WO2010041760A1 - Glass ceramics and process for production thereof, process for producing sintered glass ceramics, process for producing complex, molded article having photocatalytic function, and hydrophilic molded article - Google Patents

Glass ceramics and process for production thereof, process for producing sintered glass ceramics, process for producing complex, molded article having photocatalytic function, and hydrophilic molded article Download PDF

Info

Publication number
WO2010041760A1
WO2010041760A1 PCT/JP2009/067743 JP2009067743W WO2010041760A1 WO 2010041760 A1 WO2010041760 A1 WO 2010041760A1 JP 2009067743 W JP2009067743 W JP 2009067743W WO 2010041760 A1 WO2010041760 A1 WO 2010041760A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
glass
glass ceramic
tio
components
Prior art date
Application number
PCT/JP2009/067743
Other languages
French (fr)
Japanese (ja)
Inventor
杰 傅
Original Assignee
株式会社オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008264673A external-priority patent/JP5461814B2/en
Priority claimed from JP2008264672A external-priority patent/JP5461813B2/en
Application filed by 株式会社オハラ filed Critical 株式会社オハラ
Priority to CN200980140312.XA priority Critical patent/CN102177102B/en
Publication of WO2010041760A1 publication Critical patent/WO2010041760A1/en

Links

Images

Classifications

    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3

Definitions

  • the present invention relates to a glass ceramic and a method of manufacturing the same, a method of manufacturing a sintered body of glass ceramic, a method of manufacturing a composite, a photocatalyst functional molded body, and a hydrophilic molded body.
  • the present invention relates to a glass ceramic containing a crystalline phase that exhibits a catalytic action by irradiating light and a method for producing the same.
  • a photocatalyst is a material that absorbs light to be in a high energy state, and uses this energy to cause a chemical reaction on a reactant.
  • metal ions and metal complexes are also used as photocatalysts, it is known that inorganic titanium compounds of semiconductors such as titanium dioxide (TiO 2 ) particularly have high catalytic activity as photocatalysts, and they are most often used. It is done.
  • semiconductors usually do not conduct electricity, when they are irradiated with light of energy higher than the band gap energy, the electrons move to the conduction band and holes from which the electrons are released are generated. As a result, it has a strong redox power, and the redox reaction is strongly promoted.
  • the inorganic titanium compound having photocatalytic activity such as titanium oxide (TiO 2 ) is a very fine powder, if it is used as a treatment agent as it is, the powder is separated or recovered from the object to be treated was very difficult.
  • the photocatalytic substance is used in the form of having the photocatalyst fixed and supported on the surface of the substrate.
  • an inorganic titanium compound is used as a paint and applied or coated on the surface of a substrate, or formed into a film by a method such as vacuum deposition, sputtering, plasma or the like, or an inorganic titanium compound in a substrate.
  • a method such as vacuum deposition, sputtering, plasma or the like, or an inorganic titanium compound in a substrate.
  • JP 2008-81712 A as a coating agent used to form an inorganic titanium compound layer on the surface of a base material, an aqueous emulsion containing a synthetic resin as a dispersed phase contains a high concentration of inorganic titanium compound.
  • Photocatalytic coatings have been disclosed.
  • JP 2007-230812 A discloses a photocatalytic titanium oxide thin film formed by gas flow sputtering using a TiO y target.
  • the substrate on which the photocatalyst is supported is coated or coated with a photocatalytic substance (inorganic titanium compound) on the surface of the substrate using a vapor deposition (dry method) or impregnation (wet method) method. It is a thing. Therefore, there is a possibility that the coating film or the coating layer may be peeled from the substrate, and there is a problem that the durability is insufficient.
  • a photocatalytic substance inorganic titanium compound
  • an inorganic titanium compound contained in the substrate an attempt which gave photocatalytic properties as bulk material itself, for example, in JP-A-9-315837, SiO 2
  • a glass for photocatalyst containing a predetermined amount of each component of Al 2 O 3 , CaO, MgO, B 2 O 3 , ZrO 2 and TiO 2 .
  • the durability of the coating film or the coating layer is not sufficient, and there is a possibility that the coating film or the coating layer may peel off from the substrate.
  • a resin or an organic binder remaining in the coating film is decomposed by ultraviolet light or the like, or a catalyst of an inorganic titanium compound
  • the durability of the coating film tends to deteriorate over time.
  • inorganic titanium compound catalyst in order for the above-mentioned inorganic titanium compound catalyst to have sufficient photocatalytic activity, nano-sized particles are required, but such ultra-fine particles are expensive to produce and have a problem that they are easily aggregated. Furthermore, when such a photocatalytic coating agent is used, the fine powdery inorganic titanium compound is easily aggregated, so the preparation of the inorganic titanium compound layer tends to be difficult, and the photocatalytic properties of the inorganic titanium compound layer become insufficient. It was easy to become.
  • a photocatalyst member using a film forming method called a so-called dry process method disclosed in Japanese Patent Application Laid-Open No. 2007-230812 is also formed as a film. Therefore, not only there is the possibility that the photocatalytic properties will be deteriorated due to the peeling, but there is also a problem that the precise control of the atmosphere by an expensive device is required, and the manufacturing cost becomes extremely high.
  • the crystallized glass in which the photocatalyst crystals are dispersed in the entire glass has an advantage that the characteristics of the crystal can be utilized semipermanently, with almost no change with time such as cracking or peeling of the surface.
  • Japanese Patent Application Laid-Open Nos. 2008-120655 and 2009-57266 use TiO 2 -Bi 2 O 3 -B 2 O 3 -Al 2 O 3 -RO (R: alkaline earth metal) as a photocatalytic material.
  • R alkaline earth metal
  • Disclosed is a crystallized glass which is heat-treated to obtain crystals of titanium oxide.
  • JP 2008-81712 A JP 2007-230812 A Unexamined-Japanese-Patent No. 9-315837 JP 2008-120655 A JP, 2009-57266, A
  • anatase (anatase) type, rutile type (rutile type) and brookite type (Brookite type) are known, but to provide high photocatalytic properties, anatase type, rutile type and brookite type It is believed to be important to have one or more titanium oxides selected from, especially titanium oxides of anatase type and / or rutile type.
  • the present invention has been made in view of the above situation, and there is no need to process a thin film or coating on the surface, and a material having photocatalytic properties as a bulk material, specifically, the surface is excellent in durability,
  • another object of the present invention is to provide a method for producing the same glass ceramics, and a photocatalytic functional molded article and a hydrophilic molded article containing the glass ceramics produced by the production method.
  • the present invention provides a method for producing a glass ceramic sintered body having excellent durability and having crystals of titanium oxide with high probability, and a photocatalytic functional molded article including the glass ceramic sintered body produced by this method and Another object of the present invention is to provide a hydrophilic molded body.
  • the present invention is a method of producing a composite comprising a glass ceramic layer which is superior in durability to conventional resin coating films and the like and which has titanium oxide crystals with high probability, and a composite produced by this production method
  • Another object of the present invention is to provide a photocatalytic functional member including a body and a hydrophilic member.
  • the present invention it is not necessary to process thin films or coatings on the surface, and beads and fibers made of a material having excellent durability and having photocatalytic properties as a bulk material, specifically fine crystals having photocatalytic properties. It is another object of the present invention to provide glass ceramic beads and glass ceramic fibers which are present inside or on the surface of a material. Furthermore, another object of the present invention is to provide a method for producing the glass ceramic beads and the glass ceramic fiber, and a photocatalyst member using the glass ceramic bead and the glass ceramic fiber.
  • the present inventors do not need to use nano-sized raw materials according to a specific composition range and manufacturing method, and titanium oxide (TiO 2 ) and the like are included. It has been found that glass ceramics having fine crystals of an inorganic titanium compound can be obtained, and the present invention has been completed.
  • the present inventors shape
  • the present inventors arrange
  • the present inventors do not need to use nano-sized raw materials according to a specific composition range and manufacturing method, and glass ceramic beads having fine crystals of inorganic titanium compounds including titanium oxide (TiO 2 ) and It has been found that glass ceramic fibers can be obtained. In particular, it has been found that fine crystals of an inorganic titanium compound impart photocatalytic properties to glass ceramic beads and fibers.
  • the present invention provides the following.
  • the content of TiO 2 component is 15.0% to 95.0% or less in mol% with respect to the total mass of the glass ceramic composition in oxide conversion, and further, the SiO 2 component and / or the P 2 O 5 component Glass ceramics containing 3.0% or more and 85.0% or less.
  • MgO component 0 to 40.0% and / or CaO component 0 to 40.0%, and / or SrO component 0 to 40. 0% and / or BaO component 0 to 40.0%, and / or ZnO component 0 to 60.0% The glass ceramic according to any one of (1) to (4), which further contains each component of
  • the content of TiO 2 component is 15.0% to 90.0% or less, and the content of P 2 O 5 component is more than 10.0% and 85% by mol% with respect to the total mass of the glass ceramic composition in oxide conversion
  • the glass ceramic according to (14) which contains two or more components selected from the group consisting of Rn 2 O components and R 1 O components.
  • Rn 2 O component and / or R 2 O component is 0.1 to 60%, wherein Rn is at least one selected from Li, Na, K, Rb and Cs, and R 2 is Be And (1) to (10) containing at least one selected from Mg, Ca, Sr, and Ba).
  • the Rn 2 O component and / or the R 2 O component is 0.1 to 50% (wherein Rn is one or more selected from Li, Na, K, Rb, Cs, and R 2 is Be, Mg (19) or (20) containing at least one selected from Ca, Sr, and Ba).
  • At least one nonmetallic element component selected from the group consisting of an F component, a Cl component, a Br component, an S component, an N component, and a C component has an external ratio based on the total mass of the glass ceramic of the oxide conversion composition
  • the glass ceramic in any one of (1) to (22) contained 10.0% or less by mass%.
  • At least one metal element component selected from the group consisting of Cu, Ag, Au, Pd, Pt, Ru, and Rh is 10.0 by weight as a percentage of the total weight of the glass ceramic of the oxide conversion composition.
  • At least one metal element component selected from the group consisting of Cu, Ag, Au, Pd, Pt, Ru, and Rh is 5.0 or less by mass% of the total weight of the glass ceramic of the oxide conversion composition.
  • a photocatalytic functional glass-ceramics formed body comprising the glass-ceramics according to any one of (1) to (35).
  • a hydrophilic glass-ceramics molded article comprising the glass-ceramics according to any one of (1) to (35).
  • a melting step of mixing raw materials to obtain a melt, and cooling of the melt to obtain a glass body A glass ceramic comprising a step of: a reheating step of raising the temperature of the glass body to a temperature range exceeding a glass transition temperature; and a crystallization step of maintaining the temperature within the temperature range to form crystals. Production method.
  • a method for producing a sintered body of glass ceramic which comprises melting and vitrifying a raw material composition to produce a glass body having a composition according to any one of (1) to (35), and A manufacturing process comprising: a crushing step of crushing the glass body to prepare a crushed glass, a forming step of forming the crushed glass into a formed body of a desired shape, and a firing step of heating and sintering the formed body.
  • a metal element component consisting of one or more selected from the group consisting of Cu, Ag, Au, Pd, Pt, Ru, and Rh is mixed in a mass ratio of 0 to 10.0% with respect to the crushed glass or the mixture.
  • a photocatalytic functional molded article comprising a sintered body of glass ceramic and / or a composite produced by the method according to any one of (46) to (59).
  • a hydrophilic molded article comprising a sintered body of glass ceramic and / or a composite produced by the method according to any one of (46) to (59).
  • a glass-ceramics molded body comprising the glass-ceramics according to any one of (1) to (35) and having a form of fiber or bead.
  • crystal phase contains anatase TiO 2 and / or brookite TiO 2 (62) Glass ceramic body according.
  • a paint comprising the glass ceramic molded body according to any one of (62) to (64).
  • a purification device comprising the glass ceramic molded body according to any one of (62) to (64).
  • a filter comprising the glass ceramic molded body according to any one of (62) to (64).
  • the crystal phase of the inorganic titanium compound including titanium oxide (TiO 2 ) is easily precipitated. Since this crystal phase is uniformly deposited on the inside and the surface of the glass, there is no problem of peeling of the surface, and even if the surface is scraped, the cera glass ceramic with excellent photocatalytic performance and excellent durability, and its manufacturing method You can get
  • a glass ceramic having excellent durability and having crystals of titanium oxide with high probability is formed by forming a crushed glass into which a glass body in a predetermined composition range is crushed and baking the formed body.
  • a sintered body can be manufactured.
  • the glass ceramic sintered body can be designed in a desired shape, and thus is useful in various applications.
  • a glass having excellent durability and having a titanium oxide crystal with high probability is provided by arranging on a substrate a crushed glass obtained by crushing a glass body having a predetermined composition range and baking it.
  • a composite comprising a ceramic layer on a substrate can be produced.
  • the shape of the composite can be designed according to the shape of the substrate, and thus is useful in various applications.
  • the formation of the crystal phase exhibiting photocatalytic properties from the glass phase eliminates the necessity of using the nano-sized TiO 2 crystal material which is easily aggregated and difficult to handle. It is possible to dramatically facilitate titanium oxide crystals with a high probability.
  • the photocatalyst crystal of the inorganic titanium compound including titanium oxide (TiO 2 ) is easily precipitated. Since this crystal phase is uniformly deposited on the inside and the surface of the glass, there is no problem of surface peeling, and even if the surface is scraped, the photocatalytic performance is not inferior and the glass ceramic bead and the glass ceramic fiber having excellent durability And photocatalytic functional articles using the beads and the fibers, for example, photocatalytic functional fiber structures can be obtained.
  • the glass ceramic fiber of the present invention is particularly a fibrous photocatalyst, it has a large specific surface area, is less likely to scatter compared to the photocatalyst which is usually fine particles, and can be rolled up. It is easy.
  • the glass ceramic fiber of the present invention can be handled as a fiber body, it can be easily formed into an arbitrary shape, the filling density and the porosity can be easily set according to the purpose, and the container of any shape can be easily filled. it can.
  • the glass ceramic fiber of the present invention can be made cloth-like, wool-like, felt-like or the like according to the use.
  • the glass-ceramics fiber of this invention is a glass-ceramics fiber which consists of inorganic materials, it can exhibit the outstanding nonflammability, heat resistance, chemical durability, and intensity
  • the glass ceramic of the present invention contains 15.0% or more and 95.0% or less of the TiO 2 component in mol% with respect to the total mass of the glass ceramic having the composition in terms of oxide, and further contains the SiO 2 component and / or P 2 O It contains five components at 3.0% or more and 85.0% or less.
  • a combination of P 2 O 5 component and / or SiO 2 component with TiO 2 component by suppressing the content of these components within the above range, crystals of inorganic titanium compounds such as titanium oxide (TiO 2) It becomes easy to precipitate. Since these crystal phases are uniformly precipitated from glass, there is no problem of surface peeling, and even if the surface is scraped, the performance is not inferior and it is possible to obtain a glass ceramic excellent in durability.
  • the first glass-ceramics of the present invention contains 15.0% or more and 90.0% or less of TiO 2 component and 10 P 2 O 5 components in mole% with respect to the total mass of the glass-ceramic in terms of the oxide conversion composition.
  • the content is from 0% to 85.0%.
  • the first glass ceramic of the present invention can be produced by using either of the two production methods listed below.
  • One is a manufacturing method in which the raw material composition mixture is maintained at a temperature of 1250 ° C. or more to form a liquid phase at least partially, and then cooled and solidified.
  • the other one is a melting step of mixing the raw materials to obtain the melt, a cooling step of cooling the melt to obtain the glass body, and raising the temperature of the glass body to a temperature range exceeding the glass transition temperature And a crystallization step in which the temperature is maintained within the temperature range to form crystals.
  • the TiO 2 crystal phase is uniformly deposited on the inside and the surface of the glass, so there is no problem of surface peeling, and even if the surface is scraped, the performance is not inferior and the durability is excellent. Glass ceramics can be obtained.
  • composition range of each component which comprises the 1st glass ceramics of this invention is described below.
  • contents of the respective components are all represented by mol% with respect to the total mass of the glass ceramic in terms of the composition in terms of oxide.
  • oxide conversion composition means that the oxides, composite salts, metal fluorides, etc. used as raw materials of the glass component are oxidized when they are all decomposed and converted into oxides during melting. It is the composition which described each ingredient contained in glass on the basis of 100 mol% of the total thing mass of a thing.
  • the TiO 2 component precipitates from glass as crystals of TiO 2 or crystals of a compound with phosphorus by crystallization, and is an essential and essential component for providing photocatalytic properties.
  • the TiO 2 component precipitates from glass as crystals of TiO 2 or crystals of a compound with phosphorus by crystallization, and is an essential and essential component for providing photocatalytic properties.
  • the content of the TiO 2 component is 15.0% or more, the TiO 2 crystal phase is easily precipitated, and the concentration of the TiO 2 crystal in the glass ceramic is increased, thereby securing desired photocatalytic properties. be able to.
  • the content of the TiO 2 component exceeds 90.0%, vitrification becomes very difficult.
  • the content of the TiO 2 component relative to the total mass of the glass ceramic in terms of the oxide composition is preferably 15.0%, more preferably 25.0%, most preferably 30.0%, and preferably 90 .0%, more preferably 88.9%, still more preferably 85.0%, most preferably 80.0%.
  • the TiO 2 component can be contained in this glass ceramic using, for example, TiO 2 as a raw material.
  • the P 2 O 5 component is a component that constitutes the glass network structure.
  • the first glass-ceramics of the present invention can incorporate more TiO 2 components into the glass by using a phosphate-based glass in which the P 2 O 5 component is the main component of the network structure.
  • one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals It is easy to form.
  • the content of P 2 O 5 is less than 10.0%, vitrification is difficult, and when the content of P 2 O 5 exceeds 85.0%, the TiO 2 crystal phase becomes difficult to precipitate.
  • the content of the P 2 O 5 component is preferably 10.0%, more preferably 11.0%, still more preferably 15.0%, and most preferably 20% of the total weight of the glass ceramic in terms of the oxide composition.
  • the lower limit is preferably 0. 0%, preferably 85.0%, more preferably 84.9%, still more preferably 70.0%, and most preferably 60.0%.
  • the P 2 O 5 component is a glass ceramic using, for example, Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , Na (PO 3 ), BPO 4 , H 3 PO 4 etc. as raw materials. It can be contained inside.
  • the SiO 2 component constitutes a glass network structure and is a component that enhances the stability and chemical durability of the glass, and is present in the vicinity of the TiO 2 crystal phase on which Si 4+ ions are precipitated, for improving the photocatalytic activity. It is a component which contributes, and is a component which can be added arbitrarily. However, when the content of the SiO 2 component exceeds 60.0%, the meltability of the glass is deteriorated, and it becomes difficult to precipitate the TiO 2 crystal phase. Accordingly, the upper limit of the content of the SiO 2 component is preferably 60.0%, more preferably 45.0%, and most preferably 30.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the SiO 2 component can be contained in the glass ceramic using, for example, SiO 2 , K 2 SiF 6 , Na 2 SiF 6 or the like as a raw material.
  • the GeO 2 component is a component having a function similar to the above-described SiO 2, and is a component that can be optionally added to the first glass ceramic.
  • the content of the GeO 2 component is preferably 60.0%, more preferably 45.0%, and most preferably 30.0%.
  • the GeO 2 component can be contained in the glass ceramic using, for example, GeO 2 as a raw material.
  • the first glass ceramic preferably contains 60.0% or less of at least one or more components selected from a SiO 2 component and a GeO 2 component.
  • the meltability, stability and chemical durability of the glass are improved, and after the heat treatment Because the glass ceramic of the present invention is less likely to crack, a glass ceramic of higher mechanical strength can be easily obtained. Therefore, the total amount (SiO 2 + GeO 2 ) relative to the total mass of the glass ceramic in terms of the oxide composition is preferably 60.0%, more preferably 45.0%, and most preferably 30.0%.
  • the characteristics are further improved by containing SiO 2 component and / or GeO 2 component. . If the total amount of these components is less than 0.1%, the effect is not sufficient, so addition of 0.1% or more is preferable, 3.0% or more is more preferable, 5.0% or more is most preferable .
  • the Li 2 O component is a component that improves the meltability and stability of the glass and makes it difficult to cause cracks in the heat-treated glass ceramic, and lowers the glass transition temperature to keep the heat treatment temperature lower and has high photocatalytic activity It is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type, particularly anatase type TiO 2 crystals, and can be added optionally.
  • the content of the Li 2 O component exceeds 40.0%, the stability of the glass is rather deteriorated, and the precipitation of the TiO 2 crystal phase also becomes difficult.
  • the upper limit of the content of the Li 2 O component is preferably 40.0%, more preferably 30.0%, and most preferably 15.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • Li 2 O component may be contained in the glass ceramics, for example, using Li 2 CO 3 as a raw material, LiNO 3, LiF and the like.
  • the Na 2 O component is a component that improves the meltability and stability of the glass and makes it difficult to cause cracks in the heat-treated glass ceramic, and lowers the glass transition temperature to keep the heat treatment temperature lower and has high photocatalytic activity. It is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type, particularly anatase type TiO 2 crystals, and can be added optionally. However, when the content of the Na 2 O component exceeds 40.0%, the stability of the glass is rather deteriorated and the precipitation of the TiO 2 crystal phase also becomes difficult.
  • the content of the Na 2 O component is preferably 40.0%, more preferably 30.0%, and most preferably 15.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
  • Na 2 O component may be contained in the glass ceramics used as raw materials for example Na 2 O, Na 2 CO 3 , NaNO 3, NaF, Na 2 S, the Na 2 SiF 6 or the like.
  • the K 2 O component is a component that improves the meltability and stability of the glass and makes it difficult to cause cracks in the heat-treated glass ceramic, and lowers the glass transition temperature to keep the heat treatment temperature lower and has high photocatalytic activity. It is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type, particularly anatase type TiO 2 crystals, and can be added optionally. However, when the content of the K 2 O component exceeds 40.0%, the stability of the glass is rather deteriorated and the precipitation of the TiO 2 crystal phase also becomes difficult.
  • the upper limit of the content of the K 2 O component is preferably 40.0%, more preferably 30.0%, and most preferably 15.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the K 2 O component can be contained in the glass ceramic using, for example, K 2 CO 3 , KNO 3 , KF, KHF 2 , K 2 SiF 6 or the like as a raw material.
  • the Rb 2 O component is a component that improves the meltability and stability of the glass and makes it difficult to cause cracks in the heat-treated glass ceramic, and lowers the glass transition temperature to keep the heat treatment temperature lower and has high photocatalytic activity It is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type, particularly anatase type TiO 2 crystals, and can be added optionally.
  • the content of the Rb 2 O component exceeds 10.0%, the stability of the glass is rather deteriorated and the precipitation of the TiO 2 crystal phase also becomes difficult.
  • the content of the Rb 2 O component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%, based on the total mass of the glass ceramic in terms of the oxide conversion.
  • the Rb 2 O component can be contained in the glass ceramic using, for example, Rb 2 CO 3 or RbNO 3 as a raw material.
  • the Cs 2 O component is a component that improves the meltability and stability of the glass and makes it difficult to cause cracking in the heat-treated glass ceramic, and lowers the glass transition temperature to suppress the heat treatment temperature lower and has high photocatalytic activity. It is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type, particularly anatase type TiO 2 crystals, and can be added optionally. However, when the content of the Cs 2 O component exceeds 10.0%, the stability of the glass is rather deteriorated and the precipitation of the TiO 2 crystal phase also becomes difficult.
  • the upper limit of the content of the Cs 2 O component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the Cs 2 O component can be contained in the glass ceramic using, for example, Cs 2 CO 3 or CsNO 3 as a raw material.
  • the first glass-ceramics comprises at least one component selected from Rn 2 O (wherein R n is one or more selected from the group consisting of Li, Na, K, Rb, and Cs) component 40.0. It is preferable to contain% or less.
  • Rn is one or more selected from the group consisting of Li, Na, K, Rb, and Cs
  • the total amount of at least one or more components selected from the Rn 2 O component is preferably 40.0%, more preferably 30.0%, most preferably the total amount of the glass ceramic in terms of the oxide conversion composition.
  • the upper limit is 20.0%.
  • the MgO component is a component that improves the meltability and stability of the glass, and lowers the glass transition temperature to lower the heat treatment temperature, and is one or more selected from anatase type, rutile type and brookite type having high photocatalytic activity It is a component that facilitates the formation of TiO 2 crystals, particularly anatase type TiO 2 crystals, and can be added optionally.
  • the content of the MgO component exceeds 40.0%, the stability of the glass is rather deteriorated, and the precipitation of the TiO 2 crystal phase also becomes difficult.
  • the upper limit of the content of the MgO component is preferably 40.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the MgO component can be contained in the glass ceramic using, for example, MgCO 3 or MgF 2 as a raw material.
  • the CaO component is a component that improves the meltability and stability of the glass, and lowers the glass transition temperature to suppress the heat treatment temperature lower, and is one or more selected from anatase type, rutile type and brookite type having high photocatalytic activity It is a component that facilitates the formation of TiO 2 crystals, particularly anatase type TiO 2 crystals, and can be added optionally.
  • the content of the CaO component exceeds 40.0%, the stability of the glass is rather deteriorated and the precipitation of the TiO 2 crystal phase also becomes difficult.
  • the upper limit of the content of the CaO component is preferably 40.0%, more preferably 30.0%, and most preferably 25.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the CaO component can be contained in the glass ceramic using, for example, CaCO 3 or CaF 2 as a raw material.
  • the SrO component is a component that improves the meltability and stability of the glass, and lowers the glass transition temperature to suppress the heat treatment temperature lower, and is one or more selected from anatase type, rutile type and brookite type having high photocatalytic activity It is a component that facilitates the formation of TiO 2 crystals, particularly anatase type TiO 2 crystals, and can be added optionally. However, when the content of the SrO component exceeds 40.0%, the stability of the glass is rather deteriorated and the precipitation of the TiO 2 crystal phase also becomes difficult.
  • the upper limit of the content of the SrO component is preferably 40.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the SrO component can be contained in the glass ceramic using, for example, Sr (NO 3 ) 2 , SrF 2 or the like as a raw material.
  • the BaO component is a component that improves the meltability and stability of the glass, and lowers the glass transition temperature to suppress the heat treatment temperature lower, and is one or more selected from anatase type, rutile type and brookite type having high photocatalytic activity It is a component that facilitates the formation of TiO 2 crystals, particularly anatase type TiO 2 crystals, and can be added optionally.
  • the content of the BaO component exceeds 40.0%, the stability of the glass is rather deteriorated and the precipitation of the TiO 2 crystal phase also becomes difficult.
  • the upper limit of the content of the BaO component is preferably 40.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic having the oxide conversion composition.
  • the BaO component can be contained in the glass ceramic using, for example, BaCO 3 , Ba (NO 3 ) 2 or the like as a raw material.
  • the ZnO component is a component that improves the meltability and stability of the glass, and lowers the glass transition temperature to suppress the heat treatment temperature lower, and is one or more selected from anatase type, rutile type and brookite type having high photocatalytic activity. It is a component that facilitates the formation of TiO 2 crystals, particularly anatase type TiO 2 crystals, and can be added optionally.
  • the content of the ZnO component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of the TiO 2 crystal phase also becomes difficult. This tendency becomes more remarkable when the content of the ZnO component exceeds 60.0%.
  • the content of the ZnO component is preferably 60.0%, more preferably 50.0%, still more preferably 40.0%, most preferably 30.0% with respect to the total mass of the glass ceramic having the oxide conversion composition. Is the upper limit.
  • the ZnO component can be contained in the glass ceramic using, for example, ZnO, ZnF 2 or the like as a raw material.
  • the first glass ceramic comprises 50.0 or more of at least one component selected from R 1 O (wherein R is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) components. It is preferable to contain% or less. In particular, by setting the total amount of at least one or more components selected from R 1 O components to 50.0% or less, the stability of the glass is improved and the TiO 2 crystal phase is easily precipitated, so that the glass ceramic Catalyst activity can be secured. Therefore, the total amount of at least one or more components selected from the R 1 O components is preferably 50.0%, more preferably 40.0%, most preferably the total amount of the glass ceramic in terms of the oxide conversion composition. The upper limit is 30.0%.
  • R 1 O (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) component and Rn 2 O (wherein Rn is Li)
  • Rn is Li
  • Tg glass transition temperature
  • the total amount of at least one or more components selected from the R 1 O component and the Rn 2 O component is more than 60.0%, the stability of the glass is deteriorated and the precipitation of the TiO 2 crystal phase is also difficult Become. Therefore, the total amount (R 1 O + Rn 2 O) relative to the total mass of the glass ceramic of the oxide conversion composition is preferably 60.0%, more preferably 50.0%, still more preferably 40.0%, still more preferably The upper limit is 35.0%, and most preferably 30.0%.
  • the total amount (R 1 O + Rn 2 O) relative to the total mass of glass ceramics in terms of oxide composition is preferably 0.1%, more preferably 0.5%, most preferably 1.0% as the lower limit. .
  • R 1 O (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) component and Rn 2 O (wherein R n is It is preferable to contain 2 or more types among the components selected from 1 or more types of components selected from the group which consists of Li, Na, K, Rb, and Cs.
  • the first glass ceramic preferably contains two or more types of components selected from the R 1 O component and the Rn 2 O component, and more preferably contains three or more types.
  • the B 2 O 3 component is a component that constitutes a glass network structure and enhances the stability of the glass ceramic, and is a component that can be added arbitrarily. However, when the content exceeds 50.0%, the TiO 2 crystal phase tends to precipitate. Therefore, the content of the B 2 O 3 component is preferably 50.0%, more preferably 40.0%, still more preferably 30.0%, most preferably 20% of the total mass of the glass ceramic in terms of the oxide composition. .0% is the upper limit.
  • the B 2 O 3 component can be contained in the glass ceramic using, for example, H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 ⁇ 10H 2 O, BPO 4 and the like as raw materials.
  • the Al 2 O 3 component enhances the stability of the glass and the chemical durability of the glass ceramics, promotes the precipitation of the TiO 2 crystal phase from the glass, and Al 3+ ions form a solid solution in the TiO 2 crystal phase to be a photocatalyst. It is a component that contributes to the improvement of the characteristics, and is a component that can be added arbitrarily. However, if the content exceeds 30.0%, the melting temperature significantly increases and it becomes difficult to vitrify. Accordingly, the content of the Al 2 O 3 component is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the Al 2 O 3 component can be contained in the glass ceramic using, for example, Al 2 O 3 , Al (OH) 3 , AlF 3 or the like as a raw material.
  • the Ga 2 O 3 component is a component that enhances the stability of the glass, promotes the precipitation of the TiO 2 crystal phase from the glass, and the Ga 3+ ions contribute to the improvement of the photocatalytic properties by solid solution in the TiO 2 crystal phase Yes, it is a component that can be added arbitrarily. However, if the content exceeds 30.0%, the melting temperature significantly increases and it becomes difficult to vitrify. Accordingly, the upper limit of the content of the Ga 2 O 3 component is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%, based on the total mass of the glass ceramic in terms of the oxide composition.
  • the Ga 2 O 3 component can be contained in the glass ceramic using, for example, Ga 2 O 3 or GaF 3 as a raw material.
  • the In 2 O 3 component is a component having an effect similar to the above-described Al 2 O 3 and Ga 2 O 3, and is a component that can be added arbitrarily. However, since the In 2 O 3 component is expensive, its content is preferably 10.0% or less, more preferably 8.0% or less, and most preferably 5.0% or less . In 2 O 3 component may be contained in the glass ceramics used as the starting material for example In 2 O 3, InF 3, or the like.
  • the first glass ceramic may contain 50.0% or less of at least one or more components selected from B 2 O 3 components, Al 2 O 3 components, Ga 2 O 3 components, and In 2 O 3 components preferable.
  • the total amount of at least one or more components selected from these components is more easily precipitated, which contributes to further improvement of the photocatalytic properties of the glass ceramic. can do. Therefore, the total amount (B 2 O 3 + Al 2 O 3 + Ga 2 O 3 + In 2 O 3 ) relative to the total mass of glass ceramics in terms of oxide composition is preferably 50.0%, more preferably 40.0%, Most preferably, the upper limit is 30.0%.
  • the total amount (B 2 O 3 + Al 2 O 3 + Ga 2 O 3 + In 2 O 3 ) relative to the total mass of the glass ceramic in terms of the oxide composition is preferably 0.1%, more preferably 0.5%, Most preferably, the lower limit is 1.0%.
  • the ZrO 2 component is a component that enhances the chemical durability and promotes the precipitation of TiO 2 crystals, and the Zr 4+ ion forms a solid solution in the TiO 2 crystal phase to contribute to the improvement of the photocatalytic properties, and can be added arbitrarily It is an ingredient.
  • the content of the ZrO 2 component exceeds 20.0%, vitrification becomes difficult. Therefore, the content of the ZrO 2 component with respect to the total mass of the glass ceramic in terms of the oxide composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the ZrO 2 component can be contained in the glass ceramic using, for example, ZrO 2 or ZrF 4 as a raw material.
  • the SnO component promotes precipitation of TiO 2 crystals, suppresses the reduction of Ti 4+ to make it easy to obtain a TiO 2 crystal phase, and is a component that forms a solid solution in a TiO 2 crystal phase and is effective in improving photocatalytic properties
  • Ag, Au, and Pt ions described later that have the effect of enhancing the photocatalytic activity, they play a role as a reducing agent and indirectly contribute to the improvement of the photocatalytic activity, and are optional It is a component that can be added. However, if the content of these components exceeds 10.0%, the stability of the glass deteriorates and the photocatalytic properties also tend to deteriorate.
  • the upper limit of the content of the SnO component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the SnO component can be contained in the glass ceramic using, for example, SnO, SnO 2 , SnO 3 or the like as a raw material.
  • the first glass ceramic preferably contains 20.0% or less of at least one or more components selected from a ZrO 2 component and a SnO component.
  • the total amount (ZrO 2 + SnO) relative to the total mass of the glass ceramic in terms of the oxide composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the total amount of at least one or more components selected from these components is 0.1
  • the total amount (ZrO 2 + SnO) relative to the total mass of the glass ceramic in terms of the oxide composition is preferably 0.1%, more preferably 0.2%, and most preferably 0.5%.
  • the Nb 2 O 5 component is a component that enhances the meltability and stability of the glass, and is a component that improves the photocatalytic properties by being dissolved in the TiO 2 crystal phase or existing in the vicinity thereof, It is a component that can be added.
  • the content of the Nb 2 O 5 component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the Nb 2 O 5 component can be contained in the glass ceramic using, for example, Nb 2 O 5 as a raw material.
  • the Ta 2 O 5 component is a component that enhances the stability of the glass, and is a component that improves photocatalytic properties by being dissolved in the TiO 2 crystal phase or in the vicinity thereof, and a component that can be added arbitrarily It is.
  • the content of the component Ta 2 O 5 is preferably 50.0%, more preferably 30.0%, and most preferably 20.0%, based on the total mass of the glass ceramic in terms of the oxide composition.
  • the Ta 2 O 5 component can be contained in the glass ceramic using, for example, Ta 2 O 5 as a raw material.
  • the WO 3 component is a component that enhances the meltability and stability of the glass, and is a component that improves the photocatalytic properties by being dissolved in the TiO 2 crystal phase or in the vicinity thereof, and can be added arbitrarily It is an ingredient.
  • the content of the WO 3 component exceeds 50.0%, the stability of the glass is significantly deteriorated.
  • the upper limit of the content of the WO 3 component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • WO 3 components can be contained in the glass ceramics used as the starting material for example WO 3 and the like.
  • the MoO 3 component is a component that enhances the meltability and stability of the glass, and is a component that improves the photocatalytic properties by being dissolved in the TiO 2 crystal phase or in the vicinity thereof, and can be added arbitrarily It is an ingredient.
  • the content of the MoO 3 component exceeds 50.0%, the stability of the glass is significantly deteriorated. Therefore, the content of the MoO 3 component with respect to the total mass of the glass ceramic in terms of oxide composition is preferably 50.0%, more preferably 30.0%, and most preferably 20.0%.
  • the MoO 3 component can be contained in this glass ceramic using, for example, MoO 3 as a raw material.
  • the first glass ceramic preferably contains 50.0% or less of at least one or more components selected from Nb 2 O 5 component, Ta 2 O 5 component, WO 3 component, and MoO 3 component.
  • the total amount (Nb 2 O 5 + Ta 2 O 5 + WO 3 + MoO 3 ) relative to the total mass of the glass ceramic in terms of oxide composition is preferably 50.0%, more preferably 30.0%, and most preferably 20 .0% is the upper limit.
  • the total amount of at least one or more components is preferably 0.1%, more preferably 0.5%, most preferably 1 .0% is the lower limit.
  • the Bi 2 O 3 component is a component that enhances the meltability and stability of the glass.
  • the heat treatment temperature is lowered by lowering the glass transition temperature (Tg)
  • one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals are formed. It is a component that can be easily added, and a component that can be added arbitrarily.
  • the content of the Bi 2 O 3 component exceeds 20.0%, the stability of the glass is deteriorated, and the precipitation of TiO 2 becomes difficult.
  • the content of the Bi 2 O 3 component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%, based on the total mass of the glass ceramic in terms of the oxide composition.
  • Bi 2 O 3 component may be contained in the glass ceramics used as the starting material for example Bi 2 O 3 and the like.
  • the TeO 2 component is a component that enhances the meltability and stability of the glass.
  • the heat treatment temperature is lowered by lowering the glass transition temperature (Tg)
  • one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals are formed. It is a component that can be easily added, and a component that can be added arbitrarily.
  • the content of the TeO 2 component exceeds 20.0%, the stability of the glass is deteriorated, and the precipitation of TiO 2 becomes difficult.
  • the content of the TeO 2 component with respect to the total mass of the glass ceramic in terms of the oxide composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the TeO 2 component can be contained in the glass ceramic using, for example, TeO 2 as a raw material.
  • the stability of the glass is significantly deteriorated.
  • the total amount of at least one or more components selected from the Ln a O b component is preferably 30.0%, more preferably 20.0%, most preferably, relative to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the upper limit is 10.0%.
  • the component L n a O b is, for example, La 2 O 3 , La (NO 3 ) 3 .XH 2 O (X is an arbitrary integer), Gd 2 O 3 , GdF 3 , Y 2 O 3 , YF 3 , CeO as a raw material. 2 , Nd 2 O 3 , Dy 2 O 3 , Yb 2 O 3 , Lu 2 O 3 or the like can be contained in the glass ceramic.
  • the second glass ceramic of the present invention contains 15.0 to 95.0% of a TiO 2 component, and a SiO 2 component and / or a P 2 O 5 component in mol%, based on the total mass of the glass in the oxide conversion composition. 3.0% to 70.0%, Rn 2 O component and / or R 2 O component 0.1 to 60%, wherein Rn is one selected from Li, Na, K, Rb and Cs As described above, R 2 is preferably one or more selected from Be, Mg, Ca, Sr, and Ba).
  • Rn is one selected from Li, Na, K, Rb and Cs
  • R 2 is preferably one or more selected from Be, Mg, Ca, Sr, and Ba).
  • the second glass ceramic preferably contains a TiO 2 component in the range of 15.0 to 95.0%.
  • the TiO 2 component precipitates from glass as a crystal of TiO 2 or a compound with phosphorus, an alkali metal or an alkaline earth metal by crystallization, and is an essential and essential component for providing photocatalytic properties. is there.
  • the content of the TiO 2 component is 15.0% or more, the photocatalyst crystals are easily precipitated and the concentration of the TiO 2 crystals in the glass ceramic is increased, so that the desired photocatalytic properties can be secured. it can.
  • the content of the TiO 2 component exceeds 95.0%, vitrification becomes very difficult.
  • the content of the TiO 2 component relative to the total mass of the glass ceramic in terms of the oxide composition is preferably 15.0%, more preferably 25.0%, and most preferably 30.0% as a lower limit, preferably 95
  • the upper limit is 0. 0%, more preferably 85.0%, and most preferably 80.0%.
  • the TiO 2 component can be contained in the glass ceramic by using, as a raw material, one or more TiO 2 selected from anatase type, rutile type and brookite type, for example.
  • the SiO 2 component constitutes a glass network structure and is a component that enhances the stability and chemical durability of the glass, and is present in the vicinity of the photocatalyst crystal on which Si 4+ ions are deposited, and contributes to the improvement of the photocatalytic activity It is a component, and is a component which can be optionally added to the second glass ceramic.
  • the content of the SiO 2 component exceeds 70.0%, the meltability of the glass is deteriorated, and it becomes difficult to precipitate photocatalyst crystals. Therefore, the content of the SiO 2 component is preferably 70.0%, more preferably 50.0%, and most preferably 30.0% as the upper limit of the content of the SiO 2 component with respect to the total mass of the glass ceramic having the oxide conversion composition.
  • the P 2 O 5 component constitutes a network structure of glass, is a component useful for incorporating more TiO 2 components into the glass, and can be optionally added to the second glass ceramic.
  • the inclusion of the P 2 O 5 component makes it possible to deposit photocatalytic crystals at a lower heat treatment temperature, and therefore, one or more TiOs selected from anatase type, rutile type and brookite type having high photocatalytic activity. Two crystals, in particular, anatase type TiO 2 crystals can be easily formed. However, when the content of P 2 O 5 exceeds 70.0%, it becomes difficult to precipitate photocatalyst crystals.
  • the upper limit of the content of the P 2 O 5 component is preferably 70.0%, more preferably 60.0%, and most preferably 50.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition. Further, by incorporating the P 2 O 5 component, TiO 2, TiP 2 O 7 , (TiO) 2 P 2 O 7, RnTi 2 (PO 4) 3, and R 2 Ti 4 (PO 4) 3 crystalline
  • the lower the content of the P 2 O 5 component, the lower limit is preferably at least 5%, more preferably 10%, and most preferably 20%.
  • the second glass ceramic preferably contains one or more of a SiO 2 component and / or a P 2 O 5 component in the range of 3.0 to 70.0% in total. These are formed oxides of glass and are important components for obtaining glass, so if the total amount is less than 3%, there is a high possibility that the glass can not be obtained.
  • the more preferable amount is 10% or more, and the most preferable amount is 25% or more.
  • the content is preferably 70% or less, more preferably 60% or less, and most preferably 50% or less.
  • the Li 2 O component is a component that improves the meltability and stability of the glass, and is a component that makes it difficult to cause cracking in the glass ceramic after heat treatment.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 And can be optionally added to the second glass ceramic.
  • the upper limit of the content of the Li 2 O component is preferably 50.0%, more preferably 30.0%, and most preferably 15.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the Na 2 O component is a component that improves the meltability and stability of the glass, and is a component that makes it difficult to cause cracking in the glass ceramics after heat treatment.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 It is a component that can be optionally added to the second glass ceramic.
  • the content of the Na 2 O component is preferably 50.0%, more preferably 30.0%, and most preferably 15.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the K 2 O component is a component that improves the meltability and stability of the glass, and is a component that makes it difficult for the glass ceramic after heat treatment to be cracked.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 It is a component that can be optionally added to the second glass ceramic.
  • the upper limit of the content of the K 2 O component is preferably 50.0%, more preferably 30.0%, and most preferably 15.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the Rb 2 O component is a component that improves the meltability and stability of the glass, and is a component that makes it difficult for the glass ceramic after heat treatment to be cracked.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 It is a component that can be optionally added to the second glass ceramic.
  • the content of the Rb 2 O component exceeds 10.0%, the stability of the glass is rather deteriorated, and the precipitation of photocatalyst crystals also becomes difficult. Therefore, the content of the Rb 2 O component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%, based on the total mass of the glass ceramic in terms of the oxide conversion.
  • the Cs 2 O component is a component that improves the meltability and stability of the glass, and is a component that makes it difficult to cause cracking in the glass ceramics after heat treatment.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 It is a component that can be optionally added to the second glass ceramic.
  • the upper limit of the content of the Cs 2 O component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the total amount of the above Rn 2 O components (wherein, R n is one or more selected from the group consisting of Li, Na, K, Rb and Cs) is preferably in the range of 0.1 to 50.0%. . If the content of these components is less than 0.1%, the meltability and stability of the glass will deteriorate. Therefore, the lower limit of the total amount of Rn 2 O components is preferably 0.1%, more preferably 0.5%, and most preferably 1.5%. In particular, when depositing RnTi 2 (PO 4 ) 3 or its solid solution useful for imparting photocatalytic performance, it is preferably 1.0% or more, more preferably 1.5% or more.
  • the mass sum of at least one or more components selected from the Rn 2 O component is preferably 50.0%, more preferably 30.0%, most preferably with respect to the total mass of the glass ceramic having the oxide conversion composition.
  • the upper limit is 20.0%.
  • the BeO component is a component that improves the meltability and stability of the glass.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2
  • It is a component that can be optionally added to the second glass ceramic.
  • the upper limit of the content of the BaO component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic having the oxide conversion composition.
  • the MgO component is a component that improves the meltability and stability of the glass.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2
  • It is a component that can be optionally added to the second glass ceramic.
  • the upper limit of the content of the MgO component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the CaO component is a component that improves the meltability and stability of the glass.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2
  • It is a component that can be optionally added to the second glass ceramic.
  • the upper limit of the content of the CaO component is preferably 50.0%, more preferably 30.0%, and most preferably 25.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the SrO component is a component that improves the meltability and stability of the glass.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2
  • It is a component that can be optionally added to the second glass ceramic.
  • the upper limit of the content of the SrO component is preferably 50.0%, more preferably 30.0%, most preferably 20.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the BaO component is a component that improves the meltability and stability of the glass.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2
  • It is a component that can be optionally added to the second glass ceramic.
  • the upper limit of the content of the BaO component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic having the oxide conversion composition.
  • the total amount of the above R 2 O components (wherein R 2 is one or more selected from the group consisting of Be, Mg, Ca, Sr, and Ba) is useful for providing photocatalytic performance with R 2 Ti 4 ( When precipitating PO 4 ) 6 or its solid solution, it is preferably 1.0% or more, more preferably 1.5% or more.
  • R 2 O components by setting the mass sum of at least one or more components selected from R 2 O components to 50.0% or less, the stability of the glass is improved and the photocatalyst crystals are easily precipitated. The catalytic activity can be secured. Accordingly, the mass sum of at least one or more components selected from the R 2 O components is preferably 50.0%, more preferably 40.0%, most preferably the total mass of the glass ceramic in terms of the oxide conversion composition. The upper limit is 30.0%.
  • Rn 2 O (wherein Rn is one or more selected from the group consisting of Li, Na, K, Rb, and Cs) component and R 2 O (wherein R 2 is It is preferable to contain 50.0% or less in total of at least one or more components selected from one or more components selected from the group consisting of Be, Mg, Ca, Sr, and Ba.
  • Tg glass transition temperature
  • the mass sum of at least one or more components selected from the Rn 2 O component and the R 2 O component is more than 50.0%, the stability of the glass is deteriorated, and the precipitation of photocatalyst crystals also becomes difficult. Therefore, the mass sum (Rn 2 O + R 2 O) relative to the total mass of the glass ceramic in terms of the oxide composition is preferably 50.0%, more preferably 40.0%, and most preferably 30.0%. .
  • the lower limit is at least 0.1%, more preferably 0.5%, and most preferably 1.0%.
  • Rn 2 O component Rn 2 O component
  • R 2 O R 2 O
  • R 2 is Be, Mg, Ca
  • the second glass ceramic preferably contains two or more of the components selected from the Rn 2 O component and the R 2 O component.
  • the B 2 O 3 component is a component that constitutes a glass network structure and enhances the stability of the glass ceramic, and is a component that can be added arbitrarily. However, when the content exceeds 40.0%, the tendency of precipitation of photocatalyst crystals becomes strong. Accordingly, the content of the B 2 O 3 component is preferably 40.0%, more preferably 25.0%, and most preferably 15.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the GeO 2 component is a component having a similar function to the above-described SiO 2 and contributes to the stability of the molten glass. Although it is an optional component that can be added to adjust the refractive index and viscosity of the mother glass member, it is a rare mineral resource and expensive, so it is preferable not to exceed 10%, more preferably 5% or less, most preferably all Does not contain
  • the Al 2 O 3 component enhances the stability of the glass and the chemical durability of the glass ceramic, promotes the precipitation of photocatalytic crystals from the glass, and improves the photocatalytic properties by dissolving Al 3+ ions in the TiO 2 crystal phase. It is a component which contributes to the above, and can be added arbitrarily. However, if the content exceeds 20.0%, the melting temperature significantly increases and it becomes difficult to vitrify. Accordingly, the upper limit of the content of the Al 2 O 3 component is preferably 20.0%, more preferably 12.0%, and most preferably 8.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the ZnO component is a component that improves the meltability and stability of the glass.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2
  • It is a component that can be optionally added to the second glass ceramic.
  • the upper limit of the content of the ZnO component is preferably 60.0%, more preferably 40.0%, and most preferably 30.0% with respect to the total mass of the glass ceramic having the oxide conversion composition.
  • the ZrO 2 component is a component that enhances chemical durability, promotes precipitation of photocatalyst crystals, and that Zr 4 + ions form a solid solution in the TiO 2 crystal phase to contribute to the improvement of photocatalytic properties, and can be added as desired. It is. However, when the content of the ZrO 2 component exceeds 20.0%, vitrification becomes difficult. Therefore, the content of the ZrO 2 component with respect to the total mass of the glass ceramic in terms of the oxide composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the SnO component promotes precipitation of photocatalytic crystals, suppresses the reduction of Ti 4+ to make it easy to obtain a TiO 2 crystal phase, and is a component that dissolves in the TiO 2 crystal phase and is effective in improving the photocatalytic properties. Also, when added together with Ag, Au or Pt ion described later which has the function of enhancing the photocatalytic activity, it plays a role of reducing agent and indirectly contributes to the improvement of the photocatalytic activity, and it is optionally added It is a possible ingredient. However, if the content of these components exceeds 10.0%, the stability of the glass deteriorates and the photocatalytic properties also tend to deteriorate. Therefore, the upper limit of the content of the SnO component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the Bi 2 O 3 component is a component that enhances the meltability and stability of the glass.
  • Tg glass transition temperature
  • one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals are formed. It is a component that can be easily added, and a component that can be added arbitrarily.
  • the content of the Bi 2 O 3 component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%, based on the total mass of the glass ceramic in terms of the oxide composition.
  • the TeO 2 component is a component that enhances the meltability and stability of the glass.
  • the heat treatment temperature is lowered by lowering the glass transition temperature (Tg)
  • one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals are formed. It is a component that can be easily added, and a component that can be added arbitrarily.
  • the content of the TeO 2 component exceeds 20.0%, the stability of the glass is deteriorated, and it becomes difficult to precipitate photocatalyst crystals. Therefore, the content of the TeO 2 component with respect to the total mass of the glass ceramic in terms of the oxide composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the total content of the Bi 2 O 3 component and / or the TeO 2 component preferably does not exceed 20%, more preferably 15%, and most preferably 10%.
  • the Nb 2 O 5 component is a component that enhances the meltability and stability of the glass, and is a component that improves the photocatalytic properties by being present in the vicinity of the photocatalyst crystal, and a component that can be optionally added to the second glass ceramic It is.
  • the upper limit of the content of the Nb 2 O 5 component is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the Ta 2 O 5 component is a component that enhances the stability of glass, is a component that improves the photocatalytic properties by being present in the vicinity of the photocatalyst crystal, and is a component that can be added arbitrarily.
  • the content of the component Ta 2 O 5 is preferably 30.0%, more preferably 20.0%, most preferably 10.0%, based on the total mass of the glass ceramic in terms of the oxide composition.
  • the WO 3 component is a component that enhances the meltability and stability of the glass, is a component that improves the photocatalytic properties by being present in the vicinity of the photocatalyst crystal, and is a component that can be added arbitrarily.
  • the upper limit of the content of the WO 3 component is preferably 30.0%, more preferably 20.0%, and most preferably 10.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the total amount of at least one or more components selected from the Nb 2 O 5 component, the Ta 2 O 5 component, and the WO 3 component is preferably 30.0% or less. If the amount is more than this range, the stability of the glass-ceramics will deteriorate and it will not be possible to form good glass-ceramics. More preferably, the upper limit is 20%, and most preferably 10%. Although it is possible to obtain a glass ceramic having high photocatalytic properties without containing any of the Nb 2 O 5 component, the Ta 2 O 5 component, and the WO 3 component, it is possible to obtain at least one selected from these components. By setting the mass sum of the above components to 0.1% or more, the photocatalytic properties of this glass ceramic can be further improved.
  • the mass sum (Nb 2 O 5 + Ta 2 O 5 + WO 3 ) with respect to the total mass of the glass ceramic of the oxide conversion composition is preferably 0.1%, more preferably 0.5%, most preferably 1.0.
  • the lower limit is%.
  • the WO 3 component is particularly effective in improving the photocatalytic properties.
  • the Ln 2 O 3 component (wherein, Ln is one or more selected from the group consisting of Y, Ce, La, Nd, Gd, Dy, and Yb) is a component that enhances the chemical durability of glass ceramics. By being present in the vicinity of the photocatalyst crystal, it is a component that improves the photocatalytic properties, and is a component that can be added arbitrarily. However, when the total content of Ln 2 O 3 components exceeds 30.0%, the stability of the glass is significantly deteriorated. Therefore, the mass sum of at least one or more components selected from the Ln 2 O 3 components is preferably 30.0%, more preferably 20.0%, most preferably, relative to the total mass of the glass ceramic in terms of the oxide conversion composition. The upper limit is 10.0%.
  • the third glass ceramic preferably contains a TiO 2 component in the range of 15.0 to 95.0%.
  • the TiO 2 component is crystallized to form crystals of TiO 2 or TiP 2 O 7 , (TiO) 2 P 2 O 7 , RnTi 2 (which is a compound of Ti and phosphorus / alkali metal / alkaline earth metal). Since it precipitates from glass as PO 4 ) 3 , R 2 Ti 4 (PO 4 ) 6 , and crystals (hereinafter referred to as photocatalyst crystals) of a solid solution thereof, it is an essential and indispensable component for providing photocatalytic properties. .
  • the content of the TiO 2 component when the content of the TiO 2 component is 15.0% or more, crystals of TiO 2 and its solid solution are easily precipitated, and the concentration of these crystals in the glass ceramic is increased, so that desired photocatalytic properties can be obtained. It can be secured.
  • the content of the TiO 2 component exceeds 95.0%, vitrification becomes very difficult, and it can not be formed into a desired shape. Therefore, the content of the TiO 2 component relative to the total mass of the glass ceramic in terms of the oxide composition is preferably 15.0%, more preferably 25.0%, and most preferably 30.0% as a lower limit, preferably 95 The upper limit is 0. 0%, more preferably 85.0%, and most preferably 80.0%.
  • the TiO 2 component can be contained in the glass ceramic using, for example, one or more TiO 2 selected from anatase type, rutile type and brookite type as a raw material.
  • the SiO 2 component constitutes a glass network structure and is a component that enhances the stability and chemical durability of the glass, and is present in the vicinity of the photocatalytic crystal phase on which Si 4+ ions are deposited, and contributes to the improvement of the photocatalytic activity And a component which can be optionally added to the third glass ceramic.
  • the content of the SiO 2 component exceeds 70.0%, not only the meltability and the spinnability of the glass deteriorate, but also the TiO 2 crystal phase becomes difficult to precipitate. Therefore, the content of the SiO 2 component is preferably 70.0%, more preferably 50.0%, and most preferably 30.0% as the upper limit of the content of the SiO 2 component with respect to the total mass of the glass ceramic having the oxide conversion composition.
  • the P 2 O 5 component constitutes a glass network structure, is a useful component for incorporating more TiO 2 components into the glass, and can be optionally added to the third glass ceramic.
  • the inclusion of the P 2 O 5 component makes it possible to deposit photocatalytic crystals at a lower heat treatment temperature, and therefore, one or more TiOs selected from anatase type, rutile type and brookite type having high photocatalytic activity. Two crystals, in particular, anatase type TiO 2 crystals can be easily formed.
  • Phosphorus is an essential component when forming TiP 2 O 7 and (TiO) 2 P 2 O 7 having photocatalytic activity.
  • the upper limit of the content of the P 2 O 5 component is preferably 70.0%, more preferably 60.0%, and most preferably 50.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the third glass ceramic preferably contains one or more of a SiO 2 component and / or a P 2 O 5 component in a total amount of 5.0 to 70.0%. These are formed oxides of glass and are important components for obtaining glass, and if the total amount is less than 5%, there is a high possibility that glass can not be obtained. Therefore, the content of one or more of them is preferably 5.0%, more preferably 10.0%, and most preferably 25.0%. On the other hand, when the amount exceeds 70.0%, it becomes difficult for the photocatalyst crystal to precipitate on glass. Therefore, the upper limit of the content of one or more of these is preferably 70.0%, more preferably 60.0%, and most preferably 50.0%.
  • the Li 2 O component is a component that improves the meltability and stability of the glass, and improves the elasticity while making it difficult to cause cracking to the glass ceramic after heat treatment.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals. It is a component that can be optionally added to the glass ceramic that constitutes the beads and fibers of the present invention.
  • the upper limit of the content of the Li 2 O component is preferably 50.0%, more preferably 30.0%, and most preferably 15.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the Na 2 O component is a component that improves the meltability and stability of the glass, and improves the elasticity while making it difficult to cause cracking to the glass ceramic after heat treatment.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals. It is a component that can be optionally added to the glass ceramic that constitutes the beads and fibers of the present invention.
  • the content of the Na 2 O component is preferably 50.0%, more preferably 30.0%, and most preferably 15.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the K 2 O component is a component that improves the meltability and stability of the glass, and improves the elasticity while making it difficult to cause cracking in the glass ceramic after heat treatment.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals. It is a component that can be optionally added to the glass ceramic that constitutes the beads and fibers of the present invention.
  • the upper limit of the content of the K 2 O component is preferably 50.0%, more preferably 30.0%, and most preferably 15.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the Rb 2 O component is a component that improves the meltability and stability of the glass, improves the elasticity while making it difficult to cause cracking to the glass ceramic after heat treatment.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals. It is a component that can be optionally added to the glass ceramic that constitutes the beads and fibers of the present invention.
  • the content of the Rb 2 O component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%, based on the total mass of the glass ceramic in terms of the oxide conversion.
  • the Cs 2 O component is a component that improves the meltability and stability of the glass, and improves the elasticity while making it difficult to cause cracks in the glass ceramic after heat treatment.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals.
  • It is a component that can be optionally added to the glass ceramic that constitutes the beads and fibers of the present invention.
  • the upper limit of the content of the Cs 2 O component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the Rn 2 O component is preferably the total amount of at most 50.0%.
  • the content is set to 50.0% or less, the stability of the glass is improved, and the photocatalyst crystal phase is easily deposited. Therefore, the catalytic activity of glass ceramics can be secured.
  • the spinnability of glass-ceramics can be improved. More preferably, the upper limit is 30.0%, and most preferably 20.0%.
  • the content is preferably 0.1% or more, more preferably 0.5% or more, and most preferably 1% or more.
  • the lower limit of the amount in order to precipitate a crystal of titanium phosphate alkali metal compound (RnTi 2 (PO 4 ) 3 ) useful for imparting photocatalytic performance or a solid solution thereof, the content is 1.0% or more, more preferably 1.5% It is preferable that it is more than.
  • the BeO component is a component that improves the meltability and stability of the glass, and lowers the glass transition temperature to lower the heat treatment temperature, and is one or more selected from anatase type, rutile type and brookite type having high photocatalytic activity. It is a component that facilitates the formation of TiO 2 crystals, particularly anatase type TiO 2 crystals, and can be optionally added to the third glass ceramic.
  • the content of the BeO component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of the photocatalyst crystal phase also becomes difficult.
  • the spinnability of the glass ceramic is reduced.
  • the upper limit of the content of the BaO component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic having the oxide conversion composition.
  • the MgO component is a component that improves the meltability and stability of the glass.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals.
  • It is a component that can be optionally added to the third glass ceramic.
  • the upper limit of the content of the MgO component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the CaO component is a component that improves the meltability and stability of the glass.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals.
  • It is a component that can be optionally added to the third glass ceramic.
  • the content of the CaO component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of the photocatalyst crystal phase also becomes difficult.
  • the spinnability of the glass ceramic is reduced.
  • the upper limit of the content of the CaO component is preferably 50.0%, more preferably 30.0%, and most preferably 25.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the SrO component is a component that improves the meltability and stability of the glass.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals.
  • It is a component that can be optionally added to the third glass ceramic.
  • the content of the SrO component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of the photocatalyst crystal phase also becomes difficult.
  • the spinnability of the glass ceramic is reduced.
  • the upper limit of the content of the SrO component is preferably 50.0%, more preferably 30.0%, most preferably 20.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the BaO component is a component that improves the meltability and stability of the glass.
  • the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals.
  • It is a component that can be optionally added to the third glass ceramic.
  • the content of the BaO component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of the photocatalyst crystal phase also becomes difficult.
  • the spinnability of the glass ceramic is reduced.
  • the upper limit of the content of the BaO component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic having the oxide conversion composition.
  • the total amount of the R 2 O components (R 2 is one or more selected from the group consisting of Be, Mg, Ca, Sr, and Ba) is preferably in the range of 60.0% or less. Since the stability of the glass is improved in this range and the TiO 2 crystal phase is easily precipitated, the catalytic activity of the glass ceramic can be secured. More preferably, the upper limit is 40.0%, and most preferably 30.0%. On the other hand, when depositing R 2 Ti 4 (PO 4 ) 6 or its solid solution useful for imparting photocatalytic performance, it is preferably 1.0% or more, more preferably 1.5% or more.
  • the third glass ceramic includes Rn 2 O (Rn is one or more selected from the group consisting of Li, Na, K, Rb, Cs) component and R 2 O (R 2 is Be, Mg, It is preferable to contain 60.0% or less in total of at least one or more components selected from one or more components selected from the group consisting of Ca, Sr, and Ba.
  • Rn 2 O is one or more selected from the group consisting of Li, Na, K, Rb, Cs
  • R 2 O is Be, Mg
  • Tg glass transition temperature
  • the spinnability of glass-ceramics can be improved.
  • the mass sum of at least one or more components selected from the Rn 2 O component and the R 2 O component is more than 60.0%, the stability of the glass is deteriorated and the precipitation of the TiO 2 crystal phase is also difficult. Become.
  • the mass sum (alkali metal oxide + alkaline earth metal oxide) relative to the total mass of the glass ceramic in terms of oxide composition is preferably 60.0%, more preferably 40.0%, and most preferably 30. The upper limit is 0%.
  • the lower limit is at least 0.1%, preferably 0.5%, more preferably 1.0%, and most preferably 1.5%.
  • the third glass ceramic preferably contains two or more types of components selected from the Rn 2 O component and the R 2 O component, and more preferably contains three or more types.
  • the B 2 O 3 component is a component that constitutes a glass network structure and enhances the stability of the glass ceramic, and is a component that can be added arbitrarily.
  • the content of the B 2 O 3 component is preferably 40.0%, more preferably 20.0%, and most preferably 10.0% as the upper limit of the content of the B 2 O 3 relative to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the GeO 2 component is a component having a similar function to the above-described SiO 2 and contributes to the stability of the molten glass. Although it is an optional component that can be added to adjust the refractive index and viscosity of the mother glass member, it is a rare mineral resource and expensive, so it is preferable not to exceed 10%, more preferably 8% or less, most preferably 5 % Or less.
  • the Al 2 O 3 component enhances the stability of the glass and the chemical durability of the glass ceramics, promotes the precipitation of photocatalytic crystals from the glass, and Al 3+ ions form a solid solution in these crystal phases to achieve photocatalytic properties. It is a component that contributes to the improvement, and is a component that can be added arbitrarily. However, if the content exceeds 20.0%, the melting temperature significantly increases and it becomes difficult to vitrify. Therefore, the content of the Al 2 O 3 component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0% as the upper limit of the content of the Al 2 O 3 relative to the total mass of the glass ceramic in terms of oxide composition.
  • the ZnO component is a component that improves the meltability and stability of the glass, and lowers the glass transition temperature to suppress the heat treatment temperature lower, and one or more TiO 2 crystals selected from anatase type, rutile type and brookite type In particular, it is a component that facilitates the formation of anatase type TiO 2 crystals, and is a component that can be optionally added to the third glass ceramic. It also has the effect of improving the weather resistance. However, if the content of the ZnO component exceeds 60.0%, the glass is likely to separate and devitrify, so that the stability of the glass is deteriorated and the precipitation of the photocatalytic crystal phase also becomes difficult. Therefore, the upper limit of the content of the ZnO component is preferably 60.0%, more preferably 40.0%, and most preferably 30.0% with respect to the total mass of the glass ceramic having the oxide conversion composition.
  • the ZrO 2 component is a component that enhances the chemical durability, promotes the precipitation of photocatalyst crystals, and that the Zr 4+ ions form a solid solution in these crystal phases to contribute to the improvement of the photocatalyst characteristics, and can be added arbitrarily It is.
  • the ZrO 2 component is an effective component for improving the alkali resistance of the glass ceramic fiber.
  • the content of the ZrO 2 component exceeds 20.0%, vitrification becomes difficult. Therefore, the content of the ZrO 2 component with respect to the total mass of the glass ceramic in terms of the oxide composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the SnO component promotes precipitation of photocatalytic crystals, suppresses the reduction of Ti 4+ to make it easy to obtain these crystal phases, and is a component having a solid solution in the photocatalytic crystal phase and having an effect of improving photocatalytic properties.
  • the upper limit of the content of the SnO component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the Bi 2 O 3 component is a component that enhances the meltability and stability of the glass.
  • Tg glass transition temperature
  • one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals are formed This component can be easily added and can be added arbitrarily.
  • the content of the Bi 2 O 3 component exceeds 20.0%, the stability of the glass is deteriorated, and it becomes difficult to precipitate desired photocatalyst crystals. Therefore, the content of the Bi 2 O 3 component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%, based on the total mass of the glass ceramic in terms of the oxide composition.
  • the TeO 2 component is a component that enhances the meltability and stability of the glass.
  • Tg glass transition temperature
  • one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals are formed This component can be easily added and can be added arbitrarily.
  • the content of the TeO 2 component exceeds 20.0%, the stability of the glass is deteriorated, and it becomes difficult to precipitate desired photocatalyst crystals.
  • the spinnability of the glass ceramic is reduced. Therefore, the content of the TeO 2 component with respect to the total mass of the glass ceramic in terms of the oxide composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the total content of the Bi 2 O 3 component and / or the TeO 2 component preferably does not exceed 20%, more preferably 15%, and most preferably 10%.
  • the Nb 2 O 5 component is a component that enhances the meltability and stability of the glass, and is a component that improves the photocatalytic properties by being present in the vicinity of the photocatalyst crystal, and is a component that can be optionally added to the third glass ceramic is there.
  • the upper limit of the content of the Nb 2 O 5 component is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the Ta 2 O 5 component is a component that enhances the stability of the glass, and is a component that improves the photocatalytic properties by being present in the vicinity of the photocatalyst crystal, and can be added arbitrarily.
  • the content of the component Ta 2 O 5 is preferably 30.0%, more preferably 20.0%, most preferably 10.0%, based on the total mass of the glass ceramic in terms of the oxide composition.
  • the WO 3 component is a component that enhances the meltability and stability of the glass, and is a component that improves the photocatalytic properties by being present in the vicinity of the photocatalytic crystal, and can be added arbitrarily.
  • the content of the WO 3 component exceeds 30.0%, the stability of the glass is significantly deteriorated.
  • the spinnability of the glass ceramic is reduced.
  • the upper limit of the content of the WO 3 component is preferably 30.0%, more preferably 20.0%, and most preferably 10.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
  • the total amount of at least one or more components selected from the Nb 2 O 5 component, the Ta 2 O 5 component, and the WO 3 component is preferably 30.0% or less. If the amount is more than this range, the stability of the glass is deteriorated, and it is not possible to form good glass ceramics. More preferably, the upper limit is 20.0%, and most preferably 10.0%. Although it is possible to obtain a glass ceramic having high photocatalytic properties without containing any of the Nb 2 O 5 component, the Ta 2 O 5 component, and the WO 3 component, it is possible to obtain at least one selected from these components. By setting the mass sum of the above components to 0.1% or more, the photocatalytic properties of the glass ceramic can be further improved.
  • the mass sum (Nb 2 O 5 + Ta 2 O 5 + WO 3 ) with respect to the total mass of the glass ceramic of the oxide conversion composition is preferably 0.1%, more preferably 0.5%, most preferably 1.0.
  • the lower limit is%.
  • the WO 3 component is particularly effective in improving the photocatalytic properties.
  • the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of Y, Ce, La, Nd, Gd, Dy, and Yb) is a component that enhances the chemical durability of the glass ceramic. . Further, it is a component that improves the photocatalytic properties by being solid-solved in the photocatalytic crystal phase or in the vicinity of the photocatalytic crystal, and is a component that can be added arbitrarily. However, when the total content of Ln 2 O 3 components exceeds 30.0%, the stability of the glass is significantly deteriorated. Therefore, the mass sum of at least one or more components selected from the Ln 2 O 3 components is preferably 30.0%, more preferably 20.0%, most preferably, relative to the total mass of the glass ceramic in terms of the oxide conversion composition. The upper limit is 10.0%.
  • the above-described first to third glass ceramics in the present invention are materials obtained by crystal phase precipitation in the glass phase by heat-treating glass. Therefore, not only the material consisting of the glass phase and the crystal phase but also a material in which all the glass phase has been changed to the crystal phase, that is, a material having a crystal amount (crystallization degree) of 100 wt% in the material may be included.
  • Engineering ceramics and ceramic sintered bodies obtained from generally used powders are difficult to be pore-free completely sintered bodies.
  • the glass-ceramics of the present invention can be distinguished from those glass-ceramics by the presence of such pores (e.g. porosity). Glass ceramics can control the particle size of crystals, the type of precipitated crystals, and the degree of crystallization by controlling the crystallization process, and thus they are effective means for producing desired crystals in producing a photocatalytic material.
  • the total amount of at least one or more components selected from the M x O y components is preferably 10.0%, more preferably 8.0%, and most preferably, based on the total mass of the glass ceramic having the oxide conversion composition.
  • the upper limit is 5.0%.
  • the As 2 O 3 component and the Sb 2 O 3 component are components for clarifying and degassing the glass ceramic.
  • it when it is added together with Ag, Au or Pt ion described later which has the function of enhancing the photocatalytic activity, it plays a role of a reducing agent, and therefore it is a component indirectly contributing to the improvement of the photocatalytic activity, It is a component that can be added.
  • the total content of these components exceeds 5.0%, the stability of the glass is deteriorated, and the photocatalytic properties are also easily deteriorated.
  • the total content of the As 2 O 3 component and / or the Sb 2 O 3 component with respect to the total mass of the glass ceramic in terms of oxide composition is preferably 5.0%, more preferably 3.0%, most preferably The upper limit is 1.0%.
  • As the As 2 O 3 component and the Sb 2 O 3 component as a raw material, for example, As 2 O 3 , As 2 O 5 , Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 ⁇ 5 H 2 O etc. It can be contained in glass ceramics.
  • the components for clarifying and degassing the glass ceramic of the present invention are not limited to the above As 2 O 3 component and Sb 2 O 3 component, for example, CeO 2 component, TeO 2 component, etc. Any of the known fining and defoaming agents in the field of glass making, or combinations thereof can be used.
  • the glass ceramic of the present invention may contain at least one nonmetallic element component selected from the group consisting of an F component, a Cl component, a Br component, an S component, an N component, and a C component.
  • These components are components that improve the photocatalytic properties by being solid-solved in the TiO 2 crystal phase or present in the vicinity of the photocatalyst crystal, and are components that can be added arbitrarily.
  • the total content of these components exceeds 10.0%, the stability of the glass is significantly deteriorated, and the photocatalytic properties are also easily deteriorated.
  • the spinnability of the glass ceramic is reduced.
  • the total content of non-metallic element components with respect to the total mass of the glass ceramic of the oxide conversion composition is preferably 10.0%, more preferably 5.0%, most preferably The upper limit is 3.0%.
  • These nonmetallic element components are preferably introduced into the glass ceramic in the form of alkali metal or alkaline earth metal fluorides, chlorides, bromides, sulfides, nitrides, carbides and the like.
  • the content of the nonmetallic element component in the present specification is based on the assumption that all of the cation components constituting the glass ceramic are made of an oxide combined with oxygen having only charge balance, and a glass made of these oxides
  • the total mass is 100%, and the mass of the nonmetallic element component is represented by mass% (externally divided mass% with respect to mass on an oxide basis).
  • the raw material of the nonmetallic element component is not particularly limited, but AlN 3 , SiN 4 etc. as the raw material of N component, NaS, Fe 2 S 3 , CaS 2 etc.
  • ZrF 4 , AlF 3 as the raw material of F component , NaF, CaF 2 etc. can be contained in glass ceramics by using NaCl, AgCl etc. as a raw material of Cl component, NaBr etc. as a raw material of Br component, TiC, SiC or ZrC as a raw material of C component . These raw materials may be added integrally or independently.
  • the glass ceramic of the present invention may contain at least one metal element component selected from Cu, Ag, Au, Pd, Pt, Ru, and Rh. These metal element components can be optionally added because the photocatalytic activity is improved by being present in the vicinity of the photocatalytic crystal phase. However, when the total content of these metal element components exceeds 10.0%, the stability of the glass is significantly deteriorated, and the photocatalytic properties are easily deteriorated. In addition, particularly when forming glass ceramic fibers, the spinnability of the glass ceramic is reduced. Accordingly, the total content of the metal element component with respect to the total mass of the glass ceramic having the oxide conversion composition is preferably 10.0%, more preferably 5.0%, still more preferably 3.0%, and most preferably 1. The upper limit is 0%.
  • metal element components can be contained in the glass ceramic using, for example, Cu 2 O, Ag 2 O, AuCl 3 , PtCl 4 or the like as a raw material.
  • the content of the metal element component in this specification assumes that all the cation components which comprise glass ceramics are made of the oxide couple
  • the mass of the metal element component is represented by mass%, assuming that the mass of 100% is 100%.
  • the glass ceramics of the present invention can not be directly represented in the description of mass% because the composition is represented by mol% with respect to the mass of the total mass of the glass ceramic of the oxide conversion composition, but various elements required in the present invention
  • the composition by mass% representation of each component present in the composition satisfying the characteristics takes approximately the following values in terms of oxide conversion composition.
  • lead compounds such as PbO, Th, Cd, Tl, Os, Be, Se, and Hg components tend to refrain from being used as harmful chemical substances in recent years, and not only manufacturing processes for glass ceramics but also processing processes And environmental measures are required to the disposal after commercialization. Therefore, in the case of emphasizing the environmental impact, it is preferable not to substantially contain them except for inevitable contamination. As a result, the glass ceramic is substantially free of substances that contaminate the environment. Therefore, the glass ceramic, and beads and fibers using the glass ceramic can be manufactured, processed, and discarded without taking special environmental measures.
  • the glass ceramic of the present invention comprises, as a crystal phase, TiO 2 (including any one or more of anatase TiO 2 , rutile TiO 2 , and brookite TiO 2 ), TiP 2 O 7 , (TiO) 2 P 2 And O 7 , RnTi 2 (PO 4 ) 3 , and R 2 Ti 4 (PO 4 ) 6 , and one or more of these solid solutions. These crystals are important crystals without providing photocatalytic properties to the glass ceramic of the present invention.
  • the anatase type is particularly preferable because it has a higher photocatalytic function than Rutile and Brookite types and imparts a higher photocatalytic function to glass ceramics.
  • the size (crystal grain size) of anatase type TiO 2 crystal grains is preferably 5 nm or more and 3 ⁇ m or less when the sphere approximation is performed.
  • the crystal grain diameter of the anatase type TiO 2 crystal is preferably 5 nm or more and 3 ⁇ m or less, more preferably 10 nm or more and 1 ⁇ m or less, and most preferably 10 nm or more and 600 nm or less from the viewpoint of extracting effective photocatalytic properties. Do.
  • D is the size of the crystal
  • is the wavelength of the X-ray
  • is the Bragg angle (half of the diffraction angle 2 ⁇ ).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • grains which show a crystal phase can be controlled to a desired magnitude
  • the crystal phase of the first glass ceramic preferably contains a crystal composed of one or more of TiO 2 , TiP 2 O 7 , and (TiO) 2 P 2 O 7 , and a solid solution thereof, It is more preferable that a crystal made of TiO 2 selected from the group consisting of anatase (Anatase) type, rutile (Rutile) type and brookite (Brookite) type is included. By containing these crystals, this glass ceramic can have a high photocatalytic function.
  • anatase type titanium oxide (TiO 2 ) has a particularly high photocatalytic function as compared with rutile type and brookite type, glass ceramics can have higher photocatalytic function.
  • crystal phases other than the above LiTi 2 (PO 4 ) 3 , NaTi 2 (PO 4 ) 3 , KTi 2 (PO 4 ) 3 , MgTi 4 (PO 4 ) 6 , CaTi 4 (PO 4 ) 6 , SrTi
  • titanium compounds such as 4 (PO 4 ) 6 , BaTi 4 (PO 4 ) 6 , and ZnTi 4 (PO 4 ) 6 coexist.
  • the first glass ceramic preferably has a crystallization ratio of 1.0% to 95.0% by volume ratio, which is an abundance ratio of particles showing a crystal phase to the whole of the glass ceramic.
  • the crystallization rate is 1.0% or more, this glass ceramic can have good photocatalytic properties.
  • the crystallization rate is 95.0% or less, the glass ceramic can obtain good mechanical strength. Therefore, the crystallization rate of the first glass ceramic is preferably 1.0%, more preferably 5.0%, most preferably 10.0% as a lower limit, preferably 95.0%, more preferably 90 .0%, most preferably 85.0% is the upper limit.
  • the second glass ceramic contains one or more selected from RnTi 2 (PO 4 ) 3 , R 2 Ti 4 (PO 4 ) 6 , and solid solutions thereof, and TiO 2 and / or either of these solid solutions.
  • Rn is one or more selected from Li, Na, K, Rb, and Cs
  • R 2 is one or more selected from Be, Mg, Ca, Sr, and Ba.
  • the second glass ceramic preferably contains a crystalline phase of TiO 2 or a solid solution thereof.
  • TiO 2 not only has excellent properties as a photocatalyst, but also has the property of being chemically stable that is not attacked by most acids, bases, and organic solvents, and is safe for the human body. It is a component used.
  • crystal forms of TiO 2 which are used industrially, rutile (rutile), anatase (anatase) and brookite (brookite) are known, but in order to provide high photocatalytic properties, anatase and rutile are used. It is preferable to contain one or more titanium oxides selected from a type and a brookite type.
  • the crystal of TiO 2 is preferably anatase type and / or rutile type, and more preferably anatase type.
  • the solid solution of TiO 2 is not limited in its kind because the solute substance is not fixed, and examples thereof include Ti 1-x Zr x O 2 and the like.
  • the second glass ceramic preferably has a crystal of an alkali metal titanium phosphate complex salt and / or an alkaline earth metal titanium phosphate complex salt.
  • These have a NASICON type structure, and when the TiO 2 crystal phase is simultaneously contained, higher photocatalytic effects can be found. Among them, the effects of RnTi 2 (PO 4 ) 3 and R 2 Ti 4 (PO 4 ) 6 are particularly remarkable. In addition, since the band gap energy can be adjusted by using these solid solutions, it is possible to improve the response to light.
  • the solid solution refers to a state in which two or more types of metallic solids or nonmetallic solids are dissolved in each other at the atomic level to form a homogeneous solid phase throughout, and may be referred to as mixed crystals.
  • mixed crystals Depending on how the solute atoms are dissolved, there are interstitial solid solutions in which elements smaller than the interstices of the crystal lattice enter, and substitutional solid solutions in which the parent phase atoms are replaced.
  • the titanium phosphate complex crystal for example, Li 1 + x Ti 2-x A x (PO 4 ) 3 (0 ⁇ x ⁇ 0.5, A is a trivalent metal ion), Li 1 + 3 x Ti 2 (P 1-x Si x O 4 ) 3 , LiTi 2-x A x (PO 4 ) 3 (A is a tetravalent metal ion), and the like.
  • the second glass ceramic preferably contains either or both of RnTi 2 (PO 4 ) 3 (or a solid solution thereof) and R 2 Ti 4 (PO 4 ) 6 (or a solid solution thereof).
  • crystallization which has the photocatalyst characteristic mentioned above, and its solid solution are generically named "photocatalyst crystal
  • the amount of the crystalline phase with respect to the whole of the second glass ceramic can be freely selected according to the purpose of use, such as emphasizing transparency or prioritizing photocatalytic properties, but 1.0% to 95% by volume ratio It is preferable to be in the following range.
  • the amount of crystalline phase precipitated out of the glass can be controlled by controlling the heat treatment conditions. When the amount of the crystal phase is large, the photocatalytic function tends to increase, but the mechanical strength and transparency of the entire glass ceramic may decrease, so the amount of the crystal phase is in the range of 95% or less by volume ratio It is preferable to set it as 93%, It is more preferable to set it as 93% or less, It is most preferable to set it as 90% or less. On the other hand, if the amount of crystal phase is small, effective photocatalytic properties can not be obtained, so the amount of crystal phase is preferably 1% or more by volume ratio, more preferably 3% or more, and most preferably 5% or more. preferable.
  • the third glass ceramic is limited to the above composition range as described above, and TiO 2 , TiP 2 O 7 , (TiO) 2 P 2 O 7 , RnTi 2 (PO 4 ) 3 , R 2 Ti 4 (PO 4 ) 6 and one or more crystals selected from solid solutions thereof (wherein R n is at least one selected from Li, Na, K, R b , Cs, and R 2 is Be And at least one selected from Mg, Ca, Sr, and Ba). By containing these crystals, the third glass ceramic exhibits a photocatalytic function.
  • the third glass ceramic preferably contains a crystalline phase of TiO 2 .
  • TiO 2 not only has excellent properties as a photocatalyst, but also has the property of being chemically stable that is not attacked by most acids, bases, and organic solvents, and is safe for the human body. It is a component used.
  • crystal forms of TiO 2 which are used industrially, rutile (rutile), anatase (anatase) and brookite (brookite) are known, but in order to provide high photocatalytic properties, anatase and rutile are used. It is preferable to contain one or more titanium oxides selected from a type and a brookite type.
  • the crystal of TiO 2 is preferably in the rutile type and / or the anatase type, and more preferably in the anatase type.
  • the solid solution of TiO 2 is not limited in its kind because the solute substance is not fixed, and examples thereof include Ti 1-x Zr x O 2 and the like.
  • the third glass ceramic is a titanium phosphate compound, in particular a crystal of TiP 2 O 7 , a crystal of (TiO) 2 P 2 O 7 or a solid solution thereof, a crystal of RnTi 2 (PO 4 ) 3 or a solid solution thereof, or R 2 Ti 4 ( It is preferable to contain a crystal of PO 4 ) 6 or a solid solution thereof.
  • the crystal phase with respect to the entire third glass ceramic can be freely selected according to the purpose of use, but is preferably in the range of 1.0% to 95% by volume ratio.
  • the amount of crystalline phase precipitated out of the glass can be controlled by controlling the heat treatment conditions.
  • the amount of the crystal phase is large, the photocatalytic function tends to increase, but the mechanical strength and transparency of the entire glass ceramic may decrease, so the amount of the crystal phase is in the range of 95% or less by volume ratio It is preferable to set it as 93%, It is more preferable to set it as 93% or less, It is most preferable to set it as 90% or less.
  • the amount of crystal phase is small, effective photocatalytic properties can not be obtained, so the amount of crystal phase is preferably 1% or more by volume ratio, more preferably 3% or more, and most preferably 5% or more. preferable.
  • the size of the crystals preferably has an average diameter of 5 nm to 30 ⁇ m when spherically approximated.
  • the size of the crystal is preferably in the range of 5 nm to 30 ⁇ m, preferably 5 nm to 20 ⁇ m. The range of 5 nm to 10 ⁇ m is most preferable.
  • the size of the crystals can be measured by a laser diffraction / scattering particle size distribution measuring apparatus.
  • the glass ceramic of the present invention preferably has an average linear expansion coefficient of 70 ⁇ 10 ⁇ 7 / ° C. or less. Thereby, the glass ceramic can maintain high durability even when it is used for applications where temperature changes are severe such as building materials and solar cell panels. Therefore, the average linear expansion coefficient of the glass ceramic of the present invention is preferably 70 ⁇ 10 ⁇ 7 / ° C., more preferably 60 ⁇ 10 ⁇ 7 / ° C., and still more preferably 55 ⁇ 10 ⁇ 7 / ° C.
  • the average linear expansion coefficient of the glass ceramics of this invention is not limited to the above-mentioned range, According to the use of glass ceramics, it sets suitably.
  • the average linear expansion coefficient of the glass ceramic when used in combination with another base material or the like, may have a value substantially equal to the average linear expansion coefficient of the base material. Thereby, since peeling of a glass ceramic and another base material is reduced, durability of the member formed can be improved by combining these.
  • the light of the wavelength in the ultraviolet region as referred to in the present invention is an electromagnetic wave of invisible light whose wavelength is shorter than visible light and longer than soft X-ray, and the wavelength is in the range of about 10 to 400 nm.
  • light of a wavelength in the visible region is an electromagnetic wave of a wavelength visible to human eyes among electromagnetic waves, and the wavelength is in the range of about 400 nm to 700 nm.
  • glass ceramics can be used for antifouling applications, antibacterial applications and the like.
  • TiO 2 crystals show a high catalytic effect on the irradiation of ultraviolet light, while the response to visible light is weaker than that of ultraviolet light.
  • other ions are dissolved in the TiO 2 crystal phase at the time of preparation of the glass ceramic, and the band gap energy of the TiO 2 becomes small, so it is possible to obtain a glass ceramic that exhibits an effective response effect even to visible light. .
  • the catalytic activity of the glass ceramic of the present invention is preferably 3.0 nmol / l / min, more preferably 4.0 nmol / l / min, most preferably 5.0 nmol / l, as represented by the decomposition activity index.
  • the lower limit is / min.
  • the decomposition activity index of glass ceramics can be determined based on Japanese Industrial Standard JIS R 1703-2: 2007.
  • the contact angle between the surface irradiated with light and the water droplet is preferably 30 ° or less.
  • the contact angle to water decreases (that is, as the wettability to water increases)
  • the water droplets spread on the surface and a uniform water film is formed, so the water gets under the dirt and removes the dirt.
  • the surface of the glass ceramic exhibits hydrophilicity and has a self-cleaning function, so the surface of the glass ceramic can be easily washed with water, and the deterioration of the photocatalytic properties due to contamination can be suppressed.
  • the irregular reflection of light due to the minute water droplets is eliminated, the fogging phenomenon on the surface of the glass ceramic can be reduced.
  • the contact angle between the surface irradiated with light and the water droplet is preferably 10 ° or less, and more preferably 5 ° or less.
  • the first embodiment of the method for producing glass ceramics is a method for producing glass ceramics characterized in that a raw material composition mixture is melted to form a liquid phase at least in part, and then cooled and solidified. More specifically, predetermined starting materials are uniformly mixed, placed in a container made of platinum or a refractory, and heated and held at a predetermined temperature of 1250 ° C. or higher in an electric furnace to prepare a molten liquid. Thereafter, the molten liquid is poured into a mold and solidified to obtain a desired crystallized glass.
  • generation and growth of crystal nuclei occur in the process of cooling the melt.
  • This method is effective, for example, when the desired crystal phase is precipitated rich and the state of the glass melt is relatively unstable.
  • the liquid phase may be produced from at least one or more raw material compositions, and a decrease in liquid phase generation temperature due to addition of two or more types of compounds can also be considered.
  • the temperature at which the raw material composition mixture is melted is preferably appropriately changed according to the type and amount of the composition to be mixed, but generally, 1250 ° C. or higher is preferable, 1300 ° C. or higher is more preferable, and 1350 ° C. or higher is most preferable.
  • predetermined starting materials are uniformly mixed, placed in a vessel made of platinum crucible, quartz crucible or alumina crucible, heated and maintained at a predetermined temperature of 1250 ° C. or higher in an electric furnace, and stirred and homogenized. Make a solution.
  • the melt is poured into a mold and solidified while controlling the cooling rate of the melt, and cooled to a crystallization temperature region where generation and growth of crystal nuclei occur (first cooling step).
  • first cooling step in the process of cooling the solution, generation and growth of crystal nuclei occur after reaching the crystallization temperature region, and crystals are precipitated on the glass.
  • the crystallization temperature region may be passed at a constant cooling rate, or may be maintained at a specific temperature for a certain period of time.
  • the second embodiment of the method for producing glass ceramics comprises a melting step of mixing raw materials to obtain a melt, a cooling step of cooling the melt to obtain a glass body, a temperature of the glass body at a glass transition temperature And a crystallization step of maintaining the temperature in the temperature range to form crystals.
  • a re-cooling step of lowering the temperature again after the crystallization step to obtain a crystal dispersed glass it is more preferable to have a re-cooling step of lowering the temperature again after the crystallization step to obtain a crystal dispersed glass.
  • the melting step is a step of mixing the raw materials having the above-mentioned composition to obtain a melt. More specifically, the raw materials are prepared so that each component of the glass ceramic falls within a predetermined content range, mixed uniformly, and the prepared mixture is put into a platinum crucible, a quartz crucible or an alumina crucible to conduct electricity. The mixture is melted and stirred in a furnace at a temperature range of 1200 to 1600 ° C. for 1 to 24 hours to prepare a melt.
  • the conditions for melting the raw material are not limited to the above temperature range, and can be appropriately set according to the composition, amount, and the like of the raw material composition.
  • the cooling step is a step of producing a glass body by cooling and vitrifying the melt obtained in the melting step. Specifically, the melt is flowed out and appropriately cooled to form a vitrified glass body.
  • the conditions for vitrification are not particularly limited, and may be appropriately set according to the composition, amount, and the like of the raw materials.
  • the shape of the glass body obtained in this step is not particularly limited, and may be plate-like, granular or the like, but plate-like is preferable in that the glass body can be produced rapidly and in large quantities.
  • the crystallization step is a step of raising the temperature of the glass body to a temperature range exceeding the glass transition temperature and holding the temperature for a predetermined time.
  • TiO 2 , TiP 2 O 7 , (TiO) 2 P 2 O 7 , RnTi 2 (PO 4) having a desired size from nano unit to micron unit 4 ) Since crystals of 3 or R 2 Ti 4 (PO 4 ) 6 or their solid solutions can be uniformly deposited and dispersed inside the glass body, these crystals or solid solutions are included and the photocatalytic properties Glass-ceramics having can be manufactured more reliably.
  • the crystallization temperature it is necessary to set the crystallization temperature according to the glass transition temperature for each composition of glass, but specifically, it is preferable to perform heat treatment in a temperature region higher by 10 ° C. or more than the glass transition temperature . Since the glass formed when producing the first to third glass ceramics has a glass transition temperature of 500 ° C. or higher, the lower limit of the heat treatment temperature (crystallization temperature) is preferably 510 ° C., more preferably 600 ° C. Most preferably 650.degree.
  • the upper limit of the heat treatment temperature is preferably 1200 ° C., more preferably 1100 ° C., most preferably 1050 ° C. preferable.
  • the heat treatment temperature is 1000 in that RnTi 2 (PO 4 ) 3 or R 2 Ti 4 (PO 4 ) 6 is precipitated simultaneously with one or more TiO 2 selected from anatase type, rutile type and brookite type. C. or less is preferable.
  • this temperature range is applied also to the crystallization temperature area
  • the acidic or alkaline solution used for the immersion is not particularly limited as long as it can corrode the surface of the glass ceramic, and may be, for example, an acid containing fluorine or chlorine (hydrofluoric acid, hydrochloric acid).
  • This etching step may be performed by spraying hydrogen fluoride gas, hydrogen chloride gas, hydrofluoric acid, hydrochloric acid or the like on the surface of the glass ceramic.
  • the glass ceramic molded body produced in this manner is useful as various photocatalyst, functional glass ceramic molded body and / or hydrophilic glass ceramic molded body for various uses such as machines, devices, instruments, water purification and the like.
  • the photocatalytic function is exerted on the surface of the glass-ceramics compact, and the fungi adhering to the surface of the glass-ceramics compact are sterilized, so that the surface can be kept hygienic when used for these applications.
  • hydrophilicity is exhibited on the surface of the glass-ceramics molded body, it is possible to easily wash away dirt adhering to the surface of the glass-ceramics molded body with raindrops or the like when used for these applications.
  • the glass ceramic of the present invention is excellent in moldability and the material itself has a photocatalytic function, it can be used in any shape without concern for the deterioration of the characteristics.
  • it can be used as a purification filter or a deodorizing filter in the form of a molded article having a bead or fiber (fiber) shape.
  • the exposed area of the TiO 2 crystal phase is increased, so that the photocatalytic activity of the glass-ceramics compact can be further enhanced.
  • the glass ceramic constituting the glass ceramic beads and the glass ceramic fiber is preferably made of the above-described first to third glass ceramics, particularly the third glass ceramic.
  • the third glass ceramic is 15.0% or more and 95.0% or less of the TiO 2 component by mol% with respect to the total mass of the glass ceramic of the oxide conversion composition, the SiO 2 component and / or P 2 It consists of a glass-ceramic containing one or more of O 5 components in total of 5.0% to 70.0%.
  • the light of the wavelength in the ultraviolet region as referred to in the present invention is an electromagnetic wave of invisible light whose wavelength is shorter than visible light and longer than soft X-ray, and the wavelength is in the range of about 10 to 400 nm.
  • light of a wavelength in the visible region is an electromagnetic wave of a wavelength visible to human eyes among electromagnetic waves, and the wavelength is in the range of about 400 nm to 700 nm.
  • glass ceramics When light of a wavelength from the ultraviolet region to the visible region is irradiated to the surface of the glass ceramic, the catalytic activity is expressed, whereby the soiling substances or bacteria in contact with the surface are decomposed by the oxidation or reduction reaction. Therefore, glass ceramics can be used for purification applications (antifouling applications) and antibacterial applications.
  • glass ceramic beads are not for decorative and handicraft beads but for industrial beads.
  • Industrial beads are mainly made of glass because of advantages such as durability, and generally glass microspheres (a few ⁇ m to a few mm in diameter) are called glass beads.
  • Typical applications include road sign boards, paints used for road marking lines, reflective cloths, filter media, blast abrasives, etc.
  • road sign boards paints used for road marking lines
  • reflective cloths filter media
  • blast abrasives etc.
  • Such functions of glass beads are also used in jogging wears, construction vests, bike driver vests, and the like.
  • the glass ceramic bead of the present invention can also have a retroreflective function and a photocatalytic function at the same time by adjusting the composition, the size of the precipitated crystal, and the amount of the crystalline phase.
  • the refractive index of the glass matrix phase and / or the crystal phase constituting the bead is preferably in the range of 1.8 to 2.1, In particular, around 1.9 is more preferable.
  • glass beads are used as filter media.
  • Glass beads are widely used alone or in combination with other filter media, since glass beads, unlike sand and stone, are all spherical and can have high packing ratios and can calculate porosity.
  • the glass ceramic bead of the present invention has a photocatalytic function in addition to the original function of such a glass bead.
  • it alone has photocatalytic properties without having a film or a coating layer, etc., there is no deterioration in catalytic activity due to peeling, which saves time for replacement and maintenance, and is suitably used for filters and purification devices.
  • the filter member and the purification member utilizing the photocatalytic function are often configured to be adjacent to the member serving as the light source in the device, the glass ceramic beads are suitably used because they are easily accommodated in a container or the like in the device. it can.
  • glass beads are excellent in chemical stability, relatively low in specific gravity, and spherical, so they do not damage a workpiece very much, and therefore, they are used as materials for blast abrasives.
  • the blast refers to performing cleaning, dressing, peening and the like by injecting the granular material and causing it to collide with the surface to be processed.
  • the glass ceramic bead of the present invention has a photocatalytic function in addition to the merits, so simultaneous processing using photocatalytic reaction is possible simultaneously with blasting.
  • the glass-ceramic fiber of the present invention has the general properties of glass fiber. That is, physical properties such as high tensile strength and specific strength, large elastic modulus and specific elastic modulus, good dimensional stability, high heat resistance, nonflammability, good chemical resistance, and the like compared to ordinary fibers It has merits and can be used for various applications utilizing these. Further, since the photocatalyst crystals are provided on the inside and on the surface of the fiber, it is possible to provide a fiber structure that has photocatalytic properties in addition to the merits described above and can be applied to a wider range of fields.
  • the fiber structure refers to a three-dimensional structure in which fibers are formed as a woven fabric, a knitted fabric, a laminate, or a composite thereof, and examples thereof include non-woven fabric.
  • the glass ceramic fibers of the present invention can be used in the above applications.
  • the product can be provided with a photocatalytic action such as a deodorizing function, a dirt decomposing function, etc., and the time for cleaning and maintenance can be greatly reduced.
  • glass fibers are often used as filter media because of their chemical resistance, but the glass ceramic fibers of the present invention not only filter but also decompose odorous substances, dirt, bacteria, etc. in the object to be treated. Therefore, it is possible to provide a purification device and filter having a more aggressive purification function. Furthermore, the deterioration of the characteristics due to separation and detachment of the photocatalytic crystal phase is drastically reduced, which contributes to prolonging the life.
  • the method for producing glass ceramic beads according to the present invention comprises a melting step of mixing raw materials to obtain a melt, a forming step of forming into a bead using a melt or a glass obtained from a melt, and a temperature of the bead Is raised to a temperature region above the glass transition temperature, held at that temperature for a predetermined time, and a crystallization step to precipitate desired crystals.
  • a melting step of mixing raw materials to obtain a melt a spinning step of forming into a fibrous form using a melt or a glass obtained from a melt, and the fiber Is raised to a temperature region above the glass transition temperature, held at that temperature for a predetermined time, and a crystallization step to precipitate desired crystals.
  • the melting temperature is preferably appropriately changed according to the type and amount of the composition to be mixed, but generally 1250 ° C. or higher is preferable, 1300 ° C. or higher is more preferable, and 1350 ° C. or higher is most preferable.
  • predetermined starting materials are uniformly mixed and placed in a vessel made of platinum crucible, quartz crucible or alumina crucible, heated at a predetermined temperature of 1250 ° C. or higher in an electric furnace to stir and homogenize, and melt Make.
  • the melt obtained in the melting step is formed into fine particle bodies.
  • the bead body There are various methods for forming the bead body, and it may be selected as appropriate, but in general, it can be made following the process of glass melt or glass ⁇ grinding ⁇ particle size adjustment ⁇ spheroidization.
  • the pulverizing step the cooled and solidified glass is pulverized, the molten glass is poured into water and pulverized, or further pulverized by a ball mill or the like to obtain a granular glass.
  • the particle size is adjusted using a sieve or the like, reheated and molded into spheres by surface tension, or put into a drum together with a powder material such as graphite and molded into spheres by physical force while rotating, etc.
  • a method of directly spheroidizing from molten glass without passing through a grinding step.
  • the molten glass is jetted into the air to be spheroidized by surface tension, the molten glass coming out of the outflow nozzle is finely cut off and spheroidized by a rotating blade-like member, dropped into the fluid and dropped
  • There are methods such as making it spherical.
  • shaped beads are manufactured after adjusting the particle size again. The optimum one may be selected from these methods in consideration of the viscosity and the devitrification of the glass at the forming temperature.
  • the melt obtained in the melting step is formed into glass fibers (spinning step).
  • the method of forming the fibrous body is not particularly limited, and may be formed using a known method. In the case of forming into a fiber (long fiber) of a type that can be wound up continuously by a winding machine, it may be spun by a known DM method (direct melt method) or MM method (marble melt method). When forming into a short fiber of a certain degree, you may cut the said long fiber using a centrifugation method.
  • the fiber diameter may be appropriately selected depending on the application. However, the thinner, the higher the flexibility and the texture of the fabric, but the production efficiency of spinning deteriorates and the cost becomes high.
  • the thickness is preferably in the range of 3 to 9 ⁇ m, and in the case of forming a laminated structure, the thickness is preferably 9 ⁇ m or more. Then, it is made cotton-like according to use, and fiber structures, such as roving and cloth, are made.
  • crystallization is carried out by reheating the bead body, fiber or fiber structure obtained by the above process to precipitate desired crystals on the inside and the surface of beads or fibers. Including the steps.
  • the crystallization step although it is necessary to set the crystallization temperature according to the glass transition temperature for each glass composition, it is preferable to carry out heat treatment specifically at a temperature higher by 10 ° C. or more than the glass transition temperature.
  • the lower limit of the heat treatment temperature is preferably 510 ° C., more preferably 600 ° C., and most preferably 650 ° C., since the glass transition temperature of the glass of the present invention used for producing beads and fibers is 500 ° C. or higher.
  • the heat treatment temperature becomes too high, the crystal phases of TiO 2 , TiP 2 O 7 , (TiO) 2 P 2 O 7 , RnTi 2 (PO 4 ) 3 , and R 2 Ti 4 (PO 4 ) 6 decrease.
  • the upper limit of the heat treatment temperature is preferably 1200.degree. C., more preferably 1100.degree. C., and most preferably 1050.degree.
  • the temperature is higher than 1200 ° C., TiO 2 crystals tend to be in the rutile form which is less active than the anatase form.
  • the temperature is preferably 1000 ° C. or less in terms of depositing RnTi 2 (PO 4 ) 3 and R 2 Ti 4 (PO 4 ) 6 .
  • the crystal is cooled to the outside of the crystallization temperature range to obtain glass ceramic beads or glass ceramic fibers (or fiber structure) in which the photocatalyst crystals are dispersed.
  • a crystal phase is precipitated in the process of directly spheroidizing and cooling from the melt.
  • the temperature of the glass fibers in the fiber spinning process may be controlled to simultaneously perform the crystallization process.
  • the etching process is performed on the glass ceramic bead and the glass ceramic fiber.
  • the glass phase around the crystal phase is removed, and the specific surface area of the crystal phase exposed to the surface is increased, so that the photocatalytic properties of the glass ceramic beads and the glass ceramic fiber can be further enhanced.
  • the etching process include dry etching and / or immersion in a solution.
  • the acidic or alkaline solution used for the immersion is not particularly limited as long as it can corrode the surface of the glass ceramic bead or the glass ceramic fiber, and may be, for example, an acid containing fluorine or chlorine (hydrofluoric acid, hydrochloric acid).
  • This etching step may be performed by spraying hydrogen fluoride gas, hydrogen chloride gas, hydrofluoric acid, hydrochloric acid or the like on the surface of the glass ceramic.
  • the manufacturing method of a glass-ceramics sintered compact and a composite has a vitrification process, a crushing process, a shaping
  • the glass-ceramics sintered compact in this specification is a material obtained by heat-processing glass, and producing
  • the composite in the present specification includes a glass ceramic layer obtained by heat-treating glass to form a crystalline phase, and a substrate, and among these, the glass ceramic layer is specifically non-crystalline. It is a layer consisting of quality solid and crystals.
  • the glass ceramic sintered body and the glass ceramic layer contain a titanium oxide crystal phase, and the crystal phase is uniformly dispersed inside and on the surface of the glass ceramic sintered body and the glass ceramic layer.
  • the glass ceramic layer of the composite is produced by heat treating the glass body to precipitate a crystal phase and then grinding and placing the ground glass on a substrate and baking it.
  • the formation of a crystalline phase by heat treatment may be performed on crushed glass.
  • the crushed glass before heat treatment may be disposed on a substrate, and firing may be performed while depositing the crystal phase by controlling the firing temperature.
  • a glass body is produced by melting and vitrifying a predetermined raw material composition. Specifically, the raw material composition is put into a container made of platinum or a refractory, and the raw material composition is melted by heating to a high temperature. The molten glass obtained by this flows out and it cools suitably, and a vitrified glass body is formed.
  • the conditions for melting and vitrification are not particularly limited, and may be appropriately set according to the composition, amount, and the like of the raw material composition. Further, the shape of the glass body is not particularly limited, and may be plate-like, granular, or the like.
  • the melting temperature and time vary depending on the composition of the glass, but are preferably in the range of 1200 to 1650 ° C. and 1 to 24 hours, respectively.
  • the obtained glass body is 15.0 to 90.0% of the TiO 2 component and 10.0 to 85. 5 % of the P 2 O component at mole% with respect to the total mass of the glass body of the oxide conversion composition. It is prepared to contain 0%.
  • composition range of each component which comprises a glass body is described below.
  • contents of the respective components are all expressed in mol% with respect to the total mass of the glass body in terms of the composition in terms of oxide, unless otherwise specified.
  • the TiO 2 component is produced from the glass body as a crystalline phase of TiO 2 or a crystal of a compound with phosphorus by crystallization, and is an essential and essential component for providing photocatalytic properties.
  • the content of the TiO 2 component is 15.0% or more, the photocatalyst crystal phase including the TiO 2 crystal phase is easily generated in the subsequent firing process, and the glass ceramic sintered body or the glass ceramic layer Since the concentration of the photocatalytic crystal phase in is increased, desired photocatalytic properties can be secured.
  • the content of the TiO 2 component exceeds 90.0%, vitrification becomes very difficult.
  • the content of the TiO 2 component relative to the total mass of the glass body in terms of the oxide conversion is preferably 15.0%, more preferably 25.0%, and most preferably 30.0% as a lower limit, preferably 90
  • the upper limit is 0. 0%, more preferably 85.0%, and most preferably 80.0%.
  • the TiO 2 component can be contained in the glass body using, for example, TiO 2 as a raw material.
  • the P 2 O 5 component is a component that constitutes the glass network structure.
  • the glass body By making the glass body a phosphate glass in which the P 2 O 5 component is the main component of the network structure, more TiO 2 components can be incorporated into the glass.
  • the photocatalyst crystal phase can be easily generated even if the calcination temperature is lowered, and at least one TiO 2 crystal selected from anatase type, rutile type and brookite type having high photocatalytic activity, In particular, anatase type TiO 2 crystal can be easily formed.
  • the content of the P 2 O 5 component with respect to the total mass of the glass body in terms of the oxide composition is preferably 10.0%, more preferably 15.0%, and most preferably 20.0% as the lower limit.
  • the upper limit is 85.0%, more preferably 70.0%, and most preferably 60.0%.
  • the P 2 O 5 component is a glass body using, for example, Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , Na (PO 3 ), BPO 4 , H 3 PO 4 and the like as raw materials. Can be contained in
  • the SiO 2 component constitutes a glass network structure and is a component that enhances the stability and chemical durability of the glass, and is present in the vicinity of the photocatalytic crystal phase in which Si 4+ ions are generated, and contributes to the improvement of the photocatalytic activity It is an ingredient which can be added arbitrarily. However, if the content of the SiO 2 component exceeds 60.0%, the meltability of the glass is deteriorated, and it becomes difficult to form a photocatalytic crystal phase. Therefore, the content of the SiO 2 component is preferably 60.0%, more preferably 45.0%, most preferably 30.0%, based on the total mass of the glass body in terms of the oxide conversion.
  • the SiO 2 component can be contained in the glass body using, for example, SiO 2 , K 2 SiF 6 , Na 2 SiF 6 or the like as a raw material.
  • the GeO 2 component is a component having a function similar to the above-mentioned SiO 2, and is a component which can be optionally added to the glass body.
  • the content of the GeO 2 component is preferably 60.0%, more preferably 45.0%, and most preferably 30.0%.
  • the GeO 2 component can be contained in the glass body using, for example, GeO 2 as a raw material.
  • the glass body preferably contains 60.0% or less of at least one component selected from a SiO 2 component and a GeO 2 component.
  • the mass sum of at least one or more components selected from the SiO 2 component and the GeO 2 component is preferably 60.0%, more preferably 45.0%, and most preferably 30.0%.
  • the Li 2 O component is a component that improves the meltability and stability of the glass body raw material, and also lowers the glass transition temperature to lower the firing temperature in the subsequent firing process, anatase type, rutile type having high photocatalytic activity And a component that facilitates formation of one or more TiO 2 crystals selected from brookite types, particularly anatase type TiO 2 crystals, and a component that can be optionally added.
  • brookite types particularly anatase type TiO 2 crystals
  • a component that can be optionally added a component that can be optionally added.
  • the content of the Li 2 O component exceeds 40.0%, the stability of the glass is rather deteriorated and the generation of the photocatalytic crystal phase also becomes difficult.
  • the upper limit of the content of the Li 2 O component is preferably 40.0%, more preferably 30.0%, and most preferably 15.0% with respect to the total mass of the glass body having the oxide conversion composition.
  • the Li 2 O component can be contained in the glass body using, for example, Li 2 CO 3 , LiNO 3 , LiF or the like as a raw material.
  • the Na 2 O component is a component that improves the meltability and stability of the glass body raw material, and lowers the glass transition temperature, and lowers the firing temperature in the subsequent firing process, anatase type, rutile type having high photocatalytic activity And a component that facilitates formation of one or more TiO 2 crystals selected from brookite types, particularly anatase type TiO 2 crystals, and a component that can be optionally added.
  • the content of the Na 2 O component exceeds 40.0%, the stability of the glass is rather deteriorated and the generation of the photocatalytic crystal phase also becomes difficult.
  • the content of the Na 2 O component is preferably 40.0%, more preferably 30.0%, and most preferably 15.0%, based on the total mass of the glass body having the oxide conversion composition.
  • the Na 2 O component can be contained in the glass body using, for example, Na 2 O, Na 2 CO 3 , NaNO 3 , NaF, Na 2 S, Na 2 SiF 6 as a raw material.
  • the K 2 O component is a component that improves the meltability and stability of the glass body raw material, and also lowers the glass transition temperature to lower the firing temperature in the subsequent firing process, anatase type, rutile type having high photocatalytic activity And a component that facilitates formation of one or more TiO 2 crystals selected from brookite types, particularly anatase type TiO 2 crystals, and a component that can be optionally added.
  • brookite types particularly anatase type TiO 2 crystals
  • a component that can be optionally added a component that can be optionally added.
  • the content of the K 2 O component exceeds 40.0%, the stability of the glass is rather deteriorated and the generation of the photocatalytic crystal phase also becomes difficult.
  • the content of the K 2 O component is preferably 40.0%, more preferably 30.0%, most preferably 15.0%, based on the total mass of the glass body in terms of the oxide conversion.
  • the K 2 O component can be contained in the glass body using, for example, K 2 CO 3 , KNO 3 , KF, KHF 2 , K 2 SiF 6 or the like as a raw material.
  • the Rb 2 O component is a component that improves the meltability and stability of the glass body raw material, and lowers the glass transition temperature to lower the firing temperature in the subsequent firing process, anatase type, rutile type having high photocatalytic activity And a component that facilitates formation of one or more TiO 2 crystals selected from brookite types, particularly anatase type TiO 2 crystals, and a component that can be optionally added.
  • brookite types particularly anatase type TiO 2 crystals
  • a component that can be optionally added a component that can be optionally added.
  • the content of the Rb 2 O component exceeds 10.0%, the stability of the glass is rather deteriorated and the generation of the photocatalytic crystal phase also becomes difficult.
  • the content of the Rb 2 O component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%, based on the total mass of the glass body in terms of the oxide.
  • the Rb 2 O component can be contained in the glass body using, for example, Rb 2 CO 3 , RbNO 3 or the like as a raw material.
  • the Cs 2 O component is a component that improves the meltability and stability of the glass body raw material, and lowers the glass transition temperature, and lowers the firing temperature in the subsequent firing process, anatase type, rutile type having high photocatalytic activity And a component that facilitates formation of one or more TiO 2 crystals selected from brookite types, particularly anatase type TiO 2 crystals, and a component that can be optionally added.
  • the content of the Cs 2 O component exceeds 10.0%, the stability of the glass is rather deteriorated and the generation of the photocatalytic crystal phase also becomes difficult.
  • the content of the Cs 2 O component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%, based on the total mass of the glass body in terms of the oxide.
  • the Cs 2 O component can be contained in the glass by using, for example, Cs 2 CO 3 , CsNO 3 or the like as a raw material.
  • This glass body contains 40.0% or less of at least one or more components selected from Rn 2 O (wherein R n is one or more selected from the group consisting of Li, Na, K, Rb, and Cs) It is preferable to contain.
  • Rn is one or more selected from the group consisting of Li, Na, K, Rb, and Cs
  • It is preferable to contain by setting the mass sum of at least one or more components selected from Rn 2 O components to 40.0% or less, the meltability and stability of the glass are improved, and anatase-type photocatalytic crystal phase is easily generated.
  • high catalytic activity of the glass ceramic sintered body and the glass ceramic layer can be secured.
  • the mass sum of at least one or more components selected from Rn 2 O components is preferably 40.0%, more preferably 30.0%, and most preferably, based on the total mass of the glass body in terms of the oxide conversion composition.
  • the upper limit is 20.0%.
  • the MgO component is a component that improves the meltability of the glass and the stability of the glass body, lowers the glass transition temperature, suppresses the firing temperature in the subsequent firing process lower, and has high photocatalytic activity, anatase type, rutile type and It is a component that facilitates formation of one or more TiO 2 crystals selected from the brookite type, particularly anatase type TiO 2 crystals, and is a component that can be optionally added.
  • the content of the MgO component exceeds 40.0%, the stability of the glass is rather deteriorated and the generation of the photocatalytic crystal phase becomes difficult.
  • the upper limit of the content of the MgO component is preferably 40.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass body having the oxide conversion composition.
  • the MgO component can be contained in the glass by using, for example, MgCO 3 or MgF 2 as a raw material.
  • the CaO component is a component that improves the meltability of the glass and the stability of the glass body, and also lowers the glass transition temperature, suppresses the firing temperature in the subsequent firing process lower, and has high photocatalytic activity, anatase type, rutile type and It is a component that facilitates formation of one or more TiO 2 crystals selected from the brookite type, particularly anatase type TiO 2 crystals, and is a component that can be optionally added.
  • the content of the CaO component exceeds 40.0%, the stability of the glass is rather deteriorated and the generation of the photocatalytic crystal phase also becomes difficult.
  • the upper limit of the content of the CaO component is preferably 40.0%, more preferably 30.0%, and most preferably 25.0% with respect to the total mass of the glass body in the oxide conversion composition.
  • the CaO component can be contained in the glass body using, for example, CaCO 3 , CaF 2 or the like as a raw material.
  • the SrO component is a component that improves the meltability of the glass and the stability of the glass body, lowers the glass transition temperature, suppresses the firing temperature in the subsequent firing process lower, and has high photocatalytic activity, anatase type, rutile type and It is a component that facilitates formation of one or more TiO 2 crystals selected from the brookite type, particularly anatase type TiO 2 crystals, and is a component that can be optionally added.
  • the content of the SrO component exceeds 40.0%, the stability of the glass is rather deteriorated, and the generation of the photocatalytic crystal phase also becomes difficult.
  • the upper limit of the content of the SrO component is preferably 40.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass body in terms of the oxide conversion composition.
  • the SrO component can be contained in the glass body using, for example, Sr (NO 3 ) 2 , SrF 2 or the like as a raw material.
  • the BaO component is a component that improves the meltability of the glass and the stability of the glass body, and lowers the glass transition temperature, and lowers the firing temperature in the subsequent firing process, anatase type, rutile type and photocatalytic activity high. It is a component that facilitates formation of one or more TiO 2 crystals selected from the brookite type, particularly anatase type TiO 2 crystals, and is a component that can be optionally added. However, when the content of the BaO component exceeds 40.0%, the stability of the glass is rather deteriorated and the generation of the photocatalyst crystal phase also becomes difficult.
  • the upper limit of the content of the BaO component is preferably 40.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass body having the oxide conversion composition.
  • the BaO component can be contained in the glass by using, for example, BaCO 3 , Ba (NO 3 ) 2 or the like as a raw material.
  • the ZnO component is a component that improves the meltability of the glass and the stability of the glass body, and also lowers the glass transition temperature, suppresses the firing temperature in the subsequent firing process lower, and has high photocatalytic activity, anatase type, rutile type and It is a component that facilitates formation of one or more TiO 2 crystals selected from the brookite type, particularly anatase type TiO 2 crystals, and is a component that can be optionally added.
  • the content of the ZnO component exceeds 50.0%, the stability of the glass is rather deteriorated, and the generation of the photocatalytic crystal phase also becomes difficult.
  • the upper limit of the content of the ZnO component is preferably 50.0%, more preferably 40.0%, most preferably 30.0%, based on the total mass of the glass body having the oxide conversion composition.
  • the ZnO component can be contained in the glass body using, for example, ZnO, ZnF 2 or the like as a raw material.
  • This glass body contains 50.0% of at least one or more components selected from R 1 O (wherein, R 1 is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) components It is preferable to contain below.
  • R 1 is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn
  • the mass sum of at least one or more components selected from R 1 O components is preferably 50.0%, more preferably 40.0%, most preferably with respect to the total mass of the glass body of the oxide conversion composition.
  • the upper limit is 30.0%.
  • this glass body contains R 1 O (wherein R 1 is one or more selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) component and Rn 2 O (wherein Rn is Li, It is preferable to contain 50.0% or less of at least one or more components selected from one or more components selected from the group consisting of Na, K, Rb, and Cs.
  • the meltability and stability of the glass are improved, and the glass transition temperature (Tg) ), which enables calcination at lower temperatures, and facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals. , more Anadaze type TiO 2 crystal phase is generated. Therefore, high photocatalytic properties of the glass ceramic sintered body and the glass ceramic layer can be secured.
  • Tg glass transition temperature
  • the mass sum (R 1 O + Rn 2 O) with respect to the total mass of the glass body of the composition in terms of oxide is preferably 50.0%, more preferably 40.0%, most preferably 30.0% .
  • R 1 O component and Rn 2 O component is possible to obtain a glass ceramic sintered body or composite having photocatalytic properties without containing, selected from R 1 O component and Rn 2 O component at least By setting the mass sum of one or more components to 0.1% or more, the photocatalytic crystal phase is more easily generated, and thus the photocatalytic properties are further improved. Therefore, the mass sum (R 1 O + Rn 2 O) relative to the total mass of the glass body of the oxide conversion composition is preferably 0.1%, more preferably 0.5%, most preferably 1.0%. .
  • the glass body used for the glass ceramic sintered body or the composite according to the present invention is R 1 O (wherein R 1 is at least one selected from the group consisting of Mg, Ca, Sr, Ba, Zn) It is preferable to contain two or more of the components selected from the) component and Rn 2 O (wherein R n is one or more selected from the group consisting of Li, Na, K, Rb and Cs).
  • R n is one or more selected from the group consisting of Li, Na, K, Rb and Cs.
  • the glass body for use in a glass ceramic sintered body or complexes of the present invention preferably contain two or more of the components selected from R 1 O component and Rn 2 O component containing three or more It is more preferable to do.
  • the B 2 O 3 component is a component that constitutes the glass network structure and enhances the stability of the glass, and is a component that can be added arbitrarily. However, when the content exceeds 40.0%, the tendency to form a photocatalytic crystal phase becomes strong. Therefore, the content of the B 2 O 3 component is preferably 40.0%, more preferably 30.0%, and most preferably 20.0%, based on the total mass of the glass body in terms of the oxide conversion.
  • the B 2 O 3 component can be contained in the glass body using, for example, H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 ⁇ 10H 2 O, BPO 4 and the like as raw materials.
  • the Al 2 O 3 component enhances the stability of the glass and the chemical durability of the glass ceramic sintered body and the glass ceramic layer and promotes the formation of a photocatalytic crystal phase from the glass, and the Al 3+ ion is a TiO 2 crystal phase And a component which contributes to the improvement of the photocatalytic properties and can be optionally added.
  • the content of the Al 2 O 3 component is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%, based on the total mass of the glass body in terms of the oxide conversion.
  • the Al 2 O 3 component can be contained in the glass body using, for example, Al 2 O 3 , Al (OH) 3 , AlF 3 or the like as a raw material.
  • the Ga 2 O 3 component is a component that enhances the stability of the glass and promotes the formation of the photocatalytic crystal phase from the glass body, and the Ga 3+ ions contribute to the improvement of the photocatalytic properties by solid solution in the TiO 2 crystal phase Yes, it is a component that can be added arbitrarily. However, if the content exceeds 30.0%, the melting temperature significantly increases and it becomes difficult to vitrify. Therefore, the content of the Ga 2 O 3 component is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%, based on the total mass of the glass body in terms of the oxide conversion.
  • the Ga 2 O 3 component can be contained in the glass by using, for example, Ga 2 O 3 or GaF 3 as a raw material.
  • the In 2 O 3 component is a component having an effect similar to the above-described Al 2 O 3 and Ga 2 O 3, and is a component that can be added arbitrarily. However, since the In 2 O 3 component is expensive, its content is preferably 10.0% or less, more preferably 8.0% or less, and most preferably 5.0% or less . In 2 O 3 component may be contained in the glass body by using as a raw material for example In 2 O 3, InF 3, or the like.
  • the glass body preferably contains 50.0% or less of at least one or more components selected from the B 2 O 3 component, the Al 2 O 3 component, the Ga 2 O 3 component, and the In 2 O 3 component.
  • the mass sum of at least one or more components selected from these components is preferably 50.0%, more preferably 40.0%, Most preferably, the upper limit is 30.0%.
  • the mass sum (B 2 O 3 + Al 2 O 3 + Ga 2 O 3 + In 2 O 3 ) relative to the total mass of the glass body of the oxide conversion composition is preferably 0.1%, more preferably 0.5%, Most preferably, the lower limit is 1.0%.
  • the ZrO 2 component is a component that enhances the chemical durability and promotes the formation of TiO 2 crystals, and the Zr 4+ ion forms a solid solution in the TiO 2 crystal phase to contribute to the improvement of the photocatalytic properties, and can be added arbitrarily It is an ingredient.
  • the content of the ZrO 2 component exceeds 20.0%, vitrification becomes difficult. Therefore, the content of the ZrO 2 component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%, based on the total mass of the glass body in terms of the oxide conversion.
  • the ZrO 2 component can be contained in the glass body using, for example, ZrO 2 , ZrF 4 or the like as a raw material.
  • the SnO component promotes precipitation of TiO 2 crystals, suppresses the reduction of Ti 4+ to make it easy to obtain a photocatalytic crystal phase, and is a component that is dissolved in the TiO 2 crystal phase to be effective in improving photocatalytic properties.
  • Ag, Au or Pt ion described later which has the function of enhancing the photocatalytic activity, it plays a role of reducing agent and indirectly contributes to the improvement of the photocatalytic activity, and it is optionally added It is a possible ingredient.
  • the content of these components exceeds 10.0%, the stability of the glass deteriorates and the photocatalytic properties also tend to deteriorate.
  • the upper limit of the content of the SnO component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0% with respect to the total mass of the glass body having the oxide conversion composition.
  • the SnO component can be contained in the glass body using, for example, SnO, SnO 2 , SnO 3 or the like as a raw material.
  • the glass body preferably contains 20.0% or less of at least one or more components selected from a ZrO 2 component and a SnO component.
  • the mass sum (ZrO 2 + SnO) relative to the total mass of the glass body of the oxide conversion composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the mass sum of at least one or more components selected from these components should be 0.1% or more.
  • the photocatalytic properties of the glass ceramic sintered body and the glass ceramic layer can be further improved.
  • the lower limit of mass sum (ZrO 2 + SnO) relative to the total mass of the glass body in terms of the oxide composition is preferably 0.1%, more preferably 0.2%, and most preferably 0.5%.
  • the Nb 2 O 5 component is a component that enhances the meltability and stability of the glass, and is a component that improves the photocatalytic properties by being dissolved in the TiO 2 crystal phase or existing in the vicinity thereof, It is a component that can be added.
  • the upper limit of the content of the Nb 2 O 5 component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass body having the oxide conversion composition.
  • the Nb 2 O 5 component can be contained in the glass body using, for example, Nb 2 O 5 as a raw material.
  • the Ta 2 O 5 component is a component that enhances the stability of the glass, and is a component that improves photocatalytic properties by being dissolved in the TiO 2 crystal phase or in the vicinity thereof, and a component that can be added arbitrarily It is.
  • the content of the Ta 2 O 5 component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0%, based on the total mass of the glass body in terms of the oxide conversion.
  • the Ta 2 O 5 component can be contained in the glass body using, for example, Ta 2 O 5 as a raw material.
  • the WO 3 component is a component that enhances the meltability and stability of the glass, and is a component that improves the photocatalytic properties by being dissolved in the TiO 2 crystal phase or in the vicinity thereof, and can be added arbitrarily It is an ingredient.
  • the upper limit of the content of the WO 3 component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass body having the oxide conversion composition.
  • WO 3 ingredient may be contained in the glass body by using as a raw material for example WO 3 and the like.
  • the MoO 3 component is a component that enhances the meltability and stability of the glass, and is a component that improves the photocatalytic properties by being dissolved in the TiO 2 crystal phase or in the vicinity thereof, and can be added arbitrarily It is an ingredient.
  • the content of the MoO 3 component exceeds 50.0%, the stability of the glass is significantly deteriorated. Therefore, the content of the MoO 3 component is preferably 50.0%, more preferably 30.0%, most preferably 20.0%, based on the total mass of the glass body in terms of the oxide conversion.
  • the MoO 3 component can be contained in the glass body using, for example, MoO 3 as a raw material.
  • the glass body preferably contains 50.0% or less of at least one or more components selected from Nb 2 O 5 components, Ta 2 O 5 components, WO 3 components, and MoO 3 components.
  • the mass sum (Nb 2 O 5 + Ta 2 O 5 + WO 3 + MoO 3 ) relative to the total mass of the glass body of the oxide conversion composition is preferably 50.0%, more preferably 30.0%, most preferably 20 .0% is the upper limit.
  • the mass sum (Nb 2 O 5 + Ta 2 O 5 + WO 3 + MoO 3 ) relative to the total mass of the glass body of the oxide conversion composition is preferably 0.1%, more preferably 0.5%, most preferably 1 .0% is the lower limit.
  • the Bi 2 O 3 component is a component that enhances the meltability and stability of the glass, and because the heat treatment temperature is lowered by lowering the glass transition temperature (Tg), anatase type, rutile type and brookite type having high photocatalytic activity It is a component capable of easily forming one or more selected TiO 2 crystals, particularly anatase-type TiO 2 crystals, and a component which can be optionally added.
  • Tg glass transition temperature
  • anatase type rutile type and brookite type having high photocatalytic activity
  • It is a component capable of easily forming one or more selected TiO 2 crystals, particularly anatase-type TiO 2 crystals, and a component which can be optionally added.
  • the content of the Bi 2 O 3 component exceeds 20.0%, the stability of the glass is deteriorated and the formation of TiO 2 becomes difficult.
  • the content of the Bi 2 O 3 component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%, based on the total mass of the glass body in terms of the oxide.
  • Bi 2 O 3 component may be contained in the glass body by using as a raw material for example Bi 2 O 3 and the like.
  • the TeO 2 component is a component that enhances the meltability and stability of the glass, and because the heat treatment temperature is lowered by lowering the glass transition temperature (Tg), it is selected from anatase type, rutile type and brookite type having high photocatalytic activity It is a component capable of easily forming one or more TiO 2 crystals, particularly anatase type TiO 2 crystals, and a component which can be optionally added.
  • Tg glass transition temperature
  • the content of the TeO 2 component with respect to the total mass of the glass body in terms of the oxide conversion is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the TeO 2 component can be contained in the glass body using, for example, TeO 2 as a raw material.
  • the mass sum of at least one or more components selected from Ln a O b components is preferably 30.0%, more preferably 20.0%, most preferably, based on the total mass of the glass body having the oxide conversion composition.
  • the upper limit is 10.0%.
  • the component L n a O b is, for example, La 2 O 3 , La (NO 3 ) 3 .XH 2 O (X is an arbitrary integer), Gd 2 O 3 , GdF 3 , Y 2 O 3 , YF 3 , CeO as a raw material. 2 , Nd 2 O 3 , Dy 2 O 3 , Yb 2 O 3 , Lu 2 O 3 or the like can be contained in the glass body.
  • the mass sum of at least one or more components selected from the M x O y components is preferably 10.0%, more preferably 8.0%, most preferably, based on the total mass of the glass body having the oxide conversion composition.
  • the upper limit is 5.0%.
  • the glass body may contain at least one nonmetallic element component selected from the group consisting of an F component, a Cl component, a Br component, an S component, an N component, and a C component.
  • These components are components that improve the photocatalytic properties by being dissolved in the TiO 2 crystal phase or in the vicinity thereof, and are components that can be added arbitrarily.
  • the total content of these components exceeds 10.0%, the stability of the glass is significantly deteriorated, and the photocatalytic properties are also easily deteriorated. Therefore, in order to ensure good characteristics, the total content of the nonmetallic element component with respect to the total mass of the glass body in terms of the composition in terms of oxide is preferably 10.0%, more preferably 5.0%, most preferably The upper limit is 3.0%.
  • nonmetallic element components are preferably introduced into the glass in the form of fluorides, chlorides, bromides, sulfides, nitrides, carbides and the like of alkali metals or alkaline earth metals.
  • the raw material of the nonmetallic element component is not particularly limited, but AlN 3 , SiN 4 etc. as the raw material of N component, NaS, Fe 2 S 3 , CaS 2 etc.
  • the material can be contained in the glass body by using NaF, CaF 2 or the like, NaCl, AgCl or the like as a source of Cl component, NaBr or the like as a source of Br component, and TiC, SiC or ZrC as a source of C component. These raw materials may be added integrally or independently.
  • the glass body may contain at least one metal element component selected from Cu, Ag, Au, Pd, Pt, Ru, and Rh.
  • These metal element components can be optionally added because the photocatalytic activity is improved by being present in the vicinity of the photocatalytic crystal phase.
  • the total content of these metal element components exceeds 10.0%, the stability of the glass is significantly deteriorated, and the photocatalytic properties are easily deteriorated. Therefore, the total content of the metal element component with respect to the total mass of the glass body in terms of the oxide conversion is preferably 10.0%, more preferably 5.0%, and most preferably 1.0%.
  • These metal element components can be contained in the glass body using, for example, Cu 2 O, Ag 2 O, AuCl 3 , PtCl 4 or the like as a raw material.
  • the As 2 O 3 component and the Sb 2 O 3 component are components for clarifying and defoaming the glass body, and when added together with Ag, Au, or Pt ion having the function of enhancing the photocatalytic activity as described above. Since it plays a role of a reducing agent, it is a component that indirectly contributes to the improvement of the activity of the photocatalyst, and is a component that can be added arbitrarily. However, when the total content of these components exceeds 5.0%, the stability of the glass is deteriorated, and the photocatalytic properties are also easily deteriorated.
  • the total content of the As 2 O 3 component and / or the Sb 2 O 3 component with respect to the total mass of the glass body of the oxide conversion composition is preferably 5.0%, more preferably 3.0%, most preferably The upper limit is 1.0%.
  • As the As 2 O 3 component and the Sb 2 O 3 component as a raw material, for example, As 2 O 3 , As 2 O 5 , Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 ⁇ 5 H 2 O etc. It can be contained in the glass body.
  • the components for clarifying and degassing the glass body are not limited to the above As 2 O 3 component and Sb 2 O 3 component, and, for example, such as CeO 2 component or TeO 2 component etc. Any of the clarifiers and defoamers known in the art or combinations thereof can be used.
  • lead compounds such as PbO, Th, Cd, Tl, Os, Be, Se, and Hg components tend to refrain from being used as harmful chemical substances in recent years, and they are processes for manufacturing sintered glass ceramics and composites.
  • lead compounds such as PbO, Th, Cd, Tl, Os, Be, Se, and Hg components tend to refrain from being used as harmful chemical substances in recent years, and they are processes for manufacturing sintered glass ceramics and composites.
  • Not only environmental measures are required from the processing process to the disposal after commercialization. Therefore, in the case of emphasizing the environmental impact, it is preferable not to substantially contain them except for inevitable contamination.
  • the glass body is substantially free of substances that contaminate the environment. Therefore, the glass-ceramic sintered body or composite can be manufactured, processed, and discarded without taking special environmental measures.
  • the raw material composition is a glass in which the non-glass body is vitrified, even if it is a non-glass raw material (usually powder and referred to as a batch) containing glass-forming oxides etc. It may be a raw material (usually crushed and called cullet).
  • the glass body is pulverized to produce a pulverized glass.
  • the particle size of the glass body is relatively reduced, so that it can be easily formed into a desired shape in the next forming step.
  • formation of a layer becomes easy.
  • the particle diameter and shape of the crushed glass may be appropriately set in accordance with the required accuracy of the forming process and the shape and dimension of the molded body.
  • the average particle diameter of the crushed glass may be a unit of several tens of mm.
  • the glass ceramic sintered body if the average particle diameter is too large, it becomes difficult to form the glass ceramic sintered body having a desired shape.
  • the average particle size of the crushed glass should be as small as possible. Therefore, the upper limit of the average particle size of the crushed glass is preferably 100 ⁇ m, more preferably 50 ⁇ m, and most preferably 10 ⁇ m.
  • the value of D50 (cumulative 50% diameter) when it measures by the laser diffraction scattering method for example can be used for the average particle diameter of grinding glass.
  • a value measured by a particle size distribution measuring apparatus MICROTRAC (MT3300EXII) manufactured by Nikkiso Co., Ltd. can be used.
  • Pulverization of the glass body is not particularly limited, but can be performed using, for example, a ball mill, a jet mill or the like.
  • Crystal phase of TiO 2 precipitates inside and on the surface of the crushed glass, so that the glass ceramic layer having the crystal phase of TiO 2 can be produced more reliably.
  • the conditions (temperature, time) of the heat treatment may be appropriately set depending on the composition of the glass body, the degree of crystallization required, and the like.
  • the lower limit of the atmosphere temperature in the heat treatment is the glass transition temperature (Tg) of the glass body, preferably Tg + 50 ° C., more preferably Tg + 100 ° C., and most preferably Tg + 150 ° C.
  • the upper limit of the atmosphere temperature in the heat treatment is that when the temperature is too high, the photocatalytic crystal phase tends to decrease, so that the photocatalytic properties are easily lost, preferably Tg + 600 ° C of the glass body, more preferably Tg + 500 ° C, most preferably Tg + 400 ° C.
  • this crystallization step may be performed simultaneously with the firing during the firing step described below.
  • the desired crystal from the glass phase is controlled by controlling the firing temperature in the firing step to the same temperature as the atmosphere temperature in the heat treatment in the crystallization step. Precipitates out.
  • TiO 2 may have a step of preparing a mixture by mixing TiO 2 in the crystalline state to the ground glass. Even if TiO 2 in the crystalline state is not mixed, a photocatalytic crystalline phase including the TiO 2 crystalline phase can be generated from the glass body, but by adding TiO 2 in the crystalline state, more TiO 2 can be produced. A glass ceramic sintered body having a crystal phase of 2 can be produced more reliably.
  • the mixing amount of TiO 2 in the crystalline state may be appropriately set according to the composition of the glass body, the temperature in the manufacturing process, etc., so that a desired amount of photocatalytic crystal phase is generated in the glass ceramics sintered body or glass ceramics layer. .
  • the lower limit of the amount of crystalline TiO 2 to be mixed is preferably 1.0% by mass ratio to the mixture, more preferably 5.0%, and most preferably 10.0%.
  • the upper limit of the amount of crystalline TiO 2 to be mixed is preferably 95.0% by mass ratio to the mixture, more preferably 80.0%, and most preferably 60.0%.
  • TiO 2 in the crystalline state used in this step may be one or two or more of these three types, but anatase is preferable from the viewpoint of excellent photocatalytic function, and anatase and brookite are preferable. More preferred is a combination.
  • the size of the raw material particle of the above TiO 2 crystal should be as small as possible from the viewpoint of enhancing the photocatalytic activity, but if the size of the raw material particle is too small, it reacts with the glass during firing and does not maintain the crystalline state. It may be lost. In addition, when the raw material particles are too fine, there is a problem that the handling in the manufacturing process becomes difficult. On the other hand, if the size of the raw material particles is too large, they tend to remain in the final product in the form of raw material particles, so the tendency to obtain desired photocatalytic properties becomes strong. Therefore, the size of the raw material particles is preferably in the range of 11 to 500 nm, more preferably in the range of 21 to 200 nm, and most preferably in the range of 31 to 100 nm.
  • additives there is a step of mixing an additive containing one or more selected from the group consisting of N component, S component, F component, Cl component, Br component, and C component into the aforementioned crushed glass or mixture. It is also good. Although these components may be introduced into the glass body as components of the glass body at the stage of the batch before producing the glass body as described above, these additives may be added to the glass after the glass body is manufactured. It is more effective to mix and introduce into body powder, and it becomes possible to easily obtain a glass-ceramic sintered body or composite having higher photocatalytic properties.
  • the mixing amount of the additive may be appropriately set according to the composition of the glass body and the like.
  • the mixing amount of the above additives is preferably 0.01% or more, and more preferably 0 in a mass ratio with respect to the crushed glass body or a mixture thereof, in that the photocatalytic function of the glass ceramic sintered body can be sufficiently improved. It is at least 0.05%, most preferably at least 0.1%.
  • the mixing amount of the addition amount is preferably 20.0% or less, more preferably 10.0% by mass ratio to the crushed glass or the mixture thereof. Or less, most preferably 5.0% or less.
  • the N component is AlN 3 , SiN 4 etc.
  • the S component is NaS, Fe 2 S 3 , CaS 2 etc.
  • the F component is ZrF 4 , AlF 3 , NaF, CaF 2 etc
  • the Cl component is NaCl, AgCl
  • the Br component can be added by using NaBr or the like
  • the C component can be added by using TiC, SiC, ZrC or the like.
  • the components of the additive may be added integrally or independently.
  • metal element component which consists of 1 or more types chosen from the group which consists of Cu, Ag, Au, Pd, Pt, Ru, and Rh in grinding glass or a mixture.
  • these components can be introduced into the glass as a component of the glass at the stage of the batch before producing the glass as described above, the metal element component is converted to the glass after the glass is produced. It is more effective to mix it and introduce it, and it becomes possible to easily obtain a glass ceramic sintered body or a composite having higher photocatalytic properties.
  • the mixing amount of the metal element component may be appropriately set according to the composition of the glass body and the like.
  • the mixing amount of the above-mentioned metal element component is preferably 0.001% or more by mass ratio to the crushed glass body or the mixture thereof in that the photocatalytic function of the glass ceramic sintered body or the glass ceramic layer can be sufficiently improved. More preferably, it is 0.005% or more, and most preferably 0.01% or more.
  • the mixing amount of the metal element component is preferably 10.0% or less by mass ratio to the crushed glass or the mixture thereof, more preferably 5.0 % Or less, most preferably 3.0% or less.
  • the metal element component for example, Cu 2 O, Ag 2 O, AuCl 3 , PtCl 4 or the like may be used as a raw material.
  • the particle diameter and shape of the metal element component may be appropriately set according to the composition of the glass body, the amount of TiO 2 , the crystal form, etc., but the photocatalytic function of the glass ceramic sintered body or the glass ceramic layer is maximally exhibited.
  • the average particle diameter of the metal element component should be as small as possible. Therefore, the upper limit of the average particle size of the metal element component is preferably 5.0 ⁇ m, more preferably 1.0 ⁇ m, and most preferably 0.1 ⁇ m.
  • the particles of the glass body melt and bond firmly in the firing step, so the particles of the glass body itself play a role as a glass ceramic binder, but crushed glass can be used in any fluid It may have the process of disperse
  • the organic binder a commercially available binder that is generally used as a molding aid for press molding, rubber press, extrusion molding, or injection molding can be used. Specifically, acrylic resin, ethyl cellulose, polyvinyl butyral, methacrylic resin, urethane resin, butyl methacrylate, vinyl copolymer and the like can be mentioned.
  • the lower limit value of the content of the organic binder with respect to the slurry is preferably 40% by mass, more preferably 30% by mass, and most preferably 20% by mass from the viewpoint of sufficiently facilitating the molding.
  • the solvent known materials such as PVA, IPA, butanol and the like can be used, and alcohol or water is preferable in that the environmental load can be reduced.
  • an appropriate amount of dispersant may be used in combination in order to obtain a more homogeneous molded product, and an appropriate amount of surfactant may be used in combination in order to improve the defoaming efficiency at the time of drying.
  • the dispersant is not particularly limited, and examples thereof include hydrocarbons such as toluene, xylene, benzene, hexane and cyclohexane, cellosolve, ethers such as carbitol, tetrahydrofuran (THF) and dioxolane, acetone, methyl ethyl ketone and methyl isobutyl ketone And ketones such as cyclohexanone; esters such as methyl acetate, ethyl acetate, n-butyl acetate, amyl acetate and the like, and these can be used alone or in combination of two or more.
  • hydrocarbons such as toluene, xylene, benzene, hexane and cyclohexane, cellosolve
  • ethers such as carbitol, tetrahydrofuran (THF) and dioxolane
  • acetone methyl eth
  • the forming step carried out when producing the glass ceramic sintered body is a step of depositing crushed glass on a refractory or forming it into a formed body of a desired shape.
  • desired shape it is preferable to use press forming in which crushed glass is put in a mold and pressed.
  • crushed glass said here is a concept including the above-mentioned mixture.
  • the molded body is heated and fired to produce a sintered body.
  • the crushed glass does not contain TiO 2 in a crystalline state
  • the particles of the glass body combine with each other and at the same time a photocatalytic crystal phase is generated, and the glass ceramic sintered body and the glass ceramic layer containing the photocatalytic crystal phase It is formed.
  • the raw material is a mixture of a glass body and anatase TiO 2 or the like, the above phenomenon occurs and the glass phase is coated on the surface of anatase TiO 2 to produce anatase type rutile having high photocatalytic activity, and rutile.
  • the specific process of the firing process is not particularly limited, a process of preheating the compact and the below-mentioned crushed glass layer, a process of gradually raising the compact and the crushed glass layer to the set temperature, and the compact And a step of holding the crushed glass layer at the set temperature for a certain period of time, and a step of gradually cooling the compact and the crushed glass layer to room temperature.
  • ground glass is arrange
  • a glass-ceramics layer can be formed with respect to a wider base material, and a photocatalytic characteristic and hydrophilicity can be provided.
  • the base material used here is not particularly limited, but it is preferable to use an inorganic material such as glass and ceramics, metal and the like in terms of being easily complexed with TiO 2 crystals.
  • the glass-ceramics layer of desired shape and thickness can be produced.
  • a means for arranging the slurry on the substrate doctor blade, calender method, coating method such as spin coating or dip coating, ink jet, bubble jet (registered trademark), printing method such as offset, die coater method, A spray method, an injection molding method, an extrusion molding method, a rolling method, a press molding method, a roll molding method and the like can be mentioned.
  • mold a crushed glass layer is not restricted to the means using the above-mentioned slurry, You may use the means which mounts the powder of crushed glass directly on a base material.
  • the conditions for firing in the firing step when forming a glass ceramic sintered body may be appropriately set according to the composition of the glass body when the slurry is composed of a single glass body, but it is mixed with TiO 2 etc. in a crystalline state. In this case, it is necessary to consider the amount, size, crystal form and the like of TiO 2 . Moreover, this baking process is a process in which a crystal
  • the firing temperature is too low, a desired sintered body can not be obtained, and therefore, firing at a temperature higher than at least the glass transition temperature (Tg) of the glass body is required.
  • the lower limit of the firing temperature is not less than the glass transition temperature (Tg) of the glass body, preferably not less than Tg + 50 ° C., more preferably not less than Tg + 100 ° C., and most preferably not less than Tg + 150 ° C.
  • the upper limit of the firing temperature is preferably Tg + 600 ° C. or less of the glass body, more preferably Tg + 500 ° C. or less, and most preferably Tg + 400 ° C. or less.
  • the conditions for firing in the firing step when forming a composite may be appropriately set according to the composition of the glass body, the type and amount of additives to be mixed, and the like.
  • the atmosphere temperature at the time of baking can perform two kinds of control mentioned later by the state of the grinding
  • One is the case where the desired photocatalytic crystal phase has already been generated in the crushed glass layer disposed on the substrate, and for example, the case where the glass body or the crushed glass layer is heat-treated in the previous step can be mentioned.
  • the calcination temperature in this case can be suitably selected in the temperature range of 1200 ° C.
  • the upper limit of the firing temperature is preferably 1200 ° C. or less, more preferably 1100 ° C. or less, and most preferably 1050 ° C. or less.
  • the ground glass layer disposed on the substrate does not have the desired photocatalytic crystal phase, in which case it is necessary to simultaneously carry out the firing and the crystallization of the glass.
  • the lower limit of the atmosphere temperature at the time of firing is the glass transition temperature (Tg) of the glass body, preferably Tg + 50 ° C, more preferably Tg + 100 ° C, and most preferably Tg + 150 ° C.
  • Tg glass transition temperature
  • the upper limit of the calcination temperature is preferably Tg + 600 ° C of the glass body, more preferably Tg + 500 ° C, Preferably it is Tg + 400 ° C.
  • the lower limit of the firing time in the firing step needs to be set according to the firing temperature, but is preferably short for high temperatures and long for low temperatures. Specifically, in the case of producing a glass ceramic sintered body, the lower limit is preferably 10 minutes, more preferably 20 minutes, and most preferably 30 minutes. In the case of producing a complex, the lower limit is preferably 5 minutes, more preferably 10 minutes, and most preferably 20 minutes. Thereby, the firing can be sufficiently performed, and a sufficient amount of crystals can be precipitated.
  • the firing time exceeds 20 hours, the reaction between the TiO 2 crystal contained in the compact and the crushed glass layer proceeds with the glass body, and the crystal grain size becomes too small, and the glass ceramic sintered body or glass ceramic layer There is a possibility that a TiO 2 crystal of a sufficient size can not be obtained to exhibit the photocatalytic function. Therefore, the upper limit of the firing time is preferably 20 hours, more preferably 19 hours, and most preferably 18 hours.
  • baking time said here refers to the length of time during which atmospheric temperature is hold
  • the formed body Prior to the firing step, when the formed body contains an organic binder, the formed body is preferably heated (degreased) to a temperature of 350 ° C. or higher. As a result, the organic binder and the like contained in the compact and the crushed glass layer are decomposed, gasified and discharged, so that the organic matter can be removed from the compact and the crushed glass layer.
  • the lower limit of the heating temperature is preferably 350 ° C., more preferably 380 ° C., and most preferably 400 ° C. in that the organic matter can be sufficiently removed.
  • the present invention is not limited to this, and the above steps may be performed in an inert gas atmosphere, a reducing gas atmosphere, or an oxidizing gas atmosphere.
  • the method for producing the glass ceramic sintered body and the composite may further include a step of immersing or etching the sintered body or the fired composite in an acidic or alkaline solution.
  • an acidic or alkaline solution By immersion in an acidic or alkaline solution, the glass phase melts, making it possible to make the surface of the sintered body or complex uneven or porous and increase the exposed area of the photocatalytic crystal phase. Therefore, higher photocatalytic properties can be obtained.
  • the acidic or alkaline solution used for the immersion is not particularly limited as long as it can corrode glass phases other than the sintered compact and the photocatalyst crystal phase of the fired composite, and it is not particularly limited. It may be hydrogen acid, hydrochloric acid).
  • the etching may be performed by spraying hydrogen fluoride gas, hydrogen chloride gas, hydrofluoric acid, hydrochloric acid or the like on the surface of the sintered body.
  • Photocatalytic functional moldings and hydrophilic moldings Photocatalytic functional molded articles containing glass ceramic sintered bodies and composites manufactured by the above manufacturing methods are used in an atmosphere where contamination is caused by exposure to the outside and organic substances etc. adhere, and fungi tend to float It is useful in other machines, devices, instruments, water purification etc. For example, it is preferable that a tile, a window frame, a lamp, a building material, etc. contain this photocatalytic functional molded object.
  • hydrophilic molded body containing a sintered body of glass ceramic and a composite manufactured by this manufacturing method is also included in the present invention.
  • Such hydrophilic molded articles are useful as construction panels, tiles, windows and the like because they have a self-cleaning action.
  • the glass ceramic molded articles of the examples (No. A1 to No. A122, No. B1 to No. B12) of the present invention and the comparative examples (No. a1 and No. b1) respectively correspond to each other as the raw materials of the respective components.
  • High purity raw materials used for ordinary glasses such as oxides, hydroxides, carbonates, nitrates, fluorides, hydroxides and metaphosphoric acid compounds, are selected.
  • the composition ratio of the example and the comparative example After weighing and uniformly mixing so as to become the composition ratio of the example and the comparative example, it is put into a platinum crucible, and according to the degree of difficulty of melting of the glass composition, in an electric furnace at a temperature range of 1200 ° C to 1600 ° C After dissolving for 24 hours, stirring and homogenizing to defoam etc., the temperature was lowered to 1500 ° C. or less to stir and homogenize, then cast in a mold and gradually cooled to prepare a glass. The obtained glass was heated to the crystallization temperature described in each of Examples and Comparative Examples of Tables 1 to 33, held for crystallization for the time described, and cooled from the crystallization temperature. Thus, a glass ceramic having a desired crystal phase was obtained. Moreover, the composition was the same as Example (No. B11), and the sample which is not crystallized was prepared and it was set as the comparative example.
  • the types of precipitated crystal phases of the glass-ceramics molded articles of Examples are X-ray diffraction. It identified by the apparatus (Philips company make, brand name: X'Pert-MPD).
  • the photocatalytic characteristics of the glass-ceramics molded object of a part of Example (No.A1-No.A122, No. B1-No. B12) and a comparative example (No. a1 and No. b1) are photocatalyst product technical consultation It evaluated according to "photocatalyst performance evaluation method I" formulated by the association. That is, a solution of methylene blue was dropped on the surface of the glass ceramic molded body sample, the color after irradiation with ultraviolet light was observed, and the performance of the photocatalyst was evaluated according to the degree of decolorization of methylene blue (methylene blue decolorization method). As a result of evaluation, the sample in which the photocatalytic property was recognized was shown by ⁇ , and the sample in which the photocatalytic property was not recognized was shown by x.
  • photocatalyst performance evaluation method I formulated by the association. That is, a solution of methylene blue was dropped on the surface of the glass ceramic molded body
  • the decomposition activity index (nmol / l / min) of methylene blue was determined based on Japanese Industrial Standard JIS R 1703-2: 2007.
  • the decomposition activity index was similarly calculated
  • the decomposition activity index of methylene blue was determined by the following procedure.
  • a 0.020 mM methylene blue aqueous solution (hereinafter referred to as an adsorption solution) and a 0.010 mM methylene blue aqueous solution (hereinafter referred to as a test solution) were prepared.
  • the surface of the sample of the example in which the photocatalytic property is recognized and one opening of the quartz tube (inner diameter 10 mm, height 30 mm) are fixed with high vacuum silicone grease (made by Toray Dow Corning Co., Ltd.)
  • the adsorption solution was injected from the other opening of the quartz tube to fill the test cell with the adsorption solution.
  • adsorption solution was sufficiently adsorbed to the sample for 24 hours.
  • the absorbance for light of wavelength 664 nm was measured using a spectrophotometer (manufactured by JASCO Corporation, model number: V-650), and the absorbance of this adsorption solution was similarly measured for the test solution. The adsorption was complete when it was greater than the absorbance.
  • the glass of the composition described in the example was subjected to the crystallization process for the time and temperature described in Table 36 and Table 37 to form glass ceramics.
  • the glass ceramic was immersed for 3 minutes in a hydrofluoric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) having an HF concentration of 46% (mass percentage) to carry out an etching step.
  • a hydrofluoric acid solution manufactured by Wako Pure Chemical Industries, Ltd.
  • the above-mentioned methylene blue decomposition test was performed on the glass ceramics before and after the crystallization step and the etching step to determine the decomposition activity index (nmol / l / min) before and after the crystallization step and the etching step.
  • the hydrophilicity of the glass-ceramics molded object of an Example (No.A1-No.A122, No.B1-No.B12) and a comparative example (No.a1 and No.b1) is a sample surface by the (theta) / 2 method. It evaluated by measuring the contact angle of water and a water droplet.
  • the particle diameter of the anatase type TiO 2 crystal is X-ray diffractometer (Philips It calculated
  • X'Pert-MPD X-ray diffractometer
  • the average linear expansion coefficient of the glass-ceramics molded object of an Example is a thermal expansion meter (Bruker AXS Co., Ltd.) of a horizontal differential expansion measurement system. Manufactured by trade name: TD5000S). That is, a sample consisting of a glass ceramic compact having a length of 20 mm and a diameter of 4 mm after cooling from the crystallization temperature to normal temperature is heated while heating at a constant rate of 4 ° C. per minute. Elongation and temperature were measured. Then, using a thermal expansion curve obtained from the relationship between the elongation of the sample and the temperature, an average linear expansion coefficient of ⁇ 30 to + 70 ° C. was determined.
  • the chemical durability (water resistance and acid resistance) of the glass ceramics of the examples was crushed to a particle size of 425 to 600 ⁇ m and washed with methanol Glass ceramic samples were prepared and measured according to Japan Optical Glass Industrial Standard "Measurement Method of Chemical Durability of Optical Glass” JOGIS 06-2008.
  • Water resistance is achieved by immersing a glass-ceramic sample in a platinum cage and immersing the platinum cage in a quartz glass round bottom flask containing pure water (pH 6.5-7.5) for 60 minutes in a boiling water bath It measured using the weight loss rate (%) of the glass sample after processing.
  • the weight loss rate wt% is less than 0.05, the class 1; if the weight loss rate is 0.05 to less than 0.10, the class 2 if the weight loss rate is less than 0.10 to 0.25 Class 3; weight loss rate 0.25 to less than 0.60 class 4; weight loss rate less than 0.60 to 1.10 class 5; weight loss rate 1.10 or more class 6
  • a glass ceramic sample is placed in a platinum cage, and this platinum cage is immersed in a quartz glass round bottom flask containing 0.01 N nitric acid aqueous solution and treated in a boiling water bath for 60 minutes. It measured using the weight loss rate (%) of the glass sample.
  • the weight loss rate wt% is less than 0.20, the class 1; if the weight loss rate is 0.20 to less than 0.36, the class 2; if the weight loss rate is less than 0.35 to 0.65 Class 3; weight loss rate 0.65 to less than 1.20 class 4; weight loss rate 1.20 to less than 2.20 class 5; weight loss rate 2.20 or more class 6
  • the smaller the number of classes the better the acid resistance of the glass.
  • the glass ceramic molded articles of these examples have a decomposition activity index of 3.0 nmol / l / min or more, more specifically 4.2 nmol / l / min or more.
  • the glass before the crystallization process (before heat treatment) of the example had a decomposition activity index smaller than 3.0 nmol / l / min.
  • exponent is raised by passing through a crystallization process, it became clear that the glass-ceramics molded object which concerns on these Examples has a desired photocatalytic characteristic.
  • the decomposition activity index of the glass-ceramics molded object after the crystallization process in an Example (No.A1, No.A2, No.A63, No.A100-A104), and an Example (No.A1, No.A63)
  • the decomposition activity index of the glass before the crystallization step in 2.) is shown in FIG.
  • the decomposition activity index of the glass-ceramics molded object after the crystallization process in an Example (No.B1, B4, B6, B8) and a comparative example (No. a2) is shown in FIG.
  • the glass-ceramic molded articles of Examples (No. A45, No. A100, No. A107, and No. A108) after the etching step have decomposition activity indices of 12.3 to 29. It was 0 nmol / l / min, which was a high value compared to the decomposition activity index before the etching step. Therefore, since the decomposition activity index
  • exponent before and behind an etching process is shown in FIG. 7 about the glass-ceramics molded object of an Example (No. A100).
  • the glass ceramic molded articles of Examples (No. A45, No. A107, No. A108) exhibited different decomposition activity indexes before and after performing the crystallization step and the etching step, respectively. .
  • the glass-ceramics molded object of an Example (No.A107) showed a different decomposition activity index
  • the decomposition activity indices before and after the crystallization step and the etching step are shown in FIGS. 8 to 10 for the glass ceramic molded articles of Examples (No. A 107, No. A 45, and No. A 108).
  • the contact angle with water was 30 ° or less two hours after the start of the irradiation of ultraviolet rays. It was confirmed that in particular, as shown in Tables 31 to 32, the hydrophilicity of the glass-ceramics molded articles of Examples (Nos. B1 to B11) was such that the contact angle was 10 ° or less after 30 minutes from the start of the irradiation of ultraviolet light. It was confirmed that On the other hand, the contact angle with water after 2 hours from the start of irradiation of ultraviolet rays in the comparative example (No.
  • the particle sizes of the anatase-type TiO 2 crystal in the glass ceramic molded body of the example are 5 nm or more and 3 ⁇ m or less, more specifically 25 nm or more and 159 nm It was below and was within the desired range.
  • the crystallization temperature is 700 ° C. or more and 1000 ° C. or less, and the crystallization time is 0.5 hours or more and 60 hours or less, a glass ceramic molded body having a desired crystal grain diameter can be obtained.
  • FIG. 12 to FIG. 16 and FIG. 21 it was also revealed that when the crystallization temperature is increased and the crystallization temperature is increased, the crystal grain size of the glass-ceramics molded body is increased.
  • the average linear expansion coefficient of the glass ceramic molded body of the example is 70 ⁇ 10 ⁇ 7 / ° C. or less, more specifically 30 ⁇ 10 ⁇ 7 / ° C. or less. , Was within the desired range.
  • the water resistance and the acid resistance of the glass ceramics of the examples were all first grade.
  • Tables 39 and 40 show the compositions of the glass bodies of the examples (No. C1 to No. C9) and the comparative example (No. c1) of the present invention, and a glass ceramics sintered body is produced using these glass bodies. Conditions and crystalline phases are shown.
  • the glass ceramic sintered bodies of Examples (No. C1 to No. C9) and Comparative Example (No. c1) of the present invention respectively correspond to oxides, hydroxides, carbonates, and the like corresponding to the raw materials of the respective components.
  • Raw materials of high purity used for ordinary glass such as nitrate, fluoride, hydroxide and meta phosphoric acid compound were selected, weighed and uniformly mixed so as to become the composition ratio of each example and comparative example. After that, it is put into a platinum crucible or quartz crucible, dissolved for 2 to 6 hours in a temperature range of 1350 to 1500 ° C in an electric furnace according to the melting difficulty of the glass composition, stirred and homogenized, and then the glass melt is put into running water.
  • a granular or flaky glass body was obtained.
  • the glass body was crushed by a jet mill to obtain a powder glass having a particle size of 10 ⁇ m or less.
  • the powder glass was filled in a mold and uniaxially pressed, and then cold isostatic pressing was performed to obtain pellets. Thereafter, it was placed in an electric furnace, and firing was performed at a predetermined temperature and time as shown in Table 39.
  • the powder, additive and mixture of the glass body having a particle size of 10 ⁇ m or less are further uniformly mixed and then filled in a mold, uniaxially pressed, and then subjected to cold isostatic pressing to obtain pellets It was in the state. Thereafter, it was placed in an electric furnace and fired at a predetermined temperature and time as shown in Table 41 to produce a glass ceramic sintered body.
  • the types of crystal phases generated in the sintered glass ceramics of the example (No. C1 to No. C20) and the comparative example (No. c1) are X-ray diffractometer (manufactured by Philips, trade name: X) 'Pert-MPD) identified. The results are shown in Tables 40 and 41.
  • the photocatalytic properties of the glass ceramic sintered bodies of the example (No. C1 to No. C20) and the comparative example (No. c1) are formulated by the Photocatalyst Product Technology Council in the same manner as the example of the glass ceramic molded body It evaluated according to "photocatalyst performance evaluation method I" (methylene blue method), and this result is shown in Table 40 and Table 41. As a result of evaluation, the sample in which the photocatalytic property was recognized was shown by ⁇ , and the sample in which the photocatalytic property was not recognized was shown by x.
  • the hydrophilicity of the sintered glass ceramics of the example (No. C1 to No. C9) and the comparative example (No. c1) is similar to that of the example of the glass ceramic molded body by the ⁇ / 2 method. It evaluated by measuring the contact angle of water and a water droplet. The results are shown in Table 40.
  • the crystal phase formed in the glass ceramic sintered body of the example (No. C10 to No. C20) also contains anatase type TiO 2 crystal having high photocatalytic activity.
  • the In the XRD pattern of the molded product of the example (No. C10) shown in FIG. 24, this causes peaks in the incident angle represented by “ ⁇ ” including the incident angle 2 ⁇ 25.3 ° It is clear from the fact that For this reason, it was guessed that the glass-ceramics sintered compact of an Example has high photocatalytic characteristics and hydrophilicity in the surface compared with the molded object of a comparative example (No. c1).
  • any glass ceramic sintered body also has photocatalytic properties. It is confirmed that you are doing. Moreover, it became clear that these glass-ceramics sintered compact surfaces do not peel easily, there is also no deterioration by a photocatalytic reaction, and it has high durability.
  • the glass ceramic sintered body of the example of the present invention it is excellent in durability and easily forms crystals of one or more titanium oxides selected from anatase type, rutile type and brookite type.
  • the glass-ceramics molded articles of Examples (No. D1 to No. D16) and Comparative Example (No. d1) of the present invention respectively have corresponding oxides, hydroxides, carbonates, and nitrates as raw materials of the respective components.
  • Raw materials such as fluoride, hydroxide, metaphosphoric acid compound, etc., which are used for ordinary glass, are weighed and uniformly mixed so as to become the composition ratio of each example and comparative example According to the glass composition, it is melted in a temperature range of 1350 to 1500 ° C. for 2 to 6 hours according to the glass composition, stirred and homogenized, and then the glass melt is poured into running water, A granular or flaky glass body was obtained. The glass body was crushed by a jet mill to obtain a powder glass having a particle size of 10 ⁇ m or less.
  • the temperature of the slurry layer was raised from room temperature to 600 ° C., and held at this temperature for 2 hours to carry out the degreasing step. Thereafter, the temperature was raised from 600 ° C. to the temperature shown in Table 42, and held at this temperature for the time described in Table 42 to carry out the firing step. After the firing step, the temperature was lowered to room temperature to obtain a composite having a glass ceramic layer.
  • the type of the crystal phase generated in the glass ceramic layer of the composite using the glass bodies of Examples (No. D1 to No. D16) and Comparative Example (No. d1) is X-ray diffractometer (Philips Corporation) Manufactured by trade name: X'Pert-MPD).
  • the photocatalytic properties of the composites using the glass bodies of the example (No. D1 to No. D16) and the comparative example (No. d1) are similar to the example of the glass ceramic molded body, the photocatalyst product technology conference It evaluated according to "the photocatalytic performance evaluation method I" which M. formulated (methylene blue method). As a result of evaluation, the sample in which the photocatalytic property was recognized was shown by ⁇ , and the sample in which the photocatalytic property was not recognized was shown by x.
  • the hydrophilicity of the composite using the glass body of the example (No. D1 to No. D16) and the comparative example (No. d1) is the same as the example of the glass ceramic molded body, according to the ⁇ / 2 method. It evaluated by measuring the contact angle of a sample surface and a water droplet.
  • Examples D17 and D18 Furthermore, as the example D17 and the example D18 of the present invention, the glass material crystallized earlier is placed on the substrate using the glass bodies of the same composition as the example D1 and the example D3, respectively, and the composite material is Made. Specifically, after the raw materials are weighed and uniformly mixed so as to have the compositions of Example D1 and Example D3, they are put into a platinum crucible, dissolved in an electric furnace at a temperature of 1450 ° C. for 3 hours, and stirred and homogenized By pouring the glass melt into flowing water, a granular or flake-like glass body was obtained. The glass body was pulverized to a particle size of 1 mm or less, and heat treated at 950 ° C. for 30 minutes to obtain glass ceramics. Thereafter, this glass ceramic was crushed by a jet mill to obtain powder glass ceramic having a particle size of 1 ⁇ m or less.
  • the temperature of the slurry layer was raised from room temperature to 600 ° C., and held at this temperature for 2 hours to carry out the degreasing step. Thereafter, the temperature was raised to a temperature of 850 ° C., and held at this temperature for 30 minutes to carry out a firing step. After the firing step, the temperature was lowered to room temperature to obtain a composite having a glass ceramic layer.
  • Example D17 and Example D18 were evaluated crystalline phase by using the evaluation method described above, anatase TiO 2 and NaTi 2 (PO 4) as a crystalline phase in both 2 was precipitated.
  • anatase TiO 2 and NaTi 2 (PO 4) as a crystalline phase in both 2 was precipitated.
  • a phenomenon of decolorization of methylene blue occurred and the contact angle with water was 30 ° or less From these results, it was confirmed to have photocatalytic properties and high hydrophilicity.
  • the composite of the example of the present invention is excellent in the durability and easily forms an inorganic titanium compound including anatase type titanium oxide (TiO 2 ).
  • the glass ceramic beads of Examples (No. E1 to No. E7) and Comparative Examples (No. e1) of the present invention respectively correspond to oxides, hydroxides, carbonates, nitrates, and the like as raw materials of the respective components.
  • Raw materials of high purity used for ordinary glass such as fluorides, hydroxides and metaphosphoric acid compounds are selected and weighed so as to become the composition ratio of each example and comparative example shown in Table 46 to Table 47
  • the batch was mixed uniformly. The batch is put into a platinum crucible, kept at 700 ° C. for 2 hours in an electric furnace, heated to 1450 ° C., dissolved at that temperature for 4 hours, dropped into glass water, and cullet of milliorder did. Thereafter, the cullet was processed into a spherical shape with an average particle diameter of 200 ⁇ m using a ball mill.
  • the types of precipitated crystal phases of the glass ceramic beads of Examples (No. E1 to No. E7) and Comparative Examples (No. e1) are X-ray diffractometer (manufactured by Philips, trade name: X'Pert- Identified by MPD).
  • the glass-ceramics molded object of the Example of this invention has a high photocatalytic characteristic compared with the glass-ceramics molded object of a comparative example.
  • the presence or absence of photocatalytic properties was evaluated by the following method.
  • the above glass ceramic beads were placed in a methylene blue solution having a concentration of 10 (mg / L), and while stirring the solution, ultraviolet light of 10 mW / cm 2 was irradiated for 30 minutes to observe the degree of decolorization of methylene blue. It was judged that there was a photocatalytic property in the case where decoloring was observed, and it was judged that there was no photocatalytic property in the case where no decoloring was observed.
  • Table 48 shows the compositions and crystallization temperatures of the glass ceramic fibers of the examples (No. F1 to No. F6) of the present invention and the comparative example (No. f1), and the types of crystal phases contained in these glass ceramic fibers. ⁇ ⁇ shown in Table 49.
  • the following examples are for the purpose of illustration only, and are not limited to these examples.
  • the glass-ceramic fibers of the examples (No. F1 to No. F6) and the comparative example (No. f1) of the present invention respectively have corresponding oxides, hydroxides, carbonates, nitrates, as raw materials of the respective components.
  • Raw materials of high purity used for ordinary glasses such as fluorides, hydroxides and metaphosphoric acid compounds are selected, and weighed so as to become the composition ratio of each example and comparative example shown in Tables 48 to 49.
  • the batch was mixed uniformly. The batch was put into a platinum crucible, kept in an electric furnace at 700 ° C. for 2 hours, heated to 1450 ° C., and melted at that temperature for 4 hours.
  • the platinum crucible was rotated at high speed, and the glass solution was made to flow out from the pores provided on the top of the platinum crucible to form a fiber having an average diameter of 50 ⁇ m. Further, the fiber was cut into 1 mm to 2 mm and used for evaluation of photocatalytic properties.
  • the glass-ceramics molded object of the Example of this invention has a high photocatalytic characteristic compared with the glass-ceramics molded object of a comparative example.
  • the types of precipitated crystal phases of the glass ceramic fibers of the example (No. F1 to No. F6) and the comparative example (No. f1) are X-ray diffractometer (manufactured by Philips, trade name: X'Pert- Identified by MPD).
  • the presence or absence of photocatalytic properties was evaluated for the glass ceramic fibers of the examples (No. F1 to No. F6) and the comparative example (No. f1) by the following method.
  • a glass ceramic fiber was placed in a methylene blue solution having a concentration of 10 (mg / L), and while stirring the solution, ultraviolet light of 10 mW / cm 2 was irradiated for 30 minutes to observe the degree of decolorization of methylene blue. It was judged that there was a photocatalytic property in the case where decoloring was observed, and it was judged that there was no photocatalytic property in the case where no decoloring was observed.
  • the glass ceramic fiber of the present invention the crystal phase having photocatalytic properties is easily precipitated, and the crystal is uniformly dispersed in the inside and the surface of the fiber, so there is no loss of photocatalytic function by peeling off It was confirmed that a glass ceramic fiber having an excellent photocatalytic function can be obtained.

