WO2010046392A2 - Procédé d'application de revêtement par voie électrochimique - Google Patents

Procédé d'application de revêtement par voie électrochimique Download PDF

Info

Publication number
WO2010046392A2
WO2010046392A2 PCT/EP2009/063793 EP2009063793W WO2010046392A2 WO 2010046392 A2 WO2010046392 A2 WO 2010046392A2 EP 2009063793 W EP2009063793 W EP 2009063793W WO 2010046392 A2 WO2010046392 A2 WO 2010046392A2
Authority
WO
WIPO (PCT)
Prior art keywords
deposition
layer
pulse
coating method
pulses
Prior art date
Application number
PCT/EP2009/063793
Other languages
German (de)
English (en)
Other versions
WO2010046392A3 (fr
Inventor
Selma Hansal
Martina Halmdienst
Wolfgang Hansal
Original Assignee
Happy Plating Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Happy Plating Gmbh filed Critical Happy Plating Gmbh
Priority to EP09740674A priority Critical patent/EP2342371A2/fr
Publication of WO2010046392A2 publication Critical patent/WO2010046392A2/fr
Publication of WO2010046392A3 publication Critical patent/WO2010046392A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • C25D3/665Electroplating: Baths therefor from melts from ionic liquids

Definitions

  • the invention relates to an electrochemical coating method for the deposition of at least one layer on at least one workpiece in a deposition bath, comprising at least one deposition sequence that is repeated at least once, wherein at least two individual sequences are provided within the at least one deposition sequence, and each individual sequence is a specific deposition method and its use.
  • a method of the type mentioned in the opening paragraph is disclosed in CA 2 365 749 A. It relates to a method for producing in particular a gold-tin alloy, in which in a first step, a first component of the alloy and in a second step, the second component of the alloy is deposited.
  • the deposition method used in both steps is a classical pulse separation (Unipolar Pulse Plating).
  • the different constituents of the alloy are preferably deposited according to the selected current density, always using the same deposition method.
  • DE 40 09 914 A1 discloses a method in which a three-layer system is applied to a workpiece, wherein a second layer in the form of a zinc-nickel alloy is connected to a first layer of cobalt. Both layers are deposited by means of DC methods. This is followed by an electrolessly deposited chromate layer.
  • EP 1 122 989 B1 describes the combination of direct current with a reverse pulse method for depositing two layers. A similar method for depositing several layers can also be found in JP 2000-173 949 A.
  • Pulsed Pulse Plating multipulse system with cathodic and anodic phase, a sequence consists of up to 500 single pulses (Fig. 4)
  • Simple pulse sequences each consist of one type of cathodic and anodic pulses (reverse pulse plating). Such a method can be found for example in US 2002/033341 A.
  • a base current In addition to the variation and combination of different individual pulses within a sequence, a base current, a direct current, to which the actual pulse sequence is applied, is frequently also used.
  • pulse deposition By pulse deposition, several material properties of the deposited metal can be selectively changed. Behind this is always a variation of the electrochemical conditions on the setting of the individual pulse parameters during the deposition. While in DC deposition, the process can be varied only by the amount of current used for deposition (via the average current density), the user has a considerable set of different parameters available in pulse or inverse pulse separation. In addition to the average current density, these are the cathodic and anodic pulse current density, the cathodic and anodic pulse duration, the length of the pulse pause and the pulse frequency.
  • Derived quantities such as the duty cycle (ratio of the sum of the pulse durations per sequence to the sum of the length of the pulse pauses per sequence) and the ratio of anodic to cathodic current quantity per sequence are further important factors influencing the pulse deposition process. However, many of these parameters can not be varied completely independently of each other because they partially influence each other. The maximum pulse rate affects the structure and properties of the deposited metal layer.
  • the aim is to have a very finely crystalline metal precipitate with primary crystal sizes in the nanometer range.
  • the maximum pulse frequency (and thus the minimum possible pulse duration) is determined by the charge for charging (and discharging) the elec- trolytic bilayer necessary time determined. If this limit time is undershot, marked distortions of the applied rectangular pulses occur at the electrode surface (the workpiece to be coated), and the pulse deposition becomes uncontrollable and difficult to reproduce. Therefore, the process and the pulse sequence must be defined such that the time in which the charge and discharge of the double layer takes place is shorter than the pulse duration or the break after the pulse. It must be carried out separately for each electrolyte system a determination of the charging and discharging times.
  • the limitation by the mass transport is based on the depletion of the cations in the diffusion layer at the electrode or workpiece surface.
  • the pulse deposition can directly influence the structure and the thickness of the diffusion layers.
  • the metal ion concentration fluctuates in the rhythm of the pulse frequency, this is called a pulsating diffusion layer.
  • This is followed by another diffusion layer with a constant concentration gradient (stationary diffusion layer).
