti-aging agent A monomer solution was prepared by mixing 1 part of 5-di-t-butyl-4-hydroxyanisole. The said catalyst liquid was added here in the ratio of 0.12mL per 100g of cycloolefin monomers, and it stirred, and prepared the polymeric composition.
 ついで、得られた重合性組成物をガラスクロス(Eガラス)に含浸させ、これを120℃にて5分間で重合反応を行い、厚さ0.15mmのプリプレグ(架橋性樹脂成形体)を得た。また、プリプレグのガラスクロス含有量は40%であった。 Subsequently, the obtained polymerizable composition was impregnated into glass cloth (E glass), and this was subjected to a polymerization reaction at 120 ° C. for 5 minutes to obtain a prepreg (crosslinkable resin molded article) having a thickness of 0.15 mm. It was. The glass cloth content of the prepreg was 40%.
 次に、作製したプリプレグシート6枚を重ね、さらに厚さ12μmのF2銅箔(シランカップリング剤処理電解銅箔、粗度Rz=1,600nm、古河サーキットホイル社製)で、積層したプリプレグシートを挟み、205℃で20分間、3MPaにて加熱プレスを行い、架橋樹脂成形体が積層された積層体を得た。得られた積層体の比誘電率、誘電正接、比誘電率の温度変化率、耐熱性及び耐クラック性を評価した。その結果を表1に示す。 Next, the 6 prepreg sheets prepared were stacked and further laminated with a 12 μm thick F2 copper foil (silane coupling agent-treated electrolytic copper foil, roughness Rz = 1,600 nm, manufactured by Furukawa Circuit Foil Co., Ltd.). And a heat press at 3 MPa for 20 minutes at 205 ° C. to obtain a laminate in which the cross-linked resin molded bodies were laminated. The obtained laminate was evaluated for relative permittivity, dielectric loss tangent, temperature change rate of relative permittivity, heat resistance and crack resistance. The results are shown in Table 1.
実施例2
 シクロオレフィンモノマーをTCD 80部とジシクロペンタジエン 20部とし、比誘電率の温度変化率が正の無機充填剤1を水酸化マグネシウム(難燃剤としての機能も兼ねる)140部とした以外は実施例1と同様にしてプリプレグ及び積層体を得、各特性を評価した。その結果を表1に示す。
Example 2
Example except that 80 parts of TCD and 20 parts of dicyclopentadiene are used as the cycloolefin monomer, and 140 parts of the inorganic filler 1 whose temperature change rate of the relative dielectric constant is positive is used as magnesium hydroxide (also functioning as a flame retardant). In the same manner as in Example 1, prepregs and laminates were obtained, and each characteristic was evaluated. The results are shown in Table 1.
実施例3
 比誘電率の温度変化率が正の無機充填剤1をチタン酸マグネシウム 140部とし、比誘電率の温度変化率が負の無機充填剤2をチタン酸ストロンチウム 130部とした以外は実施例1と同様にしてプリプレグ及び積層体を得、各特性を評価した。その結果を表1に示す。
Example 3
Example 1 except that inorganic filler 1 having a positive relative dielectric constant temperature change rate is 140 parts of magnesium titanate and inorganic filler 2 having a negative relative dielectric constant temperature change rate is 130 parts of strontium titanate. Similarly, a prepreg and a laminate were obtained, and each characteristic was evaluated. The results are shown in Table 1.
実施例4
 連鎖移動剤をアリルメタクリレートとし、比誘電率の温度変化率が正の無機充填剤1をチタン酸マグネシウム 140部とし、比誘電率の温度変化率が負の無機充填剤2をチタン酸ストロンチウム 130部とした以外は実施例1と同様にしてプリプレグ及び積層体を得、各特性を評価した。その結果を表1に示す。
Example 4
The chain transfer agent is allyl methacrylate, the inorganic filler 1 whose relative dielectric constant temperature change rate is positive is 140 parts of magnesium titanate, and the inorganic filler 2 whose relative dielectric constant temperature change rate is negative is 130 parts of strontium titanate. Except that, a prepreg and a laminate were obtained in the same manner as in Example 1, and each characteristic was evaluated. The results are shown in Table 1.
実施例5
 比誘電率の温度変化率が正の無機充填剤1をチタン酸マグネシウム 140部とし、比誘電率の温度変化率が負の無機充填剤2をチタン酸ストロンチウム 130部とした以外は実施例2と同様にしてプリプレグ及び積層体を得、各特性を評価した。その結果を表1に示す。
Example 5
Example 2 except that inorganic filler 1 having a positive relative dielectric constant temperature change rate is 140 parts of magnesium titanate and inorganic filler 2 having a negative relative dielectric constant temperature change rate is 130 parts of strontium titanate. Similarly, a prepreg and a laminate were obtained, and each characteristic was evaluated. The results are shown in Table 1.
比較例1
 ベンジルメタクリレートとトリメチロールプロパントリメタクリレートを用いない以外は実施例1と同様にしてプリプレグ及び積層体を得、各特性を評価した。その結果を表1に示す
Comparative Example 1
