WO2010035873A1 - 磁界検出素子および信号伝達素子 - Google Patents

磁界検出素子および信号伝達素子 Download PDF

Info

Publication number
WO2010035873A1
WO2010035873A1 PCT/JP2009/066948 JP2009066948W WO2010035873A1 WO 2010035873 A1 WO2010035873 A1 WO 2010035873A1 JP 2009066948 W JP2009066948 W JP 2009066948W WO 2010035873 A1 WO2010035873 A1 WO 2010035873A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
bypass
magnetic
yoke
detection element
Prior art date
Application number
PCT/JP2009/066948
Other languages
English (en)
French (fr)
Inventor
浩史 今谷
政昭 山元
真美子 仲
金田 安司
白川 究
Original Assignee
オムロン株式会社
財団法人電気磁気材料研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社, 財団法人電気磁気材料研究所 filed Critical オムロン株式会社
Priority to US13/062,818 priority Critical patent/US8963544B2/en
Priority to EP09816285.2A priority patent/EP2343566A4/en
Priority to CN200980132270.5A priority patent/CN102132168B/zh
Publication of WO2010035873A1 publication Critical patent/WO2010035873A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic field detection element for detecting magnetic field strength and a signal transmission element for transmitting a signal by magnetic coupling.
  • a coil that generates a magnetic field according to an input signal and the strength of the magnetic field generated by the coil are detected by a bridge circuit including a magnetoresistive effect element (magnetic field detection element).
  • Magnetically coupled signal transmission elements are known.
  • the yoke made of a soft magnetic material having a large magnetic flux density is first magnetized, and the magnetic flux generated by the large magnetization is applied to the granular film showing a giant magnetoresistance effect.
  • Large electric resistance change can be realized with a small external magnetic field.
  • the magnetic field strength can be detected linearly by the non-linear magnetic flux increase characteristic accompanying the magnetization process of the soft magnetic material yoke film and the non-linear resistance value change characteristic in the magnetoresistive effect of the granular film.
  • the linear range is limited to a very narrow range.
  • Patent Document 3 discloses a technique for reducing a magnetic flux applied to a detection coil by providing a bypass in a magnetic path in order to detect a minute change in magnetic flux.
  • the range in which the change in magnetic flux can be detected is expanded by reducing the sensitivity, but the range of high linearity in the value of electrical resistance cannot be expanded, and the linearity of the magnetoresistive element is improved. I can't.
  • an object of the present invention is to provide a magnetic field detection element with high linearity and a signal transmission element with high linearity.
  • a magnetic field detection element is provided with a magnetoresistive effect portion made of a magnetoresistive effect material and electrically connected to both sides of the magnetoresistive effect portion.
  • a pair of yoke parts made of a soft magnetic material for supplying magnetic flux to the part, and part of the magnetic flux generated in the yoke part is guided to bypass the magnetoresistive effect part, so that the magnetic field strength is lower than that of the yoke part.
  • a bypass portion made of a soft magnetic material in which magnetic flux is saturated.
  • the bypass portion may be electrically insulated from the magnetoresistive effect portion and the yoke portion.
  • the bypass portion since the bypass portion is electrically separated, the electrical resistance of the magnetoresistive effect portion can be accurately detected, and the influence of the bypass portion on the detection accuracy is suppressed as much as possible.
  • the linearity of the change in electrical resistance with respect to the magnetic field strength of the part can be increased.
  • the magnetoresistive effect part and the yoke part are formed in a film shape on the same plane, and the bypass part at least partially overlaps the magnetoresistive effect part, It may be formed in a film shape with a gap between the yoke portion.
  • the semiconductor device can be manufactured by a general semiconductor manufacturing method in which a thin film material is laminated on a substrate by a fine processing technique.
  • reluctance of a magnetic path that bypasses the magnetoresistive effect portion via the bypass portion between the yoke portions at a magnetic field intensity at which the magnetic flux of the bypass portion is not saturated may be smaller than the reluctance of the magnetoresistive effect portion.
  • the bypass portion may partially saturate the magnetic flux with different magnetic field strengths.
  • the magnetic flux bypass ratio can be changed so that the resistance change characteristic of the magnetoresistive effect portion with respect to the external magnetic field becomes linear each time a part of the bypass portion is saturated.
  • the bypass portion may include portions having different lengths in the direction in which the magnetic flux is guided.
  • the magnetic field intensity at which the magnetic flux is saturated can be partially varied depending on the planar shape of the bypass portion.
  • the signal transmission element includes any one of the magnetic field detection elements and a coil that applies a magnetic field to the magnetic field detection element in accordance with an input signal.
  • the bypass part when the external magnetic field strength is low and the bypass part is not saturated, a part of the magnetic flux generated by the yoke part by the external magnetic field passes through the bypass part, and the magnetic flux passing through the magnetoresistive effect part is reduced.
  • the bypass portion when the external magnetic field increases, the bypass portion is saturated first, and all the magnetic flux generated in the yoke portion passes through the magnetoresistive effect portion. As a result, the shape of the electric resistance change curve of the magnetoresistive effect portion is deformed to improve the linearity.
  • FIG. 14 is a diagram showing a change in electric resistance with respect to the magnetic field intensity of the magnetic field detection element of FIGS. It is a perspective view of the magnetic field detection element of 6th Embodiment of this invention. It is a perspective view of the magnetic field detection element of 7th Embodiment of this invention.
  • FIG. 18 is a BH diagram of a material forming a bypass portion of the magnetic field detection element of FIG. It is a figure which shows the electrical resistance change with respect to the magnetic field intensity by the difference in the material of the bypass part of the magnetic field detection element of FIG. It is a side view of the magnetic field detection element of 8th Embodiment of this invention. It is a side view of the magnetic field detection element of 9th Embodiment of this invention.
  • FIG. 1 shows a circuit configuration of a signal transmission element (magnetically coupled isolator) 1 according to a first embodiment of the present invention.
  • the signal transmission element 1 is magnetically coupled to the primary side circuit 4 and the primary side circuit 4 having two exciting coils 3a and 3b that generate a magnetic field according to the currents input to the input terminals 2a and 2b.
  • the secondary side circuit 6 outputs a voltage corresponding to the input voltage to the output terminals 5a and 5b.
  • the secondary side circuit 6 includes two magnetic field detecting elements 7a and 7b whose electric resistance values change according to the strength of the magnetic field generated by the exciting coils 3a and 3b, and two fixed resistors 8a whose electric resistance values do not change. , 8b and connected to the power source Vcc.
  • FIG. 2 (plan view) shows a practical shape of the signal transmission element 1.
  • the signal transmission element 1 is formed by laminating each component on a silicon substrate 9 having an insulating film formed on the surface thereof.
  • the exciting coils 3a and 3b are formed so as to surround the magnetic field detecting elements 7a and 7b, respectively.
  • the magnetic field detecting elements 7a and 7b are magnetoresistive effect parts (hereinafter referred to as MR parts) 10a and 10b made of giant magnetoresistive effect materials.
  • the yoke portions 11a, 12a and 11b, 12b made of a soft magnetic material are arranged on both sides of the MR portions 10a, 10b so as to keep electrical contact.
  • This yoke part has an electrical resistivity that is significantly lower than that of the giant magnetoresistive material, and also serves as an electrode for supplying current to the MR part (so-called GIG).
  • the yoke portions 11a, 12a and 11b, 12b partially overlap the MR portions 10a, 10b, and a gap d is provided between the MR portions 10a, 10b and the yoke portions 11a, 12a, 11b, 12b.
  • bypass portions 13a and 13b made of a soft magnetic material, which are electrically insulated. Excitation coils 3a and 3b are arranged so as to wind outside the magnetic field detection elements 7a and 7b.
  • the gap d between the bypass parts 13a, 13b and the MR parts 10a, 10b and the yoke parts 11a, 12a, 11b, 12b may be an air layer, but actually, the bypass parts 13a, 13b and MR
  • Examples of the giant magnetoresistive material forming the MR portions 10a and 10b include nano granular thin film materials such as Co 39 Y 14 O 47 , Co 43 Al 24 O 33, and Co 35 Mg 20 F 45.
  • the specific electrical resistivity is 3 ⁇ 10 6 ⁇ m, 0.4 ⁇ 10 3 ⁇ m, and 1 ⁇ 10 6 ⁇ m.
  • Co X- (Y 2 O 3 ) (100-X) -based nanogranular alloys Co X- (Al 2 O 3 ) (100-X) -based nanogranular alloys, Co X- (Sm 2 O 3 ) (100-X) nanogranular alloy, Co X- (Dy 2 O 3 ) (100-X) nanogranular alloy, (FeCo) X- (Y 2 O 3 ) (100-X) Fluoride nano-granular such as nano-granular alloy, Fe) X- (MgF 2 ) (100-X) , (FeCo) X- (MgF 2 ) (100-X) , Fe X- (CaF 2 ) (100-X) Alloys can be used. In the description of the present application, the composition ratio is at%.
  • Examples of the soft magnetic material forming the yoke parts 11a, 12a, 11b, 12b and the bypass parts 13a, 13b include Co 77 Fe 5 Si 9 B 8 and Fe 78.5 Ni 21.5. Typical electrical specific resistances are 1.15 ⁇ m and 0.16 ⁇ m.
  • Other soft magnetic materials include permalloy (40-90% Ni—Fe alloy), sendust (Fe 74 Si 9 Al 17 ), hard palm (Fe 12 Ni 82 Nb 6 ), Co 88 Nb 6 Zr 6 amorphous alloy.
  • the yoke parts 11a, 11b and 12a, 12b are, for example, rectangular with a length in the longitudinal direction (magnetic flux direction) of the coil of 250 ⁇ m, a width of 80 ⁇ m, and a thickness of 0.5 ⁇ m, and the ends of each pair are 1 ⁇ m. They are formed in a film on the same plane so as to face each other with a gap G therebetween.