Abstract

Disclosed is a process for producing a glass ceramics which has a surface having excellent durability and has at least one titanium oxide crystal phase selected from those of anatase type, rutile type and brookite type.  Also disclosed are a molded article having a photocatalytic function and a hydrophilic molded article each of which comprises the glass ceramics produced by the process.  The glass ceramics comprises 15.0 to 95.0% by mol inclusive of a TiO2 component and 3.0 to 85.0% by mol inclusive of a P2O5 component and/or an SiO2 component in terms of oxide contents relative to the total amount of the glass ceramics.

Description

ガラスセラミックス及びその製造方法、ガラスセラミックス焼結体の製造方法、複合体の製造方法、光触媒機能性成形体、並びに親水性成形体Glass ceramic and method for producing the same, method for producing a sintered body of glass ceramic, method for producing a composite, photocatalytic functional molded article, and hydrophilic molded article
 本発明は、ガラスセラミックス及びその製造方法、ガラスセラミックス焼結体の製造方法、複合体の製造方法、光触媒機能性成形体、並びに親水性成形体に関する。特に好ましくは、光を照射することにより触媒作用を示す結晶相を含有する、ガラスセラミックス及びその製造方法に関する。 The present invention relates to a glass ceramic and a method of manufacturing the same, a method of manufacturing a sintered body of glass ceramic, a method of manufacturing a composite, a photocatalyst functional molded body, and a hydrophilic molded body. Particularly preferably, the present invention relates to a glass ceramic containing a crystalline phase that exhibits a catalytic action by irradiating light and a method for producing the same.
 光触媒は、光を吸収してエネルギーの高い状態になり、このエネルギーを用いて反応物質に化学反応を起こす材料である。光触媒としては金属イオンや金属錯体等も用いられているが、特に二酸化チタン(TiO)をはじめとする半導体の無機チタン化合物が光触媒として高い触媒活性を有することが知られており、最もよく使用されている。半導体は、通常、電気を通さないが、バンドギャップエネルギー以上のエネルギーの光が照射されると、電子が伝導帯に移動して電子が抜けた正孔が生成されるため、これら電子と正孔によって強い酸化還元力を持つようになり、酸化還元反応が強く促進される。光触媒の持つこの酸化還元力は、汚れや汚染物質、悪臭成分などを分解・除去し、浄化する働きをする上、太陽光などを利用できるところから、エネルギーフリーな環境浄化技術として注目を浴びている。また、無機チタン化合物の結晶を含む成形体の表面は、光の照射により水が濡れ易い親水性を呈するため、雨等の水滴で洗浄される、いわゆるセルフクリーニング作用を有することが知られている。 A photocatalyst is a material that absorbs light to be in a high energy state, and uses this energy to cause a chemical reaction on a reactant. Although metal ions and metal complexes are also used as photocatalysts, it is known that inorganic titanium compounds of semiconductors such as titanium dioxide (TiO 2 ) particularly have high catalytic activity as photocatalysts, and they are most often used. It is done. Although semiconductors usually do not conduct electricity, when they are irradiated with light of energy higher than the band gap energy, the electrons move to the conduction band and holes from which the electrons are released are generated. As a result, it has a strong redox power, and the redox reaction is strongly promoted. This oxidation and reduction power of photocatalysts works to decompose and remove dirt, pollutants, and offensive odor components, and to purify them. In addition, because it can use sunlight etc., it attracts attention as an energy-free environmental purification technology. There is. In addition, it is known that the surface of a molded article containing crystals of an inorganic titanium compound has a so-called self-cleaning action that is washed with water droplets such as rain since it exhibits hydrophilicity to which water is easily wetted by light irradiation. .
 一方、酸化チタン(TiO)など光触媒活性を有する無機チタン化合物は、非常に微細な粉末なので、これをそのまま処理剤として使用すると、被処理物から前記粉末を分離したり、回収したりすることが大変難しいという問題があった。例えば水や空気などの流体の浄化に利用した場合、飛散・浮遊する光触媒物質を濾過処理しなければならないが、微粒子であるため精度の高い濾過フィルターが必要であり、目詰まりが生じてしまう。そのため殆どの場合、光触媒物質は基体の表面に光触媒を固定・担持させた形で利用されている。より具体的には、無機チタン化合物を塗料にして基材の表面に塗布し又はコーティングしたり、真空蒸着、スパッタリング、プラズマなどの手法で膜状に形成したり、又は無機チタン化合物を基材中に含ませたりする場合が殆どである。 On the other hand, since the inorganic titanium compound having photocatalytic activity such as titanium oxide (TiO 2 ) is a very fine powder, if it is used as a treatment agent as it is, the powder is separated or recovered from the object to be treated Was very difficult. For example, when it is used for purification of fluid such as water and air, it is necessary to filter the scattering and floating photocatalytic substance, but since it is fine particles, a highly accurate filter is required, and clogging occurs. Therefore, in most cases, the photocatalytic substance is used in the form of having the photocatalyst fixed and supported on the surface of the substrate. More specifically, an inorganic titanium compound is used as a paint and applied or coated on the surface of a substrate, or formed into a film by a method such as vacuum deposition, sputtering, plasma or the like, or an inorganic titanium compound in a substrate In most cases,
 例えば、特開2008-81712号公報には、基材の表面に無機チタン化合物層を形成するために用いられる塗布剤として、合成樹脂を分散相とする水性エマルジョンに高濃度の無機チタン化合物が含まれた光触媒性塗布剤が開示されている。また、特開2007-230812号公報には、ガスフロースパッタリングによりTiOのターゲットを用いて成膜された光触媒酸化チタン薄膜が開示されている。 For example, in JP 2008-81712 A, as a coating agent used to form an inorganic titanium compound layer on the surface of a base material, an aqueous emulsion containing a synthetic resin as a dispersed phase contains a high concentration of inorganic titanium compound. Photocatalytic coatings have been disclosed. In addition, JP 2007-230812 A discloses a photocatalytic titanium oxide thin film formed by gas flow sputtering using a TiO y target.
 ここで、光触媒を固定・担持させる基材には、ガラス、タイル、フィルムなど用途によって様々なものがある。光触媒による酸化還元反応が主に光の当たる表面で起こるため、より多くの汚染物質、悪臭成分を分解・除去できるようにするためには、光触媒と処理させたい物質との接触面積を増やすことが重要である。そのため、光触媒の比表面積を大きくできる基体の形状や構造について多くの工夫がなされており、代表的なものとして粒子状に形成したビーズや、繊維状のものに光触媒を担持させたものがある。 Here, there are various substrates depending on applications such as glass, tiles, and films as a substrate on which the photocatalyst is fixed and supported. Since the photocatalytic oxidation-reduction reaction mainly occurs on the lighted surface, in order to be able to decompose and remove more pollutants and malodorous components, the contact area between the photocatalyst and the substance to be treated should be increased. is important. For this reason, many improvements have been made to the shape and structure of the substrate that can increase the specific surface area of the photocatalyst, and there are beads formed in the form of particles and fibers provided with the photocatalyst as a typical example.
 しかしながら、光触媒を担持させた前記基材は、蒸着(乾式法)又は含浸(湿式法)の手法を用いて、基材の表面に光触媒物質(無機チタン化合物)を、膜状に塗布又はコーティングしたものである。そのため、塗布膜やコーティング層が基材から剥離するおそれがあり、耐久性において不十分という問題があった。 However, the substrate on which the photocatalyst is supported is coated or coated with a photocatalytic substance (inorganic titanium compound) on the surface of the substrate using a vapor deposition (dry method) or impregnation (wet method) method. It is a thing. Therefore, there is a possibility that the coating film or the coating layer may be peeled from the substrate, and there is a problem that the durability is insufficient.
 一方、被覆層剥離による問題を解決すべく、無機チタン化合物を基材中に含ませ、材料そのものにバルクとして光触媒特性を持たせた試みとして、例えば、特開平9-315837号公報に、SiO、Al、CaO、MgO、B、ZrO、及びTiOの各成分を所定量含有する光触媒用ガラスが開示されている。 On the other hand, to solve the problem of coating layer peeling, an inorganic titanium compound contained in the substrate, an attempt which gave photocatalytic properties as bulk material itself, for example, in JP-A-9-315837, SiO 2 There is disclosed a glass for photocatalyst containing a predetermined amount of each component of Al 2 O 3 , CaO, MgO, B 2 O 3 , ZrO 2 and TiO 2 .
 しかしながら、基材の表面に無機チタン化合物を塗布し又はコーティングする場合には、塗布膜やコーティング層の耐久性が十分ではなく、塗布膜やコーティング層が基材から剥離するおそれがあった。例えば、特開2008-81712で開示される光触媒性塗布剤を用いて塗布膜を形成する場合、塗布膜に残留している樹脂や有機バインダが、紫外線等によって分解されたり、無機チタン化合物の触媒作用で酸化還元されたりする結果、塗布膜の耐久性が経時的に劣化しやすい。また、上記の無機チタン化合物触媒が十分な光触媒活性を引き出すためにはナノサイズの微粒子が必要であるが、このような超微粒子は作製するコストが高く、凝集しやすいという問題点があった。さらに、このような光触媒性塗布剤を用いる場合、微細な粉末状の無機チタン化合物が凝集しやすいため、無機チタン化合物層の作製が困難になりやすく、無機チタン化合物層の光触媒特性が不充分になりやすかった。 However, when the inorganic titanium compound is coated or coated on the surface of the substrate, the durability of the coating film or the coating layer is not sufficient, and there is a possibility that the coating film or the coating layer may peel off from the substrate. For example, when forming a coating film using a photocatalytic coating agent disclosed in JP-A-2008-81712, a resin or an organic binder remaining in the coating film is decomposed by ultraviolet light or the like, or a catalyst of an inorganic titanium compound As a result of oxidation and reduction by action, the durability of the coating film tends to deteriorate over time. Further, in order for the above-mentioned inorganic titanium compound catalyst to have sufficient photocatalytic activity, nano-sized particles are required, but such ultra-fine particles are expensive to produce and have a problem that they are easily aggregated. Furthermore, when such a photocatalytic coating agent is used, the fine powdery inorganic titanium compound is easily aggregated, so the preparation of the inorganic titanium compound layer tends to be difficult, and the photocatalytic properties of the inorganic titanium compound layer become insufficient. It was easy to become.
 また、特開2007-230812で開示された、いわゆるドライプロセス法と呼ばれる成膜法を利用した光触媒部材も、膜として形成されるものである。そのため、剥離によって光触媒特性が劣化してしまう憂いがあるだけでなく、高価な装置による緻密な雰囲気の制御が必要となり、製造コストが非常に高くなってしまう問題があった。 In addition, a photocatalyst member using a film forming method called a so-called dry process method disclosed in Japanese Patent Application Laid-Open No. 2007-230812 is also formed as a film. Therefore, not only there is the possibility that the photocatalytic properties will be deteriorated due to the peeling, but there is also a problem that the precise control of the atmosphere by an expensive device is required, and the manufacturing cost becomes extremely high.
 また、特開平9-315837で開示される光触媒用ガラスでは、TiOを入れ常套の手段で溶融ガラス化するだけでは酸化チタンは結晶構造を有しておらず、アモルファスの形でガラス中に存在するため、その光触媒特性が不充分であった。酸化チタンを含んだ光触媒物質の活性度はその結晶構造に由来しているので、アモルファスのTiOには光触媒特性を期待し難い。 Further, in the photocatalyst glass disclosed in Japanese Laid-Open 9-315837, only molten vitrified by means of conventional put TiO 2 is titanium oxide does not have a crystalline structure, present in the glass in the form of amorphous The photocatalytic properties are insufficient. Since the activity of the photocatalytic substance containing titanium oxide is derived from its crystal structure, it is difficult to expect photocatalytic properties of amorphous TiO 2 .
 これらの課題、すなわち光触媒特性を有する結晶の生成とその固定化を一括で解決する技術として、ガラスの中からTiO等の光触媒結晶を析出させる技術がある。ガラス全体に光触媒結晶を分散させた結晶化ガラスは、表面の亀裂や剥離などの経時変化が殆どなく、半永久的に結晶の特性を利用できる利点がある。 As a technique for solving these problems, that is, generation of crystals having photocatalytic properties and their immobilization at the same time, there is a technique for precipitating photocatalyst crystals such as TiO 2 from glass. The crystallized glass in which the photocatalyst crystals are dispersed in the entire glass has an advantage that the characteristics of the crystal can be utilized semipermanently, with almost no change with time such as cracking or peeling of the surface.
 例えば、特開2008-120655号公報、特開2009-57266号公報は、光触媒材料として、TiO-Bi-B-Al-RO(R:アルカリ土類金属)系ガラスを熱処理してチタン酸化物の結晶を得る結晶化ガラスを開示している。 For example, Japanese Patent Application Laid-Open Nos. 2008-120655 and 2009-57266 use TiO 2 -Bi 2 O 3 -B 2 O 3 -Al 2 O 3 -RO (R: alkaline earth metal) as a photocatalytic material. Disclosed is a crystallized glass which is heat-treated to obtain crystals of titanium oxide.
特開2008-81712号公報JP 2008-81712 A 特開2007-230812号公報JP 2007-230812 A 特開平9-315837号公報Unexamined-Japanese-Patent No. 9-315837 特開2008-120655号公報JP 2008-120655 A 特開2009-57266号公報JP, 2009-57266, A
 特に、酸化チタンの結晶型としては、アナターゼ(Anatase)型、ルチル(Rutile)型及びブルッカイト(Brookite)型が知られているが、高い光触媒特性をもたらすには、アナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上の酸化チタン、特にアナターゼ型及び/又はルチル型の酸化チタンを有することが重要であると考えられる。 In particular, as crystal forms of titanium oxide, anatase (anatase) type, rutile type (rutile type) and brookite type (Brookite type) are known, but to provide high photocatalytic properties, anatase type, rutile type and brookite type It is believed to be important to have one or more titanium oxides selected from, especially titanium oxides of anatase type and / or rutile type.
 本発明は、以上の実情に鑑みてなされたものであり、表面に薄膜やコーティング等の加工をする必要が無く、バルク材として光触媒特性を有する材料、具体的には表面が耐久性に優れ、且つ光触媒特性を有する微細な結晶、例えばアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上の酸化チタンの結晶を表面に有しているガラスセラミックスを提供することを目的とする。さらに、同ガラスセラミックスの製造方法、及びこの製造方法で製造されるガラスセラミックスを含む光触媒機能性成形体及び親水性成形体を提供することを目的とする。 The present invention has been made in view of the above situation, and there is no need to process a thin film or coating on the surface, and a material having photocatalytic properties as a bulk material, specifically, the surface is excellent in durability, In addition, it is an object of the present invention to provide a glass ceramic having on its surface fine crystals having photocatalytic properties, such as one or more crystals of titanium oxide selected from anatase type, rutile type and brookite type. Furthermore, another object of the present invention is to provide a method for producing the same glass ceramics, and a photocatalytic functional molded article and a hydrophilic molded article containing the glass ceramics produced by the production method.
 また、本発明は、耐久性に優れ且つ酸化チタンの結晶を高確率に有するガラスセラミックス焼結体の製造方法、並びにこの製造方法で製造されるガラスセラミックス焼結体を含む光触媒機能性成形体及び親水性成形体を提供することをも目的とする。 Further, the present invention provides a method for producing a glass ceramic sintered body having excellent durability and having crystals of titanium oxide with high probability, and a photocatalytic functional molded article including the glass ceramic sintered body produced by this method and Another object of the present invention is to provide a hydrophilic molded body.
 また、本発明は、従来の樹脂塗膜等に比べて耐久性に優れ、且つ酸化チタンの結晶を高確率に有するガラスセラミックス層を備える複合体の製造方法、及びこの製造方法で製造される複合体を含む光触媒機能性部材及び親水性部材を提供することをも目的とする。 In addition, the present invention is a method of producing a composite comprising a glass ceramic layer which is superior in durability to conventional resin coating films and the like and which has titanium oxide crystals with high probability, and a composite produced by this production method Another object of the present invention is to provide a photocatalytic functional member including a body and a hydrophilic member.
 また、本発明は、表面に薄膜やコーティング等の加工をする必要が無く、耐久性に優れ且つバルク材として光触媒特性を有する材料からなるビーズ及び繊維、具体的には光触媒特性を有する微細な結晶が材料内部や表面に存在するガラスセラミックスビーズ及びガラスセラミックス繊維を提供することをも目的とする。さらに、同ガラスセラミックスビーズ及びガラスセラミックス繊維の製造方法、及びこれらガラスセラミックスビーズ及びガラスセラミックス繊維を使った光触媒部材を提供することをも目的とする。 In the present invention, it is not necessary to process thin films or coatings on the surface, and beads and fibers made of a material having excellent durability and having photocatalytic properties as a bulk material, specifically fine crystals having photocatalytic properties. It is another object of the present invention to provide glass ceramic beads and glass ceramic fibers which are present inside or on the surface of a material. Furthermore, another object of the present invention is to provide a method for producing the glass ceramic beads and the glass ceramic fiber, and a photocatalyst member using the glass ceramic bead and the glass ceramic fiber.
 本発明者らは、上記課題を解決するために、鋭意試験研究を重ねた結果、特定の組成範囲および製法によって、ナノサイズの原料を使用する必要がなく、酸化チタン(TiO)をはじめとする無機チタン化合物の微細な結晶を有するガラスセラミックスが得られることを見出し、本発明を完成するに至った。 As a result of intensive studies and researches to solve the above problems, the present inventors do not need to use nano-sized raw materials according to a specific composition range and manufacturing method, and titanium oxide (TiO 2 ) and the like are included. It has been found that glass ceramics having fine crystals of an inorganic titanium compound can be obtained, and the present invention has been completed.
 また、本発明者らは、所定の組成範囲のガラス体が粉砕された粉砕ガラスを成形し、その成形体を焼成することで、耐久性に優れ且つ酸化チタンの結晶を高確率に有する所望形状のガラスセラミックス焼結体が得られることをも見出した。 Moreover, the present inventors shape | mold the crushed glass by which the glass body of the predetermined composition range was grind | pulverized, By baking the molded object, the desired shape which is excellent in durability and has a crystal of a titanium oxide with high probability It was also found that a glass-ceramic sintered body of
 また、本発明者らは、所望の組成範囲のガラス体が粉砕された粉砕ガラスを基材上に配置し、焼成することで、耐久性に優れ且つ酸化チタンの結晶を高確率に有する所望の光触媒機能性部材及び親水性部材が得られることをも見出した。 Moreover, the present inventors arrange | position on the base material the ground glass which the glass body of the desired composition range was grind | grounded, and bake them, and it is excellent in durability and is a desired thing which has a crystal of a titanium oxide with high probability. It has also been found that a photocatalytic functional member and a hydrophilic member can be obtained.
 また、本発明者らは、特定の組成範囲および製法によって、ナノサイズの原料を使用する必要がなく、酸化チタン(TiO)をはじめとする無機チタン化合物の微細な結晶を有するガラスセラミックスビーズ及びガラスセラミックス繊維が得られることを見出した。特に、無機チタン化合物の微細な結晶により、ガラスセラミックスビーズ及び繊維に光触媒特性が付与されることを見出した。具体的には、本発明は以下のようなものを提供する。 Moreover, the present inventors do not need to use nano-sized raw materials according to a specific composition range and manufacturing method, and glass ceramic beads having fine crystals of inorganic titanium compounds including titanium oxide (TiO 2 ) and It has been found that glass ceramic fibers can be obtained. In particular, it has been found that fine crystals of an inorganic titanium compound impart photocatalytic properties to glass ceramic beads and fibers. Specifically, the present invention provides the following.
 (1) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%でTiO成分を15.0%以上95.0%以下含有し、さらにSiO成分及び/又はP成分を3.0%以上85.0%以下含有するガラスセラミックス。 (1) The content of TiO 2 component is 15.0% to 95.0% or less in mol% with respect to the total mass of the glass ceramic composition in oxide conversion, and further, the SiO 2 component and / or the P 2 O 5 component Glass ceramics containing 3.0% or more and 85.0% or less.
 (2) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%で
SiO成分  0~70.0%、及び/又は
GeO成分  0~60.0%
の各成分をさらに含有する(1)記載のガラスセラミックス。
(2) SiO 2 component 0 to 70.0% and / or GeO 2 component 0 to 60.0% in mol% with respect to the total mass of the glass ceramic in terms of oxide composition
The glass ceramic according to (1), which further contains each component of
 (3) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%でSiO成分の含有量が60.0%以下である(2)記載のガラスセラミックス。 (3) The glass ceramic according to (2), wherein the content of the SiO 2 component is 60.0% or less in mol% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
 (4) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%で
LiO成分  0~40.0%、及び/又は
NaO成分  0~40.0%、及び/又は
O成分  0~40.0%、及び/又は
RbO成分  0~10.0%、及び/又は
CsO成分  0~10.0%
の各成分をさらに含有する(1)から(3)のいずれか記載のガラスセラミックス。
(4) 0 to 40.0% of Li 2 O component and / or 0 to 40.0% of Na 2 O component, and / or K 2 in mol% with respect to the total mass of glass ceramics having the composition in terms of oxide O component 0 to 40.0%, and / or Rb 2 O component 0 to 10.0%, and / or Cs 2 O component 0 to 10.0%
The glass ceramic according to any one of (1) to (3), further comprising each component of
 (5) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%で
MgO成分  0~40.0%、及び/又は
CaO成分  0~40.0%、及び/又は
SrO成分  0~40.0%、及び/又は
BaO成分  0~40.0%、及び/又は
ZnO成分  0~60.0%
の各成分をさらに含有する(1)から(4)のいずれか記載のガラスセラミックス。
(5) MgO component 0 to 40.0% and / or CaO component 0 to 40.0%, and / or SrO component 0 to 40. 0% and / or BaO component 0 to 40.0%, and / or ZnO component 0 to 60.0%
The glass ceramic according to any one of (1) to (4), which further contains each component of
 (6) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%でZnO成分の含有量が50.0%以下である(5)記載のガラスセラミックス。 (6) The glass-ceramics according to (5), wherein the content of the ZnO component is 50.0% or less in mol% with respect to the total mass of the glass-ceramics in terms of oxide composition.
 (7) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%で
成分  0~40.0%、及び/又は
Al成分  0~30.0%、及び/又は
Ga成分  0~30.0%、及び/又は
In成分  0~10.0%
の各成分をさらに含有する(1)から(6)のいずれか記載のガラスセラミックス。
(7) 0 to 40.0% of B 2 O 3 component and / or 0 to 30.0% of Al 2 O 3 component, and / or in mol% with respect to the total mass of the glass ceramic in the oxide conversion composition Ga 2 O 3 component 0 to 30.0% and / or In 2 O 3 component 0 to 10.0%
The glass ceramic according to any one of (1) to (6), further comprising each component of
 (8) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%で
ZrO成分  0~20.0%、及び/又は
SnO成分  0~10.0%
の各成分をさらに含有する(1)から(7)のいずれか記載のガラスセラミックス。
(8) ZrO 2 component 0 to 20.0%, and / or SnO component 0 to 10.0% in mol%, based on the total mass of the glass ceramic in terms of oxide composition
The glass ceramic according to any one of (1) to (7), further comprising each component of
 (9) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%で
Nb成分  0~50.0%、及び/又は
Ta成分  0~50.0%、及び/又は
WO成分  0~50.0%、及び/又は
MoO成分  0~50.0%
の各成分をさらに含有する(1)から(8)のいずれか記載のガラスセラミックス。
(9) 0 to 50.0% of Nb 2 O 5 component and / or 0 to 50.0% of Ta 2 O 5 component, and / or 0% by mol% with respect to the total mass of the glass ceramic in the oxide conversion composition WO 3 component 0 to 50.0% and / or MoO 3 component 0 to 50.0%
The glass ceramic according to any one of (1) to (8), further comprising each component of
 (10) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%で
Bi成分  0~20.0%、及び/又は
TeO成分  0~20.0%、及び/又は
Ln成分(式中、LnはLa、Gd、Y、Ce、Nd、Dy、Yb及びLuからなる群より選択される1種以上、Ceを除く各成分についてはa=2且つb=3、Ceについてはa=1且つb=2とする)  合計で0~30.0%、及び/又は
成分(式中、MはV、Cr、Mn、Fe、Co、Niからなる群より選択される1種以上とし、x及びyはそれぞれx:y=2:(Mの価数)を満たす最小の自然数とする)  合計で0~10.0%、及び/又は
As成分及び/又はSb成分  合計で0~5.0%
の各成分をさらに含有する(1)から(9)のいずれか記載のガラスセラミックス。
(10) relative to the glass ceramic total material of the oxide composition in terms, Bi 2 O 3 component from 0 to 20.0% by mol%, and / or TeO 2 component from 0 to 20.0%, and / or Ln a O b component (wherein, L n is one or more selected from the group consisting of La, G d , Y, Ce, Nd, Dy, Y b and Lu, and a = 2 and b = 3 for each component except Ce) Total of 0 to 30.0% and / or M x O y component (wherein M is a group consisting of V, Cr, Mn, Fe, Co, Ni) And x and y each represent a minimum natural number satisfying x: y = 2 (valence of M). 0 to 10.0% in total, and / or As 2 O 3 Component and / or Sb 2 O 3 component 0 to 5.0% in total
The glass ceramic according to any one of (1) to (9), further comprising each component of
 (11) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%でTiO成分を15.0%以上90.0%以下、及びP成分を10.0%を超え且つ85.0%以下含有する(1)から(10)のいずれか記載のガラスセラミックス。 (11) The content of TiO 2 component is 15.0% to 90.0% or less, and the content of P 2 O 5 component is more than 10.0% and 85% by mol% with respect to the total mass of the glass ceramic composition in oxide conversion The glass ceramic according to any one of (1) to (10), containing 0% or less.
 (12) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%でSiO及びGeOからなる群より選択される少なくとも1種以上の成分を0.1%以上60.0%以下含有する(11)記載のガラスセラミックス。 (12) Containing 0.1% or more and 60.0% or less of at least one or more components selected from the group consisting of SiO 2 and GeO 2 in mol% with respect to the total mass of the glass ceramic composition in oxide conversion The glass ceramic as described in (11).
 (13) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%でSiO及びGeOからなる群より選択される1種以上の成分を5.0%以上60.0%以下含有する(12)記載のガラスセラミックス。 (13) Containing 5.0% or more and 60.0% or less of one or more components selected from the group consisting of SiO 2 and GeO 2 in mol% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition (12) The glass ceramic according to the above.
 (14) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%でTiO成分を15.0%以上88.9%以下、及びP成分を11.0%以上84.9%以下含有し、RnO成分及びRO成分からなる群より選択される1種以上の成分を0.1%以上60.0%以下含有する(1)から(10)のいずれか記載のガラスセラミックス(式中、RnはLi、Na、K、Rb、Csからなる群より選択される1種以上とし、RはMg、Ca、Sr、Ba、Znからなる群より選択される1種以上とする)。 (14) 15.0% or more and 88.9% or less of TiO 2 component and 11.0% or more and 84.9% of P 2 O 5 components in mol% with respect to the total mass of the glass ceramic of the composition in oxide % And not less than 0.1% and not more than 60.0% of one or more components selected from the group consisting of Rn 2 O components and R 1 O components, according to any one of (1) to (10) (Wherein R n is at least one selected from the group consisting of Li, Na, K, Rb and Cs, and R 1 is selected from the group consisting of Mg, Ca, Sr, Ba and Zn) Be more than a species).
 (15) RnO成分及びRO成分からなる群より選択される2種以上の成分を含有する(14)記載のガラスセラミックス。 (15) The glass ceramic according to (14), which contains two or more components selected from the group consisting of Rn 2 O components and R 1 O components.
 (16) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%でTiO成分を15.0%以上88.9%以下、及びP成分を11.0%以上84.9%以下含有し、Nb成分、Ta成分、WO成分、及びMoO成分からなる群より選択される1種以上の成分を0.1%以上50.0%以下含有する(1)から(10)のいずれか記載のガラスセラミックス。 (16) 15.0% or more and 88.9% or less of TiO 2 component and 11.0% or more and 84.9% of P 2 O 5 components in mole% with respect to the total mass of the glass ceramic of the composition in terms of oxide % And not less than 0.1% and not more than 50.0% containing one or more components selected from the group consisting of Nb 2 O 5 components, Ta 2 O 5 components, WO 3 components, and MoO 3 components The glass ceramic in any one of (1) to (10).
 (17) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%でTiO成分を15.0%以上88.9%以下、及びP成分を11.0%以上84.9%以下含有し、ZrO成分及びSnO成分からなる群より選択される1種以上の成分を0.1%以上20.0%以下含有する(1)から(10)のいずれか記載のガラスセラミックス。 (17) 15.0% to 88.9% of the TiO 2 component and 11.0% to 84.9 of the P 2 O 5 component in mol% with respect to the total mass of the glass ceramic composition in oxide conversion % Or less and 0.1% or more and 20.0% or less of at least one component selected from the group consisting of a ZrO 2 component and a SnO component. .
 (18) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%でTiO成分を15.0%以上88.9%以下、及びP成分を11.0%以上84.9%以下含有し、B成分、Al成分、Ga成分、及びIn成分からなる群より選択される1種以上の成分を0.1%以上50.0%以下含有する(1)から(10)のいずれか記載のガラスセラミックス。 (18) relative to the glass ceramic total material of the oxide composition in terms of the following 88.9% 15.0% more than the TiO 2 component in mol%, and P 2 O 5 ingredient 11.0% or more 84.9 0.1% or more and at least one component selected from the group consisting of B 2 O 3 components, Al 2 O 3 components, Ga 2 O 3 components, and In 2 O 3 components. Glass ceramics in any one of (1) to (10) which contains less than%.
 (19)酸化物換算組成のガラス全物質量に対して、モル%でTiO成分を15.0~95.0%、SiO成分及び/又はP成分を3.0%~70.0%、RnO成分及び/又はRO成分を0.1~60%、(式中、RnはLi、Na、K、Rb、Csから選ばれる1種以上とし、RはBe、Mg、Ca、Sr、Baから選ばれる1種以上とする)含有する(1)から(10)いずれか記載のガラスセラミックス。 (19) 15.0 to 95.0% of TiO 2 component, and 3.0% to 70% of SiO 2 component and / or P 2 O 5 component in mol% with respect to the total glass mass of the composition in oxide conversion .0%, Rn 2 O component and / or R 2 O component is 0.1 to 60%, wherein Rn is at least one selected from Li, Na, K, Rb and Cs, and R 2 is Be And (1) to (10) containing at least one selected from Mg, Ca, Sr, and Ba).
 (20) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%で
SiO成分及び/又はP成分を5.0%~70.0%含有する(19)記載のガラスセラミックス。
(20) The glass ceramic according to (19), which comprises 5.0% to 70.0% of a SiO 2 component and / or a P 2 O 5 component in mole% with respect to the total mass of the glass ceramic of the oxide conversion composition .
 (21) RnO成分及び/又はRO成分を0.1~50%(式中、RnはLi、Na、K、Rb、Csから選ばれる1種以上とし、RはBe、Mg、Ca、Sr、Baから選ばれる1種以上とする)含有する(19)又は(20)のいずれか記載ガラスセラミックス。 (21) The Rn 2 O component and / or the R 2 O component is 0.1 to 50% (wherein Rn is one or more selected from Li, Na, K, Rb, Cs, and R 2 is Be, Mg (19) or (20) containing at least one selected from Ca, Sr, and Ba).
 (22) 酸化物換算組成のガラスセラミックス全物質量に対して、モル%で
 B成分を0~40%、GeO成分を0~10%、Al成分を0~20%、ZnO成分を0~60%、ZrO成分を0~20%、SnO成分を0~10%、Bi成分及び/又はTeO成分を0~20%、Nb成分、Ta成分、及びWO成分から選ばれる1種以上を0~30%、Ln成分(LnはY、Ce、La、Nd、Gd、Dy、Ybから選ばれる一種又はそれ以上)を0~30%、M成分(Mは、V、Cr、Mn、Fe、Co、及びNiから選ばれる一種以上とし、x及びyはそれぞれx:y=2:(Mの価数)を満たす最小の自然数とする)を0~10%、As成分及び/又はSb成分を0~5%、の各成分をさらに含有し、酸化物換算組成のガラス全質量に対して、外割りの質量%で、F、Cl、Br、S、N、及びCからなる群より選ばれる少なくとも1種以上の非金属元素成分が0~10%含まれ、Cu、Ag、Au、Pd、Pt、Ru、及びRhからなる群より選ばれる少なくとも1種の金属元素成分が0~5%含まれている(19)から(21)のいずれかに記載のガラスセラミックス。
(22) 0 to 40% of B 2 O 3 component, 0 to 10% of GeO 2 component, and 0 to 20% of Al 2 O 3 component in mole% with respect to the total mass of glass ceramic of the composition in terms of oxide the ZnO component 0-60%, a ZrO 2 component 0-20%, of SnO component 0 ~ 10%, Bi 2 O 3 component and / or TeO 2 component 0-20%, Nb 2 O 5 component, Ta 0 to 30% of 1 O or more selected from 2 O 5 components and WO 3 components, L n 2 O 3 components (L n is one or more selected from Y, Ce, La, Nd, Gd, Dy, Yb) Is 0-30 %, M x O y component (M is one or more selected from V, Cr, Mn, Fe, Co, and Ni, and x and y are each x: y = 2: (M valence ) minimum a natural number satisfying) a 0 ~ 10%, as 2 O 3 component and / or The b 2 O 3 component 0-5%, further contains components of, the entire mass of the glass in terms of oxide composition, in weight% of the outer split, F, Cl, Br, S, N, and C 0 to 10% of at least one nonmetallic element component selected from the group consisting of: at least one metallic element component selected from the group consisting of Cu, Ag, Au, Pd, Pt, Ru, and Rh The glass ceramic according to any one of (19) to (21), which contains 0 to 5%.
 (23) F成分、Cl成分、Br成分、S成分、N成分、及びC成分からなる群より選ばれる少なくとも1種以上の非金属元素成分が、酸化物換算組成のガラスセラミックス全質量に対する外割り質量%で10.0%以下含まれている(1)から(22)のいずれか記載のガラスセラミックス。 (23) At least one nonmetallic element component selected from the group consisting of an F component, a Cl component, a Br component, an S component, an N component, and a C component has an external ratio based on the total mass of the glass ceramic of the oxide conversion composition The glass ceramic in any one of (1) to (22) contained 10.0% or less by mass%.
 (24) Cu、Ag、Au、Pd、Pt、Ru、及びRhからなる群より選ばれる少なくとも1種の金属元素成分が、酸化物換算組成のガラスセラミックス全質量に対する外割り質量%で10.0%以下含まれている(1)から(23)のいずれか記載のガラスセラミックス。 (24) At least one metal element component selected from the group consisting of Cu, Ag, Au, Pd, Pt, Ru, and Rh is 10.0 by weight as a percentage of the total weight of the glass ceramic of the oxide conversion composition. The glass ceramic according to any one of (1) to (23), which is contained in an amount of at most%.
 (25) Cu、Ag、Au、Pd、Pt、Ru、及びRhからなる群より選ばれる少なくとも1種の金属元素成分が、酸化物換算組成のガラスセラミックス全質量に対する外割り質量%で5.0%以下含まれている(1)から(23)のいずれか記載のガラスセラミックス。 (25) At least one metal element component selected from the group consisting of Cu, Ag, Au, Pd, Pt, Ru, and Rh is 5.0 or less by mass% of the total weight of the glass ceramic of the oxide conversion composition. The glass ceramic according to any one of (1) to (23), which is contained in an amount of at most%.
 (26) 結晶相として、TiO(アナターゼ型TiO、ルチル型TiO、及びブルッカイト型TiOのうちいずれか1以上を含む)、TiP、(TiO)、RnTi(PO、及びRTi(PO、並びにこれらの固溶体のうち1種以上が含まれている(1)から(25)のいずれか記載のガラスセラミックス。
(式中、RnはLi、Na、K、Rb、Csから選ばれる1種以上とし、RはBe、Mg、Ca、Sr、Baから選ばれる1種以上とする)
(26) As a crystal phase, TiO 2 (including any one or more of anatase TiO 2 , rutile TiO 2 , and brookite TiO 2 ), TiP 2 O 7 , (TiO) 2 P 2 O 7 , RnTi 2 (PO 4 ) 3 , and R 2 Ti 4 (PO 4 ) 6 , and the glass ceramic according to any one of (1) to (25), which contains one or more of these solid solutions.
(Wherein, Rn is at least one selected from Li, Na, K, Rb, and Cs, and R 2 is at least one selected from Be, Mg, Ca, Sr, and Ba)
 (27) 結晶相として、TiO、TiP、及び(TiO)、並びにこれらの固溶体のうち1種以上からなる結晶相が含まれている(26)記載のガラスセラミックス。 (27) The glass ceramic according to (26), wherein the crystalline phase includes TiO 2 , TiP 2 O 7 , (TiO) 2 P 2 O 7 , and a crystalline phase composed of one or more of these solid solutions. .
 (28) 結晶相として、TiP、(TiO)、RnTi(PO、RTi(PO、及びこれらの固溶体から選ばれる1種以上、並びに、TiO及びこの固溶体の少なくともいずれか、が含まれている(26)記載のガラスセラミックス。
(式中、RnはLi、Na、K、Rb、Csから選ばれる1種以上とし、RはBe、Mg、Ca、Sr、Baから選ばれる1種以上とする)
(28) At least one selected from TiP 2 O 7 , (TiO) 2 P 2 O 7 , RnTi 2 (PO 4 ) 3 , R 2 Ti 4 (PO 4 ) 6 , and a solid solution thereof as a crystal phase And the glass-ceramics according to (26), which comprises TiO 2 and / or at least one of its solid solutions.
(Wherein, Rn is at least one selected from Li, Na, K, Rb, and Cs, and R 2 is at least one selected from Be, Mg, Ca, Sr, and Ba)
 (29) 前記結晶相として、アナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶が含まれている(26)から(28)のいずれか記載のガラスセラミックス。 (29) The glass ceramic according to any one of (26) to (28), wherein the crystal phase includes at least one TiO 2 crystal selected from anatase type, rutile type and brookite type.
 (30) 前記結晶相として、アナターゼ型及び/又はルチル型のTiO結晶が含まれている(26)から(29)のいずれか記載のガラスセラミックス。 (30) The glass ceramic according to any one of (26) to (29), wherein an anatase type and / or a rutile type TiO 2 crystal is contained as the crystal phase.
 (31) 前記結晶相がガラスセラミックス全体積に対する体積比で1.0%以上95.0%以下含まれている(26)から(30)のいずれか記載のガラスセラミックス。 (31) The glass ceramic according to any one of (26) to (30), wherein the crystal phase is contained at 1.0% to 95.0% by volume ratio to the total volume of the glass ceramic.
 (32) 紫外領域から可視領域までの波長の光によって触媒活性が発現される(1)から(31)のいずれか記載のガラスセラミックス。 (32) The glass ceramic according to any one of (1) to (31), wherein catalytic activity is exhibited by light of a wavelength from the ultraviolet region to the visible region.
 (33) JIS R 1703-2:2007に基づくメチレンブルーの分解活性指数が3.0nmol/L/min以上である(32)記載のガラスセラミックス。 (33) The glass-ceramics according to (32), wherein the decomposition activity index of methylene blue based on JIS R 1703-2: 2007 is 3.0 nmol / L / min or more.
 (34) 紫外領域から可視領域までの波長の光を照射した表面と水滴との接触角が30°以下である(1)から(33)のいずれか記載のガラスセラミックス。 (34) The glass ceramic according to any one of (1) to (33), wherein the contact angle between the surface irradiated with light of a wavelength from the ultraviolet region to the visible region and the water droplet is 30 ° or less.
 (35) 紫外領域から可視領域までの波長の光を照射した表面と水滴との接触角が10°以下である(1)から(33)のいずれか記載のガラスセラミックス。 (35) The glass ceramic according to any one of (1) to (33), wherein the contact angle between the surface irradiated with light of a wavelength from the ultraviolet region to the visible region and the water droplet is 10 ° or less.
 (36) (1)から(35)のいずれか記載のガラスセラミックスからなる光触媒機能性ガラスセラミックス成形体。 (36) A photocatalytic functional glass-ceramics formed body comprising the glass-ceramics according to any one of (1) to (35).
 (37) (1)から(35)のいずれか記載のガラスセラミックスからなる親水性ガラスセラミックス成形体。 (37) A hydrophilic glass-ceramics molded article comprising the glass-ceramics according to any one of (1) to (35).
 (38) ファイバー形状を有する(36)又は(37)記載のガラスセラミックス成形体。 (38) The glass-ceramics molded object as described in (36) or (37) which has a fiber shape.
 (39) (1)から(35)のいずれか記載のガラスセラミックスの製造方法であって、原料組成混合物を1250℃以上の温度に保持して少なくとも一部に液相を生じさせ、その後冷却して固化させるガラスセラミックスの製造方法。 (39) The method for producing a glass ceramic according to any one of (1) to (35), wherein the raw material composition mixture is maintained at a temperature of 1250 ° C. or more to generate a liquid phase at least in part, and then cooled. Method of manufacturing glass ceramics to be solidified.
 (40) (1)から(35)のいずれか記載のガラスセラミックスの製造方法であって、原料を混合してその融液を得る溶融工程と、前記融液の温度を結晶化温度領域まで低下させる第一冷却工程と、前記温度を前記結晶化温度領域内で維持して結晶を生じさせる結晶化工程と、前記温度を前記結晶化温度領域外まで低下させて結晶分散ガラスを得る第二冷却工程と、を有するガラスセラミックスの製造方法。 (40) In the method for producing a glass ceramic according to any one of (1) to (35), a melting step of mixing raw materials to obtain a melt, and lowering the temperature of the melt to a crystallization temperature range A second cooling step, maintaining the temperature within the crystallization temperature range to form crystals, and reducing the temperature outside the crystallization temperature range to obtain a crystal-dispersed glass And a process for producing a glass ceramic.
 (41) (1)から(35)のいずれか記載のガラスセラミックスの製造方法であって、原料を混合してその融液を得る溶融工程と、前記融液を冷却してガラス体を得る冷却工程と、前記ガラス体の温度をガラス転移温度を超えた温度領域まで上昇させる再加熱工程と、前記温度を前記温度領域内で維持して結晶を生じさせる結晶化工程と、を有するガラスセラミックスの製造方法。 (41) In the method for producing glass ceramics according to any one of (1) to (35), a melting step of mixing raw materials to obtain a melt, and cooling of the melt to obtain a glass body A glass ceramic comprising a step of: a reheating step of raising the temperature of the glass body to a temperature range exceeding a glass transition temperature; and a crystallization step of maintaining the temperature within the temperature range to form crystals. Production method.
 (42) 前記温度を前記結晶化温度領域外まで低下させて結晶分散ガラスを得る再冷却工程をさらに有する(41)記載のガラスセラミックスの製造方法。 (42) The method for producing a glass ceramic according to (41), further including a recooling step of obtaining the crystal dispersed glass by reducing the temperature to outside the crystallization temperature range.
 (43) 前記結晶化工程の温度領域は、500℃以上1200℃以下である(40)から(42)のいずれか記載のガラスセラミックスの製造方法。 (43) The manufacturing method of the glass ceramics in any one of (40) to (42) whose temperature range of the said crystallization process is 500 degreeC or more and 1200 degrees C or less.
 (44) 前記結晶化工程の温度領域は、510℃以上1200℃以下である(40)から(43)のいずれか記載のガラスセラミックスの製造方法。 (44) The method for producing a glass ceramic according to any one of (40) to (43), wherein a temperature range of the crystallization step is 510 ° C. or more and 1200 ° C. or less.
 (45) 前記方法は、前記結晶化工程後に前記ガラス体に対してドライエッチング及び/又は酸性もしくはアルカリ性溶液への浸漬を行うエッチング工程をさらに有する(39)から(44)のいずれか記載のガラスセラミックスの製造方法。 (45) The glass according to any one of (39) to (44), further including an etching step of performing dry etching and / or immersing the glass body in an acidic or alkaline solution after the crystallization step. Manufacturing method of ceramics.
 (46) ガラスセラミックス焼結体の製造方法であって、原料組成物を溶融しガラス化することで(1)から(35)のいずれか記載の組成を有するガラス体を作製するガラス化工程と、前記ガラス体を粉砕して粉砕ガラスを作製する粉砕工程と、前記粉砕ガラスを所望形状の成形体に成形する成形工程と、前記成形体を加熱して焼成を行う焼成工程と、を有する製造方法。 (46) A method for producing a sintered body of glass ceramic, which comprises melting and vitrifying a raw material composition to produce a glass body having a composition according to any one of (1) to (35), and A manufacturing process comprising: a crushing step of crushing the glass body to prepare a crushed glass, a forming step of forming the crushed glass into a formed body of a desired shape, and a firing step of heating and sintering the formed body. Method.
 (47) 基材と、この基材上に位置するガラスセラミックス層と、を備える複合体の製造方法であって、原料組成物を溶融しガラス化することで(1)から(35)のいずれか記載の組成を有するガラス体を作製するガラス化工程と、前記ガラス体を粉砕して粉砕ガラスを作製する粉砕工程と、前記粉砕ガラスを基材上に配置した後に加熱し焼成を行う焼成工程と、を有する製造方法。 (47) A manufacturing method of a composite including a base material and a glass ceramic layer located on the base material, which is any of (1) to (35) by melting and vitrifying the raw material composition. A vitrification process for producing a glass body having the composition according to any one of the embodiments, a pulverization process for pulverizing the glass body to produce a pulverized glass, and a calcination process for heating and firing after disposing the pulverized glass on a substrate And manufacturing method.
 (48) 前記ガラス体又は前記粉砕ガラスに熱処理を施し、内部に結晶を析出させる結晶化工程を有する(46)又は(47)記載の製造方法。 (48) The method according to (46) or (47), further comprising a crystallization step of subjecting the glass body or the crushed glass to a heat treatment to precipitate crystals inside.
 (49) 前記焼成を、1200℃以下の温度で行う(46)から(48)記載の製造方法。 (49) The method according to any one of (46) to (48), wherein the firing is performed at a temperature of 1200 ° C. or less.
 (50) 前記焼成を、前記ガラス体のガラス転移温度(Tg)以上であり且つTgより600℃高い温度以下の雰囲気温度で行う(46)から(49)いずれか記載の製造方法。 (50) The method according to any one of (46) to (49), wherein the firing is performed at an atmosphere temperature not lower than the glass transition temperature (Tg) of the glass body and not higher than 600 ° C. higher than Tg.
 (51) 前記焼成を、10分~24時間に亘り行う(46)から(50)いずれか記載の製造方法。 (51) The method according to any one of (46) to (50), wherein the firing is performed for 10 minutes to 24 hours.
 (52) 前記焼成を、5分~24時間に亘り行う(46)から(50)いずれか記載の製造方法。 (52) The method according to any one of (46) to (50), wherein the firing is performed for 5 minutes to 24 hours.
 (53) 前記粉砕ガラスに結晶状態のTiOを混合して混合物を作製する工程を有する(46)から(52)のいずれか記載の製造方法。 (53) The production method according to any one of (46) to (52), including the step of mixing TiO 2 in a crystalline state with the crushed glass to prepare a mixture.
 (54) 混合する結晶状態のTiOの量を、前記混合物に対する質量比で0~95.0質量%にする(53)記載の製造方法。 (54) The production method according to (53), wherein the amount of TiO 2 in the crystalline state to be mixed is made to be 0 to 95.0 mass% in a mass ratio to the mixture.
 (55) 混合する結晶状態のTiOの量を、前記混合物に対する質量比で1.0~95.0質量%にする(53)記載の製造方法。 (55) The method according to (53), wherein the amount of TiO 2 in the crystalline state to be mixed is 1.0 to 95.0 mass% in a mass ratio to the mixture.
 (56) N成分、S成分、F成分、Cl成分、Br成分、及びC成分からなる群より選ばれる1種以上を含む添加物を、前記粉砕ガラス又は前記混合物に対する質量比で0~20.0%混合する工程を有する(46)から(55)のいずれか記載の製造方法。 (56) An additive containing one or more selected from the group consisting of an N component, an S component, an F component, a Cl component, a Br component, and a C component in a mass ratio of 0 to 20. The manufacturing method in any one of (46) to (55) which has the process of 0% mixing.
 (57) Cu、Ag、Au、Pd、Pt、Ru、及びRhからなる群より選ばれる1種以上からなる金属元素成分を、前記粉砕ガラス又は前記混合物に対する質量比で0~10.0%混合する工程を有する(46)から(56)のいずれか記載の製造方法。 (57) A metal element component consisting of one or more selected from the group consisting of Cu, Ag, Au, Pd, Pt, Ru, and Rh is mixed in a mass ratio of 0 to 10.0% with respect to the crushed glass or the mixture The manufacturing method in any one of (46) to (56) which has the process of.
 (58) 前記粉砕ガラス、又は前記粉砕ガラス及び他の成分との混合物を溶剤に分散し、スラリ状態にする工程を有する(46)から(57)のいずれかに記載の製造方法。 (58) The production method according to any one of (46) to (57), including the steps of dispersing the crushed glass or a mixture of the crushed glass and other components in a solvent to form a slurry.
 (59) 前記焼成により得られる焼結体及び/又は複合体に、酸性もしくはアルカリ性の溶液への浸漬、又はエッチングを行う工程を更に有する(46)から(58)のいずれか記載の製造方法。 (59) The production method according to any one of (46) to (58), further including the step of immersing in a acidic or alkaline solution or etching the sintered body and / or the composite obtained by the firing.
 (60) (46)から(59)いずれか記載の製造方法で製造されるガラスセラミックス焼結体及び/又は複合体を含む光触媒機能性成形体。 (60) A photocatalytic functional molded article comprising a sintered body of glass ceramic and / or a composite produced by the method according to any one of (46) to (59).
 (61) (46)から(59)のいずれか記載の製造方法で製造されるガラスセラミックス焼結体及び/又は複合体を含む親水性成形体。 (61) A hydrophilic molded article comprising a sintered body of glass ceramic and / or a composite produced by the method according to any one of (46) to (59).
 (62) (1)から(35)記載のガラスセラミックスからなり、繊維又はビーズの形態を有するガラスセラミックス成形体。 (62) A glass-ceramics molded body comprising the glass-ceramics according to any one of (1) to (35) and having a form of fiber or bead.
 (63) 前記結晶相として、アナターゼ型TiO及び/又はブルッカイト型TiOが含まれている(62)記載のガラスセラミックス成形体。 (63) Examples crystal phase, contains anatase TiO 2 and / or brookite TiO 2 (62) Glass ceramic body according.
 (64) 紫外領域から可視領域までの波長の光によって触媒活性が発現される(62)から(63)のいずれか記載のガラスセラミックス成形体。 (64) The glass-ceramics molded object in any one of (62) to (63) by which catalytic activity is expressed by the light of the wavelength from an ultraviolet region to a visible region.
 (65) (62)から(64)のいずれか記載のガラスセラミックス成形体を含む塗料。 (65) A paint comprising the glass ceramic molded body according to any one of (62) to (64).
 (66) (62)から(64)のいずれか記載のガラスセラミックス成形体を含む浄化装置。 (66) A purification device comprising the glass ceramic molded body according to any one of (62) to (64).
 (67) (62)から(64)のいずれか記載のガラスセラミックス成形体を含むフィルター。 (67) A filter comprising the glass ceramic molded body according to any one of (62) to (64).
 本発明によれば、ガラスの組成を所定の範囲内とすることによって、酸化チタン(TiO)をはじめとする無機チタン化合物の結晶相が析出し易くなる。この結晶相がガラスの内部と表面に均一に析出するので、表面の剥離の問題がなく、仮に表面が削られても光触媒性能が劣らず、耐久性に優れたセラガラスセラミックスと、その製造方法を得ることができる。 According to the present invention, by setting the composition of the glass within a predetermined range, the crystal phase of the inorganic titanium compound including titanium oxide (TiO 2 ) is easily precipitated. Since this crystal phase is uniformly deposited on the inside and the surface of the glass, there is no problem of peeling of the surface, and even if the surface is scraped, the cera glass ceramic with excellent photocatalytic performance and excellent durability, and its manufacturing method You can get
 また、本発明によれば、所定の組成範囲のガラス体が粉砕された粉砕ガラスを成形し、その成形体を焼成することで、耐久性に優れ且つ酸化チタンの結晶を高確率に有するガラスセラミックス焼結体を製造できる。このガラスセラミックス焼結体は、所望の形状に設計できるため、種々の用途において有用である。 Further, according to the present invention, a glass ceramic having excellent durability and having crystals of titanium oxide with high probability is formed by forming a crushed glass into which a glass body in a predetermined composition range is crushed and baking the formed body. A sintered body can be manufactured. The glass ceramic sintered body can be designed in a desired shape, and thus is useful in various applications.
 また、本発明によれば、所定の組成範囲のガラス体が粉砕された粉砕ガラスを基材上に配置し、焼成することで、耐久性に優れ且つ酸化チタンの結晶を高確率に有する、ガラスセラミックス層を基材上に備える複合体を製造できる。この複合体の形状は、基材の形状に応じて設計できるため、種々の用途において有用である。また、本発明によれば、ガラス相から光触媒特性を呈する結晶相が生成されることにより、凝集し易く取り扱いが難しいナノサイズのTiO結晶材料を必ずしも用いる必要がなくなるため、複合体の製造工程を飛躍的に容易にし、酸化チタンの結晶を高確率に有することが可能である。 Further, according to the present invention, a glass having excellent durability and having a titanium oxide crystal with high probability is provided by arranging on a substrate a crushed glass obtained by crushing a glass body having a predetermined composition range and baking it. A composite comprising a ceramic layer on a substrate can be produced. The shape of the composite can be designed according to the shape of the substrate, and thus is useful in various applications. Further, according to the present invention, the formation of the crystal phase exhibiting photocatalytic properties from the glass phase eliminates the necessity of using the nano-sized TiO 2 crystal material which is easily aggregated and difficult to handle. It is possible to dramatically facilitate titanium oxide crystals with a high probability.
 また、本発明によれば、ガラスの組成を所定の範囲内とすることによって、酸化チタン(TiO)をはじめとする無機チタン化合物の光触媒結晶が析出し易くなる。この結晶相がガラスの内部と表面に均一に析出するので、表面の剥離の問題がなく、仮に表面が削られても光触媒性能が劣らず、耐久性に優れたガラスセラミックスビーズ及びガラスセラミックス繊維、並びに該ビーズ及び該繊維を用いた光触媒機能性物品、例えば光触媒機能性繊維構造体を得ることができる。 Further, according to the present invention, by setting the composition of the glass within a predetermined range, the photocatalyst crystal of the inorganic titanium compound including titanium oxide (TiO 2 ) is easily precipitated. Since this crystal phase is uniformly deposited on the inside and the surface of the glass, there is no problem of surface peeling, and even if the surface is scraped, the photocatalytic performance is not inferior and the glass ceramic bead and the glass ceramic fiber having excellent durability And photocatalytic functional articles using the beads and the fibers, for example, photocatalytic functional fiber structures can be obtained.
 また、特に本発明のガラスセラミックス繊維は、繊維状の光触媒体であるので、比表面積が大きく、通常微粒子である光触媒と比べて飛散しにくく、巻き取りが可能である等の点で、取扱いが容易である。また、本発明のガラスセラミックス繊維は、繊維体として扱えるので任意の形状に成形しやすく、目的に応じて充填密度、空隙率を容易に設定でき、任意の形状の容器に簡単に充填することができる。さらに、本発明のガラスセラミックス繊維は、用途に合わせて布状、ウール状、フェルト状等にすることができる。しかも、本発明のガラスセラミックス繊維は、無機材料からなるガラスセラミックス繊維なので、優れた不燃性、耐熱性、化学的耐久性及び強度を呈することができる。 In addition, since the glass ceramic fiber of the present invention is particularly a fibrous photocatalyst, it has a large specific surface area, is less likely to scatter compared to the photocatalyst which is usually fine particles, and can be rolled up. It is easy. In addition, since the glass ceramic fiber of the present invention can be handled as a fiber body, it can be easily formed into an arbitrary shape, the filling density and the porosity can be easily set according to the purpose, and the container of any shape can be easily filled. it can. Furthermore, the glass ceramic fiber of the present invention can be made cloth-like, wool-like, felt-like or the like according to the use. And since the glass-ceramics fiber of this invention is a glass-ceramics fiber which consists of inorganic materials, it can exhibit the outstanding nonflammability, heat resistance, chemical durability, and intensity | strength.
本発明の実施例A1のガラスセラミックス成形体についてのXRDパターンである。It is a XRD pattern about the glass-ceramics molded object of Example A1 of this invention. 本発明の実施例A29のガラスセラミックス成形体についてのXRDパターンである。It is a XRD pattern about the glass-ceramics molded object of Example A29 of this invention. 本発明の実施例A45のガラスセラミックス成形体についてのXRDパターンである。It is a XRD pattern about the glass-ceramics molded object of Example A45 of this invention. 本発明の実施例A63のガラスセラミックス成形体についてのXRDパターンである。It is a XRD pattern about the glass-ceramics molded object of Example A63 of this invention. 本発明の実施例A80のガラスセラミックス成形体についてのXRDパターンである。It is a XRD pattern about the glass-ceramics molded object of Example A80 of this invention. 本発明の実施例に係るガラスセラミックス成形体について、結晶化工程の前後の分解活性指数を表すグラフである。It is a graph showing the decomposition activity index before and behind a crystallization process about the glass-ceramics molded object which concerns on the Example of this invention. 本発明の実施例A100のガラスセラミックス成形体について、エッチング工程前後の分解活性指数を表すグラフである。It is a graph showing the decomposition activity index before and behind an etching process about the glass-ceramics molded object of Example A100 of this invention. 本発明の実施例A107のガラスセラミックス成形体について、結晶化工程及びエッチング工程の前後の分解活性指数を表すグラフである。It is a graph showing the decomposition activity index before and behind a crystallization process and an etching process about the glass-ceramics molded object of Example A107 of this invention. 本発明の実施例A45のガラスセラミックス成形体について、結晶化工程及びエッチング工程の前後の分解活性指数を表すグラフである。It is a graph showing the decomposition activity index before and behind a crystallization process and an etching process about the glass-ceramics molded object of Example A45 of this invention. 本発明の実施例A108のガラスセラミックス成形体について、結晶化工程及びエッチング工程の前後の分解活性指数を表すグラフである。It is a graph showing the decomposition activity index before and behind a crystallization process and an etching process about the glass-ceramics molded object of Example A108 of this invention. 本発明の実施例に係るガラスセラミックス成形体について求められた、紫外線の照射時間と水接触角との関係を表すグラフである。It is a graph showing the relationship of the irradiation time of an ultraviolet-ray and a water contact angle calculated | required about the glass-ceramics molded object which concerns on the Example of this invention. 本発明の実施例に係るガラスセラミックス成形体について、結晶化温度とアナターゼ結晶の粒子径との関係を表すグラフである。It is a graph showing the relationship of crystallization temperature and the particle diameter of anatase crystal about the glass-ceramics molded object which concerns on the Example of this invention. 本発明の実施例A100のガラスセラミックス成形体について、種々の結晶化条件によって形成されるアナターゼ結晶の粒子径を表すグラフである。It is a graph showing the particle diameter of the anatase crystal formed by various crystallization conditions about the glass-ceramics molded object of Example A100 of this invention. 本発明の実施例A45のガラスセラミックス成形体について、種々の結晶化条件によって形成されるアナターゼ結晶の粒子径を表すグラフである。It is a graph showing the particle diameter of the anatase crystal formed by various crystallization conditions about the glass-ceramics molded object of Example A45 of this invention. 本発明の実施例A63及びA107のガラスセラミックス成形体について、種々の結晶化条件によって形成されるアナターゼ結晶の粒子径を表すグラフである。It is a graph showing the particle diameter of the anatase crystal formed by various crystallization conditions about the glass-ceramics molded object of Example A63 of this invention and A107. 本発明の実施例A108のガラスセラミックス成形体について、種々の結晶化条件によって形成されるアナターゼ結晶の粒子径を表すグラフである。It is a graph showing the particle diameter of the anatase crystal formed by various crystallization conditions about the glass-ceramics molded object of Example A108 of this invention. 本発明の実施例のガラスセラミックス成形体についての平均線膨張係数を表すグラフである。It is a graph showing the average linear expansion coefficient about the glass-ceramics molded object of the Example of this invention. 本発明の実施例B1のガラスセラミックス成形体についてのXRDパターンである。It is a XRD pattern about the glass-ceramics molded object of Example B1 of this invention. 本発明の実施例に係る第2のガラスセラミックス成形体について、結晶化工程後の分解活性指数を表すグラフである。It is a graph showing the decomposition activity index after the crystallization process about the 2nd glass-ceramics molded object which concerns on the Example of this invention. 本発明の実施例B11のガラスセラミックス成形体について求められた、紫外線の照射時間と水接触角との関係を表すグラフである。It is a graph showing the relationship of the irradiation time of an ultraviolet-ray and a water contact angle calculated | required about the glass-ceramics molded object of Example B 11 of this invention. 本発明の実施例に係る第2のガラスセラミックス成形体について、結晶化温度とアナターゼ結晶の粒子径との関係を表すグラフである。It is a graph showing the relationship of crystallization temperature and the particle diameter of anatase crystal about the 2nd glass-ceramics molded object which concerns on the Example of this invention. 本発明の実施例に係る第2のガラスセラミックス成形体についての平均線膨張係数を表すグラフである。It is a graph showing the average coefficient of linear expansion about the 2nd glass ceramics compact concerning an example of the present invention. 本発明の一実施例に係るガラスセラミックス焼結体における光触媒結晶相の存在を示すXRDパターンである。It is a XRD pattern which shows existence of a photocatalyst crystal phase in a glass ceramics sintered compact concerning one example of the present invention. 本発明の別の実施例に係るガラスセラミックス焼結体における光触媒結晶相の存在を示すXRDパターンである。It is a XRD pattern which shows the presence of the photocatalyst crystal phase in the glass-ceramics sintered compact which concerns on another Example of this invention. 本発明の実施例D1の複合体のガラスセラミックス層についてのXRDパターンである。It is a XRD pattern about the glass-ceramics layer of the composite of Example D1 of the present invention. 本発明の実施例E1のガラスセラミックスビーズについてのXRDパターンである。It is a XRD pattern about the glass-ceramics bead of Example E1 of this invention. 本発明の実施例F1のガラスセラミックス繊維についてのXRDパターンである。It is a XRD pattern about the glass-ceramics fiber of Example F1 of this invention.
 本発明のガラスセラミックスは酸化物換算組成のガラスセラミックス全物質量に対して、モル%でTiO成分を15.0%以上95.0%以下含有し、さらにSiO成分及び/又はP成分を3.0%以上85.0%以下含有する。TiO成分と共にP成分及び/又はSiO成分を併用し、これらの成分の含有量を前記範囲内に抑えることによって、酸化チタン(TiO)をはじめとする無機チタン化合物の結晶が析出し易くなる。これらの結晶相がガラスから均一に析出するので、表面の剥離の問題がなく、仮に表面が削られても性能が劣らず、耐久性に優れたガラスセラミックスを得ることができる。以下、本発明のガラスセラミックス及びその製造方法、ガラスセラミックス焼結体の製造方法、複合体の製造方法、光触媒機能性成形体、並びに親水性成形体の実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。 The glass ceramic of the present invention contains 15.0% or more and 95.0% or less of the TiO 2 component in mol% with respect to the total mass of the glass ceramic having the composition in terms of oxide, and further contains the SiO 2 component and / or P 2 O It contains five components at 3.0% or more and 85.0% or less. A combination of P 2 O 5 component and / or SiO 2 component with TiO 2 component, by suppressing the content of these components within the above range, crystals of inorganic titanium compounds such as titanium oxide (TiO 2) It becomes easy to precipitate. Since these crystal phases are uniformly precipitated from glass, there is no problem of surface peeling, and even if the surface is scraped, the performance is not inferior and it is possible to obtain a glass ceramic excellent in durability. BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the glass ceramic of the present invention and the method for producing the same, the method for producing a glass ceramic sintered body, the method for producing a composite, the photocatalytic functional molded article, and the hydrophilic molded article will be described in detail. The present invention is not limited to the following embodiments at all, and can be implemented with appropriate modifications within the scope of the object of the present invention. In addition, about the location which description overlaps, description may be abbreviate | omitted suitably, but the meaning of invention is not limited.
≪第1のガラスセラミックス≫
 本発明の第1のガラスセラミックスは、酸化物換算組成のガラスセラミックス全物質量に対して、モル%でTiO成分を15.0%以上90.0%以下、及びP成分を10.0%以上85.0%以下含有する。少なくともTiO成分及びP成分を併用し、これらの成分の含有量を所定の範囲内に抑えることによって、酸化チタン(TiO)をはじめとする無機チタン化合物の結晶が析出し易くなる。これらの結晶相がガラスの内部と表面に均一に析出するので、表面の剥離の問題がなく、仮に表面が削られても性能が劣らず、耐久性に優れたガラスセラミックスを得ることができる。
«First glass ceramics»
The first glass-ceramics of the present invention contains 15.0% or more and 90.0% or less of TiO 2 component and 10 P 2 O 5 components in mole% with respect to the total mass of the glass-ceramic in terms of the oxide conversion composition. The content is from 0% to 85.0%. By using at least a TiO 2 component and a P 2 O 5 component in combination and suppressing the content of these components within a predetermined range, crystals of an inorganic titanium compound including titanium oxide (TiO 2 ) are easily precipitated . Since these crystal phases are uniformly deposited on the inside and the surface of the glass, there is no problem of surface peeling, and even if the surface is scraped, the performance is not inferior and it is possible to obtain a glass ceramic excellent in durability.
 また、本発明の第1のガラスセラミックスは、以下に挙げる二つの製造方法のどちらを用いても作製することが可能である。一つは、原料組成混合物を1250℃以上の温度に保持して少なくとも一部に液相を生じさせ、その後冷却して固化させる製造方法である。もう一つは、原料を混合してその融液を得る溶融工程と、前記融液を冷却してガラス体を得る冷却工程と、前記ガラス体の温度をガラス転移温度を超えた温度領域まで上昇させる再加熱工程と、前記温度を前記温度領域内で維持して結晶を生じさせる結晶化工程と、を有する製造方法である。これらの製造方法を用いることにより、TiO結晶相がガラスの内部と表面に均一に析出するので、表面の剥離の問題がなく、仮に表面が削られても性能が劣らない、耐久性の優れるガラスセラミックスを得ることができる。 Further, the first glass ceramic of the present invention can be produced by using either of the two production methods listed below. One is a manufacturing method in which the raw material composition mixture is maintained at a temperature of 1250 ° C. or more to form a liquid phase at least partially, and then cooled and solidified. The other one is a melting step of mixing the raw materials to obtain the melt, a cooling step of cooling the melt to obtain the glass body, and raising the temperature of the glass body to a temperature range exceeding the glass transition temperature And a crystallization step in which the temperature is maintained within the temperature range to form crystals. By using these production methods, the TiO 2 crystal phase is uniformly deposited on the inside and the surface of the glass, so there is no problem of surface peeling, and even if the surface is scraped, the performance is not inferior and the durability is excellent. Glass ceramics can be obtained.
 以下、本発明の第1のガラスセラミックスを構成する各成分の組成範囲を以下に述べる。ここで、各成分の含有量は特に断りがない場合は、全て酸化物換算組成のガラスセラミックス全物質量に対するモル%で表示されるものとする。ここで、「酸化物換算組成」とは、ガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が溶融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総物質量を100モル%として、ガラス中に含有される各成分を表記した組成である。 Hereinafter, the composition range of each component which comprises the 1st glass ceramics of this invention is described below. Here, unless otherwise noted, the contents of the respective components are all represented by mol% with respect to the total mass of the glass ceramic in terms of the composition in terms of oxide. Here, “oxide conversion composition” means that the oxides, composite salts, metal fluorides, etc. used as raw materials of the glass component are oxidized when they are all decomposed and converted into oxides during melting. It is the composition which described each ingredient contained in glass on the basis of 100 mol% of the total thing mass of a thing.
<必須成分、任意成分について>
 TiO成分は、結晶化することにより、TiOの結晶、又はリンとの化合物の結晶としてガラスから析出し、光触媒特性をもたらすのに必須で欠かせない成分である。特に、TiO成分の含有量を15.0%以上にすることで、TiO結晶相が析出し易くなり、ガラスセラミックス中におけるTiO結晶の濃度が高められるため、所望の光触媒特性を確保することができる。一方、TiO成分の含有量が90.0%を超えると、ガラス化が非常に難しくなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するTiO成分の含有量は、好ましくは15.0%、より好ましくは25.0%、最も好ましくは30.0%を下限とし、好ましくは90.0%、より好ましくは88.9%、さらに好ましくは85.0%、最も好ましくは80.0%を上限とする。TiO成分は、原料として例えばTiO等を用いてこのガラスセラミックス内に含有することができる。
<Required Component, Optional Component>
The TiO 2 component precipitates from glass as crystals of TiO 2 or crystals of a compound with phosphorus by crystallization, and is an essential and essential component for providing photocatalytic properties. In particular, by setting the content of the TiO 2 component to 15.0% or more, the TiO 2 crystal phase is easily precipitated, and the concentration of the TiO 2 crystal in the glass ceramic is increased, thereby securing desired photocatalytic properties. be able to. On the other hand, when the content of the TiO 2 component exceeds 90.0%, vitrification becomes very difficult. Therefore, the content of the TiO 2 component relative to the total mass of the glass ceramic in terms of the oxide composition is preferably 15.0%, more preferably 25.0%, most preferably 30.0%, and preferably 90 .0%, more preferably 88.9%, still more preferably 85.0%, most preferably 80.0%. The TiO 2 component can be contained in this glass ceramic using, for example, TiO 2 as a raw material.
 P成分は、ガラスの網目構造を構成する成分である。本発明の第1のガラスセラミックスは、P成分が網目構造の主成分であるリン酸塩系ガラスにすることにより、より多くのTiO成分をガラスに取り込ませることができる。また、より低い熱処理温度でTiO結晶を析出することが可能であるため、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くできる。特に、Pの含有量が10.0%より少ないとガラス化が困難であり、Pの含有量が85.0%を超えるとTiO結晶相が析出し難くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するP成分の含有量は、好ましくは10.0%、より好ましくは11.0%、さらに好ましくは15.0%、最も好ましくは20.0%を下限とし、好ましくは85.0%、より好ましくは84.9%、さらに好ましくは70.0%、最も好ましくは60.0%を上限とする。P成分は、原料として例えばAl(PO、Ca(PO、Ba(PO、Na(PO)、BPO、HPO等を用いてガラスセラミックス内に含有することができる。 The P 2 O 5 component is a component that constitutes the glass network structure. The first glass-ceramics of the present invention can incorporate more TiO 2 components into the glass by using a phosphate-based glass in which the P 2 O 5 component is the main component of the network structure. In addition, since it is possible to precipitate TiO 2 crystals at a lower heat treatment temperature, one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals It is easy to form. In particular, when the content of P 2 O 5 is less than 10.0%, vitrification is difficult, and when the content of P 2 O 5 exceeds 85.0%, the TiO 2 crystal phase becomes difficult to precipitate. Therefore, the content of the P 2 O 5 component is preferably 10.0%, more preferably 11.0%, still more preferably 15.0%, and most preferably 20% of the total weight of the glass ceramic in terms of the oxide composition. The lower limit is preferably 0. 0%, preferably 85.0%, more preferably 84.9%, still more preferably 70.0%, and most preferably 60.0%. The P 2 O 5 component is a glass ceramic using, for example, Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , Na (PO 3 ), BPO 4 , H 3 PO 4 etc. as raw materials. It can be contained inside.
 SiO成分は、ガラスの網目構造を構成し、ガラスの安定性と化学的耐久性を高める成分であるとともに、Si4+イオンが析出したTiO結晶相の近傍に存在し、光触媒活性の向上に寄与する成分であり、任意に添加できる成分である。しかし、SiO成分の含有量が60.0%を超えると、ガラスの溶融性が悪くなり、TiO結晶相が析出し難くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するSiO成分の含有量は、好ましくは60.0%、より好ましくは45.0%、最も好ましくは30.0%を上限とする。SiO成分は、原料として例えばSiO、KSiF、NaSiF等を用いてガラスセラミックス内に含有することができる。 The SiO 2 component constitutes a glass network structure and is a component that enhances the stability and chemical durability of the glass, and is present in the vicinity of the TiO 2 crystal phase on which Si 4+ ions are precipitated, for improving the photocatalytic activity. It is a component which contributes, and is a component which can be added arbitrarily. However, when the content of the SiO 2 component exceeds 60.0%, the meltability of the glass is deteriorated, and it becomes difficult to precipitate the TiO 2 crystal phase. Accordingly, the upper limit of the content of the SiO 2 component is preferably 60.0%, more preferably 45.0%, and most preferably 30.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition. The SiO 2 component can be contained in the glass ceramic using, for example, SiO 2 , K 2 SiF 6 , Na 2 SiF 6 or the like as a raw material.
 GeO成分は、上記のSiOと相似な働きを有する成分であり、第1のガラスセラミックス中に任意に添加できる成分である。特に、GeO成分の含有量を60.0%以下にすることで、高価なGeO成分の使用が抑えられるため、ガラスセラミックスの材料コストを低減することができる。従って、酸化物換算組成のガラスセラミックス全物質量に対するGeO成分の含有量は、好ましくは60.0%、より好ましくは45.0%、最も好ましくは30.0%を上限とする。GeO成分は、原料として例えばGeO等を用いてガラスセラミックス内に含有することができる。 The GeO 2 component is a component having a function similar to the above-described SiO 2, and is a component that can be optionally added to the first glass ceramic. In particular, by setting the content of the GeO 2 component to 60.0% or less, since the use of the expensive GeO 2 component can be suppressed, the material cost of the glass ceramic can be reduced. Therefore, the content of the GeO 2 component with respect to the total mass of the glass ceramic in terms of oxide composition is preferably 60.0%, more preferably 45.0%, and most preferably 30.0%. The GeO 2 component can be contained in the glass ceramic using, for example, GeO 2 as a raw material.
 第1のガラスセラミックスは、SiO成分及びGeO成分から選ばれる少なくとも1種以上の成分を60.0%以下含有することが好ましい。特に、SiO成分及びGeO成分から選ばれる少なくとも1種以上の成分の合計量を60.0%以下にすることで、ガラスの溶融性、安定性及び化学耐久性が向上するとともに、熱処理後のガラスセラミックスにひび割れが生じ難くなるので、より高い機械強度のガラスセラミックスが簡単に得られる。従って、酸化物換算組成のガラスセラミックス全物質量に対する合計量(SiO+GeO)は、好ましくは60.0%、より好ましくは45.0%、最も好ましくは30.0%を上限とする。なお、SiO成分及びGeO成分は含有しなくとも光触媒特性を有するガラスセラミックスを得ることは可能であるが、SiO成分及び/又はGeO成分を含有することにより、その特性が更に向上する。これらの成分の合計量が0.1%未満であると、効果が十分ではないので、0.1%以上の添加が好ましく、3.0%以上がより好ましく、5.0%以上が最も好ましい。 The first glass ceramic preferably contains 60.0% or less of at least one or more components selected from a SiO 2 component and a GeO 2 component. In particular, by setting the total amount of at least one or more components selected from the SiO 2 component and the GeO 2 component to 60.0% or less, the meltability, stability and chemical durability of the glass are improved, and after the heat treatment Because the glass ceramic of the present invention is less likely to crack, a glass ceramic of higher mechanical strength can be easily obtained. Therefore, the total amount (SiO 2 + GeO 2 ) relative to the total mass of the glass ceramic in terms of the oxide composition is preferably 60.0%, more preferably 45.0%, and most preferably 30.0%. Although it is possible to obtain a glass ceramic having photocatalytic properties without containing SiO 2 component and GeO 2 component, the characteristics are further improved by containing SiO 2 component and / or GeO 2 component. . If the total amount of these components is less than 0.1%, the effect is not sufficient, so addition of 0.1% or more is preferable, 3.0% or more is more preferable, 5.0% or more is most preferable .
 LiO成分は、ガラスの溶融性と安定性を向上し、熱処理後のガラスセラミックスにひび割れを生じ難くする成分であるとともに、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、LiO成分の含有量が40.0%を超えると、かえってガラスの安定性が悪くなり、TiO結晶相の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するLiO成分の含有量は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは15.0%を上限とする。LiO成分は、原料として例えばLiCO、LiNO、LiF等を用いてガラスセラミックス内に含有することができる。 The Li 2 O component is a component that improves the meltability and stability of the glass and makes it difficult to cause cracks in the heat-treated glass ceramic, and lowers the glass transition temperature to keep the heat treatment temperature lower and has high photocatalytic activity It is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type, particularly anatase type TiO 2 crystals, and can be added optionally. However, when the content of the Li 2 O component exceeds 40.0%, the stability of the glass is rather deteriorated, and the precipitation of the TiO 2 crystal phase also becomes difficult. Accordingly, the upper limit of the content of the Li 2 O component is preferably 40.0%, more preferably 30.0%, and most preferably 15.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition. Li 2 O component may be contained in the glass ceramics, for example, using Li 2 CO 3 as a raw material, LiNO 3, LiF and the like.
 NaO成分は、ガラスの溶融性と安定性を向上し、熱処理後のガラスセラミックスにひび割れを生じ難くする成分であるとともに、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、NaO成分の含有量が40.0%を超えると、かえってガラスの安定性が悪くなり、TiO結晶相の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するNaO成分の含有量は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは15.0%を上限とする。NaO成分は、原料として例えばNaO、NaCO、NaNO、NaF、NaS、NaSiF等を用いてガラスセラミックス内に含有することができる。 The Na 2 O component is a component that improves the meltability and stability of the glass and makes it difficult to cause cracks in the heat-treated glass ceramic, and lowers the glass transition temperature to keep the heat treatment temperature lower and has high photocatalytic activity. It is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type, particularly anatase type TiO 2 crystals, and can be added optionally. However, when the content of the Na 2 O component exceeds 40.0%, the stability of the glass is rather deteriorated and the precipitation of the TiO 2 crystal phase also becomes difficult. Therefore, the content of the Na 2 O component is preferably 40.0%, more preferably 30.0%, and most preferably 15.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition. Na 2 O component may be contained in the glass ceramics used as raw materials for example Na 2 O, Na 2 CO 3 , NaNO 3, NaF, Na 2 S, the Na 2 SiF 6 or the like.
 KO成分は、ガラスの溶融性と安定性を向上し、熱処理後のガラスセラミックスにひび割れを生じ難くする成分であるとともに、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、KO成分の含有量が40.0%を超えると、かえってガラスの安定性が悪くなり、TiO結晶相の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するKO成分の含有量は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは15.0%を上限とする。KO成分は、原料として例えばKCO、KNO、KF、KHF、KSiF等を用いてガラスセラミックス内に含有することができる。 The K 2 O component is a component that improves the meltability and stability of the glass and makes it difficult to cause cracks in the heat-treated glass ceramic, and lowers the glass transition temperature to keep the heat treatment temperature lower and has high photocatalytic activity. It is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type, particularly anatase type TiO 2 crystals, and can be added optionally. However, when the content of the K 2 O component exceeds 40.0%, the stability of the glass is rather deteriorated and the precipitation of the TiO 2 crystal phase also becomes difficult. Accordingly, the upper limit of the content of the K 2 O component is preferably 40.0%, more preferably 30.0%, and most preferably 15.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition. The K 2 O component can be contained in the glass ceramic using, for example, K 2 CO 3 , KNO 3 , KF, KHF 2 , K 2 SiF 6 or the like as a raw material.
 RbO成分は、ガラスの溶融性と安定性を向上し、熱処理後のガラスセラミックスにひび割れを生じ難くする成分であるとともに、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、RbO成分の含有量が10.0%を超えると、かえってガラスの安定性が悪くなり、TiO結晶相の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するRbO成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。RbO成分は、原料として例えばRbCO、RbNO等を用いてガラスセラミックス内に含有することができる。 The Rb 2 O component is a component that improves the meltability and stability of the glass and makes it difficult to cause cracks in the heat-treated glass ceramic, and lowers the glass transition temperature to keep the heat treatment temperature lower and has high photocatalytic activity It is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type, particularly anatase type TiO 2 crystals, and can be added optionally. However, when the content of the Rb 2 O component exceeds 10.0%, the stability of the glass is rather deteriorated and the precipitation of the TiO 2 crystal phase also becomes difficult. Therefore, the content of the Rb 2 O component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%, based on the total mass of the glass ceramic in terms of the oxide conversion. The Rb 2 O component can be contained in the glass ceramic using, for example, Rb 2 CO 3 or RbNO 3 as a raw material.
 CsO成分は、ガラスの溶融性と安定性を向上し、熱処理後のガラスセラミックスにひび割れを生じ難くする成分であるとともに、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、CsO成分の含有量が10.0%を超えると、かえってガラスの安定性が悪くなり、TiO結晶相の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するCsO成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。CsO成分は、原料として例えばCsCO、CsNO等を用いてガラスセラミックス内に含有することができる。 The Cs 2 O component is a component that improves the meltability and stability of the glass and makes it difficult to cause cracking in the heat-treated glass ceramic, and lowers the glass transition temperature to suppress the heat treatment temperature lower and has high photocatalytic activity. It is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type, particularly anatase type TiO 2 crystals, and can be added optionally. However, when the content of the Cs 2 O component exceeds 10.0%, the stability of the glass is rather deteriorated and the precipitation of the TiO 2 crystal phase also becomes difficult. Therefore, the upper limit of the content of the Cs 2 O component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition. The Cs 2 O component can be contained in the glass ceramic using, for example, Cs 2 CO 3 or CsNO 3 as a raw material.
 第1のガラスセラミックスは、RnO(式中、RnはLi、Na、K、Rb、Csからなる群より選択される1種以上)成分から選ばれる少なくとも1種以上の成分を40.0%以下含有することが好ましい。特に、RnO成分から選ばれる少なくとも1種以上の成分の合計量を40.0%以下にすることで、ガラスの安定性が向上し、TiO結晶相が析出し易くなるため、ガラスセラミックスの触媒活性を確保することができる。従って、酸化物換算組成のガラスセラミックス全物質量に対する、RnO成分から選ばれる少なくとも1種以上の成分の合計量は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。 The first glass-ceramics comprises at least one component selected from Rn 2 O (wherein R n is one or more selected from the group consisting of Li, Na, K, Rb, and Cs) component 40.0. It is preferable to contain% or less. In particular, by setting the total amount of at least one or more components selected from the Rn 2 O component to 40.0% or less, the stability of the glass is improved and the TiO 2 crystal phase is easily precipitated, so that glass ceramics Catalyst activity can be secured. Therefore, the total amount of at least one or more components selected from the Rn 2 O components is preferably 40.0%, more preferably 30.0%, most preferably the total amount of the glass ceramic in terms of the oxide conversion composition. The upper limit is 20.0%.
 MgO成分は、ガラスの溶融性と安定性を向上する成分であるとともに、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、MgO成分の含有量が40.0%を超えると、かえってガラスの安定性が悪くなり、TiO結晶相の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するMgO成分の含有量は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。MgO成分は、原料として例えばMgCO、MgF等を用いてガラスセラミックス内に含有することができる。 The MgO component is a component that improves the meltability and stability of the glass, and lowers the glass transition temperature to lower the heat treatment temperature, and is one or more selected from anatase type, rutile type and brookite type having high photocatalytic activity It is a component that facilitates the formation of TiO 2 crystals, particularly anatase type TiO 2 crystals, and can be added optionally. However, when the content of the MgO component exceeds 40.0%, the stability of the glass is rather deteriorated, and the precipitation of the TiO 2 crystal phase also becomes difficult. Accordingly, the upper limit of the content of the MgO component is preferably 40.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition. The MgO component can be contained in the glass ceramic using, for example, MgCO 3 or MgF 2 as a raw material.
 CaO成分は、ガラスの溶融性と安定性を向上する成分であるとともに、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、CaO成分の含有量が40.0%を超えると、かえってガラスの安定性が悪くなり、TiO結晶相の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するCaO成分の含有量は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは25.0%を上限とする。CaO成分は、原料として例えばCaCO、CaF等を用いてガラスセラミックス内に含有することができる。 The CaO component is a component that improves the meltability and stability of the glass, and lowers the glass transition temperature to suppress the heat treatment temperature lower, and is one or more selected from anatase type, rutile type and brookite type having high photocatalytic activity It is a component that facilitates the formation of TiO 2 crystals, particularly anatase type TiO 2 crystals, and can be added optionally. However, when the content of the CaO component exceeds 40.0%, the stability of the glass is rather deteriorated and the precipitation of the TiO 2 crystal phase also becomes difficult. Accordingly, the upper limit of the content of the CaO component is preferably 40.0%, more preferably 30.0%, and most preferably 25.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition. The CaO component can be contained in the glass ceramic using, for example, CaCO 3 or CaF 2 as a raw material.
 SrO成分は、ガラスの溶融性と安定性を向上する成分であるとともに、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、SrO成分の含有量が40.0%を超えると、かえってガラスの安定性が悪くなり、TiO結晶相の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するSrO成分の含有量は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。SrO成分は、原料として例えばSr(NO、SrF等を用いてガラスセラミックス内に含有することができる。 The SrO component is a component that improves the meltability and stability of the glass, and lowers the glass transition temperature to suppress the heat treatment temperature lower, and is one or more selected from anatase type, rutile type and brookite type having high photocatalytic activity It is a component that facilitates the formation of TiO 2 crystals, particularly anatase type TiO 2 crystals, and can be added optionally. However, when the content of the SrO component exceeds 40.0%, the stability of the glass is rather deteriorated and the precipitation of the TiO 2 crystal phase also becomes difficult. Accordingly, the upper limit of the content of the SrO component is preferably 40.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition. The SrO component can be contained in the glass ceramic using, for example, Sr (NO 3 ) 2 , SrF 2 or the like as a raw material.
 BaO成分は、ガラスの溶融性と安定性を向上する成分であるとともに、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、BaO成分の含有量が40.0%を超えると、かえってガラスの安定性が悪くなり、TiO結晶相の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するBaO成分の含有量は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。BaO成分は、原料として例えばBaCO、Ba(NO等を用いてガラスセラミックス内に含有することができる。 The BaO component is a component that improves the meltability and stability of the glass, and lowers the glass transition temperature to suppress the heat treatment temperature lower, and is one or more selected from anatase type, rutile type and brookite type having high photocatalytic activity It is a component that facilitates the formation of TiO 2 crystals, particularly anatase type TiO 2 crystals, and can be added optionally. However, when the content of the BaO component exceeds 40.0%, the stability of the glass is rather deteriorated and the precipitation of the TiO 2 crystal phase also becomes difficult. Accordingly, the upper limit of the content of the BaO component is preferably 40.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic having the oxide conversion composition. The BaO component can be contained in the glass ceramic using, for example, BaCO 3 , Ba (NO 3 ) 2 or the like as a raw material.
 ZnO成分は、ガラスの溶融性と安定性を向上する成分であるとともに、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、ZnO成分の含有量が50.0%を超えると、かえってガラスの安定性が悪くなり、TiO結晶相の析出も困難となる。この傾向は、ZnO成分の含有量が60.0%を超えるとより一層顕著になる。従って、酸化物換算組成のガラスセラミックス全物質量に対するZnO成分の含有量は、好ましくは60.0%、より好ましくは50.0%、さらに好ましくは40.0%、最も好ましくは30.0%を上限とする。ZnO成分は、原料として例えばZnO、ZnF等を用いてガラスセラミックス内に含有することができる。 The ZnO component is a component that improves the meltability and stability of the glass, and lowers the glass transition temperature to suppress the heat treatment temperature lower, and is one or more selected from anatase type, rutile type and brookite type having high photocatalytic activity. It is a component that facilitates the formation of TiO 2 crystals, particularly anatase type TiO 2 crystals, and can be added optionally. However, when the content of the ZnO component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of the TiO 2 crystal phase also becomes difficult. This tendency becomes more remarkable when the content of the ZnO component exceeds 60.0%. Therefore, the content of the ZnO component is preferably 60.0%, more preferably 50.0%, still more preferably 40.0%, most preferably 30.0% with respect to the total mass of the glass ceramic having the oxide conversion composition. Is the upper limit. The ZnO component can be contained in the glass ceramic using, for example, ZnO, ZnF 2 or the like as a raw material.