  • the depletion of cations in the pulsating diffusion layer limits the pulse current density, the depletion in the outer diffusion layer limits the average current density.
  • the practical current density can thus be slightly increased in comparison to direct current, a further increase in the mean current densities succeeds only when manipulating the current density distribution in the reverse pulse separation.
  • pulse current deposition is an improvement in precipitation properties that depends on the precipitation structure.
  • the precipitation structure is determined on the one hand by the formation of the primary crystallites of the deposited metal, and on the other by the further growth of these crystallites.
  • the ratio of crystallite formation to crystallite growth can be affected by pulse deposition (e.g., via pulse current density), pulse rate or duty cycle.
  • the classic and probably best-described application for pulse separation is printed circuit board production.
  • the copper system is considered a model substance.
  • each individual layer is deposited using one of the types of methods described above. However, this limits the material properties of the respective deposited layer. Furthermore, previously known only layer systems, which have a maximum of three individual layers.
  • the individual sequences change each other and are repeated at certain intervals.
  • the number of single pulses used, which are assigned to the individual sequences, goes into the hundreds.
  • layer properties can be achieved that can not be achieved with DC deposits, chemical deposits or conventional pulse depositions.
  • the coating uniformity increases.
  • the following results can be achieved by suitable combination of the individual sequences:
  • Tribological and hardness-related graded coating systems Parallel installation of micro- or nanoparticles;
  • each single sequence comprises at least one of the following deposition methods:
  • electrochemical pulse plating deposition and pulse reverse plating deposition electrochemical multipulse can be used in particular.
  • the deposition sequences used in the multipulse deposition according to the invention can consist, for example, of the following building blocks:
  • Pulse phase consisting of 2 - 500 either cathodic or anodic single pulses, each with the same or different pulse current density and pulse length, each followed by either
  • a cathodic pulse which differs from the preceding pulse in one or more of the pulse parameter pulse current density, pulse length, pulse shape or pulse frequency or
  • Pulse current phase consisting of 2 - 500 either cathodic or anodic single pulses each with the same or different pulse current density and pulse length but different current density or pulse length or pulse frequency to phase 1 respectively followed by either
  • a cathodic pulse which differs from the preceding pulse in one or more of the pulse parameter pulse current density, pulse length, pulse shape or pulse frequency or
  • An anodic pulse of any desired pulse current density, pulse length, pulse shape or pulse frequency (A ')
  • Pulse current phase consisting of 2 - 500 either cathodic or anodic single pulses, each with the same or different pulse current density and pulse length, each followed by (B ')
  • a cathodic pulse which differs from the preceding pulse in the pulse current density and pulse length, pulse shape or
  • a pulse phase consisting of one in the number of individual pulses within 2-500 arbitrary series of pulses each followed by either (B ")
  • a pulse phase of equal or opposite polarization consisting of one in the number of individual pulses within 2-500 arbitrary series of pulses each followed by either (C )
  • the length of the individual pulses and phases is in each case between 0.1 and 10,000 ms.
  • the current densities of the respective pulses or direct currents are between 0.01 A / dm2 and 100 A / dm2.
  • the individual phases can be applied with potential or current (density) in a controlled manner.
  • a break is advantageously provided between at least two successive individual sequences and / or after the expiration of a deposition sequence. This pause is obtained by the interruption of the externally supplied current.
  • the method according to the invention has a periodic sequence which has at least one DC phase followed by a pulse current phase.
  • the individual sequences or else the entire deposition sequence is superimposed with a base current, wherein the base current advantageously has between 1% and 75% of the current density.
  • the method according to the invention allows in particular a specific adjustment and change of the material properties of the applied layer if the duration of a single sequence is between 1 and 3000 microseconds.
  • the deposition takes place here from a deposition bath containing at least one aqueous solution of at least one salt or mixtures of salts, at least one molten salt or at least one ionic liquid or mixtures thereof.
  • the deposition bath additionally contains solids for incorporation into the at least one deposited layer.
  • solids include, in particular, particles, fibers, flakes and / or nanotubes (microscopically small, in particular tubular, structures with a diameter smaller than 100 nanometers).
  • the object is furthermore achieved by the coating method according to the invention in that the coating has at least four layers.
  • the layers can be applied by means of at least one of the following methods, wherein preferably at least two layers are applied with respectively different methods:
  • the multilayers can be combined in any order. Due to the selected combination, the resulting properties of the entire layer system can be controlled in a targeted manner.
  • the coating has four, five, six, seven, eight, nine, ten, eleven or twelve layers.
  • a first primary layer applied to the workpiece is followed by at least one second layer, which has a greater layer thickness than the primary layer.
  • the primary layer optionally allows better adhesion of the subsequent layer.
  • the second layer is followed by at least one third outer layer whose layer thickness is smaller than that of the second.
  • the third layer acts as a barrier against environmental influences of a chemical and / or mechanical nature.
  • the second layer is produced by means of an electroless process, and the primary layer and / or the final layer is produced by means of the multipulse process according to the invention.
  • the coating method according to the invention has proven particularly suitable for the use for depositing at least one layer on a metallic or non-metallic workpiece with a metallic coating, in particular it is suitable for workpieces made of aluminum, magnesium or titanium.
  • the application of layer systems with special material properties by the method according to the invention also allows the use of these materials in areas which in particular have high demands on the wear resistance of the workpieces.
  • the individual layer layers as components of a total layer system can consist in particular of the following materials: electrolytically deposited metals and their alloys: nickel (in particular also taking into account the nickel-phosphorus ratio), copper, tin, silver, platinum, gold, zinc, rhodium, antimony , Chromium, cadmium, iron, cobalt, indium, tungsten, rhenium, bismuth, manganese; chemically (without external power) deposited layers of the aforementioned metals and their alloys;
  • heat treatments and / or cleaning steps can be carried out between the individual layers.
  • FIG. 6 graphically depicts a deposition sequence P consisting of three individual sequences, namely a superimposed pulse plating sequence A, a unipolar pulse plating sequence B and a pulsed pulse plating sequence C.
  • the individual sequences A, B, C are interrupted by pulse pauses D. whose length is for example 5 ms, whereby in this case the power supply is interrupted from the outside.
  • This deposition sequence P is repeated up to 500 times in this embodiment of the coating process according to the invention.
  • the layer properties can be significantly influenced by the multipulse method.
  • An example of nickel shows that the structure of the layer can be flipped into lamellar (Fig. 8) only by employing the columnar multipole method of the present invention (Fig. 7) made according to the prior art reverse-pulse technique , It is also possible according to the invention to produce mixed types (FIG. 9) between columnar and lamellar.
  • electrolyte composition nickel sulfamate type, temperature 45 ° C.
  • Pulse parameter (Fiq.7 1 )
  • the nickel layers produced in this experiment by means of the multipulse method according to the invention have by far the highest microhardness.
  • the general layer structure (columnar / fine-crystalline / lamellar) can also be changed according to the invention.
  • the anodic portion plays an essential role in the deposition sequence.
  • the applied current is varied by, for example, pulses, the nature of the adsorbed species may change, and depending on the rate constant of the adsorption, the surface diffusion changes. This leads to different crystallization mechanisms and properties of the deposited precipitate.
  • All starting materials to be coated can be pretreated or activated in a manner known per se in preparation for a galvanic coating.
  • E2a chemical nickel bath with phosphorus content 2 - 4%
  • E2b chemical nickel bath with phosphorus content 4 - 9%
  • E2c chemical nickel bath with phosphorus content 9 - 12%
  • Substrate Aluminum alloy AISi20Fe5Ni2 Layer system:
  • Substrate Aluminum alloy AISi20Fe5Ni2 Layer system:
  • Substrate Aluminum Alloy Layer:
  • Fig. 11 from left to right:
  • Substrate Steel Layer:
  • Inventive method Shelf life of the layer system in the above-mentioned thermal shock test without occurrence of bubbles, flaking or cracking.
  • Substrate Steel Layer:
  • Fig. 12 from bottom to top:
  • Substrate Aluminum alloy Schichtsvstem:
  • Substrate Aluminum alloy coating system:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fuel Cell (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne un procédé d'application de revêtement par voie électrochimique pour le dépôt d'au moins une couche sur au moins une pièce dans un bain de dépôt. Le procédé selon l'invention comprend au moins une séquence de dépôt (P) qui est répétée au moins une fois et qui comprend au moins deux séquences individuelles (A, B, C) qui présentent chacune un procédé de dépôt spécifique. Selon l'invention, les au moins deux séquences individuelles (A, B, C) à l'intérieur d'une séquence de dépôt (P) présentent des procédés de dépôt différents.
PCT/EP2009/063793 2008-10-23 2009-10-21 Procédé d'application de revêtement par voie électrochimique WO2010046392A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09740674A EP2342371A2 (fr) 2008-10-23 2009-10-21 Procédé d'application de revêtement par voie électrochimique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1661/2008 2008-10-23
AT0166108A AT506583B9 (de) 2008-10-23 2008-10-23 Elektrochemisches beschichtungsverfahren