A prepreg and a laminate were obtained in the same manner as in Example 1 except that benzyl methacrylate and trimethylolpropane trimethacrylate were not used, and each characteristic was evaluated. The results are shown in Table 1.
比較例2
 テフロン(登録商標)(ポリテトラフルオロエチレン)に、実施例1で得られたプリプレグに配合したのと同じ無機充填剤を、該プリプレグの場合と同量配合し、厚さ0.15mmのシートを得、実施例1と同様にして積層体を作製して各特性を評価した。その結果を表1に示す。
Comparative Example 2
Teflon (registered trademark) (polytetrafluoroethylene) is blended with the same inorganic filler as that blended with the prepreg obtained in Example 1 in the same amount as in the case of the prepreg, and a sheet having a thickness of 0.15 mm is prepared. Thus, a laminate was produced in the same manner as in Example 1, and each characteristic was evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1より、実施例1~5で得られた積層体は評価した各特性のいずれもが概してバランス良く優れることが分かる。これに対し、架橋助剤を含まない重合性組成物を用いて得られた比較例1の積層体は耐熱性及び耐クラック性に劣り、樹脂層のマトリックス樹脂をテフロン(登録商標)として得られた比較例2の積層体は比誘電率の温度変化が大きく、耐熱性及び耐クラック性に劣ることが分かる。 From Table 1, it can be seen that the laminates obtained in Examples 1 to 5 are generally excellent in balance in each of the evaluated properties. In contrast, the laminate of Comparative Example 1 obtained using a polymerizable composition that does not contain a crosslinking aid is inferior in heat resistance and crack resistance, and the matrix resin of the resin layer is obtained as Teflon (registered trademark). In addition, it can be seen that the laminate of Comparative Example 2 has a large relative dielectric constant temperature change and is inferior in heat resistance and crack resistance.
実施例6
 実施例5で作製した積層体に対し、コンデンサ、インダクタ、及びマイクロストリップラインを載置し、プリント基板製造分野における常法に従って誘電体デバイスを作製した。
Example 6
A capacitor, an inductor, and a microstrip line were placed on the laminate produced in Example 5, and a dielectric device was produced according to a conventional method in the printed circuit board manufacturing field.
 誘電体デバイスとして具体的に、無線通信機器の送信部Txモジュールを構成する、パワーアンプ部PAとバンドパスフィルタBPFとを積層基板の表面に配置してなる、PAをBPFと積層モジュール化したPA積層モジュールを作製した。 Specifically, as a dielectric device, a power amplifier PA and a bandpass filter BPF constituting a transmitter Tx module of a wireless communication device are arranged on the surface of a multilayer substrate, and PA is a multilayer module PA combined with BPF A laminated module was produced.
 図1に、無線通信機器の送信部Txモジュールのブロック図を示す。Txモジュールは、電圧制御発振器VCO、ミキサMIX、パワーアンプ部PA、及びバンドパスフィルタBPFを備える。VCOで高周波搬送波を発生させ、信号入力端子BB INよりベースバンド信号を入力し、MIXで高周波搬送波とベースバンド信号を混合した高周波信号を作り出す。次にPAで高周波信号を増幅し、BPFを通して、必要な高周波信号だけが選択され、信号出力端子TX OUTを介してアンテナ部へと接続される。
 図1に示すTxモジュールにおいてはPAとBPFとが積層モジュール化されている。以下、作製したPA積層モジュールについて具体的に説明する。
FIG. 1 shows a block diagram of a transmission unit Tx module of a wireless communication device. The Tx module includes a voltage controlled oscillator VCO, a mixer MIX, a power amplifier unit PA, and a band pass filter BPF. A high frequency carrier wave is generated by the VCO, a baseband signal is input from the signal input terminal BB IN, and a high frequency signal in which the high frequency carrier wave and the baseband signal are mixed is created by MIX. Next, the high frequency signal is amplified by the PA, and only the necessary high frequency signal is selected through the BPF and connected to the antenna unit via the signal output terminal TX OUT.
In the Tx module shown in FIG. 1, PA and BPF are formed into a laminated module. Hereinafter, the produced PA laminated module will be specifically described.
 図2に、図1のTxモジュールに含まれるPAの回路図を示す。PAは、半導体素子の2段構成からなるIC1と、入力整合回路部IM1と、出力整合回路部OM1と、バイアス回路部BC1とを含んでいる。 FIG. 2 shows a circuit diagram of the PA included in the Tx module of FIG. The PA includes an IC 1 having a two-stage configuration of semiconductor elements, an input matching circuit unit IM1, an output matching circuit unit OM1, and a bias circuit unit BC1.