 第1のガラスセラミックスは、RO(式中、RはMg、Ca、Sr、Ba、Znからなる群より選択される1種以上)成分から選ばれる少なくとも1種以上の成分を50.0%以下含有することが好ましい。特に、RO成分から選ばれる少なくとも1種以上の成分の合計量を50.0%以下にすることで、ガラスの安定性が向上し、TiO結晶相が析出し易くなるため、ガラスセラミックスの触媒活性を確保することができる。従って、酸化物換算組成のガラスセラミックス全物質量に対する、RO成分から選ばれる少なくとも1種以上の成分の合計量は、好ましくは50.0%、より好ましくは40.0%、最も好ましくは30.0%を上限とする。 The first glass ceramic comprises 50.0 or more of at least one component selected from R 1 O (wherein R is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) components. It is preferable to contain% or less. In particular, by setting the total amount of at least one or more components selected from R 1 O components to 50.0% or less, the stability of the glass is improved and the TiO 2 crystal phase is easily precipitated, so that the glass ceramic Catalyst activity can be secured. Therefore, the total amount of at least one or more components selected from the R 1 O components is preferably 50.0%, more preferably 40.0%, most preferably the total amount of the glass ceramic in terms of the oxide conversion composition. The upper limit is 30.0%.
 また、第1のガラスセラミックスは、RO(式中、RはMg、Ca、Sr、Ba、Znからなる群より選択される1種以上)成分及びRnO(式中、RnはLi、Na、K、Rb、Csからなる群より選択される1種以上)成分から選ばれる少なくとも1種以上の成分を60.0%以下含有することが好ましい。特に、RO成分及びRnO成分から選ばれる少なくとも1種以上の成分の合計量を60.0%以下にすることで、ガラスの安定性が向上し、ガラス転移温度(Tg)が下がり、ひび割れが生じ難く機械的な強度の高いガラスセラミックスをより容易に得られる。一方で、RO成分及びRnO成分から選ばれる少なくとも1種以上の成分の合計量が60.0%より多いと、ガラスの安定性が悪くなり、TiO結晶相の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対する合計量(RO+RnO)は、好ましくは60.0%、より好ましくは50.0%、さらに好ましくは40.0%、さらに好ましくは35.0%、最も好ましくは30.0%を上限とする。なお、RO成分及びRnO成分は含有しなくとも光触媒特性を有するガラスセラミックスを得ることは可能であるが、RO成分及びRnO成分から選ばれる少なくとも1種以上の成分の合計量を0.1%以上にすることで、TiO結晶相がより析出し易くなるため、光触媒特性が更に向上する。従って、酸化物換算組成のガラスセラミックス全物質量に対する合計量(RO+RnO)は、好ましくは0.1%、より好ましくは0.5%、最も好ましくは1.0%を下限とする。 In the first glass ceramic, R 1 O (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) component and Rn 2 O (wherein Rn is Li) It is preferable to contain 60.0% or less of at least one or more components selected from one or more components selected from the group consisting of Na, K, Rb and Cs. In particular, by setting the total amount of at least one or more components selected from the R 1 O component and the Rn 2 O component to 60.0% or less, the stability of the glass is improved and the glass transition temperature (Tg) is decreased. It is possible to obtain a glass ceramic having high mechanical strength with less cracking easily. On the other hand, if the total amount of at least one or more components selected from the R 1 O component and the Rn 2 O component is more than 60.0%, the stability of the glass is deteriorated and the precipitation of the TiO 2 crystal phase is also difficult Become. Therefore, the total amount (R 1 O + Rn 2 O) relative to the total mass of the glass ceramic of the oxide conversion composition is preferably 60.0%, more preferably 50.0%, still more preferably 40.0%, still more preferably The upper limit is 35.0%, and most preferably 30.0%. Although it is possible to obtain a glass ceramic having photocatalytic properties without containing the R 1 O component and the Rn 2 O component, it is possible to use at least one or more components selected from the R 1 O component and the Rn 2 O component By making the total amount 0.1% or more, the TiO 2 crystal phase is more easily precipitated, and thus the photocatalytic properties are further improved. Therefore, the total amount (R 1 O + Rn 2 O) relative to the total mass of glass ceramics in terms of oxide composition is preferably 0.1%, more preferably 0.5%, most preferably 1.0% as the lower limit. .
 ここで、第1のガラスセラミックスは、RO(式中、RはMg、Ca、Sr、Ba、Znからなる群より選択される1種以上)成分及びRnO(式中、RnはLi、Na、K、Rb、Csからなる群より選択される1種以上)成分から選ばれる成分のうち2種類以上を含有することが好ましい。これにより、ガラスの安定性が大幅に向上し、熱処理後のガラスセラミックスの機械強度がより高くなり、TiO結晶相がガラスからより析出し易くなる。従って、第1のガラスセラミックスは、RO成分及びRnO成分から選ばれる成分のうち2種類以上を含有することが好ましく、3種類以上を含有することがより好ましい。 Here, in the first glass ceramic, R 1 O (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) component and Rn 2 O (wherein R n is It is preferable to contain 2 or more types among the components selected from 1 or more types of components selected from the group which consists of Li, Na, K, Rb, and Cs. As a result, the stability of the glass is significantly improved, the mechanical strength of the glass ceramic after heat treatment is further increased, and the TiO 2 crystal phase is more easily precipitated from the glass. Accordingly, the first glass ceramic preferably contains two or more types of components selected from the R 1 O component and the Rn 2 O component, and more preferably contains three or more types.
 B成分は、ガラスの網目構造を構成し、ガラスセラミックスの安定性を高める成分であり、任意に添加できる成分である。しかし、その含有量が50.0%を超えると、TiO結晶相が析出しくい傾向が強くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するB成分の含有量は、好ましくは50.0%、より好ましくは40.0%、さらに好ましくは30.0%、最も好ましくは20.0%を上限とする。B成分は、原料として例えばHBO、Na、Na・10HO、BPO等を用いてガラスセラミックス内に含有することができる。 The B 2 O 3 component is a component that constitutes a glass network structure and enhances the stability of the glass ceramic, and is a component that can be added arbitrarily. However, when the content exceeds 50.0%, the TiO 2 crystal phase tends to precipitate. Therefore, the content of the B 2 O 3 component is preferably 50.0%, more preferably 40.0%, still more preferably 30.0%, most preferably 20% of the total mass of the glass ceramic in terms of the oxide composition. .0% is the upper limit. The B 2 O 3 component can be contained in the glass ceramic using, for example, H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 · 10H 2 O, BPO 4 and the like as raw materials.
 Al成分は、ガラスの安定性及びガラスセラミックスの化学的耐久性を高め、ガラスからのTiO結晶相の析出を促進し、且つAl3+イオンがTiO結晶相に固溶して光触媒特性の向上に寄与する成分であり、任意に添加できる成分である。しかし、その含有量が30.0%を超えると、溶解温度が著しく上昇し、ガラス化し難くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するAl成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。Al成分は、原料として例えばAl、Al(OH)、AlF等を用いてガラスセラミックス内に含有することができる。 The Al 2 O 3 component enhances the stability of the glass and the chemical durability of the glass ceramics, promotes the precipitation of the TiO 2 crystal phase from the glass, and Al 3+ ions form a solid solution in the TiO 2 crystal phase to be a photocatalyst. It is a component that contributes to the improvement of the characteristics, and is a component that can be added arbitrarily. However, if the content exceeds 30.0%, the melting temperature significantly increases and it becomes difficult to vitrify. Accordingly, the content of the Al 2 O 3 component is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition. The Al 2 O 3 component can be contained in the glass ceramic using, for example, Al 2 O 3 , Al (OH) 3 , AlF 3 or the like as a raw material.
 Ga成分は、ガラスの安定性を高め、ガラスからのTiO結晶相の析出を促進し、且つGa3+イオンがTiO結晶相に固溶して光触媒特性の向上に寄与する成分であり、任意に添加できる成分である。しかし、その含有量が30.0%を超えると、溶解温度が著しく上昇し、ガラス化し難くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するGa成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。Ga成分は、原料として例えばGa、GaF等を用いてガラスセラミックス内に含有することができる。 The Ga 2 O 3 component is a component that enhances the stability of the glass, promotes the precipitation of the TiO 2 crystal phase from the glass, and the Ga 3+ ions contribute to the improvement of the photocatalytic properties by solid solution in the TiO 2 crystal phase Yes, it is a component that can be added arbitrarily. However, if the content exceeds 30.0%, the melting temperature significantly increases and it becomes difficult to vitrify. Accordingly, the upper limit of the content of the Ga 2 O 3 component is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%, based on the total mass of the glass ceramic in terms of the oxide composition. The Ga 2 O 3 component can be contained in the glass ceramic using, for example, Ga 2 O 3 or GaF 3 as a raw material.
 In成分は、上記のAl及びGaと相似な効果がある成分であり、任意に添加できる成分である。しかし、In成分は高価なため、その含有量を10.0%以下にすることが好ましく、8.0%以下にすることがより好ましく、5.0%以下にすることが最も好ましい。In成分は、原料として例えばIn、InF等を用いてガラスセラミックス内に含有することができる。 The In 2 O 3 component is a component having an effect similar to the above-described Al 2 O 3 and Ga 2 O 3, and is a component that can be added arbitrarily. However, since the In 2 O 3 component is expensive, its content is preferably 10.0% or less, more preferably 8.0% or less, and most preferably 5.0% or less . In 2 O 3 component may be contained in the glass ceramics used as the starting material for example In 2 O 3, InF 3, or the like.
 第1のガラスセラミックスは、B成分、Al成分、Ga成分、及びIn成分から選ばれる少なくとも1種以上の成分を50.0%以下含有することが好ましい。特に、これらの成分から選ばれる少なくとも1種以上の成分の合計量を50.0%以下にすることで、TiO結晶相がより析出し易くなるため、ガラスセラミックスの光触媒特性のさらなる向上に寄与することができる。従って、酸化物換算組成のガラスセラミックス全物質量に対する合計量(B+Al+Ga+In)は、好ましくは50.0%、より好ましくは40.0%、最も好ましくは30.0%を上限とする。なお、B成分、Al成分、Ga成分、及びIn成分はいずれも含有しなくとも高い光触媒特性を有するガラスセラミックスを得ることは可能であるが、これらの成分から選ばれる少なくとも1種以上の成分の合計量を0.1%以上にすることで、TiO結晶相の析出がさらに促進されるため、ガラスセラミックスの光触媒特性のさらなる向上に寄与することができる。従って、酸化物換算組成のガラスセラミックス全物質量に対する合計量(B+Al+Ga+In)は、好ましくは0.1%、より好ましくは0.5%、最も好ましくは1.0%を下限とする。 The first glass ceramic may contain 50.0% or less of at least one or more components selected from B 2 O 3 components, Al 2 O 3 components, Ga 2 O 3 components, and In 2 O 3 components preferable. In particular, by setting the total amount of at least one or more components selected from these components to 50.0% or less, the TiO 2 crystal phase is more easily precipitated, which contributes to further improvement of the photocatalytic properties of the glass ceramic. can do. Therefore, the total amount (B 2 O 3 + Al 2 O 3 + Ga 2 O 3 + In 2 O 3 ) relative to the total mass of glass ceramics in terms of oxide composition is preferably 50.0%, more preferably 40.0%, Most preferably, the upper limit is 30.0%. In addition, it is possible to obtain glass ceramics having high photocatalytic properties even if none of the B 2 O 3 component, the Al 2 O 3 component, the Ga 2 O 3 component, and the In 2 O 3 component is contained. By making the total amount of at least one or more components selected from the components of 0.1% or more, the precipitation of the TiO 2 crystal phase is further promoted, thereby contributing to the further improvement of the photocatalytic properties of the glass ceramic Can. Therefore, the total amount (B 2 O 3 + Al 2 O 3 + Ga 2 O 3 + In 2 O 3 ) relative to the total mass of the glass ceramic in terms of the oxide composition is preferably 0.1%, more preferably 0.5%, Most preferably, the lower limit is 1.0%.
 ZrO成分は、化学的耐久性を高め、TiO結晶の析出を促進し、且つZr4+イオンがTiO結晶相に固溶して光触媒特性の向上に寄与する成分であり、任意に添加できる成分である。しかし、ZrO成分の含有量が20.0%を超えると、ガラス化し難くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するZrO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。ZrO成分は、原料として例えばZrO、ZrF等を用いてガラスセラミックス内に含有することができる。 The ZrO 2 component is a component that enhances the chemical durability and promotes the precipitation of TiO 2 crystals, and the Zr 4+ ion forms a solid solution in the TiO 2 crystal phase to contribute to the improvement of the photocatalytic properties, and can be added arbitrarily It is an ingredient. However, when the content of the ZrO 2 component exceeds 20.0%, vitrification becomes difficult. Therefore, the content of the ZrO 2 component with respect to the total mass of the glass ceramic in terms of the oxide composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%. The ZrO 2 component can be contained in the glass ceramic using, for example, ZrO 2 or ZrF 4 as a raw material.
 SnO成分は、TiO結晶の析出を促進し、Ti4+の還元を抑制してTiO結晶相を得易くし、且つTiO結晶相に固溶して光触媒特性の向上に効果がある成分であり、また、光触媒活性を高める作用のある後述のAgやAuやPtイオンと一緒に添加する場合は還元剤の役割を果たし、間接的に光触媒の活性の向上に寄与する成分であり、任意に添加できる成分である。しかし、これらの成分の含有量が10.0%を超えると、ガラスの安定性が悪くなり、光触媒特性も低下し易くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するSnO成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。SnO成分は、原料として例えばSnO、SnO、SnO等を用いてガラスセラミックス内に含有することができる。 The SnO component promotes precipitation of TiO 2 crystals, suppresses the reduction of Ti 4+ to make it easy to obtain a TiO 2 crystal phase, and is a component that forms a solid solution in a TiO 2 crystal phase and is effective in improving photocatalytic properties In addition, when added together with Ag, Au, and Pt ions described later that have the effect of enhancing the photocatalytic activity, they play a role as a reducing agent and indirectly contribute to the improvement of the photocatalytic activity, and are optional It is a component that can be added. However, if the content of these components exceeds 10.0%, the stability of the glass deteriorates and the photocatalytic properties also tend to deteriorate. Therefore, the upper limit of the content of the SnO component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition. The SnO component can be contained in the glass ceramic using, for example, SnO, SnO 2 , SnO 3 or the like as a raw material.
 第1のガラスセラミックスは、ZrO成分及びSnO成分から選ばれる少なくとも1種以上の成分を20.0%以下含有することが好ましい。特に、これらの成分から選ばれる少なくとも1種以上の成分の合計量を20.0%以下にすることで、ガラスセラミックスの安定性が確保されるため、良好なガラスセラミックスを形成することができる。従って、酸化物換算組成のガラスセラミックス全物質量に対する合計量(ZrO+SnO)は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。なお、ZrO成分及びSnO成分はいずれも含有しなくとも高い光触媒特性を有するガラスセラミックスを得ることは可能であるが、これらの成分から選ばれる少なくとも1種以上の成分の合計量を0.1%以上にすることで、ガラスセラミックスの光触媒特性をさらに向上することができる。従って、酸化物換算組成のガラスセラミックス全物質量に対する合計量(ZrO+SnO)は、好ましくは0.1%、より好ましくは0.2%、最も好ましくは0.5%を下限とする。 The first glass ceramic preferably contains 20.0% or less of at least one or more components selected from a ZrO 2 component and a SnO component. In particular, by setting the total amount of at least one or more components selected from these components to 20.0% or less, the stability of the glass ceramic is secured, so that a good glass ceramic can be formed. Therefore, the total amount (ZrO 2 + SnO) relative to the total mass of the glass ceramic in terms of the oxide composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%. Although it is possible to obtain a glass ceramic having high photocatalytic properties without containing either the ZrO 2 component or the SnO component, the total amount of at least one or more components selected from these components is 0.1 By setting the content to% or more, the photocatalytic properties of the glass ceramic can be further improved. Therefore, the total amount (ZrO 2 + SnO) relative to the total mass of the glass ceramic in terms of the oxide composition is preferably 0.1%, more preferably 0.2%, and most preferably 0.5%.
 Nb成分は、ガラスの溶融性と安定性を高める成分であり、且つTiO結晶相に固溶し、又はその近傍に存在することで、光触媒特性が向上する成分であり、任意に添加できる成分である。しかし、Nb成分の含有量が50.0%を超えると、ガラスの安定性が著しく悪くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するNb成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。Nb成分は、原料として例えばNb等を用いてガラスセラミックス内に含有することができる。 The Nb 2 O 5 component is a component that enhances the meltability and stability of the glass, and is a component that improves the photocatalytic properties by being dissolved in the TiO 2 crystal phase or existing in the vicinity thereof, It is a component that can be added. However, when the content of the Nb 2 O 5 component exceeds 50.0%, the stability of the glass is significantly deteriorated. Therefore, the content of the Nb 2 O 5 component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition. The Nb 2 O 5 component can be contained in the glass ceramic using, for example, Nb 2 O 5 as a raw material.
 Ta成分は、ガラスの安定性を高める成分であり、且つTiO結晶相に固溶し、又はその近傍に存在することで、光触媒特性が向上する成分であり、任意に添加できる成分である。しかし、Ta成分の含有量が50.0%を超えると、ガラスの安定性が著しく悪くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するTa成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。Ta成分は、原料として例えばTa等を用いてガラスセラミックス内に含有することができる。 The Ta 2 O 5 component is a component that enhances the stability of the glass, and is a component that improves photocatalytic properties by being dissolved in the TiO 2 crystal phase or in the vicinity thereof, and a component that can be added arbitrarily It is. However, when the content of the Ta 2 O 5 component exceeds 50.0%, the stability of the glass is significantly deteriorated. Therefore, the content of the component Ta 2 O 5 is preferably 50.0%, more preferably 30.0%, and most preferably 20.0%, based on the total mass of the glass ceramic in terms of the oxide composition. The Ta 2 O 5 component can be contained in the glass ceramic using, for example, Ta 2 O 5 as a raw material.
 WO成分は、ガラスの溶融性と安定性を高める成分であり、且つTiO結晶相に固溶し、又はその近傍に存在することで、光触媒特性が向上する成分であり、任意に添加できる成分である。しかし、WO成分の含有量が50.0%を超えると、ガラスの安定性が著しく悪くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するWO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。WO成分は、原料として例えばWO等を用いてガラスセラミックス内に含有することができる。 The WO 3 component is a component that enhances the meltability and stability of the glass, and is a component that improves the photocatalytic properties by being dissolved in the TiO 2 crystal phase or in the vicinity thereof, and can be added arbitrarily It is an ingredient. However, when the content of the WO 3 component exceeds 50.0%, the stability of the glass is significantly deteriorated. Accordingly, the upper limit of the content of the WO 3 component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition. WO 3 components can be contained in the glass ceramics used as the starting material for example WO 3 and the like.
 MoO成分は、ガラスの溶融性と安定性を高める成分であり、且つTiO結晶相に固溶し、又はその近傍に存在することで、光触媒特性が向上する成分であり、任意に添加できる成分である。しかし、MoO成分の含有量が50.0%を超えると、ガラスの安定性が著しく悪くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するMoO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。MoO成分は、原料として例えばMoO等を用いてこのガラスセラミックス内に含有することができる。 The MoO 3 component is a component that enhances the meltability and stability of the glass, and is a component that improves the photocatalytic properties by being dissolved in the TiO 2 crystal phase or in the vicinity thereof, and can be added arbitrarily It is an ingredient. However, when the content of the MoO 3 component exceeds 50.0%, the stability of the glass is significantly deteriorated. Therefore, the content of the MoO 3 component with respect to the total mass of the glass ceramic in terms of oxide composition is preferably 50.0%, more preferably 30.0%, and most preferably 20.0%. The MoO 3 component can be contained in this glass ceramic using, for example, MoO 3 as a raw material.
 第1のガラスセラミックスは、Nb成分、Ta成分、WO成分、及びMoO成分から選ばれる少なくとも1種以上の成分を50.0%以下含有することが好ましい。特に、これらの成分から選ばれる少なくとも1種以上の成分の合計量を50.0%以下にすることで、ガラスセラミックスの安定性が確保されるため、良好なガラスセラミックスを形成することができる。従って、酸化物換算組成のガラスセラミックス全物質量に対する合計量(Nb+Ta+WO+MoO)は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。なお、Nb成分、Ta成分、WO成分、及びMoO成分はいずれも含有しなくとも高い光触媒特性を有するガラスセラミックスを得ることは可能であるが、これらの成分から選ばれる少なくとも1種以上の成分の合計量を0.1%以上にすることで、ガラスセラミックスの光触媒特性をさらに向上することができる。従って、酸化物換算組成のガラスセラミックス全物質量に対する合計量(Nb+Ta+WO+MoO)は、好ましくは0.1%、より好ましくは0.5%、最も好ましくは1.0%を下限とする。 The first glass ceramic preferably contains 50.0% or less of at least one or more components selected from Nb 2 O 5 component, Ta 2 O 5 component, WO 3 component, and MoO 3 component. In particular, by setting the total amount of at least one or more components selected from these components to 50.0% or less, the stability of the glass ceramic is secured, so that a good glass ceramic can be formed. Therefore, the total amount (Nb 2 O 5 + Ta 2 O 5 + WO 3 + MoO 3 ) relative to the total mass of the glass ceramic in terms of oxide composition is preferably 50.0%, more preferably 30.0%, and most preferably 20 .0% is the upper limit. Although it is possible to obtain a glass ceramic having high photocatalytic properties without containing any of Nb 2 O 5 component, Ta 2 O 5 component, WO 3 component, and MoO 3 component, it is possible to select from these components By setting the total amount of at least one or more components to be 0.1% or more, the photocatalytic properties of the glass ceramic can be further improved. Accordingly, the total amount (Nb 2 O 5 + Ta 2 O 5 + WO 3 + MoO 3 ) relative to the total mass of the glass ceramic in terms of the oxide composition is preferably 0.1%, more preferably 0.5%, most preferably 1 .0% is the lower limit.
 Bi成分は、ガラスの溶融性と安定性を高める成分である。また、ガラス転移温度(Tg)を下げることで熱処理温度が下がるため、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くできる成分であり、任意に添加できる成分である。しかし、Bi成分の含有量が20.0%を超えると、ガラスの安定性が悪くなり、TiOの析出が難しくなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するBi成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。Bi成分は、原料として例えばBi等を用いてガラスセラミックス内に含有することができる。 The Bi 2 O 3 component is a component that enhances the meltability and stability of the glass. In addition, since the heat treatment temperature is lowered by lowering the glass transition temperature (Tg), one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals are formed. It is a component that can be easily added, and a component that can be added arbitrarily. However, when the content of the Bi 2 O 3 component exceeds 20.0%, the stability of the glass is deteriorated, and the precipitation of TiO 2 becomes difficult. Therefore, the content of the Bi 2 O 3 component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%, based on the total mass of the glass ceramic in terms of the oxide composition. Bi 2 O 3 component may be contained in the glass ceramics used as the starting material for example Bi 2 O 3 and the like.
 TeO成分は、ガラスの溶融性と安定性を高める成分である。また、ガラス転移温度(Tg)を下げることで熱処理温度が下がるため、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くできる成分であり、任意に添加できる成分である。しかし、TeO成分の含有量が20.0%を超えると、ガラスの安定性が悪くなり、TiOの析出が難しくなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するTeO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。TeO成分は、原料として例えばTeO等を用いてガラスセラミックス内に含有することができる。 The TeO 2 component is a component that enhances the meltability and stability of the glass. In addition, since the heat treatment temperature is lowered by lowering the glass transition temperature (Tg), one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals are formed. It is a component that can be easily added, and a component that can be added arbitrarily. However, when the content of the TeO 2 component exceeds 20.0%, the stability of the glass is deteriorated, and the precipitation of TiO 2 becomes difficult. Therefore, the content of the TeO 2 component with respect to the total mass of the glass ceramic in terms of the oxide composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%. The TeO 2 component can be contained in the glass ceramic using, for example, TeO 2 as a raw material.
 Ln成分(式中、LnはLa、Gd、Y、Ce、Nd、Dy、Yb及びLuからなる群より選択される1種以上、Ceを除く各成分についてはa=2且つb=3、Ceについてはa=1且つb=2)は、ガラスセラミックスの化学的耐久性を高める成分であり、且つTiO結晶相に固溶し、又はその近傍に存在することで、光触媒特性が向上する成分であり、任意に添加できる成分である。しかし、Ln成分の含有量の合計が30.0%を超えると、ガラスの安定性が著しく悪くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対する、Ln成分から選ばれる少なくとも1種以上の成分の合計量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。Ln成分は、原料として例えばLa、La(NO・XHO(Xは任意の整数)、Gd、GdF、Y、YF、CeO、Nd、Dy、Yb、Lu等を用いてガラスセラミックス内に含有することができる。 L n a O b component (wherein, L n is one or more selected from the group consisting of La, G d , Y, Ce, Nd, Dy, Y b and Lu, and a = 2 and b = for each component except Ce) 3. For Ce, a = 1 and b = 2) is a component that enhances the chemical durability of glass ceramics, and has a photocatalytic property by being dissolved in or near a TiO 2 crystal phase It is a component to improve and is a component that can be added arbitrarily. However, when the total content of Ln a O b component exceeds 30.0%, the stability of the glass is significantly deteriorated. Therefore, the total amount of at least one or more components selected from the Ln a O b component is preferably 30.0%, more preferably 20.0%, most preferably, relative to the total mass of the glass ceramic in terms of the oxide conversion composition. The upper limit is 10.0%. The component L n a O b is, for example, La 2 O 3 , La (NO 3 ) 3 .XH 2 O (X is an arbitrary integer), Gd 2 O 3 , GdF 3 , Y 2 O 3 , YF 3 , CeO as a raw material. 2 , Nd 2 O 3 , Dy 2 O 3 , Yb 2 O 3 , Lu 2 O 3 or the like can be contained in the glass ceramic.
≪第2のガラスセラミックス≫
 本発明の第2のガラスセラミックスは、酸化物換算組成のガラス全物質量に対して、モル%でTiO成分を15.0~95.0%、SiO成分及び/又はP成分を3.0%~70.0%、RnO成分及び/又はRO成分を0.1~60%、(式中、RnはLi、Na、K、Rb、Csから選ばれる1種以上とし、RはBe、Mg、Ca、Sr、Baから選ばれる1種以上とする)含有することが好ましい。以下、第2のガラスセラミックスの結晶相および含有成分を上記のように限定した理由を述べる。
«Second glass ceramics»
The second glass ceramic of the present invention contains 15.0 to 95.0% of a TiO 2 component, and a SiO 2 component and / or a P 2 O 5 component in mol%, based on the total mass of the glass in the oxide conversion composition. 3.0% to 70.0%, Rn 2 O component and / or R 2 O component 0.1 to 60%, wherein Rn is one selected from Li, Na, K, Rb and Cs As described above, R 2 is preferably one or more selected from Be, Mg, Ca, Sr, and Ba). Hereinafter, the reason for limiting the crystal phase and the contained components of the second glass ceramic as described above will be described.
 第2のガラスセラミックスは、TiO成分を15.0~95.0%の範囲で含有することが好ましい。TiO成分は、結晶化することにより、TiOの結晶、又はリン、アルカリ金属、アルカリ土類金属との化合物の結晶としてガラスから析出し、光触媒特性をもたらすのに必須で欠かせない成分である。特に、TiO成分の含有量を15.0%以上にすることで、光触媒結晶が析出し易くなり、ガラスセラミックス中におけるTiO結晶の濃度が高められるため、所望の光触媒特性を確保することができる。一方、TiO成分の含有量が95.0%を超えると、ガラス化が非常に難しくなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するTiO成分の含有量は、好ましくは15.0%、より好ましくは25.0%、最も好ましくは30.0%を下限とし、好ましくは95.0%、より好ましくは85.0%、最も好ましくは80.0%を上限とする。TiO成分は、原料として例えばアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiOを用いてこのガラスセラミックス内に含有することができる。 The second glass ceramic preferably contains a TiO 2 component in the range of 15.0 to 95.0%. The TiO 2 component precipitates from glass as a crystal of TiO 2 or a compound with phosphorus, an alkali metal or an alkaline earth metal by crystallization, and is an essential and essential component for providing photocatalytic properties. is there. In particular, by setting the content of the TiO 2 component to 15.0% or more, the photocatalyst crystals are easily precipitated and the concentration of the TiO 2 crystals in the glass ceramic is increased, so that the desired photocatalytic properties can be secured. it can. On the other hand, when the content of the TiO 2 component exceeds 95.0%, vitrification becomes very difficult. Therefore, the content of the TiO 2 component relative to the total mass of the glass ceramic in terms of the oxide composition is preferably 15.0%, more preferably 25.0%, and most preferably 30.0% as a lower limit, preferably 95 The upper limit is 0. 0%, more preferably 85.0%, and most preferably 80.0%. The TiO 2 component can be contained in the glass ceramic by using, as a raw material, one or more TiO 2 selected from anatase type, rutile type and brookite type, for example.
 SiO成分は、ガラスの網目構造を構成し、ガラスの安定性と化学的耐久性を高める成分であるとともに、Si4+イオンが析出した光触媒結晶の近傍に存在し、光触媒活性の向上に寄与する成分であり、第2のガラスセラミックスに任意に添加できる成分である。しかし、SiO成分の含有量が70.0%を超えると、ガラスの溶融性が悪くなり、光触媒結晶が析出し難くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するSiO成分の含有量は、好ましくは70.0%、より好ましくは50.0%、最も好ましくは30.0%を上限とする。 The SiO 2 component constitutes a glass network structure and is a component that enhances the stability and chemical durability of the glass, and is present in the vicinity of the photocatalyst crystal on which Si 4+ ions are deposited, and contributes to the improvement of the photocatalytic activity It is a component, and is a component which can be optionally added to the second glass ceramic. However, when the content of the SiO 2 component exceeds 70.0%, the meltability of the glass is deteriorated, and it becomes difficult to precipitate photocatalyst crystals. Therefore, the content of the SiO 2 component is preferably 70.0%, more preferably 50.0%, and most preferably 30.0% as the upper limit of the content of the SiO 2 component with respect to the total mass of the glass ceramic having the oxide conversion composition.
 P成分は、ガラスの網目構造を構成し、より多くのTiO成分をガラスに取り込ませるために有用な成分であり、第2のガラスセラミックスに任意に添加できる。また、P成分を含有することによって、より低い熱処理温度で光触媒結晶を析出することが可能になるため、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くすることができる。しかし、Pの含有量が70.0%を超えると、光触媒結晶が析出し難くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するP成分の含有量は、好ましくは70.0%、より好ましくは60.0%、最も好ましくは50.0%を上限とする。また、P成分を含有させることで、TiO、TiP、(TiO)、RnTi(PO、及びRTi(POの結晶がより析出されやすくなるので、P成分の含有量は、少なくとも5%、より好ましくは10%、最も好ましくは20%を下限とすることが良い。 The P 2 O 5 component constitutes a network structure of glass, is a component useful for incorporating more TiO 2 components into the glass, and can be optionally added to the second glass ceramic. In addition, the inclusion of the P 2 O 5 component makes it possible to deposit photocatalytic crystals at a lower heat treatment temperature, and therefore, one or more TiOs selected from anatase type, rutile type and brookite type having high photocatalytic activity. Two crystals, in particular, anatase type TiO 2 crystals can be easily formed. However, when the content of P 2 O 5 exceeds 70.0%, it becomes difficult to precipitate photocatalyst crystals. Accordingly, the upper limit of the content of the P 2 O 5 component is preferably 70.0%, more preferably 60.0%, and most preferably 50.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition. Further, by incorporating the P 2 O 5 component, TiO 2, TiP 2 O 7 , (TiO) 2 P 2 O 7, RnTi 2 (PO 4) 3, and R 2 Ti 4 (PO 4) 3 crystalline The lower the content of the P 2 O 5 component, the lower limit is preferably at least 5%, more preferably 10%, and most preferably 20%.
 第2のガラスセラミックスは、SiO成分及び/又はP成分の一種以上を合計で3.0~70.0%の範囲で含有することが好ましい。これらは、ガラスの形成酸化物であってガラスを得るために重要な成分であるため、その全体量が3%未満であると、ガラスが得られないおそれが高い。より好ましい量は10%以上、最も好ましい量は25%以上である。一方、その量が70%を超えるとTiO結晶相が析出し難くなるため、その含有量は、好ましくは70%以下、より好ましくは60%以下であり、最も好ましくは50%以下である。 The second glass ceramic preferably contains one or more of a SiO 2 component and / or a P 2 O 5 component in the range of 3.0 to 70.0% in total. These are formed oxides of glass and are important components for obtaining glass, so if the total amount is less than 3%, there is a high possibility that the glass can not be obtained. The more preferable amount is 10% or more, and the most preferable amount is 25% or more. On the other hand, if the amount exceeds 70%, the TiO 2 crystal phase is difficult to precipitate, so the content is preferably 70% or less, more preferably 60% or less, and most preferably 50% or less.
 LiO成分は、ガラスの溶融性と安定性を向上する成分であり、熱処理後のガラスセラミックスにひび割れを生じ難くする成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、第2のガラスセラミックスに任意に添加できる。しかし、LiO成分の含有量が50.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するLiO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは15.0%を上限とする。 The Li 2 O component is a component that improves the meltability and stability of the glass, and is a component that makes it difficult to cause cracking in the glass ceramic after heat treatment. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 And can be optionally added to the second glass ceramic. However, when the content of the Li 2 O component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of photocatalyst crystals also becomes difficult. Accordingly, the upper limit of the content of the Li 2 O component is preferably 50.0%, more preferably 30.0%, and most preferably 15.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
 NaO成分は、ガラスの溶融性と安定性を向上する成分であり、熱処理後のガラスセラミックスにひび割れを生じ難くする成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、第2のガラスセラミックスに任意に添加できる成分である。しかし、NaO成分の含有量が50.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するNaO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは15.0%を上限とする。 The Na 2 O component is a component that improves the meltability and stability of the glass, and is a component that makes it difficult to cause cracking in the glass ceramics after heat treatment. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 It is a component that can be optionally added to the second glass ceramic. However, when the content of the Na 2 O component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of photocatalyst crystals also becomes difficult. Therefore, the content of the Na 2 O component is preferably 50.0%, more preferably 30.0%, and most preferably 15.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
 KO成分は、ガラスの溶融性と安定性を向上する成分であり、熱処理後のガラスセラミックスにひび割れを生じ難くする成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、第2のガラスセラミックスに任意に添加できる成分である。しかし、KO成分の含有量が50.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するKO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは15.0%を上限とする。 The K 2 O component is a component that improves the meltability and stability of the glass, and is a component that makes it difficult for the glass ceramic after heat treatment to be cracked. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 It is a component that can be optionally added to the second glass ceramic. However, when the content of the K 2 O component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of photocatalyst crystals also becomes difficult. Accordingly, the upper limit of the content of the K 2 O component is preferably 50.0%, more preferably 30.0%, and most preferably 15.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
 RbO成分は、ガラスの溶融性と安定性を向上する成分であり、熱処理後のガラスセラミックスにひび割れを生じ難くする成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、第2のガラスセラミックスに任意に添加できる成分である。しかし、RbO成分の含有量が10.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するRbO成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。 The Rb 2 O component is a component that improves the meltability and stability of the glass, and is a component that makes it difficult for the glass ceramic after heat treatment to be cracked. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 It is a component that can be optionally added to the second glass ceramic. However, when the content of the Rb 2 O component exceeds 10.0%, the stability of the glass is rather deteriorated, and the precipitation of photocatalyst crystals also becomes difficult. Therefore, the content of the Rb 2 O component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%, based on the total mass of the glass ceramic in terms of the oxide conversion.
 CsO成分は、ガラスの溶融性と安定性を向上する成分であり、熱処理後のガラスセラミックスにひび割れを生じ難くする成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、第2のガラスセラミックスに任意に添加できる成分である。しかし、CsO成分の含有量が10.0%を超えると、かえってガラスの安性が悪くなり、光触媒結晶の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するCsO成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。 The Cs 2 O component is a component that improves the meltability and stability of the glass, and is a component that makes it difficult to cause cracking in the glass ceramics after heat treatment. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 It is a component that can be optionally added to the second glass ceramic. However, when the content of the Cs 2 O component exceeds 10.0%, the stability of the glass is rather deteriorated, and the precipitation of photocatalyst crystals also becomes difficult. Therefore, the upper limit of the content of the Cs 2 O component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
 上記RnO成分(式中、RnはLi、Na、K、Rb、Csからなる群より選択される1種以上)の総量は、0.1~50.0%の範囲であることが好ましい。これらの成分が0.1%未満であると、ガラスの溶融性と安定性が悪くなる。そのため、RnO成分の総量は、好ましくは0.1%、より好ましくは0.5%、最も好ましくは1.5%を下限とする。特に、光触媒性能を持たせるのに有用なRnTi(PO又はその固溶体を析出させる場合、1.0%以上、より好ましくは1.5%以上であることが好ましい。一方、RnO成分から選ばれる少なくとも1種以上の成分の質量和を50.0%以下にすることで、ガラスの安定性が向上し、光触媒結晶が析出し易くなるため、ガラスセラミックスの触媒活性を確保することができる。従って、酸化物換算組成のガラスセラミックス全物質量に対する、RnO成分から選ばれる少なくとも1種以上の成分の質量和は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。 The total amount of the above Rn 2 O components (wherein, R n is one or more selected from the group consisting of Li, Na, K, Rb and Cs) is preferably in the range of 0.1 to 50.0%. . If the content of these components is less than 0.1%, the meltability and stability of the glass will deteriorate. Therefore, the lower limit of the total amount of Rn 2 O components is preferably 0.1%, more preferably 0.5%, and most preferably 1.5%. In particular, when depositing RnTi 2 (PO 4 ) 3 or its solid solution useful for imparting photocatalytic performance, it is preferably 1.0% or more, more preferably 1.5% or more. On the other hand, by setting the mass sum of at least one or more components selected from the Rn 2 O component to 50.0% or less, the stability of the glass is improved and the photocatalyst crystals are easily precipitated. The activity can be secured. Therefore, the mass sum of at least one or more components selected from the Rn 2 O components is preferably 50.0%, more preferably 30.0%, most preferably with respect to the total mass of the glass ceramic having the oxide conversion composition. The upper limit is 20.0%.
 BeO成分は、ガラスの溶融性と安定性を向上する成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、第2のガラスセラミックスに任意に添加できる成分である。しかし、BeO成分の含有量が50.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するBaO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。 The BeO component is a component that improves the meltability and stability of the glass. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 It is a component that can be optionally added to the second glass ceramic. However, when the content of the BeO component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of photocatalyst crystals also becomes difficult. Accordingly, the upper limit of the content of the BaO component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic having the oxide conversion composition.
 MgO成分は、ガラスの溶融性と安定性を向上する成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、第2のガラスセラミックスに任意に添加できる成分である。しかし、MgO成分の含有量が50.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するMgO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。 The MgO component is a component that improves the meltability and stability of the glass. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 It is a component that can be optionally added to the second glass ceramic. However, when the content of the MgO component exceeds 50.0%, the stability of the glass is rather deteriorated and the precipitation of photocatalyst crystals becomes difficult. Therefore, the upper limit of the content of the MgO component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
 CaO成分は、ガラスの溶融性と安定性を向上する成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、第2のガラスセラミックスに任意に添加できる成分である。しかし、CaO成分の含有量が50.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するCaO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは25.0%を上限とする。 The CaO component is a component that improves the meltability and stability of the glass. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 It is a component that can be optionally added to the second glass ceramic. However, when the content of the CaO component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of photocatalyst crystals also becomes difficult. Accordingly, the upper limit of the content of the CaO component is preferably 50.0%, more preferably 30.0%, and most preferably 25.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
 SrO成分は、ガラスの溶融性と安定性を向上する成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、第2のガラスセラミックスに任意に添加できる成分である。しかし、SrO成分の含有量が50.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するSrO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。 The SrO component is a component that improves the meltability and stability of the glass. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 It is a component that can be optionally added to the second glass ceramic. However, when the content of the SrO component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of photocatalyst crystals also becomes difficult. Accordingly, the upper limit of the content of the SrO component is preferably 50.0%, more preferably 30.0%, most preferably 20.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
 BaO成分は、ガラスの溶融性と安定性を向上する成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、第2のガラスセラミックスに任意に添加できる成分である。しかし、BaO成分の含有量が50.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するBaO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。 The BaO component is a component that improves the meltability and stability of the glass. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 It is a component that can be optionally added to the second glass ceramic. However, when the content of the BaO component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of photocatalyst crystals also becomes difficult. Accordingly, the upper limit of the content of the BaO component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic having the oxide conversion composition.
 上記RO成分(式中、RはBe、Mg、Ca、Sr、Baからなる群より選択される1種以上)の総量は、光触媒性能を持たせるのに有用なRTi(POまたはその固溶体を析出させる場合、1.0%以上、より好ましくは1.5%以上であることが好ましい。その一方、RO成分から選ばれる少なくとも1種以上の成分の質量和を50.0%以下にすることで、ガラスの安定性が向上し、光触媒結晶が析出し易くなるため、ガラスセラミックスの触媒活性を確保することができる。従って、酸化物換算組成のガラスセラミックス全物質量に対する、RO成分から選ばれる少なくとも1種以上の成分の質量和は、好ましくは50.0%、より好ましくは40.0%、最も好ましくは30.0%を上限とする。 The total amount of the above R 2 O components (wherein R 2 is one or more selected from the group consisting of Be, Mg, Ca, Sr, and Ba) is useful for providing photocatalytic performance with R 2 Ti 4 ( When precipitating PO 4 ) 6 or its solid solution, it is preferably 1.0% or more, more preferably 1.5% or more. On the other hand, by setting the mass sum of at least one or more components selected from R 2 O components to 50.0% or less, the stability of the glass is improved and the photocatalyst crystals are easily precipitated. The catalytic activity can be secured. Accordingly, the mass sum of at least one or more components selected from the R 2 O components is preferably 50.0%, more preferably 40.0%, most preferably the total mass of the glass ceramic in terms of the oxide conversion composition. The upper limit is 30.0%.
 また、第2のガラスセラミックスは、RnO(式中、RnはLi、Na、K、Rb、Csからなる群より選択される1種以上)成分及びRO(式中、RはBe、Mg、Ca、Sr、Baからなる群より選択される1種以上)成分から選ばれる少なくとも1種以上の成分を総量で50.0%以下含有することが好ましい。特に、RnO成分及びRO成分から選ばれる少なくとも1種以上の成分の質量和を50.0%以下にすることで、ガラスの安定性が向上し、ガラス転移温度(Tg)が下がり、ひび割れが生じ難く機械的な強度の高いガラスセラミックスをより容易に得られる。一方で、RnO成分及びRO成分から選ばれる少なくとも1種以上の成分の質量和が50.0%より多いと、ガラスの安定性が悪くなり、光触媒結晶の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対する質量和(RnO+RO)は、好ましくは50.0%、より好ましくは40.0%、最も好ましくは30.0%を上限とする。なお、RnO成分及びRO成分を全く含有しないと、ガラスの安定性が悪化するだけでなく、触媒性能を持たせるのに有用なRnTi(PO、RTi(PO、又はその固溶体を得られなくなるので、少なくとも0.1%、より好ましくは0.5%、最も好ましくは1.0%を下限とする。 In the second glass ceramic, Rn 2 O (wherein Rn is one or more selected from the group consisting of Li, Na, K, Rb, and Cs) component and R 2 O (wherein R 2 is It is preferable to contain 50.0% or less in total of at least one or more components selected from one or more components selected from the group consisting of Be, Mg, Ca, Sr, and Ba. In particular, by setting the mass sum of at least one or more components selected from the Rn 2 O component and the R 2 O component to 50.0% or less, the stability of the glass is improved and the glass transition temperature (Tg) is decreased. It is possible to obtain a glass ceramic having high mechanical strength with less cracking easily. On the other hand, when the mass sum of at least one or more components selected from the Rn 2 O component and the R 2 O component is more than 50.0%, the stability of the glass is deteriorated, and the precipitation of photocatalyst crystals also becomes difficult. Therefore, the mass sum (Rn 2 O + R 2 O) relative to the total mass of the glass ceramic in terms of the oxide composition is preferably 50.0%, more preferably 40.0%, and most preferably 30.0%. . In addition, not containing the Rn 2 O component and the R 2 O component at all, not only the stability of the glass is deteriorated, but also RnTi 2 (PO 4 ) 3 , R 2 Ti 4 ( Since PO 4 ) 6 or its solid solution can not be obtained, the lower limit is at least 0.1%, more preferably 0.5%, and most preferably 1.0%.
 さらに、RnO(式中、RnはLi、Na、K、Rb、Csからなる群より選択される1種以上)成分、及びRO(式中、RはBe、Mg、Ca、Sr、Baからなる群より選択される1種以上)成分から選ばれる成分のうち2種類以上を含有することが好ましい。これにより、ガラスの安定性が大幅に向上し、熱処理後のガラスセラミックスの機械強度がより高くなる。また、TiO、及びガラスセラミックスに光触媒特性を付与するチタンリン酸複合塩(RnTi(PO、RTi(PO、またはその固溶体)、及びTiOの結晶相がガラスからより析出し易くなる。従って、第2のガラスセラミックスは、RnO成分及びRO成分から選ばれる成分のうち2種類以上を含有することが好ましい。 Furthermore, (wherein, Rn is Li, Na, K, Rb, 1 or more selected from the group consisting of Cs) Rn 2 O component, and R 2 O (wherein, R 2 is Be, Mg, Ca, It is preferable to contain 2 or more types of components selected from 1 or more types of components selected from the group which consists of Sr and Ba. Thereby, the stability of the glass is greatly improved, and the mechanical strength of the glass ceramic after the heat treatment is further enhanced. In addition, TiO 2 and titanium phosphate complex salt (RnTi 2 (PO 4 ) 3 , R 2 Ti 4 (PO 4 ) 6 or its solid solution) for imparting photocatalytic properties to glass ceramics, and crystalline phase of TiO 2 are glass It becomes easier to precipitate from Accordingly, the second glass ceramic preferably contains two or more of the components selected from the Rn 2 O component and the R 2 O component.
 B成分は、ガラスの網目構造を構成し、ガラスセラミックスの安定性を高める成分であり、任意に添加できる成分である。しかし、その含有量が40.0%を超えると、光触媒結晶が析出しくい傾向が強くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するB成分の含有量は、好ましくは40.0%、より好ましくは25.0%、最も好ましくは15.0%を上限とする。 The B 2 O 3 component is a component that constitutes a glass network structure and enhances the stability of the glass ceramic, and is a component that can be added arbitrarily. However, when the content exceeds 40.0%, the tendency of precipitation of photocatalyst crystals becomes strong. Accordingly, the content of the B 2 O 3 component is preferably 40.0%, more preferably 25.0%, and most preferably 15.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
 GeO成分は、上記したSiOと相似な働きを有する成分で、溶融ガラスの安定性に寄与する。母ガラス部材の屈折率や粘性調整のために添加できる任意成分であるが、希少鉱物資源であり高価であるため、10%を超えないことが好ましく、より好ましくは5%以下、最も好ましくは一切含有しない。 The GeO 2 component is a component having a similar function to the above-described SiO 2 and contributes to the stability of the molten glass. Although it is an optional component that can be added to adjust the refractive index and viscosity of the mother glass member, it is a rare mineral resource and expensive, so it is preferable not to exceed 10%, more preferably 5% or less, most preferably all Does not contain
 Al成分は、ガラスの安定性及びガラスセラミックスの化学的耐久性を高め、ガラスから光触媒結晶の析出を促進し、且つAl3+イオンがTiO結晶相に固溶して光触媒特性の向上に寄与する成分であり、任意に添加できる成分である。しかし、その含有量が20.0%を超えると、溶解温度が著しく上昇し、ガラス化し難くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するAl成分の含有量は、好ましくは20.0%、より好ましくは12.0%、最も好ましくは8.0%を上限とする。 The Al 2 O 3 component enhances the stability of the glass and the chemical durability of the glass ceramic, promotes the precipitation of photocatalytic crystals from the glass, and improves the photocatalytic properties by dissolving Al 3+ ions in the TiO 2 crystal phase. It is a component which contributes to the above, and can be added arbitrarily. However, if the content exceeds 20.0%, the melting temperature significantly increases and it becomes difficult to vitrify. Accordingly, the upper limit of the content of the Al 2 O 3 component is preferably 20.0%, more preferably 12.0%, and most preferably 8.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
 ZnO成分は、ガラスの溶融性と安定性を向上する成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、第2のガラスセラミックスに任意に添加できる成分である。しかし、ZnO成分の含有量が60.0%を超えると、ガラスが失透性し易くなる等、かえってガラスの安定性が悪くなり、光触媒結晶の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するZnO成分の含有量は、好ましくは60.0%、より好ましくは40.0%、最も好ましくは30.0%を上限とする。 The ZnO component is a component that improves the meltability and stability of the glass. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 It is a component that can be optionally added to the second glass ceramic. However, when the content of the ZnO component exceeds 60.0%, the glass is likely to be devitrified, and the stability of the glass is rather deteriorated, and it is also difficult to deposit photocatalyst crystals. Therefore, the upper limit of the content of the ZnO component is preferably 60.0%, more preferably 40.0%, and most preferably 30.0% with respect to the total mass of the glass ceramic having the oxide conversion composition.
 ZrO成分は、化学的耐久性を高め、光触媒結晶の析出を促進し、且つZr4+イオンがTiO結晶相に固溶して光触媒特性の向上に寄与する成分であり、任意に添加できる成分である。しかし、ZrO成分の含有量が20.0%を超えると、ガラス化し難くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するZrO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。 The ZrO 2 component is a component that enhances chemical durability, promotes precipitation of photocatalyst crystals, and that Zr 4 + ions form a solid solution in the TiO 2 crystal phase to contribute to the improvement of photocatalytic properties, and can be added as desired. It is. However, when the content of the ZrO 2 component exceeds 20.0%, vitrification becomes difficult. Therefore, the content of the ZrO 2 component with respect to the total mass of the glass ceramic in terms of the oxide composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
 SnO成分は、光触媒結晶の析出を促進し、Ti4+の還元を抑制してTiO結晶相を得易くし、且つTiO結晶相に固溶して光触媒特性の向上に効果がある成分であり、また、光触媒活性を高める作用のある後述のAgやAuやPtイオンと一緒に添加する場合は還元剤の役割を果たし、間接的に光触媒の活性の向上に寄与する成分であり、任意に添加できる成分である。しかし、これらの成分の含有量が10.0%を超えると、ガラスの安定性が悪くなり、光触媒特性も低下し易くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するSnO成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。 The SnO component promotes precipitation of photocatalytic crystals, suppresses the reduction of Ti 4+ to make it easy to obtain a TiO 2 crystal phase, and is a component that dissolves in the TiO 2 crystal phase and is effective in improving the photocatalytic properties. Also, when added together with Ag, Au or Pt ion described later which has the function of enhancing the photocatalytic activity, it plays a role of reducing agent and indirectly contributes to the improvement of the photocatalytic activity, and it is optionally added It is a possible ingredient. However, if the content of these components exceeds 10.0%, the stability of the glass deteriorates and the photocatalytic properties also tend to deteriorate. Therefore, the upper limit of the content of the SnO component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
 Bi成分は、ガラスの溶融性と安定性を高める成分である。また、ガラス転移温度(Tg)を下げることで熱処理温度が下がるため、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くできる成分であり、任意に添加できる成分である。しかし、Bi成分の含有量が20.0%を超えると、ガラスの安定性が悪くなり、光触媒結晶が析出し難くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するBi成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。 The Bi 2 O 3 component is a component that enhances the meltability and stability of the glass. In addition, since the heat treatment temperature is lowered by lowering the glass transition temperature (Tg), one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals are formed. It is a component that can be easily added, and a component that can be added arbitrarily. However, when the content of the Bi 2 O 3 component exceeds 20.0%, the stability of the glass is deteriorated, and it becomes difficult to precipitate photocatalyst crystals. Therefore, the content of the Bi 2 O 3 component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%, based on the total mass of the glass ceramic in terms of the oxide composition.
 TeO成分は、ガラスの溶融性と安定性を高める成分である。また、ガラス転移温度(Tg)を下げることで熱処理温度が下がるため、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くできる成分であり、任意に添加できる成分である。しかし、TeO成分の含有量が20.0%を超えると、ガラスの安定性が悪くなり、光触媒結晶が析出し難くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するTeO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。 The TeO 2 component is a component that enhances the meltability and stability of the glass. In addition, since the heat treatment temperature is lowered by lowering the glass transition temperature (Tg), one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals are formed. It is a component that can be easily added, and a component that can be added arbitrarily. However, when the content of the TeO 2 component exceeds 20.0%, the stability of the glass is deteriorated, and it becomes difficult to precipitate photocatalyst crystals. Therefore, the content of the TeO 2 component with respect to the total mass of the glass ceramic in terms of the oxide composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
 なお、Bi成分及び/またはTeO成分は、二成分の総量で20%を超えないことが好ましく、より好ましくは15%、最も好ましくは10%を超えないことが好ましい。 The total content of the Bi 2 O 3 component and / or the TeO 2 component preferably does not exceed 20%, more preferably 15%, and most preferably 10%.
 Nb成分は、ガラスの溶融性と安定性を高める成分であり、光触媒結晶の近傍に存在することで、光触媒特性が向上する成分であり、第2のガラスセラミックスに任意に添加できる成分である。しかし、Nb成分の含有量が30.0%を超えると、ガラスの安定性が著しく悪くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するNb成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。 The Nb 2 O 5 component is a component that enhances the meltability and stability of the glass, and is a component that improves the photocatalytic properties by being present in the vicinity of the photocatalyst crystal, and a component that can be optionally added to the second glass ceramic It is. However, when the content of the Nb 2 O 5 component exceeds 30.0%, the stability of the glass is significantly deteriorated. Accordingly, the upper limit of the content of the Nb 2 O 5 component is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
 Ta成分は、ガラスの安定性を高める成分であり、光触媒結晶の近傍に存在することで、光触媒特性が向上する成分であり、任意に添加できる成分である。しかし、Ta成分の含有量が30.0%を超えると、ガラスの安定性が著しく悪くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するTa成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。 The Ta 2 O 5 component is a component that enhances the stability of glass, is a component that improves the photocatalytic properties by being present in the vicinity of the photocatalyst crystal, and is a component that can be added arbitrarily. However, when the content of the Ta 2 O 5 component exceeds 30.0%, the stability of the glass is significantly deteriorated. Therefore, the content of the component Ta 2 O 5 is preferably 30.0%, more preferably 20.0%, most preferably 10.0%, based on the total mass of the glass ceramic in terms of the oxide composition.
 WO成分は、ガラスの溶融性と安定性を高める成分であり、光触媒結晶の近傍に存在することで、光触媒特性が向上する成分であり、任意に添加できる成分である。しかし、WO成分の含有量が30.0%を超えると、ガラスの安定性が著しく悪くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するWO成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。 The WO 3 component is a component that enhances the meltability and stability of the glass, is a component that improves the photocatalytic properties by being present in the vicinity of the photocatalyst crystal, and is a component that can be added arbitrarily. However, when the content of the WO 3 component exceeds 30.0%, the stability of the glass is significantly deteriorated. Accordingly, the upper limit of the content of the WO 3 component is preferably 30.0%, more preferably 20.0%, and most preferably 10.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
 Nb成分、Ta成分、及びWO成分から選ばれる少なくとも1種以上の成分の総量は30.0%以下であることが好ましい。これより多いと、ガラスセラミックスの安定性が悪くなり、良好なガラスセラミックスを形成できなくなる。より好ましくは、20%、最も好ましくは10%を上限とする。なお、Nb成分、Ta成分、及びWO成分はいずれも含有しなくとも高い光触媒特性を有するガラスセラミックスを得ることは可能であるが、これらの成分から選ばれる少なくとも1種以上の成分の質量和を0.1%以上にすることで、このガラスセラミックスの光触媒特性をさらに向上することがでる。従って、酸化物換算組成のガラスセラミックス全物質量に対する質量和(Nb+Ta+WO)は、好ましくは0.1%、より好ましくは0.5%、最も好ましくは1.0%を下限とする。このうち特に、WO成分が光触媒特性を向上させる効果が高い。 The total amount of at least one or more components selected from the Nb 2 O 5 component, the Ta 2 O 5 component, and the WO 3 component is preferably 30.0% or less. If the amount is more than this range, the stability of the glass-ceramics will deteriorate and it will not be possible to form good glass-ceramics. More preferably, the upper limit is 20%, and most preferably 10%. Although it is possible to obtain a glass ceramic having high photocatalytic properties without containing any of the Nb 2 O 5 component, the Ta 2 O 5 component, and the WO 3 component, it is possible to obtain at least one selected from these components. By setting the mass sum of the above components to 0.1% or more, the photocatalytic properties of this glass ceramic can be further improved. Therefore, the mass sum (Nb 2 O 5 + Ta 2 O 5 + WO 3 ) with respect to the total mass of the glass ceramic of the oxide conversion composition is preferably 0.1%, more preferably 0.5%, most preferably 1.0. The lower limit is%. Among them, the WO 3 component is particularly effective in improving the photocatalytic properties.
 Ln成分(式中、LnはY、Ce、La、Nd、Gd、Dy、及びYbからなる群より選択される1種以上)は、ガラスセラミックスの化学的耐久性を高める成分であり、光触媒結晶の近傍に存在することで、光触媒特性が向上する成分であり、任意に添加できる成分である。しかし、Ln成分の含有量の合計が30.0%を超えると、ガラスの安定性が著しく悪くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対する、Ln成分から選ばれる少なくとも1種以上の成分の質量和は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。 The Ln 2 O 3 component (wherein, Ln is one or more selected from the group consisting of Y, Ce, La, Nd, Gd, Dy, and Yb) is a component that enhances the chemical durability of glass ceramics. By being present in the vicinity of the photocatalyst crystal, it is a component that improves the photocatalytic properties, and is a component that can be added arbitrarily. However, when the total content of Ln 2 O 3 components exceeds 30.0%, the stability of the glass is significantly deteriorated. Therefore, the mass sum of at least one or more components selected from the Ln 2 O 3 components is preferably 30.0%, more preferably 20.0%, most preferably, relative to the total mass of the glass ceramic in terms of the oxide conversion composition. The upper limit is 10.0%.
≪第3のガラスセラミックス≫
 本発明の第3のガラスセラミックスは、更に以下のように成分を調整することが好ましい。次に、第3のガラスセラミックスの含有成分の好ましい範囲を述べる。
«Third glass ceramics»
It is preferable to further adjust the components of the third glass ceramic of the present invention as follows. Next, the preferable range of the ingredient of the 3rd glass ceramics is described.
 第3のガラスセラミックスは、TiO成分を15.0~95.0%の範囲で含有することが好ましい。TiO成分は、結晶化することにより、TiOの結晶、又はTiとリン/アルカリ金属/アルカリ土類金属との化合物であるTiP、(TiO)、RnTi(PO、RTi(PO、及びそれらの固溶体の結晶(以下、光触媒結晶とする)としてガラスから析出するため、光触媒特性をもたらすのに必須で欠かせない成分である。特に、TiO成分の含有量を15.0%以上にすることで、TiO及びその固溶体の結晶が析出し易くなり、ガラスセラミックス中におけるこれら結晶の濃度が高められるため、所望の光触媒特性を確保することができる。一方、TiO成分の含有量が95.0%を超えると、ガラス化が非常に難しくなり、所望の形状に成形できなくなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するTiO成分の含有量は、好ましくは15.0%、より好ましくは25.0%、最も好ましくは30.0%を下限とし、好ましくは95.0%、より好ましくは85.0%、最も好ましくは80.0%を上限とする。TiO成分は、原料として例えばアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO等を用いてガラスセラミックス内に含有することができる。 The third glass ceramic preferably contains a TiO 2 component in the range of 15.0 to 95.0%. The TiO 2 component is crystallized to form crystals of TiO 2 or TiP 2 O 7 , (TiO) 2 P 2 O 7 , RnTi 2 (which is a compound of Ti and phosphorus / alkali metal / alkaline earth metal). Since it precipitates from glass as PO 4 ) 3 , R 2 Ti 4 (PO 4 ) 6 , and crystals (hereinafter referred to as photocatalyst crystals) of a solid solution thereof, it is an essential and indispensable component for providing photocatalytic properties. . In particular, when the content of the TiO 2 component is 15.0% or more, crystals of TiO 2 and its solid solution are easily precipitated, and the concentration of these crystals in the glass ceramic is increased, so that desired photocatalytic properties can be obtained. It can be secured. On the other hand, when the content of the TiO 2 component exceeds 95.0%, vitrification becomes very difficult, and it can not be formed into a desired shape. Therefore, the content of the TiO 2 component relative to the total mass of the glass ceramic in terms of the oxide composition is preferably 15.0%, more preferably 25.0%, and most preferably 30.0% as a lower limit, preferably 95 The upper limit is 0. 0%, more preferably 85.0%, and most preferably 80.0%. The TiO 2 component can be contained in the glass ceramic using, for example, one or more TiO 2 selected from anatase type, rutile type and brookite type as a raw material.
 SiO成分は、ガラスの網目構造を構成し、ガラスの安定性と化学的耐久性を高める成分であるとともに、Si4+イオンが析出した光触媒結晶相の近傍に存在し、光触媒活性の向上に寄与する成分であり、第3のガラスセラミックスに任意に添加できる成分である。しかし、SiO成分の含有量が70.0%を超えると、ガラスの溶融性及び紡糸性が悪くなるだけでなく、TiO結晶相が析出し難くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するSiO成分の含有量は、好ましくは70.0%、より好ましくは50.0%、最も好ましくは30.0%を上限とする。 The SiO 2 component constitutes a glass network structure and is a component that enhances the stability and chemical durability of the glass, and is present in the vicinity of the photocatalytic crystal phase on which Si 4+ ions are deposited, and contributes to the improvement of the photocatalytic activity And a component which can be optionally added to the third glass ceramic. However, when the content of the SiO 2 component exceeds 70.0%, not only the meltability and the spinnability of the glass deteriorate, but also the TiO 2 crystal phase becomes difficult to precipitate. Therefore, the content of the SiO 2 component is preferably 70.0%, more preferably 50.0%, and most preferably 30.0% as the upper limit of the content of the SiO 2 component with respect to the total mass of the glass ceramic having the oxide conversion composition.
 P成分は、ガラスの網目構造を構成し、より多くのTiO成分をガラスに取り込ませるために有用な成分であり、第3のガラスセラミックスに任意に添加できる。また、P成分を含有することによって、より低い熱処理温度で光触媒結晶を析出することが可能になるため、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くすることができる。また、燐は光触媒活性を有するTiP、(TiO)を形成する際には必須となる成分である。しかし、Pの含有量が70.0%を超えると、TiO結晶相が析出し難くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するP成分の含有量は、好ましくは70.0%、より好ましくは60.0%、最も好ましくは50.0%を上限とする。 The P 2 O 5 component constitutes a glass network structure, is a useful component for incorporating more TiO 2 components into the glass, and can be optionally added to the third glass ceramic. In addition, the inclusion of the P 2 O 5 component makes it possible to deposit photocatalytic crystals at a lower heat treatment temperature, and therefore, one or more TiOs selected from anatase type, rutile type and brookite type having high photocatalytic activity. Two crystals, in particular, anatase type TiO 2 crystals can be easily formed. Phosphorus is an essential component when forming TiP 2 O 7 and (TiO) 2 P 2 O 7 having photocatalytic activity. However, when the content of P 2 O 5 exceeds 70.0%, it becomes difficult to precipitate the TiO 2 crystal phase. Accordingly, the upper limit of the content of the P 2 O 5 component is preferably 70.0%, more preferably 60.0%, and most preferably 50.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
 第3のガラスセラミックスは、SiO成分及び/又はP成分の一種以上を合計で5.0~70.0%の範囲で含有することが好ましい。これらはガラスの形成酸化物で、ガラスを得るのにおいて重要な成分であり、その全体量が5%未満であると、ガラスが得られないおそれが高い。従って、これらの一種以上の含有量は、好ましくは5.0%、より好ましくは10.0%、最も好ましくは25.0%を下限とする。一方、その量が70.0%を超えると、光触媒結晶がガラスに析出し難くなる。そのため、これらの一種以上の含有量は、好ましくは70.0%、より好ましくは60.0%、最も好ましくは50.0%を上限とする。 The third glass ceramic preferably contains one or more of a SiO 2 component and / or a P 2 O 5 component in a total amount of 5.0 to 70.0%. These are formed oxides of glass and are important components for obtaining glass, and if the total amount is less than 5%, there is a high possibility that glass can not be obtained. Therefore, the content of one or more of them is preferably 5.0%, more preferably 10.0%, and most preferably 25.0%. On the other hand, when the amount exceeds 70.0%, it becomes difficult for the photocatalyst crystal to precipitate on glass. Therefore, the upper limit of the content of one or more of these is preferably 70.0%, more preferably 60.0%, and most preferably 50.0%.
 LiO成分は、ガラスの溶融性と安定性を向上し、熱処理後のガラスセラミックスへのひび割れを生じ難くしつつ、弾性を向上させる成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、本発明のビーズ及び繊維を構成するガラスセラミックスに任意に添加できる成分である。しかし、LiO成分の含有量が50.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するLiO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは15.0%を上限とする。 The Li 2 O component is a component that improves the meltability and stability of the glass, and improves the elasticity while making it difficult to cause cracking to the glass ceramic after heat treatment. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals. It is a component that can be optionally added to the glass ceramic that constitutes the beads and fibers of the present invention. However, when the content of the Li 2 O component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of the photocatalyst crystal phase also becomes difficult. Accordingly, the upper limit of the content of the Li 2 O component is preferably 50.0%, more preferably 30.0%, and most preferably 15.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
 NaO成分は、ガラスの溶融性と安定性を向上し、熱処理後のガラスセラミックスへのひび割れを生じ難くしつつ、弾性を向上させる成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、本発明のビーズ及び繊維を構成するガラスセラミックスに任意に添加できる成分である。しかし、NaO成分の含有量が50.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するNaO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは15.0%を上限とする。 The Na 2 O component is a component that improves the meltability and stability of the glass, and improves the elasticity while making it difficult to cause cracking to the glass ceramic after heat treatment. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals. It is a component that can be optionally added to the glass ceramic that constitutes the beads and fibers of the present invention. However, when the content of the Na 2 O component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of the photocatalyst crystal phase also becomes difficult. Therefore, the content of the Na 2 O component is preferably 50.0%, more preferably 30.0%, and most preferably 15.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
 KO成分は、ガラスの溶融性と安定性を向上し、熱処理後のガラスセラミックスへのひび割れを生じ難くしつつ、弾性を向上させる成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、本発明のビーズ及び繊維を構成するガラスセラミックスに任意に添加できる成分である。しかし、KO成分の含有量が50.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するKO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは15.0%を上限とする。 The K 2 O component is a component that improves the meltability and stability of the glass, and improves the elasticity while making it difficult to cause cracking in the glass ceramic after heat treatment. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals. It is a component that can be optionally added to the glass ceramic that constitutes the beads and fibers of the present invention. However, when the content of the K 2 O component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of the photocatalyst crystal phase also becomes difficult. Accordingly, the upper limit of the content of the K 2 O component is preferably 50.0%, more preferably 30.0%, and most preferably 15.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
 RbO成分は、ガラスの溶融性と安定性を向上し、熱処理後のガラスセラミックスへのひび割れを生じ難くしつつ、弾性を向上させる成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、本発明のビーズ及び繊維を構成するガラスセラミックスに任意に添加できる成分である。しかし、RbO成分の含有量が10.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するRbO成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。 The Rb 2 O component is a component that improves the meltability and stability of the glass, improves the elasticity while making it difficult to cause cracking to the glass ceramic after heat treatment. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals. It is a component that can be optionally added to the glass ceramic that constitutes the beads and fibers of the present invention. However, when the content of the Rb 2 O component exceeds 10.0%, the stability of the glass is rather deteriorated, and the precipitation of the photocatalyst crystal phase also becomes difficult. Therefore, the content of the Rb 2 O component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%, based on the total mass of the glass ceramic in terms of the oxide conversion.
 CsO成分は、ガラスの溶融性と安定性を向上し、熱処理後のガラスセラミックスへのひび割れを生じ難くしつつ、弾性を向上させる成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、本発明のビーズ及び繊維を構成するガラスセラミックスに任意に添加できる成分である。しかし、CsO成分の含有量が10.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の析出が困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するCsO成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。 The Cs 2 O component is a component that improves the meltability and stability of the glass, and improves the elasticity while making it difficult to cause cracks in the glass ceramic after heat treatment. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals. It is a component that can be optionally added to the glass ceramic that constitutes the beads and fibers of the present invention. However, when the content of the Cs 2 O component exceeds 10.0%, the stability of the glass is rather deteriorated and the precipitation of the photocatalytic crystal phase becomes difficult. Therefore, the upper limit of the content of the Cs 2 O component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
 上記RnO成分(式中、RnはLi、Na、K、Rb、Csからなる群より選択される1種以上)の総量は50.0%以下であることが好ましい。50.0%以下にすることで、ガラスの安定性が向上し、光触媒結晶相が析出し易くなる。そのため、ガラスセラミックスの触媒活性を確保することができる。また、このガラスセラミックスを用いて特にガラスセラミックス繊維を形成する際に、ガラスセラミックスの紡糸性を向上できる。より好ましくは30.0%、最も好ましくは20.0%を上限とする。また、これらの成分を全く含有しないとガラスの溶融性と安定性が低下する傾向があるので、好ましくは0.1%以上、より好ましくは0.5%以上、最も好ましくは1%以上を含有量の下限とする。特に、光触媒性能を持たせるのに有用なチタンリン酸アルカリ金属化合物(RnTi(PO)の結晶又はその固溶体を析出させるためには、1.0%以上、より好ましくは1.5%以上であることが好ましい。 (Wherein, Rn is Li, Na, K, Rb, 1 or more selected from the group consisting of Cs) the Rn 2 O component is preferably the total amount of at most 50.0%. By setting the content to 50.0% or less, the stability of the glass is improved, and the photocatalyst crystal phase is easily deposited. Therefore, the catalytic activity of glass ceramics can be secured. Moreover, when forming glass-ceramics fiber especially using this glass-ceramics, the spinnability of glass-ceramics can be improved. More preferably, the upper limit is 30.0%, and most preferably 20.0%. In addition, since the meltability and stability of the glass tend to decrease if these components are not contained at all, the content is preferably 0.1% or more, more preferably 0.5% or more, and most preferably 1% or more. The lower limit of the amount. In particular, in order to precipitate a crystal of titanium phosphate alkali metal compound (RnTi 2 (PO 4 ) 3 ) useful for imparting photocatalytic performance or a solid solution thereof, the content is 1.0% or more, more preferably 1.5% It is preferable that it is more than.
 BeO成分は、ガラスの溶融性と安定性を向上する成分であるとともに、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、第3のガラスセラミックスに任意に添加できる成分である。しかし、BeO成分の含有量が50.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の析出も困難となる。また、特にガラスセラミックス繊維を形成する際に、ガラスセラミックスの紡糸性が低下する。従って、酸化物換算組成のガラスセラミックス全物質量に対するBaO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。 The BeO component is a component that improves the meltability and stability of the glass, and lowers the glass transition temperature to lower the heat treatment temperature, and is one or more selected from anatase type, rutile type and brookite type having high photocatalytic activity. It is a component that facilitates the formation of TiO 2 crystals, particularly anatase type TiO 2 crystals, and can be optionally added to the third glass ceramic. However, when the content of the BeO component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of the photocatalyst crystal phase also becomes difficult. In addition, particularly when forming glass ceramic fibers, the spinnability of the glass ceramic is reduced. Accordingly, the upper limit of the content of the BaO component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic having the oxide conversion composition.
 MgO成分は、ガラスの溶融性と安定性を向上する成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、第3のガラスセラミックスに任意に添加できる成分である。しかし、MgO成分の含有量が50.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の析出も困難となる。また、特にガラスセラミックス繊維を形成する際に、ガラスセラミックスの紡糸性が低下する。従って、酸化物換算組成のガラスセラミックス全物質量に対するMgO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。 The MgO component is a component that improves the meltability and stability of the glass. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals. It is a component that can be optionally added to the third glass ceramic. However, when the content of the MgO component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of the photocatalyst crystal phase also becomes difficult. In addition, particularly when forming glass ceramic fibers, the spinnability of the glass ceramic is reduced. Therefore, the upper limit of the content of the MgO component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
 CaO成分は、ガラスの溶融性と安定性を向上する成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、第3のガラスセラミックスに任意に添加できる成分である。しかし、CaO成分の含有量が50.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の析出も困難となる。また、特にガラスセラミックス繊維を形成する際に、ガラスセラミックスの紡糸性が低下する。従って、酸化物換算組成のガラスセラミックス全物質量に対するCaO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは25.0%を上限とする。 The CaO component is a component that improves the meltability and stability of the glass. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals. It is a component that can be optionally added to the third glass ceramic. However, when the content of the CaO component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of the photocatalyst crystal phase also becomes difficult. In addition, particularly when forming glass ceramic fibers, the spinnability of the glass ceramic is reduced. Accordingly, the upper limit of the content of the CaO component is preferably 50.0%, more preferably 30.0%, and most preferably 25.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
 SrO成分は、ガラスの溶融性と安定性を向上する成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、第3のガラスセラミックスに任意に添加できる成分である。しかし、SrO成分の含有量が50.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の析出も困難となる。また、特にガラスセラミックス繊維を形成する際に、ガラスセラミックスの紡糸性が低下する。従って、酸化物換算組成のガラスセラミックス全物質量に対するSrO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。 The SrO component is a component that improves the meltability and stability of the glass. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals. It is a component that can be optionally added to the third glass ceramic. However, when the content of the SrO component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of the photocatalyst crystal phase also becomes difficult. In addition, particularly when forming glass ceramic fibers, the spinnability of the glass ceramic is reduced. Accordingly, the upper limit of the content of the SrO component is preferably 50.0%, more preferably 30.0%, most preferably 20.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
 BaO成分は、ガラスの溶融性と安定性を向上する成分である。また、ガラス転移温度を下げて熱処理温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、第3のガラスセラミックスに任意に添加できる成分である。しかし、BaO成分の含有量が50.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の析出も困難となる。また、特にガラスセラミックス繊維を形成する際に、ガラスセラミックスの紡糸性が低下する。従って、酸化物換算組成のガラスセラミックス全物質量に対するBaO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。 The BaO component is a component that improves the meltability and stability of the glass. In addition, the glass transition temperature is lowered to lower the heat treatment temperature, and it is a component that facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals. It is a component that can be optionally added to the third glass ceramic. However, when the content of the BaO component exceeds 50.0%, the stability of the glass is rather deteriorated, and the precipitation of the photocatalyst crystal phase also becomes difficult. In addition, particularly when forming glass ceramic fibers, the spinnability of the glass ceramic is reduced. Accordingly, the upper limit of the content of the BaO component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass ceramic having the oxide conversion composition.
 上記RO成分(RはBe、Mg、Ca、Sr、Baからなる群より選択される1種以上)の総量は60.0%以下の範囲であることが好ましい。この範囲でガラスの安定性が向上し、TiO結晶相が析出し易くなるため、ガラスセラミックスの触媒活性を確保することができる。より好ましくは40.0%、最も好ましくは30.0%を上限とする。一方、光触媒性能を持たせるのに有用なRTi(POまたはその固溶体を析出させる場合、1.0%以上、より好ましくは1.5%以上であることが好ましい。 The total amount of the R 2 O components (R 2 is one or more selected from the group consisting of Be, Mg, Ca, Sr, and Ba) is preferably in the range of 60.0% or less. Since the stability of the glass is improved in this range and the TiO 2 crystal phase is easily precipitated, the catalytic activity of the glass ceramic can be secured. More preferably, the upper limit is 40.0%, and most preferably 30.0%. On the other hand, when depositing R 2 Ti 4 (PO 4 ) 6 or its solid solution useful for imparting photocatalytic performance, it is preferably 1.0% or more, more preferably 1.5% or more.
 また、第3のガラスセラミックスは、RnO(Rnは、Li、Na、K、Rb、Csからなる群より選択される1種以上)成分及びRO(Rは、Be、Mg、Ca、Sr、Baからなる群より選択される1種以上)成分から選ばれる少なくとも1種以上の成分を総量で60.0%以下含有することが好ましい。特に、RnO成分及びRO成分から選ばれる少なくとも1種以上の成分の質量和を60.0%以下にすることで、ガラスの安定性が向上し、ガラス転移温度(Tg)が下がり、ひび割れが生じ難く弾性及び機械的な強度の高いガラスセラミックスをより容易に得られる。また、特にガラスセラミックス繊維を形成する際に、ガラスセラミックスの紡糸性を向上できる。一方で、RnO成分及びRO成分から選ばれる少なくとも1種以上の成分の質量和が60.0%より多いと、ガラスの安定性が悪くなり、TiO結晶相の析出も困難となる。また、特にガラスセラミックス繊維を形成する際に、ガラスセラミックスの紡糸性が低下する。従って、酸化物換算組成のガラスセラミックス全物質量に対する質量和(アルカリ金属酸化物+アルカリ土類金属酸化物)は、好ましくは60.0%、より好ましくは40.0%、最も好ましくは30.0%を上限とする。なお、これらの成分を全く含有しないと、ガラスの安定性が悪化するだけでなく、触媒性能を持たせるのに有用なRnTi(PO、RTi(PO、又はその固溶体を得られなくなるので、少なくとも0.1%以上、より好ましくは0.5%以上、さらに好ましくは1.0%以上、最も好ましくは1.5%以上を下限とする。 Further, the third glass ceramic includes Rn 2 O (Rn is one or more selected from the group consisting of Li, Na, K, Rb, Cs) component and R 2 O (R 2 is Be, Mg, It is preferable to contain 60.0% or less in total of at least one or more components selected from one or more components selected from the group consisting of Ca, Sr, and Ba. In particular, by setting the mass sum of at least one or more components selected from the Rn 2 O component and the R 2 O component to 60.0% or less, the stability of the glass is improved and the glass transition temperature (Tg) is decreased. It is possible to obtain a glass ceramic having high elasticity and mechanical strength, which is less likely to crack, more easily. Moreover, when forming glass-ceramics fiber especially, the spinnability of glass-ceramics can be improved. On the other hand, if the mass sum of at least one or more components selected from the Rn 2 O component and the R 2 O component is more than 60.0%, the stability of the glass is deteriorated and the precipitation of the TiO 2 crystal phase is also difficult. Become. In addition, particularly when forming glass ceramic fibers, the spinnability of the glass ceramic is reduced. Therefore, the mass sum (alkali metal oxide + alkaline earth metal oxide) relative to the total mass of the glass ceramic in terms of oxide composition is preferably 60.0%, more preferably 40.0%, and most preferably 30. The upper limit is 0%. It should be noted that if these components are not contained at all, not only the stability of the glass is degraded, but also RnTi 2 (PO 4 ) 3 , R 2 Ti 4 (PO 4 ) 6 or useful for giving catalytic performance. Since the solid solution can not be obtained, the lower limit is at least 0.1%, preferably 0.5%, more preferably 1.0%, and most preferably 1.5%.
 さらに、RnO成分及びRO成分から選ばれる成分のうち2種類以上を含有することが好ましい。これにより、ガラスの安定性が大幅に向上し、熱処理後のガラスセラミックスの機械強度がより高くなる。また、ガラスセラミックスに光触媒特性を付与するTiO、及びチタンリン酸化合物(その固溶体を含む)の結晶相がガラスからより析出し易くなる。従って、第3のガラスセラミックスは、RnO成分及びRO成分から選ばれる成分のうち2種類以上を含有することが好ましく、3種類以上を含有することがより好ましい。 Further, it is preferable to contain two or more of the components selected from Rn 2 O component and the R 2 O component. Thereby, the stability of the glass is greatly improved, and the mechanical strength of the glass ceramic after the heat treatment is further enhanced. In addition, the crystal phase of TiO 2 and titanium phosphate compound (including its solid solution) which imparts photocatalytic properties to glass ceramics is more easily precipitated from glass. Therefore, the third glass ceramic preferably contains two or more types of components selected from the Rn 2 O component and the R 2 O component, and more preferably contains three or more types.
 B成分は、ガラスの網目構造を構成し、ガラスセラミックスの安定性を高める成分であり、任意に添加できる成分である。しかし、その含有量が40.0%を超えると、溶融時の揮発量が増えて製造が難しくなり、且つ光触媒結晶相が析出し難い傾向が強くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するB成分の含有量は、好ましくは40.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。 The B 2 O 3 component is a component that constitutes a glass network structure and enhances the stability of the glass ceramic, and is a component that can be added arbitrarily. However, when the content exceeds 40.0%, the volatilization amount at the time of melting increases, the production becomes difficult, and the tendency of precipitation of the photocatalyst crystal phase becomes strong. Therefore, the content of the B 2 O 3 component is preferably 40.0%, more preferably 20.0%, and most preferably 10.0% as the upper limit of the content of the B 2 O 3 relative to the total mass of the glass ceramic in terms of the oxide conversion composition.
 GeO成分は、上記したSiOと相似な働きを有する成分で、溶融ガラスの安定性に寄与する。母ガラス部材の屈折率や粘性調整のために添加できる任意成分であるが、希少鉱物資源であり高価であるため、10%を超えないことが好ましく、より好ましくは8%以下、最も好ましくは5%以下である。 The GeO 2 component is a component having a similar function to the above-described SiO 2 and contributes to the stability of the molten glass. Although it is an optional component that can be added to adjust the refractive index and viscosity of the mother glass member, it is a rare mineral resource and expensive, so it is preferable not to exceed 10%, more preferably 8% or less, most preferably 5 % Or less.