  • the MR portions 10a and 10b are formed to be electrically connected between the gaps G of the yoke portions 11a and 12a and 11b and 12b.
  • the bypass portions 13a and 13b have, for example, a length of 5 ⁇ m, a width of 5 ⁇ m, and a thickness of 0.1 ⁇ m, and 0.1 ⁇ m between the MR portions 10a and 10b and the yoke portions 11a, 12a, 11b, and 12b.
  • the gap d is formed.
  • FIG. 5 shows a configuration (magnetic circuit diagram) as a magnetic path reluctance of the magnetic field detection elements 7a and 7b.
  • the exciting coils 3a and 3b are generated, and the magnetic flux generated by the yoke portions 11a, 11b, 12a and 12b is initially transferred to the MR portions 10a and 10b and the bypass portions 13a and 13b.
  • the bypass parts 13a and 13b pass through the MR parts 10a and 10b by attracting a part of the large number of magnetic fluxes generated by the yoke parts 11a, 11b, 12a and 12b and bypassing the MR parts 10a and 10b. Reduce the number of magnetic flux.
  • the values of the reluctances R YOK , R GMR , and R BPS vary depending on the magnetic field strength.
  • the value of reluctance increases as the number of magnetic fluxes passing through increases in magnetic field strength. Since the magnetic flux saturates at a certain magnetic field strength, the reluctance value increases at a much larger rate than when the magnetic field strength is low, and the number of magnetic fluxes passing through further increases when fully saturated. No longer.
  • the reluctance R BPS of the bypass portions 13a and 13b increases rapidly with a lower magnetic field than other reluctances.
  • the reluctance R GMR of the MR units 10a and 10b is such that the length (magnetic path length) in the direction in which the magnetic flux of the MR units 10a and 10b is applied is G GMR , and the magnetic permeability of the MR units 10a and 10b is ⁇ GMR .
  • the thickness of the MR portions 10a and 10b can be expressed by the following equation, where t GMR is the thickness and the width (magnetic path width) of the MR portions 10a and 10b is W GMR .
  • R GMR G GMR / ( ⁇ GMR ⁇ t GMR ⁇ W GMR )
  • FIG. 6 shows a simulation result of a change in electric resistance between the yoke portions 11a and 11b including the MR portions 10a and 10b and the yoke portions 12a and 12b with respect to the intensity of the input magnetic field applied to the magnetic field detection elements 7a and 7b. Is shown as an MR ratio with the resistance when the magnetic field intensity is zero being taken as 100%. In the drawing, it is shown in comparison with the electric resistance of a magnetic field detecting element having a conventional configuration that includes only the MR portions 10a and 10b and the yoke portions 11a, 11b, 12a, and 12b and does not have the bypass portions 13a and 13b.
  • bypass parts 13a and 13b are electrically insulated from the MR parts 10a and 10b and the yoke parts 11a, 11b, 12a and 12b, they do not affect the electric resistance of the electric circuit including the MR parts 10a and 10b.
  • a nano granular film made of (FeCo) 30- (MgF 2 ) 70 having an MR ratio of 14% at 10 KOe is used as the MR portion 10
  • the magnetic flux density at 10 KOe is 12 KG as the yoke portions 11 and 12.
  • An amorphous Co 78 Fe 4 Si 9 B 9 film having a uniaxial induction magnetic anisotropy of about 20 Oe in the width direction and a magnetic permeability changing substantially linearly from a zero magnetic field to a saturation magnetic field was used.
  • the bypass portion 13 is made of an amorphous film made of the same material as that of the yoke portions 11 and 12.
  • the change characteristic of the MR ratio (the shape of the diagram) is expanded in the horizontal direction as compared with the conventional case.
  • the cross-sectional area (thickness ⁇ width) of the bypass portions 13a, 13b is sufficiently smaller than the cross-sectional area (thickness ⁇ width) of the yoke portions 11a, 11b, 12a, 12b, the input magnetic field becomes stronger.
  • the number of magnetic fluxes formed by the exciting coils 3a and 3b increases (the magnetic field strength applied to the magnetic field detecting elements 7a and 7b is increased by the exciting coils 3a and 3b), the bypass portions 13a and 13b saturate the magnetic flux. As a result, the magnetic flux can no longer be induced.
  • the magnetic field detection elements 7a and 7b when the strength of the input magnetic field is further increased, the bypass portions 13a and 13b are completely saturated before the yoke portions 11a, 11b, 12a, and 12b. As a result, after the bypass portions 13a and 13b are completely saturated, the increase in magnetic flux generated in the yoke portions 11a, 11b, 12a, and 12b passes through the MR portions 10a and 10b.
  • the reduction in the rate of change in electrical resistance due to the increase in reluctance of the MR portions 10a, 10b and the yoke portions 11a, 11b, 12a, 12b is compensated, and a highly linear change characteristic of the electrical resistance (MR ratio) is obtained. be able to. That is, the magnetic field detection elements 7a and 7b including the bypass portions 13a and 13b have a wider range in which good linearity can be obtained in the change characteristic of the electric resistance (MR ratio) with respect to the change of the input magnetic field than the conventional ones.
  • the ratio of the magnetic flux generated in the yoke portions 11a, 11b, 12a, and 12b to the bypass portions 13a and 13b and bypassing the MR portions 10 and 10b is low, the MR ratio characteristics of the MR portions 10a and 10b are reduced. Therefore, when the magnetic field strength is low, the reluctance (2R YOK + 2R GAP + R GMR ) between the yoke portions 11a-12a and 11b-12b via the 12b bypass portions 13a and 13b is reduced.
  • the reluctance (2R YOK + R GMR ) of the magnetic path through the MR units 10a and 10b is preferably small.
  • the gap G is formed from the yoke portions 11 and 12 in which the thickness of the opposing end portions forming the gap G is tapered and the taper portion on one side of the yoke portions 11 and 12.
  • the MR section 10 is formed by filling a magnetoresistive effect material by the middle of the above, and the bypass section 13 is formed so as to overlap the MR section 10 via an insulating film (not shown).
  • the yoke portions 11 and 12 are opposed to each other by forming a gap G having a length of 250 ⁇ m, a width of 80 ⁇ m, a thickness of 0.5 ⁇ m, and a thickness of 0.5 ⁇ m in a direction in which the magnetic flux is guided (a direction in which the MR portion 10 is sandwiched). . Further, the yoke portions 11 and 12 have a surface on the bypass portion 13 side inclined in a taper shape over the length of 2 ⁇ m from the end surface on the MR portion 10 side in the direction of guiding the magnetic flux, thereby forming a gap G. The thickness of the end is 0.3 ⁇ m.
  • the bypass portion 13 has a length in the direction of guiding the magnetic flux of 5 ⁇ m, that is, equal to the entire length including the portions covering the taper portions of the yoke portions 11 and 12 of the MR portion 10.
  • a gap d between the MR portion 10 and the bypass portion 13 is 0.05 ⁇ m.
  • a nano granular film having a film thickness of 0.3 ⁇ m in a gap G made of (FeCo) 30 — (MgF 2) 70 having an MR ratio of 10% at 10 KOe is used as the MR portion 10.
  • amorphous Co 78 Fe 4 Si 9 having a magnetic flux density of 12 KG at 10 KOe, uniaxial induction magnetic anisotropy of about 20 Oe in the width direction, and permeability changing substantially linearly from a zero magnetic field to a saturated magnetic field.
  • B 9 film was used.
  • the bypass portion 13 is made of the same material amorphous film as the yoke portions 11 and 12.
  • the thickness of the bypass portion 13 of the magnetic field detection element 7c of this embodiment is 0.2 ⁇ m, and the width of the bypass portion 13 is 80 ⁇ m, which is the same as that of the yoke portions 11 and 12, respectively, 40 ⁇ m, which is half, and 1 ⁇ 4.
  • strength of the input magnetic field of the electrical resistance (MR ratio) between the yoke part 11 including the MR part 10 and the yoke part 12 in the case of 20 ⁇ m and 10 ⁇ m of 1/8 is shown.
  • the bypass portion 13 extends the MR ratio curve in the horizontal axis direction. After the input magnetic field is strengthened and the bypass unit 13 is completely saturated, a curve is drawn that substantially matches the curve of the conventional magnetic field detection element without the bypass unit moved in the horizontal axis direction. Furthermore, in the present embodiment, the yoke portions 11 and 12 are also saturated at a magnetic field strength of about 20 (Oe). For this reason, at a magnetic field strength higher than this, the reduction rate of the MR ratio is greatly reduced.
  • the width of the bypass portion 13 is wider, the number of magnetic fluxes that bypass the bypass portion is increased, and the behavior changes greatly in a non-linear manner as the number of magnetic fluxes increases, so that the strength of the input magnetic field is saturated. Since the effect of improving the linearity at is increased, the range in which the MR ratio is linear is widened. At the same time, as the width of the bypass portion 13 is wider, the number of magnetic fluxes that bypass the bypass portion is increased, so that the rate of change of the MR ratio with respect to the change of the input magnetic field is reduced.
  • the linear range of the magnetic field strength that improves the MR ratio characteristics by the bypass portion 13 must be lower than the magnetic field strength at which the yoke portions 11 and 12 are saturated. That is, in this embodiment, when the linear range is made the widest, the linear range is from when the bypass portion 13 starts to saturate until the yoke portions 11 and 12 start to saturate.
  • the width of the bypass portion 13 of the magnetic field detection element 7c of the present embodiment is 80 ⁇ m
  • the thickness of the bypass portion 13 is 0.2 ⁇ m, 0.1 ⁇ m, and there is no bypass portion.
  • strength of the input magnetic field of the electrical resistance (MR ratio) between the yoke part 11 containing the MR part 10 and the yoke part 12 is shown.
  • the curve of the MR ratio when the width of the bypass portion 13 is 80 ⁇ m and the thickness is 0.1 ⁇ m is MR when the width of the bypass portion 13 is 40 ⁇ m and the thickness is 0.2 ⁇ m in FIG. It almost coincides with the ratio curve. That is, when other conditions are constant, the MR ratio characteristics are substantially the same if the cross-sectional area of the bypass portion 13 is the same.