 IC1は、信号入力端子Pin1から入力された信号を増幅する役割を担い、IM1は、Pin1でのインピーダンスをIC1の入力インピーダンスに整合させる回路である。OM1は、IC1の出力インピーダンスとのBPFの入力インピーダンスを整合させる回路である。BC1は、直流電力を供給し、IC1に含まれる半導体を増幅素子として動作させる役割を担う。IM1は、インダクタL1とコンデンサC1、及びC2とが接続された回路で構成される。OM1は、インダクタL2とコンデンサC3、及びC4とが接続されている。また、BC1は、IC1で増幅された信号を電源端子Vcc1へ漏洩させないよう、高インピーダンスを持つインダクタ素子インダクタL3とL4と、接地コンデンサC5とC6により構成されている。 IC1 plays a role of amplifying the signal input from the signal input terminal Pin1, and IM1 is a circuit for matching the impedance at Pin1 with the input impedance of IC1. OM1 is a circuit that matches the input impedance of the BPF with the output impedance of IC1. BC1 plays a role of supplying DC power and operating a semiconductor included in IC1 as an amplifying element. IM1 includes a circuit in which an inductor L1 and capacitors C1 and C2 are connected. The inductor L2 and the capacitors C3 and C4 are connected to the OM1. BC1 is composed of inductor elements inductors L3 and L4 having high impedance and grounding capacitors C5 and C6 so as not to leak the signal amplified by IC1 to the power supply terminal Vcc1.
 図3は、PAとBPFを積層基板の表面に配置してなる、PAをBPFと積層モジュール化した、PA積層モジュールの完成状態における斜視図であり、図4は、図3のPA積層モジュールの完成状態における内部の接続構造を概略的に示す断面図である。 FIG. 3 is a perspective view in a completed state of a PA laminated module in which PA and BPF are arranged on the surface of the laminated substrate, and PA is made into a BPF laminated module. FIG. 4 is a perspective view of the PA laminated module of FIG. It is sectional drawing which shows schematically the internal connection structure in a completion state.
 PA積層モジュールは、積層基板100と、能動素子であるIC1と、受動素子であるBPF1と、インダクタ素子やコンデンサ素子等の受動素子60及び70と、Vcc1、Pin1、及びBPF入力端子、BPF出力端子、並びにTx Outと、接地用パターンと、貫通ビアホール40と、ブラインドビアホール30と、インナービアホール20、導体パターン50とを備える。受動素子60は、図2のBC1を構成する受動素子であり、受動素子70は、図2のIM1及びOM1をそれぞれ構成する受動素子である(図2参照)。 The PA laminated module includes a laminated substrate 100, an active element IC1, a passive element BPF1, passive elements 60 and 70 such as an inductor element and a capacitor element, Vcc1, Pin1, BPF input terminals, and a BPF output terminal. And Tx Out, a grounding pattern, a through via hole 40, a blind via hole 30, an inner via hole 20, and a conductor pattern 50. The passive element 60 is a passive element that configures BC1 of FIG. 2, and the passive element 70 is a passive element that configures IM1 and OM1 of FIG. 2 (see FIG. 2).
 積層基板100は、実施例5で得られた積層体を5つ積層してなる。能動素子であるIC1は、積層基板100の表面上に配置されている。IC1の電極は、半田付けにより、積層基板100の表面上に形成された導体パターンに接続されている。なお、接続は、ワイヤーボンディング等により行ってもよい。受動素子60と70及びBPFも、半田付けにて前記導体パターンに接続されている。 The laminated substrate 100 is formed by laminating five laminated bodies obtained in Example 5. IC1 which is an active element is disposed on the surface of the laminated substrate 100. The electrodes of the IC 1 are connected to a conductor pattern formed on the surface of the multilayer substrate 100 by soldering. The connection may be made by wire bonding or the like. Passive elements 60 and 70 and BPF are also connected to the conductor pattern by soldering.
 図4において、貫通ビアホール40は、積層基板100を厚さ方向に貫通し、接地導体層に導通している。ブラインドビアホール30は、積層基板100の表面に設けられた導体層50と、次層の導体層50との間を接続する。インナービアホール20は、積層基板100の内部に形成された導体層50を接続する。ブラインドビアホール30は、一端が積層基板100の内部で終端されており、インナービアホール20は両端が積層基板100の内部で終端されている。 In FIG. 4, the through via hole 40 penetrates the multilayer substrate 100 in the thickness direction and is electrically connected to the ground conductor layer. The blind via hole 30 connects between the conductor layer 50 provided on the surface of the multilayer substrate 100 and the next conductor layer 50. The inner via hole 20 connects the conductor layer 50 formed inside the multilayer substrate 100. One end of the blind via hole 30 is terminated inside the multilayer substrate 100, and both ends of the inner via hole 20 are terminated inside the multilayer substrate 100.
図5に、各種材料で作製した積層基板上に形成したマイクロストリップラインの伝送損失の測定結果を示す。測定には、実施例5で作製した積層体からなる積層基板を用いたもの(本実施例)、前記積層体を構成する架橋樹脂成形体部分(誘電体層)を低温焼成セラミック(LTCC)に変えた積層体からなる積層基板を用いたもの(LTCC製)、前記積層体を構成する架橋樹脂成形体部分のマトリックス樹脂をビスマレイミド・トリアジン樹脂に変えた積層体からなる積層基板を用いたもの(BTレジン製)、及び前記積層体を構成する架橋樹脂成形体部分のマトリックス樹脂をエポキシ樹脂に変えた積層体からなる積層基板を用いたもの(FR4製)を用いた。図5に示す結果によれば、本実施例のものでは、従来用いられている、上記の通りの、汎用樹脂材料、高機能樹脂材料、及び低温焼成セラミックを用いてなるものと比較して、伝送損失が少なく、周波数が高くなるほどその優位性が顕著になることが分かる。