 Al成分は、ガラスの安定性及びガラスセラミックスの化学的耐久性を高め、ガラスからの光触媒結晶の析出を促進し、且つAl3+イオンがこれらの結晶相に固溶して光触媒特性の向上に寄与する成分であり、任意に添加できる成分である。しかし、その含有量が20.0%を超えると、溶解温度が著しく上昇し、ガラス化し難くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するAl成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。 The Al 2 O 3 component enhances the stability of the glass and the chemical durability of the glass ceramics, promotes the precipitation of photocatalytic crystals from the glass, and Al 3+ ions form a solid solution in these crystal phases to achieve photocatalytic properties. It is a component that contributes to the improvement, and is a component that can be added arbitrarily. However, if the content exceeds 20.0%, the melting temperature significantly increases and it becomes difficult to vitrify. Therefore, the content of the Al 2 O 3 component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0% as the upper limit of the content of the Al 2 O 3 relative to the total mass of the glass ceramic in terms of oxide composition.
 ZnO成分は、ガラスの溶融性と安定性を向上する成分であるとともに、ガラス転移温度を下げて熱処理温度をより低く抑え、アナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、第3のガラスセラミックスに任意に添加できる成分である。また、耐候性を向上させる効果をもつ。しかし、ZnO成分の含有量が60.0%を超えると、ガラスが分相して失透し易くなるため、かえってガラスの安定性が悪くなり、光触媒結晶相の析出も困難となる。従って、酸化物換算組成のガラスセラミックス全物質量に対するZnO成分の含有量は、好ましくは60.0%、より好ましくは40.0%、最も好ましくは30.0%を上限とする。 The ZnO component is a component that improves the meltability and stability of the glass, and lowers the glass transition temperature to suppress the heat treatment temperature lower, and one or more TiO 2 crystals selected from anatase type, rutile type and brookite type In particular, it is a component that facilitates the formation of anatase type TiO 2 crystals, and is a component that can be optionally added to the third glass ceramic. It also has the effect of improving the weather resistance. However, if the content of the ZnO component exceeds 60.0%, the glass is likely to separate and devitrify, so that the stability of the glass is deteriorated and the precipitation of the photocatalytic crystal phase also becomes difficult. Therefore, the upper limit of the content of the ZnO component is preferably 60.0%, more preferably 40.0%, and most preferably 30.0% with respect to the total mass of the glass ceramic having the oxide conversion composition.
 ZrO成分は、化学的耐久性を高め、光触媒結晶の析出を促進し、且つZr4+イオンがこれらの結晶相に固溶して光触媒特性の向上に寄与する成分であり、任意に添加できる成分である。また、ZrO成分は、ガラスセラミックス繊維の耐アルカリ性を向上するのに有効な成分である。しかし、ZrO成分の含有量が20.0%を超えると、ガラス化し難くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するZrO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。 The ZrO 2 component is a component that enhances the chemical durability, promotes the precipitation of photocatalyst crystals, and that the Zr 4+ ions form a solid solution in these crystal phases to contribute to the improvement of the photocatalyst characteristics, and can be added arbitrarily It is. The ZrO 2 component is an effective component for improving the alkali resistance of the glass ceramic fiber. However, when the content of the ZrO 2 component exceeds 20.0%, vitrification becomes difficult. Therefore, the content of the ZrO 2 component with respect to the total mass of the glass ceramic in terms of the oxide composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
 SnO成分は、光触媒結晶の析出を促進し、Ti4+の還元を抑制してこれらの結晶相を得易くし、且つ光触媒結晶相に固溶して光触媒特性の向上に効果がある成分である。また、光触媒活性を高める作用のある後述のAgやAuやPtイオンと一緒に添加する場合は還元剤の役割を果たし、間接的に光触媒の活性の向上に寄与する成分であり、任意に添加できる。しかし、これらの成分の含有量が10.0%を超えると、ガラスの安定性が悪くなり、光触媒特性も低下し易くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するSnO成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。 The SnO component promotes precipitation of photocatalytic crystals, suppresses the reduction of Ti 4+ to make it easy to obtain these crystal phases, and is a component having a solid solution in the photocatalytic crystal phase and having an effect of improving photocatalytic properties. In addition, when it is added together with Ag, Au or Pt ion described later which has an action to enhance the photocatalytic activity, it plays a role as a reducing agent and indirectly contributes to the improvement of the photocatalytic activity and can be added arbitrarily. . However, if the content of these components exceeds 10.0%, the stability of the glass deteriorates and the photocatalytic properties also tend to deteriorate. Therefore, the upper limit of the content of the SnO component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
 Bi成分は、ガラスの溶融性と安定性を高める成分である。また、ガラス転移温度(Tg)を下げることで熱処理温度が下がるため、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くできる成分であり、任意に添加できる。しかし、Bi成分の含有量が20.0%を超えると、ガラスの安定性が悪くなり、所望の光触媒結晶が析出し難くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するBi成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。 The Bi 2 O 3 component is a component that enhances the meltability and stability of the glass. In addition, since the heat treatment temperature is lowered by lowering the glass transition temperature (Tg), one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals are formed This component can be easily added and can be added arbitrarily. However, when the content of the Bi 2 O 3 component exceeds 20.0%, the stability of the glass is deteriorated, and it becomes difficult to precipitate desired photocatalyst crystals. Therefore, the content of the Bi 2 O 3 component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%, based on the total mass of the glass ceramic in terms of the oxide composition.
 TeO成分は、ガラスの溶融性と安定性を高める成分である。また、ガラス転移温度(Tg)を下げることで熱処理温度が下がるため、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くできる成分であり、任意に添加できる。しかし、TeO成分の含有量が20.0%を超えると、ガラスの安定性が悪くなり、所望の光触媒結晶が析出し難くなる。また、特にガラスセラミックス繊維を形成する際に、ガラスセラミックスの紡糸性が低下する。従って、酸化物換算組成のガラスセラミックス全物質量に対するTeO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。 The TeO 2 component is a component that enhances the meltability and stability of the glass. In addition, since the heat treatment temperature is lowered by lowering the glass transition temperature (Tg), one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals are formed This component can be easily added and can be added arbitrarily. However, when the content of the TeO 2 component exceeds 20.0%, the stability of the glass is deteriorated, and it becomes difficult to precipitate desired photocatalyst crystals. In addition, particularly when forming glass ceramic fibers, the spinnability of the glass ceramic is reduced. Therefore, the content of the TeO 2 component with respect to the total mass of the glass ceramic in terms of the oxide composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
 なお、Bi成分及び/またはTeO成分は、二成分の総量で20%を超えないことが好ましく、より好ましくは15%、最も好ましくは10%を超えないことが好ましい。 The total content of the Bi 2 O 3 component and / or the TeO 2 component preferably does not exceed 20%, more preferably 15%, and most preferably 10%.
 Nb成分は、ガラスの溶融性と安定性を高める成分であり、光触媒結晶の近傍に存在することで光触媒特性が向上する成分であり、第3のガラスセラミックスに任意に添加できる成分である。しかし、Nb成分の含有量が30.0%を超えると、ガラスの安定性が著しく悪くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するNb成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。 The Nb 2 O 5 component is a component that enhances the meltability and stability of the glass, and is a component that improves the photocatalytic properties by being present in the vicinity of the photocatalyst crystal, and is a component that can be optionally added to the third glass ceramic is there. However, when the content of the Nb 2 O 5 component exceeds 30.0%, the stability of the glass is significantly deteriorated. Accordingly, the upper limit of the content of the Nb 2 O 5 component is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%, based on the total mass of the glass ceramic in terms of the oxide conversion composition.
 Ta成分は、ガラスの安定性を高める成分であり、光触媒結晶の近傍に存在することで光触媒特性が向上する成分であり、任意に添加できる。しかし、Ta成分の含有量が30.0%を超えると、ガラスの安定性が著しく悪くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するTa成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。 The Ta 2 O 5 component is a component that enhances the stability of the glass, and is a component that improves the photocatalytic properties by being present in the vicinity of the photocatalyst crystal, and can be added arbitrarily. However, when the content of the Ta 2 O 5 component exceeds 30.0%, the stability of the glass is significantly deteriorated. Therefore, the content of the component Ta 2 O 5 is preferably 30.0%, more preferably 20.0%, most preferably 10.0%, based on the total mass of the glass ceramic in terms of the oxide composition.
 WO成分は、ガラスの溶融性と安定性を高める成分であり、光触媒結晶の近傍に存在することで光触媒特性が向上する成分であり、任意に添加できる。しかし、WO成分の含有量が30.0%を超えると、ガラスの安定性が著しく悪くなる。また、特にガラスセラミックス繊維を形成する際に、ガラスセラミックスの紡糸性が低下する。従って、酸化物換算組成のガラスセラミックス全物質量に対するWO成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。 The WO 3 component is a component that enhances the meltability and stability of the glass, and is a component that improves the photocatalytic properties by being present in the vicinity of the photocatalytic crystal, and can be added arbitrarily. However, when the content of the WO 3 component exceeds 30.0%, the stability of the glass is significantly deteriorated. In addition, particularly when forming glass ceramic fibers, the spinnability of the glass ceramic is reduced. Accordingly, the upper limit of the content of the WO 3 component is preferably 30.0%, more preferably 20.0%, and most preferably 10.0% with respect to the total mass of the glass ceramic in terms of the oxide conversion composition.
 Nb成分、Ta成分、及びWO成分から選ばれる少なくとも1種以上の成分の総量は30.0%以下であることが好ましい。これより多いと、ガラスの安定性が悪くなり、良好なガラスセラミックスを形成できなくなる。より好ましくは、20.0%、最も好ましくは10.0%を上限とする。なお、Nb成分、Ta成分、及びWO成分はいずれも含有しなくとも高い光触媒特性を有するガラスセラミックスを得ることは可能であるが、これらの成分から選ばれる少なくとも1種以上の成分の質量和を0.1%以上にすることで、ガラスセラミックスの光触媒特性をさらに向上することができる。従って、酸化物換算組成のガラスセラミックス全物質量に対する質量和(Nb+Ta+WO)は、好ましくは0.1%、より好ましくは0.5%、最も好ましくは1.0%を下限とする。このうち、特にWO成分が光触媒特性を向上させる効果が高い。 The total amount of at least one or more components selected from the Nb 2 O 5 component, the Ta 2 O 5 component, and the WO 3 component is preferably 30.0% or less. If the amount is more than this range, the stability of the glass is deteriorated, and it is not possible to form good glass ceramics. More preferably, the upper limit is 20.0%, and most preferably 10.0%. Although it is possible to obtain a glass ceramic having high photocatalytic properties without containing any of the Nb 2 O 5 component, the Ta 2 O 5 component, and the WO 3 component, it is possible to obtain at least one selected from these components. By setting the mass sum of the above components to 0.1% or more, the photocatalytic properties of the glass ceramic can be further improved. Therefore, the mass sum (Nb 2 O 5 + Ta 2 O 5 + WO 3 ) with respect to the total mass of the glass ceramic of the oxide conversion composition is preferably 0.1%, more preferably 0.5%, most preferably 1.0. The lower limit is%. Among them, the WO 3 component is particularly effective in improving the photocatalytic properties.
 Ln成分(式中、LnはY、Ce、La、Nd、Gd、Dy、及びYbからなる群より選択される1種以上)は、ガラスセラミックスの化学的耐久性を高める成分である。また、光触媒結晶相に固溶し又は光触媒結晶の近傍に存在することで、光触媒特性が向上する成分であり、任意に添加できる成分である。しかし、Ln成分の含有量の合計が30.0%を超えると、ガラスの安定性が著しく悪くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対する、Ln成分から選ばれる少なくとも1種以上の成分の質量和は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。 The Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of Y, Ce, La, Nd, Gd, Dy, and Yb) is a component that enhances the chemical durability of the glass ceramic. . Further, it is a component that improves the photocatalytic properties by being solid-solved in the photocatalytic crystal phase or in the vicinity of the photocatalytic crystal, and is a component that can be added arbitrarily. However, when the total content of Ln 2 O 3 components exceeds 30.0%, the stability of the glass is significantly deteriorated. Therefore, the mass sum of at least one or more components selected from the Ln 2 O 3 components is preferably 30.0%, more preferably 20.0%, most preferably, relative to the total mass of the glass ceramic in terms of the oxide conversion composition. The upper limit is 10.0%.
 なお、本発明における上述の第1~3のガラスセラミックスは、ガラスを熱処理することで、ガラス相中に結晶相が析出して得られる材料である。そのため、ガラス相及び結晶相から成る材料のみならず、ガラス相が全て結晶相に変化した材料、すなわち、材料中の結晶量(結晶化度)が100wt%のものが含まれてもよい。一般に用いられる粉体から得られるエンジニアリングセラミックスやセラミックス焼結体は、ポアフリーの完全焼結体となることが難しい。従って、本発明のガラスセラミックスは、このようなポア(例えば、気孔率)の存在により、それらのガラスセラミックスと区別され得る。ガラスセラミックスは結晶化工程の制御により結晶の粒径、析出結晶の種類、結晶化度をコントロールできるので、光触媒材料を製造するにあたって所望の結晶を生成する有効な手段になる。 The above-described first to third glass ceramics in the present invention are materials obtained by crystal phase precipitation in the glass phase by heat-treating glass. Therefore, not only the material consisting of the glass phase and the crystal phase but also a material in which all the glass phase has been changed to the crystal phase, that is, a material having a crystal amount (crystallization degree) of 100 wt% in the material may be included. Engineering ceramics and ceramic sintered bodies obtained from generally used powders are difficult to be pore-free completely sintered bodies. Thus, the glass-ceramics of the present invention can be distinguished from those glass-ceramics by the presence of such pores (e.g. porosity). Glass ceramics can control the particle size of crystals, the type of precipitated crystals, and the degree of crystallization by controlling the crystallization process, and thus they are effective means for producing desired crystals in producing a photocatalytic material.
<共通する任意成分について>
 次に、第1~第3のガラスセラミックスに共通して含むことのできる任意成分について説明する。
<About common optional components>
Next, optional components that can be commonly included in the first to third glass ceramics will be described.
 M成分(式中、MはV、Cr、Mn、Fe、Co、Niからなる群より選択される1種以上とし、x及びyはそれぞれx:y=2:(Mの価数)を満たす最小の自然数とする)は、TiO結晶相に固溶するか、又は光触媒結晶の近傍に存在することで、光触媒特性の向上に寄与し、且つ一部の波長の可視光を吸収してガラスセラミックスに外観色を付与する成分であり、本発明のガラスセラミックス中の任意成分である。特に、M成分から選ばれる少なくとも1種以上の成分の合計量を10.0%以下にすることで、ガラスセラミックスの安定性を高めつつ、ガラスセラミックスの外観の色を容易に調節することができる。また、特にガラスセラミックス繊維を形成する際に、ガラスセラミックスの紡糸性を向上できる。従って、酸化物換算組成のガラスセラミックス全物質量に対する、M成分から選ばれる少なくとも1種以上の成分の合計量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。 M x O y component (wherein M is one or more selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, and x and y are each x: y = 2: (M valence The smallest natural number satisfying)) is dissolved in the TiO 2 crystal phase or present in the vicinity of the photocatalyst crystal, thereby contributing to the improvement of the photocatalytic properties and absorbing visible light of a part of the wavelengths. It is a component that gives the glass ceramic an appearance color, and is an optional component in the glass ceramic of the present invention. In particular, by setting the total amount of at least one or more components selected from the M x O y components to 10.0% or less, the color of the appearance of the glass ceramic is easily adjusted while enhancing the stability of the glass ceramic. be able to. Moreover, when forming glass-ceramics fiber especially, the spinnability of glass-ceramics can be improved. Therefore, the total amount of at least one or more components selected from the M x O y components is preferably 10.0%, more preferably 8.0%, and most preferably, based on the total mass of the glass ceramic having the oxide conversion composition. The upper limit is 5.0%.
 As成分及びSb成分は、ガラスセラミックスを清澄し脱泡する成分である。また、光触媒活性を高める作用のある後述のAgやAuやPtイオンと一緒に添加する場合は、還元剤の役割を果たすので、間接的に光触媒の活性の向上に寄与する成分であり、任意に添加できる成分である。しかし、これらの成分の含有量が合計で5.0%を超えると、ガラスの安定性が悪くなり、光触媒特性も低下し易くなる。従って、酸化物換算組成のガラスセラミックス全物質量に対するAs成分及び/又はSb成分の含有量の合計は、好ましくは5.0%、より好ましくは3.0%、最も好ましくは1.0%を上限とする。As成分及びSb成分は、原料として例えばAs、As、Sb、Sb、NaSb・5HO等を用いてガラスセラミックス内に含有することができる。 The As 2 O 3 component and the Sb 2 O 3 component are components for clarifying and degassing the glass ceramic. In addition, when it is added together with Ag, Au or Pt ion described later which has the function of enhancing the photocatalytic activity, it plays a role of a reducing agent, and therefore it is a component indirectly contributing to the improvement of the photocatalytic activity, It is a component that can be added. However, when the total content of these components exceeds 5.0%, the stability of the glass is deteriorated, and the photocatalytic properties are also easily deteriorated. Therefore, the total content of the As 2 O 3 component and / or the Sb 2 O 3 component with respect to the total mass of the glass ceramic in terms of oxide composition is preferably 5.0%, more preferably 3.0%, most preferably The upper limit is 1.0%. As the As 2 O 3 component and the Sb 2 O 3 component, as a raw material, for example, As 2 O 3 , As 2 O 5 , Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 · 5 H 2 O etc. It can be contained in glass ceramics.
 なお、本発明のガラスセラミックスを清澄し脱泡する成分は、上記のAs成分及びSb成分に限定されるものではなく、例えばCeO成分やTeO成分等のような、ガラス製造の分野における公知の清澄剤や脱泡剤、或いはそれらの組み合わせを用いることができる。 The components for clarifying and degassing the glass ceramic of the present invention are not limited to the above As 2 O 3 component and Sb 2 O 3 component, for example, CeO 2 component, TeO 2 component, etc. Any of the known fining and defoaming agents in the field of glass making, or combinations thereof can be used.
 本発明のガラスセラミックスには、F成分、Cl成分、Br成分、S成分、N成分、及びC成分からなる群より選ばれる少なくとも1種以上の非金属元素成分が含まれていてもよい。これらの成分は、TiO結晶相に固溶し、又は光触媒結晶の近傍に存在することで、光触媒特性が向上する成分であり、任意に添加できる成分である。しかし、これらの成分の含有量が合計で10.0%を超えると、ガラスの安定性が著しく悪くなり、光触媒特性も低下し易くなる。また、特にガラスセラミックス繊維を形成する際に、ガラスセラミックスの紡糸性が低下する。従って、良好な特性を確保するために、酸化物換算組成のガラスセラミックス全質量に対する非金属元素成分の含有量の合計は、好ましくは10.0%、より好ましくは5.0%、最も好ましくは3.0%を上限とする。これらの非金属元素成分は、アルカリ金属又はアルカリ土類金属のフッ化物、塩化物、臭化物、硫化物、窒化物、炭化物等の形でガラスセラミックス中に導入するのが好ましい。なお、本明細書における非金属元素成分の含有量は、ガラスセラミックスを構成するカチオン成分全てが電荷の釣り合うだけの酸素と結合した酸化物でできていると仮定し、それら酸化物でできたガラス全体の質量を100%として、非金属元素成分の質量を質量%で表したもの(酸化物基準の質量に対する外割り質量%)である。非金属元素成分の原料は特に限定されないが、N成分の原料としてAlN、SiN等、S成分の原料としてNaS,Fe,CaS等、F成分の原料としてZrF、AlF、NaF、CaF等、Cl成分の原料としてNaCl、AgCl等、Br成分の原料としてNaBr等、C成分の原料としてTiC、SiC又はZrC等を用いることで、ガラスセラミックス内に含有することができる。なお、これらの原料は、一体的に添加してもよいし、独立に添加してもよい。 The glass ceramic of the present invention may contain at least one nonmetallic element component selected from the group consisting of an F component, a Cl component, a Br component, an S component, an N component, and a C component. These components are components that improve the photocatalytic properties by being solid-solved in the TiO 2 crystal phase or present in the vicinity of the photocatalyst crystal, and are components that can be added arbitrarily. However, when the total content of these components exceeds 10.0%, the stability of the glass is significantly deteriorated, and the photocatalytic properties are also easily deteriorated. In addition, particularly when forming glass ceramic fibers, the spinnability of the glass ceramic is reduced. Therefore, in order to ensure good characteristics, the total content of non-metallic element components with respect to the total mass of the glass ceramic of the oxide conversion composition is preferably 10.0%, more preferably 5.0%, most preferably The upper limit is 3.0%. These nonmetallic element components are preferably introduced into the glass ceramic in the form of alkali metal or alkaline earth metal fluorides, chlorides, bromides, sulfides, nitrides, carbides and the like. In addition, the content of the nonmetallic element component in the present specification is based on the assumption that all of the cation components constituting the glass ceramic are made of an oxide combined with oxygen having only charge balance, and a glass made of these oxides The total mass is 100%, and the mass of the nonmetallic element component is represented by mass% (externally divided mass% with respect to mass on an oxide basis). The raw material of the nonmetallic element component is not particularly limited, but AlN 3 , SiN 4 etc. as the raw material of N component, NaS, Fe 2 S 3 , CaS 2 etc. as the raw material of S component, ZrF 4 , AlF 3 as the raw material of F component , NaF, CaF 2 etc., can be contained in glass ceramics by using NaCl, AgCl etc. as a raw material of Cl component, NaBr etc. as a raw material of Br component, TiC, SiC or ZrC as a raw material of C component . These raw materials may be added integrally or independently.
 本発明のガラスセラミックスには、Cu、Ag、Au、Pd、Pt、Ru、及びRhから選ばれる少なくとも1種の金属元素成分が含まれていてもよい。これらの金属元素成分は、光触媒結晶相の近傍に存在することで、光触媒活性が向上するため、任意に添加できる。しかし、これらの金属元素成分の含有量の合計が10.0%を超えるとガラスの安定性が著しく悪くなり、光触媒特性がかえって低下し易くなる。また、特にガラスセラミックス繊維を形成する際に、ガラスセラミックスの紡糸性が低下する。従って、酸化物換算組成のガラスセラミックス全質量に対する金属元素成分の含有量の合計は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%、最も好ましくは1.0%を上限とする。これらの金属元素成分は、原料として例えばCuO、AgO、AuCl、PtCl等を用いてガラスセラミックス内に含有することができる。なお、本明細書における金属元素成分の含有量は、ガラスセラミックスを構成するカチオン成分全てが電荷の釣り合うだけの酸素と結合した酸化物でできていると仮定し、それら酸化物でできたガラス全体の質量を100%として、金属元素成分の質量を質量%で表したもの(酸化物基準の質量に対する外割り質量%)である。 The glass ceramic of the present invention may contain at least one metal element component selected from Cu, Ag, Au, Pd, Pt, Ru, and Rh. These metal element components can be optionally added because the photocatalytic activity is improved by being present in the vicinity of the photocatalytic crystal phase. However, when the total content of these metal element components exceeds 10.0%, the stability of the glass is significantly deteriorated, and the photocatalytic properties are easily deteriorated. In addition, particularly when forming glass ceramic fibers, the spinnability of the glass ceramic is reduced. Accordingly, the total content of the metal element component with respect to the total mass of the glass ceramic having the oxide conversion composition is preferably 10.0%, more preferably 5.0%, still more preferably 3.0%, and most preferably 1. The upper limit is 0%. These metal element components can be contained in the glass ceramic using, for example, Cu 2 O, Ag 2 O, AuCl 3 , PtCl 4 or the like as a raw material. In addition, the content of the metal element component in this specification assumes that all the cation components which comprise glass ceramics are made of the oxide couple | bonded with the oxygen which only charge balance, and the whole glass made of those oxides The mass of the metal element component is represented by mass%, assuming that the mass of 100% is 100%.
 本発明のガラスセラミックスは、その組成が酸化物換算組成のガラスセラミックス全物質量に対するモル%で表されているため直接的に質量%の記載に表せるものではないが、本発明において要求される諸特性を満たす組成物中に存在する各成分の質量%表示による組成は、酸化物換算組成で概ね以下の値をとる。
(第1のガラスセラミックス)
TiO成分 13.0~80.0質量%及び
成分 12.0~85.0質量%
並びに
SiO成分 0~45.0質量%及び/又は
GeO成分 0~70.0質量%及び/又は
LiO成分 0~15.0質量%及び/又は
NaO成分 0~30.0質量%及び/又は
O成分 0~45.0質量%及び/又は
RbO成分 0~25.0質量%及び/又は
CsO成分 0~30.0質量%及び/又は
MgO成分 0~20.0質量%及び/又は
CaO成分 0~25.0質量%及び/又は
SrO成分 0~45.0質量%及び/又は
BaO成分 0~60.0質量%及び/又は
ZnO成分 0~45.0質量%及び/又は
成分 0~35.0質量%及び/又は
Al成分 0~35.0質量%及び/又は
Ga成分 0~65.0質量%及び/又は
In成分 0~35.0質量%及び/又は
ZrO成分 0~30.0質量%及び/又は
SnO成分 0~15.0質量%及び/又は
Nb成分 0~65.0質量%及び/又は
Ta成分 0~70.0質量%及び/又は
WO成分 0~55.0質量%及び/又は
MoO成分 0~60.0質量%及び/又は
Bi成分 0~60.0質量%及び/又は
TeO成分 0~20.0質量%及び/又は
Ln成分 合計で0~50.0質量%及び/又は
成分 合計で0~20.0質量%及び/又は
As成分及びSb成分 合計で0~10.0質量%
さらに
前記酸化物換算組成のガラスセラミックス全質量100%に対して、
F成分、Cl成分、Br成分、S成分、N成分、及びC成分からなる群より選ばれる少なくとも1種以上の非金属元素成分 0~10.0質量%及び/又は
Cu、Ag、Au、Pd、Pt、Ru、及びRhからなる群より選ばれる少なくとも1種の金属元素成分 0~10.0質量%
The glass ceramics of the present invention can not be directly represented in the description of mass% because the composition is represented by mol% with respect to the mass of the total mass of the glass ceramic of the oxide conversion composition, but various elements required in the present invention The composition by mass% representation of each component present in the composition satisfying the characteristics takes approximately the following values in terms of oxide conversion composition.
(First glass ceramic)
TiO 2 component 13.0 to 80.0 mass% and P 2 O 5 component 12.0 to 85.0 mass%
And SiO 2 component 0 to 45.0% by mass and / or GeO 2 component 0 to 70.0% by mass and / or Li 2 O component 0 to 15.0% by mass and / or Na 2 O component 0 to 30.0 Mass% and / or K 2 O component 0 to 45.0 mass% and / or Rb 2 O component 0 to 25.0 mass% and / or Cs 2 O component 0 to 30.0 mass% and / or MgO component 0 ~ 20.0 wt% and / or 0 to 25.0 wt% of CaO component and / or 0 to 45.0 wt% of SrO component and / or 0 to 60.0 wt% of BaO component and / or ZnO component 0 to 45 .0 mass% and / or B 2 O 3 component 0 to 35.0 mass% and / or Al 2 O 3 component 0 to 35.0 mass% and / or Ga 2 O 3 component 0 to 65.0 mass% and And / or In 2 O 3 component 0 to 35.0% by mass and / or ZrO 2 component 0 to 30.0 mass% and / or SnO component 0 to 15.0 mass% and / or Nb 2 O 5 component 0 to 65.0 mass% and / or Ta 2 O 5 component 0 to 70.0 Mass% and / or WO 3 component 0 to 55.0 mass% and / or MoO 3 component 0 to 60.0 mass% and / or Bi 2 O 3 component 0 to 60.0 mass% and / or TeO 2 component 0 to 20.0% by weight and / or Ln a O b 0 ~ 50.0% by weight sum of component and / or M x O y 0 to 20.0% by weight sum of component and / or As 2 O 3 component and Sb 0 to 10.0 mass% in total of 2 O 3 components
Furthermore, with respect to 100% of the total mass of the glass ceramic of the above-mentioned composition in oxide conversion,
At least one nonmetallic element component selected from the group consisting of F component, Cl component, Br component, S component, N component, and C component 0 to 10.0 mass% and / or Cu, Ag, Au, Pd 0 to 10.0 mass% of at least one metal element component selected from the group consisting of Pt, Ru, and Rh
(第2のガラスセラミックス)
TiO成分 13.0~80.0質量%、
成分及び/又はSiO成分 3~85.0質量%、
LiO成分 0~15.0質量%
NaO成分 0~30.0質量%
O成分 0~45.0質量%
RbO成分 0~25.0質量%
CsO成分 0~30.0質量%
MgO成分 0~20.0質量%
CaO成分 0~25.0質量%
SrO成分 0~45.0質量%
BaO成分 0~60.0質量%
成分 0~35.0質量%
GeO成分 0~40.0質量%
Al成分 0~35.0質量%
ZnO成分 0~45.0質量%
ZrO成分 0~30.0質量%及び/又は
SnO成分 0~15.0質量%及び/又は
Bi成分 0~60.0質量%及び/又は
TeO成分 0~20.0質量%及び/又は
Nb成分 0~65.0質量%及び/又は
Ta成分 0~70.0質量%及び/又は
WO成分 0~55.0質量%及び/又は
Ln成分 合計で0~50.0質量%及び/又は
成分 合計で0~20.0質量%及び/又は
As成分及びSb成分 合計で0~10.0質量%
さらに
前記酸化物換算組成のガラスセラミックス全質量100%に対する外割りで、F成分、Cl成分、Br成分、S成分、N成分、及びC成分からなる群より選ばれる少なくとも1種以上の非金属元素成分 0~10.0質量%及び/又はCu、Ag、Au、Pd、Pt、Ru、及びRhからなる群より選ばれる少なくとも1種の金属元素成分 0~5.0質量%
(Second glass ceramic)
TiO 2 component 13.0 to 80.0 mass%,
3 to 85.0 mass% of P 2 O 5 component and / or SiO 2 component,
Li 2 O component 0 to 15.0 mass%
Na 2 O component 0 to 30.0 mass%
K 2 O component 0 to 45.0% by mass
Rb 2 O component 0 to 25.0 mass%
Cs 2 O component 0 to 30.0 mass%
MgO component 0 to 20.0 mass%
CaO component 0-25.0 mass%
SrO component 0 to 45.0 mass%
BaO component 0 to 60.0% by mass
B 2 O 3 component 0 to 35.0 mass%
GeO 2 component 0 to 40.0 mass%
Al 2 O 3 component 0 to 35.0 mass%
ZnO component 0 to 45.0% by mass
ZrO 2 component 0 to 30.0 mass% and / or SnO component 0 to 15.0 mass% and / or Bi 2 O 3 component 0 to 60.0 mass% and / or TeO 2 component 0 to 20.0 mass% And / or Nb 2 O 5 component 0 to 65.0% by mass and / or Ta 2 O 5 component 0 to 70.0% by mass and / or WO 3 component 0 to 55.0% by mass and / or Ln 2 O 3 Component 0 to 50.0% by mass in total and / or 0 to 20.0% by mass in total of M x O y component and / or 0 to 10.0% by mass in total of As 2 O 3 component and Sb 2 O 3 component
Furthermore, at least one nonmetallic element selected from the group consisting of an F component, a Cl component, a Br component, an S component, an N component, and a C component in proportion to the total mass of 100% of the oxide ceramic composition. Component 0 to 10.0% by mass and / or at least one metal element component selected from the group consisting of Cu, Ag, Au, Pd, Pt, Ru, and Rh 0 to 5.0% by mass
(第3のガラスセラミックス)
TiO成分 13.0~80.0質量%、
成分及び/又はSiO成分 5~85.0質量%、
LiO成分 0~15.0質量%
NaO成分 0~30.0質量%
O成分 0~45.0質量%
RbO成分 0~25.0質量%
CsO成分 0~30.0質量%
MgO成分 0~20.0質量%
CaO成分 0~25.0質量%
SrO成分 0~45.0質量%
BaO成分 0~60.0質量%
成分 0~30.0質量%
GeO成分 0~40.0質量%
Al成分 0~30.0質量%
ZnO成分 0~45.0質量%
ZrO成分 0~30.0質量%及び/又は
SnO成分 0~15.0質量%及び/又は
Bi成分 0~60.0質量%及び/又は
TeO成分 0~20.0質量%及び/又は
Nb成分 0~65.0質量%及び/又は
Ta成分 0~70.0質量%及び/又は
WO成分 0~55.0質量%及び/又は
Ln成分 合計で0~50.0質量%及び/又は
成分 合計で0~20.0質量%及び/又は
As成分及びSb成分 合計で0~10.0質量%
さらに
前記酸化物換算組成のガラスセラミックス全質量100%に対して、F成分、Cl成分、Br成分、S成分、N成分、及びC成分からなる群より選ばれる少なくとも1種以上の非金属元素成分 0~10.0質量%及び/又はCu、Ag、Au、Pd、Pt、Ru、及びRhからなる群より選ばれる少なくとも1種の金属元素成分 0~5.0質量%
(Third glass ceramic)
TiO 2 component 13.0 to 80.0 mass%,
5 to 85.0% by mass of P 2 O 5 component and / or SiO 2 component,
Li 2 O component 0 to 15.0 mass%
Na 2 O component 0 to 30.0 mass%
K 2 O component 0 to 45.0% by mass
Rb 2 O component 0 to 25.0 mass%
Cs 2 O component 0 to 30.0 mass%
MgO component 0 to 20.0 mass%
CaO component 0-25.0 mass%
SrO component 0 to 45.0 mass%
BaO component 0 to 60.0% by mass
B 2 O 3 component 0 to 30.0 mass%
GeO 2 component 0 to 40.0 mass%
Al 2 O 3 component 0 to 30.0 mass%
ZnO component 0 to 45.0% by mass
ZrO 2 component 0 to 30.0 mass% and / or SnO component 0 to 15.0 mass% and / or Bi 2 O 3 component 0 to 60.0 mass% and / or TeO 2 component 0 to 20.0 mass% And / or Nb 2 O 5 component 0 to 65.0% by mass and / or Ta 2 O 5 component 0 to 70.0% by mass and / or WO 3 component 0 to 55.0% by mass and / or Ln 2 O 3 Component 0 to 50.0% by mass in total and / or 0 to 20.0% by mass in total of M x O y component and / or 0 to 10.0% by mass in total of As 2 O 3 component and Sb 2 O 3 component
Furthermore, at least one nonmetallic element component selected from the group consisting of an F component, a Cl component, a Br component, an S component, an N component, and a C component with respect to 100% of the total mass of the glass ceramic of the oxide conversion composition. 0 to 10.0 mass% and / or at least one metal element component selected from the group consisting of Cu, Ag, Au, Pd, Pt, Ru, and Rh 0 to 5.0 mass%
<含有すべきでない成分について>
 次に、本発明のガラスセラミックスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
<About ingredients that should not be contained>
Next, components which should not be contained in the glass ceramic of the present invention, and components which should not be contained are described.
 本発明のガラスセラミックスには、他の成分をガラスセラミックスの特性を損なわない範囲で必要に応じ、添加することができる。 If necessary, other components can be added to the glass ceramic of the present invention as long as the properties of the glass ceramic are not impaired.
 但し、PbO等の鉛化合物、Th、Cd、Tl、Os、Be、Se、Hgの各成分は、近年有害な化学物資として使用を控える傾向にあり、ガラスセラミックスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、不可避な混入を除き、これらを実質的に含有しないことが好ましい。これにより、ガラスセラミックスに環境を汚染する物質が実質的に含まれなくなる。そのため、特別な環境対策上の措置を講じなくとも、このガラスセラミックス、及びこのガラスセラミックスを用いたビーズ及び繊維を製造し、加工し、及び廃棄することができる。 However, lead compounds such as PbO, Th, Cd, Tl, Os, Be, Se, and Hg components tend to refrain from being used as harmful chemical substances in recent years, and not only manufacturing processes for glass ceramics but also processing processes And environmental measures are required to the disposal after commercialization. Therefore, in the case of emphasizing the environmental impact, it is preferable not to substantially contain them except for inevitable contamination. As a result, the glass ceramic is substantially free of substances that contaminate the environment. Therefore, the glass ceramic, and beads and fibers using the glass ceramic can be manufactured, processed, and discarded without taking special environmental measures.
≪ガラスセラミックスの結晶相≫
 本発明のガラスセラミックスは、結晶相として、TiO(アナターゼ型TiO、ルチル型TiO、及びブルッカイト型TiOのうちいずれか1以上を含む)、TiP、(TiO)、RnTi(PO、及びRTi(PO、並びにこれらの固溶体のうち1種以上を含む。これらの結晶は、本発明のガラスセラミックスに光触媒特性をもたらず重要な結晶である。また、TiOの中でも、アナターゼ型は、ルチル(Rutile)型及びブルッカイト(Brookite)型に比べても特に光触媒機能が高く、ガラスセラミックスにより高い光触媒機能を付与するため、含まれていることが好ましい。このとき、結晶相を示す粒子のうちアナターゼ型TiO結晶粒の大きさ(結晶粒径)は、球近似したときの平均径が5nm以上3μm以下であることが好ましい。特に、有効な光触媒特性を引き出すことができる観点から、アナターゼ型TiO結晶の結晶粒径は、好ましくは5nm以上3μm以下、より好ましくは10nm以上1μm以下、最も好ましくは10nm以上600nm以下の範囲とする。ここで、結晶粒径及びその平均値は、X線回折装置(XRD)の回折ピークの半値幅から、シェラー(Scherrer)の式:
D=0.9λ/(βcosθ)
を用いて見積もることができる。ここで、Dは結晶の大きさであり、λはX線の波長であり、θはブラッグ角(回折角2θの半分)である。特に、XRDの回折ピークが弱かったり、回折ピークが他のピークと重なったりする場合は、走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)を用いて測定した結晶粒子面積から、これを円と仮定してその直径を求めることでも見積もることができる。顕微鏡を用いて結晶粒径の平均値を算出する際には、無作為に100個以上の結晶直径を測定することが好ましい。なお、結晶相を示す粒子の大きさは、以下に述べる結晶化工程における熱処理条件をコントロールすることで、所望の大きさに制御することができる。次に、本発明の第1~第3のガラスセラミックスに含まれる結晶相について説明する。
«Crystal phase of glass ceramics»
The glass ceramic of the present invention comprises, as a crystal phase, TiO 2 (including any one or more of anatase TiO 2 , rutile TiO 2 , and brookite TiO 2 ), TiP 2 O 7 , (TiO) 2 P 2 And O 7 , RnTi 2 (PO 4 ) 3 , and R 2 Ti 4 (PO 4 ) 6 , and one or more of these solid solutions. These crystals are important crystals without providing photocatalytic properties to the glass ceramic of the present invention. Further, among TiO 2 , the anatase type is particularly preferable because it has a higher photocatalytic function than Rutile and Brookite types and imparts a higher photocatalytic function to glass ceramics. . At this time, among particles exhibiting a crystal phase, the size (crystal grain size) of anatase type TiO 2 crystal grains is preferably 5 nm or more and 3 μm or less when the sphere approximation is performed. In particular, the crystal grain diameter of the anatase type TiO 2 crystal is preferably 5 nm or more and 3 μm or less, more preferably 10 nm or more and 1 μm or less, and most preferably 10 nm or more and 600 nm or less from the viewpoint of extracting effective photocatalytic properties. Do. Here, the crystal grain size and the average value thereof are derived from the half-width of the diffraction peak of the X-ray diffractometer (XRD) according to the Scherrer formula:
D = 0.9 λ / (β cos θ)
It can be estimated using Here, D is the size of the crystal, λ is the wavelength of the X-ray, and θ is the Bragg angle (half of the diffraction angle 2θ). In particular, when the diffraction peak of XRD is weak or the diffraction peak overlaps with another peak, this is determined from the crystal particle area measured using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It can also be estimated by determining the diameter assuming a circle. When calculating the average value of crystal grain size using a microscope, it is preferable to measure 100 or more crystal diameters at random. In addition, the magnitude | size of the particle | grains which show a crystal phase can be controlled to a desired magnitude | size by controlling the heat processing conditions in the crystallization process described below. Next, crystalline phases contained in the first to third glass ceramics of the present invention will be described.
<第1のガラスセラミックス>
 第1のガラスセラミックスの結晶相には、TiO、TiP、及び(TiO)、並びにこれらの固溶体のうち1種以上からなる結晶が含まれていることが好ましく、アナターゼ(Anatase)型、ルチル(Rutile)型及びブルッカイト(Brookite)型からなる群より選ばれるTiOからなる結晶が含まれていることがより好ましい。これらの結晶が含まれていることにより、このガラスセラミックスが高い光触媒機能を有することができる。その中でも、アナターゼ型の酸化チタン(TiO)は、ルチル(Rutile)型及びブルッカイト(Brookite)型に比べても特に光触媒機能が高いため、ガラスセラミックスがより高い光触媒機能を有することができる。なお、上記以外の結晶相として、LiTi(PO、NaTi(PO、KTi(PO、MgTi(PO、CaTi(PO、SrTi(PO、BaTi(PO、ZnTi(PO等のチタン化合物が共存しても問題がない。
<First glass ceramics>
The crystal phase of the first glass ceramic preferably contains a crystal composed of one or more of TiO 2 , TiP 2 O 7 , and (TiO) 2 P 2 O 7 , and a solid solution thereof, It is more preferable that a crystal made of TiO 2 selected from the group consisting of anatase (Anatase) type, rutile (Rutile) type and brookite (Brookite) type is included. By containing these crystals, this glass ceramic can have a high photocatalytic function. Among them, since anatase type titanium oxide (TiO 2 ) has a particularly high photocatalytic function as compared with rutile type and brookite type, glass ceramics can have higher photocatalytic function. As crystal phases other than the above, LiTi 2 (PO 4 ) 3 , NaTi 2 (PO 4 ) 3 , KTi 2 (PO 4 ) 3 , MgTi 4 (PO 4 ) 6 , CaTi 4 (PO 4 ) 6 , SrTi There is no problem even if titanium compounds such as 4 (PO 4 ) 6 , BaTi 4 (PO 4 ) 6 , and ZnTi 4 (PO 4 ) 6 coexist.
 また、第1のガラスセラミックスは、ガラスセラミックスの全体に対する、結晶相を示す粒子の存在比率である結晶化率が、体積比で1.0%以上95.0%以下であることが好ましい。結晶化率が1.0%以上であることにより、このガラスセラミックスが良好な光触媒特性を有することができる。一方で、結晶化率が95.0%以下であることにより、ガラスセラミックスが良好な機械的な強度を得ることができる。従って、第1のガラスセラミックスの結晶化率は、好ましくは1.0%、より好ましくは5.0%、最も好ましくは10.0%を下限とし、好ましくは95.0%、より好ましくは90.0%、最も好ましくは85.0%を上限とする。 The first glass ceramic preferably has a crystallization ratio of 1.0% to 95.0% by volume ratio, which is an abundance ratio of particles showing a crystal phase to the whole of the glass ceramic. When the crystallization rate is 1.0% or more, this glass ceramic can have good photocatalytic properties. On the other hand, when the crystallization rate is 95.0% or less, the glass ceramic can obtain good mechanical strength. Therefore, the crystallization rate of the first glass ceramic is preferably 1.0%, more preferably 5.0%, most preferably 10.0% as a lower limit, preferably 95.0%, more preferably 90 .0%, most preferably 85.0% is the upper limit.
<第2のガラスセラミックス>
 第2のガラスセラミックスは、RnTi(PO、RTi(PO、及びこれらの固溶体から選ばれる1種以上、並びにTiO及びこの固溶体のいずれか又は両方、を含有する(式中、RnはLi、Na、K、Rb、Csから選ばれる1種以上とし、RはBe、Mg、Ca、Sr、Baから選ばれる1種以上とする)。これらの結晶が含まれていることにより、第2のガラスセラミックスは光触媒機能を有することでできる。
<Second glass ceramics>
The second glass ceramic contains one or more selected from RnTi 2 (PO 4 ) 3 , R 2 Ti 4 (PO 4 ) 6 , and solid solutions thereof, and TiO 2 and / or either of these solid solutions. (Wherein, Rn is one or more selected from Li, Na, K, Rb, and Cs, and R 2 is one or more selected from Be, Mg, Ca, Sr, and Ba). By including these crystals, the second glass ceramic can be made to have a photocatalytic function.
 第2のガラスセラミックスは、TiOの結晶相またはその固溶体を含有することが好ましい。TiOは光触媒としての特性に優れているだけでなく、殆どの酸、塩基、有機溶剤に侵されない化学的に安定性な性質を持ち、人体にも安全であるため、光触媒の材料として最も多く用いられている成分である。工業的に用いられるTiOの結晶型としては、ルチル(Rutile)型、アナターゼ(Anatase)型、及びブルッカイト(Brookite)型が知られているが、高い光触媒特性をもたらすために、アナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上の酸化チタンを含有することが好ましい。ブルッカイト型の結晶は微弱な光でも高い光触媒特性を示すが、結晶構造が不安定で単相として得ることは困難とされており、アナターゼ型との混相で析出することが多く、安定な状態で光触媒機能を発現するためには、TiOの結晶は、アナターゼ型及び/又はルチル(Rutile)型であることが好ましく、アナターゼ型であることがより好ましい。TiOの固溶体としては、溶質物質が決まっている訳ではないので、種類を限定できるものではないが、例えばTi1-xZrなどを挙げることができる。 The second glass ceramic preferably contains a crystalline phase of TiO 2 or a solid solution thereof. TiO 2 not only has excellent properties as a photocatalyst, but also has the property of being chemically stable that is not attacked by most acids, bases, and organic solvents, and is safe for the human body. It is a component used. As crystal forms of TiO 2 which are used industrially, rutile (rutile), anatase (anatase) and brookite (brookite) are known, but in order to provide high photocatalytic properties, anatase and rutile are used. It is preferable to contain one or more titanium oxides selected from a type and a brookite type. Although brookite-type crystals exhibit high photocatalytic properties even with weak light, the crystal structure is unstable and it is considered difficult to obtain as a single phase, and they often precipitate in a mixed phase with anatase-type, and in a stable state In order to express a photocatalytic function, the crystal of TiO 2 is preferably anatase type and / or rutile type, and more preferably anatase type. The solid solution of TiO 2 is not limited in its kind because the solute substance is not fixed, and examples thereof include Ti 1-x Zr x O 2 and the like.
 上記結晶に加えて、第2のガラスセラミックスはアルカリ金属チタンリン酸複合塩及び/又はアルカリ土類金属チタンリン酸複合塩の結晶を有することが好ましい。これらはNASICON型構造を有しており、TiO結晶相を同時に含有させると、より高い光触媒効果が発見できる。その中で、特にRnTi(PO、RTi(POの効果が顕著である。また、これらの固溶体を用いることにより、バンドギャップエネルギーを調整することができるので、光に対する応答性を向上させることが可能である。固溶体とは、2種類以上の金属固体または非金属固体が互いの中に原子レベルで溶け込んで全体が均一の固相になっている状態のことをいい、混晶と言う場合もある。溶質原子の溶け込み方によって、結晶格子の隙間より小さい元素が入り込む侵入型固溶体、母相原子と入れ代わって入る置換型固溶体などがある。本願におけるチタンリン酸塩複合結晶の固溶体として、例えばLi1+xTi2-x(PO(0<x≦0.5、Aは、3価の金属イオン)、Li1+3xTi(P1-xSi、LiTi2-x(PO(Aは、4価の金属イオン)等が挙げられる。第2のガラスセラミックスは、RnTi(PO(又はその固溶体)、及びRTi(PO(又はその固溶体)のうちいずれか、若しくは両方を含有することが好ましい。なお、本明細書では、前述した光触媒特性を有する結晶及びその固溶体を総称して「光触媒結晶」と表現する。 In addition to the above crystals, the second glass ceramic preferably has a crystal of an alkali metal titanium phosphate complex salt and / or an alkaline earth metal titanium phosphate complex salt. These have a NASICON type structure, and when the TiO 2 crystal phase is simultaneously contained, higher photocatalytic effects can be found. Among them, the effects of RnTi 2 (PO 4 ) 3 and R 2 Ti 4 (PO 4 ) 6 are particularly remarkable. In addition, since the band gap energy can be adjusted by using these solid solutions, it is possible to improve the response to light. The solid solution refers to a state in which two or more types of metallic solids or nonmetallic solids are dissolved in each other at the atomic level to form a homogeneous solid phase throughout, and may be referred to as mixed crystals. Depending on how the solute atoms are dissolved, there are interstitial solid solutions in which elements smaller than the interstices of the crystal lattice enter, and substitutional solid solutions in which the parent phase atoms are replaced. As a solid solution of the titanium phosphate complex crystal in the present application, for example, Li 1 + x Ti 2-x A x (PO 4 ) 3 (0 <x ≦ 0.5, A is a trivalent metal ion), Li 1 + 3 x Ti 2 (P 1-x Si x O 4 ) 3 , LiTi 2-x A x (PO 4 ) 3 (A is a tetravalent metal ion), and the like. The second glass ceramic preferably contains either or both of RnTi 2 (PO 4 ) 3 (or a solid solution thereof) and R 2 Ti 4 (PO 4 ) 6 (or a solid solution thereof). In addition, in this specification, the crystal | crystallization which has the photocatalyst characteristic mentioned above, and its solid solution are generically named "photocatalyst crystal | crystallization."
 第2のガラスセラミックスの全体に対する前記結晶相の量は、透明度を重視する、若しくは光触媒特性を優先するなど、利用する目的に応じて自由に選択できるが、体積比で1.0%以上95%以下の範囲であることが好ましい。ガラスの中から析出する結晶相の量は、熱処理条件をコントロールすることにより制御することができる。結晶相の量が多いと、光触媒機能が高くなる傾向があるが、ガラスセラミックス全体の機械的強度や透明性が低下する可能性があるので、結晶相の量を体積比率で95%以下の範囲とすることが好ましく、93%以下の範囲とすることがより好ましく、90%以下とすることが最も好ましい。一方、結晶相の量が少ないと有効な光触媒特性を引き出せないため、結晶相の量を体積比率で1%以上とすることが好ましく、3%以上がより好ましく、5%以上とすることが最も好ましい。 The amount of the crystalline phase with respect to the whole of the second glass ceramic can be freely selected according to the purpose of use, such as emphasizing transparency or prioritizing photocatalytic properties, but 1.0% to 95% by volume ratio It is preferable to be in the following range. The amount of crystalline phase precipitated out of the glass can be controlled by controlling the heat treatment conditions. When the amount of the crystal phase is large, the photocatalytic function tends to increase, but the mechanical strength and transparency of the entire glass ceramic may decrease, so the amount of the crystal phase is in the range of 95% or less by volume ratio It is preferable to set it as 93%, It is more preferable to set it as 93% or less, It is most preferable to set it as 90% or less. On the other hand, if the amount of crystal phase is small, effective photocatalytic properties can not be obtained, so the amount of crystal phase is preferably 1% or more by volume ratio, more preferably 3% or more, and most preferably 5% or more. preferable.
<第3のガラスセラミックス> <Third glass ceramics>
 第3のガラスセラミックスは、含有成分を上記に述べたような組成範囲に制限することで、TiO、TiP、(TiO)、RnTi(PO、RTi(PO、及びこれらの固溶体から選ばれる1種以上の結晶を有する(式中、RnはLi、Na、K、Rb、Csから選ばれる1種以上とし、RはBe、Mg、Ca、Sr、Baから選ばれる1種以上とする)。これらの結晶が含まれていることにより、第3のガラスセラミックスは光触媒機能を発現する。 The third glass ceramic is limited to the above composition range as described above, and TiO 2 , TiP 2 O 7 , (TiO) 2 P 2 O 7 , RnTi 2 (PO 4 ) 3 , R 2 Ti 4 (PO 4 ) 6 and one or more crystals selected from solid solutions thereof (wherein R n is at least one selected from Li, Na, K, R b , Cs, and R 2 is Be And at least one selected from Mg, Ca, Sr, and Ba). By containing these crystals, the third glass ceramic exhibits a photocatalytic function.
 第3のガラスセラミックスは、TiOの結晶相を含有することが好ましい。TiOは光触媒としての特性に優れているだけでなく、殆どの酸、塩基、有機溶剤に侵されない化学的に安定性な性質を持ち、人体にも安全であるため、光触媒の材料として最も多く用いられている成分である。工業的に用いられるTiOの結晶型としては、ルチル(Rutile)型、アナターゼ(Anatase)型、及びブルッカイト(Brookite)型が知られているが、高い光触媒特性をもたらすために、アナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上の酸化チタンを含有することが好ましい。ブルッカイト型の結晶は微弱な光でも高い光触媒特性を示すが、結晶構造が不安定で単相として得ることは困難とされており、アナターゼ型との混相で析出することが多い。安定な状態で光触媒機能を発現するためには、TiOの結晶はルチル型及び/又はアナターゼ型であることが好ましく、アナターゼ型であることがより好ましい。TiOの固溶体としては、溶質物質が決まっている訳ではないので、種類を限定できるものではないが、例えばTi1-xZrなどを挙げることができる。 The third glass ceramic preferably contains a crystalline phase of TiO 2 . TiO 2 not only has excellent properties as a photocatalyst, but also has the property of being chemically stable that is not attacked by most acids, bases, and organic solvents, and is safe for the human body. It is a component used. As crystal forms of TiO 2 which are used industrially, rutile (rutile), anatase (anatase) and brookite (brookite) are known, but in order to provide high photocatalytic properties, anatase and rutile are used. It is preferable to contain one or more titanium oxides selected from a type and a brookite type. Although a brookite type crystal exhibits high photocatalytic properties even with weak light, the crystal structure is unstable and it is considered difficult to obtain as a single phase, and it often precipitates in a mixed phase with an anatase type. In order to express the photocatalytic function in a stable state, the crystal of TiO 2 is preferably in the rutile type and / or the anatase type, and more preferably in the anatase type. The solid solution of TiO 2 is not limited in its kind because the solute substance is not fixed, and examples thereof include Ti 1-x Zr x O 2 and the like.
 第3のガラスセラミックスは、チタンリン酸化合物、特にTiP、(TiO)の結晶またはその固溶体、RnTi(POの結晶又はその固溶体、もしくはRTi(POの結晶又はその固溶体を含有することが好ましい。ガラスからこれらの結晶相が析出することにより、より高い光触媒効果が発現できる。 The third glass ceramic is a titanium phosphate compound, in particular a crystal of TiP 2 O 7 , a crystal of (TiO) 2 P 2 O 7 or a solid solution thereof, a crystal of RnTi 2 (PO 4 ) 3 or a solid solution thereof, or R 2 Ti 4 ( It is preferable to contain a crystal of PO 4 ) 6 or a solid solution thereof. By depositing these crystal phases from glass, a higher photocatalytic effect can be exhibited.
 第3のガラスセラミックス全体に対する前記結晶相は、利用する目的に応じて自由に選択できるが、体積比で1.0%以上95%以下の範囲であることが好ましい。ガラスの中から析出する結晶相の量は、熱処理条件をコントロールすることにより制御することができる。結晶相の量が多いと、光触媒機能が高くなる傾向があるが、ガラスセラミックス全体の機械的強度や透明性が低下する可能性があるので、結晶相の量を体積比率で95%以下の範囲とすることが好ましく、93%以下の範囲とすることがより好ましく、90%以下とすることが最も好ましい。一方、結晶相の量が少ないと有効な光触媒特性を引き出せないため、結晶相の量を体積比率で1%以上とすることが好ましく、3%以上がより好ましく、5%以上とすることが最も好ましい。 The crystal phase with respect to the entire third glass ceramic can be freely selected according to the purpose of use, but is preferably in the range of 1.0% to 95% by volume ratio. The amount of crystalline phase precipitated out of the glass can be controlled by controlling the heat treatment conditions. When the amount of the crystal phase is large, the photocatalytic function tends to increase, but the mechanical strength and transparency of the entire glass ceramic may decrease, so the amount of the crystal phase is in the range of 95% or less by volume ratio It is preferable to set it as 93%, It is more preferable to set it as 93% or less, It is most preferable to set it as 90% or less. On the other hand, if the amount of crystal phase is small, effective photocatalytic properties can not be obtained, so the amount of crystal phase is preferably 1% or more by volume ratio, more preferably 3% or more, and most preferably 5% or more. preferable.
 前記結晶の大きさは、球近似したときの平均径が、5nm~30μmであることが好ましい。熱処理条件をコントロールすることにより、析出した結晶相のサイズを制御することが可能であるが、有効な光触媒特性を引き出すため、結晶のサイズを5nm~30μmの範囲とすることが好ましく、5nm~20μmの範囲とすることがより好ましく、5nm~10μmの範囲とすることが最も好ましい。結晶のサイズは、レーザー回析/散乱式粒度分布測定装置にて測定することができる。 The size of the crystals preferably has an average diameter of 5 nm to 30 μm when spherically approximated. By controlling the heat treatment conditions, it is possible to control the size of the precipitated crystal phase, but in order to bring out effective photocatalytic properties, the size of the crystal is preferably in the range of 5 nm to 30 μm, preferably 5 nm to 20 μm. The range of 5 nm to 10 μm is most preferable. The size of the crystals can be measured by a laser diffraction / scattering particle size distribution measuring apparatus.
≪ガラスセラミックスの物性≫
 本発明のガラスセラミックスは、平均線膨張係数が70×10-7/℃以下であることが好ましい。これにより、特に建材及び太陽電池パネルのような温度変化の激しい用途に使用される場合にも、ガラスセラミックスが高い耐久性を維持することができる。従って、本発明のガラスセラミックスの平均線膨張係数は、好ましくは70×10-7/℃、より好ましくは60×10-7/℃、さらに好ましくは55×10-7/℃を上限とする。
«Physical properties of glass ceramics»
The glass ceramic of the present invention preferably has an average linear expansion coefficient of 70 × 10 −7 / ° C. or less. Thereby, the glass ceramic can maintain high durability even when it is used for applications where temperature changes are severe such as building materials and solar cell panels. Therefore, the average linear expansion coefficient of the glass ceramic of the present invention is preferably 70 × 10 −7 / ° C., more preferably 60 × 10 −7 / ° C., and still more preferably 55 × 10 −7 / ° C.
 なお、本発明のガラスセラミックスの平均線膨張係数は、上述の範囲に限定されず、ガラスセラミックスの用途に応じて適宜設定される。例えば、他の基材等と組み合わせて用いる場合、ガラスセラミックスの平均線膨張係数は、その基材の平均線膨張係数と略等しい値にしてもよい。これにより、ガラスセラミックスと他の基材との剥離が低減されるため、これらを組み合わせることで形成される部材の耐久性を高めることができる。 In addition, the average linear expansion coefficient of the glass ceramics of this invention is not limited to the above-mentioned range, According to the use of glass ceramics, it sets suitably. For example, when used in combination with another base material or the like, the average linear expansion coefficient of the glass ceramic may have a value substantially equal to the average linear expansion coefficient of the base material. Thereby, since peeling of a glass ceramic and another base material is reduced, durability of the member formed can be improved by combining these.
 また、本発明のガラスセラミックスは、紫外領域から可視領域までの波長の光によって触媒活性が発現されることが好ましい。ここで、本発明でいう紫外領域の波長の光は、波長が可視光線より短く軟X線よりも長い不可視光線の電磁波のことであり、その波長はおよそ10~400nmの範囲にある。また、本発明でいう可視領域の波長の光は、電磁波のうち、ヒトの目で見える波長の電磁波のことであり、その波長はおよそ400nm~700nmの範囲にある。これら紫外領域から可視領域までの波長の光がガラスセラミックスの表面に照射されたときに触媒活性が発現されることにより、ガラスセラミックスの表面に付着した汚れ物質や細菌等が酸化又は還元反応により分解されるため、ガラスセラミックスを防汚用途や抗菌用途等に用いることができる。なお、TiO結晶は、紫外線の照射に対して高い触媒効果を示す一方で、可視光に対する応答性は紫外線より弱い。しかしながら、ガラスセラミックスの作製時に他のイオンがTiO結晶相に固溶され、TiOのバンドギャップエネルギーが小さくなるため、可視光に対しても有効な応答効果を示すガラスセラミックスを得ることができる。ここで、本発明のガラスセラミックスの触媒活性は、分解活性指数で表した場合、好ましくは3.0nmol/l/min、より好ましくは4.0nmol/l/min、最も好ましくは5.0nmol/l/minを下限とする。ここで、ガラスセラミックスの分解活性指数は、日本工業規格JIS R 1703-2:2007に基づいて求めることができる。 In the glass ceramic of the present invention, it is preferable that catalytic activity be exhibited by light of a wavelength from the ultraviolet region to the visible region. Here, the light of the wavelength in the ultraviolet region as referred to in the present invention is an electromagnetic wave of invisible light whose wavelength is shorter than visible light and longer than soft X-ray, and the wavelength is in the range of about 10 to 400 nm. In the present invention, light of a wavelength in the visible region is an electromagnetic wave of a wavelength visible to human eyes among electromagnetic waves, and the wavelength is in the range of about 400 nm to 700 nm. When light having a wavelength ranging from the ultraviolet region to the visible region is irradiated to the surface of the glass ceramic, catalytic activity is expressed, whereby dirt substances, bacteria and the like attached to the surface of the glass ceramic are decomposed by oxidation or reduction reaction. Therefore, glass ceramics can be used for antifouling applications, antibacterial applications and the like. TiO 2 crystals show a high catalytic effect on the irradiation of ultraviolet light, while the response to visible light is weaker than that of ultraviolet light. However, other ions are dissolved in the TiO 2 crystal phase at the time of preparation of the glass ceramic, and the band gap energy of the TiO 2 becomes small, so it is possible to obtain a glass ceramic that exhibits an effective response effect even to visible light. . Here, the catalytic activity of the glass ceramic of the present invention is preferably 3.0 nmol / l / min, more preferably 4.0 nmol / l / min, most preferably 5.0 nmol / l, as represented by the decomposition activity index. The lower limit is / min. Here, the decomposition activity index of glass ceramics can be determined based on Japanese Industrial Standard JIS R 1703-2: 2007.
 また、本発明のガラスセラミックスは、光を照射した表面と水滴との接触角が30°以下であることが好ましい。水に対する接触角が小さくなると(すなわち、水に対する濡れ性が高くなると)、水滴が表面に広がり、一様な水膜が形成されるようになるので、水が汚れの下に入り込んで汚れを落とす。これにより、ガラスセラミックスの表面が親水性を呈し、セルフクリーニング作用を有するため、ガラスセラミックスの表面を水で容易に洗浄することができ、汚れによる光触媒特性の低下を抑制することができる。また、微小な水滴による光の乱反射がなくなるので、ガラスセラミックスの表面における曇り現象が低減できる。光を照射したガラスセラミックス表面と水滴との接触角は、30°以下が好ましく、25°以下がより好ましく、20°以下が最も好ましい。特に、第2のガラスセラミックスは、光を照射した表面と水滴との接触角が10°以下であることが好ましく、5°以下がより好ましい。 Further, in the glass ceramic of the present invention, the contact angle between the surface irradiated with light and the water droplet is preferably 30 ° or less. As the contact angle to water decreases (that is, as the wettability to water increases), the water droplets spread on the surface and a uniform water film is formed, so the water gets under the dirt and removes the dirt. . As a result, the surface of the glass ceramic exhibits hydrophilicity and has a self-cleaning function, so the surface of the glass ceramic can be easily washed with water, and the deterioration of the photocatalytic properties due to contamination can be suppressed. Moreover, since the irregular reflection of light due to the minute water droplets is eliminated, the fogging phenomenon on the surface of the glass ceramic can be reduced. 30 degrees or less are preferable, as for the contact angle of the glass-ceramics surface and light drop which irradiated light, 25 degrees or less are more preferable, and 20 degrees or less are the most preferable. In particular, the contact angle between the surface irradiated with light and the water droplet is preferably 10 ° or less, and more preferably 5 ° or less.
≪ガラスセラミックスの製造方法≫
 次に、本発明のガラスセラミックスの製造方法について説明する。
«Method of manufacturing glass ceramics»
Next, the method for producing the glass ceramic of the present invention will be described.
[第1実施形態]
 ガラスセラミックスの製造方法の第1実施形態は、原料組成混合物を溶融して少なくとも一部に液相を生じさせ、その後冷却して固化させることを特徴とするガラスセラミックスの製造方法である。より具体的には、所定の出発原料を均一に混合して白金又は耐火物などからなる容器に入れて、電気炉で1250℃以上の所定温度で加熱し保持して、溶融液を作製する。その後、溶融液を金型に流し込み固化させて、目的の結晶化ガラスを得る。ここで、溶融液が冷却する過程で結晶核の生成及び成長が起きる。この手法は、例えば所望の結晶相をリッチに析出し、且つガラス溶融液の状態が比較的不安定な場合などにおいて有効である。
First Embodiment
The first embodiment of the method for producing glass ceramics is a method for producing glass ceramics characterized in that a raw material composition mixture is melted to form a liquid phase at least in part, and then cooled and solidified. More specifically, predetermined starting materials are uniformly mixed, placed in a container made of platinum or a refractory, and heated and held at a predetermined temperature of 1250 ° C. or higher in an electric furnace to prepare a molten liquid. Thereafter, the molten liquid is poured into a mold and solidified to obtain a desired crystallized glass. Here, generation and growth of crystal nuclei occur in the process of cooling the melt. This method is effective, for example, when the desired crystal phase is precipitated rich and the state of the glass melt is relatively unstable.
 ここで、液相は、少なくとも1種以上の原料組成から生成されてよく、2以上の種類の化合物が加わることによる液相生成温度の低下も考慮することができる。また、原料組成混合物を溶融する温度は、混合する組成物の種類及び量により適宜変更することが好ましいが、一般に1250℃以上が好ましく、1300℃以上がより好ましく、1350℃以上が最も好ましい。具体的には、所定の出発原料を均一に混合して白金坩堝、石英坩堝又はアルミナ坩堝からなる容器に入れて、電気炉で1250℃以上の所定温度で加熱し保持して攪拌均質化し、融液を作製する。 Here, the liquid phase may be produced from at least one or more raw material compositions, and a decrease in liquid phase generation temperature due to addition of two or more types of compounds can also be considered. The temperature at which the raw material composition mixture is melted is preferably appropriately changed according to the type and amount of the composition to be mixed, but generally, 1250 ° C. or higher is preferable, 1300 ° C. or higher is more preferable, and 1350 ° C. or higher is most preferable. Specifically, predetermined starting materials are uniformly mixed, placed in a vessel made of platinum crucible, quartz crucible or alumina crucible, heated and maintained at a predetermined temperature of 1250 ° C. or higher in an electric furnace, and stirred and homogenized. Make a solution.
 その後、融液の冷却速度を制御しつつ、金型に流し込み固化させて、結晶核の生成及び成長が起きる結晶化温度領域まで冷却する(第一冷却工程)。ここで、溶液が冷却する過程で、結晶化温度領域に到達してから結晶核の生成及び成長が起こり、ガラスに結晶が析出する。このとき、前記温度領域の温度、前記温度領域での滞在時間、前記温度領域内での冷却速度などをコントロールすることで、目的とする結晶の種類、サイズ及び結晶相の量を制御することができる(結晶化工程)。ここで、結晶化温度領域は、一定の冷却速度で通過しても良いし、又は、一定の時間、特定温度に維持するようにしても良い。冷却する際の速度及び温度が結晶相の形成や結晶サイズに大きな影響を及ぼすので、これらを精密に制御することが非常に重要である。所望の結晶が得られたら、結晶化温度領域の範囲外まで冷却して、結晶が分散したガラスセラミックスを得る(第二冷却工程)。 Thereafter, the melt is poured into a mold and solidified while controlling the cooling rate of the melt, and cooled to a crystallization temperature region where generation and growth of crystal nuclei occur (first cooling step). Here, in the process of cooling the solution, generation and growth of crystal nuclei occur after reaching the crystallization temperature region, and crystals are precipitated on the glass. At this time, by controlling the temperature of the temperature range, the staying time in the temperature range, the cooling rate in the temperature range, and the like, the type, size, and amount of crystal phases of the target crystal can be controlled. Yes (crystallization process). Here, the crystallization temperature region may be passed at a constant cooling rate, or may be maintained at a specific temperature for a certain period of time. Precise control of these is very important, as the rate and temperature upon cooling greatly affect the formation of the crystal phase and the crystal size. When the desired crystal is obtained, it is cooled to the outside of the crystallization temperature range to obtain a glass ceramic in which the crystal is dispersed (second cooling step).
[第2実施形態]
 ガラスセラミックスの製造方法の第2実施形態は、原料を混合してその融液を得る溶融工程と、前記融液を冷却してガラス体を得る冷却工程と、前記ガラス体の温度をガラス転移温度を超えた温度領域まで上昇させる再加熱工程と、前記温度を前記温度領域内で維持して結晶を生じさせる結晶化工程と、を有するガラスセラミックスの製造方法である。ここで、結晶化工程の後で前記温度を再び下げて、結晶分散ガラスを得る再冷却工程を有することがより好ましい。
Second Embodiment
The second embodiment of the method for producing glass ceramics comprises a melting step of mixing raw materials to obtain a melt, a cooling step of cooling the melt to obtain a glass body, a temperature of the glass body at a glass transition temperature And a crystallization step of maintaining the temperature in the temperature range to form crystals. Here, it is more preferable to have a re-cooling step of lowering the temperature again after the crystallization step to obtain a crystal dispersed glass.
(溶融工程)
 溶融工程は、上述の組成を有する原料を混合し、その融液を得る工程である。より具体的には、ガラスセラミックスの各成分が所定の含有量の範囲内になるように原料を調合し、均一に混合し、作製した混合物を白金坩堝、石英坩堝又はアルミナ坩堝に投入して電気炉で1200~1600℃の温度範囲で1~24時間溶融して攪拌均質化して融液を作製する。なお、原料の溶融の条件は上記温度範囲に限定されず、原料組成物の組成及び量等に応じて、適宜設定することができる。
(Melting process)
The melting step is a step of mixing the raw materials having the above-mentioned composition to obtain a melt. More specifically, the raw materials are prepared so that each component of the glass ceramic falls within a predetermined content range, mixed uniformly, and the prepared mixture is put into a platinum crucible, a quartz crucible or an alumina crucible to conduct electricity. The mixture is melted and stirred in a furnace at a temperature range of 1200 to 1600 ° C. for 1 to 24 hours to prepare a melt. The conditions for melting the raw material are not limited to the above temperature range, and can be appropriately set according to the composition, amount, and the like of the raw material composition.
(冷却工程)
 冷却工程は、溶融工程で得られた融液を冷却してガラス化することで、ガラス体を作製する工程である。具体的には、融液を流出して適宜冷却することで、ガラス化されたガラス体を形成する。ここで、ガラス化の条件は特に限定されるものではなく、原料の組成及び量等に応じて適宜設定されてよい。また、本工程で得られるガラス体の形状は特に限定されず、板状、粒状等であってよいが、ガラス体を迅速且つ大量に作製できる点では、板状であることが好ましい。
(Cooling process)
The cooling step is a step of producing a glass body by cooling and vitrifying the melt obtained in the melting step. Specifically, the melt is flowed out and appropriately cooled to form a vitrified glass body. Here, the conditions for vitrification are not particularly limited, and may be appropriately set according to the composition, amount, and the like of the raw materials. Further, the shape of the glass body obtained in this step is not particularly limited, and may be plate-like, granular or the like, but plate-like is preferable in that the glass body can be produced rapidly and in large quantities.
(結晶化工程)
 結晶化工程は、ガラス転移温度を超える温度領域にガラス体の温度を上昇させ、その温度で所定の時間にわたり保持する工程である。この結晶化工程で所定の温度領域で所定時間保持することにより、ナノ単位からミクロン単位までの所望のサイズを有するTiO、TiP、(TiO)、RnTi(PO若しくはRTi(POの結晶、又はそれらの固溶体をガラス体の内部に均一に析出及び分散させることができるため、これらの結晶又は固溶体が含まれており光触媒特性を有するガラスセラミックスをより確実に製造できる。
(Crystallization process)
The crystallization step is a step of raising the temperature of the glass body to a temperature range exceeding the glass transition temperature and holding the temperature for a predetermined time. By holding for a predetermined time in a predetermined temperature range in this crystallization step, TiO 2 , TiP 2 O 7 , (TiO) 2 P 2 O 7 , RnTi 2 (PO 4) having a desired size from nano unit to micron unit 4 ) Since crystals of 3 or R 2 Ti 4 (PO 4 ) 6 or their solid solutions can be uniformly deposited and dispersed inside the glass body, these crystals or solid solutions are included and the photocatalytic properties Glass-ceramics having can be manufactured more reliably.
 上記の結晶化工程では、ガラスの組成ごとにガラス転移温度に応じて結晶化温度を設定する必要があるが、具体的には、ガラス転移温度より10℃以上高い温度領域で熱処理することが好ましい。第1~3のガラスセラミックスを作製する際に形成されるガラスは、ガラス転移温度が500℃以上であることから、好ましい熱処理温度(結晶化温度)の下限は510℃で、より好ましくは600℃で、最も好ましくは650℃である。他方、熱処理温度が高くなり過ぎると、光触媒結晶相が減少する傾向が強くなり、光触媒特性が消失し易くなるので、熱処理温度の上限は1200℃が好ましく、1100℃がより好ましく、1050℃が最も好ましい。特に、アナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiOと同時に、RnTi(PO又はRTi(POを析出させるという点では、熱処理温度は1000℃以下が好ましい。なお、この温度範囲は、上述の第1実施形態でガラスセラミックスを作製する場合に通過又は維持する結晶化温度領域にも適用される。 In the above crystallization step, it is necessary to set the crystallization temperature according to the glass transition temperature for each composition of glass, but specifically, it is preferable to perform heat treatment in a temperature region higher by 10 ° C. or more than the glass transition temperature . Since the glass formed when producing the first to third glass ceramics has a glass transition temperature of 500 ° C. or higher, the lower limit of the heat treatment temperature (crystallization temperature) is preferably 510 ° C., more preferably 600 ° C. Most preferably 650.degree. On the other hand, when the heat treatment temperature becomes too high, the photocatalytic crystal phase tends to decrease and the photocatalytic properties tend to disappear, so the upper limit of the heat treatment temperature is preferably 1200 ° C., more preferably 1100 ° C., most preferably 1050 ° C. preferable. In particular, the heat treatment temperature is 1000 in that RnTi 2 (PO 4 ) 3 or R 2 Ti 4 (PO 4 ) 6 is precipitated simultaneously with one or more TiO 2 selected from anatase type, rutile type and brookite type. C. or less is preferable. In addition, this temperature range is applied also to the crystallization temperature area | region which passes or maintains, when producing glass ceramics by the above-mentioned 1st Embodiment.
(エッチング工程)
 結晶化工程を行って結晶が生じた後のガラス体は、そのままの状態でもガラスセラミックスとして高い光触媒特性を奏することが可能であるが、このガラスセラミックスに対してエッチング工程を行うことにより、結晶相の周りのガラス相が取り除かれ、表面に露出する結晶相の比表面積が大きくなるため、ガラスセラミックスの光触媒特性をより高めることが可能である。また、エッチング工程に用いる溶液やエッチング時間をコントロールすることにより、TiO結晶相等の光触媒結晶相のみが残る多孔質体を得ることが可能である。ここで、エッチング工程としては、ドライエッチング及び/又は溶液への浸漬が挙げられる。浸漬に使用される酸性もしくはアルカリ性の溶液は、ガラスセラミックスの表面を腐食できれば特に限定されず、例えばフッ素又は塩素を含む酸(フッ化水素酸、塩酸)であってよい。なお、このエッチング工程は、フッ化水素ガス、塩化水素ガス、フッ化水素酸、塩酸等を、ガラスセラミックスの表面に吹き付けることで行ってよい。
(Etching process)
It is possible to exhibit high photocatalytic properties as a glass ceramic even in the as-is state, although the glass body after the crystallization step is performed to produce crystals can exhibit the crystal phase by performing the etching step on this glass ceramic. It is possible to further enhance the photocatalytic properties of the glass ceramic because the glass phase around is removed and the specific surface area of the crystal phase exposed to the surface is increased. In addition, by controlling the solution used for the etching step and the etching time, it is possible to obtain a porous body in which only a photocatalytic crystal phase such as a TiO 2 crystal phase remains. Here, examples of the etching process include dry etching and / or immersion in a solution. The acidic or alkaline solution used for the immersion is not particularly limited as long as it can corrode the surface of the glass ceramic, and may be, for example, an acid containing fluorine or chlorine (hydrofluoric acid, hydrochloric acid). This etching step may be performed by spraying hydrogen fluoride gas, hydrogen chloride gas, hydrofluoric acid, hydrochloric acid or the like on the surface of the glass ceramic.
≪ガラスセラミックス成形体≫
 このようにして作製されるガラスセラミックス成形体は、光触媒機能性ガラスセラミックス成形体及び/又は親水性ガラスセラミックス成形体として様々な機械、装置、器具類、水質浄化等の用途に有用である。特に、防汚機能や防曇機能を要する、タイル、窓枠、建材、家電製品等の用途に用いることが好ましい。これにより、ガラスセラミックス成形体の表面に光触媒機能が奏され、ガラスセラミックス成形体の表面に付着した菌類が殺菌されるため、これらの用途に用いたときに表面を衛生的に保つことができる。また、ガラスセラミックス成形体の表面に親水性が奏されるため、これらの用途に用いたときにガラスセラミックス成形体の表面に付着した汚れを雨滴等で容易に洗い流すことができる。
«Glass ceramic compacts»
The glass ceramic molded body produced in this manner is useful as various photocatalyst, functional glass ceramic molded body and / or hydrophilic glass ceramic molded body for various uses such as machines, devices, instruments, water purification and the like. In particular, it is preferable to use for applications such as tiles, window frames, construction materials, home appliances, etc. that require an antifouling function and an antifogging function. As a result, the photocatalytic function is exerted on the surface of the glass-ceramics compact, and the fungi adhering to the surface of the glass-ceramics compact are sterilized, so that the surface can be kept hygienic when used for these applications. In addition, since hydrophilicity is exhibited on the surface of the glass-ceramics molded body, it is possible to easily wash away dirt adhering to the surface of the glass-ceramics molded body with raindrops or the like when used for these applications.
 また、本発明のガラスセラミックスは、成形性に優れており、材料自体が光触媒機能を有するので、特性の劣化を気にすることなくあらゆる形状にて利用できる。例えば、ビーズやファイバー(繊維)の形状を有する成形体にして、浄化フィルターや脱臭フィルターとして用いることができる。これにより、TiO結晶相の露出面積が増えるため、ガラスセラミックス成形体の光触媒活性をより高めることができる。 Moreover, since the glass ceramic of the present invention is excellent in moldability and the material itself has a photocatalytic function, it can be used in any shape without concern for the deterioration of the characteristics. For example, it can be used as a purification filter or a deodorizing filter in the form of a molded article having a bead or fiber (fiber) shape. As a result, the exposed area of the TiO 2 crystal phase is increased, so that the photocatalytic activity of the glass-ceramics compact can be further enhanced.
≪ガラスセラミックスビーズ及びガラスセラミックス繊維≫
 ガラスセラミックスビーズ及びガラスセラミックス繊維を構成するガラスセラミックスは、上述の第1~第3のガラスセラミックス、特に第3のガラスセラミックスからなることが好ましい。ここで、第3のガラスセラミックスは、酸化物換算組成のガラスセラミックス全物質量に対して、モル%でTiO成分を15.0%以上95.0%以下、SiO成分及び/又はP成分の一種以上を合計で5.0%以上70.0%以下含有するガラスセラミックスからなる。TiO成分並びにSiO成分及び/又はP成分を併用し、その含有量を所定の範囲内とすることによって、アナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上の酸化チタン(TiO)をはじめとする無機チタン化合物の結晶が析出し易くなる。これらの結晶相は光触媒特性を期待でき、ガラスの内部と表面に均一に析出するので、表面の剥離の問題がなく、仮に表面が削られても性能が劣らず、耐久性に優れたガラスセラミックスビーズ及びガラスセラミックス繊維を得ることができる。
«Glass ceramic beads and glass ceramic fiber»
The glass ceramic constituting the glass ceramic beads and the glass ceramic fiber is preferably made of the above-described first to third glass ceramics, particularly the third glass ceramic. Here, the third glass ceramic is 15.0% or more and 95.0% or less of the TiO 2 component by mol% with respect to the total mass of the glass ceramic of the oxide conversion composition, the SiO 2 component and / or P 2 It consists of a glass-ceramic containing one or more of O 5 components in total of 5.0% to 70.0%. At least one titanium oxide selected from anatase type, rutile type and brookite type by using the TiO 2 component and the SiO 2 component and / or the P 2 O 5 component in combination and controlling the content within a predetermined range Crystals of inorganic titanium compounds such as TiO 2 easily precipitate. These crystalline phases can be expected to have photocatalytic properties and are uniformly deposited on the inside and on the surface of the glass, so there is no problem of surface peeling, and even if the surface is scraped, their performance is not inferior and their durability is excellent. Beads and glass ceramic fibers can be obtained.
 ここで、本発明のビーズ及び繊維は、紫外領域から可視領域までの波長の光によって触媒活性が発現されることが好ましい。ここで、本発明でいう紫外領域の波長の光は、波長が可視光線より短く軟X線よりも長い不可視光線の電磁波のことであり、その波長はおよそ10~400nmの範囲にある。また、本発明でいう可視領域の波長の光は、電磁波のうち、ヒトの目で見える波長の電磁波のことであり、その波長はおよそ400nm~700nmの範囲にある。これら紫外領域から可視領域までの波長の光がガラスセラミックスの表面に照射されたときに触媒活性が発現されることにより、その表面に接触した汚れ物質や細菌等が酸化又は還元反応により分解されるため、ガラスセラミックスを浄化用途(防汚用途)や抗菌用途等に用いることができる。 Here, in the beads and fibers of the present invention, it is preferable that catalytic activity be exhibited by light of a wavelength from the ultraviolet region to the visible region. Here, the light of the wavelength in the ultraviolet region as referred to in the present invention is an electromagnetic wave of invisible light whose wavelength is shorter than visible light and longer than soft X-ray, and the wavelength is in the range of about 10 to 400 nm. In the present invention, light of a wavelength in the visible region is an electromagnetic wave of a wavelength visible to human eyes among electromagnetic waves, and the wavelength is in the range of about 400 nm to 700 nm. When light of a wavelength from the ultraviolet region to the visible region is irradiated to the surface of the glass ceramic, the catalytic activity is expressed, whereby the soiling substances or bacteria in contact with the surface are decomposed by the oxidation or reduction reaction. Therefore, glass ceramics can be used for purification applications (antifouling applications) and antibacterial applications.
 このうち、ガラスセラミックスビーズは、装飾用、手芸用のビーズではなく、工業用のビーズに関する。工業用のビーズは、耐久性などの利点から、主にガラスを用いて作られており、一般にガラス製の微小球(直径数μmから数mm)をガラスビーズと呼んでいる。代表的な用途として道路の標識板、路面表示ラインに使われる塗料、反射クロス、濾過材、ブラスト研磨剤などがある。道路標識塗料、反射クロス等にガラスビーズを混入、分散させると、夜間、車のライト等から出た光がビーズを介して元のところへ反射(再帰反射)し、視認性が高くなる。ガラスビーズのこのような機能は、ジョギング用ウエアー、工事用チョッキ、バイクドライバー用ベスト等にも使用されている。このような塗料に本発明のガラスセラミックスビーズを混入すると、光触媒機能により、標識板やラインに付着した汚れが分解されるので、常に清潔な状態を維持でき、メンテナンスの手間を大幅に減少できる。さらに、本発明のガラスセラミックスビーズは、組成、析出結晶のサイズ、及び結晶相の量を調整することで、再帰反射機能と光触媒機能を同時に持たせることも可能である。なお、より再帰反射性の高いガラスセラミックスビーズを得るためには、該ビーズを構成するガラスマトリックス相及び/または結晶相の屈折率が1.8~2.1の範囲内であることが好ましく、特に1.9前後がより好ましい。 Among these, glass ceramic beads are not for decorative and handicraft beads but for industrial beads. Industrial beads are mainly made of glass because of advantages such as durability, and generally glass microspheres (a few μm to a few mm in diameter) are called glass beads. Typical applications include road sign boards, paints used for road marking lines, reflective cloths, filter media, blast abrasives, etc. When glass beads are mixed and dispersed in road marking paint, reflective cloths and the like, light emitted from lights of cars and the like at nighttime is reflected (retroreflected) to the original place through the beads, and the visibility becomes high. Such functions of glass beads are also used in jogging wears, construction vests, bike driver vests, and the like. When the glass ceramic beads of the present invention are mixed in such a paint, the dirt adhering to the sign plate or line is decomposed by the photocatalytic function, so that the clean state can always be maintained, and the maintenance time can be significantly reduced. Furthermore, the glass ceramic bead of the present invention can also have a retroreflective function and a photocatalytic function at the same time by adjusting the composition, the size of the precipitated crystal, and the amount of the crystalline phase. In order to obtain a glass ceramic bead having higher retroreflectivity, the refractive index of the glass matrix phase and / or the crystal phase constituting the bead is preferably in the range of 1.8 to 2.1, In particular, around 1.9 is more preferable.
 その他の用途として、工業用のガラスビーズは、濾過材として利用されている。ガラスビーズは砂や石等と異なり、すべて球形であるため充填率が高く間隙率も計算できるので、単独または、他の濾過材と組み合わせて、広く使用されている。本発明のガラスセラミックスビーズは、このようなガラスビーズ本来の機能に加え、光触媒機能を合わせ持つものである。特に、膜やコーティング層などを有さず、単体で光触媒特性を呈するので、剥離による触媒活性劣化がなく、交換やメンテナンスの手間が省け、フィルター及び浄化装置に好適に用いられる。また、光触媒機能を利用したフィルター部材及び浄化部材は装置内で光源となる部材に隣接した構成である場合が多いが、ガラスセラミックスビーズは、装置内の容器などに簡単に納められるので好適に利用できる。 For other applications, industrial glass beads are used as filter media. Glass beads are widely used alone or in combination with other filter media, since glass beads, unlike sand and stone, are all spherical and can have high packing ratios and can calculate porosity. The glass ceramic bead of the present invention has a photocatalytic function in addition to the original function of such a glass bead. In particular, since it alone has photocatalytic properties without having a film or a coating layer, etc., there is no deterioration in catalytic activity due to peeling, which saves time for replacement and maintenance, and is suitably used for filters and purification devices. Moreover, although the filter member and the purification member utilizing the photocatalytic function are often configured to be adjacent to the member serving as the light source in the device, the glass ceramic beads are suitably used because they are easily accommodated in a container or the like in the device. it can.
 さらに、ガラスビーズは、化学的安定性に優れ、比較的比重が小さく、球状であることから、被加工物をあまり傷めないので、ブラスト研磨用材に利用される。ブラストとは、粒材を噴射して被加工面に衝突させることによって、掃除、美装、ピーニングなどを行うことをいう。本発明のガラスセラミックスビーズは当該メリットに加え、光触媒機能を併せ持つので、ブラストと同時に光触媒反応を応用した同時加工が可能である。 Furthermore, glass beads are excellent in chemical stability, relatively low in specific gravity, and spherical, so they do not damage a workpiece very much, and therefore, they are used as materials for blast abrasives. The blast refers to performing cleaning, dressing, peening and the like by injecting the granular material and causing it to collide with the surface to be processed. The glass ceramic bead of the present invention has a photocatalytic function in addition to the merits, so simultaneous processing using photocatalytic reaction is possible simultaneously with blasting.
 一方、本発明のガラスセラミックス繊維は、ガラス繊維の一般的な性質を有する。すなわち、通常の繊維に比べ引っ張り強度・比強度が大きい、弾性率・比弾性率が大きい、寸法安定性が良い、耐熱性が大きい、不燃性である、耐化学性が良いなどの物性上のメリットを有し、これらを活かした様々な用途に利用できる。また、繊維の内部及び表面に光触媒結晶を有するので、前述したメリットに加え光触媒特性を有し、さらに幅広い分野に応用できる繊維構造体を提供できる。ここで繊維構造体とは、繊維が、織物、編制物、積層物、又はそれらの複合体として形成された三次元の構造体をいい、例えば不織布を挙げられる。 On the other hand, the glass-ceramic fiber of the present invention has the general properties of glass fiber. That is, physical properties such as high tensile strength and specific strength, large elastic modulus and specific elastic modulus, good dimensional stability, high heat resistance, nonflammability, good chemical resistance, and the like compared to ordinary fibers It has merits and can be used for various applications utilizing these. Further, since the photocatalyst crystals are provided on the inside and on the surface of the fiber, it is possible to provide a fiber structure that has photocatalytic properties in addition to the merits described above and can be applied to a wider range of fields. Here, the fiber structure refers to a three-dimensional structure in which fibers are formed as a woven fabric, a knitted fabric, a laminate, or a composite thereof, and examples thereof include non-woven fabric.
 ガラス繊維の、耐熱性、不燃性を活かした用途としてカーテン、シート、壁貼クロス、防虫網、衣服類、又は断熱材等があるが、本発明のガラスセラミックス繊維を用いると、さらに前記用途における物品に光触媒作用による、消臭機能、汚れ分解機能などを与え、掃除やメンテナンスの手間を大幅に減らすことができる。また、ガラス繊維はその耐化学性から濾過材として用いられることが多いが、本発明のガラスセラミックス繊維は、単に濾過するだけでなく、被処理物中の悪臭物質、汚れ、菌などを分解するので、より積極的な浄化機能を有する浄化装置及びフィルターを提供できる。さらには、光触媒結晶相の剥離・離脱による特性の劣化が激減するので、長寿命化に貢献する。 There are curtains, sheets, wall-pasted cloths, insect nets, clothes, heat insulation materials, etc. as applications utilizing heat resistance and non-combustibility of glass fibers, but the glass ceramic fibers of the present invention can be used in the above applications. The product can be provided with a photocatalytic action such as a deodorizing function, a dirt decomposing function, etc., and the time for cleaning and maintenance can be greatly reduced. Also, glass fibers are often used as filter media because of their chemical resistance, but the glass ceramic fibers of the present invention not only filter but also decompose odorous substances, dirt, bacteria, etc. in the object to be treated. Therefore, it is possible to provide a purification device and filter having a more aggressive purification function. Furthermore, the deterioration of the characteristics due to separation and detachment of the photocatalytic crystal phase is drastically reduced, which contributes to prolonging the life.
≪ガラスセラミックスビーズ及びガラスセラミックス繊維の製造方法≫
 次に、本発明のガラスセラミックスビーズ及びガラスセラミックス繊維の製造方法について説明する。
«Method of manufacturing glass ceramic beads and glass ceramic fiber»
Next, the method for producing the glass ceramic bead and the glass ceramic fiber of the present invention will be described.
 本発明のガラスセラミックスビーズの製造方法は、原料を混合してその融液を得る溶融工程と、融液または融液から得られるガラスを用いてビーズ体に成形する成形工程と、ビーズ体の温度を、ガラス転移温度を超える温度領域に上昇させ、その温度で所定の時間保持し、所望の結晶を析出させる結晶化工程を含む。 The method for producing glass ceramic beads according to the present invention comprises a melting step of mixing raw materials to obtain a melt, a forming step of forming into a bead using a melt or a glass obtained from a melt, and a temperature of the bead Is raised to a temperature region above the glass transition temperature, held at that temperature for a predetermined time, and a crystallization step to precipitate desired crystals.
 また、本発明のガラスセラミックス繊維の製造方法は、原料を混合してその融液を得る溶融工程と、融液または融液から得られるガラスを用いて繊維状に成形する紡糸工程と、該繊維の温度を、ガラス転移温度を超える温度領域に上昇させ、その温度で所定の時間保持し、所望の結晶を析出させる結晶化工程を含む。 Further, in the method for producing glass ceramic fiber of the present invention, a melting step of mixing raw materials to obtain a melt, a spinning step of forming into a fibrous form using a melt or a glass obtained from a melt, and the fiber Is raised to a temperature region above the glass transition temperature, held at that temperature for a predetermined time, and a crystallization step to precipitate desired crystals.
 溶融工程において、溶融温度は、混合する組成物の種類及び量により適宜変更することが好ましいが、一般に1250℃以上が好ましく、1300℃以上がより好ましく、1350℃以上が最も好ましい。具体的には、所定の出発原料を均一に混合して白金坩堝、石英坩堝又はアルミナ坩堝からなる容器に入れて、電気炉で1250℃以上の所定温度で加熱して攪拌均質化し、融液を作製する。 In the melting step, the melting temperature is preferably appropriately changed according to the type and amount of the composition to be mixed, but generally 1250 ° C. or higher is preferable, 1300 ° C. or higher is more preferable, and 1350 ° C. or higher is most preferable. Specifically, predetermined starting materials are uniformly mixed and placed in a vessel made of platinum crucible, quartz crucible or alumina crucible, heated at a predetermined temperature of 1250 ° C. or higher in an electric furnace to stir and homogenize, and melt Make.