Publications (2)

Publication Number Publication Date
WO2010046392A2 true WO2010046392A2 (fr) 2010-04-29
WO2010046392A3 WO2010046392A3 (fr) 2010-07-15

Family

ID=41137170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/063793 WO2010046392A2 (fr) 2008-10-23 2009-10-21 Procédé d'application de revêtement par voie électrochimique

Country Status (3)

Country Link
EP (1) EP2342371A2 (fr)
AT (1) AT506583B9 (fr)
WO (1) WO2010046392A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3103897A1 (fr) 2015-06-11 2016-12-14 ThyssenKrupp Steel Europe AG Procédé de séparation électrochimique de couches anorganiques minces
DE102015217815A1 (de) 2015-09-17 2017-03-23 Robert Bosch Gmbh Verfahren zum Betrieb einer Batteriezelle
WO2017162235A1 (fr) * 2016-03-21 2017-09-28 Allectra GmbH Élément de raccordement pour le raccordement étanche aux gaz avec d'autres composants pour des systèmes de canalisations

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869971A (en) 1986-05-22 1989-09-26 Nee Chin Cheng Multilayer pulsed-current electrodeposition process
DE4009914A1 (de) 1989-03-28 1990-10-18 Usui Kokusai Sangyo Kk Hitze- und korrosionsresistenter galvanischer ueberzug
JP2000173949A (ja) 1998-12-09 2000-06-23 Fujitsu Ltd 半導体装置及びその製造方法並びにめっき方法及び装置
CA2365749A1 (fr) 2001-12-20 2003-06-20 The Governors Of The University Of Alberta Un procede d'electrodeposition et un materiau composite multicouche ainsi obtenu
EP1122989B1 (fr) 2000-02-01 2007-02-28 Shinko Electric Industries Co. Ltd. Procédé de placage pour le remplissage de trous de contact

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511438A (en) * 1983-04-05 1985-04-16 Harris Corporation Bi-metallic electroforming technique
JP4182002B2 (ja) * 2002-03-27 2008-11-19 アイル・コート・リミテッド 金属および合金にセラミック被膜を形成するプロセスと装置、およびこのプロセスによって生成される被膜
EP1526192A1 (fr) * 2003-10-24 2005-04-27 Siemens Aktiengesellschaft Procédé électrolytique pour la déposition d'une couche graduelle sur un substrat et composant
SE0403047D0 (sv) * 2004-12-14 2004-12-14 Polymer Kompositer I Goeteborg Pulse-plating method and apparatus
WO2006082218A1 (fr) * 2005-02-04 2006-08-10 Siemens Aktiengesellschaft Surface a microstructure reduisant la mouillabilite et procede de realisation associe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869971A (en) 1986-05-22 1989-09-26 Nee Chin Cheng Multilayer pulsed-current electrodeposition process
DE4009914A1 (de) 1989-03-28 1990-10-18 Usui Kokusai Sangyo Kk Hitze- und korrosionsresistenter galvanischer ueberzug
JP2000173949A (ja) 1998-12-09 2000-06-23 Fujitsu Ltd 半導体装置及びその製造方法並びにめっき方法及び装置
EP1122989B1 (fr) 2000-02-01 2007-02-28 Shinko Electric Industries Co. Ltd. Procédé de placage pour le remplissage de trous de contact
CA2365749A1 (fr) 2001-12-20 2003-06-20 The Governors Of The University Of Alberta Un procede d'electrodeposition et un materiau composite multicouche ainsi obtenu