 従って、モジュール基板上の配線において、ICのような能動素子同士を、ICとBPFのように、能動素子と受動素子とを、又はBPF出力端子からアンテナ入力端子のように、受動素子同士を、ストリップライン又はマイクロストリップラインの伝送ライン(通常、50Ωライン)で接続する場合、従来の汎用樹脂材料や低温焼成セラミック等を用いた基板を用いる場合と比較して、本発明の積層体からなる基板を用いた場合では、伝送損失が少なく、優れた省電力型のモジュールを作製することが可能である。
FIG. 5 shows the measurement results of the transmission loss of the microstrip line formed on the laminated substrate made of various materials. For the measurement, a laminate substrate made of the laminate produced in Example 5 was used (this example), and the crosslinked resin molded body portion (dielectric layer) constituting the laminate was used as a low-temperature fired ceramic (LTCC). Using a laminated substrate made of a changed laminated body (manufactured by LTCC), using a laminated substrate made of a laminated body in which the matrix resin of the cross-linked resin molded part constituting the laminated body is changed to a bismaleimide / triazine resin (Product made from BT resin) and the thing (product made from FR4) using the laminated substrate which consists of the laminated body which changed the matrix resin of the crosslinked resin molded object part which comprises the said laminated body into the epoxy resin were used. According to the results shown in FIG. 5, in the present example, as compared with the conventional one, as described above, using a general-purpose resin material, a high-functional resin material, and a low-temperature fired ceramic, It can be seen that the lower the transmission loss and the higher the frequency, the more significant the superiority.
Therefore, in the wiring on the module substrate, active elements such as IC, active elements and passive elements such as IC and BPF, or passive elements such as antenna input terminal from BPF output terminal, When connecting with a transmission line (usually 50Ω line) of a strip line or a microstrip line, the substrate made of the laminate of the present invention as compared with the case where a substrate using a conventional general-purpose resin material or low-temperature fired ceramic is used. Is used, it is possible to produce an excellent power-saving module with little transmission loss.
実施例7
 本発明の架橋性樹脂成形体や架橋樹脂成形体を用いて積層体を作製する際、それらの成形体に、例えば、銅箔を積層して導体層を設け、当該導体層に導体パターンを形成して所望の受動素子を作製することもできる。
図6に、代表的な受動素子であるバンドパスフィルタBPFの回路の一例を、図7に、本発明の積層体に設けられた導体層をパターン化してインダクタ素子及びコンデンサ素子を作製して得られたバンドパスフィルタの一例の斜視図を示す。図7では、積層基板内に形成されたバンドパスフィルタは、フィルタ内の電力漏れを防ぎ、なおかつ外部からのノイズを防止するために、上下を接地電極で覆われ、さらに周囲を、通過周波数のλ/2以下の間隔に配置され、接地電極に導通している、インナービアホール又はスルーホールによって囲まれている。かかるバンドパスフィルタも前記(誘電体デバイス)の項で述べた所望の電気的特性を良好に発現する。
Example 7
When producing a laminate using the crosslinkable resin molding or the crosslinked resin molding of the present invention, for example, a copper foil is laminated on the molded body to provide a conductor layer, and a conductor pattern is formed on the conductor layer. Thus, a desired passive element can be manufactured.
FIG. 6 shows an example of a circuit of a band-pass filter BPF which is a typical passive element. FIG. 7 shows an example in which an inductor element and a capacitor element are manufactured by patterning a conductor layer provided in the multilayer body of the present invention. The perspective view of an example of the obtained band pass filter is shown. In FIG. 7, the band-pass filter formed in the multilayer substrate is covered with the ground electrode on the top and bottom to prevent power leakage in the filter and to prevent noise from the outside, and further, the surroundings of the pass frequency are Surrounded by inner via holes or through holes that are arranged at intervals of λ / 2 or less and are connected to the ground electrode. Such a band-pass filter also exhibits the desired electrical characteristics described in the section (Dielectric device).