  • the ease of saturation of the magnetic fluxes of the yoke parts 11 and 12 and the bypass part 13 also depends on the respective cross-sectional areas.
  • the cross-sectional area of the bypass part 13 should be smaller than the cross-sectional area of the yoke parts 11 and 12.
  • the cross-sectional area here refers to an effective cross-sectional area that limits the number of magnetic fluxes passing through each.
  • the reluctance (2R YOK + 2R GAP + R GMR) via the bypass unit 13 is selected by selecting the ratio between the cross-sectional area of the bypass unit 13 and the cross-sectional area of the yoke units 11 and 12. ) And the reluctance (2R YOK + R GMR ) of the magnetic path through the MR unit 10 can be adjusted.
  • the reluctance (2R YOK + 2R GAP + R GMR) via the bypass unit 13 can also be obtained by changing the overlapping area of the bypass unit 13 and the yoke units 11 and 12 as viewed from above. ) And the reluctance (2R YOK + R GMR ) of the magnetic path through the MR unit 10 can be adjusted.
  • the reluctance R GAP between the bypass portion 13 and the yoke portions 11 and 12 is also changed by changing the size of the gap d between the bypass portion 13 and the yoke portions 11 and 12. it can.
  • the bypass unit 13 is disposed so as to overlap one side of the MR unit 10, but the bypass unit 13 bypasses the MR unit 10 by inducing magnetic flux generated in the yoke units 11 and 12. Any form may be used as long as it is allowed.
  • the bypass portion 13 may be disposed on both sides or sides of the MR portion 10 (gap G between the yoke portions 11 and 12). Further, when the MR portion 10 occupies only a part of the gap G between the yoke portions 11 and 12, the bypass portion 13 may be disposed in the gap G between the yoke portions 11 and 12.
  • FIG. 11 shows a magnetic field detection element 7d according to the third embodiment of the present invention
  • FIG. 12 shows a magnetic field detection element 7e according to the fourth embodiment of the present invention
  • FIG. 13 shows a fifth embodiment of the present invention.
  • the magnetic field detection element 7f which is a form is shown.
  • the magnetic field detection element 7 d of the third embodiment is the same as that of the second embodiment except that the bypass portion 13 overlaps only the gap G portion of the MR portion 10.
  • the configuration is the same as that of the element 7c.
  • the bypass portion 13 of the magnetic field detection element 7d of the third embodiment is replaced with the length direction of the yoke portions 11 and 12, that is, the bypass portion 13 is a magnetic flux.
  • the bypass portion 13 has both ends in the width direction (a direction orthogonal to the direction in which the magnetic flux is guided) overlaps only the gap G portion, but is longer in the direction in which the magnetic flux is guided toward the inner side in the width direction.
  • the central portion of the direction has a substantially cross star shape that protrudes in a triangular shape and extends to a position where the tip faces the taper start portion of the yoke portions 11 and 12.
  • the magnetic field detection element 7f of the fifth embodiment is obtained by making the star shape of the bypass portion 13 of the magnetic field detection element 7e of the fourth embodiment more extreme, and the bypass of this embodiment.
  • the part 13 is pointed so that both ends in the width direction are zero in the direction of guiding the magnetic flux, and the triangular protrusion at the center in the width direction has a sharp shape with a small apex angle. That is, the length in the direction in which the bypass portion 13 guides the magnetic flux changes extremely.
  • FIG. 14 shows the magnetic field detection elements 7d, 7e, and 7f, and the conventional magnetic field detection element including only the MR section 10 and the yoke sections 11 and 12 without the bypass section 13, and the yoke section 11 and the yoke including the MR section 10.
  • 6 shows a simulation result of a change characteristic with respect to the intensity of an input magnetic field of an electrical resistance (MR ratio) between the unit 12 and the part 12.
  • the bypass unit 13 starts to saturate (the number of magnetic fluxes to be captured does not increase in proportion to the magnetic field strength) about 10 ( Up to Oe), the reduction rate of the MR ratio is small and the linearity is low.
  • the MR ratio is wide in a wide range from when the magnetic field strength is low to about 20 (Oe) at which the yoke portions 11 and 12 start to saturate. Decreases linearly, and the linearity is greatly improved as compared with the magnetic field detecting element 7d of the third embodiment.
  • the bypass portion 13 of the magnetic field detection elements 7e and 7f protrudes at the center in the width direction, when the input magnetic field is weak, the magnetic flux is attracted to this portion, and the magnetic flux is concentrated at the center in the width direction. For this reason, the width direction center part of the bypass part 13 is saturated earlier than another part with low magnetic field intensity
  • bypass portion 13 may be divided into a plurality of separated portions having different lengths in the direction in which the magnetic flux is guided. Moreover, you may change the thickness of the bypass part 13 to the width direction like the magnetic field detection element 7h of 7th Embodiment of this invention shown in FIG.
  • the shape of the curve of the electrical resistance change with respect to the magnetic field strength of the MR section 10 can also be changed by changing the material of the bypass section 13.
  • the bypass portion 13 of the magnetic field detection element 7i according to the eighth embodiment of the present invention shown in FIG. 17 is formed of different soft magnetic materials, and the difference in MR ratio change characteristics is verified.
  • the bypass portion 13 of the magnetic field detecting element 7i has a length of 5 ⁇ m, which is equal to the entire length of the MR portion 10, a thickness of 0.2 ⁇ m, a width of 80 ⁇ m which is equal to the MR portion 10 and the yoke portions 11, 12, and the MR portion 10 Is 0.05 ⁇ m.
  • FIG. 18 shows BH curves (changes in the number of magnetic fluxes with respect to the magnetic field strength) of three types of soft magnetic materials forming the bypass portion 13.
  • the normal material is a normal soft magnetic material thin film formed of a metal material under an orientation magnetic field, for example, an amorphous Co 78 Fe 4 Si 9 B 9 film, as in the yoke parts 11 and 12.
  • the first alternative material has the same composition as that of the yoke portions 11 and 12, but is different from the normal magnetic material manufacturing method in that it is formed while applying a random orientation magnetic field and uniaxially induced magnetic anisotropy is removed. .
  • the first alternative material has a non-linear BH characteristic such that the increasing rate of the magnetic flux density with respect to the increase of the input magnetic field gradually decreases.
  • the second alternative material is a random material obtained by adding more nonmagnetic elements such as Si and B to the material used in the yoke portions 11 and 12 such as Co 65 Fe 3 Si 15 B 17. Formed in a strong orientation magnetic field.
  • the second alternative material seems to have compressed the BH characteristic of the first alternative material by about one-half in the vertical axis direction so that the magnetic flux density with respect to the input magnetic field strength is halved. It is a characteristic.
  • FIG. 19 shows a yoke portion 11 including an MR portion 10 and a yoke portion for a magnetic field detecting element 7i in which the bypass portion 13 is formed of a material having different magnetic characteristics shown in FIG. 18 and a conventional magnetic field detecting element having no bypass portion.
  • the simulation result of the change with respect to the magnetic field intensity of the electrical resistance (MR ratio) between 12 is shown.
  • the bypass portion 13 made of the first alternative material can improve the linearity of the MR ratio as compared with the bypass portion 13 made of the normal material.
  • the bypass portion 13 made of the second alternative material is considered to give substantially the same MR ratio characteristics as those obtained by halving the cross-sectional area of the bypass portion 13 made of the first alternative material.
  • the non-linearity of the MR portion 10 and the yoke portions 11 and 12 can be more appropriately canceled out, and the yoke including the MR portion 10
  • the electric resistance (MR ratio) between the portion 11 and the yoke portion 12 can be changed linearly with respect to the magnetic field strength.
  • the crystal size and orientation may be varied depending on conditions such as a heat treatment method, thin film forming speed, temperature, and atmosphere gas. There is a way to adjust.
  • the material composition cobalt / iron-based amorphous materials, nickel / iron-based materials, iron / silicon-based materials, iron / silicon / aluminum-based materials, and the like can be applied.
  • the bypass portion 13 may be formed by arranging a plurality of materials having different magnetic characteristics in the direction in which the magnetic flux is guided.
  • the bypass unit 13 as a whole compensates for the non-linearity of the MR unit 10 and the yoke units 11 and 12 with respect to the magnetic field strength by changing the bypass amount nonlinearly with respect to the BH characteristics, that is, the magnetic field strength change. It can have properties that can be done.
  • the insulating film (insulating layer) 14 that insulates the MR section 10, the yoke sections 11 and 12, and the bypass section 13 is electrically conductive.
  • the number of magnetic fluxes bypassed by the bypass section 13 is also changed non-linearly by forming it with a semiconducting magnetic material having a very low rate, small magnetic permeability, and non-linear magnetic characteristics (BH curve).
  • the nonlinearity of the MR portion 10 and the yoke portions 11 and 12 can be compensated.
  • the material of the insulating film 14 include a MnZn ferrite film, a NiZn ferrite film, a CuZn ferrite film, and a CuZnMg ferrite film.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