 ここで、ガラスセラミックスビーズを形成する場合、溶融工程で得られた融液から微粒状のビーズ体へ成形する。ビーズ体の成形方法には様々なものがあり、適宜選択すれば良いが、一般的に、ガラス融液又はガラス→粉砕→粒度調整→球状化のプロセスを辿って作ることができる。粉砕工程においては、冷却固化したガラスを粉砕したり、融液状のガラスを水に流し入れ水砕したり、さらにボールミルにて粉砕するなどして粒状ガラスを得る。その後篩等を使って粒度を調整し、再加熱して表面張力にて球状に成形したり、黒鉛などの粉末材料と一緒にドラムに入れ、回転させながら物理力で球状に成形する、などの方法がある。または、粉砕工程を経ることなく溶融ガラスから直接球状化させる方法を取ることもできる。例えば溶融ガラスを空気中に噴射して表面張力にて球状化する、流出ノズルから出る溶融ガラスを回転する刃物のような部材で細かく切り飛ばして球状化する、流体の中に滴下して落下中に球状化させる、などの方法がある。通常、成形後のビーズは再度粒度を調整した後に製品化される。成形温度におけるガラスの粘性や失透し易さなどを考慮し、これらの方法から最適なものを選べば良い。 Here, in the case of forming the glass ceramic beads, the melt obtained in the melting step is formed into fine particle bodies. There are various methods for forming the bead body, and it may be selected as appropriate, but in general, it can be made following the process of glass melt or glass → grinding → particle size adjustment → spheroidization. In the pulverizing step, the cooled and solidified glass is pulverized, the molten glass is poured into water and pulverized, or further pulverized by a ball mill or the like to obtain a granular glass. Thereafter, the particle size is adjusted using a sieve or the like, reheated and molded into spheres by surface tension, or put into a drum together with a powder material such as graphite and molded into spheres by physical force while rotating, etc. There is a way. Alternatively, it is possible to adopt a method of directly spheroidizing from molten glass without passing through a grinding step. For example, the molten glass is jetted into the air to be spheroidized by surface tension, the molten glass coming out of the outflow nozzle is finely cut off and spheroidized by a rotating blade-like member, dropped into the fluid and dropped There are methods such as making it spherical. Usually, shaped beads are manufactured after adjusting the particle size again. The optimum one may be selected from these methods in consideration of the viscosity and the devitrification of the glass at the forming temperature.
 一方、ガラスセラミックする繊維を形成する場合、溶融工程で得られた融液からガラス繊維へ成形する(紡糸工程)。繊維体の成形方法は特に限定されず、公知の手法を用いて成形すれば良い。巻き取り機に連続的に巻き取れるタイプの繊維(長繊維)に成形する場合は、公知のDM法(ダイレクトメルト法)またはMM法(マーブルメルト法)で紡糸すれば良く、繊維長数十cm程度の短繊維に成形する場合は、遠心法を用い、もしくは前記長繊維をカットしても良い。繊維径は、用途によって適宜選択すれば良い。ただ、細いほど可撓性が高く、風合いの良い織物になるが、紡糸の生産効率が悪くなりコスト高になり、逆に太すぎると紡糸生産性は良くなるが、加工性や取り扱い性が悪くなる。織物にする場合3~9μmの範囲にすることが好ましく、積層構造体などにする場合は9μm以上にすることが好ましい。その後、用途に応じて綿状にして、ロービング、クロスなどの繊維構造体を作る。 On the other hand, when forming fibers to be glass ceramic, the melt obtained in the melting step is formed into glass fibers (spinning step). The method of forming the fibrous body is not particularly limited, and may be formed using a known method. In the case of forming into a fiber (long fiber) of a type that can be wound up continuously by a winding machine, it may be spun by a known DM method (direct melt method) or MM method (marble melt method). When forming into a short fiber of a certain degree, you may cut the said long fiber using a centrifugation method. The fiber diameter may be appropriately selected depending on the application. However, the thinner, the higher the flexibility and the texture of the fabric, but the production efficiency of spinning deteriorates and the cost becomes high. Conversely, if it is too thick, the spinning productivity becomes good, but the processability and handleability deteriorate. Become. In the case of forming a woven fabric, the thickness is preferably in the range of 3 to 9 μm, and in the case of forming a laminated structure, the thickness is preferably 9 μm or more. Then, it is made cotton-like according to use, and fiber structures, such as roving and cloth, are made.
 本発明のガラスセラミックスビーズ及びガラスセラミックス繊維の製造方法は、上記プロセスによって得られたビーズ体、繊維又は繊維構造体を再加熱し、ビーズや繊維の内部及び表面に所望の結晶を析出させる結晶化工程を含む。結晶化工程では、ガラス組成ごとにガラス転移温度に応じて結晶化温度を設定する必要があるが、具体的にガラス転移温度より10℃以上の高い温度領域で熱処理するのが好ましい。ビーズや繊維の製造に用いられる本発明のガラスのガラス転移温度が500℃以上であることから、好ましい熱処理温度の下限は510℃で、より好ましくは600℃で、最も好ましくは650℃である。他方、熱処理温度が高くなり過ぎると、TiO、TiP、(TiO)、RnTi(PO、及びRTi(POの結晶相が減少する傾向が強くなり、光触媒特性が消失し易くなるので、熱処理温度の上限は1200℃が好ましく、1100℃がより好ましく、1050℃が最も好ましい。1200℃より高いとTiOの結晶がアナターゼ型より活性度の低いルチル型になりやすくなる。特に、RnTi(PO、及びRTi(POを析出させるという点では1000℃以下が好ましい。結晶化の温度及び時間は、結晶相の形成や結晶サイズに大きな影響を及ぼすので、これらを精密に制御することが非常に重要である。所望の結晶が得られたら結晶化温度領域外まで冷却し、光触媒結晶が分散したガラスセラミックスビーズ又はガラスセラミックス繊維(若しくは繊維構造体)を得る。 In the method for producing glass ceramic beads and glass ceramic fibers according to the present invention, crystallization is carried out by reheating the bead body, fiber or fiber structure obtained by the above process to precipitate desired crystals on the inside and the surface of beads or fibers. Including the steps. In the crystallization step, although it is necessary to set the crystallization temperature according to the glass transition temperature for each glass composition, it is preferable to carry out heat treatment specifically at a temperature higher by 10 ° C. or more than the glass transition temperature. The lower limit of the heat treatment temperature is preferably 510 ° C., more preferably 600 ° C., and most preferably 650 ° C., since the glass transition temperature of the glass of the present invention used for producing beads and fibers is 500 ° C. or higher. On the other hand, when the heat treatment temperature becomes too high, the crystal phases of TiO 2 , TiP 2 O 7 , (TiO) 2 P 2 O 7 , RnTi 2 (PO 4 ) 3 , and R 2 Ti 4 (PO 4 ) 6 decrease. The upper limit of the heat treatment temperature is preferably 1200.degree. C., more preferably 1100.degree. C., and most preferably 1050.degree. When the temperature is higher than 1200 ° C., TiO 2 crystals tend to be in the rutile form which is less active than the anatase form. In particular, the temperature is preferably 1000 ° C. or less in terms of depositing RnTi 2 (PO 4 ) 3 and R 2 Ti 4 (PO 4 ) 6 . Since the temperature and time of crystallization greatly affect the formation of the crystal phase and the crystal size, it is very important to control them precisely. When the desired crystals are obtained, the crystal is cooled to the outside of the crystallization temperature range to obtain glass ceramic beads or glass ceramic fibers (or fiber structure) in which the photocatalyst crystals are dispersed.
 なお、前述したような、ビーズ体や繊維体を成形した後に結晶化する手法の他に、ビーズ体を形成する際に、融液から直接球状化・冷却する過程で結晶相が析出されるようにしても良い。また、繊維体の紡糸工程におけるガラス繊維の温度を制御し、結晶化工程が同時に行われるようにしても良い。 In addition to the above-described method of forming a bead body or fiber body and then crystallizing it, when forming a bead body, a crystal phase is precipitated in the process of directly spheroidizing and cooling from the melt. You may In addition, the temperature of the glass fibers in the fiber spinning process may be controlled to simultaneously perform the crystallization process.
 結晶化工程を行って結晶が生じた後のガラスセラミックスビーズ及びガラスセラミックス繊維は、そのままの状態でも高い光触媒特性を奏することが可能であるが、これらガラスセラミックスビーズ及びガラスセラミックス繊維に対してエッチング工程を行うことにより、結晶相の周りのガラス相が取り除かれ、表面に露出する結晶相の比表面積が大きくなるため、ガラスセラミックスビーズ及びガラスセラミックス繊維の光触媒特性をより高めることが可能である。また、エッチング工程に用いる溶液やエッチング時間をコントロールすることにより、光触媒結晶相のみが残る多孔質体ビーズ及び多孔質体繊維を得ることが可能である。ここで、エッチング工程としては、ドライエッチング及び/又は溶液への浸漬が挙げられる。浸漬に使用される酸性もしくはアルカリ性の溶液は、ガラスセラミックスビーズやガラスセラミックス繊維の表面を腐食できれば特に限定されず、例えばフッ素又は塩素を含む酸(フッ化水素酸、塩酸)であってよい。なお、このエッチング工程は、フッ化水素ガス、塩化水素ガス、フッ化水素酸、塩酸等を、ガラスセラミックスの表面に吹き付けることで行ってよい。 Although the glass ceramic beads and the glass ceramic fiber after the crystallization process is generated to produce crystals can exhibit high photocatalytic properties even in the as-is state, the etching process is performed on the glass ceramic bead and the glass ceramic fiber. As a result, the glass phase around the crystal phase is removed, and the specific surface area of the crystal phase exposed to the surface is increased, so that the photocatalytic properties of the glass ceramic beads and the glass ceramic fiber can be further enhanced. Further, by controlling the solution used for the etching step and the etching time, it is possible to obtain porous beads and porous fibers in which only the photocatalytic crystal phase remains. Here, examples of the etching process include dry etching and / or immersion in a solution. The acidic or alkaline solution used for the immersion is not particularly limited as long as it can corrode the surface of the glass ceramic bead or the glass ceramic fiber, and may be, for example, an acid containing fluorine or chlorine (hydrofluoric acid, hydrochloric acid). This etching step may be performed by spraying hydrogen fluoride gas, hydrogen chloride gas, hydrofluoric acid, hydrochloric acid or the like on the surface of the glass ceramic.
≪ガラスセラミックス焼結体及び複合体の製造方法≫
 ガラスセラミックス焼結体及び複合体の製造方法は、ガラス化工程、粉砕工程、成形工程、及び焼成工程を有する。各工程の詳細を以下説明する。なお、本明細書におけるガラスセラミックス焼結体とは、ガラスを熱処理して結晶相を生成させることで得られる材料であり、具体的には非晶質固体及び結晶からなる。また、本明細書における複合体とは、ガラスを熱処理して結晶相を生成させることで得られるガラスセラミックス層と、基材と、を備え、このうちガラスセラミックス層は、具体的には非晶質固体及び結晶からなる層である。かかるガラスセラミックス焼結体及びガラスセラミックス層は、酸化チタン結晶相を含有しており、その結晶相はガラスセラミックス焼結体及びガラスセラミックス層の内部及び表面に均一に分散している。このようなガラスセラミックス焼結体及びガラスセラミックス層を作製することにより、凝集し易く取り扱いが難しいナノサイズのTiO結晶材料を必ずしも用いる必要がなくなるため、ガラスセラミックス焼結体及び複合体を容易に作製することができ、ガラスセラミックス焼結体及びガラスセラミックス層に酸化チタンの結晶を高確率に有することができる。
«Glass ceramic sinter and composite manufacturing method»
The manufacturing method of a glass-ceramics sintered compact and a composite has a vitrification process, a crushing process, a shaping | molding process, and a baking process. The details of each step will be described below. In addition, the glass-ceramics sintered compact in this specification is a material obtained by heat-processing glass, and producing | generating a crystalline phase, and, specifically, consists of an amorphous solid and a crystal | crystallization. Further, the composite in the present specification includes a glass ceramic layer obtained by heat-treating glass to form a crystalline phase, and a substrate, and among these, the glass ceramic layer is specifically non-crystalline. It is a layer consisting of quality solid and crystals. The glass ceramic sintered body and the glass ceramic layer contain a titanium oxide crystal phase, and the crystal phase is uniformly dispersed inside and on the surface of the glass ceramic sintered body and the glass ceramic layer. By preparing such a glass-ceramic sintered body and glass-ceramics layer, it is not necessary to use nano-sized TiO 2 crystal material which is easily aggregated and difficult to handle, so the glass-ceramic sintered body and composite can be easily made. Crystals of titanium oxide can be formed with high probability in the glass ceramic sintered body and the glass ceramic layer.
 ここで、複合体のガラスセラミックス層は、ガラス体を熱処理して結晶相を析出させた後で粉砕し、粉砕したガラスを基材上に配置して焼成することで作製される。熱処理による結晶相の生成は、粉砕したガラスに対して行ってもよい。また、熱処理前の粉砕したガラスを基材上に配置し、焼成温度を制御することで、結晶相を析出させながら焼成してもよい。 Here, the glass ceramic layer of the composite is produced by heat treating the glass body to precipitate a crystal phase and then grinding and placing the ground glass on a substrate and baking it. The formation of a crystalline phase by heat treatment may be performed on crushed glass. Alternatively, the crushed glass before heat treatment may be disposed on a substrate, and firing may be performed while depositing the crystal phase by controlling the firing temperature.
 [ガラス化工程]
 ガラス化工程では、所定の原料組成物を溶融しガラス化することで、ガラス体を作製する。具体的には、白金又は耐火物からなる容器に原料組成物を投入し、原料組成物を高温に加熱することで溶融する。これにより得られる溶融ガラスを流出し、適宜冷却することで、ガラス化されたガラス体を形成する。溶融及びガラス化の条件は、特に限定されず、原料組成物の組成及び量等に応じて、適宜設定されてよい。また、ガラス体の形状は、特に限定されず、板状、粒状等であってよい。溶融する温度と時間は、ガラスの組成により異なるが、それぞれ1200~1650℃、1~24時間の範囲であることが好ましい。
[Vitrification process]
In the vitrification process, a glass body is produced by melting and vitrifying a predetermined raw material composition. Specifically, the raw material composition is put into a container made of platinum or a refractory, and the raw material composition is melted by heating to a high temperature. The molten glass obtained by this flows out and it cools suitably, and a vitrified glass body is formed. The conditions for melting and vitrification are not particularly limited, and may be appropriately set according to the composition, amount, and the like of the raw material composition. Further, the shape of the glass body is not particularly limited, and may be plate-like, granular, or the like. The melting temperature and time vary depending on the composition of the glass, but are preferably in the range of 1200 to 1650 ° C. and 1 to 24 hours, respectively.
 (原料組成物)
 原料組成物は、得られるガラス体が酸化物換算組成のガラス体全物質量に対するモル%で、TiO成分を15.0~90.0%、P成分を10.0~85.0%含有するように調製されている。
(Raw material composition)
In the raw material composition, the obtained glass body is 15.0 to 90.0% of the TiO 2 component and 10.0 to 85. 5 % of the P 2 O component at mole% with respect to the total mass of the glass body of the oxide conversion composition. It is prepared to contain 0%.
 以下、ガラス体を構成する各成分の組成範囲を以下に述べる。各成分の含有率は特に断りがない場合は、全て酸化物換算組成のガラス体全物質量に対するモル%で表示されるものとする。 Hereinafter, the composition range of each component which comprises a glass body is described below. The contents of the respective components are all expressed in mol% with respect to the total mass of the glass body in terms of the composition in terms of oxide, unless otherwise specified.
<必須成分、任意成分について>
 TiO成分は、結晶化することにより、TiOの結晶相、又はリンとの化合物の結晶としてガラス体から生成し、光触媒特性をもたらすのに必須で欠かせない成分である。特に、TiO成分の含有量を15.0%以上にすることで、その後の焼成過程でTiO結晶相をはじめとする光触媒結晶相が生成し易くなり、ガラスセラミックス焼結体やガラスセラミックス層における光触媒結晶相の濃度が高められるため、所望の光触媒特性を確保することができる。一方、TiO成分の含有量が90.0%を超えると、ガラス化が非常に難しくなる。従って、酸化物換算組成のガラス体全物質量に対するTiO成分の含有量は、好ましくは15.0%、より好ましくは25.0%、最も好ましくは30.0%を下限とし、好ましくは90.0%、より好ましくは85.0%、最も好ましくは80.0%を上限とする。TiO成分は、原料として例えばTiO等を用いてガラス体内に含有することができる。
<Required Component, Optional Component>
The TiO 2 component is produced from the glass body as a crystalline phase of TiO 2 or a crystal of a compound with phosphorus by crystallization, and is an essential and essential component for providing photocatalytic properties. In particular, by setting the content of the TiO 2 component to 15.0% or more, the photocatalyst crystal phase including the TiO 2 crystal phase is easily generated in the subsequent firing process, and the glass ceramic sintered body or the glass ceramic layer Since the concentration of the photocatalytic crystal phase in is increased, desired photocatalytic properties can be secured. On the other hand, when the content of the TiO 2 component exceeds 90.0%, vitrification becomes very difficult. Therefore, the content of the TiO 2 component relative to the total mass of the glass body in terms of the oxide conversion is preferably 15.0%, more preferably 25.0%, and most preferably 30.0% as a lower limit, preferably 90 The upper limit is 0. 0%, more preferably 85.0%, and most preferably 80.0%. The TiO 2 component can be contained in the glass body using, for example, TiO 2 as a raw material.
 P成分は、ガラスの網目構造を構成する成分である。ガラス体を、P成分が網目構造の主成分であるリン酸塩系ガラスにすることにより、より多くのTiO成分をガラスに取り込ませることができる。また、その後の焼成過程では焼成温度を低くしても光触媒結晶相を容易に生成することができるとともに、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くすることができる。特に、Pの含有量が10.0%より少ないとガラス化が困難であり、Pの含有量が85.0%を超えると光触媒結晶相が生成し難くなる。従って、酸化物換算組成のガラス体全物質量に対するP成分の含有量は、好ましくは10.0%、より好ましくは15.0%、最も好ましくは20.0%を下限とし、好ましくは85.0%、より好ましくは70.0%、最も好ましくは60.0%を上限とする。P成分は、原料として例えばAl(PO、Ca(PO、Ba(PO、Na(PO)、BPO、HPO等を用いてガラス体内に含有することができる。 The P 2 O 5 component is a component that constitutes the glass network structure. By making the glass body a phosphate glass in which the P 2 O 5 component is the main component of the network structure, more TiO 2 components can be incorporated into the glass. In the subsequent calcination process, the photocatalyst crystal phase can be easily generated even if the calcination temperature is lowered, and at least one TiO 2 crystal selected from anatase type, rutile type and brookite type having high photocatalytic activity, In particular, anatase type TiO 2 crystal can be easily formed. In particular, when the content of P 2 O 5 is less than 10.0%, vitrification is difficult, and when the content of P 2 O 5 exceeds 85.0%, it is difficult to form a photocatalytic crystal phase. Therefore, the content of the P 2 O 5 component with respect to the total mass of the glass body in terms of the oxide composition is preferably 10.0%, more preferably 15.0%, and most preferably 20.0% as the lower limit. The upper limit is 85.0%, more preferably 70.0%, and most preferably 60.0%. The P 2 O 5 component is a glass body using, for example, Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , Na (PO 3 ), BPO 4 , H 3 PO 4 and the like as raw materials. Can be contained in
 SiO成分は、ガラスの網目構造を構成し、ガラスの安定性と化学的耐久性を高める成分であるとともに、Si4+イオンが生成した光触媒結晶相の近傍に存在し、光触媒活性の向上に寄与する成分であり、任意に添加できる成分である。しかし、SiO成分の含有量が60.0%を超えると、ガラスの溶融性が悪くなり、光触媒結晶相が生成し難くなる。従って、酸化物換算組成のガラス体全物質量に対するSiO成分の含有量は、好ましくは60.0%、より好ましくは45.0%、最も好ましくは30.0%を上限とする。SiO成分は、原料として例えばSiO、KSiF、NaSiF等を用いてガラス体内に含有することができる。 The SiO 2 component constitutes a glass network structure and is a component that enhances the stability and chemical durability of the glass, and is present in the vicinity of the photocatalytic crystal phase in which Si 4+ ions are generated, and contributes to the improvement of the photocatalytic activity It is an ingredient which can be added arbitrarily. However, if the content of the SiO 2 component exceeds 60.0%, the meltability of the glass is deteriorated, and it becomes difficult to form a photocatalytic crystal phase. Therefore, the content of the SiO 2 component is preferably 60.0%, more preferably 45.0%, most preferably 30.0%, based on the total mass of the glass body in terms of the oxide conversion. The SiO 2 component can be contained in the glass body using, for example, SiO 2 , K 2 SiF 6 , Na 2 SiF 6 or the like as a raw material.
 GeO成分は、上記のSiOと相似な働きを有する成分であり、ガラス体中に任意に添加できる成分である。特に、GeO成分の含有量を60.0%以下にすることで、高価なGeO成分の使用が抑えられるため、ガラスセラミックス焼結体や複合体の材料コストを低減することができる。従って、酸化物換算組成のガラス体全物質量に対するGeO成分の含有量は、好ましくは60.0%、より好ましくは45.0%、最も好ましくは30.0%を上限とする。GeO成分は、原料として例えばGeO等を用いてガラス体内に含有することができる。 The GeO 2 component is a component having a function similar to the above-mentioned SiO 2, and is a component which can be optionally added to the glass body. In particular, by setting the content of the GeO 2 component to 60.0% or less, since the use of the expensive GeO 2 component can be suppressed, the material cost of the glass ceramic sintered body or the composite can be reduced. Therefore, the content of the GeO 2 component with respect to the total mass of the glass body in terms of the oxide conversion is preferably 60.0%, more preferably 45.0%, and most preferably 30.0%. The GeO 2 component can be contained in the glass body using, for example, GeO 2 as a raw material.
 このガラス体は、SiO成分及びGeO成分から選ばれる少なくとも1種以上の成分を60.0%以下含有することが好ましい。特に、SiO成分及びGeO成分から選ばれる少なくとも1種以上の成分の質量和を60.0%以下にすることで、ガラスの溶融性、安定性及び化学耐久性が向上するとともに、ガラスセラミックス焼結体やガラスセラミックス層の光触媒特性も向上する。従って、酸化物換算組成のガラス体全物質量に対する質量和(SiO+GeO)は、好ましくは60.0%、より好ましくは45.0%、最も好ましくは30.0%を上限とする。なお、SiO成分及びGeO成分は含有しなくとも光触媒特性を有するガラスセラミックス焼結体や複合体を得ることは可能であるが、SiO成分及び/又はGeO成分を含有することにより、その特性が更に向上する。これらの成分の合計量が0.1%未満であると、効果が十分ではないので、0.1%以上の添加が好ましく、3.0%以上がより好ましく、5.0%以上が最も好ましい。 The glass body preferably contains 60.0% or less of at least one component selected from a SiO 2 component and a GeO 2 component. In particular, by setting the mass sum of at least one or more components selected from the SiO 2 component and the GeO 2 component to 60.0% or less, the meltability, stability and chemical durability of the glass are improved, and the glass ceramic The photocatalytic properties of the sintered body and the glass ceramic layer are also improved. Therefore, the mass sum (SiO 2 + GeO 2 ) relative to the total mass of the glass body of the oxide conversion composition is preferably 60.0%, more preferably 45.0%, and most preferably 30.0%. Although it is possible to obtain a glass ceramic sintered body or composite having photocatalytic properties without containing SiO 2 component and GeO 2 component, by containing SiO 2 component and / or GeO 2 component, The characteristics are further improved. If the total amount of these components is less than 0.1%, the effect is not sufficient, so addition of 0.1% or more is preferable, 3.0% or more is more preferable, 5.0% or more is most preferable .
 LiO成分は、ガラス体原料の溶融性と安定性を向上する成分であるとともに、ガラス転移温度を下げ、その後の焼成過程における焼成温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、LiO成分の含有量が40.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の生成も困難となる。従って、酸化物換算組成のガラス体全物質量に対するLiO成分の含有量は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは15.0%を上限とする。LiO成分は、原料として例えばLiCO、LiNO、LiF等を用いてガラス体内に含有することができる。 The Li 2 O component is a component that improves the meltability and stability of the glass body raw material, and also lowers the glass transition temperature to lower the firing temperature in the subsequent firing process, anatase type, rutile type having high photocatalytic activity And a component that facilitates formation of one or more TiO 2 crystals selected from brookite types, particularly anatase type TiO 2 crystals, and a component that can be optionally added. However, when the content of the Li 2 O component exceeds 40.0%, the stability of the glass is rather deteriorated and the generation of the photocatalytic crystal phase also becomes difficult. Accordingly, the upper limit of the content of the Li 2 O component is preferably 40.0%, more preferably 30.0%, and most preferably 15.0% with respect to the total mass of the glass body having the oxide conversion composition. The Li 2 O component can be contained in the glass body using, for example, Li 2 CO 3 , LiNO 3 , LiF or the like as a raw material.
 NaO成分は、ガラス体原料の溶融性と安定性を向上する成分であるとともに、ガラス転移温度を下げ、その後の焼成過程における焼成温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、NaO成分の含有量が40.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の生成も困難となる。従って、酸化物換算組成のガラス体全物質量に対するNaO成分の含有量は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは15.0%を上限とする。NaO成分は、原料として例えばNaO、NaCO、NaNO、NaF、NaS、NaSiF等を用いてガラス体内に含有することができる。 The Na 2 O component is a component that improves the meltability and stability of the glass body raw material, and lowers the glass transition temperature, and lowers the firing temperature in the subsequent firing process, anatase type, rutile type having high photocatalytic activity And a component that facilitates formation of one or more TiO 2 crystals selected from brookite types, particularly anatase type TiO 2 crystals, and a component that can be optionally added. However, when the content of the Na 2 O component exceeds 40.0%, the stability of the glass is rather deteriorated and the generation of the photocatalytic crystal phase also becomes difficult. Therefore, the content of the Na 2 O component is preferably 40.0%, more preferably 30.0%, and most preferably 15.0%, based on the total mass of the glass body having the oxide conversion composition. The Na 2 O component can be contained in the glass body using, for example, Na 2 O, Na 2 CO 3 , NaNO 3 , NaF, Na 2 S, Na 2 SiF 6 as a raw material.
 KO成分は、ガラス体原料の溶融性と安定性を向上する成分であるとともに、ガラス転移温度を下げ、その後の焼成過程における焼成温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、KO成分の含有量が40.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の生成も困難となる。従って、酸化物換算組成のガラス体全物質量に対するKO成分の含有量は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは15.0%を上限とする。KO成分は、原料として例えばKCO、KNO、KF、KHF、KSiF等を用いてガラス体内に含有することができる。 The K 2 O component is a component that improves the meltability and stability of the glass body raw material, and also lowers the glass transition temperature to lower the firing temperature in the subsequent firing process, anatase type, rutile type having high photocatalytic activity And a component that facilitates formation of one or more TiO 2 crystals selected from brookite types, particularly anatase type TiO 2 crystals, and a component that can be optionally added. However, when the content of the K 2 O component exceeds 40.0%, the stability of the glass is rather deteriorated and the generation of the photocatalytic crystal phase also becomes difficult. Therefore, the content of the K 2 O component is preferably 40.0%, more preferably 30.0%, most preferably 15.0%, based on the total mass of the glass body in terms of the oxide conversion. The K 2 O component can be contained in the glass body using, for example, K 2 CO 3 , KNO 3 , KF, KHF 2 , K 2 SiF 6 or the like as a raw material.
 RbO成分は、ガラス体原料の溶融性と安定性を向上する成分であるとともに、ガラス転移温度を下げ、その後の焼成過程における焼成温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、RbO成分の含有量が10.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の生成も困難となる。従って、酸化物換算組成のガラス体全物質量に対するRbO成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。RbO成分は、原料として例えばRbCO、RbNO等を用いてガラス体内に含有することができる。 The Rb 2 O component is a component that improves the meltability and stability of the glass body raw material, and lowers the glass transition temperature to lower the firing temperature in the subsequent firing process, anatase type, rutile type having high photocatalytic activity And a component that facilitates formation of one or more TiO 2 crystals selected from brookite types, particularly anatase type TiO 2 crystals, and a component that can be optionally added. However, when the content of the Rb 2 O component exceeds 10.0%, the stability of the glass is rather deteriorated and the generation of the photocatalytic crystal phase also becomes difficult. Therefore, the content of the Rb 2 O component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%, based on the total mass of the glass body in terms of the oxide. The Rb 2 O component can be contained in the glass body using, for example, Rb 2 CO 3 , RbNO 3 or the like as a raw material.
 CsO成分は、ガラス体原料の溶融性と安定性を向上する成分であるとともに、ガラス転移温度を下げ、その後の焼成過程における焼成温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、CsO成分の含有量が10.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の生成も困難となる。従って、酸化物換算組成のガラス体全物質量に対するCsO成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。CsO成分は、原料として例えばCsCO、CsNO等を用いてガラス体内に含有することができる。 The Cs 2 O component is a component that improves the meltability and stability of the glass body raw material, and lowers the glass transition temperature, and lowers the firing temperature in the subsequent firing process, anatase type, rutile type having high photocatalytic activity And a component that facilitates formation of one or more TiO 2 crystals selected from brookite types, particularly anatase type TiO 2 crystals, and a component that can be optionally added. However, when the content of the Cs 2 O component exceeds 10.0%, the stability of the glass is rather deteriorated and the generation of the photocatalytic crystal phase also becomes difficult. Therefore, the content of the Cs 2 O component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%, based on the total mass of the glass body in terms of the oxide. The Cs 2 O component can be contained in the glass by using, for example, Cs 2 CO 3 , CsNO 3 or the like as a raw material.
 このガラス体は、RnO(式中、RnはLi、Na、K、Rb、Csからなる群より選択される1種以上)成分から選ばれる少なくとも1種以上の成分を40.0%以下含有することが好ましい。特に、RnO成分から選ばれる少なくとも1種以上の成分の質量和を40.0%以下にすることで、ガラスの溶融性と安定性が向上し、アナターゼ型の光触媒結晶相が生成し易くなるため、ガラスセラミックス焼結体やガラスセラミックス層の高い触媒活性を確保することができる。従って、酸化物換算組成のガラス体全物質量に対する、RnO成分から選ばれる少なくとも1種以上の成分の質量和は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。 This glass body contains 40.0% or less of at least one or more components selected from Rn 2 O (wherein R n is one or more selected from the group consisting of Li, Na, K, Rb, and Cs) It is preferable to contain. In particular, by setting the mass sum of at least one or more components selected from Rn 2 O components to 40.0% or less, the meltability and stability of the glass are improved, and anatase-type photocatalytic crystal phase is easily generated. Thus, high catalytic activity of the glass ceramic sintered body and the glass ceramic layer can be secured. Therefore, the mass sum of at least one or more components selected from Rn 2 O components is preferably 40.0%, more preferably 30.0%, and most preferably, based on the total mass of the glass body in terms of the oxide conversion composition. The upper limit is 20.0%.
 MgO成分は、ガラスの溶融性とガラス体の安定性を向上する成分であるとともに、ガラス転移温度を下げ、その後の焼成過程における焼成温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、MgO成分の含有量が40.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の生成も困難となる。従って、酸化物換算組成のガラス体全物質量に対するMgO成分の含有量は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。MgO成分は、原料として例えばMgCO、MgF等を用いてガラス体内に含有することができる。 The MgO component is a component that improves the meltability of the glass and the stability of the glass body, lowers the glass transition temperature, suppresses the firing temperature in the subsequent firing process lower, and has high photocatalytic activity, anatase type, rutile type and It is a component that facilitates formation of one or more TiO 2 crystals selected from the brookite type, particularly anatase type TiO 2 crystals, and is a component that can be optionally added. However, when the content of the MgO component exceeds 40.0%, the stability of the glass is rather deteriorated and the generation of the photocatalytic crystal phase becomes difficult. Therefore, the upper limit of the content of the MgO component is preferably 40.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass body having the oxide conversion composition. The MgO component can be contained in the glass by using, for example, MgCO 3 or MgF 2 as a raw material.
 CaO成分は、ガラスの溶融性とガラス体の安定性を向上する成分であるとともに、ガラス転移温度を下げ、その後の焼成過程における焼成温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、CaO成分の含有量が40.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の生成も困難となる。従って、酸化物換算組成のガラス体全物質量に対するCaO成分の含有量は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは25.0%を上限とする。CaO成分は、原料として例えばCaCO、CaF等を用いてガラス体内に含有することができる。 The CaO component is a component that improves the meltability of the glass and the stability of the glass body, and also lowers the glass transition temperature, suppresses the firing temperature in the subsequent firing process lower, and has high photocatalytic activity, anatase type, rutile type and It is a component that facilitates formation of one or more TiO 2 crystals selected from the brookite type, particularly anatase type TiO 2 crystals, and is a component that can be optionally added. However, when the content of the CaO component exceeds 40.0%, the stability of the glass is rather deteriorated and the generation of the photocatalytic crystal phase also becomes difficult. Accordingly, the upper limit of the content of the CaO component is preferably 40.0%, more preferably 30.0%, and most preferably 25.0% with respect to the total mass of the glass body in the oxide conversion composition. The CaO component can be contained in the glass body using, for example, CaCO 3 , CaF 2 or the like as a raw material.
 SrO成分は、ガラスの溶融性とガラス体の安定性を向上する成分であるとともに、ガラス転移温度を下げ、その後の焼成過程における焼成温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、SrO成分の含有量が40.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の生成も困難となる。従って、酸化物換算組成のガラス体全物質量に対するSrO成分の含有量は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。SrO成分は、原料として例えばSr(NO、SrF等を用いてガラス体内に含有することができる。 The SrO component is a component that improves the meltability of the glass and the stability of the glass body, lowers the glass transition temperature, suppresses the firing temperature in the subsequent firing process lower, and has high photocatalytic activity, anatase type, rutile type and It is a component that facilitates formation of one or more TiO 2 crystals selected from the brookite type, particularly anatase type TiO 2 crystals, and is a component that can be optionally added. However, when the content of the SrO component exceeds 40.0%, the stability of the glass is rather deteriorated, and the generation of the photocatalytic crystal phase also becomes difficult. Accordingly, the upper limit of the content of the SrO component is preferably 40.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass body in terms of the oxide conversion composition. The SrO component can be contained in the glass body using, for example, Sr (NO 3 ) 2 , SrF 2 or the like as a raw material.
 BaO成分は、ガラスの溶融性とガラス体の安定性を向上する成分であるとともに、ガラス転移温度を下げ、その後の焼成過程における焼成温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、BaO成分の含有量が40.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の生成も困難となる。従って、酸化物換算組成のガラス体全物質量に対するBaO成分の含有量は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。BaO成分は、原料として例えばBaCO、Ba(NO等を用いてガラス体内に含有することができる。 The BaO component is a component that improves the meltability of the glass and the stability of the glass body, and lowers the glass transition temperature, and lowers the firing temperature in the subsequent firing process, anatase type, rutile type and photocatalytic activity high. It is a component that facilitates formation of one or more TiO 2 crystals selected from the brookite type, particularly anatase type TiO 2 crystals, and is a component that can be optionally added. However, when the content of the BaO component exceeds 40.0%, the stability of the glass is rather deteriorated and the generation of the photocatalyst crystal phase also becomes difficult. Accordingly, the upper limit of the content of the BaO component is preferably 40.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass body having the oxide conversion composition. The BaO component can be contained in the glass by using, for example, BaCO 3 , Ba (NO 3 ) 2 or the like as a raw material.
 ZnO成分は、ガラスの溶融性とガラス体の安定性を向上する成分であるとともに、ガラス転移温度を下げ、その後の焼成過程における焼成温度をより低く抑え、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くする成分であり、任意に添加できる成分である。しかし、ZnO成分の含有量が50.0%を超えると、かえってガラスの安定性が悪くなり、光触媒結晶相の生成も困難となる。従って、酸化物換算組成のガラス体全物質量に対するZnO成分の含有量は、好ましくは50.0%、より好ましくは40.0%、最も好ましくは30.0%を上限とする。ZnO成分は、原料として例えばZnO、ZnF等を用いてガラス体内に含有することができる。 The ZnO component is a component that improves the meltability of the glass and the stability of the glass body, and also lowers the glass transition temperature, suppresses the firing temperature in the subsequent firing process lower, and has high photocatalytic activity, anatase type, rutile type and It is a component that facilitates formation of one or more TiO 2 crystals selected from the brookite type, particularly anatase type TiO 2 crystals, and is a component that can be optionally added. However, when the content of the ZnO component exceeds 50.0%, the stability of the glass is rather deteriorated, and the generation of the photocatalytic crystal phase also becomes difficult. Accordingly, the upper limit of the content of the ZnO component is preferably 50.0%, more preferably 40.0%, most preferably 30.0%, based on the total mass of the glass body having the oxide conversion composition. The ZnO component can be contained in the glass body using, for example, ZnO, ZnF 2 or the like as a raw material.
 このガラス体は、RO(式中、RはMg、Ca、Sr、Ba、Znからなる群より選択される1種以上)成分から選ばれる少なくとも1種以上の成分を50.0%以下含有することが好ましい。特に、RO成分から選ばれる少なくとも1種以上の成分の質量和を50.0%以下にすることで、ガラスの溶融性と安定性が向上し、アナターゼ型のTiO結晶相が生成し易くなるため、ガラスセラミックス焼結体やガラスセラミックス層の高い触媒活性を確保することができる。従って、酸化物換算組成のガラス体全物質量に対する、RO成分から選ばれる少なくとも1種以上の成分の質量和は、好ましくは50.0%、より好ましくは40.0%、最も好ましくは30.0%を上限とする。 This glass body contains 50.0% of at least one or more components selected from R 1 O (wherein, R 1 is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) components It is preferable to contain below. In particular, by setting the mass sum of at least one or more components selected from R 1 O components to 50.0% or less, the meltability and stability of the glass are improved, and anatase type TiO 2 crystal phase is formed. Since it becomes easy, the high catalytic activity of a glass-ceramics sintered compact or a glass-ceramics layer is securable. Therefore, the mass sum of at least one or more components selected from the R 1 O components is preferably 50.0%, more preferably 40.0%, most preferably with respect to the total mass of the glass body of the oxide conversion composition. The upper limit is 30.0%.
 また、このガラス体は、RO(式中、RはMg、Ca、Sr、Ba、Znからなる群より選択される1種以上)成分及びRnO(式中、RnはLi、Na、K、Rb、Csからなる群より選択される1種以上)成分から選ばれる少なくとも1種以上の成分を50.0%以下含有することが好ましい。特に、RO成分及びRnO成分から選ばれる少なくとも1種以上の成分の質量和を50.0%以下にすることで、ガラスの溶融性と安定性が向上し、ガラス転移温度(Tg)が下がり、より低い温度での焼成が可能になり、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶が形成され易くなるため、より多くのアナダーゼ型のTiO結晶相が生成される。このため、ガラスセラミックス焼結体やガラスセラミックス層の高い光触媒特性を確保することができる。従って、酸化物換算組成のガラス体全物質量に対する質量和(RO+RnO)は、好ましくは50.0%、より好ましくは40.0%、最も好ましくは30.0%を上限とする。なお、RO成分及びRnO成分は含有しなくとも光触媒特性を有するガラスセラミックス焼結体や複合体を得ることは可能であるが、RO成分及びRnO成分から選ばれる少なくとも1種以上の成分の質量和を0.1%以上にすることで、光触媒結晶相がより生成し易くなるため、光触媒特性が更に向上する。従って、酸化物換算組成のガラス体全物質量に対する質量和(RO+RnO)は、好ましくは0.1%、より好ましくは0.5%、最も好ましくは1.0%を下限とする。 In addition, this glass body contains R 1 O (wherein R 1 is one or more selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) component and Rn 2 O (wherein Rn is Li, It is preferable to contain 50.0% or less of at least one or more components selected from one or more components selected from the group consisting of Na, K, Rb, and Cs. In particular, by setting the mass sum of at least one or more components selected from the R 1 O component and the Rn 2 O component to 50.0% or less, the meltability and stability of the glass are improved, and the glass transition temperature (Tg) ), Which enables calcination at lower temperatures, and facilitates formation of one or more TiO 2 crystals selected from anatase type, rutile type and brookite type having high photocatalytic activity, particularly anatase type TiO 2 crystals. , more Anadaze type TiO 2 crystal phase is generated. Therefore, high photocatalytic properties of the glass ceramic sintered body and the glass ceramic layer can be secured. Therefore, the mass sum (R 1 O + Rn 2 O) with respect to the total mass of the glass body of the composition in terms of oxide is preferably 50.0%, more preferably 40.0%, most preferably 30.0% . Although R 1 O component and Rn 2 O component is possible to obtain a glass ceramic sintered body or composite having photocatalytic properties without containing, selected from R 1 O component and Rn 2 O component at least By setting the mass sum of one or more components to 0.1% or more, the photocatalytic crystal phase is more easily generated, and thus the photocatalytic properties are further improved. Therefore, the mass sum (R 1 O + Rn 2 O) relative to the total mass of the glass body of the oxide conversion composition is preferably 0.1%, more preferably 0.5%, most preferably 1.0%. .
 ここで、本発明のガラスセラミックス焼結体や複合体に用いられるガラス体は、RO(式中、RはMg、Ca、Sr、Ba、Znからなる群より選択される1種以上)成分及びRnO(式中、RnはLi、Na、K、Rb、Csからなる群より選択される1種以上)成分から選ばれる成分のうち2種類以上を含有することが好ましい。これにより、ガラスの安定性が大幅に向上し、焼成後のガラスセラミックス焼結体やガラスセラミックス層の機械強度がより高くなり、光触媒結晶相がより生成し易くなる。従って、本発明のガラスセラミックス焼結体や複合体に用いられるガラス体は、RO成分及びRnO成分から選ばれる成分のうち2種類以上を含有することが好ましく、3種類以上を含有することがより好ましい。 Here, the glass body used for the glass ceramic sintered body or the composite according to the present invention is R 1 O (wherein R 1 is at least one selected from the group consisting of Mg, Ca, Sr, Ba, Zn) It is preferable to contain two or more of the components selected from the) component and Rn 2 O (wherein R n is one or more selected from the group consisting of Li, Na, K, Rb and Cs). As a result, the stability of the glass is greatly improved, the mechanical strength of the sintered glass ceramic body and the glass ceramic layer becomes higher, and the photocatalytic crystal phase is more easily generated. Thus, the glass body for use in a glass ceramic sintered body or complexes of the present invention preferably contain two or more of the components selected from R 1 O component and Rn 2 O component containing three or more It is more preferable to do.
 B成分は、ガラスの網目構造を構成し、ガラスの安定性を高める成分であり、任意に添加できる成分である。しかし、その含有量が40.0%を超えると、光触媒結晶相が生成しくい傾向が強くなる。従って、酸化物換算組成のガラス体全物質量に対するB成分の含有量は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。B成分は、原料として例えばHBO、Na、Na・10HO、BPO等を用いてガラス体内に含有することができる。 The B 2 O 3 component is a component that constitutes the glass network structure and enhances the stability of the glass, and is a component that can be added arbitrarily. However, when the content exceeds 40.0%, the tendency to form a photocatalytic crystal phase becomes strong. Therefore, the content of the B 2 O 3 component is preferably 40.0%, more preferably 30.0%, and most preferably 20.0%, based on the total mass of the glass body in terms of the oxide conversion. The B 2 O 3 component can be contained in the glass body using, for example, H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 · 10H 2 O, BPO 4 and the like as raw materials.
 Al成分は、ガラスの安定性及びガラスセラミックス焼結体やガラスセラミックス層の化学的耐久性を高め、ガラスからの光触媒結晶相の生成を促進し、且つAl3+イオンがTiO結晶相に固溶して光触媒特性の向上に寄与する成分であり、任意に添加できる成分である。しかし、その含有量が30.0%を超えると、溶解温度が著しく上昇し、ガラス化し難くなる。従って、酸化物換算組成のガラス体全物質量に対するAl成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。Al成分は、原料として例えばAl、Al(OH)、AlF等を用いてガラス体内に含有することができる。 The Al 2 O 3 component enhances the stability of the glass and the chemical durability of the glass ceramic sintered body and the glass ceramic layer and promotes the formation of a photocatalytic crystal phase from the glass, and the Al 3+ ion is a TiO 2 crystal phase And a component which contributes to the improvement of the photocatalytic properties and can be optionally added. However, if the content exceeds 30.0%, the melting temperature significantly increases and it becomes difficult to vitrify. Accordingly, the content of the Al 2 O 3 component is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%, based on the total mass of the glass body in terms of the oxide conversion. The Al 2 O 3 component can be contained in the glass body using, for example, Al 2 O 3 , Al (OH) 3 , AlF 3 or the like as a raw material.
 Ga成分は、ガラスの安定性を高め、ガラス体からの光触媒結晶相の生成を促進し、且つGa3+イオンがTiO結晶相に固溶して光触媒特性の向上に寄与する成分であり、任意に添加できる成分である。しかし、その含有量が30.0%を超えると、溶解温度が著しく上昇し、ガラス化し難くなる。従って、酸化物換算組成のガラス体全物質量に対するGa成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。Ga成分は、原料として例えばGa、GaF等を用いてガラス体内に含有することができる。 The Ga 2 O 3 component is a component that enhances the stability of the glass and promotes the formation of the photocatalytic crystal phase from the glass body, and the Ga 3+ ions contribute to the improvement of the photocatalytic properties by solid solution in the TiO 2 crystal phase Yes, it is a component that can be added arbitrarily. However, if the content exceeds 30.0%, the melting temperature significantly increases and it becomes difficult to vitrify. Therefore, the content of the Ga 2 O 3 component is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%, based on the total mass of the glass body in terms of the oxide conversion. The Ga 2 O 3 component can be contained in the glass by using, for example, Ga 2 O 3 or GaF 3 as a raw material.
 In成分は、上記のAl及びGaと相似な効果がある成分であり、任意に添加できる成分である。しかし、In成分は高価なため、その含有量を10.0%以下にすることが好ましく、8.0%以下にすることがより好ましく、5.0%以下にすることが最も好ましい。In成分は、原料として例えばIn、InF等を用いてガラス体内に含有することができる。 The In 2 O 3 component is a component having an effect similar to the above-described Al 2 O 3 and Ga 2 O 3, and is a component that can be added arbitrarily. However, since the In 2 O 3 component is expensive, its content is preferably 10.0% or less, more preferably 8.0% or less, and most preferably 5.0% or less . In 2 O 3 component may be contained in the glass body by using as a raw material for example In 2 O 3, InF 3, or the like.
 このガラス体は、B成分、Al成分、Ga成分、及びIn成分から選ばれる少なくとも1種以上の成分を50.0%以下含有することが好ましい。特に、これらの成分から選ばれる少なくとも1種以上の成分の質量和を50.0%以下にすることで、ガラスの安定性が向上し、光触媒結晶相がより生成し易くなるため、ガラスセラミックス焼結体やガラスセラミックス層の光触媒特性のさらなる向上に寄与することができる。従って、酸化物換算組成のガラス体全物質量に対する質量和(B+Al+Ga+In)は、好ましくは50.0%、より好ましくは40.0%、最も好ましくは30.0%を上限とする。なお、B成分、Al成分、Ga成分、及びIn成分はいずれも含有しなくとも光触媒特性を持たせることは可能であるが、これらの成分から選ばれる少なくとも1種以上の成分の質量和を0.1%以上にすることで、光触媒結晶相の生成がさらに促進されるため、ガラスセラミックス焼結体やガラスセラミックス層の光触媒特性のさらなる向上に寄与することができる。従って、酸化物換算組成のガラス体全物質量に対する質量和(B+Al+Ga+In)は、好ましくは0.1%、より好ましくは0.5%、最も好ましくは1.0%を下限とする。 The glass body preferably contains 50.0% or less of at least one or more components selected from the B 2 O 3 component, the Al 2 O 3 component, the Ga 2 O 3 component, and the In 2 O 3 component. In particular, by setting the mass sum of at least one or more components selected from these components to 50.0% or less, the stability of the glass is improved and the photocatalytic crystal phase is more easily generated. It can contribute to the further improvement of the photocatalytic characteristic of a solid or a glass ceramic layer. Therefore, the mass sum (B 2 O 3 + Al 2 O 3 + Ga 2 O 3 + In 2 O 3 ) relative to the total mass of the glass body of the oxide conversion composition is preferably 50.0%, more preferably 40.0%, Most preferably, the upper limit is 30.0%. Although it is possible to have photocatalytic properties without containing any of the B 2 O 3 component, the Al 2 O 3 component, the Ga 2 O 3 component, and the In 2 O 3 component, it is possible to select from these components By setting the mass sum of at least one or more components to be 0.1% or more, the generation of the photocatalytic crystal phase is further promoted, which contributes to the further improvement of the photocatalytic properties of the glass ceramic sintered body and the glass ceramic layer. can do. Therefore, the mass sum (B 2 O 3 + Al 2 O 3 + Ga 2 O 3 + In 2 O 3 ) relative to the total mass of the glass body of the oxide conversion composition is preferably 0.1%, more preferably 0.5%, Most preferably, the lower limit is 1.0%.
 ZrO成分は、化学的耐久性を高め、TiO結晶の生成を促進し、且つZr4+イオンがTiO結晶相に固溶して光触媒特性の向上に寄与する成分であり、任意に添加できる成分である。しかし、ZrO成分の含有量が20.0%を超えると、ガラス化し難くなる。従って、酸化物換算組成のガラス体全物質量に対するZrO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。ZrO成分は、原料として例えばZrO、ZrF等を用いてガラス体内に含有することができる。 The ZrO 2 component is a component that enhances the chemical durability and promotes the formation of TiO 2 crystals, and the Zr 4+ ion forms a solid solution in the TiO 2 crystal phase to contribute to the improvement of the photocatalytic properties, and can be added arbitrarily It is an ingredient. However, when the content of the ZrO 2 component exceeds 20.0%, vitrification becomes difficult. Therefore, the content of the ZrO 2 component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%, based on the total mass of the glass body in terms of the oxide conversion. The ZrO 2 component can be contained in the glass body using, for example, ZrO 2 , ZrF 4 or the like as a raw material.
 SnO成分は、TiO結晶の析出を促進し、Ti4+の還元を抑制して光触媒結晶相を得易くし、且つTiO結晶相に固溶して光触媒特性の向上に効果がある成分であり、また、光触媒活性を高める作用のある後述のAgやAuやPtイオンと一緒に添加する場合は還元剤の役割を果たし、間接的に光触媒の活性の向上に寄与する成分であり、任意に添加できる成分である。しかし、これらの成分の含有量が10.0%を超えると、ガラスの安定性が悪くなり、光触媒特性も低下し易くなる。従って、酸化物換算組成のガラス体全物質量に対するSnO成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。SnO成分は、原料として例えばSnO、SnO、SnO等を用いてガラス体内に含有することができる。 The SnO component promotes precipitation of TiO 2 crystals, suppresses the reduction of Ti 4+ to make it easy to obtain a photocatalytic crystal phase, and is a component that is dissolved in the TiO 2 crystal phase to be effective in improving photocatalytic properties. Also, when added together with Ag, Au or Pt ion described later which has the function of enhancing the photocatalytic activity, it plays a role of reducing agent and indirectly contributes to the improvement of the photocatalytic activity, and it is optionally added It is a possible ingredient. However, if the content of these components exceeds 10.0%, the stability of the glass deteriorates and the photocatalytic properties also tend to deteriorate. Therefore, the upper limit of the content of the SnO component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0% with respect to the total mass of the glass body having the oxide conversion composition. The SnO component can be contained in the glass body using, for example, SnO, SnO 2 , SnO 3 or the like as a raw material.
 このガラス体は、ZrO成分及びSnO成分から選ばれる少なくとも1種以上の成分を20.0%以下含有することが好ましい。特に、これらの成分から選ばれる少なくとも1種以上の成分の質量和を20.0%以下にすることで、光触媒結晶相の生成が促進されるため、高い光触媒特性を得ることができる。従って、酸化物換算組成のガラス体全物質量に対する質量和(ZrO+SnO)は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。なお、ZrO成分及びSnO成分はいずれも含有しなくとも光触媒特性を持たせることは可能であるが、これらの成分から選ばれる少なくとも1種以上の成分の質量和を0.1%以上にすることで、ガラスセラミックス焼結体やガラスセラミックス層の光触媒特性をさらに向上することができる。従って、酸化物換算組成のガラス体全物質量に対する質量和(ZrO+SnO)は、好ましくは0.1%、より好ましくは0.2%、最も好ましくは0.5%を下限とする。 The glass body preferably contains 20.0% or less of at least one or more components selected from a ZrO 2 component and a SnO component. In particular, by setting the mass sum of at least one or more components selected from these components to 20.0% or less, generation of the photocatalytic crystal phase is promoted, so that high photocatalytic properties can be obtained. Therefore, the mass sum (ZrO 2 + SnO) relative to the total mass of the glass body of the oxide conversion composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%. Although it is possible to have photocatalytic properties without containing either the ZrO 2 component or the SnO component, the mass sum of at least one or more components selected from these components should be 0.1% or more. Thus, the photocatalytic properties of the glass ceramic sintered body and the glass ceramic layer can be further improved. Accordingly, the lower limit of mass sum (ZrO 2 + SnO) relative to the total mass of the glass body in terms of the oxide composition is preferably 0.1%, more preferably 0.2%, and most preferably 0.5%.
 Nb成分は、ガラスの溶融性と安定性を高める成分であり、且つTiO結晶相に固溶し、又はその近傍に存在することで、光触媒特性が向上する成分であり、任意に添加できる成分である。しかし、Nb成分の含有量が50.0%を超えると、ガラスの安定性が著しく悪くなる。従って、酸化物換算組成のガラス体全物質量に対するNb成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。Nb成分は、原料として例えばNb等を用いてガラス体内に含有することができる。 The Nb 2 O 5 component is a component that enhances the meltability and stability of the glass, and is a component that improves the photocatalytic properties by being dissolved in the TiO 2 crystal phase or existing in the vicinity thereof, It is a component that can be added. However, when the content of the Nb 2 O 5 component exceeds 50.0%, the stability of the glass is significantly deteriorated. Accordingly, the upper limit of the content of the Nb 2 O 5 component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass body having the oxide conversion composition. The Nb 2 O 5 component can be contained in the glass body using, for example, Nb 2 O 5 as a raw material.
 Ta成分は、ガラスの安定性を高める成分であり、且つTiO結晶相に固溶し、又はその近傍に存在することで、光触媒特性が向上する成分であり、任意に添加できる成分である。しかし、Ta成分の含有量が50.0%を超えると、ガラスの安定性が著しく悪くなる。従って、酸化物換算組成のガラス体全物質量に対するTa成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。Ta成分は、原料として例えばTa等を用いてガラス体内に含有することができる。 The Ta 2 O 5 component is a component that enhances the stability of the glass, and is a component that improves photocatalytic properties by being dissolved in the TiO 2 crystal phase or in the vicinity thereof, and a component that can be added arbitrarily It is. However, when the content of the Ta 2 O 5 component exceeds 50.0%, the stability of the glass is significantly deteriorated. Therefore, the content of the Ta 2 O 5 component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0%, based on the total mass of the glass body in terms of the oxide conversion. The Ta 2 O 5 component can be contained in the glass body using, for example, Ta 2 O 5 as a raw material.
 WO成分は、ガラスの溶融性と安定性を高める成分であり、且つTiO結晶相に固溶し、又はその近傍に存在することで、光触媒特性が向上する成分であり、任意に添加できる成分である。しかし、WO成分の含有量が50.0%を超えると、ガラスの安定性が著しく悪くなる。従って、酸化物換算組成のガラス体全物質量に対するWO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。WO成分は、原料として例えばWO等を用いてガラス体内に含有することができる。 The WO 3 component is a component that enhances the meltability and stability of the glass, and is a component that improves the photocatalytic properties by being dissolved in the TiO 2 crystal phase or in the vicinity thereof, and can be added arbitrarily It is an ingredient. However, when the content of the WO 3 component exceeds 50.0%, the stability of the glass is significantly deteriorated. Accordingly, the upper limit of the content of the WO 3 component is preferably 50.0%, more preferably 30.0%, and most preferably 20.0% with respect to the total mass of the glass body having the oxide conversion composition. WO 3 ingredient may be contained in the glass body by using as a raw material for example WO 3 and the like.
 MoO成分は、ガラスの溶融性と安定性を高める成分であり、且つTiO結晶相に固溶し、又はその近傍に存在することで、光触媒特性が向上する成分であり、任意に添加できる成分である。しかし、MoO成分の含有量が50.0%を超えると、ガラスの安定性が著しく悪くなる。従って、酸化物換算組成のガラス体全物質量に対するMoO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。MoO成分は、原料として例えばMoO等を用いてガラス体内に含有することができる。 The MoO 3 component is a component that enhances the meltability and stability of the glass, and is a component that improves the photocatalytic properties by being dissolved in the TiO 2 crystal phase or in the vicinity thereof, and can be added arbitrarily It is an ingredient. However, when the content of the MoO 3 component exceeds 50.0%, the stability of the glass is significantly deteriorated. Therefore, the content of the MoO 3 component is preferably 50.0%, more preferably 30.0%, most preferably 20.0%, based on the total mass of the glass body in terms of the oxide conversion. The MoO 3 component can be contained in the glass body using, for example, MoO 3 as a raw material.
 このガラス体は、Nb成分、Ta成分、WO成分、及びMoO成分から選ばれる少なくとも1種以上の成分を50.0%以下含有することが好ましい。特に、これらの成分から選ばれる少なくとも1種以上の成分の質量和を50.0%以下にすることで、ガラスセラミックス焼結体やガラスセラミックス層の安定性が確保されるため、良好なガラスセラミックス焼結体や複合体を形成することができる。従って、酸化物換算組成のガラス体全物質量に対する質量和(Nb+Ta+WO+MoO)は、好ましくは50.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。なお、Nb成分、Ta成分、WO成分、及びMoO成分はいずれも含有しなくとも光触媒特性を持たせることは可能であるが、これらの成分から選ばれる少なくとも1種以上の成分の質量和を0.1%以上にすることで、ガラスセラミックス焼結体やガラスセラミックス層の光触媒特性をさらに向上することができる。従って、酸化物換算組成のガラス体全物質量に対する質量和(Nb+Ta+WO+MoO)は、好ましくは0.1%、より好ましくは0.5%、最も好ましくは1.0%を下限とする。 The glass body preferably contains 50.0% or less of at least one or more components selected from Nb 2 O 5 components, Ta 2 O 5 components, WO 3 components, and MoO 3 components. In particular, by setting the mass sum of at least one or more components selected from these components to 50.0% or less, the stability of the glass-ceramic sintered body and the glass-ceramic layer can be secured, and hence a good glass-ceramic A sintered body or a composite can be formed. Therefore, the mass sum (Nb 2 O 5 + Ta 2 O 5 + WO 3 + MoO 3 ) relative to the total mass of the glass body of the oxide conversion composition is preferably 50.0%, more preferably 30.0%, most preferably 20 .0% is the upper limit. Although it is possible to have photocatalytic properties without containing any of the Nb 2 O 5 component, the Ta 2 O 5 component, the WO 3 component, and the MoO 3 component, at least one selected from these components By setting the mass sum of the above components to 0.1% or more, the photocatalytic properties of the glass ceramic sintered body and the glass ceramic layer can be further improved. Therefore, the mass sum (Nb 2 O 5 + Ta 2 O 5 + WO 3 + MoO 3 ) relative to the total mass of the glass body of the oxide conversion composition is preferably 0.1%, more preferably 0.5%, most preferably 1 .0% is the lower limit.
 Bi成分は、ガラスの溶融性と安定性を高める成分であるとともに、ガラス転移温度(Tg)を下げることで熱処理温度が下がるため、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くできる成分であり、任意に添加できる成分である。しかし、Bi成分の含有量が20.0%を超えると、ガラスの安定性が悪くなり、TiOの生成が難しくなる。従って、酸化物換算組成のガラス体全物質量に対するBi成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。Bi成分は、原料として例えばBi等を用いてガラス体内に含有することができる。 The Bi 2 O 3 component is a component that enhances the meltability and stability of the glass, and because the heat treatment temperature is lowered by lowering the glass transition temperature (Tg), anatase type, rutile type and brookite type having high photocatalytic activity It is a component capable of easily forming one or more selected TiO 2 crystals, particularly anatase-type TiO 2 crystals, and a component which can be optionally added. However, when the content of the Bi 2 O 3 component exceeds 20.0%, the stability of the glass is deteriorated and the formation of TiO 2 becomes difficult. Therefore, the content of the Bi 2 O 3 component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%, based on the total mass of the glass body in terms of the oxide. Bi 2 O 3 component may be contained in the glass body by using as a raw material for example Bi 2 O 3 and the like.
 TeO成分は、ガラスの溶融性と安定性を高める成分であるとともに、ガラス転移温度(Tg)を下げることで熱処理温度が下がるため、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶を形成し易くできる成分であり、任意に添加できる成分である。しかし、TeO成分の含有量が20.0%を超えると、ガラスの安定性が悪くなり、TiOの生成が難しくなる。従って、酸化物換算組成のガラス体全物質量に対するTeO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。TeO成分は、原料として例えばTeO等を用いてガラス体内に含有することができる。 The TeO 2 component is a component that enhances the meltability and stability of the glass, and because the heat treatment temperature is lowered by lowering the glass transition temperature (Tg), it is selected from anatase type, rutile type and brookite type having high photocatalytic activity It is a component capable of easily forming one or more TiO 2 crystals, particularly anatase type TiO 2 crystals, and a component which can be optionally added. However, when the content of the TeO 2 component exceeds 20.0%, the stability of the glass deteriorates and the formation of TiO 2 becomes difficult. Accordingly, the content of the TeO 2 component with respect to the total mass of the glass body in terms of the oxide conversion is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%. The TeO 2 component can be contained in the glass body using, for example, TeO 2 as a raw material.
 Ln成分(式中、LnはLa、Gd、Y、Ce、Nd、Dy、Yb及びLuからなる群より選択される1種以上、Ceを除く各成分についてはa=2且つb=3、Ceについてはa=1且つb=2)は、ガラスセラミックス焼結体やガラスセラミックス層の化学的耐久性を高める成分であり、且つTiO結晶相に固溶し、又はその近傍に存在することで、光触媒特性が向上する成分であり、任意に添加できる成分である。しかし、Ln成分の含有量の合計が30.0%を超えると、ガラスの安定性が著しく悪くなる。従って、酸化物換算組成のガラス体全物質量に対する、Ln成分から選ばれる少なくとも1種以上の成分の質量和は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。Ln成分は、原料として例えばLa、La(NO・XHO(Xは任意の整数)、Gd、GdF、Y、YF、CeO、Nd、Dy、Yb、Lu等を用いてガラス体内に含有することができる。 L n a O b component (wherein, L n is one or more selected from the group consisting of La, G d , Y, Ce, Nd, Dy, Y b and Lu, and a = 2 and b = for each component except Ce) 3. For Ce, a = 1 and b = 2) is a component that enhances the chemical durability of the glass ceramic sintered body and the glass ceramic layer, and forms a solid solution in the TiO 2 crystal phase or exists in the vicinity thereof It is a component which a photocatalytic characteristic improves by carrying out, It is a component which can be added arbitrarily. However, when the total content of Ln a O b component exceeds 30.0%, the stability of the glass is significantly deteriorated. Therefore, the mass sum of at least one or more components selected from Ln a O b components is preferably 30.0%, more preferably 20.0%, most preferably, based on the total mass of the glass body having the oxide conversion composition. The upper limit is 10.0%. The component L n a O b is, for example, La 2 O 3 , La (NO 3 ) 3 .XH 2 O (X is an arbitrary integer), Gd 2 O 3 , GdF 3 , Y 2 O 3 , YF 3 , CeO as a raw material. 2 , Nd 2 O 3 , Dy 2 O 3 , Yb 2 O 3 , Lu 2 O 3 or the like can be contained in the glass body.
 M成分(式中、MはV、Cr、Mn、Fe、Co、Niからなる群より選択される1種以上とし、x及びyはそれぞれx:y=2:(Mの価数)を満たす最小の自然数とする)は、TiO結晶相に固溶するか、またはその近傍に存在することで、光触媒特性の向上に寄与し、且つ一部の波長の可視光を吸収してガラスセラミックス焼結体やガラスセラミックス層に外観色を付与する成分であり、ガラス体中の任意成分である。特に、M成分から選ばれる少なくとも1種以上の成分の質量和を10.0%以下にすることで、ガラス体の安定性を高め、ガラスセラミックス焼結体やガラスセラミックス層の外観の色を容易に調節することができる。従って、酸化物換算組成のガラス体全物質量に対する、M成分から選ばれる少なくとも1種以上の成分の質量和は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。 M x O y component (wherein M is one or more selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, and x and y are each x: y = 2: (M valence The smallest natural number satisfying)) forms a solid solution in the TiO 2 crystal phase or exists in the vicinity thereof, contributes to the improvement of the photocatalytic properties, and absorbs visible light of a part of wavelengths. It is a component that imparts an appearance color to a glass ceramic sintered body or a glass ceramic layer, and is an optional component in a glass body. In particular, by setting the mass sum of at least one or more components selected from the M x O y components to 10.0% or less, the stability of the glass body is enhanced, and the appearance of the sintered body of the glass ceramic or the glass ceramic layer The color can be easily adjusted. Therefore, the mass sum of at least one or more components selected from the M x O y components is preferably 10.0%, more preferably 8.0%, most preferably, based on the total mass of the glass body having the oxide conversion composition. The upper limit is 5.0%.
 このガラス体には、F成分、Cl成分、Br成分、S成分、N成分、及びC成分からなる群より選ばれる少なくとも1種以上の非金属元素成分が含まれていてもよい。これらの成分は、TiO結晶相に固溶し、又はその近傍に存在することで、光触媒特性が向上する成分であり、任意に添加できる成分である。しかし、これらの成分の含有量が合計で10.0%を超えると、ガラスの安定性が著しく悪くなり、光触媒特性も低下し易くなる。従って、良好な特性を確保するために、酸化物換算組成のガラス体全質量に対する非金属元素成分の含有量の合計は、好ましくは10.0%、より好ましくは5.0%、最も好ましくは3.0%を上限とする。これらの非金属元素成分は、アルカリ金属又はアルカリ土類金属のフッ化物、塩化物、臭化物、硫化物、窒化物、炭化物等の形でガラス体中に導入するのが好ましい。非金属元素成分の原料は特に限定されないが、N成分の原料としてAlN、SiN等、S成分の原料としてNaS,Fe,CaS等、F成分の原料としてZrF、AlF、NaF、CaF等、Cl成分の原料としてNaCl、AgCl等、Br成分の原料としてNaBr等、C成分の原料としてTiC、SiC又はZrC等を用いることで、ガラス体内に含有することができる。なお、これらの原料は、一体的に添加してもよいし、独立に添加してもよい。 The glass body may contain at least one nonmetallic element component selected from the group consisting of an F component, a Cl component, a Br component, an S component, an N component, and a C component. These components are components that improve the photocatalytic properties by being dissolved in the TiO 2 crystal phase or in the vicinity thereof, and are components that can be added arbitrarily. However, when the total content of these components exceeds 10.0%, the stability of the glass is significantly deteriorated, and the photocatalytic properties are also easily deteriorated. Therefore, in order to ensure good characteristics, the total content of the nonmetallic element component with respect to the total mass of the glass body in terms of the composition in terms of oxide is preferably 10.0%, more preferably 5.0%, most preferably The upper limit is 3.0%. These nonmetallic element components are preferably introduced into the glass in the form of fluorides, chlorides, bromides, sulfides, nitrides, carbides and the like of alkali metals or alkaline earth metals. The raw material of the nonmetallic element component is not particularly limited, but AlN 3 , SiN 4 etc. as the raw material of N component, NaS, Fe 2 S 3 , CaS 2 etc. as the raw material of S component, ZrF 4 , AlF 3 as the raw material of F component The material can be contained in the glass body by using NaF, CaF 2 or the like, NaCl, AgCl or the like as a source of Cl component, NaBr or the like as a source of Br component, and TiC, SiC or ZrC as a source of C component. These raw materials may be added integrally or independently.
 このガラス体には、Cu、Ag、Au、Pd、Pt、Ru、及びRhから選ばれる少なくとも1種の金属元素成分が含まれていてもよい。これらの金属元素成分は、光触媒結晶相の近傍に存在することで、光触媒活性が向上するため、任意に添加できる。しかし、これらの金属元素成分の含有量の合計が10.0%を超えるとガラスの安定性が著しく悪くなり、光触媒特性がかえって低下し易くなる。従って、酸化物換算組成のガラス体全物質量に対する金属元素成分の含有量の合計は、好ましくは10.0%、より好ましくは5.0%、最も好ましくは1.0%を上限とする。これらの金属元素成分は、原料として例えばCuO、AgO、AuCl、PtCl等を用いてガラス体内に含有することができる。 The glass body may contain at least one metal element component selected from Cu, Ag, Au, Pd, Pt, Ru, and Rh. These metal element components can be optionally added because the photocatalytic activity is improved by being present in the vicinity of the photocatalytic crystal phase. However, when the total content of these metal element components exceeds 10.0%, the stability of the glass is significantly deteriorated, and the photocatalytic properties are easily deteriorated. Therefore, the total content of the metal element component with respect to the total mass of the glass body in terms of the oxide conversion is preferably 10.0%, more preferably 5.0%, and most preferably 1.0%. These metal element components can be contained in the glass body using, for example, Cu 2 O, Ag 2 O, AuCl 3 , PtCl 4 or the like as a raw material.
 As成分及びSb成分は、ガラス体を清澄し脱泡する成分であり、また、前述のように光触媒活性を高める作用のあるAgやAuやPtイオンと一緒に添加する場合は、還元剤の役割を果たすので、間接的に光触媒の活性の向上に寄与する成分であり、任意に添加できる成分である。しかし、これらの成分の含有量が合計で5.0%を超えると、ガラスの安定性が悪くなり、光触媒特性も低下し易くなる。従って、酸化物換算組成のガラス体全物質量に対するAs成分及び/又はSb成分の含有量の合計は、好ましくは5.0%、より好ましくは3.0%、最も好ましくは1.0%を上限とする。As成分及びSb成分は、原料として例えばAs、As、Sb、Sb、NaSb・5HO等を用いてガラス体内に含有することができる。 The As 2 O 3 component and the Sb 2 O 3 component are components for clarifying and defoaming the glass body, and when added together with Ag, Au, or Pt ion having the function of enhancing the photocatalytic activity as described above. Since it plays a role of a reducing agent, it is a component that indirectly contributes to the improvement of the activity of the photocatalyst, and is a component that can be added arbitrarily. However, when the total content of these components exceeds 5.0%, the stability of the glass is deteriorated, and the photocatalytic properties are also easily deteriorated. Therefore, the total content of the As 2 O 3 component and / or the Sb 2 O 3 component with respect to the total mass of the glass body of the oxide conversion composition is preferably 5.0%, more preferably 3.0%, most preferably The upper limit is 1.0%. As the As 2 O 3 component and the Sb 2 O 3 component, as a raw material, for example, As 2 O 3 , As 2 O 5 , Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 · 5 H 2 O etc. It can be contained in the glass body.
 なお、ガラス体を清澄し脱泡する成分は、上記のAs成分及びSb成分に限定されるものではなく、例えばCeO成分やTeO成分等のような、ガラス製造の分野における公知の清澄剤や脱泡剤、或いはそれらの組み合わせを用いることができる。 The components for clarifying and degassing the glass body are not limited to the above As 2 O 3 component and Sb 2 O 3 component, and, for example, such as CeO 2 component or TeO 2 component etc. Any of the clarifiers and defoamers known in the art or combinations thereof can be used.
 次に、ガラス体に含有すべきでない成分、及び含有することが好ましくない成分について説明する。 Next, the components which should not be contained in the glass body and the components which it is not preferable to contain will be described.
 ガラス体には、他の成分をガラスセラミックス焼結体やガラスセラミックス層の特性を損なわない範囲で必要に応じ、添加することができる。 If necessary, other components can be added to the glass body as long as the characteristics of the glass ceramic sintered body and the glass ceramic layer are not impaired.
 但し、PbO等の鉛化合物、Th、Cd、Tl、Os、Be、Se、Hgの各成分は、近年有害な化学物資として使用を控える傾向にあり、ガラスセラミックス焼結体や複合体の製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、不可避な混入を除き、これらを実質的に含有しないことが好ましい。これにより、ガラス体に環境を汚染する物質が実質的に含まれなくなる。そのため、特別な環境対策上の措置を講じなくとも、このガラスセラミックス焼結体や複合体を製造し、加工し、及び廃棄することができる。 However, lead compounds such as PbO, Th, Cd, Tl, Os, Be, Se, and Hg components tend to refrain from being used as harmful chemical substances in recent years, and they are processes for manufacturing sintered glass ceramics and composites. Not only environmental measures are required from the processing process to the disposal after commercialization. Therefore, in the case of emphasizing the environmental impact, it is preferable not to substantially contain them except for inevitable contamination. As a result, the glass body is substantially free of substances that contaminate the environment. Therefore, the glass-ceramic sintered body or composite can be manufactured, processed, and discarded without taking special environmental measures.
 原料組成物は、得られるガラス体が酸化物換算組成のガラス体全物質量に対するモル%で、
 SiO成分及び/又はGeO成分 0~60.0%、及び/又は、
 アルカリ金属酸化物成分及び/又はアルカリ土類金属酸化物成分 0~50.0%、及び/又は、
 M(式中、Mは、W、Mo、Nb、及びTaからなる群より選ばれる1種以上である。a及びbは、a:b=2:(Mの価数)を満たす最小の自然数である。)成分 0~50.0%、及び/又は、
 M (式中、Mは、Zr及びSnからなる群より選ばれる1種以上である。c及びdは、c:d=2:(Mの価数)を満たす最小の自然数である。)成分 0~30.0%、及び/又は、
 M (式中、Mは、B、Al、Ga、及びInからなる群より選ばれる1種以上である。)成分 0~50.0%、及び/又は、
 Ln(式中、Lnは、Y、Ce、La、Nd、Gd、Dy、及びYbからなる群より選ばれる1種以上である。)成分 0~30.0%、及び/又は、
 M (式中、Mは、V、Cr、Mn、Fe、Co、Ni、及びCuからなる群より選ばれる1種以上である。e及びfは、e:f=2:(Mの価数)を満たす最小の自然数である。) 0~10.0%、及び/又は、
 Bi成分+TeO成分 0~20.0%、及び/又は、
 As成分+Sb成分 0~5.0%
の各成分を更に含有し、
 前記ガラス体の酸化物換算組成の全質量に対する質量%で、
 F成分、Cl成分、Br成分、S成分、N成分、及びC成分からなる群より選ばれる少なくとも1種以上の非金属元素成分を、10.0%以下、及び/又は、
 Cu、Ag、Au、Pd、Pt、Ru、及びRhからなる群より選ばれる少なくとも1種の金属元素成分を、10.0%以下
であるように調製されたものであることが好ましい。
The raw material composition is such that the obtained glass body is in mol% with respect to the total mass of the glass body of the oxide conversion composition,
SiO 2 component and / or GeO 2 component 0 to 60.0%, and / or,
Alkali metal oxide component and / or alkaline earth metal oxide component 0 to 50.0% and / or
M a O b (wherein, M is one or more selected from the group consisting of W, Mo, Nb, and Ta. A and b satisfy a: b = 2: (valence of M) The smallest natural number.) Component 0 to 50.0% and / or
M 1 c O d (wherein, M 1 is one or more selected from the group consisting of Zr and Sn. C and d are the minimums satisfying c: d = 2: (valence of M 1 ) Component) 0 to 30.0% and / or
M 2 2 O 3 (wherein, M 2 is one or more selected from the group consisting of B, Al, Ga, and In) Component 0 to 50.0%, and / or
Ln 2 O 3 (wherein, Ln is one or more selected from the group consisting of Y, Ce, La, Nd, Gd, Dy, and Yb) Component 0 to 30.0%, and / or
M 3 e O f (wherein, M 3 is at least one selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, and Cu. E and f are e: f = 2: (The smallest natural number satisfying the valence of M 3 )) 0 to 10.0% and / or
Bi 2 O 3 component + TeO 2 component 0 to 20.0% and / or
As 2 O 3 component + Sb 2 O 3 component 0 to 5.0%
Further contains each component of
In mass% to the total mass of the oxide conversion composition of the glass body,
10.0% or less and / or at least one nonmetallic element component selected from the group consisting of an F component, a Cl component, a Br component, an S component, an N component, and a C component
It is preferable that at least one metal element component selected from the group consisting of Cu, Ag, Au, Pd, Pt, Ru, and Rh is prepared to be 10.0% or less.
 この条件を満たす限りにおいて、原料組成物は、ガラス形成酸化物等を含む非ガラス原料(通常、粉体であり、バッチと称される)であっても、非ガラス体がガラス化されたガラス原料(通常、破砕物であり、カレットと称される)であってもよい。 As long as this condition is satisfied, the raw material composition is a glass in which the non-glass body is vitrified, even if it is a non-glass raw material (usually powder and referred to as a batch) containing glass-forming oxides etc. It may be a raw material (usually crushed and called cullet).
 [粉砕工程]
 粉砕工程では、ガラス体を粉砕して粉砕ガラスを作製する。粉砕ガラスを作製することにより、ガラス体が比較的に小粒径化されるため、次の成形工程において所望形状へと容易に成形できる。また、これを基材に配置して用いる場合、層の形成が容易になる。粉砕ガラスの粒子径や形状は、成形工程、成形体の形状及び寸法の必要とされる精度に応じて適宜設定されてよい。
[Crushing process]
In the pulverizing step, the glass body is pulverized to produce a pulverized glass. By producing the crushed glass, the particle size of the glass body is relatively reduced, so that it can be easily formed into a desired shape in the next forming step. Moreover, when this is arrange | positioned and used for a base material, formation of a layer becomes easy. The particle diameter and shape of the crushed glass may be appropriately set in accordance with the required accuracy of the forming process and the shape and dimension of the molded body.
 具体的には、後の工程で粉砕ガラスを堆積したものに対して焼成を行う場合、粉砕ガラスの平均粒子径は数十mmの単位でもよい。しかしながら、ガラスセラミックス焼結体を形状する場合、平均粒子径が大きすぎると、所望の形状のガラスセラミックス焼結体を形成することが困難になる。また、複合体を形成する場合、平均粒子径が大きすぎると、基材上に所望形状のガラスセラミックス層を形成するのが困難になる。そのため、粉砕ガラスの平均粒子径は、出来るだけ小さい方がよい。従って、粉砕ガラスの平均粒子径の上限は、好ましくは100μm、より好ましくは50μm、最も好ましくは10μmである。なお、粉砕ガラスの平均粒子径は、例えばレーザー回折散乱法によって測定した時のD50(累積50%径)の値を使用できる。具体的には、例えば日機装株式会社製の粒度分布測定装置MICROTRAC(MT3300EXII)よって測定した値を用いることができる。 Specifically, when baking is performed on what deposited crushed glass in a later step, the average particle diameter of the crushed glass may be a unit of several tens of mm. However, in the case of forming the glass ceramic sintered body, if the average particle diameter is too large, it becomes difficult to form the glass ceramic sintered body having a desired shape. In the case of forming a composite, if the average particle diameter is too large, it becomes difficult to form a glass ceramic layer of a desired shape on the substrate. Therefore, the average particle size of the crushed glass should be as small as possible. Therefore, the upper limit of the average particle size of the crushed glass is preferably 100 μm, more preferably 50 μm, and most preferably 10 μm. In addition, the value of D50 (cumulative 50% diameter) when it measures by the laser diffraction scattering method, for example can be used for the average particle diameter of grinding glass. Specifically, for example, a value measured by a particle size distribution measuring apparatus MICROTRAC (MT3300EXII) manufactured by Nikkiso Co., Ltd. can be used.
 なお、ガラス体の粉砕は、特に限定されないが、例えばボールミル、ジェットミル等を用いて行うことができる。 Pulverization of the glass body is not particularly limited, but can be performed using, for example, a ball mill, a jet mill or the like.
 (結晶化工程)
 特に複合体を製造する場合、上述のガラス体又は粉砕ガラスに熱処理を施し、内部に結晶を析出させる結晶化工程を有することが好ましい。これにより、粉砕ガラスの内部及び表面にTiOの結晶相が析出するため、TiOの結晶相を有するガラスセラミックス層をより確実に製造できる。ここで、熱処理の条件(温度、時間)は、ガラス体の組成、必要とされる結晶化の程度等に応じて、適宜設定されてよい。
(Crystallization process)
In particular, in the case of producing a composite, it is preferable to perform a heat treatment on the above-mentioned glass body or crushed glass to have a crystallization step of precipitating crystals inside. As a result, the crystal phase of TiO 2 precipitates inside and on the surface of the crushed glass, so that the glass ceramic layer having the crystal phase of TiO 2 can be produced more reliably. Here, the conditions (temperature, time) of the heat treatment may be appropriately set depending on the composition of the glass body, the degree of crystallization required, and the like.
 具体的に、熱処理における雰囲気温度の下限は、ガラス体のガラス転移温度(Tg)であり、好ましくはTg+50℃、より好ましくはTg+100℃、最も好ましくはTg+150℃である。他方、熱処理における雰囲気温度の上限は、温度が高くなりすぎると、光触媒結晶相が減少する傾向が強くなるので、光触媒特性が消失しやすい点で、好ましくはガラス体のTg+600℃、より好ましくはTg+500℃、最も好ましくはTg+400℃である。 Specifically, the lower limit of the atmosphere temperature in the heat treatment is the glass transition temperature (Tg) of the glass body, preferably Tg + 50 ° C., more preferably Tg + 100 ° C., and most preferably Tg + 150 ° C. On the other hand, the upper limit of the atmosphere temperature in the heat treatment is that when the temperature is too high, the photocatalytic crystal phase tends to decrease, so that the photocatalytic properties are easily lost, preferably Tg + 600 ° C of the glass body, more preferably Tg + 500 ° C, most preferably Tg + 400 ° C.
 なお、この結晶化工程は、以下に述べる焼成工程中に焼成と同時に行ってもよい。この場合、内部及び表面に結晶が析出されていない粉砕ガラスを用いるとともに、焼成工程における焼成温度を結晶化工程の熱処理における雰囲気温度と同程度の温度に制御することで、ガラス相から所望の結晶が析出する。 Note that this crystallization step may be performed simultaneously with the firing during the firing step described below. In this case, while using crushed glass in which crystals are not precipitated on the inside and on the surface, the desired crystal from the glass phase is controlled by controlling the firing temperature in the firing step to the same temperature as the atmosphere temperature in the heat treatment in the crystallization step. Precipitates out.
 (TiOの添加)
 ここで、粉砕ガラスに結晶状態のTiOを混合して混合物を作製する工程を有してもよい。結晶状態のTiOを混合しなくても、ガラス体からTiO結晶相をはじめとした光触媒結晶相を生成することができるが、既に結晶状態のTiOを添加することで、より多くのTiOの結晶相を有するガラスセラミックス焼結体をより確実に製造できる。
(Addition of TiO 2 )
Here, it may have a step of preparing a mixture by mixing TiO 2 in the crystalline state to the ground glass. Even if TiO 2 in the crystalline state is not mixed, a photocatalytic crystalline phase including the TiO 2 crystalline phase can be generated from the glass body, but by adding TiO 2 in the crystalline state, more TiO 2 can be produced. A glass ceramic sintered body having a crystal phase of 2 can be produced more reliably.
 結晶状態のTiOの混合量は、ガラス体の組成、製造工程における温度等に応じ、所望の量の光触媒結晶相がガラスセラミックス焼結体やガラスセラミックス層に生成するよう、適宜設定されてよい。具体的に、混合する結晶状態のTiOの量は、過小であると、ガラスセラミックス焼結体やガラスセラミックス層に含まれる光触媒結晶相の量が不充分になりやすく、過剰であると、焼成が困難になる等の障害が生じやすい。そこで、混合する結晶状態のTiOの量の下限は、混合物に対する質量比で1.0%であることが好ましく、より好ましくは5.0%、最も好ましくは10.0%である。他方、混合する結晶状態のTiOの量の上限は、混合物に対する質量比で95.0%であることが好ましく、より好ましくは80.0%、最も好ましくは60.0%である。 The mixing amount of TiO 2 in the crystalline state may be appropriately set according to the composition of the glass body, the temperature in the manufacturing process, etc., so that a desired amount of photocatalytic crystal phase is generated in the glass ceramics sintered body or glass ceramics layer. . Specifically, when the amount of TiO 2 in the crystalline state to be mixed is too small, the amount of the photocatalytic crystal phase contained in the glass ceramic sintered body or the glass ceramic layer tends to be insufficient, and when it is excessive Failure is likely to occur. Therefore, the lower limit of the amount of crystalline TiO 2 to be mixed is preferably 1.0% by mass ratio to the mixture, more preferably 5.0%, and most preferably 10.0%. On the other hand, the upper limit of the amount of crystalline TiO 2 to be mixed is preferably 95.0% by mass ratio to the mixture, more preferably 80.0%, and most preferably 60.0%.
 一般に、TiOの結晶型には、アナターゼ、ルチル及びブルッカイトの3種類がある。このうち、本工程で用いる結晶状態のTiOは、これら3種類のうち1種又は2種以上であってよいが、光触媒機能に優れる点で、アナターゼであることが好ましく、アナターゼとブルッカイトとの組み合わせであることがより好ましい。 Generally, there are three crystal forms of TiO 2 : anatase, rutile and brookite. Among these, TiO 2 in the crystalline state used in this step may be one or two or more of these three types, but anatase is preferable from the viewpoint of excellent photocatalytic function, and anatase and brookite are preferable. More preferred is a combination.
 上記のTiO結晶の原料粒子サイズは、光触媒活性を高める観点からは出来るだけ小さい方がよいが、原料粒子サイズが小さ過ぎると、焼成の際にガラスと反応し、結晶状態を保たずに消失するおそれがある。また、原料粒子が細かすぎると、製造工程における取り扱いが難しくなる問題もある。一方で、原料粒子サイズが大きすぎると、原料粒子の形態で最終製品に残り易くなるため、所望の光触媒特性を得にくい傾向が強くなる。従って、原料粒子のサイズは11~500nmの範囲が好ましく、21~200nmの範囲がより好ましく、31~100nmの範囲が最も好ましい。 The size of the raw material particle of the above TiO 2 crystal should be as small as possible from the viewpoint of enhancing the photocatalytic activity, but if the size of the raw material particle is too small, it reacts with the glass during firing and does not maintain the crystalline state. It may be lost. In addition, when the raw material particles are too fine, there is a problem that the handling in the manufacturing process becomes difficult. On the other hand, if the size of the raw material particles is too large, they tend to remain in the final product in the form of raw material particles, so the tendency to obtain desired photocatalytic properties becomes strong. Therefore, the size of the raw material particles is preferably in the range of 11 to 500 nm, more preferably in the range of 21 to 200 nm, and most preferably in the range of 31 to 100 nm.
 (他成分の添加)
 ここで、N成分、S成分、F成分、Cl成分、Br成分、及びC成分からなる群より選ばれる1種以上を含む添加物を、前述の粉砕ガラス又は混合物に混合する工程を有してもよい。これらの成分は、前述したようにガラス体を作製する前のバッチの段階でガラス体の成分としてガラス体に導入することも可能であるが、ガラス体を作製してからこれらの添加物をガラス体の粉末に混合して導入する方がより効果的であり、より高い光触媒特性を持つガラスセラミックス焼結体や複合体を容易に得ることが可能になる。
(Addition of other ingredients)
Here, there is a step of mixing an additive containing one or more selected from the group consisting of N component, S component, F component, Cl component, Br component, and C component into the aforementioned crushed glass or mixture. It is also good. Although these components may be introduced into the glass body as components of the glass body at the stage of the batch before producing the glass body as described above, these additives may be added to the glass after the glass body is manufactured. It is more effective to mix and introduce into body powder, and it becomes possible to easily obtain a glass-ceramic sintered body or composite having higher photocatalytic properties.
 添加物の混合量は、ガラス体の組成等に応じ、適宜設定されてよい。上記の添加物の混合量は、ガラスセラミックス焼結体の光触媒機能を充分に向上できる点で、粉砕したガラス体又はその混合物に対する質量比で好ましくは0.01%以上であり、より好ましくは0.05%以上であり、最も好ましくは0.1%以上である。他方、過剰に添加すると光触媒特性が低下し易くなることから、添加量の混合量は、粉砕したガラス又はその混合物に対する質量比で好ましくは20.0%以下であり、より好ましくは10.0%以下であり、最も好ましくは5.0%以下である。 The mixing amount of the additive may be appropriately set according to the composition of the glass body and the like. The mixing amount of the above additives is preferably 0.01% or more, and more preferably 0 in a mass ratio with respect to the crushed glass body or a mixture thereof, in that the photocatalytic function of the glass ceramic sintered body can be sufficiently improved. It is at least 0.05%, most preferably at least 0.1%. On the other hand, when added in excess, the photocatalytic properties are apt to deteriorate, so the mixing amount of the addition amount is preferably 20.0% or less, more preferably 10.0% by mass ratio to the crushed glass or the mixture thereof. Or less, most preferably 5.0% or less.
 特に限定されないが、N成分はAlN、SiN等、S成分はNaS,Fe,CaS等、F成分はZrF、AlF、NaF、CaF等、Cl成分はNaCl、AgCl等、Br成分はNaBr等、C成分はTiC、SiC又はZrC等を用いることで、添加することができる。なお、添加剤の構成物は、一体的に添加してもよいし、独立に添加してもよい。 Although not particularly limited, the N component is AlN 3 , SiN 4 etc., the S component is NaS, Fe 2 S 3 , CaS 2 etc., the F component is ZrF 4 , AlF 3 , NaF, CaF 2 etc, the Cl component is NaCl, AgCl The Br component can be added by using NaBr or the like, and the C component can be added by using TiC, SiC, ZrC or the like. The components of the additive may be added integrally or independently.