 図8には、各種材料で作製した1.8GHz帯バンドパスフィルタの通過帯域における伝送損失の測定結果を示す。測定には、本実施例のBPF(本実施例)、積層体を構成する架橋樹脂成形体部分(誘電体層)を低温焼成セラミック(LTCC)に変えて得られたBPF(LTCC製)、及び積層体を構成する架橋樹脂成形体のマトリックス樹脂をエポキシ樹脂に変えて得られたBPF(FR4製)を用いた。図8に示す結果によれば、本実施例のBPFでは、従来のLTCC製のBPFや汎用樹脂製のBPFと比べて伝送損失が非常に少ないことが分かる。 FIG. 8 shows the measurement results of transmission loss in the pass band of a 1.8 GHz band pass filter made of various materials. For the measurement, BPF (this example) of this example, BPF (manufactured by LTCC) obtained by changing the cross-linked resin molded part (dielectric layer) constituting the laminate to low-temperature fired ceramic (LTCC), and BPF (manufactured by FR4) obtained by changing the matrix resin of the crosslinked resin molded body constituting the laminate to an epoxy resin was used. According to the result shown in FIG. 8, it can be seen that the BPF of the present embodiment has a very small transmission loss as compared with the conventional LTCF BPF and general-purpose resin BPF.
 なお、バンドパスフィルタ回路は、上記のごとき、インダクタ素子やコンデンサ素子などの集中定数の組み合わせに限らず、分布定数を用いて形成することも可能である。例えば、図9に示すようなλ/4共振器によるバンドパスフィルタや図10に示すようなλ/2共振器によるバンドパスフィルタ等を、本発明の積層体からなる積層基板上、又は当該積層基板の内部に設けてもよい。このような分布定数による回路を用いた場合でも、本発明の積層体はQ値に優れており、低損失なバンドパスフイルタを作製するのに有用である。 Note that the bandpass filter circuit is not limited to a combination of lumped constants such as an inductor element and a capacitor element as described above, and can be formed using distributed constants. For example, a bandpass filter using a λ / 4 resonator as shown in FIG. 9 or a bandpass filter using a λ / 2 resonator as shown in FIG. It may be provided inside the substrate. Even when a circuit with such a distributed constant is used, the laminate of the present invention has an excellent Q value and is useful for producing a low-loss bandpass filter.
実施例8
本発明によれば、本発明の積層体を作製する際、銅箔を積層して導体層を設け、当該導体層に導体パターンを形成してインダクタやコンデンサ等所望の受動素子を作製することにより、バンドパスフィルタ等の受動素子を、本発明の積層体中に内蔵してなる積層基板を得ることもできる。
積層基板内に形成されたバンドパスフィルタは、フィルタ内の電力漏れを防ぎ、なおかつ外部からのノイズを防止するために、上下を接地電極で覆われ、さらに周囲を、通過周波数のλ/2以下の間隔に配置され、接地電極に導通している、インナービアホール又はスルーホールによって囲まれている。かかるバンドパスフィルタ内蔵基板は、実施例6で述べた伝送線路の低損失特性(図5)、及び実施例7で述べたバンドパスフィルタの低損失特性(図8)を併せ持ち、優れた低損失性を発揮することが可能である。また、従来、積層基板の上面に配置されていたBPFを内蔵することにより、高周波モジュールの実装面積が増加し、積層基板表面の実装面積が増加し、集積化、小型化に有利となる。更に、部品点数の削減、半田付け数の低減により、生産性及び信頼性の向上に大きく寄与する。
Example 8
According to the present invention, when producing the laminate of the present invention, a copper foil is laminated to provide a conductor layer, and a conductor pattern is formed on the conductor layer to produce a desired passive element such as an inductor or a capacitor. In addition, it is possible to obtain a multilayer substrate in which passive elements such as a bandpass filter are incorporated in the multilayer body of the present invention.
The bandpass filter formed in the multilayer substrate is covered with ground electrodes on the top and bottom to prevent power leakage in the filter and noise from the outside, and the surroundings are less than λ / 2 of the pass frequency. And is surrounded by an inner via hole or a through hole that is electrically connected to the ground electrode. Such a substrate with a built-in bandpass filter has both the low loss characteristic of the transmission line described in the sixth embodiment (FIG. 5) and the low loss characteristic of the bandpass filter described in the seventh embodiment (FIG. 8), and has excellent low loss. It is possible to demonstrate the nature. Further, by incorporating the BPF that has been conventionally disposed on the upper surface of the multilayer substrate, the mounting area of the high-frequency module is increased, the mounting area of the surface of the multilayer substrate is increased, which is advantageous for integration and miniaturization. Furthermore, the reduction of the number of parts and the number of soldering greatly contribute to the improvement of productivity and reliability.