 磁気抵抗効果材料からなる磁気抵抗効果部10aと、磁気抵抗効果部10aの両側に接続して配設され、磁気抵抗効果部10aに磁束を供給する、軟磁性材料からなる一対のヨーク部11a,12aとを有する磁界検出素子7aの線形性を高めるために、ヨーク部11a,12aに発生した磁束の一部を誘導して磁気抵抗効果部10aを迂回させ、ヨーク部11a,12aよりも低い磁界強度で磁束が飽和する、軟磁性材料からなるバイパス部13aを設ける。

Description

磁界検出素子および信号伝達素子
 本発明は、磁界強度を検出する磁界検出素子、および、磁気的結合により信号を伝達する信号伝達素子に関する。
 例えば、特許文献1に記載されているように、入力信号に応じた磁界を発生させるコイルと、コイルが発生した磁界の強度を、磁気抵抗効果素子(磁界検出素子)を含むブリッジ回路で検出する磁気結合型の信号伝達素子が公知である。
 また、特許文献2に記載されているように、巨大磁気抵抗効果(外部磁界により数%以上の電気抵抗変化を示す物質の総称)を示すグラニュラー膜の電気抵抗の変化率感度を高めるために、巨大磁気抵抗効果を示すグラニュラー膜の両側に大きな磁束を供給する軟磁性材料からなるヨーク膜の対を配置するグラニュラーインギャップ(GIG)構造も周知である。
 そのようなGIG構造においては、外部磁界が印加されると、真っ先に大きな磁束密度を有する軟磁性材料からなるヨークが磁化し、その大きな磁化により発生した磁束が巨大磁気抵抗効果を示すグラニュラー膜に流入し、小さな外部磁界で大きな電気抵抗変化を実現できる。一方、GIG構造では、軟磁性材料ヨーク膜の磁化過程に伴う非線形的な磁束の増加特性と、グラニュラー膜の磁気抵抗効果における非線形的な抵抗値の変化特性とにより、磁界強度をリニアに検出できる線形範囲が著しく狭い範囲に限定されている。
 特許文献3には、微小な磁束変化を検出するために、磁路にバイパスを設けることで、検出コイルに印加される磁束を低減する技術が開示されている。この技術では、感度を低下させることで磁束変化を検出できる範囲を拡げているが、電気抵抗の値において線形性の高い範囲を拡げることはできず、磁気抵抗効果素子の線形性を改善することはできない。
特表2000-516714号公報 特開2004-354181号公報 特開平8-279112号公報
 前記問題点に鑑みて、本発明は、線形性の高い磁界検出素子、および、線形性の高い信号伝達素子を提供することを課題とする。
 前記課題を解決するために、本発明による磁界検出素子は、磁気抵抗効果材料からなる磁気抵抗効果部と、前記磁気抵抗効果部の両側に電気的に接続して配設され、前記磁気抵抗効果部に磁束を供給する、軟磁性材料からなる一対のヨーク部と、前記ヨーク部に発生した磁束の一部を誘導して前記磁気抵抗効果部を迂回させ、前記ヨーク部よりも低い磁界強度で磁束が飽和する、軟磁性材料からなるバイパス部とを有するものとする。
 この構成によれば、外部磁界強度が低くバイパス部が未飽和状態では、外部磁界によりヨーク部に発生した磁束の一部がバイパス部を通過し、磁気抵抗効果部を通る磁束が減じられる。一方、外部磁界が増加するとバイパス部がヨーク部より先に飽和し、ヨーク部に発生した磁束の増加分はすべて磁気抵抗効果部を通過する。結果として、磁気抵抗効果部の電気抵抗変化曲線の形状を変形させて線形性を向上させる。
 また、本発明の磁界検出素子において、前記バイパス部は、前記磁気抵抗効果部および前記ヨーク部と電気的に絶縁されてもよい。
 この構成によれば、バイパス部が電気的に切り離されているので、磁気抵抗効果部の電気抵抗を正確に検出することができ、バイパス部が検出精度に与える影響を極力抑えて、磁気抵抗効果部の磁界強度に対する電気抵抗の変化の線形性を高くできる。
 また、本発明の磁界検出素子において、前記磁気抵抗効果部および前記ヨーク部は、同一平面上に膜状に形成され、前記バイパス部は、前記磁気抵抗効果部と少なくとも部分的に重なるように、前記ヨーク部との間に隙間を空けて膜状に形成されていてもよい。
 この構成によれば、基板上に微細加工技術によって薄膜材料を積層する一般的な半導体製造方法で製造できる。
 また、本発明の磁界検出素子は、前記バイパス部の磁束が飽和しない磁界強度において、前記ヨーク部の間の、前記バイパス部を介して前記磁気抵抗効果部を迂回する磁路のリラクタンスが、前記磁気抵抗効果部のリラクタンスより小さくてもよい。
 この構成によれば、磁界強度が低いときに多くの磁束が磁気抵抗効果部を迂回するので、バイパス部による磁気抵抗効果部の抵抗変化特性に与える影響が大きく、線形性を大きく改善できる。
 また、本発明の磁界検出素子において、前記バイパス部は、部分的に、異なる磁界強度で磁束が飽和してもよい。
 この構成によれば、バイパス部の一部が飽和する度に、外部磁界に対する磁気抵抗効果部の抵抗変化特性を線形にするように磁束のバイパスする割合を変化させられる。
 また、本発明の磁界検出素子において、前記バイパス部は、磁束を案内する方向の長さが異なる部分を含んでもよい。
 この構成によれば、バイパス部の平面的形状によって、磁束の飽和する磁界強度を部分的に異ならせることができる。
 また、本発明による信号伝達素子は、前記磁界検出素子のいずれかと、入力信号に応じて前記磁界検出素子に磁界を印加するコイルとを有するものとする。
 この構成によれば、入力と出力の伝達効率が良く、かつ、本発明によって線形性の良い入出力伝達も可能なため、結果的に高品位の信号伝達ができる。
 本発明によれば、外部磁界強度が低くバイパス部が未飽和状態では、外部磁界によりヨーク部が発生した磁束の一部がバイパス部を通過し、磁気抵抗効果部を通る磁束が減じられる。一方、外部磁界が増加するとバイパス部が先に飽和し、ヨーク部に発生した磁束はすべて磁気抵抗効果部を通過する。結果として、磁気抵抗効果部の電気抵抗変化曲線の形状を変形させ線形性を向上させる。
本発明の第1実施形態の信号伝達素子の電気回路図である。 図1の信号伝達素子の平面図である。 図2の磁界検出素子の斜視図である。 図3の磁界検出素子の平面図である。 図3の磁界検出素子の磁路リラクタンス図である。 図3の磁界検出素子の磁界強度に対する電気抵抗変化を示す図である。 本発明の第2実施形態の磁界検出素子の側面図である。 図7の磁界検出素子の斜視図である。 図7の磁界検出素子のバイパス部の幅を変更したときの磁界強度に対する電気抵抗変化を示す図である。 図7の磁界検出素子のバイパス部の厚さを変更したときの磁界強度に対する電気抵抗変化を示す図である。 本発明の第3実施形態の磁界検出素子の斜視図である。 本発明の第4実施形態の磁界検出素子の斜視図である。 本発明の第5実施形態の磁界検出素子の斜視図である。 図11~13の磁界検出素子の磁界強度に対する電気抵抗変化を示す図である。 本発明の第6実施形態の磁界検出素子の斜視図である。 本発明の第7実施形態の磁界検出素子の斜視図である。 本発明の第8実施形態の磁界検出素子の斜視図である。 図17の磁界検出素子のバイパス部を形成する材料のB-H線図である。 図17の磁界検出素子のバイパス部の材料の違いによる磁界強度に対する電気抵抗変化を示す図である。 本発明の第8実施形態の磁界検出素子の側面図である。 本発明の第9実施形態の磁界検出素子の側面図である。
 これより、本発明の実施形態について、図面を参照しながら説明する。図1は、本発明の第1実施形態の信号伝達素子(磁気結合型アイソレータ)1の回路構成を示す。信号伝達素子1は、入力端子2a,2bに入力された電流に応じて磁界を発生させる2つの励磁コイル3a,3bを有する1次側回路4と、1次側回路4と磁気的に結合し、出力端子5a,5bに入力電圧に応じた電圧を出力する2次側回路6とを有する。
 2次側回路6は、励磁コイル3a,3bが発生した磁界の強度に応じて電気抵抗の値が変化する2つの磁界検出素子7a,7bと、電気抵抗の値が変化しない2つの固定抵抗8a,8bとで構成され、電源Vccに接続されたブリッジ回路である。
 図2(平面図)に、信号伝達素子1の実際的形状を示す。信号伝達素子1は、表面に絶縁皮膜が形成されたシリコン基板9上に、各構成要素を積層して形成してなる。励磁コイル3a,3bは、磁界検出素子7a,7bをそれぞれ囲むように形成されている。
 磁界検出素子7a,7bは、さらに図3(斜視図)および図4(断面図)に詳しく示すように、巨大磁気抵抗効果材料からなる磁気抵抗効果部(以下、MR部と称する)10a,10bと、MR部10a,10bの両側にそれぞれ電気的な接触を保つよう配設されていて軟磁性材料からなるヨーク部11a,12aおよび11b,12bで構成されている。このヨーク部は前記巨大磁気抵抗効果材料よりも大幅に低い電気比抵抗を有しており、MR部へ電流を供給する電極も兼ねている(いわゆるGIG)。これに、ヨーク部11a,12aおよび11b,12bと、MR部10a,10bと部分的に重複し、MR部10a,10bおよびヨーク部11a,12a,11b,12bとの間に隙間dを空けて電気的に絶縁されて配置された軟磁性材料からなるバイパス部13a,13bとを有する。この磁界検出素子7a、7bの外側を巻くように励磁コイル3a、3bが配設されている。
 バイパス部13a,13bとMR部10a,10bおよびヨーク部11a,12a,11b,12bとの間の隙間dは、空気層であってもよいが、実際的には、バイパス部13a,13bとMR部10a,10bおよびヨーク部11a,12a,11b,12bとの間に形成した、非磁性の材料からなる絶縁膜(保護膜)である。
 MR部10a,10bを形成する巨大磁気抵抗効果材料としては、例えば、Co391447をはじめCo43Al2433やCo35Mg2045等のナノグラニュラー薄膜材料があり、それぞれの典型的な電気比抵抗は、3×10μΩm、0.4×10μΩm、1×10μΩmである。他にも、巨大磁気抵抗効果材料として、Co-(Y(100-X)系ナノグラニュラー合金、Co-(Al(100-X)系ナノグラニュラー合金、Co-(Sm(100-X)系ナノグラニュラー合金、Co-(Dy(100-X)系ナノグラニュラー合金、(FeCo)-(Y(100-X)系ナノグラニュラー合金、Fe)-(MgF(100-X)、(FeCo)-(MgF(100-X)、Fe-(CaF(100-X)等のフッ化物系ナノグラニュラー合金等が使用できる。尚、本願の記載における組成比はat%である。
 また、ヨーク部11a,12a,11b,12bおよびバイパス部13a,13bを形成する軟磁性材料としては、例えば、Co77FeSiやFe78.5Ni21.5があり、それぞれの典型的な電気比抵抗は1.15μΩm、0.16μΩmである。他にも、軟磁性材料として、パーマロイ(40~90%Ni-Fe合金)、センダスト(Fe74SiAl17)、ハードパーム(Fe12Ni82Nb)、Co88NbZrアモルファス合金、(Co94Fe70Si1515アモルファス合金、ファインメット(Fe75.6Si13.28.5Nb1.9Cu0.8)、ナノマックス(Fe83HF11)、Fe85Zr10合金、Fe93Si合金、Fe711118合金、Fe71.3Nd9.619.1ナノグラニュラー合金、Co70Al1020ナノグラニュラー合金、Co65FeAl1020合金等が使用できる。また、隙間dを形成する材料としては、例えば、SiOやAlなどの無機材料がある。