 (金属元素成分の添加)
 また、Cu、Ag、Au、Pd、Pt、Ru、及びRhからなる群より選ばれる1種以上からなる金属元素成分を粉砕ガラス又は混合物に混合する工程を有してもよい。これらの成分は、前述したようにガラス体を作製する前のバッチの段階でガラス体の成分としてガラス体に導入することも可能であるが、ガラス体を作製してから金属元素成分をガラス体に混合して導入するとより効果的であり、より高い光触媒特性を持つガラスセラミックス焼結体や複合体を容易に得ることが可能になる。
(Addition of metal element component)
Moreover, you may have the process of mixing the metal element component which consists of 1 or more types chosen from the group which consists of Cu, Ag, Au, Pd, Pt, Ru, and Rh in grinding glass or a mixture. Although these components can be introduced into the glass as a component of the glass at the stage of the batch before producing the glass as described above, the metal element component is converted to the glass after the glass is produced. It is more effective to mix it and introduce it, and it becomes possible to easily obtain a glass ceramic sintered body or a composite having higher photocatalytic properties.
 金属元素成分の混合量は、ガラス体の組成等に応じ、適宜設定されてよい。上記の金属元素成分の混合量は、ガラスセラミックス焼結体やガラスセラミックス層の光触媒機能を充分に向上できる点で、粉砕したガラス体又はその混合物に対する質量比で好ましくは0.001%以上であり、より好ましくは0.005%以上であり、最も好ましくは0.01%以上である。他方、過剰に添加すると光触媒特性が低下し易くなることから、金属元素成分の混合量は、粉砕したガラス又はその混合物に対する質量比で好ましくは10.0%以下であり、より好ましくは5.0%以下であり、最も好ましくは3.0%以下である。なお、金属元素成分は、原料として例えばCuO、AgO、AuCl、PtCl等を用いてもよい。 The mixing amount of the metal element component may be appropriately set according to the composition of the glass body and the like. The mixing amount of the above-mentioned metal element component is preferably 0.001% or more by mass ratio to the crushed glass body or the mixture thereof in that the photocatalytic function of the glass ceramic sintered body or the glass ceramic layer can be sufficiently improved. More preferably, it is 0.005% or more, and most preferably 0.01% or more. On the other hand, when added in excess, the photocatalytic properties are likely to deteriorate, so the mixing amount of the metal element component is preferably 10.0% or less by mass ratio to the crushed glass or the mixture thereof, more preferably 5.0 % Or less, most preferably 3.0% or less. As the metal element component, for example, Cu 2 O, Ag 2 O, AuCl 3 , PtCl 4 or the like may be used as a raw material.
 金属元素成分の粒子径や形状は、ガラス体の組成、TiOの量、結晶型等に応じ、適宜設定されてよいが、ガラスセラミックス焼結体やガラスセラミックス層の光触媒機能を最大に発揮するには、金属元素成分の平均粒子径は、できるだけ小さい方がよい。従って、金属元素成分の平均粒子径の上限は、好ましくは5.0μmであり、より好ましくは1.0μmであり、最も好ましくは0.1μmである。 The particle diameter and shape of the metal element component may be appropriately set according to the composition of the glass body, the amount of TiO 2 , the crystal form, etc., but the photocatalytic function of the glass ceramic sintered body or the glass ceramic layer is maximally exhibited. The average particle diameter of the metal element component should be as small as possible. Therefore, the upper limit of the average particle size of the metal element component is preferably 5.0 μm, more preferably 1.0 μm, and most preferably 0.1 μm.
 (スラリ化)
 また、本発明の製造方法は、焼成工程でガラス体の粒子が溶け合って強固に結合するので、ガラス体の粒子自体がガラスセラミックスのバインダとしての役割を担うが、粉砕ガラスを任意の流動体中分散してスラリ状態にする工程を有してもよい。これにより、次の成形工程における成形を容易化できる。具体的には、粉砕ガラスに、有機バインダ、及び好ましくは溶剤を添加する。なお、ここで言う破砕ガラスは、前述の混合物を包含する概念である。
(Slurry)
Further, in the production method of the present invention, the particles of the glass body melt and bond firmly in the firing step, so the particles of the glass body itself play a role as a glass ceramic binder, but crushed glass can be used in any fluid It may have the process of disperse | distributing and making it a slurry state. This can facilitate molding in the next molding step. Specifically, an organic binder and preferably a solvent are added to the crushed glass. In addition, crushed glass said here is a concept including the above-mentioned mixture.
 有機バインダとしては、プレス成形やラバープレス、押出成形、射出成形用の成形助剤として汎用されている市販のバインダが使用できる。具体的には、アクリル樹脂、エチルセルロース、ポリビニルブチラール、メタクリル樹脂、ウレタン樹脂、ブチルメタアクリレート、ビニル系の共重合物等が挙げられる。スラリに対する有機バインダの含有率の下限値は、成形を充分に容易化できる点で、40質量%であることが好ましく、より好ましくは30質量%、最も好ましくは20質量%である。 As the organic binder, a commercially available binder that is generally used as a molding aid for press molding, rubber press, extrusion molding, or injection molding can be used. Specifically, acrylic resin, ethyl cellulose, polyvinyl butyral, methacrylic resin, urethane resin, butyl methacrylate, vinyl copolymer and the like can be mentioned. The lower limit value of the content of the organic binder with respect to the slurry is preferably 40% by mass, more preferably 30% by mass, and most preferably 20% by mass from the viewpoint of sufficiently facilitating the molding.
 溶剤としては、PVA、IPA、ブタノール等の公知の材料が使用でき、環境負荷を軽減できる点でアルコール又は水が好ましい。また、より均質な成形体を得るために、適量の分散剤を併用してもよく、乾燥する際の泡抜き効率を向上するために、適量の界面活性剤を併用してもよい。分散剤としては、特に限定されないが、例えば、トルエン、キシレン、ベンゼン、ヘキサン、シクロヘキサン等の炭化水素類、セロソルブ、カルビトール、テトラヒドロフラン(THF)、ジオキソラン等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸メチル、酢酸エチル、酢酸-n-ブチル、酢酸アミル等のエステル類等が挙げられ、これらは単独で又は2種以上を組み合わせて用いることができる。 As the solvent, known materials such as PVA, IPA, butanol and the like can be used, and alcohol or water is preferable in that the environmental load can be reduced. In addition, an appropriate amount of dispersant may be used in combination in order to obtain a more homogeneous molded product, and an appropriate amount of surfactant may be used in combination in order to improve the defoaming efficiency at the time of drying. The dispersant is not particularly limited, and examples thereof include hydrocarbons such as toluene, xylene, benzene, hexane and cyclohexane, cellosolve, ethers such as carbitol, tetrahydrofuran (THF) and dioxolane, acetone, methyl ethyl ketone and methyl isobutyl ketone And ketones such as cyclohexanone; esters such as methyl acetate, ethyl acetate, n-butyl acetate, amyl acetate and the like, and these can be used alone or in combination of two or more.
 [成形工程]
 ガラスセラミックス焼結体を作製する際に行われる成形工程は、粉砕ガラスを耐火物の上に堆積するか所望形状の成形体に成形する工程である。所望の形状にする場合は、破砕ガラスを型に入れて加圧するプレス成形を用いるのが好ましい。なお、ここで言う破砕ガラスは、前述の混合物を包含する概念である。
[Molding process]
The forming step carried out when producing the glass ceramic sintered body is a step of depositing crushed glass on a refractory or forming it into a formed body of a desired shape. In the case of desired shape, it is preferable to use press forming in which crushed glass is put in a mold and pressed. In addition, crushed glass said here is a concept including the above-mentioned mixture.
 [焼成工程]
 焼成工程は、成形体を加熱して焼成を行うことで、焼結体を作製する。これにより、粉砕したガラスが結晶状態のTiOを含まない場合は、ガラス体の粒子同士が結合すると同時に光触媒結晶相が生成し、光触媒結晶相を含有したガラスセラミックス焼結体及びガラスセラミックス層が形成される。一方、原料がガラス体とアナターゼ型TiO等との混合物の場合は、上述の現象が起きると同時に、ガラス相がアナターゼ型TiOの表面に被覆することで、光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶、特にアナターゼ型TiO結晶が形成され易くなり、より多くのアナターゼ型TiOがガラスセラミックス焼結体に生成される。従って、より高い光触媒活性を得ることができる。ここで、焼成工程の具体的な工程は特に限定されないが、成形体や後述の粉砕ガラス層に予熱を加える工程、成形体や粉砕ガラス層を設定温度へと徐々に昇温させる工程、成形体や粉砕ガラス層を設定温度に一定時間保持する工程、成形体や粉砕ガラス層を室温へと徐々に冷却する工程を含んでよい。
[Firing process]
In the firing step, the molded body is heated and fired to produce a sintered body. Thereby, when the crushed glass does not contain TiO 2 in a crystalline state, the particles of the glass body combine with each other and at the same time a photocatalytic crystal phase is generated, and the glass ceramic sintered body and the glass ceramic layer containing the photocatalytic crystal phase It is formed. On the other hand, when the raw material is a mixture of a glass body and anatase TiO 2 or the like, the above phenomenon occurs and the glass phase is coated on the surface of anatase TiO 2 to produce anatase type rutile having high photocatalytic activity, and rutile. One or more TiO 2 crystals selected from the type and the brookite type, in particular, anatase type TiO 2 crystals tend to be formed, and more anatase type TiO 2 is produced in the glass ceramic sintered body. Therefore, higher photocatalytic activity can be obtained. Here, although the specific process of the firing process is not particularly limited, a process of preheating the compact and the below-mentioned crushed glass layer, a process of gradually raising the compact and the crushed glass layer to the set temperature, and the compact And a step of holding the crushed glass layer at the set temperature for a certain period of time, and a step of gradually cooling the compact and the crushed glass layer to room temperature.
 (基材上への配置)
 ここで、複合体を製造する場合、焼成を行う前に粉砕ガラスを基材上に配置して粉砕ガラス層を形成する。これにより、より幅広い基材に対して、ガラスセラミックス層を形成でき、光触媒特性及び親水性を付与することができる。ここで用いられる基材としては特に限定されないが、TiO結晶と複合化し易い点で、ガラス、セラミックス等の無機材料や金属等を用いるのが好ましい。
(Placement on substrate)
Here, when manufacturing a composite, ground glass is arrange | positioned on a base material before baking, and a ground glass layer is formed. Thereby, a glass-ceramics layer can be formed with respect to a wider base material, and a photocatalytic characteristic and hydrophilicity can be provided. The base material used here is not particularly limited, but it is preferable to use an inorganic material such as glass and ceramics, metal and the like in terms of being easily complexed with TiO 2 crystals.
 粉砕ガラス層を基材上に配置するには、粉砕ガラスを含有するスラリを、所定の厚み・寸法で基材上に配置することが好ましい。これにより、光触媒特性を有する機能層が容易に基材上に形成されるため、所望の形状及び厚さのガラスセラミックス層を作製することができる。ここで、スラリを基材上に配置する手段としては、ドクターブレードやカレンダ法、スピンコートやディップコーティング等の塗布法、インクジェット、バブルジェット(登録商標)、オフセット等の印刷法、ダイコーター法、スプレー法、射出成型法、押し出し成形法、圧延法、プレス成形法、ロール成型法等が挙げられる。なお、粉砕ガラス層を成形する手段は、上述のスラリを用いる手段に限られず、基材に直接粉砕ガラスの粉末を載せる手段を用いてもよい。 In order to dispose the ground glass layer on the substrate, it is preferable to place a slurry containing the ground glass on the substrate with a predetermined thickness and size. Thereby, since the functional layer which has a photocatalytic property is easily formed on a base material, the glass-ceramics layer of desired shape and thickness can be produced. Here, as a means for arranging the slurry on the substrate, doctor blade, calender method, coating method such as spin coating or dip coating, ink jet, bubble jet (registered trademark), printing method such as offset, die coater method, A spray method, an injection molding method, an extrusion molding method, a rolling method, a press molding method, a roll molding method and the like can be mentioned. In addition, the means to shape | mold a crushed glass layer is not restricted to the means using the above-mentioned slurry, You may use the means which mounts the powder of crushed glass directly on a base material.
 (焼成)
 ガラスセラミックス焼結体を形成する場合の焼成工程における焼成の条件は、スラリがガラス体単体からなる場合は、ガラス体の組成に応じて適宜設定されてよいが、結晶状態のTiO等と混合する場合は、TiOの量、サイズ及び結晶型等を考慮する必要がある。また、この焼成工程は、原料となるガラス粉末から結晶が生成するプロセスであり、熱処理温度において、原料ガラスの結晶化条件に符合する必要がある。しかし、いずれの場合も、焼成温度が低すぎると所望の焼結体が得られないため、少なくともガラス体のガラス転移温度(Tg)より高い温度での焼成が必要となる。具体的に、焼成温度の下限は、ガラス体のガラス転移温度(Tg)以上であり、好ましくはTg+50℃以上であり、より好ましくはTg+100℃以上であり、最も好ましくはTg+150℃以上である。他方、焼成温度は、高すぎると、アナターゼ結晶相が他の結晶相に変わる等して大幅に減少する傾向が強くなる。従って、焼成温度の上限は、好ましくはガラス体のTg+600℃以下であり、より好ましくはTg+500℃以下であり、最も好ましくはTg+400℃以下である。
(Firing)
The conditions for firing in the firing step when forming a glass ceramic sintered body may be appropriately set according to the composition of the glass body when the slurry is composed of a single glass body, but it is mixed with TiO 2 etc. in a crystalline state. In this case, it is necessary to consider the amount, size, crystal form and the like of TiO 2 . Moreover, this baking process is a process in which a crystal | crystallization produces | generates from the glass powder used as a raw material, and it is necessary to correspond with the crystallization conditions of raw material glass in heat processing temperature. However, in any case, if the firing temperature is too low, a desired sintered body can not be obtained, and therefore, firing at a temperature higher than at least the glass transition temperature (Tg) of the glass body is required. Specifically, the lower limit of the firing temperature is not less than the glass transition temperature (Tg) of the glass body, preferably not less than Tg + 50 ° C., more preferably not less than Tg + 100 ° C., and most preferably not less than Tg + 150 ° C. On the other hand, if the firing temperature is too high, the anatase crystal phase tends to be greatly reduced, for example, changing to another crystal phase. Therefore, the upper limit of the firing temperature is preferably Tg + 600 ° C. or less of the glass body, more preferably Tg + 500 ° C. or less, and most preferably Tg + 400 ° C. or less.
 複合体を形成する場合の焼成工程における焼成の条件は、ガラス体の組成、混合する添加物の種類及び量等に応じ、適宜設定されてよい。具体的に、焼成時の雰囲気温度は、基材に配置された粉砕ガラス層の状態によって後述する二通りの制御を行うことができる。一方は、基材上に配置された粉砕ガラス層に所望の光触媒結晶相が既に生成している場合であり、例えば、前工程でガラス体又は粉砕ガラス層が熱処理されている場合が挙げられる。この場合の焼成温度は、1200℃以下の温度範囲で適宜選択できるが、焼成温度が1200℃を超えると、生成した光触媒結晶相が他の結晶相へと転移し易くなる。従って、焼成温度の上限は、好ましくは1200℃以下であり、より好ましくは1100℃以下であり、最も好ましくは1050℃以下である。他方は、基材上に配置された粉砕ガラス層が所望の光触媒結晶相を有していない場合であり、この場合は焼成とガラスの結晶化を同時に行う必要がある。この場合の焼成温度は、焼成時の雰囲気温度の下限は、ガラス体のガラス転移温度(Tg)であり、好ましくはTg+50℃、より好ましくはTg+100℃、最も好ましくはTg+150℃である。他方、焼成温度が高くなりすぎると光触媒結晶相が減少し光触媒特性が消失する傾向があるので、焼成温度の上限は、好ましくはガラス体のTg+600℃であり、より好ましくはTg+500℃であり、最も好ましくはTg+400℃である。 The conditions for firing in the firing step when forming a composite may be appropriately set according to the composition of the glass body, the type and amount of additives to be mixed, and the like. Concretely, the atmosphere temperature at the time of baking can perform two kinds of control mentioned later by the state of the grinding | polishing glass layer arrange | positioned at the base material. One is the case where the desired photocatalytic crystal phase has already been generated in the crushed glass layer disposed on the substrate, and for example, the case where the glass body or the crushed glass layer is heat-treated in the previous step can be mentioned. Although the calcination temperature in this case can be suitably selected in the temperature range of 1200 ° C. or less, when the calcination temperature exceeds 1200 ° C., the generated photocatalyst crystal phase is easily transformed to another crystal phase. Therefore, the upper limit of the firing temperature is preferably 1200 ° C. or less, more preferably 1100 ° C. or less, and most preferably 1050 ° C. or less. The other case is that the ground glass layer disposed on the substrate does not have the desired photocatalytic crystal phase, in which case it is necessary to simultaneously carry out the firing and the crystallization of the glass. In this case, the lower limit of the atmosphere temperature at the time of firing is the glass transition temperature (Tg) of the glass body, preferably Tg + 50 ° C, more preferably Tg + 100 ° C, and most preferably Tg + 150 ° C. On the other hand, when the calcination temperature is too high, the photocatalytic crystal phase tends to decrease and the photocatalytic properties tend to disappear, so the upper limit of the calcination temperature is preferably Tg + 600 ° C of the glass body, more preferably Tg + 500 ° C, Preferably it is Tg + 400 ° C.
 焼成工程における焼成時間の下限は、焼成温度に応じて設定する必要があるが、高い温度の場合は短く、低い温度の場合は、長く設定するのが好ましい。具体的に、ガラスセラミックス焼結体を作製する場合、好ましくは10分、より好ましくは20分、最も好ましくは30分を下限とする。また、複合体を作製する場合、好ましくは5分、より好ましくは10分、最も好ましくは20分を下限とする。これにより、焼成を充分に行うことができ、十分な量の結晶を析出することができる。一方、焼成時間が20時間を越えると、成形体や粉砕ガラス層に含まれるTiO結晶とガラス体との反応が進み、結晶粒径が小さくなり過ぎて、ガラスセラミックス焼結体やガラスセラミックス層の中に光触媒機能を発揮するために十分な大きさのTiO結晶が得られないおそれがある。従って、焼成時間の上限は、好ましくは20時間、より好ましくは19時間、最も好ましくは18時間とする。なお、ここで言う焼成時間とは、焼成工程のうち雰囲気温度が一定(例えば、上記設定温度)以上に保持されている時間の長さを指す。 The lower limit of the firing time in the firing step needs to be set according to the firing temperature, but is preferably short for high temperatures and long for low temperatures. Specifically, in the case of producing a glass ceramic sintered body, the lower limit is preferably 10 minutes, more preferably 20 minutes, and most preferably 30 minutes. In the case of producing a complex, the lower limit is preferably 5 minutes, more preferably 10 minutes, and most preferably 20 minutes. Thereby, the firing can be sufficiently performed, and a sufficient amount of crystals can be precipitated. On the other hand, if the firing time exceeds 20 hours, the reaction between the TiO 2 crystal contained in the compact and the crushed glass layer proceeds with the glass body, and the crystal grain size becomes too small, and the glass ceramic sintered body or glass ceramic layer There is a possibility that a TiO 2 crystal of a sufficient size can not be obtained to exhibit the photocatalytic function. Therefore, the upper limit of the firing time is preferably 20 hours, more preferably 19 hours, and most preferably 18 hours. In addition, baking time said here refers to the length of time during which atmospheric temperature is hold | maintained more than fixed (for example, said preset temperature) among baking processes.
 (脱脂)
 この焼成工程に先立ち、成形体が有機バインダを含むときには、成形体を350℃以上の温度に加熱(脱脂)することが好ましい。これにより、成形体や粉砕ガラス層に含まれていた有機バインダ等が分解され、ガス化して排出されるため、成形体や粉砕ガラス層から有機物を除去することができる。ここで、加熱温度の下限は、有機物を充分に除去できる点で、350℃であることが好ましく、より好ましくは380℃、最も好ましくは400℃である。
(Degreasing)
Prior to the firing step, when the formed body contains an organic binder, the formed body is preferably heated (degreased) to a temperature of 350 ° C. or higher. As a result, the organic binder and the like contained in the compact and the crushed glass layer are decomposed, gasified and discharged, so that the organic matter can be removed from the compact and the crushed glass layer. Here, the lower limit of the heating temperature is preferably 350 ° C., more preferably 380 ° C., and most preferably 400 ° C. in that the organic matter can be sufficiently removed.
 これらの脱脂及び焼成の工程は、ガス炉、マイクロ波炉、電気炉等の中で、空気交換しつつ行うことが好ましい。ただし、これに限られず、上記の工程を、不活性ガス雰囲気、還元ガス雰囲気、酸化ガス雰囲気にて行ってもよい。 It is preferable to carry out these steps of degreasing and firing while exchanging air in a gas furnace, a microwave furnace, an electric furnace or the like. However, the present invention is not limited to this, and the above steps may be performed in an inert gas atmosphere, a reducing gas atmosphere, or an oxidizing gas atmosphere.
 (表面処理)
 ガラスセラミックス焼結体および複合体の製造方法は、焼結体や焼成された複合体に、酸性もしくはアルカリ性の溶液への浸漬、又はエッチングを行う工程を更に有してもよい。酸性もしくはアルカリ性の溶液への浸漬によれば、ガラス相が溶けて焼結体や複合体の表面を凹凸状態にしたり多孔質の状態にしたりすることができ、光触媒結晶相の露出面積が増加するため、より高い光触媒特性を得ることができる。
(surface treatment)
The method for producing the glass ceramic sintered body and the composite may further include a step of immersing or etching the sintered body or the fired composite in an acidic or alkaline solution. By immersion in an acidic or alkaline solution, the glass phase melts, making it possible to make the surface of the sintered body or complex uneven or porous and increase the exposed area of the photocatalytic crystal phase. Therefore, higher photocatalytic properties can be obtained.
 浸漬に使用される酸性もしくはアルカリ性の溶液は、焼結体や焼成された複合体の光触媒結晶相以外のガラス相等を腐蝕可能であれば特に限定されず、例えばフッ素又は塩素を含む酸(フッ化水素酸、塩酸)であってよい。また、エッチングは、フッ化水素ガス、塩化水素ガス、フッ化水素酸、塩酸等を、焼結体の表面に吹き付けることで行ってよい。 The acidic or alkaline solution used for the immersion is not particularly limited as long as it can corrode glass phases other than the sintered compact and the photocatalyst crystal phase of the fired composite, and it is not particularly limited. It may be hydrogen acid, hydrochloric acid). The etching may be performed by spraying hydrogen fluoride gas, hydrogen chloride gas, hydrofluoric acid, hydrochloric acid or the like on the surface of the sintered body.
 ≪光触媒機能性成形体及び親水性成形体≫
 以上の製造方法で製造されるガラスセラミックス焼結体や複合体を含む光触媒機能性成形体は、外界に曝され有機物等が付着することで汚染したり、菌類が浮遊しやすい雰囲気等で使用されたりする機械、装置、器具、水質浄化等において有用である。例えば、タイル、窓枠、ランプ、建材等は、この光触媒機能性成形体を含んでいることが好ましい。
«Photocatalytic functional moldings and hydrophilic moldings»
Photocatalytic functional molded articles containing glass ceramic sintered bodies and composites manufactured by the above manufacturing methods are used in an atmosphere where contamination is caused by exposure to the outside and organic substances etc. adhere, and fungi tend to float It is useful in other machines, devices, instruments, water purification etc. For example, it is preferable that a tile, a window frame, a lamp, a building material, etc. contain this photocatalytic functional molded object.
 また、この製造方法で製造されるガラスセラミックス焼結体や複合体を含む親水性成形体も、本発明に包含される。かかる親水性成形体は、セルフクリーニング作用を有するため、建築用パネル、タイル及び窓等として有用である。 In addition, a hydrophilic molded body containing a sintered body of glass ceramic and a composite manufactured by this manufacturing method is also included in the present invention. Such hydrophilic molded articles are useful as construction panels, tiles, windows and the like because they have a self-cleaning action.
 次に、本発明の実施例を以下に示す。なお、以下の実施例は、あくまで例示の目的であり、これらの実施例にのみ限定されるものではない。
[ガラスセラミックス成形体の形成]
 本発明の実施例(No.A1~No.A122、No.B1~No.B12)及び比較例(No.a1、No.b1)に係るガラスセラミックス成形体の組成及び結晶化温度、並びに、これらのガラスセラミックス成形体の析出結晶相の種類を表1~表33に示す。
Next, examples of the present invention will be shown below. The following examples are for the purpose of illustration only, and are not limited to these examples.
[Formation of a glass-ceramic compact]
Composition and crystallization temperature of a glass-ceramic molded article according to Examples (No. A1 to No. A122, No. B1 to No. B12) and Comparative Examples (No. a1 and No. b1) of the present invention, and Tables 1 to 33 show the types of precipitated crystal phases of the glass-ceramics compact of the present invention.
 本発明の実施例(No.A1~No.A122、No.B1~No.B12)及び比較例(No.a1、No.b1)のガラスセラミックス成形体は、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、水酸化物、メタ燐酸化合物等の通常のガラスに使用される高純度の原料を選定し、表1~表33に示した各実施例及び比較例の組成の割合になるように秤量して均一に混合した後、白金坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で1200℃~1600℃の温度範囲で1~24時間溶解し、攪拌均質化して泡切れ等を行った後、1500℃以下に温度を下げて攪拌均質化してから金型に鋳込み、徐冷してガラスを作製した。得られたガラスについて、表1~表33の各実施例及び比較例に記載された結晶化温度に加熱し、記載された時間にわたり保持して結晶化を行った後、結晶化温度から冷却して目的の結晶相を有するガラスセラミックスを得た。また、実施例(No.B11)と組成は同じで、結晶化していないサンプルを用意し比較例とした。 The glass ceramic molded articles of the examples (No. A1 to No. A122, No. B1 to No. B12) of the present invention and the comparative examples (No. a1 and No. b1) respectively correspond to each other as the raw materials of the respective components. High purity raw materials used for ordinary glasses, such as oxides, hydroxides, carbonates, nitrates, fluorides, hydroxides and metaphosphoric acid compounds, are selected. After weighing and uniformly mixing so as to become the composition ratio of the example and the comparative example, it is put into a platinum crucible, and according to the degree of difficulty of melting of the glass composition, in an electric furnace at a temperature range of 1200 ° C to 1600 ° C After dissolving for 24 hours, stirring and homogenizing to defoam etc., the temperature was lowered to 1500 ° C. or less to stir and homogenize, then cast in a mold and gradually cooled to prepare a glass. The obtained glass was heated to the crystallization temperature described in each of Examples and Comparative Examples of Tables 1 to 33, held for crystallization for the time described, and cooled from the crystallization temperature. Thus, a glass ceramic having a desired crystal phase was obtained. Moreover, the composition was the same as Example (No. B11), and the sample which is not crystallized was prepared and it was set as the comparative example.
 ここで、実施例(No.A1~No.A122、No.B1~No.B12)及び比較例(No.a1、No.b1)のガラスセラミックス成形体の析出結晶相の種類は、X線回折装置(フィリップス社製、商品名:X’Pert-MPD)で同定した。 Here, the types of precipitated crystal phases of the glass-ceramics molded articles of Examples (No. A1 to No. A122, No. B1 to No. B12) and Comparative Examples (No. a1 and No. b1) are X-ray diffraction. It identified by the apparatus (Philips company make, brand name: X'Pert-MPD).
 また、実施例(No.A1~No.A122、No.B1~No.B12)の一部及び比較例(No.a1、No.b1)のガラスセラミックス成形体の光触媒特性は、光触媒製品技術協議会が策定した「光触媒性能評価法I」に準じて評価した。すなわち、ガラスセラミックス成形体試料の表面にメチレンブルーの溶液を滴下し、紫外線を照射した後の色を観察し、メチレンブルーの脱色の度合いによって光触媒の性能を評価した(メチレンブルー脱色法)。評価の結果、光触媒特性が認められた試料は○印、光触媒特性が認められなかった試料は×印で示した。 Moreover, the photocatalytic characteristics of the glass-ceramics molded object of a part of Example (No.A1-No.A122, No. B1-No. B12) and a comparative example (No. a1 and No. b1) are photocatalyst product technical consultation It evaluated according to "photocatalyst performance evaluation method I" formulated by the association. That is, a solution of methylene blue was dropped on the surface of the glass ceramic molded body sample, the color after irradiation with ultraviolet light was observed, and the performance of the photocatalyst was evaluated according to the degree of decolorization of methylene blue (methylene blue decolorization method). As a result of evaluation, the sample in which the photocatalytic property was recognized was shown by ○, and the sample in which the photocatalytic property was not recognized was shown by x.
 また、実施例の試料について、日本工業規格JIS R 1703-2:2007に基づき、メチレンブルーの分解活性指数(nmol/l/min)を求めた。一方で、比較のため、実施例A1の組成からなる結晶化工程を行う前のガラスについて、分解活性指数を同様に求めた。 Further, for the samples of the examples, the decomposition activity index (nmol / l / min) of methylene blue was determined based on Japanese Industrial Standard JIS R 1703-2: 2007. On the other hand, the decomposition activity index was similarly calculated | required about the glass before performing the crystallization process which consists of a composition of Example A1 for comparison.
 より具体的には、以下のような手順でメチレンブルーの分解活性指数を求めた。
 0.020mMのメチレンブルー水溶液(以下、吸着液とする)と0.010mMのメチレンブルー水溶液(以下、試験液とする)を調製した。
 そして、光触媒特性が認められた実施例の試料の表面と、石英管(内径10mm、高さ30mm)の一方の開口と、を高真空用シリコーングリース(東レ・ダウコーニング株式会社製)で固定し、石英管の他方の開口から吸着液を注入して試験セルを吸着液で満たした。その後、石英管の他方の開口と吸着液の液面とをカバーガラス(松浪ガラス工業株式会社製、商品名:白縁磨フロストNo.1)で覆い、光が当たらないようにしながら、12~24時間にわたって吸着液を試料に十分に吸着させた。吸着後の吸着液について、分光光度計(日本分光株式会社製、型番:V-650)を用いて波長664nmの光に対する吸光度を測定し、この吸着液の吸光度が試験液について同様に測定された吸光度よりも大きくなった時点で、吸着を完了させた。
 このとき、試験液について測定された吸光度(Abs(0))とメチレンブルー濃度(c(0)=10[μmol/L])の値から、下式(1)を用いて換算係数K[μmol/L]を求めた。
K=c(0)/Abs(0)  ・・(1)
 次いで、カバーガラスを取り外して石英管内の液を試験液に入れ替えた後、石英管の他方の開口と吸着液の液面とをカバーガラスで再度覆い、1.0mW/cmの紫外線を照射した。そして、紫外線を60分、120分及び180分間にわたり照射した後における波長664nmの光に対する吸光度を測定した。
 紫外光の照射を開始してt分後に測定された吸光度Abs(t)の値から、下式(2)を用いて、紫外光の照射を開始してt分後のメチレンブルー試験液の濃度C(t)[μmol/L]を求めた。ここで、Kは上述の換算係数である。
C(t)=K×Abs(t)  ・・(2)
 そして、上述により求められたC(t)を縦軸にとり、紫外線の照射時間t[min]を横軸にとってプロットを作成した。このとき、プロットから得られる直線の傾きa[μmol/L/min]を最小二乗法によって求め、下式(3)を用いて分解活性指数R[nmol/L/min]を求めた。
R=|a|×1000     ・・(3)
More specifically, the decomposition activity index of methylene blue was determined by the following procedure.
A 0.020 mM methylene blue aqueous solution (hereinafter referred to as an adsorption solution) and a 0.010 mM methylene blue aqueous solution (hereinafter referred to as a test solution) were prepared.
Then, the surface of the sample of the example in which the photocatalytic property is recognized and one opening of the quartz tube (inner diameter 10 mm, height 30 mm) are fixed with high vacuum silicone grease (made by Toray Dow Corning Co., Ltd.) The adsorption solution was injected from the other opening of the quartz tube to fill the test cell with the adsorption solution. After that, cover the other opening of the quartz tube and the liquid surface of the adsorption liquid with a cover glass (Matsunami Glass Industry Co., Ltd., trade name: White rim paste Frost No. 1), while preventing light from reaching 12 to The adsorption solution was sufficiently adsorbed to the sample for 24 hours. With respect to the adsorption solution after adsorption, the absorbance for light of wavelength 664 nm was measured using a spectrophotometer (manufactured by JASCO Corporation, model number: V-650), and the absorbance of this adsorption solution was similarly measured for the test solution. The adsorption was complete when it was greater than the absorbance.
At this time, from the values of the absorbance (Abs (0)) and the methylene blue concentration (c (0) = 10 [μmol / L]) measured for the test solution, the conversion factor K [μmol / I asked for L].
K = c (0) / Abs (0) .. (1)
Next, the cover glass was removed and the liquid in the quartz tube was replaced with the test solution, and then the other opening of the quartz tube and the liquid surface of the adsorption liquid were covered again with the cover glass and irradiated with ultraviolet light of 1.0 mW / cm 2 . And the light absorbency with respect to the light of wavelength 664nm after irradiating an ultraviolet-ray over 60 minutes for 120 minutes and 180 minutes was measured.
From the value of the absorbance Abs (t) measured t minutes after the start of the irradiation of ultraviolet light, the concentration C of the methylene blue test solution after t minutes of the irradiation of the ultraviolet light is started using the following equation (2) (T) [μmol / L] was determined. Here, K is the conversion factor described above.
C (t) = K × Abs (t) ··· (2)
Then, a plot is made with C (t) determined as described above on the vertical axis and the irradiation time t [min] of ultraviolet light on the horizontal axis. At this time, the slope a [μmol / L / min] of the straight line obtained from the plot was determined by the least squares method, and the decomposition activity index R [nmol / L / min] was determined using the following equation (3).
R = | a | × 1000 (3)
 一方、実施例に記載された組成のガラスについて、表36及び表37に記載された時間及び温度で結晶化工程を行い、ガラスセラミックスを形成した。このガラスセラミックスを、HF濃度が46%(質量百分率)のフッ酸溶液(和光純薬工業株式会社製)に3分間浸漬させ、エッチング工程を行った。結晶化工程及びエッチング工程を行う前後のガラスセラミックスに対して、上述のメチレンブルー分解試験を行い、結晶化工程及びエッチング工程の前後における分解活性指数(nmol/l/min)を求めた。 On the other hand, the glass of the composition described in the example was subjected to the crystallization process for the time and temperature described in Table 36 and Table 37 to form glass ceramics. The glass ceramic was immersed for 3 minutes in a hydrofluoric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) having an HF concentration of 46% (mass percentage) to carry out an etching step. The above-mentioned methylene blue decomposition test was performed on the glass ceramics before and after the crystallization step and the etching step to determine the decomposition activity index (nmol / l / min) before and after the crystallization step and the etching step.
 また、実施例(No.A1~No.A122、No.B1~No.B12)及び比較例(No.a1、No.b1)のガラスセラミックス成形体の親水性は、θ/2法によりサンプル表面と水滴との接触角を測定することにより評価した。すなわち、紫外線照射後のガラスセラミックスの表面に水を滴下し、ガラスセラミックス成形体の表面から水滴の頂点までの高さhと、水滴の試験片に接している面の半径rと、を協和界面科学社製の接触角計(CA-X)を用いて測定し、θ=2tan-1(h/r)の関係式より、水との接触角θを求めた。なお、表31と表32に示したのは紫外線照射30分後の結果である。 Moreover, the hydrophilicity of the glass-ceramics molded object of an Example (No.A1-No.A122, No.B1-No.B12) and a comparative example (No.a1 and No.b1) is a sample surface by the (theta) / 2 method. It evaluated by measuring the contact angle of water and a water droplet. That is, water is dropped on the surface of the glass ceramic after the ultraviolet irradiation, and the height h from the surface of the glass ceramic formed body to the top of the water droplet and the radius r of the surface of the water droplet in contact with the test piece The contact angle θ with water was determined from a relational expression of θ = 2 tan −1 (h / r) using a contact angle meter (CA-X) manufactured by Scientific Instruments. The results shown in Tables 31 and 32 are the results after 30 minutes of ultraviolet irradiation.
 また、実施例(No.A1~No.A122、No.B1~No.B12)のガラスセラミックス成形体に形成される結晶のうち、アナターゼ型TiO結晶の粒径は、X線回折装置(フィリップス社製、商品名:X’Pert-MPD)により得られるチャートの回折ピークの半値幅から、シェラーの式を用いて求めた。このとき、ガラスセラミックス成形体を形成する際の結晶化の温度及び時間を変化させ、各々の結晶化条件によって形成される結晶粒径を求めた。 Further, among the crystals formed in the glass-ceramics molded body of the examples (No. A1 to No. A122, No. B1 to No. B12), the particle diameter of the anatase type TiO 2 crystal is X-ray diffractometer (Philips It calculated | required using the Scheller equation from the half value width of the diffraction peak of the chart obtained by the company, brand name: X'Pert-MPD). At this time, the temperature and time of crystallization at the time of forming the glass-ceramics compact were changed, and the grain size of the crystal formed under the respective crystallization conditions was determined.
 また、実施例(No.A1~No.A122、No.B1~No.B12)のガラスセラミックス成形体の平均線膨張係数は、横型示差膨張測定方式の熱膨張計(ブルカー・エイエックスエス株式会社製、商品名:TD5000S)を用いて測定した。すなわち、結晶化温度から常温に冷却された後の、長さ20mm、直径4mmのガラスセラミックス成形体からなる試料について、毎分4℃の一定の速度で昇温して加熱を行いながら、試料の伸びと温度とを測定した。そして、試料の伸びと温度の関係から得られる熱膨張曲線を用いて、-30~+70℃の平均線膨張係数を求めた。 Moreover, the average linear expansion coefficient of the glass-ceramics molded object of an Example (No.A1-No.A122, No.B1-No.B12) is a thermal expansion meter (Bruker AXS Co., Ltd.) of a horizontal differential expansion measurement system. Manufactured by trade name: TD5000S). That is, a sample consisting of a glass ceramic compact having a length of 20 mm and a diameter of 4 mm after cooling from the crystallization temperature to normal temperature is heated while heating at a constant rate of 4 ° C. per minute. Elongation and temperature were measured. Then, using a thermal expansion curve obtained from the relationship between the elongation of the sample and the temperature, an average linear expansion coefficient of −30 to + 70 ° C. was determined.
 また、実施例(No.A1~No.A122、No.B1~No.B12)のガラスセラミックスの化学的耐久性(耐水性及び耐酸性)は、粒度425~600μmに破砕してメタノールで洗浄したガラスセラミックス試料を作製し、日本光学硝子工業会規格「光学ガラスの化学的耐久性の測定方法」JOGIS06-2008に準じて測定した。 Moreover, the chemical durability (water resistance and acid resistance) of the glass ceramics of the examples (No. A1 to No. A122, No. B1 to No. B12) was crushed to a particle size of 425 to 600 μm and washed with methanol Glass ceramic samples were prepared and measured according to Japan Optical Glass Industrial Standard "Measurement Method of Chemical Durability of Optical Glass" JOGIS 06-2008.
 耐水性は、ガラスセラミックス試料を白金かごの中に入れ、この白金かごを純水(pH6.5~7.5)の入った石英ガラス製の丸底フラスコに浸漬し、沸騰水浴中で60分間処理した後のガラス試料の減量率(%)を用いて測定した。ここで、減量率(wt%)が0.05未満の場合をクラス1、減量率が0.05~0.10未満の場合をクラス2、減量率が0.10~0.25未満の場合をクラス3、減量率が0.25~0.60未満の場合をクラス4、減量率が0.60~1.10未満の場合をクラス5、減量率が1.10以上の場合をクラス6としたものであり、クラスの数が小さいほど、ガラスの耐水性が優れていることを意味する。 Water resistance is achieved by immersing a glass-ceramic sample in a platinum cage and immersing the platinum cage in a quartz glass round bottom flask containing pure water (pH 6.5-7.5) for 60 minutes in a boiling water bath It measured using the weight loss rate (%) of the glass sample after processing. Here, if the weight loss rate (wt%) is less than 0.05, the class 1; if the weight loss rate is 0.05 to less than 0.10, the class 2 if the weight loss rate is less than 0.10 to 0.25 Class 3; weight loss rate 0.25 to less than 0.60 class 4; weight loss rate less than 0.60 to 1.10 class 5; weight loss rate 1.10 or more class 6 The smaller the number of classes, the better the water resistance of the glass.
 一方、耐酸性は、ガラスセラミックス試料を白金かごの中に入れ、この白金かごを0.01N硝酸水溶液の入った石英ガラス製の丸底フラスコに浸漬し、沸騰水浴中で60分間処理した後のガラス試料の減量率(%)を用いて測定した。ここで、減量率(wt%)が0.20未満の場合をクラス1、減量率が0.20~0.36未満の場合をクラス2、減量率が0.35~0.65未満の場合をクラス3、減量率が0.65~1.20未満の場合をクラス4、減量率が1.20~2.20未満の場合をクラス5、減量率が2.20以上の場合をクラス6としたものであり、クラスの数が小さいほど、ガラスの耐酸性が優れていることを意味する。 On the other hand, for acid resistance, a glass ceramic sample is placed in a platinum cage, and this platinum cage is immersed in a quartz glass round bottom flask containing 0.01 N nitric acid aqueous solution and treated in a boiling water bath for 60 minutes. It measured using the weight loss rate (%) of the glass sample. Here, if the weight loss rate (wt%) is less than 0.20, the class 1; if the weight loss rate is 0.20 to less than 0.36, the class 2; if the weight loss rate is less than 0.35 to 0.65 Class 3; weight loss rate 0.65 to less than 1.20 class 4; weight loss rate 1.20 to less than 2.20 class 5; weight loss rate 2.20 or more class 6 The smaller the number of classes, the better the acid resistance of the glass.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 例えば表1~表30に表されるように、実施例(No.A1~No.A122)をはじめとする各実施例のガラスセラミックス成形体の析出結晶相には、いずれも光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上ののTiO結晶が含まれていた。このことは、図1~図5に示した実施例(No.A1、No.A29、No.A45、No.A63、No.A80)のガラスセラミックス成形体についてのXRDパターンにおいて、入射角2θ=25.3°付近をはじめ、「●=TiO(アナターゼ)」で表される入射角にピークが生じていることからも明らかである。一方、比較例(No.a1)のガラスセラミックス成形体の析出結晶相には、アナターゼ型及びルチル型のTiO結晶は含まれていなかった。このため、これらの実施例に係る第1のガラスセラミックス成形体は、比較例(No.a1)のガラスセラミックス成形体に比べて、高い光触媒特性及び親水性を有することが推察された。 For example, as shown in Tables 1 to 30, all of the precipitated crystal phases of the glass-ceramics molded articles of Examples (No. A1 to No. A 122) and the like have high photocatalytic activity. It contained one or more TiO 2 crystals selected from type, rutile type and brookite type. This is because, in the XRD patterns of the glass-ceramics compacts of the examples (No. A1, No. A29, No. A45, No. A63, No. A80) shown in FIGS. It is also clear from the fact that peaks occur at incident angles represented by “● = TiO 2 (anatase)”, starting at around 25.3 °. On the other hand, the precipitated crystal phase of the glass-ceramics compact of Comparative Example (No. a1) did not contain anatase-type and rutile-type TiO 2 crystals. For this reason, it was guessed that the 1st glass-ceramics molded object which concerns on these Examples has high photocatalytic characteristics and hydrophilicity compared with the glass-ceramics molded object of a comparative example (No. a1).
 また、例えば表31~表33に表されるように、実施例(No.B1~No.B12)をはじめとする各実施例のガラスセラミックス成形体の析出結晶相には、いずれも光触媒活性の高いアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiOとRnTi(PO、又はTiOとRTi(PO結晶が含まれていた。このことは、図18に示した実施例(No.B1)のガラスセラミックス成形体についてのXRDパターンにおいて、入射角2θ=24°付近をはじめ、「●=TiO、□=NaTi(PO」で表される入射角にピークが生じていることからも明らかである。一方、比較例b1のガラスには、これらの結晶は含まれていなかった。このため、これらの実施例に係る第2のガラスセラミックス成形体は、比較例b1のガラス成形体に比べて、高い光触媒特性及び親水性を有することが推察された。 For example, as shown in Tables 31 to 33, all of the precipitated crystal phases of the glass-ceramics molded articles of the examples (No. B1 to No. B12) including the examples (No. B1 to No. B12) It contained one or more TiO 2 and RnTi 2 (PO 4 ) 3 crystals selected from high anatase type, rutile type and brookite type, or TiO 2 and R 2 Ti 4 (PO 4 ) 6 crystals. This is because, in the XRD pattern for the glass-ceramics compact of the example (No. B1) shown in FIG. 18, including the incident angle 2θ = 24 ° and so on, “● = TiO 2 , □ = NaTi 2 (PO 4 It is also apparent from the fact that a peak occurs at the incident angle represented by 3 ). On the other hand, the crystals of Comparative Example b1 did not contain these crystals. For this reason, it was guessed that the 2nd glass-ceramics molded object which concerns on these Examples has high photocatalytic characteristic and hydrophilicity compared with the glass molded object of Comparative example b1.
 ここで、各実施例のガラスセラミックス成形体の光触媒特性について上述したメチレンブルー脱色法で評価したところ、例えば表34に示すように、いずれのガラスセラミックス成形体もメチレンブルーの脱色現象が起こったことから、光触媒特性を有することが確認された。一方、結晶化する前のガラス体及び比較例(No.a1、No.b1)については、メチレンブルーの脱色が認められなかった。 Here, when the photocatalytic properties of the glass ceramic molded body of each example were evaluated by the above-described methylene blue decolorization method, for example, as shown in Table 34, the decolorization phenomenon of methylene blue occurred in all the glass ceramic molded bodies, It was confirmed to have photocatalytic properties. On the other hand, the decoloring of methylene blue was not recognized about the glass body before crystallizing, and a comparative example (No. a1, No. b1).
 また、これら実施例のガラスセラミックス成形体は、表35及び表36に示すように、分解活性指数が3.0nmol/l/min以上、より具体的には4.2nmol/l/min以上であった。一方、実施例(No.A1、No.A45、No.A100、No.A101)の結晶化工程前(熱処理前)のガラスは、分解活性指数が3.0nmol/l/minより小さかった。このため、これらの実施例に係るガラスセラミックス成形体は、結晶化工程を経ることで分解活性指数が高められるため、所望の光触媒特性を有することが明らかになった。なお、実施例(No.A1、No.A2、No.A63、No.A100~A104)における結晶化工程後のガラスセラミックス成形体の分解活性指数、及び、実施例(No.A1、No.A63)における結晶化工程前のガラスの分解活性指数を図6に示す。また、実施例(No.B1、B4、B6、B8)及び比較例(No.a2)における結晶化工程後のガラスセラミックス成形体の分解活性指数を図19に示す。 In addition, as shown in Tables 35 and 36, the glass ceramic molded articles of these examples have a decomposition activity index of 3.0 nmol / l / min or more, more specifically 4.2 nmol / l / min or more. The On the other hand, the glass before the crystallization process (before heat treatment) of the example (No. A1, No. A45, No. A100, No. A101) had a decomposition activity index smaller than 3.0 nmol / l / min. For this reason, since the decomposition activity index | exponent is raised by passing through a crystallization process, it became clear that the glass-ceramics molded object which concerns on these Examples has a desired photocatalytic characteristic. In addition, the decomposition activity index of the glass-ceramics molded object after the crystallization process in an Example (No.A1, No.A2, No.A63, No.A100-A104), and an Example (No.A1, No.A63) The decomposition activity index of the glass before the crystallization step in 2.) is shown in FIG. Moreover, the decomposition activity index of the glass-ceramics molded object after the crystallization process in an Example (No.B1, B4, B6, B8) and a comparative example (No. a2) is shown in FIG.
 エッチング工程を行った後の実施例(No.A45、No.A100、No.A107、No.A108)のガラスセラミックス成形体は、表36に示すように、分解活性指数が12.3~29.0nmol/l/minであり、エッチング工程前の分解活性指数に比べて高い値であった。そのため、これらの実施例に係るガラスセラミックス成形体は、エッチング工程を行うことで分解活性指数が高められるため、より高い光触媒特性を得ることが可能であることが明らかになった。なお、実施例(No.A100)のガラスセラミックス成形体について、エッチング工程の前後における分解活性指数を図7に示す。 As shown in Table 36, the glass-ceramic molded articles of Examples (No. A45, No. A100, No. A107, and No. A108) after the etching step have decomposition activity indices of 12.3 to 29. It was 0 nmol / l / min, which was a high value compared to the decomposition activity index before the etching step. Therefore, since the decomposition activity index | exponent is raised by performing an etching process, it became clear that the glass-ceramics molded object which concerns on these Examples can acquire a higher photocatalytic characteristic. In addition, the decomposition activity index | exponent before and behind an etching process is shown in FIG. 7 about the glass-ceramics molded object of an Example (No. A100).
 特に、実施例(No.A45、No.A107、No.A108)のガラスセラミックス成形体は、表36に示すように、結晶化工程及びエッチング工程を行う前後で、それぞれ異なる分解活性指数を示した。また、実施例(No.A107)のガラスセラミックス成形体は、熱処理条件が異なる場合にも異なる分解活性指数を示した。なお、実施例(No.A107、No.A45、No.A108)のガラスセラミックス成形体について、結晶化工程及びエッチング工程の前後における分解活性指数を、それぞれ図8~図10に示す。 In particular, as shown in Table 36, the glass ceramic molded articles of Examples (No. A45, No. A107, No. A108) exhibited different decomposition activity indexes before and after performing the crystallization step and the etching step, respectively. . Moreover, the glass-ceramics molded object of an Example (No.A107) showed a different decomposition activity index | exponent also when the heat processing conditions differ. The decomposition activity indices before and after the crystallization step and the etching step are shown in FIGS. 8 to 10 for the glass ceramic molded articles of Examples (No. A 107, No. A 45, and No. A 108).
 また、実施例のガラスセラミックス成形体について親水性を評価したところ、例えば表31、表32及び表34に示すように、紫外線の照射開始から2時間後には水との接触角が30°以下となることが確認された。特に、実施例(No.B1~B11)のガラスセラミックス成形体の親水性は、表31~表32に示すように、いずれも紫外線の照射開始から30分後には、接触角が10°以下になることが確認された。一方、比較例(No.a1)の紫外線の照射開始から2時間後における水との接触角は60°を超えており、比較例(No.b1)の紫外線の照射開始から30分後の水との接触角は50°を超えていた。これにより、これらの実施例に係るガラスセラミックス成形体は、比較例(a1及びb1)のガラスセラミックス成形体に比べて、高い親水性を有することが明らかになった。なお、一例として実施例A1及び実施例A63のガラスセラミックス成形体における、紫外線の照射時間と水接触角との関係を図11に示した。図11からも、紫外線の照射開始から2時間後には水接触角が30°以下になり、4時間後には水接触角が10°以下となることが明らかになった。また、実施例(No.B11)のガラスセラミックス成形体における、紫外線の照射時間と水接触角との関係を図20に示した。 In addition, when the hydrophilicity of the glass-ceramics compact of the example was evaluated, for example, as shown in Table 31, Table 32 and Table 34, the contact angle with water was 30 ° or less two hours after the start of the irradiation of ultraviolet rays. It was confirmed that In particular, as shown in Tables 31 to 32, the hydrophilicity of the glass-ceramics molded articles of Examples (Nos. B1 to B11) was such that the contact angle was 10 ° or less after 30 minutes from the start of the irradiation of ultraviolet light. It was confirmed that On the other hand, the contact angle with water after 2 hours from the start of irradiation of ultraviolet rays in the comparative example (No. a1) exceeds 60 °, and water after 30 minutes from the start of irradiation of ultraviolet rays in the comparative example (No. b1) The contact angle with was over 50 °. Thereby, it became clear that the glass-ceramics molded object which concerns on these Examples has high hydrophilicity compared with the glass-ceramics molded object of a comparative example (a1 and b1). In addition, the relationship of the irradiation time of an ultraviolet-ray and a water contact angle in the glass-ceramics molded object of Example A1 and Example A63 as an example was shown in FIG. It is also apparent from FIG. 11 that the water contact angle becomes 30 ° or less two hours after the start of the ultraviolet irradiation and the water contact angle becomes 10 ° or less after 4 hours. Moreover, the relationship of the irradiation time of an ultraviolet-ray and a water contact angle in the glass-ceramics molded object of an Example (No. B11) was shown in FIG.
 また、実施例のガラスセラミックス成形体における、アナターゼ型TiO結晶の粒径は、表31、表32、表37及び表38に示すように、5nm以上3μm以下、より具体的には25nm以上159nm以下であり、所望の範囲内であった。また、結晶化温度を700℃以上1000℃以下、結晶化時間を0.5時間以上60時間以下にしたときに、所望の結晶粒径を有するガラスセラミックス成形体が得られることも確認された。さらに、図12~図16及び図21に示すように、結晶化温度を高くし、結晶化温度を長くした場合に、ガラスセラミックス成形体の結晶粒径が大きくなることも明らかになった。 Further, as shown in Tables 31, 32, 37 and 38, the particle sizes of the anatase-type TiO 2 crystal in the glass ceramic molded body of the example are 5 nm or more and 3 μm or less, more specifically 25 nm or more and 159 nm It was below and was within the desired range. In addition, it was also confirmed that when the crystallization temperature is 700 ° C. or more and 1000 ° C. or less, and the crystallization time is 0.5 hours or more and 60 hours or less, a glass ceramic molded body having a desired crystal grain diameter can be obtained. Furthermore, as shown in FIG. 12 to FIG. 16 and FIG. 21, it was also revealed that when the crystallization temperature is increased and the crystallization temperature is increased, the crystal grain size of the glass-ceramics molded body is increased.
 また、実施例のガラスセラミックス成形体の平均線膨張係数は、図17及び図22に示すように、70×10-7/℃以下、より具体的には30×10-7/℃以下であり、所望の範囲内であった。 Further, as shown in FIGS. 17 and 22, the average linear expansion coefficient of the glass ceramic molded body of the example is 70 × 10 −7 / ° C. or less, more specifically 30 × 10 −7 / ° C. or less. , Was within the desired range.
 従って、これらの実施例に係るガラスセラミックス成形体では、アナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上の酸化チタン(TiO)をはじめとする無機チタン化合物の結晶が容易に析出し、しかも無機チタン化合物の結晶が均一にガラスに分散しているため、剥離による光触媒機能の損失がなく、耐久性の優れた光触媒機能体を得られることが確認された。 Therefore, in the glass ceramic molded body according to these examples, crystals of an inorganic titanium compound including one or more titanium oxides (TiO 2 ) selected from anatase type, rutile type and brookite type are easily precipitated, In addition, since crystals of the inorganic titanium compound are uniformly dispersed in the glass, it has been confirmed that there is no loss of the photocatalytic function due to peeling, and a photocatalytic function body excellent in durability can be obtained.
 また、実施例(No.A1~No.A122、No.B1~No.B12)のガラスセラミックスの耐水性及び耐酸性は、いずれも1級であった。 The water resistance and the acid resistance of the glass ceramics of the examples (No. A1 to No. A122, No. B1 to No. B12) were all first grade.
[ガラスセラミックス焼結体の作製]
 表39及び表40に、本発明の実施例(No.C1~No.C9)及び比較例(No.c1)のガラス体の組成、これらのガラス体を用いてガラスセラミックス焼結体を作製する際の条件及び結晶相を示す。
[Fabrication of glass ceramic sintered body]
Tables 39 and 40 show the compositions of the glass bodies of the examples (No. C1 to No. C9) and the comparative example (No. c1) of the present invention, and a glass ceramics sintered body is produced using these glass bodies. Conditions and crystalline phases are shown.
 本発明の実施例(No.C1~No.C9)及び比較例(No.c1)のガラスセラミックス焼結体は、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、フッ化物、水酸化物、メタリン酸化合物等の通常のガラスに使用される高純度の原料を選定し、各実施例及び比較例の組成の割合になるように秤量して均一に混合した後、白金坩堝又は石英坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で1350~1500℃の温度範囲で2~6時間溶解し、攪拌均質化してからガラス融液を流水中に滴下することで、粒状又はフレーク状のガラス体を得た。このガラス体をジェットミルで粉砕することで、粒子サイズが10μm以下の粉末ガラスを得た。この粉末ガラスを金型に充填し、一軸加圧したのち、冷間静水圧プレスを行い、ペレット状態にした。その後、電気炉に入れて、表39に示すような所定の温度と時間で焼成を行った。 The glass ceramic sintered bodies of Examples (No. C1 to No. C9) and Comparative Example (No. c1) of the present invention respectively correspond to oxides, hydroxides, carbonates, and the like corresponding to the raw materials of the respective components. Raw materials of high purity used for ordinary glass such as nitrate, fluoride, hydroxide and meta phosphoric acid compound were selected, weighed and uniformly mixed so as to become the composition ratio of each example and comparative example. After that, it is put into a platinum crucible or quartz crucible, dissolved for 2 to 6 hours in a temperature range of 1350 to 1500 ° C in an electric furnace according to the melting difficulty of the glass composition, stirred and homogenized, and then the glass melt is put into running water. By dropping, a granular or flaky glass body was obtained. The glass body was crushed by a jet mill to obtain a powder glass having a particle size of 10 μm or less. The powder glass was filled in a mold and uniaxially pressed, and then cold isostatic pressing was performed to obtain pellets. Thereafter, it was placed in an electric furnace, and firing was performed at a predetermined temperature and time as shown in Table 39.
 また、表41には、実施例(No.C10~No.C20)において、粉砕したガラス体A(5%SiO-24%P-65%TiO-3%NaO-1%WO-2%ZrO、Tg=640℃)と混合する他の物質、その配合量、並びに焼成条件及び生成される結晶相を示す。具体的には、粒子サイズが10μm以下のガラス体の粉末と添加物と混合物を更に均一に混合してから金型に充填し、一軸加圧した上で冷間静水圧プレスを行い、ペレットの状態にした。その後、電気炉に入れて、表41に示すような所定の温度と時間で焼成を行い、ガラスセラミックス焼結体を作製した。 In Table 41, the crushed glass body A (5% SiO 2 -24% P 2 O 5 -65% TiO 2 -3% Na 2 O-1) in Examples (No. C10 to No. C20). % WO 3 -2% ZrO 2 , Tg = 640 ° C.), their loadings, as well as the firing conditions and the crystalline phase produced. Specifically, the powder, additive and mixture of the glass body having a particle size of 10 μm or less are further uniformly mixed and then filled in a mold, uniaxially pressed, and then subjected to cold isostatic pressing to obtain pellets It was in the state. Thereafter, it was placed in an electric furnace and fired at a predetermined temperature and time as shown in Table 41 to produce a glass ceramic sintered body.
 ここで、実施例(No.C1~No.C20)及び比較例(No.c1)のガラスセラミックス焼結体に生成した結晶相の種類は、X線回折装置(フィリップス社製、商品名:X’Pert-MPD)で同定した。この結果を表40及び表41に示す。 Here, the types of crystal phases generated in the sintered glass ceramics of the example (No. C1 to No. C20) and the comparative example (No. c1) are X-ray diffractometer (manufactured by Philips, trade name: X) 'Pert-MPD) identified. The results are shown in Tables 40 and 41.
 また、実施例(No.C1~No.C20)及び比較例(No.c1)のガラスセラミックス焼結体の光触媒特性を、ガラスセラミックス成形体の実施例と同様に、光触媒製品技術協議会が策定した「光触媒性能評価法I」に準じて評価し(メチレンブルー法)、この結果を表40及び表41に示す。評価の結果、光触媒特性が認められた試料は○印、光触媒特性が認められなかった試料は×印で示した。 In addition, the photocatalytic properties of the glass ceramic sintered bodies of the example (No. C1 to No. C20) and the comparative example (No. c1) are formulated by the Photocatalyst Product Technology Council in the same manner as the example of the glass ceramic molded body It evaluated according to "photocatalyst performance evaluation method I" (methylene blue method), and this result is shown in Table 40 and Table 41. As a result of evaluation, the sample in which the photocatalytic property was recognized was shown by ○, and the sample in which the photocatalytic property was not recognized was shown by x.
 また、実施例(No.C1~No.C9)及び比較例(No.c1)のガラスセラミックス焼結体の親水性は、ガラスセラミックス成形体の実施例と同様に、θ/2法によりサンプル表面と水滴との接触角を測定することにより評価した。この結果を表40に示す。 Further, the hydrophilicity of the sintered glass ceramics of the example (No. C1 to No. C9) and the comparative example (No. c1) is similar to that of the example of the glass ceramic molded body by the θ / 2 method. It evaluated by measuring the contact angle of water and a water droplet. The results are shown in Table 40.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 表40に表されるように、実施例(No.C1~No.C9)のガラスセラミックス焼結体に生成した結晶相には、いずれも光触媒活性の高いアナターゼ型のTiO結晶が含まれていた。このことは、図23に示した実施例(No.C1)のガラスセラミックス焼結体についてのXRDパターンにおいて、入射角2θ=25.3°付近をはじめ、「●」で表される入射角にピークが生じていることからも明らかである。一方、比較例(No.c1)の成形体に生成した結晶相には、アナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上のTiO結晶は含まれていなかった。このため、実施例のガラスセラミックス焼結体は、比較例c1の成形体に比べて、高い光触媒特性及び親水性を有することが推察された。 As shown in Table 40, all of the crystal phases produced in the glass ceramic sintered bodies of Examples (No. C1 to No. C9) contain anatase type TiO 2 crystals having high photocatalytic activity. The This is because, in the XRD pattern of the sintered glass ceramic of the example (No. C1) shown in FIG. 23, the incident angle represented by “●” including the incident angle 2θ = 25.3 ° It is also clear from the occurrence of a peak. On the other hand, the crystal phase generated in the compact of Comparative Example (No. c1) did not contain one or more TiO 2 crystals selected from anatase type, rutile type and brookite type. For this reason, it was guessed that the glass-ceramics sintered compact of an Example has high photocatalytic characteristics and hydrophilicity compared with the molded object of the comparative example c1.
 また、表41に表されるように、実施例(No.C10~No.C20)のガラスセラミックス焼結体に生成した結晶相にも、光触媒活性の高いアナターゼ型のTiO結晶が含まれていた。このことは、図24に示した実施例(No.C10)の成形体についてのXRDパターンにおいて、入射角2θ=25.3°付近をはじめ、「●」で表される入射角にピークが生じていることからも明らかである。このため、実施例のガラスセラミックス焼結体は、比較例(No.c1)の成形体に比べて、表面に高い光触媒特性及び親水性を有することが推察された。 In addition, as shown in Table 41, the crystal phase formed in the glass ceramic sintered body of the example (No. C10 to No. C20) also contains anatase type TiO 2 crystal having high photocatalytic activity. The In the XRD pattern of the molded product of the example (No. C10) shown in FIG. 24, this causes peaks in the incident angle represented by “●” including the incident angle 2θ = 25.3 ° It is clear from the fact that For this reason, it was guessed that the glass-ceramics sintered compact of an Example has high photocatalytic characteristics and hydrophilicity in the surface compared with the molded object of a comparative example (No. c1).
 これらのうち、実施例(No.C1~No.C9)のガラスセラミックス焼結体の光触媒特性について上述したメチレンブルー脱色法で評価したところ、表40に示すように、いずれのガラスセラミックス焼結体もメチレンブルーの脱色現象が起こったことから、光触媒特性を有することが確認された。一方、比較例(No.c1)については、メチレンブルーの脱色が認められなかった。 Among the above, when the photocatalytic properties of the glass ceramic sintered bodies of Examples (No. C1 to No. C9) were evaluated by the above-described methylene blue decolorization method, as shown in Table 40, all the glass ceramic sintered bodies were also From the occurrence of the decolorization phenomenon of methylene blue, it was confirmed to have photocatalytic properties. On the other hand, in Comparative Example (No. c1), decoloration of methylene blue was not observed.
 また、実施例(No.C1~No.C9)のガラスセラミックス焼結体について親水性を評価したところ、表40に示すように、紫外線の照射開始から2時間後には水との接触角が30°以下となることが確認された。一方、比較例(No.c1)については、紫外線の照射開始から2時間後における水との接触角が60°を越えていた。これにより、実施例のガラスセラミックス焼結体は、比較例c1のガラスセラミックス焼結体に比べて、高い親水性を有することが明らかになった。 Moreover, when the hydrophilicity was evaluated about the glass-ceramics sintered compact of the Example (No.C1-No.C9), as shown in Table 40, a contact angle with water is 30 after 2 hours from the irradiation start of an ultraviolet-ray. It was confirmed to be less than or equal to °°. On the other hand, in the comparative example (No. c1), the contact angle with water two hours after the start of the irradiation of the ultraviolet light exceeded 60 °. Thereby, it became clear that the glass-ceramics sintered compact of an Example has high hydrophilicity compared with the glass-ceramics sintered compact of the comparative example c1.
 なお、実施例(No.C1~No.C20)のガラスセラミックス焼結体の光触媒特性について評価したところ、表40と表41に示されるように、いずれのガラスセラミックス焼結体も光触媒特性を有していることが確認された。また、これらのガラスセラミックス焼結体表面が剥離しにくく、光触媒反応による劣化もなく、高い耐久性を有することが明らかになった。 In addition, when the photocatalytic properties of the glass ceramic sintered bodies of Examples (No. C1 to No. C20) were evaluated, as shown in Table 40 and Table 41, any glass ceramic sintered body also has photocatalytic properties. It is confirmed that you are doing. Moreover, it became clear that these glass-ceramics sintered compact surfaces do not peel easily, there is also no deterioration by a photocatalytic reaction, and it has high durability.
 従って、本発明の実施例のガラスセラミックス焼結体では、耐久性に優れ且つアナターゼ型、ルチル型及びブルッカイト型から選ばれる1つ以上の酸化チタンの結晶が生成し易くなることが確認された。 Therefore, it was confirmed that in the glass ceramic sintered body of the example of the present invention, it is excellent in durability and easily forms crystals of one or more titanium oxides selected from anatase type, rutile type and brookite type.
≪複合体の形成≫
 本発明の実施例(No.D1~No.D16)及び比較例(No.d1)のガラス体の組成、これらのガラス体を用いて複合体を作製する際の焼成温度及び焼成時間、並びに、これらのガラス体を用いて作製した複合体のガラスセラミックス層における析出結晶相の種類、触媒活性の有無、及び水滴との接触角の結果を表42~表45に示す。
«Formation of complex»
Composition of the glass bodies of Examples (No. D1 to No. D16) and Comparative Example (No. d1) of the present invention, a baking temperature and a baking time for producing a composite using these glass bodies, and Tables 42 to 45 show the types of precipitated crystal phases, the presence or absence of catalytic activity, and the results of the contact angles with water droplets in the glass ceramic layer of the composite manufactured using these glass bodies.
 本発明の実施例(No.D1~No.D16)及び比較例(No.d1)のガラスセラミックス成形体は、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、フッ化物、水酸化物、メタリン酸化合物等の通常のガラスに使用される高純度の原料を選定し、各実施例及び比較例の組成の割合になるように秤量して均一に混合した後、白金坩堝又は石英坩堝に投入し、ガラス組成に応じて電気炉で1350~1500℃の温度範囲で2~6時間溶解し、攪拌均質化してからガラス融液を流水中に投下することで、粒状又はフレーク状のガラス体を得た。このガラス体をジェットミルで粉砕することで、粒子サイズが10μm以下の粉末ガラスを得た。 The glass-ceramics molded articles of Examples (No. D1 to No. D16) and Comparative Example (No. d1) of the present invention respectively have corresponding oxides, hydroxides, carbonates, and nitrates as raw materials of the respective components. Raw materials such as fluoride, hydroxide, metaphosphoric acid compound, etc., which are used for ordinary glass, are weighed and uniformly mixed so as to become the composition ratio of each example and comparative example According to the glass composition, it is melted in a temperature range of 1350 to 1500 ° C. for 2 to 6 hours according to the glass composition, stirred and homogenized, and then the glass melt is poured into running water, A granular or flaky glass body was obtained. The glass body was crushed by a jet mill to obtain a powder glass having a particle size of 10 μm or less.
 この粉末ガラスに、水に分散したアクリル樹脂を添加し、ボールミルにて攪拌することでスラリを調製した。このスラリにおける粉末ガラスの含有量は66質量%であり、アクリル樹脂の含有量は12質量%であった。ここで得られたスラリを、アルミナ基材上に塗布し、厚み50μmのスラリ層を得た。 An acrylic resin dispersed in water was added to the powder glass, and the slurry was prepared by stirring in a ball mill. The content of powdered glass in this slurry was 66% by mass, and the content of acrylic resin was 12% by mass. The slurry obtained here was apply | coated on the alumina base material, and the 50-micrometer-thick slurry layer was obtained.
 このスラリ層について、室温から600℃まで昇温し、この温度で2時間に亘り保持して脱脂工程を行った。その後、600℃から表42記載の温度まで昇温し、この温度で表42記載の時間に亘り保持して焼成工程を行った。焼成工程の後、室温まで降温してガラスセラミックス層を有する複合体を得た。 The temperature of the slurry layer was raised from room temperature to 600 ° C., and held at this temperature for 2 hours to carry out the degreasing step. Thereafter, the temperature was raised from 600 ° C. to the temperature shown in Table 42, and held at this temperature for the time described in Table 42 to carry out the firing step. After the firing step, the temperature was lowered to room temperature to obtain a composite having a glass ceramic layer.
 ここで、実施例(No.D1~No.D16)及び比較例(No.d1)のガラス体を用いた複合体のガラスセラミックス層に生成した結晶相の種類は、X線回折装置(フィリップス社製、商品名:X’Pert-MPD)で同定した。 Here, the type of the crystal phase generated in the glass ceramic layer of the composite using the glass bodies of Examples (No. D1 to No. D16) and Comparative Example (No. d1) is X-ray diffractometer (Philips Corporation) Manufactured by trade name: X'Pert-MPD).
 また、実施例(No.D1~No.D16)及び比較例(No.d1)のガラス体を用いた複合体の光触媒特性は、ガラスセラミックス成形体の実施例と同様に、光触媒製品技術協議会が策定した「光触媒性能評価法I」に準じて評価した(メチレンブルー法)。評価の結果、光触媒特性が認められた試料は○印、光触媒特性が認められなかった試料は×印で示した。 Further, the photocatalytic properties of the composites using the glass bodies of the example (No. D1 to No. D16) and the comparative example (No. d1) are similar to the example of the glass ceramic molded body, the photocatalyst product technology conference It evaluated according to "the photocatalytic performance evaluation method I" which M. formulated (methylene blue method). As a result of evaluation, the sample in which the photocatalytic property was recognized was shown by ○, and the sample in which the photocatalytic property was not recognized was shown by x.
 また、実施例(No.D1~No.D16)及び比較例(No.d1)のガラス体を用いた複合体の親水性は、ガラスセラミックス成形体の実施例と同様に、θ/2法によりサンプル表面と水滴との接触角を測定することにより評価した。 Moreover, the hydrophilicity of the composite using the glass body of the example (No. D1 to No. D16) and the comparative example (No. d1) is the same as the example of the glass ceramic molded body, according to the θ / 2 method. It evaluated by measuring the contact angle of a sample surface and a water droplet.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 表42~表45に表されるように、実施例(No.D1~No.D16)のガラス体を用いたガラスセラミックス層の析出結晶相には、いずれも光触媒活性の高いアナターゼ型のTiO結晶が含まれていた。このことは、図25に示した実施例(No.D1)の成形体についてのXRDパターンにおいて、入射角2θ=25.3°付近をはじめ、「●」で表される入射角にピークが生じていることからも明らかである。一方、比較例(No.d1)のガラスセラミックス層の析出結晶相には、TiO結晶は含まれていなかった。このため、本発明の実施例の複合体は、比較例d1の成形体に比べて、高い光触媒特性及び親水性を有することが推察された。 As shown in Tables 42 to 45, the precipitated crystal phases of the glass ceramic layers using the glass bodies of Examples (No. D1 to No. D16) were all anatase type TiO 2 having high photocatalytic activity. Crystals were included. In the XRD pattern of the molded product of the embodiment (No. D1) shown in FIG. 25, this causes a peak at the incident angle represented by “●” including the incident angle 2θ = 25.3 ° It is clear from the fact that On the other hand, the precipitated crystal phase of the glass-ceramics layer of the comparative example (No. d1) contained no TiO 2 crystal. For this reason, it was guessed that the composite of the Example of this invention has high photocatalytic property and hydrophilicity compared with the molded object of comparative example d1.
 また、実施例(No.D1~No.D16)のガラス体を用いたガラスセラミックス層の光触媒特性について、上述したメチレンブルー脱色法で評価したところ、表43及び表45に示すように、いずれのガラスセラミックス層もメチレンブルーの脱色現象が起こったことから、光触媒特性を有することが確認された。一方、比較例d1については、メチレンブルーの脱色が認められなかった。 Further, when the photocatalytic properties of the glass ceramic layer using the glass bodies of the examples (No. D1 to No. D16) were evaluated by the above-mentioned methylene blue decolorization method, as shown in Table 43 and Table 45, any glass It was confirmed that the ceramic layer also has photocatalytic properties, since the decolorization phenomenon of methylene blue has occurred. On the other hand, no bleaching of methylene blue was observed in Comparative Example d1.
 また、実施例(No.D1~No.D16)のガラス体を用いたガラスセラミックス層について親水性を評価したところ、表43及び表45に示すように、紫外線の照射開始から2時間後には水との接触角が30°以下となることが確認された。一方、比較例d1については、紫外線の照射開始から2時間後における水との接触角が60°を越えていた。これにより、本発明の実施例のガラスセラミックス層は、比較例d1のガラスセラミックス層に比べて、高い親水性を有することが明らかになった。 In addition, when the hydrophilicity of the glass ceramic layer using the glass body of the example (No. D1 to No. D16) was evaluated, as shown in Table 43 and Table 45, water was observed 2 hours after the start of the irradiation of ultraviolet rays. It was confirmed that the contact angle with it was 30 ° or less. On the other hand, in Comparative Example d1, the contact angle with water at 2 hours after the start of the ultraviolet irradiation exceeded 60 °. Thereby, it became clear that the glass-ceramics layer of the Example of this invention has high hydrophilicity compared with the glass-ceramics layer of the comparative example d1.
(実施例D17・D18)
 さらに、本発明の実施例D17及び実施例D18として、それぞれ実施例D1及び実施例D3と同じ組成のガラス体を用いて、先に結晶化したガラス粉末を基材に配置して、複合材を作製した。具体的に、実施例D1及び実施例D3の組成になるように原料を秤量して均一に混合した後、白金坩堝に投入し電気炉で1450℃の温度で3時間溶解し、攪拌均質化してからガラス融液を流水中に投下することで、粒状又はフレーク状のガラス体を得た。このガラス体を粒径が1mm以下になるように粉砕し、950℃で30分間熱処理を行い、ガラスセラミックスを得た。その後、このガラスセラミックスをジェットミルで粉砕して、粒子サイズが1μm以下の粉末ガラスセラミックスを得た。
Examples D17 and D18
Furthermore, as the example D17 and the example D18 of the present invention, the glass material crystallized earlier is placed on the substrate using the glass bodies of the same composition as the example D1 and the example D3, respectively, and the composite material is Made. Specifically, after the raw materials are weighed and uniformly mixed so as to have the compositions of Example D1 and Example D3, they are put into a platinum crucible, dissolved in an electric furnace at a temperature of 1450 ° C. for 3 hours, and stirred and homogenized By pouring the glass melt into flowing water, a granular or flake-like glass body was obtained. The glass body was pulverized to a particle size of 1 mm or less, and heat treated at 950 ° C. for 30 minutes to obtain glass ceramics. Thereafter, this glass ceramic was crushed by a jet mill to obtain powder glass ceramic having a particle size of 1 μm or less.
 この粉末ガラスセラミックスに、水に分散したアクリル樹脂を添加し、ボールミルにて攪拌することでスラリを調製した。このスラリにおける粉末ガラスセラミックスの含有量は60質量%であり、アクリル樹脂の含有量は10質量%であった。ここで得られたスラリを、アルミナ基材上に塗布し、厚み10μmのスラリ層を得た。 An acrylic resin dispersed in water was added to the powdered glass ceramics, and the slurry was prepared by stirring in a ball mill. The content of the powdered glass ceramic in this slurry was 60% by mass, and the content of the acrylic resin was 10% by mass. The slurry obtained here was apply | coated on the alumina base material, and the 10-micrometer-thick slurry layer was obtained.
 このスラリ層について、室温から600℃まで昇温し、この温度で2時間に亘り保持して脱脂工程を行った。その後、850℃の温度まで昇温し、この温度で30分に亘り保持して焼成工程を行った。焼成工程の後、室温まで降温してガラスセラミックス層を有する複合体を得た。 The temperature of the slurry layer was raised from room temperature to 600 ° C., and held at this temperature for 2 hours to carry out the degreasing step. Thereafter, the temperature was raised to a temperature of 850 ° C., and held at this temperature for 30 minutes to carry out a firing step. After the firing step, the temperature was lowered to room temperature to obtain a composite having a glass ceramic layer.
 実施例D17及び実施例D18の複合体について、上述の評価方法を用いて結晶相を評価したところ、いずれにおいても結晶相としてアナターゼ型TiO及びNaTi(POが析出していた。また、実施例D17及び実施例D18の複合体について、上述の評価方法を用いて光触媒特性及び親水性を評価したところ、メチレンブルーの脱色現象が起こり、水との接触角が30°以下となることから、光触媒特性を有し、高い親水性を有することが確認された。 The composite of Example D17 and Example D18, was evaluated crystalline phase by using the evaluation method described above, anatase TiO 2 and NaTi 2 (PO 4) as a crystalline phase in both 2 was precipitated. In addition, when the composites of Example D17 and Example D18 were evaluated for photocatalytic properties and hydrophilicity using the above-mentioned evaluation method, a phenomenon of decolorization of methylene blue occurred and the contact angle with water was 30 ° or less From these results, it was confirmed to have photocatalytic properties and high hydrophilicity.
 従って、本発明の実施例の複合体では、耐久性に優れ且つアナターゼ型の酸化チタン(TiO)をはじめとする無機チタン化合物が生成し易くなることが確認された。 Therefore, it was confirmed that the composite of the example of the present invention is excellent in the durability and easily forms an inorganic titanium compound including anatase type titanium oxide (TiO 2 ).
[ガラスセラミックスビーズの形成]
 本発明の実施例(No.E1~No.E7)及び比較例(No.e1)のガラスセラミックスビーズの組成及び結晶化温度、並びに、これらのガラスセラミックスビーズの析出結晶相の種類を表46~表47に示す。
[Formation of glass ceramic beads]
The composition and crystallization temperature of the glass ceramic beads of Examples (No. E1 to No. E7) and Comparative Example (No. e1) of the present invention, and types of precipitated crystal phases of these glass ceramic beads are shown in Table 46 to 46 It shows in Table 47.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 本発明の実施例(No.E1~No.E7)及び比較例(No.e1)のガラスセラミックスビーズは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、水酸化物、メタ燐酸化合物等の通常のガラスに使用される高純度の原料を選定し、表46~表47に示した各実施例及び比較例の組成の割合になるように秤量して均一にバッチを混合した。そのバッチを白金坩堝に投入し、電気炉で700℃に2時間保温してから1450℃に昇温し、その温度で4時間溶解した後、ガラス溶液を水に落としてミリオーダーのカレット状にした。その後、そのカレットをボールミルを用いて平均粒径200μmの球状に加工した。 The glass ceramic beads of Examples (No. E1 to No. E7) and Comparative Examples (No. e1) of the present invention respectively correspond to oxides, hydroxides, carbonates, nitrates, and the like as raw materials of the respective components. Raw materials of high purity used for ordinary glass such as fluorides, hydroxides and metaphosphoric acid compounds are selected and weighed so as to become the composition ratio of each example and comparative example shown in Table 46 to Table 47 The batch was mixed uniformly. The batch is put into a platinum crucible, kept at 700 ° C. for 2 hours in an electric furnace, heated to 1450 ° C., dissolved at that temperature for 4 hours, dropped into glass water, and cullet of milliorder did. Thereafter, the cullet was processed into a spherical shape with an average particle diameter of 200 μm using a ball mill.
 その後、表46~表47に記載した各実施例の結晶化条件で、前記球状体を熱処理し、ガラスセラミックスビーズを得た。 Thereafter, the spherical bodies were heat-treated under the crystallization conditions of the respective examples described in Tables 46 to 47 to obtain glass ceramic beads.
 ここで、実施例(No.E1~No.E7)及び比較例(No.e1)のガラスセラミックスビーズの析出結晶相の種類は、X線回折装置(フィリップス社製、商品名:X’Pert-MPD)で同定した。 Here, the types of precipitated crystal phases of the glass ceramic beads of Examples (No. E1 to No. E7) and Comparative Examples (No. e1) are X-ray diffractometer (manufactured by Philips, trade name: X'Pert- Identified by MPD).
 表46~表47に表されるように、実施例(No.E1~No.E7)のガラスセラミックスビーズの析出結晶相には、いずれも光触媒活性の高いTiO、チタンリン酸化合物、又はチタンリン酸アルカリ金属化合物の結晶が含まれていた。このことは、図26に示した実施例(No.1)のガラスセラミックス成形体についてのXRDパターンにおいて、入射角2θ=25°付近をはじめ、「○=TiO(アナターゼ)、■=NaTi(PO、△=TiP」で表される入射角にピークが生じていることからも明らかである。一方、比較例(No.e1)のガラスセラミックスビーズの析出結晶相には、これらの結晶は含まれていなかった。このため、本発明の実施例のガラスセラミックス成形体は、比較例のガラスセラミックス成形体に比べて、高い光触媒特性を有することが推察された。 As shown in Tables 46 to 47, in the precipitated crystal phases of the glass ceramic beads of Examples (No. E1 to No. E7), TiO 2 having a high photocatalytic activity, a titanium phosphate compound, or titanium phosphate is used. Crystals of the alkali metal compound were included. This is because, in the XRD pattern of the glass-ceramics compact of the example (No. 1) shown in FIG. 26, the incident angle 2θ = about 25 ° and the like, “○ = TiO 2 (anatase), ■ = NaTi 2 It is clear also from the fact that a peak is generated at the incident angle represented by (PO 4 ) 3 and Δ = TiP 2 O 7 . On the other hand, these crystals were not contained in the precipitation crystal phase of the glass-ceramics bead of the comparative example (No. e1). For this reason, it was guessed that the glass-ceramics molded object of the Example of this invention has a high photocatalytic characteristic compared with the glass-ceramics molded object of a comparative example.
 また、実施例(No.E1~No.E7)及び比較例(No.e1)のガラスセラミックスビーズについて次の方法で光触媒特性の有無を評価した。濃度10(mg/L)のメチレンブルー溶液に上記のガラスセラミックスビーズを入れて、その溶液を撹拌しながら10mW/cmの紫外線を30分間照射してメチレンブルーの脱色の度合いを観察した。脱色が認められるものを光触媒特性があると判断し、脱色が認められないものを光触媒特性がないと判断した。表46~表47に示すように、いずれのガラスセラミックスビーズもメチレンブルーの脱色現象が起こったことから、光触媒特性を有することが確認された。一方、結晶化する前のガラス体及び比較例(No.e1)については、メチレンブルーの脱色が認められなかった。 Further, with respect to the glass ceramic beads of Examples (No. E1 to No. E7) and Comparative Example (No. e1), the presence or absence of photocatalytic properties was evaluated by the following method. The above glass ceramic beads were placed in a methylene blue solution having a concentration of 10 (mg / L), and while stirring the solution, ultraviolet light of 10 mW / cm 2 was irradiated for 30 minutes to observe the degree of decolorization of methylene blue. It was judged that there was a photocatalytic property in the case where decoloring was observed, and it was judged that there was no photocatalytic property in the case where no decoloring was observed. As shown in Tables 46 to 47, it was confirmed that all the glass ceramic beads had photocatalytic properties because the decolorization phenomenon of methylene blue occurred. On the other hand, no color change of methylene blue was observed for the glass body before crystallization and the comparative example (No. e1).
 従って、本発明のガラスセラミックスビーズによって、アナターゼ型の酸化チタン(TiO)をはじめとする無機チタンリン酸化合物の結晶が容易に析出し、しかも無機チタン化合物の結晶が均一にガラスに分散しているため、剥離による光触媒機能の損失がなく、耐久性の優れた光触媒機能を有するガラスセラミックスビーズを得られることが確認された。また、実施例(No.E1~No.E7)のガラスセラミックスビーズの化学的耐久性(耐水性及び耐酸性)について、粒度425~600μmに破砕してメタノールで洗浄したガラスセラミックス試料を作製し、日本光学硝子工業会規格「光学ガラスの化学的耐久性の測定方法」JOGIS06-2008に準じて測定したところ、これらの耐水性及び耐酸性は、いずれも1級であった。 Therefore, crystals of an inorganic titanium phosphate compound such as anatase type titanium oxide (TiO 2 ) are easily precipitated by the glass ceramic beads of the present invention, and crystals of the inorganic titanium compound are uniformly dispersed in glass. Therefore, it was confirmed that glass ceramic beads having excellent durability and excellent photocatalytic function can be obtained without loss of photocatalytic function due to peeling. In addition, for the chemical durability (water resistance and acid resistance) of the glass ceramic beads of Examples (No. E1 to No. E7), a glass ceramic sample crushed to a particle size of 425 to 600 μm and washed with methanol was prepared, When measured according to Japan Optical Glass Industrial Standard "Method for measuring chemical durability of optical glass" JOGIS 06-2008, the water resistance and the acid resistance of these were both first grade.
[ガラスセラミックス繊維の形成]
 本発明の実施例(No.F1~No.F6)及び比較例(No.f1)のガラスセラミックス繊維の組成及び結晶化温度、並びに、これらのガラスセラミックス繊維に含まれる結晶相の種類を表48~表49に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例にのみ限定されるものではない。
[Formation of glass ceramic fiber]
Table 48 shows the compositions and crystallization temperatures of the glass ceramic fibers of the examples (No. F1 to No. F6) of the present invention and the comparative example (No. f1), and the types of crystal phases contained in these glass ceramic fibers.示 す shown in Table 49. The following examples are for the purpose of illustration only, and are not limited to these examples.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
 本発明の実施例(No.F1~No.F6)及び比較例(No.f1)のガラスセラミックス繊維は、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、水酸化物、メタ燐酸化合物等の通常のガラスに使用される高純度の原料を選定し、表48~表49に示した各実施例及び比較例の組成の割合になるように秤量して均一にバッチを混合した。そのバッチを白金坩堝に投入し、電気炉で700℃に2時間保温してから1450℃に昇温し、その温度で4時間溶解した。その後、白金坩堝を高速に回転させ、白金坩堝上部に設けた細孔からガラス溶液を流出させることにより、平均直径50μmの繊維に成形した。更にその繊維を1mm~2mmに切断し、光触媒特性の評価に用いた。 The glass-ceramic fibers of the examples (No. F1 to No. F6) and the comparative example (No. f1) of the present invention respectively have corresponding oxides, hydroxides, carbonates, nitrates, as raw materials of the respective components. Raw materials of high purity used for ordinary glasses such as fluorides, hydroxides and metaphosphoric acid compounds are selected, and weighed so as to become the composition ratio of each example and comparative example shown in Tables 48 to 49. The batch was mixed uniformly. The batch was put into a platinum crucible, kept in an electric furnace at 700 ° C. for 2 hours, heated to 1450 ° C., and melted at that temperature for 4 hours. Thereafter, the platinum crucible was rotated at high speed, and the glass solution was made to flow out from the pores provided on the top of the platinum crucible to form a fiber having an average diameter of 50 μm. Further, the fiber was cut into 1 mm to 2 mm and used for evaluation of photocatalytic properties.
 表48~表49に表されるように、実施例(No.F1~No.F6)のガラスセラミックス繊維の析出結晶相には、いずれも光触媒活性の高いTiO、チタンリン酸化合物、又はチタンリン酸アルカリ金属化合物の結晶が含まれていた。このことは、図27に示した実施例(No.1)のガラスセラミックス成形体についてのXRDパターンにおいて、入射角2θ=25°付近をはじめ、「○=TiO、■=NaTi(PO、△=TiP」で表される入射角にピークが生じていることからも明らかである。一方、比較例(No.1)のガラスセラミックス繊維の析出結晶相には、これらの結晶は含まれていなかった。このため、本発明の実施例のガラスセラミックス成形体は、比較例のガラスセラミックス成形体に比べて、高い光触媒特性を有することが推察された。ここで、実施例(No.F1~No.F6)及び比較例(No.f1)のガラスセラミックス繊維の析出結晶相の種類は、X線回折装置(フィリップス社製、商品名:X’Pert-MPD)で同定した。 As shown in Tables 48 to 49, in the precipitated crystal phases of the glass ceramic fibers of the examples (No. F1 to No. F6), TiO 2 having a high photocatalytic activity, a titanium phosphate compound, or titanium phosphate is used. Crystals of the alkali metal compound were included. This is because, in the XRD pattern of the glass-ceramics compact of the example (No. 1) shown in FIG. 27, the incident angle 2θ = about 25 ° and the like, “○ = TiO 2 , ■ = NaTi 2 (PO 4 It is also apparent from the fact that a peak is generated at the incident angle represented by 3 ), Δ = TiP 2 O 7 ". On the other hand, these crystals were not contained in the precipitation crystal phase of the glass-ceramic fiber of a comparative example (No. 1). For this reason, it was guessed that the glass-ceramics molded object of the Example of this invention has a high photocatalytic characteristic compared with the glass-ceramics molded object of a comparative example. Here, the types of precipitated crystal phases of the glass ceramic fibers of the example (No. F1 to No. F6) and the comparative example (No. f1) are X-ray diffractometer (manufactured by Philips, trade name: X'Pert- Identified by MPD).
 また、実施例(No.F1~No.F6)及び比較例(No.f1)のガラスセラミックス繊維について次の方法で光触媒特性の有無を評価した。濃度10(mg/L)のメチレンブルー溶液にガラスセラミックス繊維を入れて、その溶液を撹拌しながら10mW/cmの紫外線を30分間照射してメチレンブルーの脱色の度合いを観察した。脱色が認められるものを光触媒特性があると判断し、脱色が認められないものを光触媒特性がないと判断した。表48~表49に示すように、いずれのガラスセラミックス繊維もメチレンブルーの脱色現象が起こったことから、光触媒特性を有することが確認された。一方、結晶化する前のガラス繊維及び比較例(No.f1)については、メチレンブルーの脱色が認められなかった。また、実施例(No.F1~No.F6)のガラスセラミックス繊維の化学的耐久性(耐水性及び耐酸性)について、粒度425~600μmに破砕してメタノールで洗浄したガラスセラミックス試料を作製し、日本光学硝子工業会規格「光学ガラスの化学的耐久性の測定方法」JOGIS06-2008に準じて測定したところ、これらの耐水性及び耐酸性は、いずれも1級であった。 Further, the presence or absence of photocatalytic properties was evaluated for the glass ceramic fibers of the examples (No. F1 to No. F6) and the comparative example (No. f1) by the following method. A glass ceramic fiber was placed in a methylene blue solution having a concentration of 10 (mg / L), and while stirring the solution, ultraviolet light of 10 mW / cm 2 was irradiated for 30 minutes to observe the degree of decolorization of methylene blue. It was judged that there was a photocatalytic property in the case where decoloring was observed, and it was judged that there was no photocatalytic property in the case where no decoloring was observed. As shown in Tables 48 to 49, it was confirmed that all of the glass-ceramic fibers had photocatalytic properties since the decolorization phenomenon of methylene blue occurred. On the other hand, for the glass fiber before crystallization and the comparative example (No. f1), no decoloration of methylene blue was observed. In addition, for the chemical durability (water resistance and acid resistance) of the glass ceramic fibers of the examples (No. F1 to No. F6), a glass ceramic sample crushed to a particle size of 425 to 600 μm and washed with methanol was prepared, When measured according to Japan Optical Glass Industrial Standard "Method for measuring chemical durability of optical glass" JOGIS 06-2008, the water resistance and the acid resistance of these were both first grade.
 従って、本発明のガラスセラミックス繊維によって、光触媒特性を有する結晶相が容易に析出し、しかも該結晶が繊維の内部と表面に均一に分散しているため、剥離による光触媒機能の損失がなく、耐久性の優れた光触媒機能を有するガラスセラミックス繊維を得られることが確認された。 Therefore, by the glass ceramic fiber of the present invention, the crystal phase having photocatalytic properties is easily precipitated, and the crystal is uniformly dispersed in the inside and the surface of the fiber, so there is no loss of photocatalytic function by peeling off It was confirmed that a glass ceramic fiber having an excellent photocatalytic function can be obtained.
 以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。 Although the present invention has been described in detail for the purpose of illustration, the present embodiment is for the purpose of illustration only, and many modifications can be made by those skilled in the art without departing from the spirit and scope of the present invention. Will be understood.