Claims (9)

  1.  シクロオレフィンモノマー、重合触媒、架橋剤、架橋助剤、比誘電率の温度変化率が正の無機充填剤1、及び比誘電率の温度変化率が負の無機充填剤2を含有してなる重合性組成物。 Polymerization comprising a cycloolefin monomer, a polymerization catalyst, a crosslinking agent, a crosslinking aid, an inorganic filler 1 having a positive relative dielectric constant temperature change rate, and an inorganic filler 2 having a negative relative dielectric constant temperature change rate. Sex composition.
  2.  比誘電率の温度変化率が正の無機充填剤1の比誘電率が30以下である請求項1記載の重合性組成物。 The polymerizable composition according to claim 1, wherein the inorganic dielectric material 1 having a positive dielectric constant temperature change rate has a relative dielectric constant of 30 or less.
  3.  比誘電率の温度変化率が負の無機充填剤2の比誘電率が30以上である請求項1または2記載の重合性組成物。 The polymerizable composition according to claim 1 or 2, wherein the relative dielectric constant of the inorganic filler 2 whose negative dielectric constant temperature change rate is negative is 30 or more.
  4.  連鎖移動剤をさらに含むものである請求項1~3いずれか記載の重合性組成物。 The polymerizable composition according to any one of claims 1 to 3, further comprising a chain transfer agent.
  5.  請求項1~4いずれかに記載の重合性組成物を塊状重合してなる架橋性樹脂成形体。 A crosslinkable resin molded article obtained by bulk polymerization of the polymerizable composition according to any one of claims 1 to 4.
  6.  請求項1~4いずれかに記載の重合性組成物を塊状重合し、架橋してなる架橋樹脂成形体。 A crosslinked resin molded article obtained by bulk polymerization of the polymerizable composition according to any one of claims 1 to 4 and crosslinking.
  7.  少なくとも、請求項5に記載の架橋性樹脂成形体、又は請求項6に記載の架橋樹脂成形体を積層してなる積層体。 A laminate obtained by laminating at least the crosslinkable resin molded article according to claim 5 or the crosslinked resin molded article according to claim 6.
  8.  比誘電率の温度変化率が絶対値で200ppm/℃以下である請求項7記載の積層体。 The laminate according to claim 7, wherein the temperature change rate of relative permittivity is 200 ppm / ° C or less in absolute value.
  9.  請求項7または8に記載の積層体を用いてなる誘電体デバイス。 A dielectric device using the laminate according to claim 7 or 8.
PCT/JP2009/068135 2008-10-21 2009-10-21 Polymerizable composition, resin molded article, laminated article, and dielectric device WO2010047349A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010534831A JPWO2010047349A1 (en) 2008-10-21 2009-10-21 Polymerizable composition, resin molded body, laminate, and dielectric device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008271433 2008-10-21
JP2008-271433 2008-10-21