 ヨーク部11a,11bおよび12a,12bは、例えば、コイルの長手方向(磁束の方向)の長さが250μm、幅が80μm、厚さが0.5μmの長方形に、各対の端部が1μmのギャップGを空けてそれぞれ対向し合うように、同一平面上に膜状に形成されている。MR部10a,10bは、ヨーク部11a,12aおよび11b,12bのギャップGの間に電気的に接続されて形成されている。
 バイパス部13a,13bは、例えば、長さが5μm、幅が5μm、厚さが0.1μmであり、MR部10a,10bおよびヨーク部11a,12a,11b,12bとの間に0.1μmの隙間dを空けて形成されている。
 図5に、磁界検出素子7a,7bの磁路リラクタンスとしての構成(磁気回路図)を示す。この磁路リラクタンスは、ヨーク部11a,11bのリラクタンスRYOKとヨーク部12a,12bのリラクタンスRYOKとの間に、ヨーク部11a,11bとバイパス部13a,13bとの間の空気または非磁性絶縁部のリラクタンスRGAP、バイパス部13a,13bのリラクタンスRBPS、および、バイパス部13a,13bとヨーク部12a,12bとの間の空気または非磁性絶縁部のリラクタンスRGAPが直列に接続されたものが、MR部10a,10bのリラクタンスRGMRと並列に接続されたものと考えることができる。
 これにより、磁界検出素子7a,7bでは、励磁コイル3a,3bが発生し、ヨーク部11a,11b,12a,12bによって発生した磁束は、当初、MR部10a,10bとバイパス部13a,13bとに分かれる。つまり、バイパス部13a,13bは、ヨーク部11a,11b,12a,12bによって発生した多数の磁束の一部を誘引して、MR部10a,10bを迂回させることにより、MR部10a,10bを通る磁束の数を低減する。
 但し、リラクタンスRYOK,RGMR,RBPSは、それぞれ、磁界強度によってその値が変化する。一般に、リラクタンスは、磁界強度の上昇に伴って通過する磁束数が増加すると、その値が上昇する。そして、ある磁界強度において磁束が飽和するため、リラクタンスの値は、磁界強度が低いときに比べて格段に大きな割合で増加するようになり、完全に飽和することで通過する磁束数がそれ以上増加しなくなる。特に、本発明においてバイパス部13a,13bのリラクタンスRBPSは他のリラクタンスよりも低い磁界で急増する。
 尚、MR部10a,10bのリラクタンスRGMRは、MR部10a,10bの磁束が印加される方向の長さ(磁路長さ)をGGMR、MR部10a,10bの透磁率をμGMR、MR部10a,10bの厚さをtGMR、MR部10a,10bの幅(磁路幅)をWGMRとして、次の式で表すことができる。
  RGMR=GGMR/(μGMR×tGMR×WGMR
 図6に、MR部10a,10bを含むヨーク部11a,11bとヨーク部12a,12bとの間の電気抵抗の、磁界検出素子7a,7bに印加される入力磁界の強さに対する変化のシミュレーション結果を、磁界強度がゼロのときの抵抗を100%として表したMR比で示す。尚、図中には、MR部10a,10bおよびヨーク部11a,11b,12a,12bのみからなり、バイパス部13a,13bのない従来の構成の磁界検出素子の電気抵抗と比較して示す。尚、バイパス部13a,13bは、MR部10a,10bおよびヨーク部11a,11b,12a,12bから電気的に絶縁されているので、MR部10a,10bを含む電路の電気抵抗に影響しない。
 このシミュレーションでは、MR部10として、10KOeにおけるMR比が14%である(FeCo)30-(MgF70からなるナノグラニュラー膜を、ヨーク部11,12として、10KOeにおける磁束密度が12KGであり、幅方向に20Oe程度の一軸誘導磁気異方性を有し、透磁率がゼロ磁界から飽和磁界まで略線形的に変化するアモルファスCo78FeSi膜を用いた。また、バイパス部13は、ヨーク部11,12と同じ材質のアモルファス膜を用いた。
 MR部10a,10bは、通過する磁束数が増加すると、その電気抵抗が低下するが、入力磁界が小さく、バイパス部13a,13bが未飽和の場合、ヨーク部11a,11b,12a,12bによって発生した磁束の一部がバイパス部13a,13bに誘導されるので、従来に比べてその電気抵抗の低下率が低い。図においては、MR比の変化特性(線図の形状)が従来と比べて横方向に拡がったものになる。
 しかしながら、バイパス部13a,13bの断面積(厚さ×幅)は、ヨーク部11a,11b,12a,12bの断面積(厚さ×幅)と比べて十分に小さいため、入力磁界が強くなり、励磁コイル3a,3bが形成する磁束数が増加(励磁コイル3a,3bによって形成され、磁界検出素子7a,7bに印加される磁界強度が上昇)すると、バイパス部13a,13bは、磁束が飽和して、それ以上磁束を誘導できなくなる。このため、入力磁界の強度が高くなると、バイパス部13a,13bによる磁束のバイパス効果が低くなり、ヨーク部11a,11b,12a,12bに発生した磁束の増加分の多くがMR部10a,10bに誘導される。図においては、バイパス部13a,13bが飽和に近づくにつれ、グラフが従来に比べて横に拡がる度合いが小さくなり、結果的にMR比の変化特性の線形性が改善される。
 磁界検出素子7a,7bでは、入力磁界の強度がさらに高くなると、ヨーク部11a,11b,12a,12bよりも先にバイパス部13a,13bが完全に飽和する。結果として、バイパス部13a,13bが完全に飽和してからは、ヨーク部11a,11b,12a,12bに発生した磁束の増加分はすべてMR部10a,10bを通過する。以上の作用により、MR部10a,10bおよびヨーク部11a,11b,12a,12bのリラクタンスの増加による電気抵抗の変化率の低下を補い、線形性の高い電気抵抗(MR比)の変化特性を得ることができる。つまり、バイパス部13a,13bを備える磁界検出素子7a,7bは、従来のものよりも、入力磁界の変化に対する電気抵抗(MR比)の変化特性において、良好な線形性が得られる範囲が広い。
 ヨーク部11a,11b,12a,12bに発生した磁束の中でバイパス部13a,13bに誘導されてMR部10,10bを迂回する磁束の割合が低いと、MR部10a,10bのMR比の特性を変化させる余地が小さくなるので、磁界強度が低いときには、ヨーク部11a-12a間,11b-12b間の、12bバイパス部13a,13bを介した磁路のリラクタンス(2RYOK+2RGAP+RGMR)が、MR部10a,10bを介した磁路のリラクタンス(2RYOK+RGMR)に比べて小さいことが好ましい。
 しかしながら、バイパス部13a,13bを介した磁路のリラクタンス(2RYOK+2RGAP+RGMR)がMR部10a,10bを介した磁路のリラクタンス(2RYOK+RGMR)に比べて過度に低い場合、バイパス部13a,13bに多くの磁束が誘導され過ぎるため、図6のグラフにおいて、バイパス部13a,13bを有する場合のMR比変化特性の線図が横に拡がり過ぎて、MR部10a,10bの入力磁界に対する電気抵抗の変化率が小さくなるので、磁界強度の検出感度が低くなってしまう。また、バイパス部13a,13bを介した磁路のリラクタンスが高過ぎる場合、バイパス部13a,13bに磁束を誘導できず、MR部10a,10bをバイパスさせる効果がほとんどなくなるため、電気抵抗の変化特性を改善する効果が得られなくなる。このように、磁界検出素子7a,7bの好ましい特性を得るために、バイパス部13a,13bを介した磁路のリラクタンス(2RYOK+2RGAP+RGMR)と、MR部10a,10bを介した磁路のリラクタンス(2RYOK+RGMR)とのバランスを考慮する必要がある。
 図7および図8に、本発明の第2実施形態である磁界検出素子7cを示す。第2実施形態の磁界検出素子7cは、ギャップGを形成して対向する端部の厚みがテーパ状に小さくなったヨーク部11,12と、ヨーク部11,12の片側のテーパ部分からギャップGの半ばまでに磁気抵抗効果材料を充填して形成されたMR部10と、MR部10と不図示の絶縁膜を介して重なるように形成されたバイパス部13とからなる。
 ヨーク部11,12は、磁束を案内する方向(MR部10を挟み込む方向)の長さが250μm、幅が80μm、厚さが0.5μmで、1μmのギャップGを形成して対向している。また、ヨーク部11,12は、バイパス部13側の面が、磁束を案内する方向にMR部10側の端面からそれぞれ2μm長さに渡ってテーパ状に傾斜しており、ギャップGを形成する端部の厚みは0.3μmである。バイパス部13は、磁束を案内する方向の長さが5μm、つまり、MR部10のヨーク部11,12のテーパ部を覆う部分を含む全長と等しく、。MR部10とバイパス部13との隙間d(スパッタSiO薄膜で形成された絶縁膜の厚み)は、0.05μmである。
 この磁界検出素子7cでは、MR部10として、10KOeにおけるMR比が14%である(FeCo)30-(MgF2)70からなるギャップGでの膜厚0.3μmのナノグラニュラー膜を、ヨーク部11,12として、10KOeにおける磁束密度が12KGであり、幅方向に20Oe程度の一軸誘導磁気異方性を有し、透磁率がゼロ磁界から飽和磁界まで略線形的に変化するアモルファスCo78FeSi膜を用いた。また、バイパス部13は、ヨーク部11,12と同じ材質アモルファス膜を用いた。
 図9に、本実施形態の磁界検出素子7cのバイパス部13の厚みを0.2μmとし、バイパス部13の幅を、それぞれ、ヨーク部11,12と同じ80μm、半分の40μm、4分の1の20μm、8分の1の10μmとしたものにおける、MR部10を含むヨーク部11とヨーク部12との間の電気抵抗(MR比)の入力磁界の強度に対する変化の実測結果を示す。
 図示するように、磁界検出素子7cにおいても、第1実施形態と同様に、入力磁界が10(Oe)より弱い範囲では、バイパス部13によって、MR比の曲線が横軸方向に引き延ばされ、入力磁界が強くなってバイパス部13が完全に飽和した後は、バイパス部のない従来の磁界検出素子の曲線を横軸方向に並行移動したものと略一致するような曲線が描かれる。さらに、本実施形態では、ヨーク部11,12も、約20(Oe)の磁界強度において飽和している。このため、これ以上の磁界強度では、MR比の減少率が大きく低下している。
 さらに、バイパス部13の幅が広い程、バイパス部を迂回する磁束数が多くなり、その挙動が磁束数の増加により非線形的に大きく変化するため、入力磁界の強度がバイパス部13を飽和させる辺りにおける線形性を改善する効果が大きくなるので、MR比が線形となる範囲が広くなる。同時に、バイパス部13の幅が広い程、バイパス部を迂回する磁束数が多くなるため、入力磁界の変化に対するMR比の変化率は小さくなる。但し、ヨーク部11,12が飽和すると線形性が損なわれるので、バイパス部13によるMR比特性を改善する磁界強度の範囲は、ヨーク部11,12が飽和する磁界強度より低い範囲でなければならない。つまり、本実施形態において、線形範囲を最も広くした場合、その線形範囲は、バイパス部13が飽和し始めてから、ヨーク部11,12が飽和し始めるまでとなる。