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2342371A2

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3103897A1 (fr) 2015-06-11 2016-12-14 ThyssenKrupp Steel Europe AG Procédé de séparation électrochimique de couches anorganiques minces
DE102015217815A1 (de) 2015-09-17 2017-03-23 Robert Bosch Gmbh Verfahren zum Betrieb einer Batteriezelle
WO2017045948A1 (fr) 2015-09-17 2017-03-23 Robert Bosch Gmbh Procédé permettant de faire fonctionner un élément de batterie
WO2017162235A1 (fr) * 2016-03-21 2017-09-28 Allectra GmbH Élément de raccordement pour le raccordement étanche aux gaz avec d'autres composants pour des systèmes de canalisations

Also Published As

Publication number Publication date
AT506583A4 (de) 2009-10-15
AT506583B1 (de) 2009-10-15
WO2010046392A3 (fr) 2010-07-15
AT506583B9 (de) 2009-12-15
EP2342371A2 (fr) 2011-07-13

Similar Documents

Publication Publication Date Title
DE3687755T2 (de) Verfahren zum elektroplattieren einer geordneten legierung.
EP0862665B1 (fr) Procede de depot de couches metalliques par voie electrolytique
EP2588645B1 (fr) Procédé de dépôt d'une couche nickel-métal
DE2462448A1 (de) Flaechiger metallgegenstand, verfahren zu seiner herstellung sowie katalysator aus diesem metallgegenstand
EP1798313B1 (fr) Procédé pour la déposition des couches de chrome et d'alliage de chrome, sans fissure, résistantes contre la corrosion et dures
WO2021122106A1 (fr) Feuille de métal présentant une structure de surface déterministe et procédé de production d'un composant de métal en feuille formé et revêtu
DE1621321B2 (de) Verfahren zur herstellung eines festhaftenden korrosionsschutz ueberzuges auf mit zink ueberzogene stahlgegenstaende
EP1565596B1 (fr) Production de couches en chrome dur structurees
AT506583B9 (de) Elektrochemisches beschichtungsverfahren
DE10013298C2 (de) Verfahren zum Aufbringen einer Metallschicht auf Leichtmetalloberflächen und Anwendung des Verfahrens
DE10146559A1 (de) Verfahren zur Abscheidung einer Zink-Nickel-Legierung aus einem Elektrolyten
EP4010515A1 (fr) Procédé et système de revêtement électrolytique d'une bande et/ou d'un matériau tissé électriquement conducteurs au moyen d'une technologie à impulsions
WO2013164165A1 (fr) Revêtement de surface multicouche comprenant une couche de recouvrement en chrome sans couche en nickel
EP3517655A1 (fr) Procédé de chromage noir
DE10060127B4 (de) Elektrolytisches Eisenabscheidungsbad und Verfahren zum elektrolytischen Abscheiden von Eisen und Anwendungen des Verfahrens
EP1433879B1 (fr) Procédé de revêtement de surfaces métalliques avec une solution de phosphate alcalin, concentré aqueux et utilisation des surfaces métalliques ainsi revêtues
WO2022112379A1 (fr) Couche d'alliage de ruthénium et ses combinaisons de couches
DE3821402A1 (de) Verbesserte elektrogalvanisierte beschichtung fuer stahl
DE2165329A1 (de) Verfahren zum schnellen galvanischen Niederschlagen von Nickel
EP2975162A1 (fr) Procédé de revêtement de protection d'une pièce à usiner
AT412880B (de) Verfahren zum beschichten eines werkstückes aus titan oder einer titanlegierung mit einer funktionsschicht
WO2011036260A2 (fr) Procédé de galvanisation et de passivation
JPH09316682A (ja) Zn−Ni系合金電気めっき鋼板およびその製造方法
DE102009046733A1 (de) Verfahren zum wenigstens abschnittsweisen elektrochemischen Beschichten einer Oberfläche eines Werkstücks
DE102009041250A1 (de) Verfahren zur elektrolytischen Verkupferung von Zinkdruckguss mit verringerter Neigung zur Blasenbildung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09740674

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009740674

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009740674

Country of ref document: EP