Publications (1)

Publication Number Publication Date
WO2010047349A1 true WO2010047349A1 (en) 2010-04-29

Family

ID=42119386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068135 WO2010047349A1 (en) 2008-10-21 2009-10-21 Polymerizable composition, resin molded article, laminated article, and dielectric device

Country Status (2)

Country Link
JP (1) JPWO2010047349A1 (en)
WO (1) WO2010047349A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063918A1 (en) * 2010-11-12 2012-05-18 国立大学法人東北大学 Multilayer wiring board
WO2012081691A1 (en) * 2010-12-17 2012-06-21 日本ゼオン株式会社 Crosslinkable resin molded body, crosslinked resin molded body, and laminate
CN102599055A (en) * 2012-03-17 2012-07-25 常熟市尚湖农业生态园有限公司 Quick propagating method for new guinea impatiens
JP2012140538A (en) * 2010-12-28 2012-07-26 Nippon Zeon Co Ltd Polymerizable composition, resin molded article and laminate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309625A (en) * 1994-05-12 1995-11-28 Otsuka Chem Co Ltd Conjugate fiber and its production
JPH08269229A (en) * 1994-11-07 1996-10-15 Rogers Corp Electrical base plate material comprising ceramic-filled composite polymer,having high dielectric constant and low thermal coefficient of dielectric constant
JPH09205320A (en) * 1995-11-24 1997-08-05 Otsuka Chem Co Ltd Electronic component material use resin component, manufacture of electronic component and design method for electronic component board
WO1998058987A1 (en) * 1997-06-20 1998-12-30 Nippon Zeon Co., Ltd. Polymer film and film capacitor
JP2000510639A (en) * 1996-05-07 2000-08-15 ヘキスト・セラニーズ・コーポレーション Polymer composition having temperature stable dielectric constant
JP2008143956A (en) * 2006-12-06 2008-06-26 Nippon Zeon Co Ltd Polymerizable composition, crosslinkable resin and method for producing the same
JP2008173979A (en) * 2008-02-06 2008-07-31 Nippon Zeon Co Ltd Laminate
JP2008184565A (en) * 2007-01-31 2008-08-14 Nippon Zeon Co Ltd Polymerizable composition and crosslinkable resin