 図10に、本実施形態の磁界検出素子7cのバイパス部13の幅を80μmとし、バイパス部13の厚みを0.2μmとしたものと0.1μmとしたもの、さらに、バイパス部のないものにおける、MR部10を含むヨーク部11とヨーク部12との間の電気抵抗(MR比)の入力磁界の強度に対する変化の実測結果を示す。
 図示するように、バイパス部13の厚みが大きい程、入力磁界の強度が低いときにMR比の曲線を横方向に拡げる度合いが大きくなるため、バイパス部13が飽和する入力磁界の強度が高くなる。さらに、図10において、バイパス部13の幅を80μm、厚みを0.1μmとした場合のMR比の曲線は、図9における、バイパス部13の幅を40μm、厚みを0.2μmとした場合MR比の曲線と略一致する。つまり、他の条件が一定の場合、バイパス部13の断面積が同じであればMR比の特性が略同じになる。
 また、ヨーク部11,12およびバイパス部13の磁束の飽和し易さも、それぞれの断面積に依存する。本実施形態では、ヨーク部11,12とバイパス部13とが同じ材質で形成されているので、バイパス部13の断面積をヨーク部11,12の断面積より小さくすべきである。尚、ここにいう断面積とは、それぞれを通過する磁束数を制限する実効的な断面積を指す。
 したがって、磁界検出素子7cにおいて、バイパス部13の断面積と、ヨーク部11,12の断面積との比を選択することによって、バイパス部13を介した磁路のリラクタンス(2RYOK+2RGAP+RGMR)と、MR部10を介した磁路のリラクタンス(2RYOK+RGMR)とのバランスを調整できる。
 本実施形態の磁界検出素子7cにおいて、上面から見た、バイパス部13とヨーク部11,12の重なる面積を変えることによっても、バイパス部13を介した磁路のリラクタンス(2RYOK+2RGAP+RGMR)と、MR部10を介した磁路のリラクタンス(2RYOK+RGMR)とのバランスを調整できる。
 また、本実施形態において、バイパス部13と、ヨーク部11,12との間の隙間dの大きさを変えることによっても、バイパス部13とヨーク部11,12との間のリラクタンスRGAPを変更できる。
 本実施形態では、バイパス部13を、MR部10の片側に重なるように配設しているが、バイパス部13は、ヨーク部11,12に発生した磁束を誘導して、MR部10を迂回させられるものであればいかなる形態であってもよい。例えば、バイパス部13を、MR部10(ヨーク部11,12のギャップG)の両側または側方に配設してもよい。また、MR部10がヨーク部11,12のギャップGの一部分のみを占有する場合、バイパス部13をヨーク部11,12のギャップGの中に配設してもよい。
 図11に、本発明の第3実施形態である磁界検出素子7dを示し、図12に、本発明の第4実施形態である磁界検出素子7eを示し、図13に、本発明の第5実施形態である磁界検出素子7fを示す。
 第3実施形態の磁界検出素子7dは、図11に示すように、バイパス部13が、MR部10のギャップGの部分のみと重なるように形成されている他は、第2実施形態の磁界検出素子7cと同じ構成である。
 第4実施形態の磁界検出素子7eは、図12に示すように、第3実施形態の磁界検出素子7dのバイパス部13を、ヨーク部11,12の長さ方向、つまり、バイパス部13が磁束を案内する方向に、不均一に拡張した形状を有する。具体的には、バイパス部13は、幅方向(磁束を案内する方向に直交する方向)の両端がギャップGの部分のみと重なるが、幅方向内側ほど磁束を案内する方向に長く、特に、幅方向中心部は、三角形状に突出し、先端がヨーク部11,12のテーパ開始部分に対向する位置まで延伸した、概略十字星形をなしている。
 第5実施形態の磁界検出素子7fは、図13に示すように、第4実施形態の磁界検出素子7eのバイパス部13の星形をより極端な形状にしたものであり、本実施形態のバイパス部13は、幅方向両端部が磁束を案内する方向の長さがゼロになるように尖っており、幅方向中心部の三角形の突出部も頂角が小さい尖鋭な形状になっている。つまり、バイパス部13が磁束を案内する方向の長さが極端に変化している。
 図14に、磁界検出素子7d,7e,7f、並びに、バイパス部13を設けないMR部10とヨーク部11,12のみからなる従来の磁界検出素子について、MR部10を含むヨーク部11とヨーク部12との間の電気抵抗(MR比)の入力磁界の強度に対する変化特性のシミュレーション結果を示す。
 第3実施形態の磁界検出素子7dは、第2実施形態の磁界検出素子7cと同様に、バイパス部13が飽和し始める(捕捉する磁束数が磁界強度に比例して上昇しなくなる)約10(Oe)までは、MR比の減少率が小さく、線形性が低い。しかしながら、第4実施形態の磁界検出素子7eおよび第5実施形態の磁界検出素子7fでは、磁界強度が低いときからヨーク部11,12が飽和し始める約20(Oe)までの広い範囲でMR比が直線的に減少しており、第3実施形態の磁界検出素子7dと比較して、線形性が大幅に改善されている。
 磁界検出素子7e,7fのバイパス部13は、幅方向の中央部が突出しているので、入力磁界が弱いときは、この部分に磁束が誘引され、幅方向中央部に磁束が集中する。このため、バイパス部13の幅方向中央部は、低い磁界強度で他の部分よりも先に飽和する。さらに、磁界強度が上昇すると、バイパス部13の飽和する範囲が中央部から幅方向両側および長さ方向に漸次拡がってゆく。これにより、バイパス部13の飽和によりMR比の線形性を改善する作用が、幅方向にタイミングをずらして部分的に発揮され、磁界強度が低いときから高いときまで、広い範囲でMR比を直線的に変化させられる。
 同様に、バイパス部13を部分的に異なる磁界強度において飽和させ、MR比の線形性を改善する効果を得るために、図15に示す本発明の第6実施形態の磁界検出素子7gのように、バイパス部13を、磁束を案内する方向に長さの異なる複数の分離された部分に分割して形成してもよい。また、図15に示す本発明の第7実施形態の磁界検出素子7hのように、バイパス部13の厚みを、幅方向に変化させてもよい。
 さらに、本発明では、バイパス部13の材質を異ならせることによっても、MR部10の磁界強度に対する電気抵抗変化の曲線の形状を変えることができる。ここでは、図17に示す本発明の第8実施形態である磁界検出素子7iのバイパス部13を、異なる軟磁性材料で形成して、MR比の変化特性の違いを検証する。
 磁界検出素子7iにおいて、MR部10およびヨーク部11,12の材質および形状は、上述の第2実施形態と同じである。また、磁界検出素子7iのバイパス部13は、長さがMR部10の全長と等しい5μm、厚みが0.2μm、幅がMR部10およびヨーク部11,12と等しい80μmであり、MR部10との間の隙間が0.05μmである。
 図18は、バイパス部13を形成する3種類の軟磁性材料のB-H曲線(磁界強度に対する磁束数の変化)を示す。通常材料は、上述の第2実施形態と同様に、ヨーク部11,12と同じく、金属材料を配向磁界下で形成した通常の軟磁性材料薄膜、例えばアモルファスCo78FeSi膜であり、磁界強度の増加に正比例して磁束数が線形的に増加し、入力磁界がある強度に達すると、飽和して、入力磁界が強くなっても磁束数が増加しなくなる特性を有する。第1の代替材料は、ヨーク部11,12と同じ組成であるが、通常の磁性材料の製法と異なり、ランダムな配向磁界を与えつつ形成し、一軸誘導磁気異方性を除去したものである。これにより、第1の代替材料は、入力磁界の増加に対する磁束密度の増加率が徐々に低下するような非線形のB-H特性を有する。また、第2の代替材料は、例えばCo65FeSi1517のように、ヨーク部11,12で使用した材料に、SiやB等の非磁性元素をより多く添加した材料を、ランダムな配向磁界中で形成したものである。これにより、第2の代替材料は、第1の代替材料のB-H特性を、入力磁界強度に対する磁束密度が半分になるように、縦軸方向に約2分の1に圧縮したたような特性となっている。
 図19に、バイパス部13を図18に示した磁気特性の異なる材料で形成した磁界検出素子7i、および、バイパス部のない従来の磁界検出素子について、MR部10を含むヨーク部11とヨーク部12との間の電気抵抗(MR比)の磁界強度に対する変化のシミュレーション結果を示す。図示するように、第1代替材料からなるバイパス部13は、通常材料からなるバイパス部13に比べて、MR比の線形性を高めることができる。第2の代替材料からなるバイパス部13は、第1の代替材料からなるバイパス部13の断面積を2分の1にしたものと略同様のMR比特性を与えていると考えられる。
 このように、B-H特性が非線形な軟磁性材料によってバイパス部13を形成することにより、MR部10およびヨーク部11,12の非線形性をより適切に相殺して、MR部10を含むヨーク部11とヨーク部12との間の電気抵抗(MR比)を、磁界強度に対して線形に変化させるようにできる。バイパス部13に非線形のB-H特性を付与する方法として、ランダムな配向磁界中で形成する他、熱処理による方法や、薄膜成形の速度、温度、雰囲気ガス等の条件によって結晶の大きさや配向性を調整する方法がある。また、材料組成についても、コバルト・鉄系のアモルファス、および、ニッケル・鉄系、鉄・シリコン系や鉄・シリコン・アルミ系等の材料が適用できる。
 さらに、図20に示す本発明の第9実施形態の磁界検出素子7jのように、バイパス部13を、磁束を案内する方向に、異なる磁気特性を有する複数の材料を並べて形成してもよい。これによって、バイパス部13全体として、より好ましいB-H特性、つまり、磁界強度変化に対して非線形にバイパス量を変化させて、MR部10およびヨーク部11,12の磁界強度に対する非線形性を補償できる特性を有し得る。
 さらに、図21に示す本発明の第10実施形態の磁界検出素子7kのように、MR部10およびヨーク部11,12と、バイパス部13とを絶縁する絶縁膜(絶縁層)14を、導電率が非常に小さく、小さな透磁率を有し、且つ、磁気特性(B-H曲線)が非線形な半導体的磁性材料で形成することによっても、バイパス部13にバイパスされる磁束数を非線形に変化させて、MR部10およびヨーク部11,12の非線形性を補償することができる。この絶縁膜14の材料としては、例えば、MnZnフェライト膜、NiZnフェライト膜、CuZnフェライト膜、CuZnMgフェライト膜、等が挙げられる。
  1…信号伝達素子
  3a,3b…励磁コイル
  7a~7k…磁界検出素子
  10,10a,10b…磁気抵抗効果部(MR部)
  11,11a,11b,12,12a,12b…ヨーク部
  13,13a,13b…バイパス部
  14…絶縁膜