Claims (25)

  1.  酸化物換算組成のガラスセラミックス全物質量に対して、モル%でTiO成分を15.0%以上95.0%以下、並びにP成分及び/又はSiO成分を3.0%以上85.0%以下含有するガラスセラミックス。 15.0% or more and 95.0% or less of the TiO 2 component in mol% with respect to the total mass of the glass ceramic composition in oxide conversion, and 3.0% or more of the P 2 O 5 component and / or the SiO 2 component Glass-ceramics containing 85.0% or less.
  2.  酸化物換算組成のガラスセラミックス全物質量に対して、モル%で
    LiO成分  0~40.0%、及び/又は
    NaO成分  0~40.0%、及び/又は
    O成分  0~40.0%、及び/又は
    RbO成分  0~10.0%、及び/又は
    CsO成分  0~10.0%
    の各成分をさらに含有する請求項1記載のガラスセラミックス。
    0 to 40.0% of Li 2 O component and / or 0 to 40.0% of Na 2 O component and / or K 2 O component in mol% with respect to the total mass of the glass ceramic of the oxide conversion composition ~ 40.0%, and / or Rb 2 O component 0 to 10.0%, and / or Cs 2 O component 0 to 10.0%
    The glass ceramic according to claim 1, further comprising each component of
  3.  酸化物換算組成のガラスセラミックス全物質量に対して、モル%で
    MgO成分  0~40.0%、及び/又は
    CaO成分  0~40.0%、及び/又は
    SrO成分  0~40.0%、及び/又は
    BaO成分  0~40.0%、及び/又は
    ZnO成分  0~60.0%
    の各成分をさらに含有する請求項1または2いずれか記載のガラスセラミックス
    0 to 40.0% of MgO component and / or 0 to 40.0% of CaO component, and / or 0 to 40.0% of SrO component in mol% with respect to the total mass of the glass ceramic in the oxide conversion composition And / or BaO component 0 to 40.0%, and / or ZnO component 0 to 60.0%
    The glass ceramic according to any one of claims 1 or 2, further comprising each component of
  4.  酸化物換算組成のガラスセラミックス全物質量に対して、モル%で
    SiO成分  0~70.0%、及び/又は
    GeO成分  0~60.0%
    の各成分をさらに含有する請求項1から3いずれか記載のガラスセラミックス。
    SiO 2 component 0 to 70.0% and / or GeO 2 component 0 to 60.0% in mol% with respect to the total mass of the glass ceramic of the oxide conversion composition
    The glass ceramic according to any one of claims 1 to 3, further comprising each component of
  5.  酸化物換算組成のガラスセラミックス全物質量に対して、モル%で
    成分  0~40.0%、及び/又は
    Al成分  0~30.0%、及び/又は
    Ga成分  0~30.0%、及び/又は
    In成分  0~10.0%
    の各成分をさらに含有する請求項1から4いずれか記載のガラスセラミックス。
    0 to 40.0% of B 2 O 3 component and / or 0 to 30.0% of Al 2 O 3 component, and / or Ga 2 O in mol% with respect to the total mass of the glass ceramic of the composition in oxide conversion Three components 0 to 30.0% and / or In 2 O 3 components 0 to 10.0%
    The glass ceramic according to any one of claims 1 to 4, further comprising each component of
  6.  酸化物換算組成のガラスセラミックス全物質量に対して、モル%で
    ZrO成分  0~20.0%、及び/又は
    SnO成分  0~10.0%
    の各成分をさらに含有する請求項1から5いずれか記載のガラスセラミックス。
    ZrO 2 component 0 to 20.0%, and / or SnO component 0 to 10.0% in mol%, based on the total mass of the glass ceramic of the oxide conversion composition
    The glass ceramic according to any one of claims 1 to 5, further comprising each component of
  7.  酸化物換算組成のガラスセラミックス全物質量に対して、モル%で
    Nb成分  0~50.0%、及び/又は
    Ta成分  0~50.0%、及び/又は
    WO成分  0~50.0%、及び/又は
    MoO成分  0~50.0%
    の各成分をさらに含有する請求項1から6のいずれか記載のガラスセラミックス。
    Nb 2 O 5 component 0 to 50.0%, and / or Ta 2 O 5 component 0 to 50.0%, and / or WO 3 component in mole% with respect to the total mass of the glass ceramic of the oxide conversion composition 0 to 50.0% and / or MoO 3 component 0 to 50.0%
    The glass ceramic according to any one of claims 1 to 6, further comprising each component of
  8.  酸化物換算組成のガラスセラミックス全物質量に対して、モル%で
    Bi成分  0~20.0%、及び/又は
    TeO成分  0~20.0%、及び/又は
    Ln成分(式中、LnはLa、Gd、Y、Ce、Nd、Dy、Yb及びLuからなる群より選択される1種以上、Ceを除く各成分についてはa=2且つb=3、Ceについてはa=1且つb=2とする)  合計で0~30.0%、及び/又は
    成分(式中、MはV、Cr、Mn、Fe、Co、Niからなる群より選択される1種以上とし、x及びyはそれぞれx:y=2:(Mの価数)を満たす最小の自然数とする)  合計で0~10.0%、及び/又は
    As成分及び/又はSb成分  合計で0~5.0%
    の各成分をさらに含有する請求項1から7いずれか記載のガラスセラミックス。
    0 to 20.0% of Bi 2 O 3 component and / or 0 to 20.0% of TeO 2 component and / or Ln a O b component in mol% with respect to the total mass of the glass ceramic of the oxide conversion composition (Wherein, Ln is at least one selected from the group consisting of La, Gd, Y, Ce, Nd, Dy, Yb and Lu, a = 2 and b = 3 for each component except Ce, and Ce a = 1 and b = 2) 0 to 30.0% in total and / or M x O y component (wherein, M is selected from the group consisting of V, Cr, Mn, Fe, Co, Ni) And x and y are each a minimum natural number that satisfies x: y = 2 (valence of M). 0 to 10.0% in total, and / or As 2 O 3 component and / or Or 0 to 5.0% in total of Sb 2 O 3 components
    The glass ceramic according to any one of claims 1 to 7, further comprising each component of
  9.  酸化物換算組成のガラスセラミックス全物質量に対して、モル%でSiO及びGeOからなる群より選択される少なくとも1種以上の成分を0.1%以上60.0%以下含有する請求項1から8いずれか記載のガラスセラミックス。 0.1% or more and 60.0% or less of at least one or more components selected from the group consisting of SiO 2 and GeO 2 in mol% with respect to the total mass of the glass ceramic having the composition in terms of oxide The glass ceramic according to any one of 1 to 8.
  10.  酸化物換算組成のガラスセラミックス全物質量に対して、モル%でTiO成分を15.0%以上88.9%以下、及びP成分を11.0%以上84.9%以下含有し、RnO成分及びRO成分からなる群より選択される1種以上の成分を0.1%以上60.0%以下含有する請求項1から8いずれか記載のガラスセラミックス(式中、RnはLi、Na、K、Rb、Csからなる群より選択される1種以上とし、RはMg、Ca、Sr、Ba、Znからなる群より選択される1種以上とする)。 Containing 15.0% or more and 88.9% or less of TiO 2 component and 11.0% or more and 84.9% or less of P 2 O 5 component in mol% with respect to the total mass of the glass ceramic of the composition in oxide conversion The glass ceramic according to any one of claims 1 to 8, wherein the glass ceramic comprises one or more components selected from the group consisting of Rn 2 O components and R 1 O components in an amount of 0.1% to 60.0%. And Rn is at least one selected from the group consisting of Li, Na, K, Rb and Cs, and R 1 is at least one selected from the group consisting of Mg, Ca, Sr, Ba and Zn).
  11.  酸化物換算組成のガラスセラミックス全物質量に対して、モル%でTiO成分を15.0%以上88.9%以下、及びP成分を11.0%以上84.9%以下含有し、Nb成分、Ta成分、WO成分、及びMoO成分からなる群より選択される1種以上の成分を0.1%以上50.0%以下含有する請求項1から8いずれか記載のガラスセラミックス。 Containing 15.0% or more and 88.9% or less of TiO 2 component and 11.0% or more and 84.9% or less of P 2 O 5 component in mol% with respect to the total mass of the glass ceramic of the composition in oxide conversion Or 0.1% to 50.0% of one or more components selected from the group consisting of Nb 2 O 5 components, Ta 2 O 5 components, WO 3 components, and MoO 3 components. The glass ceramic according to any one of 8.
  12.  酸化物換算組成のガラスセラミックス全物質量に対して、モル%でTiO成分を15.0%以上88.9%以下、及びP成分を11.0%以上84.9%以下含有し、ZrO成分及びSnO成分からなる群より選択される1種以上の成分を0.1%以上20.0%以下含有する請求項1から8いずれか記載のガラスセラミックス。 Containing 15.0% or more and 88.9% or less of TiO 2 component and 11.0% or more and 84.9% or less of P 2 O 5 component in mol% with respect to the total mass of the glass ceramic of the composition in oxide conversion The glass ceramic according to any one of claims 1 to 8, further comprising at least 0.1% and at most 20.0% of at least one component selected from the group consisting of a ZrO 2 component and a SnO component.
  13.  酸化物換算組成のガラスセラミックス全物質量に対して、モル%でTiO成分を15.0%以上88.9%以下、及びP成分を11.0%以上84.9%以下含有し、B成分、Al成分、Ga成分、及びIn成分からなる群より選択される1種以上の成分を0.1%以上50.0%以下含有する請求項1から8いずれか記載のガラスセラミックス。 Containing 15.0% or more and 88.9% or less of TiO 2 component and 11.0% or more and 84.9% or less of P 2 O 5 component in mol% with respect to the total mass of the glass ceramic of the composition in oxide conversion And 0.1% to 50.0% of one or more components selected from the group consisting of B 2 O 3 components, Al 2 O 3 components, Ga 2 O 3 components, and In 2 O 3 components The glass ceramic according to any one of claims 1 to 8.
  14.  酸化物換算組成のガラス全物質量に対して、モル%でTiO成分を15.0~95.0%、SiO成分及び/又はP成分を3.0%~70.0%、RnO成分及び/又はRO成分を0.1~60%、(式中、RnはLi、Na、K、Rb、Csから選ばれる1種以上とし、RはBe、Mg、Ca、Sr、Baから選ばれる1種以上とする)含有する請求項1から8いずれか記載のガラスセラミックス。 15.0-95.0% of the TiO 2 component in mol% with respect to the total glass mass of the oxide conversion composition, 3.0% to 70.0% of the SiO 2 component and / or the P 2 O 5 component And Rn 2 O component and / or R 2 O component is 0.1 to 60%, wherein Rn is at least one selected from Li, Na, K, Rb and Cs, R 2 is Be, Mg, The glass ceramic according to any one of claims 1 to 8, containing at least one selected from Ca, Sr and Ba.
  15.  F成分、Cl成分、Br成分、S成分、N成分、及びC成分からなる群より選ばれる少なくとも1種以上の非金属元素成分を、酸化物換算組成のガラスセラミックス全質量に対する外割り質量%で0~10.0%含み、更に、Cu、Ag、Au、Pd、Pt、Ru、及びRhからなる群より選ばれる少なくとも1種の金属元素成分を、酸化物換算組成のガラスセラミックス全質量に対する外割り質量%で0~10.0%含む請求項1から14いずれか記載のガラスセラミックス。 At least one nonmetal element component selected from the group consisting of F component, Cl component, Br component, S component, N component, and C component, in an external split mass% with respect to the total mass of the glass ceramic of the oxide conversion composition Further, at least one metal element component selected from the group consisting of Cu, Ag, Au, Pd, Pt, Ru, and Rh, containing 0 to 10.0%, is added to the total weight of the glass ceramic having the oxide conversion composition. The glass ceramic according to any one of claims 1 to 14, containing 0 to 10.0% by mass fraction.
  16.  結晶相として、TiO(アナターゼ型TiO、ルチル型TiO、及びブルッカイト型TiOのうちいずれか1以上を含む)、TiP、(TiO)、RnTi(PO、及びRTi(PO、並びにこれらの固溶体のうち1種以上が含まれている請求項1から15いずれか記載のガラスセラミックス。
    (式中、RnはLi、Na、K、Rb、Csから選ばれる1種以上とし、RはBe、Mg、Ca、Sr、Baから選ばれる1種以上とする)
    As a crystal phase, TiO 2 (including any one or more of anatase TiO 2 , rutile TiO 2 , and brookite TiO 2 ), TiP 2 O 7 , (TiO) 2 P 2 O 7 , RnTi 2 (PO 4) 4 ) The glass-ceramics according to any one of claims 1 to 15, wherein R 3 , R 2 Ti 4 (PO 4 ) 6 , and one or more of these solid solutions are contained.
    (Wherein, Rn is at least one selected from Li, Na, K, Rb, and Cs, and R 2 is at least one selected from Be, Mg, Ca, Sr, and Ba)
  17.  紫外領域から可視領域までの波長の光によって触媒活性が発現される請求項1から16いずれか記載のガラスセラミックス。 The glass ceramic according to any one of claims 1 to 16, wherein catalytic activity is exhibited by light of a wavelength from the ultraviolet region to the visible region.
  18.  紫外領域から可視領域までの波長の光を照射した表面と水滴との接触角が30°以下である請求項1から17いずれか記載のガラスセラミックス。 The glass ceramic according to any one of claims 1 to 17, wherein the contact angle between the surface irradiated with light of a wavelength from the ultraviolet region to the visible region and the water droplet is 30 ° or less.
  19.  繊維又はビーズの形態を有する請求項1から18いずれか記載のガラスセラミックス。 19. A glass-ceramic according to any of the preceding claims, in the form of fibers or beads.
  20.  ガラスセラミックス焼結体の製造方法であって、
     原料組成物を溶融しガラス化することで請求項1から15のいずれか記載の組成を有するガラス体を作製するガラス化工程と、
     前記ガラス体を粉砕して粉砕ガラスを作製する粉砕工程と、
     前記粉砕ガラスを所望形状の成形体に成形する成形工程と、
     前記成形体を加熱して焼成を行う焼成工程と、を有する製造方法。
    A method for producing a glass ceramic sintered body, comprising
    A vitrification process for producing a glass body having the composition according to any one of claims 1 to 15 by melting and vitrifying the raw material composition;
    A grinding step of grinding the glass body to produce a ground glass;
    A forming step of forming the crushed glass into a molded body of a desired shape;
    And a firing step of firing and heating the molded body.
  21.  基材と、この基材上に位置するガラスセラミックス層と、を備える複合体の製造方法であって、
     原料組成物を溶融しガラス化することで前記請求項1から15のいずれか記載の組成を有するガラス体を作製するガラス化工程と、
     前記ガラス体を粉砕して粉砕ガラスを作製する粉砕工程と、
     前記粉砕ガラスを基材上に配置した後に加熱し焼成を行う焼成工程と、を有する製造方法。
    A method of producing a composite comprising a substrate and a glass ceramic layer located on the substrate,
    The vitrification process which produces the glass body which has a composition in any one of the said Claims 1-15 by fuse | melting and vitrifying a raw material composition,
    A grinding step of grinding the glass body to produce a ground glass;
    And a firing step of heating and firing after disposing the crushed glass on a base material.
  22.  前記ガラス体又は前記粉砕ガラスに熱処理を施し、内部に結晶を析出させる結晶化工程を有する請求項20又は21記載の製造方法。 The method according to claim 20 or 21, further comprising a crystallization step of subjecting the glass body or the crushed glass to a heat treatment to precipitate crystals inside.
  23.  前記粉砕ガラスに結晶状態のTiOを、混合物全体に対する質量比で0~95.0質量%混合して混合物を作製する工程を有する請求項20から22いずれか記載の製造方法。 The method according to any one of claims 20 to 22, further comprising the step of mixing 0 to 95.0% by mass of TiO 2 in a crystalline state with the ground glass in a mass ratio of the whole to the mixture.
  24.  N成分、S成分、F成分、Cl成分、Br成分、及びC成分からなる群より選ばれる1種以上を含む添加物を前記粉砕ガラス又は前記混合物に対する質量比で0~20.0%、及び/又はCu、Ag、Au、Pd、Pt、Ru、及びRhからなる群より選ばれる1種以上からなる金属元素成分を、前記粉砕ガラス又は前記混合物に対する質量比で0~10.0%%混合する工程を有する請求項20から23のいずれか記載の製造方法。 An additive containing one or more selected from the group consisting of an N component, an S component, an F component, a Cl component, a Br component, and a C component in an amount of 0 to 20.0% by mass ratio to the crushed glass or the mixture And / or 0 to 10.0% by weight of the metal element component consisting of one or more selected from the group consisting of Cu, Ag, Au, Pd, Pt, Ru, and Rh in a mass ratio to the crushed glass or the mixture The method according to any one of claims 20 to 23, comprising the steps of:
  25.  請求項20から24いずれか記載の製造方法で製造されるガラスセラミックス焼結体及び/又は複合体、を含む光触媒機能性部材又は親水性部材。 The photocatalyst functional member or hydrophilic member containing the glass-ceramics sintered compact and / or composite_body | complex manufactured with the manufacturing method in any one of Claims 20-24.
PCT/JP2009/067743 2008-10-10 2009-10-13 Glass ceramics and process for production thereof, process for producing sintered glass ceramics, process for producing complex, molded article having photocatalytic function, and hydrophilic molded article WO2010041760A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980140312.XA CN102177102B (en) 2008-10-10 2009-10-13 Glass ceramics and process for production thereof, process for producing sintered glass ceramics, process for producing complex, molded article having photocatalytic function, and hydrophilic molded article