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309625A (en) * 1994-05-12 1995-11-28 Otsuka Chem Co Ltd Conjugate fiber and its production
JPH08269229A (en) * 1994-11-07 1996-10-15 Rogers Corp Electrical base plate material comprising ceramic-filled composite polymer,having high dielectric constant and low thermal coefficient of dielectric constant
JPH09205320A (en) * 1995-11-24 1997-08-05 Otsuka Chem Co Ltd Electronic component material use resin component, manufacture of electronic component and design method for electronic component board
JP2000510639A (en) * 1996-05-07 2000-08-15 ヘキスト・セラニーズ・コーポレーション Polymer composition having temperature stable dielectric constant
WO1998058987A1 (en) * 1997-06-20 1998-12-30 Nippon Zeon Co., Ltd. Polymer film and film capacitor
JP2008143956A (en) * 2006-12-06 2008-06-26 Nippon Zeon Co Ltd Polymerizable composition, crosslinkable resin and method for producing the same
JP2008184565A (en) * 2007-01-31 2008-08-14 Nippon Zeon Co Ltd Polymerizable composition and crosslinkable resin
JP2008173979A (en) * 2008-02-06 2008-07-31 Nippon Zeon Co Ltd Laminate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063918A1 (en) * 2010-11-12 2012-05-18 国立大学法人東北大学 Multilayer wiring board
CN103222352A (en) * 2010-11-12 2013-07-24 国立大学法人东北大学 Multilayer wiring board
WO2012081691A1 (en) * 2010-12-17 2012-06-21 日本ゼオン株式会社 Crosslinkable resin molded body, crosslinked resin molded body, and laminate
CN103380177A (en) * 2010-12-17 2013-10-30 日本瑞翁株式会社 Crosslinkable resin molded body, crosslinked resin molded body, and laminate
US8759463B2 (en) 2010-12-17 2014-06-24 Zeon Corporation Cross-linkable resin shaped article, cross-linked resin shaped article and laminate
JP2012140538A (en) * 2010-12-28 2012-07-26 Nippon Zeon Co Ltd Polymerizable composition, resin molded article and laminate
CN102599055A (en) * 2012-03-17 2012-07-25 常熟市尚湖农业生态园有限公司 Quick propagating method for new guinea impatiens

Also Published As

Publication number Publication date
JPWO2010047349A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
WO2012063918A1 (en) Multilayer wiring board
KR101538195B1 (en) Curable resin composition, molded body using the same, prepreg and laminate
JP5644501B2 (en) Polymerizable composition, resin molded body, and laminate
WO2013146660A1 (en) Polymerizable composition, crosslinkable resin molded body, crosslinked resin molded body, and laminate
WO2010047349A1 (en) Polymerizable composition, resin molded article, laminated article, and dielectric device
JP2013203892A (en) Polymerizable composition, crosslinkable resin molding, crosslinked resin molding and laminate
JP5434442B2 (en) Polymerizable composition, resin molded body, and laminate
JP5212635B2 (en) High dielectric filler-containing polymerizable composition, prepreg, laminate, and dielectric device
JP5278305B2 (en) Polymerizable composition, resin molded body, and laminate
JP5278306B2 (en) Polymerizable composition, resin molded body, and laminate
JP5428286B2 (en) Thermally conductive filler-containing polymerizable composition, prepreg, and laminate
JP2009242720A (en) Polymerizable composition containing cycloolefin monomer having two or more unsaturated bonds in molecule and at least one of bonds thereof being metathesis-reactive, prepreg, and laminate product using it
JP2013076015A (en) Polymerizable composition, resin molding and laminate
JP5617373B2 (en) Manufacturing method of prepreg
JP4936016B2 (en) Polyhydric alcohol-containing polymerizable composition, prepreg, and laminate
JP5835228B2 (en) Crosslinkable resin molded body, crosslinked resin molded body, and laminate
JP2010084043A (en) Polymerizable composition, prepreg, and laminate
JP2012216684A (en) Composite multilayer substrate
WO2016031766A1 (en) Crosslinkable resin molded body, crosslinked resin molded body and laminate
JP2010106216A (en) Polymerizable composition containing phosphate and metal hydroxide, prepreg, and laminate
JP2010106218A (en) Phosphinate-containing polymerizable composition, prepreg and laminate
JP2010100684A (en) Inorganic filler-containing polymerizable composition, prepreg, layered product, and dielectric device
JP2011074292A (en) Polymerizable composition, resin molded product and laminate
JP2012216686A (en) Electronic component built-in multilayer substrate
JP2011132475A (en) Polymerizable composition, prepreg, and laminated form

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822046

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010534831

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09822046

Country of ref document: EP

Kind code of ref document: A1