Claims (7)

  1.  磁気抵抗効果材料からなる磁気抵抗効果部と、
     前記磁気抵抗効果部の両側に電気的に接続して配設され、前記磁気抵抗効果部に磁束を供給する、軟磁性材料からなる一対のヨーク部と、
     前記ヨーク部に発生した磁束の一部を誘導して前記磁気抵抗効果部を迂回させ、前記ヨーク部よりも低い磁界強度で磁束が飽和する、軟磁性材料からなるバイパス部とを有する磁界検出素子。
  2.  前記バイパス部は、前記磁気抵抗効果部および前記ヨーク部と電気的に絶縁されていることを特徴とする請求項1に記載の磁界検出素子。
  3.  前記磁気抵抗効果部および前記ヨーク部は、同一平面上に膜状に形成され、
     前記バイパス部は、前記磁気抵抗効果部と少なくとも部分的に重なるように、且つ、前記ヨーク部との間に隙間を空けて膜状に形成されていることを特徴とする請求項1に記載の磁界検出素子。
  4.  前記バイパス部の磁束が飽和しない磁界強度において、前記ヨーク部の間の、前記バイパス部を介して前記磁気抵抗効果部を迂回する磁路のリラクタンスが、前記磁気抵抗効果部のリラクタンスより小さいことを特徴とする請求項1に記載の磁界検出素子。
  5.  前記バイパス部は、部分的に、異なる磁界強度で磁束が飽和することを特徴とすることを特徴とする請求項1に記載の磁界検出素子。
  6.  前記バイパス部は、磁束を案内する方向の長さが異なる部分を含むことを特徴とする請求項5に記載の磁界検出素子。
  7.  請求項1に記載の磁界検出素子と、入力信号に応じて前記磁界検出素子に磁界を印加するコイルとを有することを特徴とする信号伝達素子。
PCT/JP2009/066948 2008-09-29 2009-09-29 磁界検出素子および信号伝達素子 WO2010035873A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/062,818 US8963544B2 (en) 2008-09-29 2009-09-29 Signal transmission device
EP09816285.2A EP2343566A4 (en) 2008-09-29 2009-09-29 MAGNETIC FIELD DETECTION ELEMENT AND SIGNAL TRANSMISSION ELEMENT
CN200980132270.5A CN102132168B (zh) 2008-09-29 2009-09-29 磁场检测元件及信号传递元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008251594 2008-09-29
JP2008-251594 2008-09-29

Publications (1)

Publication Number Publication Date
WO2010035873A1 true WO2010035873A1 (ja) 2010-04-01

Family

ID=42059860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066948 WO2010035873A1 (ja) 2008-09-29 2009-09-29 磁界検出素子および信号伝達素子

Country Status (5)