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
JP2008264667 2008-10-10
JP2008-264668 2008-10-10
JP2008-264667 2008-10-10
JP2008264671 2008-10-10
JP2008-264670 2008-10-10
JP2008264670 2008-10-10
JP2008264673A JP5461814B2 (en) 2008-10-10 2008-10-10 Method for producing composite, photocatalytic functional member, and hydrophilic component
JP2008264668 2008-10-10
JP2008-264669 2008-10-10
JP2008264669 2008-10-10
JP2008-264673 2008-10-10
JP2008-264672 2008-10-10
JP2008264672A JP5461813B2 (en) 2008-10-10 2008-10-10 Method for producing glass ceramic, photocatalytic functional molded body, and hydrophilic molded body
JP2008-264671 2008-10-10
JP2009-111670 2009-04-30
JP2009-111668 2009-04-30
JP2009111669 2009-04-30
JP2009-111669 2009-04-30
JP2009111670 2009-04-30
JP2009111668 2009-04-30

Publications (1)

Publication Number Publication Date
WO2010041760A1 true WO2010041760A1 (en) 2010-04-15

Family

ID=42100704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067743 WO2010041760A1 (en) 2008-10-10 2009-10-13 Glass ceramics and process for production thereof, process for producing sintered glass ceramics, process for producing complex, molded article having photocatalytic function, and hydrophilic molded article

Country Status (2)

Country Link
CN (1) CN102177102B (en)
WO (1) WO2010041760A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046599A (en) * 2009-07-31 2011-03-10 Ohara Inc Crystallized glass and method for manufacturing the same
WO2011111800A1 (en) * 2010-03-12 2011-09-15 株式会社オハラ Photocatalyst, slurry mixture, forming member and coating, coating film forming member, sintered body, glass-ceramic composite, glass, building material and clarification material
JP2011241138A (en) * 2010-04-21 2011-12-01 Ohara Inc Glass ceramics and method for producing the same
CN104961339A (en) * 2015-06-10 2015-10-07 安徽省德邦瓷业有限公司 Collision resistant glass ceramic disc and preparation method thereof
US9622483B2 (en) 2014-02-19 2017-04-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
CN109292895A (en) * 2018-11-05 2019-02-01 重庆第二师范学院 A kind of photocatalyst Li2SnO3Preparation method and utilization
US11039620B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039621B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
KR20220168393A (en) * 2021-06-16 2022-12-23 엘지전자 주식회사 Antibacterial glass composition and method of manufactruing antibacterial glass powder using the same and domestic appliance including the same
CN115925266A (en) * 2022-12-01 2023-04-07 哈尔滨工业大学 Method for connecting silicon carbide ceramics by cordierite microcrystalline glass solder

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011119798A1 (en) * 2011-11-24 2013-05-29 Schott Ag Glass ceramic as a dielectric in the high frequency range
CN102856027B (en) * 2012-09-07 2016-03-02 广州新莱福磁电有限公司 Annular voltage-sensitive resistor and preparation method thereof
JP6391926B2 (en) * 2012-10-10 2018-09-19 株式会社オハラ Crystallized glass and manufacturing method thereof
KR101424912B1 (en) * 2013-01-09 2014-07-31 오씨아이 주식회사 High retroreflective glass bead with high refractive index, and preparing method for thereof
CN103316666B (en) * 2013-06-25 2015-06-10 桂林理工大学 Visible-light-responded photocatalyst Ba3Ti2V4O17 and preparation method thereof
KR102453883B1 (en) * 2013-08-30 2022-10-14 코닝 인코포레이티드 Ion Exchangeable Glass, Glass-Ceramics and Methods for Making The Same
CN103951218B (en) * 2014-05-08 2016-06-15 宁波大学 Rare earth ion doped K2LaBr5Devitrified glass and preparation method thereof
CN103951241B (en) * 2014-05-08 2016-06-15 宁波大学 Rare earth ion doped Cs2LiLaBr6Devitrified glass and preparation method thereof
CN103951239B (en) * 2014-05-08 2016-06-08 宁波大学 Rare earth ion doped LiLaCl4Devitrified glass and preparation method thereof
CN103951243B (en) * 2014-05-08 2016-06-08 宁波大学 Rare earth ion doped Cs2LiYCl6Devitrified glass and preparation method thereof
CN103951197B (en) * 2014-05-08 2016-06-15 宁波大学 Rare earth ion doped Cs2LiYBr6Devitrified glass and preparation method thereof
CN104310968B (en) * 2014-10-22 2016-04-06 桂林理工大学 A kind of dielectric constant microwave dielectric ceramic BaIn 2znO 5and preparation method thereof
CN104496185B (en) * 2014-12-25 2017-02-22 海南大学 Nano microcrystalline dielectric glass and preparation method thereof
CN105068165A (en) * 2015-07-29 2015-11-18 蚌埠高华电子股份有限公司 High-refractive-index micro glass bead for reflective fabric and preparation method thereof
CN105236749A (en) * 2015-09-15 2016-01-13 苏州亿馨源光电科技有限公司 Glass-ceramic and preparation method thereof
CN105293915A (en) * 2015-11-04 2016-02-03 梅庆波 Preparation method of self-cleaning polishing-free microcrystalline glass
CN106082672A (en) * 2016-06-15 2016-11-09 山东智汇专利运营有限公司 A kind of teaching devitrified glass and preparation method thereof
CN107376951B (en) * 2017-07-31 2020-01-14 武汉理工大学 Sunlight catalytic porous glass and preparation method thereof
CN107892477A (en) * 2017-10-30 2018-04-10 江苏铁锚玻璃股份有限公司 A kind of frost shield and preparation method thereof
WO2019191350A1 (en) * 2018-03-28 2019-10-03 Corning Incorporated Boron phosphate glass-ceramics with low dielectric loss
CN109179986A (en) * 2018-09-30 2019-01-11 江苏耀兴安全玻璃有限公司 A kind of preparation method of preventing atomization glass
CN109444096B (en) * 2018-10-24 2021-07-16 中国科学院福建物质结构研究所 Solid-phase detection method for lead ions
CN109264992B (en) * 2018-10-24 2021-06-22 中国科学院福建物质结构研究所 Force-induced luminescent glass and force sensing method
CN109320065B (en) * 2018-11-20 2021-08-13 广东工业大学 Novel transition metal ion doped energy-saving glass and preparation method thereof
CN112592066B (en) * 2021-01-21 2022-07-19 新乡学院 Method for preparing emerald microcrystalline glass
CN114933415B (en) * 2021-06-21 2023-07-11 桂林电子科技大学 Microcrystalline glass dielectric material with high energy storage and high temperature stability and preparation method thereof
CN113860745B (en) * 2021-10-26 2023-02-03 武汉理工大学 Microcrystalline glass and preparation method thereof
CN114716149B (en) * 2022-05-06 2023-06-27 爱迪特(秦皇岛)科技股份有限公司 Lithium disilicate glass ceramic with gradually changed color and transmittance for dentistry as well as preparation method and application thereof
CN115536276B (en) * 2022-09-19 2023-09-26 中国科学院赣江创新研究院 Antibacterial microcrystalline glass ceramic, preparation method thereof, antibacterial regeneration method and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06183780A (en) * 1992-03-16 1994-07-05 Hideo Hosono Porous glass ceramic and its production
JPH09315837A (en) * 1996-03-29 1997-12-09 Toshiba Lighting & Technol Corp Glass for photocatalyst, glass product, incandescent light bulb, discharge lamp, illuminator and apparatus for treating water
JP2000026135A (en) * 1999-05-28 2000-01-25 Ohara Inc Lithium-ionically conductive glass-ceramics and cell and gas sensor, using the same
JP2000103625A (en) * 1998-07-31 2000-04-11 Hoya Corp Production of glass material and production of glass fiber
JP2005008974A (en) * 2003-06-20 2005-01-13 Jfe Steel Kk Porcelain enameled material and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287945A (en) * 2000-04-03 2001-10-16 Minolta Co Ltd Glass composition
US6825139B2 (en) * 2001-01-08 2004-11-30 Glasscerax Ltd. Poly-crystalline compositions
DE102004026433A1 (en) * 2004-05-29 2005-12-22 Schott Ag Nanoglass powder and its use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06183780A (en) * 1992-03-16 1994-07-05 Hideo Hosono Porous glass ceramic and its production
JPH09315837A (en) * 1996-03-29 1997-12-09 Toshiba Lighting & Technol Corp Glass for photocatalyst, glass product, incandescent light bulb, discharge lamp, illuminator and apparatus for treating water
JP2000103625A (en) * 1998-07-31 2000-04-11 Hoya Corp Production of glass material and production of glass fiber
JP2000026135A (en) * 1999-05-28 2000-01-25 Ohara Inc Lithium-ionically conductive glass-ceramics and cell and gas sensor, using the same
JP2005008974A (en) * 2003-06-20 2005-01-13 Jfe Steel Kk Porcelain enameled material and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KISHIOKA AKIRA: "Preparation and Properties of Phosphate Glasses and Glass-Ceramics Containing Large Amounts of Titanium", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 102, no. 2, 1994, pages 155 - 159 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046599A (en) * 2009-07-31 2011-03-10 Ohara Inc Crystallized glass and method for manufacturing the same
WO2011111800A1 (en) * 2010-03-12 2011-09-15 株式会社オハラ Photocatalyst, slurry mixture, forming member and coating, coating film forming member, sintered body, glass-ceramic composite, glass, building material and clarification material
CN102947001A (en) * 2010-03-12 2013-02-27 株式会社小原 Photocatalyst, slurry mixture, forming member and coating, coating film forming member, sintered body, glass-ceramic composite, glass, building material and clarification material
CN102947001B (en) * 2010-03-12 2014-12-03 株式会社小原 Photocatalyst, slurry mixture, forming member and coating, coating film forming member, sintered body, glass-ceramic composite, glass, building material and clarification material
JP2011241138A (en) * 2010-04-21 2011-12-01 Ohara Inc Glass ceramics and method for producing the same
US11039620B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11464232B2 (en) 2014-02-19 2022-10-11 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11751570B2 (en) 2014-02-19 2023-09-12 Corning Incorporated Aluminosilicate glass with phosphorus and potassium
US11470847B2 (en) 2014-02-19 2022-10-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039619B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039621B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US9622483B2 (en) 2014-02-19 2017-04-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
CN104961339A (en) * 2015-06-10 2015-10-07 安徽省德邦瓷业有限公司 Collision resistant glass ceramic disc and preparation method thereof
CN109292895B (en) * 2018-11-05 2021-07-13 重庆第二师范学院 Photocatalyst Li2SnO3Preparation method and application of
CN109292895A (en) * 2018-11-05 2019-02-01 重庆第二师范学院 A kind of photocatalyst Li2SnO3Preparation method and utilization
KR20220168393A (en) * 2021-06-16 2022-12-23 엘지전자 주식회사 Antibacterial glass composition and method of manufactruing antibacterial glass powder using the same and domestic appliance including the same
KR102549401B1 (en) * 2021-06-16 2023-06-28 엘지전자 주식회사 Antibacterial glass composition and method of manufactruing antibacterial glass powder using the same and domestic appliance including the same
CN115925266A (en) * 2022-12-01 2023-04-07 哈尔滨工业大学 Method for connecting silicon carbide ceramics by cordierite microcrystalline glass solder
CN115925266B (en) * 2022-12-01 2023-09-08 哈尔滨工业大学 Method for connecting silicon carbide ceramics by using cordierite microcrystalline glass solder

Also Published As

Publication number Publication date
CN102177102A (en) 2011-09-07
CN102177102B (en) 2014-11-05

Similar Documents

Publication Publication Date Title
WO2010041760A1 (en) Glass ceramics and process for production thereof, process for producing sintered glass ceramics, process for producing complex, molded article having photocatalytic function, and hydrophilic molded article
TWI510292B (en) Photocatalyst, slurry mixture, forming member and coating, coating film forming member, sintered body, glass-ceramic composite, glass, building materials and cleaning materials
WO2011013797A1 (en) Glass ceramic, sintered glass ceramic material, glass ceramic complex, glass micropowder, slurry-like mixture, and photocatalyst
JP5820799B2 (en) Glaze glass, glaze, and photocatalyst member
JP6391926B2 (en) Crystallized glass and manufacturing method thereof
JP2012140275A (en) Glass ceramic and production method therefor
JP5882592B2 (en) Glass ceramics and manufacturing method thereof
JP2012091991A (en) Glass ceramic, method for producing the same, photocatalyst containing the same, slurry mixture, photocatalyst member, purifying device, filter, sintered compact and glass ceramic composite
JP6253720B2 (en) Glass ceramics and manufacturing method thereof
JP5702542B2 (en) Glass ceramics and manufacturing method thereof
JP5771183B2 (en) Glass ceramics, manufacturing method thereof and use thereof
JP2011046602A (en) Glass granular powder and slurry-like mixture containing the same
JP2011225397A (en) Glass ceramic, and process for producing the same
JP2011093767A (en) Glass ceramic and method for manufacturing the same
JP2011093769A (en) Glass ceramic and method for manufacturing the same
JP2011168466A (en) Composite, photocatalytic functional member and hydrophilic member
JP2011116619A (en) Composite and method for manufacturing the same, photocatalytic functional member, and hydrophilic member
JP5715353B2 (en) Crystallized glass and method for producing the same
JP2010111574A (en) Glass ceramics and method for producing the same
JP2011093768A (en) Glass ceramic and method for manufacturing the same
JP6310247B2 (en) Crystallized glass
JP5448701B2 (en) Glass ceramics and manufacturing method thereof
JP2011046601A (en) Glass ceramic composite body, method for manufacturing the same, photocatalytic functional member and hydrophilic member
JP2011178596A (en) Sintered compact, method for producing the same, photocatalyst, glass granule mixture and slurry mixture
JP5943535B2 (en) Glass ceramics and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980140312.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09819291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09819291

Country of ref document: EP

Kind code of ref document: A1