Country Link
US (1) US8963544B2 (ja)
EP (1) EP2343566A4 (ja)
JP (1) JP5055515B2 (ja)
CN (1) CN102132168B (ja)
WO (1) WO2010035873A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074481A (ja) * 2017-10-19 2019-05-16 Tdk株式会社 磁気センサ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102419425B (zh) * 2011-09-09 2013-12-04 兰州大学 一种磁电阻自动测量装置及其测量方法
CN103293492B (zh) * 2012-02-27 2016-06-01 国民技术股份有限公司 一种磁信号检测装置及方法
WO2013153986A1 (ja) * 2012-04-09 2013-10-17 三菱電機株式会社 磁気センサ装置
JP6099588B2 (ja) * 2014-03-20 2017-03-22 三菱電機株式会社 磁気結合型アイソレータ
JP6390728B2 (ja) 2017-02-22 2018-09-19 Tdk株式会社 磁気センサとその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279112A (ja) 1995-04-05 1996-10-22 Ricoh Co Ltd 磁気ヘッド
JP2000516714A (ja) 1996-08-16 2000-12-12 ノンボラタイル エレクトロニクス,インコーポレイテッド 磁流センサ
JP2001331913A (ja) * 2000-03-27 2001-11-30 Tdk Corp 磁気トンネル接合型読み取りヘッド、その製造方法および磁場検出装置
JP2004354181A (ja) 2003-05-28 2004-12-16 Res Inst Electric Magnetic Alloys 薄膜磁気センサ
JP2006100424A (ja) * 2004-09-28 2006-04-13 Tdk Corp 磁気記憶装置
JP2006156661A (ja) * 2004-11-29 2006-06-15 Alps Electric Co Ltd 薄膜磁気抵抗素子及びその製造方法並びに薄膜磁気抵抗素子を用いた磁気センサ
WO2008111336A1 (ja) * 2007-03-12 2008-09-18 Omron Corporation 磁気カプラ素子および磁気結合型アイソレータ

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987485A (en) * 1973-02-20 1976-10-19 Matsushita Electric Industrial Co., Ltd. Magnetic head with thin film components
US4097802A (en) * 1975-06-30 1978-06-27 International Business Machines Corporation Magnetoresistive field sensor with a magnetic shield which prevents sensor response at fields below saturation of the shield
US4301418A (en) * 1978-09-13 1981-11-17 The United States Of America As Represented By The Secretary Of The Navy Magnetoresistive power amplifier
DE3374622D1 (en) * 1982-04-14 1987-12-23 Matsushita Electric Ind Co Ltd A playback head for perpendicular magnetic recordings
NL8201846A (nl) * 1982-05-06 1983-12-01 Philips Nv Sensor met een magneetveldgevoelig element en werkwijze voor het vervaardigen daarvan.
NL8301188A (nl) * 1983-04-05 1984-11-01 Philips Nv Magneetkop met een dunne strook magnetoweerstandmateriaal als leeselement.
KR100225179B1 (ko) * 1992-11-30 1999-10-15 니시무로 타이죠 박막 자기 헤드 및 자기 저항 효과형 헤드
US5453291A (en) * 1993-05-25 1995-09-26 Honda Giken Kogyo Kabushiki Kaisha FRP member and method of detecting internal damage therein
US5552589A (en) * 1993-08-31 1996-09-03 Eastman Kodak Company Permanent magnet assembly with MR element for detection/authentication of magnetic documents
JPH08212512A (ja) * 1995-02-03 1996-08-20 Hitachi Ltd 磁気記憶装置及びそれに用いる薄膜磁気ヘッドとその製造方法
US5729137A (en) * 1996-10-22 1998-03-17 Nonvolatile Electronics, Incorporated Magnetic field sensors individualized field reducers
JPH10241123A (ja) * 1997-02-28 1998-09-11 Nec Corp 磁気抵抗効果ヘッド
JP3466470B2 (ja) 1998-03-18 2003-11-10 財団法人電気磁気材料研究所 薄膜磁気抵抗素子
JP2002100010A (ja) * 2000-09-26 2002-04-05 Toshiba Corp ヨーク型再生磁気ヘッドおよびその製造方法ならびに磁気ディスク装置
CN100403048C (zh) 2000-10-26 2008-07-16 财团法人电气磁气材料研究所 薄膜磁传感器
CN100356605C (zh) * 2001-07-19 2007-12-19 松下电器产业株式会社 磁性传感器及其制造方法
GB0126285D0 (en) * 2001-11-01 2002-01-02 Isis Innovation Improved moving coil transducer
JP4487472B2 (ja) * 2002-07-05 2010-06-23 株式会社日立製作所 磁気抵抗効果素子、及びこれを備える磁気ヘッド、磁気記録装置、磁気メモリ
JP3835447B2 (ja) * 2002-10-23 2006-10-18 ヤマハ株式会社 磁気センサ、同磁気センサの製造方法及び同製造方法に適したマグネットアレイ
EP1588177A1 (en) * 2003-01-31 2005-10-26 Commissariat A L'energie Atomique Device for sensing a magnetic field
JP4055609B2 (ja) * 2003-03-03 2008-03-05 株式会社デンソー 磁気センサ製造方法
JP2004356338A (ja) * 2003-05-28 2004-12-16 Res Inst Electric Magnetic Alloys 薄膜磁気センサ及びその製造方法
JP2004363157A (ja) * 2003-06-02 2004-12-24 Res Inst Electric Magnetic Alloys 薄膜磁気センサ及びその製造方法
US7271586B2 (en) * 2003-12-04 2007-09-18 Honeywell International Inc. Single package design for 3-axis magnetic sensor
US7466126B2 (en) * 2004-07-12 2008-12-16 General Electric Company Universal sensor probe with adjustable members configured to fit between a plurality of slot openings of varying widths
CN101065721B (zh) 2004-09-27 2010-08-11 Nxp股份有限公司 用于输入设备的磁传感器
JP2006287081A (ja) * 2005-04-04 2006-10-19 Fuji Electric Holdings Co Ltd スピン注入磁区移動素子およびこれを用いた装置
JP4665751B2 (ja) * 2005-12-22 2011-04-06 株式会社日立製作所 高抵抗磁石を用いたmri装置
JP2008249556A (ja) * 2007-03-30 2008-10-16 Tdk Corp 磁気センサ
JP2009054219A (ja) * 2007-08-24 2009-03-12 Hitachi Global Storage Technologies Netherlands Bv 垂直磁気記録ヘッド
JP5151551B2 (ja) * 2008-02-27 2013-02-27 大同特殊鋼株式会社 薄膜磁気センサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279112A (ja) 1995-04-05 1996-10-22 Ricoh Co Ltd 磁気ヘッド
JP2000516714A (ja) 1996-08-16 2000-12-12 ノンボラタイル エレクトロニクス,インコーポレイテッド 磁流センサ
JP2001331913A (ja) * 2000-03-27 2001-11-30 Tdk Corp 磁気トンネル接合型読み取りヘッド、その製造方法および磁場検出装置
JP2004354181A (ja) 2003-05-28 2004-12-16 Res Inst Electric Magnetic Alloys 薄膜磁気センサ
JP2006100424A (ja) * 2004-09-28 2006-04-13 Tdk Corp 磁気記憶装置
JP2006156661A (ja) * 2004-11-29 2006-06-15 Alps Electric Co Ltd 薄膜磁気抵抗素子及びその製造方法並びに薄膜磁気抵抗素子を用いた磁気センサ
WO2008111336A1 (ja) * 2007-03-12 2008-09-18 Omron Corporation 磁気カプラ素子および磁気結合型アイソレータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2343566A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074481A (ja) * 2017-10-19 2019-05-16 Tdk株式会社 磁気センサ

Also Published As

Publication number Publication date
JP2010101882A (ja) 2010-05-06
JP5055515B2 (ja) 2012-10-24
US20110273174A1 (en) 2011-11-10
CN102132168B (zh) 2013-07-24
US8963544B2 (en) 2015-02-24
CN102132168A (zh) 2011-07-20
EP2343566A1 (en) 2011-07-13
EP2343566A4 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
US8760158B2 (en) Current sensor
JP5572208B2 (ja) 磁気センサ及びそれを用いた磁気平衡式電流センサ
JP5055515B2 (ja) 磁界検出素子および信号伝達素子
JP6210061B2 (ja) 磁気センサデバイス
JP2008197089A (ja) 磁気センサ素子及びその製造方法
KR20180026725A (ko) 자기 저항 센서
WO2012081377A1 (ja) 磁気センサ及び磁気センサの製造方法
KR20020089317A (ko) 박막자계센서
JPH0936456A (ja) 巨大磁気抵抗、製造工程および磁気センサへの適用
WO2011111536A1 (ja) 磁気平衡式電流センサ
JP2009162540A (ja) 磁気センサ及びその製造方法
JP5597305B2 (ja) 電流センサ
JP2017228688A (ja) 磁気センサおよび電流センサ
US20180088188A1 (en) Thin-film magnetic sensor
JP2015197388A (ja) フラックスゲート型磁気センサ
JP2015207625A (ja) 磁気抵抗効果素子およびそれを用いた半導体回路
JP4334914B2 (ja) 薄膜磁気センサ
RU2316783C2 (ru) Магниторезистивная слоистая система и чувствительный элемент на основе такой слоистой системы
JP2003078187A5 (ja)
JP2012063232A (ja) 磁界検出装置の製造方法および磁界検出装置
JP2003078187A (ja) 磁界センサ
JP6282990B2 (ja) 磁気センサおよび電流センサ
CN109541503B (zh) 磁传感器
JPH11195824A (ja) 磁気抵抗効果素子及び磁気抵抗効果型ヘッド
TWI382432B (zh) 電感器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980132270.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09816285

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009816285

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13062818

Country of ref document: US